1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeNVPTX.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/CodeGen/ConstantInitBuilder.h"
46 #include "clang/Frontend/FrontendDiagnostic.h"
47 #include "llvm/ADT/StringSwitch.h"
48 #include "llvm/ADT/Triple.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ProfileSummary.h"
56 #include "llvm/ProfileData/InstrProfReader.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/ConvertUTF.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/MD5.h"
62 #include "llvm/Support/TimeProfiler.h"
63 
64 using namespace clang;
65 using namespace CodeGen;
66 
67 static llvm::cl::opt<bool> LimitedCoverage(
68     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
69     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
70     llvm::cl::init(false));
71 
72 static const char AnnotationSection[] = "llvm.metadata";
73 
74 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
75   switch (CGM.getTarget().getCXXABI().getKind()) {
76   case TargetCXXABI::Fuchsia:
77   case TargetCXXABI::GenericAArch64:
78   case TargetCXXABI::GenericARM:
79   case TargetCXXABI::iOS:
80   case TargetCXXABI::iOS64:
81   case TargetCXXABI::WatchOS:
82   case TargetCXXABI::GenericMIPS:
83   case TargetCXXABI::GenericItanium:
84   case TargetCXXABI::WebAssembly:
85     return CreateItaniumCXXABI(CGM);
86   case TargetCXXABI::Microsoft:
87     return CreateMicrosoftCXXABI(CGM);
88   }
89 
90   llvm_unreachable("invalid C++ ABI kind");
91 }
92 
93 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
94                              const PreprocessorOptions &PPO,
95                              const CodeGenOptions &CGO, llvm::Module &M,
96                              DiagnosticsEngine &diags,
97                              CoverageSourceInfo *CoverageInfo)
98     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
99       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
100       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
101       VMContext(M.getContext()), Types(*this), VTables(*this),
102       SanitizerMD(new SanitizerMetadata(*this)) {
103 
104   // Initialize the type cache.
105   llvm::LLVMContext &LLVMContext = M.getContext();
106   VoidTy = llvm::Type::getVoidTy(LLVMContext);
107   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
108   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
109   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
110   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
111   HalfTy = llvm::Type::getHalfTy(LLVMContext);
112   FloatTy = llvm::Type::getFloatTy(LLVMContext);
113   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
114   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
115   PointerAlignInBytes =
116     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
117   SizeSizeInBytes =
118     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
119   IntAlignInBytes =
120     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
121   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
122   IntPtrTy = llvm::IntegerType::get(LLVMContext,
123     C.getTargetInfo().getMaxPointerWidth());
124   Int8PtrTy = Int8Ty->getPointerTo(0);
125   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
126   AllocaInt8PtrTy = Int8Ty->getPointerTo(
127       M.getDataLayout().getAllocaAddrSpace());
128   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
129 
130   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
131 
132   if (LangOpts.ObjC)
133     createObjCRuntime();
134   if (LangOpts.OpenCL)
135     createOpenCLRuntime();
136   if (LangOpts.OpenMP)
137     createOpenMPRuntime();
138   if (LangOpts.CUDA)
139     createCUDARuntime();
140 
141   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
142   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
143       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
144     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
145                                getCXXABI().getMangleContext()));
146 
147   // If debug info or coverage generation is enabled, create the CGDebugInfo
148   // object.
149   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
150       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
151     DebugInfo.reset(new CGDebugInfo(*this));
152 
153   Block.GlobalUniqueCount = 0;
154 
155   if (C.getLangOpts().ObjC)
156     ObjCData.reset(new ObjCEntrypoints());
157 
158   if (CodeGenOpts.hasProfileClangUse()) {
159     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
160         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
161     if (auto E = ReaderOrErr.takeError()) {
162       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
163                                               "Could not read profile %0: %1");
164       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
165         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
166                                   << EI.message();
167       });
168     } else
169       PGOReader = std::move(ReaderOrErr.get());
170   }
171 
172   // If coverage mapping generation is enabled, create the
173   // CoverageMappingModuleGen object.
174   if (CodeGenOpts.CoverageMapping)
175     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
176 }
177 
178 CodeGenModule::~CodeGenModule() {}
179 
180 void CodeGenModule::createObjCRuntime() {
181   // This is just isGNUFamily(), but we want to force implementors of
182   // new ABIs to decide how best to do this.
183   switch (LangOpts.ObjCRuntime.getKind()) {
184   case ObjCRuntime::GNUstep:
185   case ObjCRuntime::GCC:
186   case ObjCRuntime::ObjFW:
187     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
188     return;
189 
190   case ObjCRuntime::FragileMacOSX:
191   case ObjCRuntime::MacOSX:
192   case ObjCRuntime::iOS:
193   case ObjCRuntime::WatchOS:
194     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
195     return;
196   }
197   llvm_unreachable("bad runtime kind");
198 }
199 
200 void CodeGenModule::createOpenCLRuntime() {
201   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
202 }
203 
204 void CodeGenModule::createOpenMPRuntime() {
205   // Select a specialized code generation class based on the target, if any.
206   // If it does not exist use the default implementation.
207   switch (getTriple().getArch()) {
208   case llvm::Triple::nvptx:
209   case llvm::Triple::nvptx64:
210     assert(getLangOpts().OpenMPIsDevice &&
211            "OpenMP NVPTX is only prepared to deal with device code.");
212     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
213     break;
214   default:
215     if (LangOpts.OpenMPSimd)
216       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
217     else
218       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
219     break;
220   }
221 }
222 
223 void CodeGenModule::createCUDARuntime() {
224   CUDARuntime.reset(CreateNVCUDARuntime(*this));
225 }
226 
227 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
228   Replacements[Name] = C;
229 }
230 
231 void CodeGenModule::applyReplacements() {
232   for (auto &I : Replacements) {
233     StringRef MangledName = I.first();
234     llvm::Constant *Replacement = I.second;
235     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
236     if (!Entry)
237       continue;
238     auto *OldF = cast<llvm::Function>(Entry);
239     auto *NewF = dyn_cast<llvm::Function>(Replacement);
240     if (!NewF) {
241       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
242         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
243       } else {
244         auto *CE = cast<llvm::ConstantExpr>(Replacement);
245         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
246                CE->getOpcode() == llvm::Instruction::GetElementPtr);
247         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
248       }
249     }
250 
251     // Replace old with new, but keep the old order.
252     OldF->replaceAllUsesWith(Replacement);
253     if (NewF) {
254       NewF->removeFromParent();
255       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
256                                                        NewF);
257     }
258     OldF->eraseFromParent();
259   }
260 }
261 
262 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
263   GlobalValReplacements.push_back(std::make_pair(GV, C));
264 }
265 
266 void CodeGenModule::applyGlobalValReplacements() {
267   for (auto &I : GlobalValReplacements) {
268     llvm::GlobalValue *GV = I.first;
269     llvm::Constant *C = I.second;
270 
271     GV->replaceAllUsesWith(C);
272     GV->eraseFromParent();
273   }
274 }
275 
276 // This is only used in aliases that we created and we know they have a
277 // linear structure.
278 static const llvm::GlobalObject *getAliasedGlobal(
279     const llvm::GlobalIndirectSymbol &GIS) {
280   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
281   const llvm::Constant *C = &GIS;
282   for (;;) {
283     C = C->stripPointerCasts();
284     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
285       return GO;
286     // stripPointerCasts will not walk over weak aliases.
287     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
288     if (!GIS2)
289       return nullptr;
290     if (!Visited.insert(GIS2).second)
291       return nullptr;
292     C = GIS2->getIndirectSymbol();
293   }
294 }
295 
296 void CodeGenModule::checkAliases() {
297   // Check if the constructed aliases are well formed. It is really unfortunate
298   // that we have to do this in CodeGen, but we only construct mangled names
299   // and aliases during codegen.
300   bool Error = false;
301   DiagnosticsEngine &Diags = getDiags();
302   for (const GlobalDecl &GD : Aliases) {
303     const auto *D = cast<ValueDecl>(GD.getDecl());
304     SourceLocation Location;
305     bool IsIFunc = D->hasAttr<IFuncAttr>();
306     if (const Attr *A = D->getDefiningAttr())
307       Location = A->getLocation();
308     else
309       llvm_unreachable("Not an alias or ifunc?");
310     StringRef MangledName = getMangledName(GD);
311     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
312     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
313     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
314     if (!GV) {
315       Error = true;
316       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
317     } else if (GV->isDeclaration()) {
318       Error = true;
319       Diags.Report(Location, diag::err_alias_to_undefined)
320           << IsIFunc << IsIFunc;
321     } else if (IsIFunc) {
322       // Check resolver function type.
323       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
324           GV->getType()->getPointerElementType());
325       assert(FTy);
326       if (!FTy->getReturnType()->isPointerTy())
327         Diags.Report(Location, diag::err_ifunc_resolver_return);
328     }
329 
330     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
331     llvm::GlobalValue *AliaseeGV;
332     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
333       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
334     else
335       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
336 
337     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
338       StringRef AliasSection = SA->getName();
339       if (AliasSection != AliaseeGV->getSection())
340         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
341             << AliasSection << IsIFunc << IsIFunc;
342     }
343 
344     // We have to handle alias to weak aliases in here. LLVM itself disallows
345     // this since the object semantics would not match the IL one. For
346     // compatibility with gcc we implement it by just pointing the alias
347     // to its aliasee's aliasee. We also warn, since the user is probably
348     // expecting the link to be weak.
349     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
350       if (GA->isInterposable()) {
351         Diags.Report(Location, diag::warn_alias_to_weak_alias)
352             << GV->getName() << GA->getName() << IsIFunc;
353         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
354             GA->getIndirectSymbol(), Alias->getType());
355         Alias->setIndirectSymbol(Aliasee);
356       }
357     }
358   }
359   if (!Error)
360     return;
361 
362   for (const GlobalDecl &GD : Aliases) {
363     StringRef MangledName = getMangledName(GD);
364     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
365     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
366     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
367     Alias->eraseFromParent();
368   }
369 }
370 
371 void CodeGenModule::clear() {
372   DeferredDeclsToEmit.clear();
373   if (OpenMPRuntime)
374     OpenMPRuntime->clear();
375 }
376 
377 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
378                                        StringRef MainFile) {
379   if (!hasDiagnostics())
380     return;
381   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
382     if (MainFile.empty())
383       MainFile = "<stdin>";
384     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
385   } else {
386     if (Mismatched > 0)
387       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
388 
389     if (Missing > 0)
390       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
391   }
392 }
393 
394 void CodeGenModule::Release() {
395   EmitDeferred();
396   EmitVTablesOpportunistically();
397   applyGlobalValReplacements();
398   applyReplacements();
399   checkAliases();
400   emitMultiVersionFunctions();
401   EmitCXXGlobalInitFunc();
402   EmitCXXGlobalDtorFunc();
403   registerGlobalDtorsWithAtExit();
404   EmitCXXThreadLocalInitFunc();
405   if (ObjCRuntime)
406     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
407       AddGlobalCtor(ObjCInitFunction);
408   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
409       CUDARuntime) {
410     if (llvm::Function *CudaCtorFunction =
411             CUDARuntime->makeModuleCtorFunction())
412       AddGlobalCtor(CudaCtorFunction);
413   }
414   if (OpenMPRuntime) {
415     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
416             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
417       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
418     }
419     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
420     OpenMPRuntime->clear();
421   }
422   if (PGOReader) {
423     getModule().setProfileSummary(
424         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
425         llvm::ProfileSummary::PSK_Instr);
426     if (PGOStats.hasDiagnostics())
427       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
428   }
429   EmitCtorList(GlobalCtors, "llvm.global_ctors");
430   EmitCtorList(GlobalDtors, "llvm.global_dtors");
431   EmitGlobalAnnotations();
432   EmitStaticExternCAliases();
433   EmitDeferredUnusedCoverageMappings();
434   if (CoverageMapping)
435     CoverageMapping->emit();
436   if (CodeGenOpts.SanitizeCfiCrossDso) {
437     CodeGenFunction(*this).EmitCfiCheckFail();
438     CodeGenFunction(*this).EmitCfiCheckStub();
439   }
440   emitAtAvailableLinkGuard();
441   emitLLVMUsed();
442   if (SanStats)
443     SanStats->finish();
444 
445   if (CodeGenOpts.Autolink &&
446       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
447     EmitModuleLinkOptions();
448   }
449 
450   // On ELF we pass the dependent library specifiers directly to the linker
451   // without manipulating them. This is in contrast to other platforms where
452   // they are mapped to a specific linker option by the compiler. This
453   // difference is a result of the greater variety of ELF linkers and the fact
454   // that ELF linkers tend to handle libraries in a more complicated fashion
455   // than on other platforms. This forces us to defer handling the dependent
456   // libs to the linker.
457   //
458   // CUDA/HIP device and host libraries are different. Currently there is no
459   // way to differentiate dependent libraries for host or device. Existing
460   // usage of #pragma comment(lib, *) is intended for host libraries on
461   // Windows. Therefore emit llvm.dependent-libraries only for host.
462   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
463     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
464     for (auto *MD : ELFDependentLibraries)
465       NMD->addOperand(MD);
466   }
467 
468   // Record mregparm value now so it is visible through rest of codegen.
469   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
470     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
471                               CodeGenOpts.NumRegisterParameters);
472 
473   if (CodeGenOpts.DwarfVersion) {
474     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
475                               CodeGenOpts.DwarfVersion);
476   }
477   if (CodeGenOpts.EmitCodeView) {
478     // Indicate that we want CodeView in the metadata.
479     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
480   }
481   if (CodeGenOpts.CodeViewGHash) {
482     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
483   }
484   if (CodeGenOpts.ControlFlowGuard) {
485     // Function ID tables and checks for Control Flow Guard (cfguard=2).
486     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
487   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
488     // Function ID tables for Control Flow Guard (cfguard=1).
489     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
490   }
491   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
492     // We don't support LTO with 2 with different StrictVTablePointers
493     // FIXME: we could support it by stripping all the information introduced
494     // by StrictVTablePointers.
495 
496     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
497 
498     llvm::Metadata *Ops[2] = {
499               llvm::MDString::get(VMContext, "StrictVTablePointers"),
500               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
501                   llvm::Type::getInt32Ty(VMContext), 1))};
502 
503     getModule().addModuleFlag(llvm::Module::Require,
504                               "StrictVTablePointersRequirement",
505                               llvm::MDNode::get(VMContext, Ops));
506   }
507   if (DebugInfo)
508     // We support a single version in the linked module. The LLVM
509     // parser will drop debug info with a different version number
510     // (and warn about it, too).
511     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
512                               llvm::DEBUG_METADATA_VERSION);
513 
514   // We need to record the widths of enums and wchar_t, so that we can generate
515   // the correct build attributes in the ARM backend. wchar_size is also used by
516   // TargetLibraryInfo.
517   uint64_t WCharWidth =
518       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
519   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
520 
521   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
522   if (   Arch == llvm::Triple::arm
523       || Arch == llvm::Triple::armeb
524       || Arch == llvm::Triple::thumb
525       || Arch == llvm::Triple::thumbeb) {
526     // The minimum width of an enum in bytes
527     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
528     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
529   }
530 
531   if (CodeGenOpts.SanitizeCfiCrossDso) {
532     // Indicate that we want cross-DSO control flow integrity checks.
533     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
534   }
535 
536   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
537     getModule().addModuleFlag(llvm::Module::Override,
538                               "CFI Canonical Jump Tables",
539                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
540   }
541 
542   if (CodeGenOpts.CFProtectionReturn &&
543       Target.checkCFProtectionReturnSupported(getDiags())) {
544     // Indicate that we want to instrument return control flow protection.
545     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
546                               1);
547   }
548 
549   if (CodeGenOpts.CFProtectionBranch &&
550       Target.checkCFProtectionBranchSupported(getDiags())) {
551     // Indicate that we want to instrument branch control flow protection.
552     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
553                               1);
554   }
555 
556   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
557     // Indicate whether __nvvm_reflect should be configured to flush denormal
558     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
559     // property.)
560     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
561                               CodeGenOpts.FlushDenorm ? 1 : 0);
562   }
563 
564   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
565   if (LangOpts.OpenCL) {
566     EmitOpenCLMetadata();
567     // Emit SPIR version.
568     if (getTriple().isSPIR()) {
569       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
570       // opencl.spir.version named metadata.
571       // C++ is backwards compatible with OpenCL v2.0.
572       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
573       llvm::Metadata *SPIRVerElts[] = {
574           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
575               Int32Ty, Version / 100)),
576           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
577               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
578       llvm::NamedMDNode *SPIRVerMD =
579           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
580       llvm::LLVMContext &Ctx = TheModule.getContext();
581       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
582     }
583   }
584 
585   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
586     assert(PLevel < 3 && "Invalid PIC Level");
587     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
588     if (Context.getLangOpts().PIE)
589       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
590   }
591 
592   if (getCodeGenOpts().CodeModel.size() > 0) {
593     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
594                   .Case("tiny", llvm::CodeModel::Tiny)
595                   .Case("small", llvm::CodeModel::Small)
596                   .Case("kernel", llvm::CodeModel::Kernel)
597                   .Case("medium", llvm::CodeModel::Medium)
598                   .Case("large", llvm::CodeModel::Large)
599                   .Default(~0u);
600     if (CM != ~0u) {
601       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
602       getModule().setCodeModel(codeModel);
603     }
604   }
605 
606   if (CodeGenOpts.NoPLT)
607     getModule().setRtLibUseGOT();
608 
609   SimplifyPersonality();
610 
611   if (getCodeGenOpts().EmitDeclMetadata)
612     EmitDeclMetadata();
613 
614   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
615     EmitCoverageFile();
616 
617   if (DebugInfo)
618     DebugInfo->finalize();
619 
620   if (getCodeGenOpts().EmitVersionIdentMetadata)
621     EmitVersionIdentMetadata();
622 
623   if (!getCodeGenOpts().RecordCommandLine.empty())
624     EmitCommandLineMetadata();
625 
626   EmitTargetMetadata();
627 }
628 
629 void CodeGenModule::EmitOpenCLMetadata() {
630   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
631   // opencl.ocl.version named metadata node.
632   // C++ is backwards compatible with OpenCL v2.0.
633   // FIXME: We might need to add CXX version at some point too?
634   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
635   llvm::Metadata *OCLVerElts[] = {
636       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
637           Int32Ty, Version / 100)),
638       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
639           Int32Ty, (Version % 100) / 10))};
640   llvm::NamedMDNode *OCLVerMD =
641       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
642   llvm::LLVMContext &Ctx = TheModule.getContext();
643   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
644 }
645 
646 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
647   // Make sure that this type is translated.
648   Types.UpdateCompletedType(TD);
649 }
650 
651 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
652   // Make sure that this type is translated.
653   Types.RefreshTypeCacheForClass(RD);
654 }
655 
656 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
657   if (!TBAA)
658     return nullptr;
659   return TBAA->getTypeInfo(QTy);
660 }
661 
662 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
663   if (!TBAA)
664     return TBAAAccessInfo();
665   return TBAA->getAccessInfo(AccessType);
666 }
667 
668 TBAAAccessInfo
669 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
670   if (!TBAA)
671     return TBAAAccessInfo();
672   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
673 }
674 
675 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
676   if (!TBAA)
677     return nullptr;
678   return TBAA->getTBAAStructInfo(QTy);
679 }
680 
681 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
682   if (!TBAA)
683     return nullptr;
684   return TBAA->getBaseTypeInfo(QTy);
685 }
686 
687 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
688   if (!TBAA)
689     return nullptr;
690   return TBAA->getAccessTagInfo(Info);
691 }
692 
693 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
694                                                    TBAAAccessInfo TargetInfo) {
695   if (!TBAA)
696     return TBAAAccessInfo();
697   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
698 }
699 
700 TBAAAccessInfo
701 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
702                                                    TBAAAccessInfo InfoB) {
703   if (!TBAA)
704     return TBAAAccessInfo();
705   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
706 }
707 
708 TBAAAccessInfo
709 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
710                                               TBAAAccessInfo SrcInfo) {
711   if (!TBAA)
712     return TBAAAccessInfo();
713   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
714 }
715 
716 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
717                                                 TBAAAccessInfo TBAAInfo) {
718   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
719     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
720 }
721 
722 void CodeGenModule::DecorateInstructionWithInvariantGroup(
723     llvm::Instruction *I, const CXXRecordDecl *RD) {
724   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
725                  llvm::MDNode::get(getLLVMContext(), {}));
726 }
727 
728 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
729   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
730   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
731 }
732 
733 /// ErrorUnsupported - Print out an error that codegen doesn't support the
734 /// specified stmt yet.
735 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
736   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
737                                                "cannot compile this %0 yet");
738   std::string Msg = Type;
739   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
740       << Msg << S->getSourceRange();
741 }
742 
743 /// ErrorUnsupported - Print out an error that codegen doesn't support the
744 /// specified decl yet.
745 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
746   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
747                                                "cannot compile this %0 yet");
748   std::string Msg = Type;
749   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
750 }
751 
752 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
753   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
754 }
755 
756 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
757                                         const NamedDecl *D) const {
758   if (GV->hasDLLImportStorageClass())
759     return;
760   // Internal definitions always have default visibility.
761   if (GV->hasLocalLinkage()) {
762     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
763     return;
764   }
765   if (!D)
766     return;
767   // Set visibility for definitions, and for declarations if requested globally
768   // or set explicitly.
769   LinkageInfo LV = D->getLinkageAndVisibility();
770   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
771       !GV->isDeclarationForLinker())
772     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
773 }
774 
775 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
776                                  llvm::GlobalValue *GV) {
777   if (GV->hasLocalLinkage())
778     return true;
779 
780   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
781     return true;
782 
783   // DLLImport explicitly marks the GV as external.
784   if (GV->hasDLLImportStorageClass())
785     return false;
786 
787   const llvm::Triple &TT = CGM.getTriple();
788   if (TT.isWindowsGNUEnvironment()) {
789     // In MinGW, variables without DLLImport can still be automatically
790     // imported from a DLL by the linker; don't mark variables that
791     // potentially could come from another DLL as DSO local.
792     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
793         !GV->isThreadLocal())
794       return false;
795   }
796 
797   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
798   // remain unresolved in the link, they can be resolved to zero, which is
799   // outside the current DSO.
800   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
801     return false;
802 
803   // Every other GV is local on COFF.
804   // Make an exception for windows OS in the triple: Some firmware builds use
805   // *-win32-macho triples. This (accidentally?) produced windows relocations
806   // without GOT tables in older clang versions; Keep this behaviour.
807   // FIXME: even thread local variables?
808   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
809     return true;
810 
811   // Only handle COFF and ELF for now.
812   if (!TT.isOSBinFormatELF())
813     return false;
814 
815   // If this is not an executable, don't assume anything is local.
816   const auto &CGOpts = CGM.getCodeGenOpts();
817   llvm::Reloc::Model RM = CGOpts.RelocationModel;
818   const auto &LOpts = CGM.getLangOpts();
819   if (RM != llvm::Reloc::Static && !LOpts.PIE)
820     return false;
821 
822   // A definition cannot be preempted from an executable.
823   if (!GV->isDeclarationForLinker())
824     return true;
825 
826   // Most PIC code sequences that assume that a symbol is local cannot produce a
827   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
828   // depended, it seems worth it to handle it here.
829   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
830     return false;
831 
832   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
833   llvm::Triple::ArchType Arch = TT.getArch();
834   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
835       Arch == llvm::Triple::ppc64le)
836     return false;
837 
838   // If we can use copy relocations we can assume it is local.
839   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
840     if (!Var->isThreadLocal() &&
841         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
842       return true;
843 
844   // If we can use a plt entry as the symbol address we can assume it
845   // is local.
846   // FIXME: This should work for PIE, but the gold linker doesn't support it.
847   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
848     return true;
849 
850   // Otherwise don't assue it is local.
851   return false;
852 }
853 
854 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
855   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
856 }
857 
858 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
859                                           GlobalDecl GD) const {
860   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
861   // C++ destructors have a few C++ ABI specific special cases.
862   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
863     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
864     return;
865   }
866   setDLLImportDLLExport(GV, D);
867 }
868 
869 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
870                                           const NamedDecl *D) const {
871   if (D && D->isExternallyVisible()) {
872     if (D->hasAttr<DLLImportAttr>())
873       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
874     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
875       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
876   }
877 }
878 
879 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
880                                     GlobalDecl GD) const {
881   setDLLImportDLLExport(GV, GD);
882   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
883 }
884 
885 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
886                                     const NamedDecl *D) const {
887   setDLLImportDLLExport(GV, D);
888   setGVPropertiesAux(GV, D);
889 }
890 
891 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
892                                        const NamedDecl *D) const {
893   setGlobalVisibility(GV, D);
894   setDSOLocal(GV);
895   GV->setPartition(CodeGenOpts.SymbolPartition);
896 }
897 
898 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
899   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
900       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
901       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
902       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
903       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
904 }
905 
906 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
907     CodeGenOptions::TLSModel M) {
908   switch (M) {
909   case CodeGenOptions::GeneralDynamicTLSModel:
910     return llvm::GlobalVariable::GeneralDynamicTLSModel;
911   case CodeGenOptions::LocalDynamicTLSModel:
912     return llvm::GlobalVariable::LocalDynamicTLSModel;
913   case CodeGenOptions::InitialExecTLSModel:
914     return llvm::GlobalVariable::InitialExecTLSModel;
915   case CodeGenOptions::LocalExecTLSModel:
916     return llvm::GlobalVariable::LocalExecTLSModel;
917   }
918   llvm_unreachable("Invalid TLS model!");
919 }
920 
921 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
922   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
923 
924   llvm::GlobalValue::ThreadLocalMode TLM;
925   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
926 
927   // Override the TLS model if it is explicitly specified.
928   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
929     TLM = GetLLVMTLSModel(Attr->getModel());
930   }
931 
932   GV->setThreadLocalMode(TLM);
933 }
934 
935 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
936                                           StringRef Name) {
937   const TargetInfo &Target = CGM.getTarget();
938   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
939 }
940 
941 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
942                                                  const CPUSpecificAttr *Attr,
943                                                  unsigned CPUIndex,
944                                                  raw_ostream &Out) {
945   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
946   // supported.
947   if (Attr)
948     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
949   else if (CGM.getTarget().supportsIFunc())
950     Out << ".resolver";
951 }
952 
953 static void AppendTargetMangling(const CodeGenModule &CGM,
954                                  const TargetAttr *Attr, raw_ostream &Out) {
955   if (Attr->isDefaultVersion())
956     return;
957 
958   Out << '.';
959   const TargetInfo &Target = CGM.getTarget();
960   ParsedTargetAttr Info =
961       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
962         // Multiversioning doesn't allow "no-${feature}", so we can
963         // only have "+" prefixes here.
964         assert(LHS.startswith("+") && RHS.startswith("+") &&
965                "Features should always have a prefix.");
966         return Target.multiVersionSortPriority(LHS.substr(1)) >
967                Target.multiVersionSortPriority(RHS.substr(1));
968       });
969 
970   bool IsFirst = true;
971 
972   if (!Info.Architecture.empty()) {
973     IsFirst = false;
974     Out << "arch_" << Info.Architecture;
975   }
976 
977   for (StringRef Feat : Info.Features) {
978     if (!IsFirst)
979       Out << '_';
980     IsFirst = false;
981     Out << Feat.substr(1);
982   }
983 }
984 
985 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
986                                       const NamedDecl *ND,
987                                       bool OmitMultiVersionMangling = false) {
988   SmallString<256> Buffer;
989   llvm::raw_svector_ostream Out(Buffer);
990   MangleContext &MC = CGM.getCXXABI().getMangleContext();
991   if (MC.shouldMangleDeclName(ND)) {
992     llvm::raw_svector_ostream Out(Buffer);
993     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
994       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
995     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
996       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
997     else
998       MC.mangleName(ND, Out);
999   } else {
1000     IdentifierInfo *II = ND->getIdentifier();
1001     assert(II && "Attempt to mangle unnamed decl.");
1002     const auto *FD = dyn_cast<FunctionDecl>(ND);
1003 
1004     if (FD &&
1005         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1006       llvm::raw_svector_ostream Out(Buffer);
1007       Out << "__regcall3__" << II->getName();
1008     } else {
1009       Out << II->getName();
1010     }
1011   }
1012 
1013   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1014     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1015       switch (FD->getMultiVersionKind()) {
1016       case MultiVersionKind::CPUDispatch:
1017       case MultiVersionKind::CPUSpecific:
1018         AppendCPUSpecificCPUDispatchMangling(CGM,
1019                                              FD->getAttr<CPUSpecificAttr>(),
1020                                              GD.getMultiVersionIndex(), Out);
1021         break;
1022       case MultiVersionKind::Target:
1023         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1024         break;
1025       case MultiVersionKind::None:
1026         llvm_unreachable("None multiversion type isn't valid here");
1027       }
1028     }
1029 
1030   return Out.str();
1031 }
1032 
1033 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1034                                             const FunctionDecl *FD) {
1035   if (!FD->isMultiVersion())
1036     return;
1037 
1038   // Get the name of what this would be without the 'target' attribute.  This
1039   // allows us to lookup the version that was emitted when this wasn't a
1040   // multiversion function.
1041   std::string NonTargetName =
1042       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1043   GlobalDecl OtherGD;
1044   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1045     assert(OtherGD.getCanonicalDecl()
1046                .getDecl()
1047                ->getAsFunction()
1048                ->isMultiVersion() &&
1049            "Other GD should now be a multiversioned function");
1050     // OtherFD is the version of this function that was mangled BEFORE
1051     // becoming a MultiVersion function.  It potentially needs to be updated.
1052     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1053                                       .getDecl()
1054                                       ->getAsFunction()
1055                                       ->getMostRecentDecl();
1056     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1057     // This is so that if the initial version was already the 'default'
1058     // version, we don't try to update it.
1059     if (OtherName != NonTargetName) {
1060       // Remove instead of erase, since others may have stored the StringRef
1061       // to this.
1062       const auto ExistingRecord = Manglings.find(NonTargetName);
1063       if (ExistingRecord != std::end(Manglings))
1064         Manglings.remove(&(*ExistingRecord));
1065       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1066       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1067       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1068         Entry->setName(OtherName);
1069     }
1070   }
1071 }
1072 
1073 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1074   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1075 
1076   // Some ABIs don't have constructor variants.  Make sure that base and
1077   // complete constructors get mangled the same.
1078   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1079     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1080       CXXCtorType OrigCtorType = GD.getCtorType();
1081       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1082       if (OrigCtorType == Ctor_Base)
1083         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1084     }
1085   }
1086 
1087   auto FoundName = MangledDeclNames.find(CanonicalGD);
1088   if (FoundName != MangledDeclNames.end())
1089     return FoundName->second;
1090 
1091   // Keep the first result in the case of a mangling collision.
1092   const auto *ND = cast<NamedDecl>(GD.getDecl());
1093   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1094 
1095   // Adjust kernel stub mangling as we may need to be able to differentiate
1096   // them from the kernel itself (e.g., for HIP).
1097   if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
1098     if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>())
1099       MangledName = getCUDARuntime().getDeviceStubName(MangledName);
1100 
1101   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1102   return MangledDeclNames[CanonicalGD] = Result.first->first();
1103 }
1104 
1105 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1106                                              const BlockDecl *BD) {
1107   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1108   const Decl *D = GD.getDecl();
1109 
1110   SmallString<256> Buffer;
1111   llvm::raw_svector_ostream Out(Buffer);
1112   if (!D)
1113     MangleCtx.mangleGlobalBlock(BD,
1114       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1115   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1116     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1117   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1118     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1119   else
1120     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1121 
1122   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1123   return Result.first->first();
1124 }
1125 
1126 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1127   return getModule().getNamedValue(Name);
1128 }
1129 
1130 /// AddGlobalCtor - Add a function to the list that will be called before
1131 /// main() runs.
1132 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1133                                   llvm::Constant *AssociatedData) {
1134   // FIXME: Type coercion of void()* types.
1135   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1136 }
1137 
1138 /// AddGlobalDtor - Add a function to the list that will be called
1139 /// when the module is unloaded.
1140 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1141   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1142     DtorsUsingAtExit[Priority].push_back(Dtor);
1143     return;
1144   }
1145 
1146   // FIXME: Type coercion of void()* types.
1147   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1148 }
1149 
1150 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1151   if (Fns.empty()) return;
1152 
1153   // Ctor function type is void()*.
1154   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1155   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1156       TheModule.getDataLayout().getProgramAddressSpace());
1157 
1158   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1159   llvm::StructType *CtorStructTy = llvm::StructType::get(
1160       Int32Ty, CtorPFTy, VoidPtrTy);
1161 
1162   // Construct the constructor and destructor arrays.
1163   ConstantInitBuilder builder(*this);
1164   auto ctors = builder.beginArray(CtorStructTy);
1165   for (const auto &I : Fns) {
1166     auto ctor = ctors.beginStruct(CtorStructTy);
1167     ctor.addInt(Int32Ty, I.Priority);
1168     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1169     if (I.AssociatedData)
1170       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1171     else
1172       ctor.addNullPointer(VoidPtrTy);
1173     ctor.finishAndAddTo(ctors);
1174   }
1175 
1176   auto list =
1177     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1178                                 /*constant*/ false,
1179                                 llvm::GlobalValue::AppendingLinkage);
1180 
1181   // The LTO linker doesn't seem to like it when we set an alignment
1182   // on appending variables.  Take it off as a workaround.
1183   list->setAlignment(llvm::None);
1184 
1185   Fns.clear();
1186 }
1187 
1188 llvm::GlobalValue::LinkageTypes
1189 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1190   const auto *D = cast<FunctionDecl>(GD.getDecl());
1191 
1192   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1193 
1194   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1195     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1196 
1197   if (isa<CXXConstructorDecl>(D) &&
1198       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1199       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1200     // Our approach to inheriting constructors is fundamentally different from
1201     // that used by the MS ABI, so keep our inheriting constructor thunks
1202     // internal rather than trying to pick an unambiguous mangling for them.
1203     return llvm::GlobalValue::InternalLinkage;
1204   }
1205 
1206   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1207 }
1208 
1209 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1210   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1211   if (!MDS) return nullptr;
1212 
1213   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1214 }
1215 
1216 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1217                                               const CGFunctionInfo &Info,
1218                                               llvm::Function *F) {
1219   unsigned CallingConv;
1220   llvm::AttributeList PAL;
1221   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1222   F->setAttributes(PAL);
1223   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1224 }
1225 
1226 static void removeImageAccessQualifier(std::string& TyName) {
1227   std::string ReadOnlyQual("__read_only");
1228   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1229   if (ReadOnlyPos != std::string::npos)
1230     // "+ 1" for the space after access qualifier.
1231     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1232   else {
1233     std::string WriteOnlyQual("__write_only");
1234     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1235     if (WriteOnlyPos != std::string::npos)
1236       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1237     else {
1238       std::string ReadWriteQual("__read_write");
1239       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1240       if (ReadWritePos != std::string::npos)
1241         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1242     }
1243   }
1244 }
1245 
1246 // Returns the address space id that should be produced to the
1247 // kernel_arg_addr_space metadata. This is always fixed to the ids
1248 // as specified in the SPIR 2.0 specification in order to differentiate
1249 // for example in clGetKernelArgInfo() implementation between the address
1250 // spaces with targets without unique mapping to the OpenCL address spaces
1251 // (basically all single AS CPUs).
1252 static unsigned ArgInfoAddressSpace(LangAS AS) {
1253   switch (AS) {
1254   case LangAS::opencl_global:   return 1;
1255   case LangAS::opencl_constant: return 2;
1256   case LangAS::opencl_local:    return 3;
1257   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
1258   default:
1259     return 0; // Assume private.
1260   }
1261 }
1262 
1263 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1264                                          const FunctionDecl *FD,
1265                                          CodeGenFunction *CGF) {
1266   assert(((FD && CGF) || (!FD && !CGF)) &&
1267          "Incorrect use - FD and CGF should either be both null or not!");
1268   // Create MDNodes that represent the kernel arg metadata.
1269   // Each MDNode is a list in the form of "key", N number of values which is
1270   // the same number of values as their are kernel arguments.
1271 
1272   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1273 
1274   // MDNode for the kernel argument address space qualifiers.
1275   SmallVector<llvm::Metadata *, 8> addressQuals;
1276 
1277   // MDNode for the kernel argument access qualifiers (images only).
1278   SmallVector<llvm::Metadata *, 8> accessQuals;
1279 
1280   // MDNode for the kernel argument type names.
1281   SmallVector<llvm::Metadata *, 8> argTypeNames;
1282 
1283   // MDNode for the kernel argument base type names.
1284   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1285 
1286   // MDNode for the kernel argument type qualifiers.
1287   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1288 
1289   // MDNode for the kernel argument names.
1290   SmallVector<llvm::Metadata *, 8> argNames;
1291 
1292   if (FD && CGF)
1293     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1294       const ParmVarDecl *parm = FD->getParamDecl(i);
1295       QualType ty = parm->getType();
1296       std::string typeQuals;
1297 
1298       if (ty->isPointerType()) {
1299         QualType pointeeTy = ty->getPointeeType();
1300 
1301         // Get address qualifier.
1302         addressQuals.push_back(
1303             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1304                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1305 
1306         // Get argument type name.
1307         std::string typeName =
1308             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1309 
1310         // Turn "unsigned type" to "utype"
1311         std::string::size_type pos = typeName.find("unsigned");
1312         if (pointeeTy.isCanonical() && pos != std::string::npos)
1313           typeName.erase(pos + 1, 8);
1314 
1315         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1316 
1317         std::string baseTypeName =
1318             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1319                 Policy) +
1320             "*";
1321 
1322         // Turn "unsigned type" to "utype"
1323         pos = baseTypeName.find("unsigned");
1324         if (pos != std::string::npos)
1325           baseTypeName.erase(pos + 1, 8);
1326 
1327         argBaseTypeNames.push_back(
1328             llvm::MDString::get(VMContext, baseTypeName));
1329 
1330         // Get argument type qualifiers:
1331         if (ty.isRestrictQualified())
1332           typeQuals = "restrict";
1333         if (pointeeTy.isConstQualified() ||
1334             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1335           typeQuals += typeQuals.empty() ? "const" : " const";
1336         if (pointeeTy.isVolatileQualified())
1337           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1338       } else {
1339         uint32_t AddrSpc = 0;
1340         bool isPipe = ty->isPipeType();
1341         if (ty->isImageType() || isPipe)
1342           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1343 
1344         addressQuals.push_back(
1345             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1346 
1347         // Get argument type name.
1348         std::string typeName;
1349         if (isPipe)
1350           typeName = ty.getCanonicalType()
1351                          ->getAs<PipeType>()
1352                          ->getElementType()
1353                          .getAsString(Policy);
1354         else
1355           typeName = ty.getUnqualifiedType().getAsString(Policy);
1356 
1357         // Turn "unsigned type" to "utype"
1358         std::string::size_type pos = typeName.find("unsigned");
1359         if (ty.isCanonical() && pos != std::string::npos)
1360           typeName.erase(pos + 1, 8);
1361 
1362         std::string baseTypeName;
1363         if (isPipe)
1364           baseTypeName = ty.getCanonicalType()
1365                              ->getAs<PipeType>()
1366                              ->getElementType()
1367                              .getCanonicalType()
1368                              .getAsString(Policy);
1369         else
1370           baseTypeName =
1371               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1372 
1373         // Remove access qualifiers on images
1374         // (as they are inseparable from type in clang implementation,
1375         // but OpenCL spec provides a special query to get access qualifier
1376         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1377         if (ty->isImageType()) {
1378           removeImageAccessQualifier(typeName);
1379           removeImageAccessQualifier(baseTypeName);
1380         }
1381 
1382         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1383 
1384         // Turn "unsigned type" to "utype"
1385         pos = baseTypeName.find("unsigned");
1386         if (pos != std::string::npos)
1387           baseTypeName.erase(pos + 1, 8);
1388 
1389         argBaseTypeNames.push_back(
1390             llvm::MDString::get(VMContext, baseTypeName));
1391 
1392         if (isPipe)
1393           typeQuals = "pipe";
1394       }
1395 
1396       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1397 
1398       // Get image and pipe access qualifier:
1399       if (ty->isImageType() || ty->isPipeType()) {
1400         const Decl *PDecl = parm;
1401         if (auto *TD = dyn_cast<TypedefType>(ty))
1402           PDecl = TD->getDecl();
1403         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1404         if (A && A->isWriteOnly())
1405           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1406         else if (A && A->isReadWrite())
1407           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1408         else
1409           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1410       } else
1411         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1412 
1413       // Get argument name.
1414       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1415     }
1416 
1417   Fn->setMetadata("kernel_arg_addr_space",
1418                   llvm::MDNode::get(VMContext, addressQuals));
1419   Fn->setMetadata("kernel_arg_access_qual",
1420                   llvm::MDNode::get(VMContext, accessQuals));
1421   Fn->setMetadata("kernel_arg_type",
1422                   llvm::MDNode::get(VMContext, argTypeNames));
1423   Fn->setMetadata("kernel_arg_base_type",
1424                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1425   Fn->setMetadata("kernel_arg_type_qual",
1426                   llvm::MDNode::get(VMContext, argTypeQuals));
1427   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1428     Fn->setMetadata("kernel_arg_name",
1429                     llvm::MDNode::get(VMContext, argNames));
1430 }
1431 
1432 /// Determines whether the language options require us to model
1433 /// unwind exceptions.  We treat -fexceptions as mandating this
1434 /// except under the fragile ObjC ABI with only ObjC exceptions
1435 /// enabled.  This means, for example, that C with -fexceptions
1436 /// enables this.
1437 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1438   // If exceptions are completely disabled, obviously this is false.
1439   if (!LangOpts.Exceptions) return false;
1440 
1441   // If C++ exceptions are enabled, this is true.
1442   if (LangOpts.CXXExceptions) return true;
1443 
1444   // If ObjC exceptions are enabled, this depends on the ABI.
1445   if (LangOpts.ObjCExceptions) {
1446     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1447   }
1448 
1449   return true;
1450 }
1451 
1452 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1453                                                       const CXXMethodDecl *MD) {
1454   // Check that the type metadata can ever actually be used by a call.
1455   if (!CGM.getCodeGenOpts().LTOUnit ||
1456       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1457     return false;
1458 
1459   // Only functions whose address can be taken with a member function pointer
1460   // need this sort of type metadata.
1461   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1462          !isa<CXXDestructorDecl>(MD);
1463 }
1464 
1465 std::vector<const CXXRecordDecl *>
1466 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1467   llvm::SetVector<const CXXRecordDecl *> MostBases;
1468 
1469   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1470   CollectMostBases = [&](const CXXRecordDecl *RD) {
1471     if (RD->getNumBases() == 0)
1472       MostBases.insert(RD);
1473     for (const CXXBaseSpecifier &B : RD->bases())
1474       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1475   };
1476   CollectMostBases(RD);
1477   return MostBases.takeVector();
1478 }
1479 
1480 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1481                                                            llvm::Function *F) {
1482   llvm::AttrBuilder B;
1483 
1484   if (CodeGenOpts.UnwindTables)
1485     B.addAttribute(llvm::Attribute::UWTable);
1486 
1487   if (!hasUnwindExceptions(LangOpts))
1488     B.addAttribute(llvm::Attribute::NoUnwind);
1489 
1490   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1491     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1492       B.addAttribute(llvm::Attribute::StackProtect);
1493     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1494       B.addAttribute(llvm::Attribute::StackProtectStrong);
1495     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1496       B.addAttribute(llvm::Attribute::StackProtectReq);
1497   }
1498 
1499   if (!D) {
1500     // If we don't have a declaration to control inlining, the function isn't
1501     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1502     // disabled, mark the function as noinline.
1503     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1504         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1505       B.addAttribute(llvm::Attribute::NoInline);
1506 
1507     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1508     return;
1509   }
1510 
1511   // Track whether we need to add the optnone LLVM attribute,
1512   // starting with the default for this optimization level.
1513   bool ShouldAddOptNone =
1514       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1515   // We can't add optnone in the following cases, it won't pass the verifier.
1516   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1517   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1518 
1519   // Add optnone, but do so only if the function isn't always_inline.
1520   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1521       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1522     B.addAttribute(llvm::Attribute::OptimizeNone);
1523 
1524     // OptimizeNone implies noinline; we should not be inlining such functions.
1525     B.addAttribute(llvm::Attribute::NoInline);
1526 
1527     // We still need to handle naked functions even though optnone subsumes
1528     // much of their semantics.
1529     if (D->hasAttr<NakedAttr>())
1530       B.addAttribute(llvm::Attribute::Naked);
1531 
1532     // OptimizeNone wins over OptimizeForSize and MinSize.
1533     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1534     F->removeFnAttr(llvm::Attribute::MinSize);
1535   } else if (D->hasAttr<NakedAttr>()) {
1536     // Naked implies noinline: we should not be inlining such functions.
1537     B.addAttribute(llvm::Attribute::Naked);
1538     B.addAttribute(llvm::Attribute::NoInline);
1539   } else if (D->hasAttr<NoDuplicateAttr>()) {
1540     B.addAttribute(llvm::Attribute::NoDuplicate);
1541   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1542     // Add noinline if the function isn't always_inline.
1543     B.addAttribute(llvm::Attribute::NoInline);
1544   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1545              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1546     // (noinline wins over always_inline, and we can't specify both in IR)
1547     B.addAttribute(llvm::Attribute::AlwaysInline);
1548   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1549     // If we're not inlining, then force everything that isn't always_inline to
1550     // carry an explicit noinline attribute.
1551     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1552       B.addAttribute(llvm::Attribute::NoInline);
1553   } else {
1554     // Otherwise, propagate the inline hint attribute and potentially use its
1555     // absence to mark things as noinline.
1556     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1557       // Search function and template pattern redeclarations for inline.
1558       auto CheckForInline = [](const FunctionDecl *FD) {
1559         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1560           return Redecl->isInlineSpecified();
1561         };
1562         if (any_of(FD->redecls(), CheckRedeclForInline))
1563           return true;
1564         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1565         if (!Pattern)
1566           return false;
1567         return any_of(Pattern->redecls(), CheckRedeclForInline);
1568       };
1569       if (CheckForInline(FD)) {
1570         B.addAttribute(llvm::Attribute::InlineHint);
1571       } else if (CodeGenOpts.getInlining() ==
1572                      CodeGenOptions::OnlyHintInlining &&
1573                  !FD->isInlined() &&
1574                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1575         B.addAttribute(llvm::Attribute::NoInline);
1576       }
1577     }
1578   }
1579 
1580   // Add other optimization related attributes if we are optimizing this
1581   // function.
1582   if (!D->hasAttr<OptimizeNoneAttr>()) {
1583     if (D->hasAttr<ColdAttr>()) {
1584       if (!ShouldAddOptNone)
1585         B.addAttribute(llvm::Attribute::OptimizeForSize);
1586       B.addAttribute(llvm::Attribute::Cold);
1587     }
1588 
1589     if (D->hasAttr<MinSizeAttr>())
1590       B.addAttribute(llvm::Attribute::MinSize);
1591   }
1592 
1593   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1594 
1595   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1596   if (alignment)
1597     F->setAlignment(llvm::Align(alignment));
1598 
1599   if (!D->hasAttr<AlignedAttr>())
1600     if (LangOpts.FunctionAlignment)
1601       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1602 
1603   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1604   // reserve a bit for differentiating between virtual and non-virtual member
1605   // functions. If the current target's C++ ABI requires this and this is a
1606   // member function, set its alignment accordingly.
1607   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1608     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1609       F->setAlignment(llvm::Align(2));
1610   }
1611 
1612   // In the cross-dso CFI mode with canonical jump tables, we want !type
1613   // attributes on definitions only.
1614   if (CodeGenOpts.SanitizeCfiCrossDso &&
1615       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1616     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1617       // Skip available_externally functions. They won't be codegen'ed in the
1618       // current module anyway.
1619       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1620         CreateFunctionTypeMetadataForIcall(FD, F);
1621     }
1622   }
1623 
1624   // Emit type metadata on member functions for member function pointer checks.
1625   // These are only ever necessary on definitions; we're guaranteed that the
1626   // definition will be present in the LTO unit as a result of LTO visibility.
1627   auto *MD = dyn_cast<CXXMethodDecl>(D);
1628   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1629     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1630       llvm::Metadata *Id =
1631           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1632               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1633       F->addTypeMetadata(0, Id);
1634     }
1635   }
1636 }
1637 
1638 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1639   const Decl *D = GD.getDecl();
1640   if (dyn_cast_or_null<NamedDecl>(D))
1641     setGVProperties(GV, GD);
1642   else
1643     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1644 
1645   if (D && D->hasAttr<UsedAttr>())
1646     addUsedGlobal(GV);
1647 
1648   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1649     const auto *VD = cast<VarDecl>(D);
1650     if (VD->getType().isConstQualified() &&
1651         VD->getStorageDuration() == SD_Static)
1652       addUsedGlobal(GV);
1653   }
1654 }
1655 
1656 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1657                                                 llvm::AttrBuilder &Attrs) {
1658   // Add target-cpu and target-features attributes to functions. If
1659   // we have a decl for the function and it has a target attribute then
1660   // parse that and add it to the feature set.
1661   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1662   std::vector<std::string> Features;
1663   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1664   FD = FD ? FD->getMostRecentDecl() : FD;
1665   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1666   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1667   bool AddedAttr = false;
1668   if (TD || SD) {
1669     llvm::StringMap<bool> FeatureMap;
1670     getFunctionFeatureMap(FeatureMap, GD);
1671 
1672     // Produce the canonical string for this set of features.
1673     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1674       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1675 
1676     // Now add the target-cpu and target-features to the function.
1677     // While we populated the feature map above, we still need to
1678     // get and parse the target attribute so we can get the cpu for
1679     // the function.
1680     if (TD) {
1681       ParsedTargetAttr ParsedAttr = TD->parse();
1682       if (ParsedAttr.Architecture != "" &&
1683           getTarget().isValidCPUName(ParsedAttr.Architecture))
1684         TargetCPU = ParsedAttr.Architecture;
1685     }
1686   } else {
1687     // Otherwise just add the existing target cpu and target features to the
1688     // function.
1689     Features = getTarget().getTargetOpts().Features;
1690   }
1691 
1692   if (TargetCPU != "") {
1693     Attrs.addAttribute("target-cpu", TargetCPU);
1694     AddedAttr = true;
1695   }
1696   if (!Features.empty()) {
1697     llvm::sort(Features);
1698     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1699     AddedAttr = true;
1700   }
1701 
1702   return AddedAttr;
1703 }
1704 
1705 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1706                                           llvm::GlobalObject *GO) {
1707   const Decl *D = GD.getDecl();
1708   SetCommonAttributes(GD, GO);
1709 
1710   if (D) {
1711     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1712       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1713         GV->addAttribute("bss-section", SA->getName());
1714       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1715         GV->addAttribute("data-section", SA->getName());
1716       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1717         GV->addAttribute("rodata-section", SA->getName());
1718       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1719         GV->addAttribute("relro-section", SA->getName());
1720     }
1721 
1722     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1723       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1724         if (!D->getAttr<SectionAttr>())
1725           F->addFnAttr("implicit-section-name", SA->getName());
1726 
1727       llvm::AttrBuilder Attrs;
1728       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1729         // We know that GetCPUAndFeaturesAttributes will always have the
1730         // newest set, since it has the newest possible FunctionDecl, so the
1731         // new ones should replace the old.
1732         F->removeFnAttr("target-cpu");
1733         F->removeFnAttr("target-features");
1734         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1735       }
1736     }
1737 
1738     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1739       GO->setSection(CSA->getName());
1740     else if (const auto *SA = D->getAttr<SectionAttr>())
1741       GO->setSection(SA->getName());
1742   }
1743 
1744   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1745 }
1746 
1747 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1748                                                   llvm::Function *F,
1749                                                   const CGFunctionInfo &FI) {
1750   const Decl *D = GD.getDecl();
1751   SetLLVMFunctionAttributes(GD, FI, F);
1752   SetLLVMFunctionAttributesForDefinition(D, F);
1753 
1754   F->setLinkage(llvm::Function::InternalLinkage);
1755 
1756   setNonAliasAttributes(GD, F);
1757 }
1758 
1759 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1760   // Set linkage and visibility in case we never see a definition.
1761   LinkageInfo LV = ND->getLinkageAndVisibility();
1762   // Don't set internal linkage on declarations.
1763   // "extern_weak" is overloaded in LLVM; we probably should have
1764   // separate linkage types for this.
1765   if (isExternallyVisible(LV.getLinkage()) &&
1766       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1767     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1768 }
1769 
1770 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1771                                                        llvm::Function *F) {
1772   // Only if we are checking indirect calls.
1773   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1774     return;
1775 
1776   // Non-static class methods are handled via vtable or member function pointer
1777   // checks elsewhere.
1778   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1779     return;
1780 
1781   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1782   F->addTypeMetadata(0, MD);
1783   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1784 
1785   // Emit a hash-based bit set entry for cross-DSO calls.
1786   if (CodeGenOpts.SanitizeCfiCrossDso)
1787     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1788       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1789 }
1790 
1791 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1792                                           bool IsIncompleteFunction,
1793                                           bool IsThunk) {
1794 
1795   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1796     // If this is an intrinsic function, set the function's attributes
1797     // to the intrinsic's attributes.
1798     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1799     return;
1800   }
1801 
1802   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1803 
1804   if (!IsIncompleteFunction)
1805     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1806 
1807   // Add the Returned attribute for "this", except for iOS 5 and earlier
1808   // where substantial code, including the libstdc++ dylib, was compiled with
1809   // GCC and does not actually return "this".
1810   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1811       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1812     assert(!F->arg_empty() &&
1813            F->arg_begin()->getType()
1814              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1815            "unexpected this return");
1816     F->addAttribute(1, llvm::Attribute::Returned);
1817   }
1818 
1819   // Only a few attributes are set on declarations; these may later be
1820   // overridden by a definition.
1821 
1822   setLinkageForGV(F, FD);
1823   setGVProperties(F, FD);
1824 
1825   // Setup target-specific attributes.
1826   if (!IsIncompleteFunction && F->isDeclaration())
1827     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1828 
1829   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1830     F->setSection(CSA->getName());
1831   else if (const auto *SA = FD->getAttr<SectionAttr>())
1832      F->setSection(SA->getName());
1833 
1834   if (FD->isReplaceableGlobalAllocationFunction()) {
1835     // A replaceable global allocation function does not act like a builtin by
1836     // default, only if it is invoked by a new-expression or delete-expression.
1837     F->addAttribute(llvm::AttributeList::FunctionIndex,
1838                     llvm::Attribute::NoBuiltin);
1839 
1840     // A sane operator new returns a non-aliasing pointer.
1841     // FIXME: Also add NonNull attribute to the return value
1842     // for the non-nothrow forms?
1843     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1844     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1845         (Kind == OO_New || Kind == OO_Array_New))
1846       F->addAttribute(llvm::AttributeList::ReturnIndex,
1847                       llvm::Attribute::NoAlias);
1848   }
1849 
1850   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1851     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1852   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1853     if (MD->isVirtual())
1854       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1855 
1856   // Don't emit entries for function declarations in the cross-DSO mode. This
1857   // is handled with better precision by the receiving DSO. But if jump tables
1858   // are non-canonical then we need type metadata in order to produce the local
1859   // jump table.
1860   if (!CodeGenOpts.SanitizeCfiCrossDso ||
1861       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1862     CreateFunctionTypeMetadataForIcall(FD, F);
1863 
1864   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1865     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1866 
1867   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1868     // Annotate the callback behavior as metadata:
1869     //  - The callback callee (as argument number).
1870     //  - The callback payloads (as argument numbers).
1871     llvm::LLVMContext &Ctx = F->getContext();
1872     llvm::MDBuilder MDB(Ctx);
1873 
1874     // The payload indices are all but the first one in the encoding. The first
1875     // identifies the callback callee.
1876     int CalleeIdx = *CB->encoding_begin();
1877     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1878     F->addMetadata(llvm::LLVMContext::MD_callback,
1879                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1880                                                CalleeIdx, PayloadIndices,
1881                                                /* VarArgsArePassed */ false)}));
1882   }
1883 }
1884 
1885 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1886   assert(!GV->isDeclaration() &&
1887          "Only globals with definition can force usage.");
1888   LLVMUsed.emplace_back(GV);
1889 }
1890 
1891 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1892   assert(!GV->isDeclaration() &&
1893          "Only globals with definition can force usage.");
1894   LLVMCompilerUsed.emplace_back(GV);
1895 }
1896 
1897 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1898                      std::vector<llvm::WeakTrackingVH> &List) {
1899   // Don't create llvm.used if there is no need.
1900   if (List.empty())
1901     return;
1902 
1903   // Convert List to what ConstantArray needs.
1904   SmallVector<llvm::Constant*, 8> UsedArray;
1905   UsedArray.resize(List.size());
1906   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1907     UsedArray[i] =
1908         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1909             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1910   }
1911 
1912   if (UsedArray.empty())
1913     return;
1914   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1915 
1916   auto *GV = new llvm::GlobalVariable(
1917       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1918       llvm::ConstantArray::get(ATy, UsedArray), Name);
1919 
1920   GV->setSection("llvm.metadata");
1921 }
1922 
1923 void CodeGenModule::emitLLVMUsed() {
1924   emitUsed(*this, "llvm.used", LLVMUsed);
1925   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1926 }
1927 
1928 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1929   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1930   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1931 }
1932 
1933 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1934   llvm::SmallString<32> Opt;
1935   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1936   if (Opt.empty())
1937     return;
1938   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1939   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1940 }
1941 
1942 void CodeGenModule::AddDependentLib(StringRef Lib) {
1943   auto &C = getLLVMContext();
1944   if (getTarget().getTriple().isOSBinFormatELF()) {
1945       ELFDependentLibraries.push_back(
1946         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
1947     return;
1948   }
1949 
1950   llvm::SmallString<24> Opt;
1951   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1952   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1953   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
1954 }
1955 
1956 /// Add link options implied by the given module, including modules
1957 /// it depends on, using a postorder walk.
1958 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1959                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1960                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1961   // Import this module's parent.
1962   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1963     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1964   }
1965 
1966   // Import this module's dependencies.
1967   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1968     if (Visited.insert(Mod->Imports[I - 1]).second)
1969       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1970   }
1971 
1972   // Add linker options to link against the libraries/frameworks
1973   // described by this module.
1974   llvm::LLVMContext &Context = CGM.getLLVMContext();
1975   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
1976 
1977   // For modules that use export_as for linking, use that module
1978   // name instead.
1979   if (Mod->UseExportAsModuleLinkName)
1980     return;
1981 
1982   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1983     // Link against a framework.  Frameworks are currently Darwin only, so we
1984     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1985     if (Mod->LinkLibraries[I-1].IsFramework) {
1986       llvm::Metadata *Args[2] = {
1987           llvm::MDString::get(Context, "-framework"),
1988           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1989 
1990       Metadata.push_back(llvm::MDNode::get(Context, Args));
1991       continue;
1992     }
1993 
1994     // Link against a library.
1995     if (IsELF) {
1996       llvm::Metadata *Args[2] = {
1997           llvm::MDString::get(Context, "lib"),
1998           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
1999       };
2000       Metadata.push_back(llvm::MDNode::get(Context, Args));
2001     } else {
2002       llvm::SmallString<24> Opt;
2003       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2004           Mod->LinkLibraries[I - 1].Library, Opt);
2005       auto *OptString = llvm::MDString::get(Context, Opt);
2006       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2007     }
2008   }
2009 }
2010 
2011 void CodeGenModule::EmitModuleLinkOptions() {
2012   // Collect the set of all of the modules we want to visit to emit link
2013   // options, which is essentially the imported modules and all of their
2014   // non-explicit child modules.
2015   llvm::SetVector<clang::Module *> LinkModules;
2016   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2017   SmallVector<clang::Module *, 16> Stack;
2018 
2019   // Seed the stack with imported modules.
2020   for (Module *M : ImportedModules) {
2021     // Do not add any link flags when an implementation TU of a module imports
2022     // a header of that same module.
2023     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2024         !getLangOpts().isCompilingModule())
2025       continue;
2026     if (Visited.insert(M).second)
2027       Stack.push_back(M);
2028   }
2029 
2030   // Find all of the modules to import, making a little effort to prune
2031   // non-leaf modules.
2032   while (!Stack.empty()) {
2033     clang::Module *Mod = Stack.pop_back_val();
2034 
2035     bool AnyChildren = false;
2036 
2037     // Visit the submodules of this module.
2038     for (const auto &SM : Mod->submodules()) {
2039       // Skip explicit children; they need to be explicitly imported to be
2040       // linked against.
2041       if (SM->IsExplicit)
2042         continue;
2043 
2044       if (Visited.insert(SM).second) {
2045         Stack.push_back(SM);
2046         AnyChildren = true;
2047       }
2048     }
2049 
2050     // We didn't find any children, so add this module to the list of
2051     // modules to link against.
2052     if (!AnyChildren) {
2053       LinkModules.insert(Mod);
2054     }
2055   }
2056 
2057   // Add link options for all of the imported modules in reverse topological
2058   // order.  We don't do anything to try to order import link flags with respect
2059   // to linker options inserted by things like #pragma comment().
2060   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2061   Visited.clear();
2062   for (Module *M : LinkModules)
2063     if (Visited.insert(M).second)
2064       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2065   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2066   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2067 
2068   // Add the linker options metadata flag.
2069   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2070   for (auto *MD : LinkerOptionsMetadata)
2071     NMD->addOperand(MD);
2072 }
2073 
2074 void CodeGenModule::EmitDeferred() {
2075   // Emit deferred declare target declarations.
2076   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2077     getOpenMPRuntime().emitDeferredTargetDecls();
2078 
2079   // Emit code for any potentially referenced deferred decls.  Since a
2080   // previously unused static decl may become used during the generation of code
2081   // for a static function, iterate until no changes are made.
2082 
2083   if (!DeferredVTables.empty()) {
2084     EmitDeferredVTables();
2085 
2086     // Emitting a vtable doesn't directly cause more vtables to
2087     // become deferred, although it can cause functions to be
2088     // emitted that then need those vtables.
2089     assert(DeferredVTables.empty());
2090   }
2091 
2092   // Stop if we're out of both deferred vtables and deferred declarations.
2093   if (DeferredDeclsToEmit.empty())
2094     return;
2095 
2096   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2097   // work, it will not interfere with this.
2098   std::vector<GlobalDecl> CurDeclsToEmit;
2099   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2100 
2101   for (GlobalDecl &D : CurDeclsToEmit) {
2102     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2103     // to get GlobalValue with exactly the type we need, not something that
2104     // might had been created for another decl with the same mangled name but
2105     // different type.
2106     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2107         GetAddrOfGlobal(D, ForDefinition));
2108 
2109     // In case of different address spaces, we may still get a cast, even with
2110     // IsForDefinition equal to true. Query mangled names table to get
2111     // GlobalValue.
2112     if (!GV)
2113       GV = GetGlobalValue(getMangledName(D));
2114 
2115     // Make sure GetGlobalValue returned non-null.
2116     assert(GV);
2117 
2118     // Check to see if we've already emitted this.  This is necessary
2119     // for a couple of reasons: first, decls can end up in the
2120     // deferred-decls queue multiple times, and second, decls can end
2121     // up with definitions in unusual ways (e.g. by an extern inline
2122     // function acquiring a strong function redefinition).  Just
2123     // ignore these cases.
2124     if (!GV->isDeclaration())
2125       continue;
2126 
2127     // If this is OpenMP, check if it is legal to emit this global normally.
2128     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2129       continue;
2130 
2131     // Otherwise, emit the definition and move on to the next one.
2132     EmitGlobalDefinition(D, GV);
2133 
2134     // If we found out that we need to emit more decls, do that recursively.
2135     // This has the advantage that the decls are emitted in a DFS and related
2136     // ones are close together, which is convenient for testing.
2137     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2138       EmitDeferred();
2139       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2140     }
2141   }
2142 }
2143 
2144 void CodeGenModule::EmitVTablesOpportunistically() {
2145   // Try to emit external vtables as available_externally if they have emitted
2146   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2147   // is not allowed to create new references to things that need to be emitted
2148   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2149 
2150   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2151          && "Only emit opportunistic vtables with optimizations");
2152 
2153   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2154     assert(getVTables().isVTableExternal(RD) &&
2155            "This queue should only contain external vtables");
2156     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2157       VTables.GenerateClassData(RD);
2158   }
2159   OpportunisticVTables.clear();
2160 }
2161 
2162 void CodeGenModule::EmitGlobalAnnotations() {
2163   if (Annotations.empty())
2164     return;
2165 
2166   // Create a new global variable for the ConstantStruct in the Module.
2167   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2168     Annotations[0]->getType(), Annotations.size()), Annotations);
2169   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2170                                       llvm::GlobalValue::AppendingLinkage,
2171                                       Array, "llvm.global.annotations");
2172   gv->setSection(AnnotationSection);
2173 }
2174 
2175 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2176   llvm::Constant *&AStr = AnnotationStrings[Str];
2177   if (AStr)
2178     return AStr;
2179 
2180   // Not found yet, create a new global.
2181   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2182   auto *gv =
2183       new llvm::GlobalVariable(getModule(), s->getType(), true,
2184                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2185   gv->setSection(AnnotationSection);
2186   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2187   AStr = gv;
2188   return gv;
2189 }
2190 
2191 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2192   SourceManager &SM = getContext().getSourceManager();
2193   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2194   if (PLoc.isValid())
2195     return EmitAnnotationString(PLoc.getFilename());
2196   return EmitAnnotationString(SM.getBufferName(Loc));
2197 }
2198 
2199 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2200   SourceManager &SM = getContext().getSourceManager();
2201   PresumedLoc PLoc = SM.getPresumedLoc(L);
2202   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2203     SM.getExpansionLineNumber(L);
2204   return llvm::ConstantInt::get(Int32Ty, LineNo);
2205 }
2206 
2207 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2208                                                 const AnnotateAttr *AA,
2209                                                 SourceLocation L) {
2210   // Get the globals for file name, annotation, and the line number.
2211   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2212                  *UnitGV = EmitAnnotationUnit(L),
2213                  *LineNoCst = EmitAnnotationLineNo(L);
2214 
2215   llvm::Constant *ASZeroGV = GV;
2216   if (GV->getAddressSpace() != 0) {
2217     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2218                    GV, GV->getValueType()->getPointerTo(0));
2219   }
2220 
2221   // Create the ConstantStruct for the global annotation.
2222   llvm::Constant *Fields[4] = {
2223     llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2224     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2225     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2226     LineNoCst
2227   };
2228   return llvm::ConstantStruct::getAnon(Fields);
2229 }
2230 
2231 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2232                                          llvm::GlobalValue *GV) {
2233   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2234   // Get the struct elements for these annotations.
2235   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2236     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2237 }
2238 
2239 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2240                                            llvm::Function *Fn,
2241                                            SourceLocation Loc) const {
2242   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2243   // Blacklist by function name.
2244   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2245     return true;
2246   // Blacklist by location.
2247   if (Loc.isValid())
2248     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2249   // If location is unknown, this may be a compiler-generated function. Assume
2250   // it's located in the main file.
2251   auto &SM = Context.getSourceManager();
2252   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2253     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2254   }
2255   return false;
2256 }
2257 
2258 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2259                                            SourceLocation Loc, QualType Ty,
2260                                            StringRef Category) const {
2261   // For now globals can be blacklisted only in ASan and KASan.
2262   const SanitizerMask EnabledAsanMask =
2263       LangOpts.Sanitize.Mask &
2264       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2265        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2266        SanitizerKind::MemTag);
2267   if (!EnabledAsanMask)
2268     return false;
2269   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2270   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2271     return true;
2272   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2273     return true;
2274   // Check global type.
2275   if (!Ty.isNull()) {
2276     // Drill down the array types: if global variable of a fixed type is
2277     // blacklisted, we also don't instrument arrays of them.
2278     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2279       Ty = AT->getElementType();
2280     Ty = Ty.getCanonicalType().getUnqualifiedType();
2281     // We allow to blacklist only record types (classes, structs etc.)
2282     if (Ty->isRecordType()) {
2283       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2284       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2285         return true;
2286     }
2287   }
2288   return false;
2289 }
2290 
2291 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2292                                    StringRef Category) const {
2293   const auto &XRayFilter = getContext().getXRayFilter();
2294   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2295   auto Attr = ImbueAttr::NONE;
2296   if (Loc.isValid())
2297     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2298   if (Attr == ImbueAttr::NONE)
2299     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2300   switch (Attr) {
2301   case ImbueAttr::NONE:
2302     return false;
2303   case ImbueAttr::ALWAYS:
2304     Fn->addFnAttr("function-instrument", "xray-always");
2305     break;
2306   case ImbueAttr::ALWAYS_ARG1:
2307     Fn->addFnAttr("function-instrument", "xray-always");
2308     Fn->addFnAttr("xray-log-args", "1");
2309     break;
2310   case ImbueAttr::NEVER:
2311     Fn->addFnAttr("function-instrument", "xray-never");
2312     break;
2313   }
2314   return true;
2315 }
2316 
2317 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2318   // Never defer when EmitAllDecls is specified.
2319   if (LangOpts.EmitAllDecls)
2320     return true;
2321 
2322   if (CodeGenOpts.KeepStaticConsts) {
2323     const auto *VD = dyn_cast<VarDecl>(Global);
2324     if (VD && VD->getType().isConstQualified() &&
2325         VD->getStorageDuration() == SD_Static)
2326       return true;
2327   }
2328 
2329   return getContext().DeclMustBeEmitted(Global);
2330 }
2331 
2332 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2333   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2334     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2335       // Implicit template instantiations may change linkage if they are later
2336       // explicitly instantiated, so they should not be emitted eagerly.
2337       return false;
2338     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2339     // not emit them eagerly unless we sure that the function must be emitted on
2340     // the host.
2341     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2342         !LangOpts.OpenMPIsDevice &&
2343         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2344         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2345       return false;
2346   }
2347   if (const auto *VD = dyn_cast<VarDecl>(Global))
2348     if (Context.getInlineVariableDefinitionKind(VD) ==
2349         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2350       // A definition of an inline constexpr static data member may change
2351       // linkage later if it's redeclared outside the class.
2352       return false;
2353   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2354   // codegen for global variables, because they may be marked as threadprivate.
2355   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2356       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2357       !isTypeConstant(Global->getType(), false) &&
2358       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2359     return false;
2360 
2361   return true;
2362 }
2363 
2364 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2365     const CXXUuidofExpr* E) {
2366   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2367   // well-formed.
2368   StringRef Uuid = E->getUuidStr();
2369   std::string Name = "_GUID_" + Uuid.lower();
2370   std::replace(Name.begin(), Name.end(), '-', '_');
2371 
2372   // The UUID descriptor should be pointer aligned.
2373   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2374 
2375   // Look for an existing global.
2376   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2377     return ConstantAddress(GV, Alignment);
2378 
2379   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2380   assert(Init && "failed to initialize as constant");
2381 
2382   auto *GV = new llvm::GlobalVariable(
2383       getModule(), Init->getType(),
2384       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2385   if (supportsCOMDAT())
2386     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2387   setDSOLocal(GV);
2388   return ConstantAddress(GV, Alignment);
2389 }
2390 
2391 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2392   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2393   assert(AA && "No alias?");
2394 
2395   CharUnits Alignment = getContext().getDeclAlign(VD);
2396   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2397 
2398   // See if there is already something with the target's name in the module.
2399   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2400   if (Entry) {
2401     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2402     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2403     return ConstantAddress(Ptr, Alignment);
2404   }
2405 
2406   llvm::Constant *Aliasee;
2407   if (isa<llvm::FunctionType>(DeclTy))
2408     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2409                                       GlobalDecl(cast<FunctionDecl>(VD)),
2410                                       /*ForVTable=*/false);
2411   else
2412     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2413                                     llvm::PointerType::getUnqual(DeclTy),
2414                                     nullptr);
2415 
2416   auto *F = cast<llvm::GlobalValue>(Aliasee);
2417   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2418   WeakRefReferences.insert(F);
2419 
2420   return ConstantAddress(Aliasee, Alignment);
2421 }
2422 
2423 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2424   const auto *Global = cast<ValueDecl>(GD.getDecl());
2425 
2426   // Weak references don't produce any output by themselves.
2427   if (Global->hasAttr<WeakRefAttr>())
2428     return;
2429 
2430   // If this is an alias definition (which otherwise looks like a declaration)
2431   // emit it now.
2432   if (Global->hasAttr<AliasAttr>())
2433     return EmitAliasDefinition(GD);
2434 
2435   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2436   if (Global->hasAttr<IFuncAttr>())
2437     return emitIFuncDefinition(GD);
2438 
2439   // If this is a cpu_dispatch multiversion function, emit the resolver.
2440   if (Global->hasAttr<CPUDispatchAttr>())
2441     return emitCPUDispatchDefinition(GD);
2442 
2443   // If this is CUDA, be selective about which declarations we emit.
2444   if (LangOpts.CUDA) {
2445     if (LangOpts.CUDAIsDevice) {
2446       if (!Global->hasAttr<CUDADeviceAttr>() &&
2447           !Global->hasAttr<CUDAGlobalAttr>() &&
2448           !Global->hasAttr<CUDAConstantAttr>() &&
2449           !Global->hasAttr<CUDASharedAttr>() &&
2450           !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>()))
2451         return;
2452     } else {
2453       // We need to emit host-side 'shadows' for all global
2454       // device-side variables because the CUDA runtime needs their
2455       // size and host-side address in order to provide access to
2456       // their device-side incarnations.
2457 
2458       // So device-only functions are the only things we skip.
2459       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2460           Global->hasAttr<CUDADeviceAttr>())
2461         return;
2462 
2463       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2464              "Expected Variable or Function");
2465     }
2466   }
2467 
2468   if (LangOpts.OpenMP) {
2469     // If this is OpenMP, check if it is legal to emit this global normally.
2470     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2471       return;
2472     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2473       if (MustBeEmitted(Global))
2474         EmitOMPDeclareReduction(DRD);
2475       return;
2476     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2477       if (MustBeEmitted(Global))
2478         EmitOMPDeclareMapper(DMD);
2479       return;
2480     }
2481   }
2482 
2483   // Ignore declarations, they will be emitted on their first use.
2484   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2485     // Forward declarations are emitted lazily on first use.
2486     if (!FD->doesThisDeclarationHaveABody()) {
2487       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2488         return;
2489 
2490       StringRef MangledName = getMangledName(GD);
2491 
2492       // Compute the function info and LLVM type.
2493       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2494       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2495 
2496       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2497                               /*DontDefer=*/false);
2498       return;
2499     }
2500   } else {
2501     const auto *VD = cast<VarDecl>(Global);
2502     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2503     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2504         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2505       if (LangOpts.OpenMP) {
2506         // Emit declaration of the must-be-emitted declare target variable.
2507         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2508                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2509           bool UnifiedMemoryEnabled =
2510               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2511           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2512               !UnifiedMemoryEnabled) {
2513             (void)GetAddrOfGlobalVar(VD);
2514           } else {
2515             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2516                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2517                      UnifiedMemoryEnabled)) &&
2518                    "Link clause or to clause with unified memory expected.");
2519             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2520           }
2521 
2522           return;
2523         }
2524       }
2525       // If this declaration may have caused an inline variable definition to
2526       // change linkage, make sure that it's emitted.
2527       if (Context.getInlineVariableDefinitionKind(VD) ==
2528           ASTContext::InlineVariableDefinitionKind::Strong)
2529         GetAddrOfGlobalVar(VD);
2530       return;
2531     }
2532   }
2533 
2534   // Defer code generation to first use when possible, e.g. if this is an inline
2535   // function. If the global must always be emitted, do it eagerly if possible
2536   // to benefit from cache locality.
2537   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2538     // Emit the definition if it can't be deferred.
2539     EmitGlobalDefinition(GD);
2540     return;
2541   }
2542 
2543     // Check if this must be emitted as declare variant.
2544   if (LangOpts.OpenMP && isa<FunctionDecl>(Global) && OpenMPRuntime &&
2545       OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/false))
2546     return;
2547 
2548   // If we're deferring emission of a C++ variable with an
2549   // initializer, remember the order in which it appeared in the file.
2550   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2551       cast<VarDecl>(Global)->hasInit()) {
2552     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2553     CXXGlobalInits.push_back(nullptr);
2554   }
2555 
2556   StringRef MangledName = getMangledName(GD);
2557   if (GetGlobalValue(MangledName) != nullptr) {
2558     // The value has already been used and should therefore be emitted.
2559     addDeferredDeclToEmit(GD);
2560   } else if (MustBeEmitted(Global)) {
2561     // The value must be emitted, but cannot be emitted eagerly.
2562     assert(!MayBeEmittedEagerly(Global));
2563     addDeferredDeclToEmit(GD);
2564   } else {
2565     // Otherwise, remember that we saw a deferred decl with this name.  The
2566     // first use of the mangled name will cause it to move into
2567     // DeferredDeclsToEmit.
2568     DeferredDecls[MangledName] = GD;
2569   }
2570 }
2571 
2572 // Check if T is a class type with a destructor that's not dllimport.
2573 static bool HasNonDllImportDtor(QualType T) {
2574   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2575     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2576       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2577         return true;
2578 
2579   return false;
2580 }
2581 
2582 namespace {
2583   struct FunctionIsDirectlyRecursive
2584       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2585     const StringRef Name;
2586     const Builtin::Context &BI;
2587     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2588         : Name(N), BI(C) {}
2589 
2590     bool VisitCallExpr(const CallExpr *E) {
2591       const FunctionDecl *FD = E->getDirectCallee();
2592       if (!FD)
2593         return false;
2594       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2595       if (Attr && Name == Attr->getLabel())
2596         return true;
2597       unsigned BuiltinID = FD->getBuiltinID();
2598       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2599         return false;
2600       StringRef BuiltinName = BI.getName(BuiltinID);
2601       if (BuiltinName.startswith("__builtin_") &&
2602           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2603         return true;
2604       }
2605       return false;
2606     }
2607 
2608     bool VisitStmt(const Stmt *S) {
2609       for (const Stmt *Child : S->children())
2610         if (Child && this->Visit(Child))
2611           return true;
2612       return false;
2613     }
2614   };
2615 
2616   // Make sure we're not referencing non-imported vars or functions.
2617   struct DLLImportFunctionVisitor
2618       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2619     bool SafeToInline = true;
2620 
2621     bool shouldVisitImplicitCode() const { return true; }
2622 
2623     bool VisitVarDecl(VarDecl *VD) {
2624       if (VD->getTLSKind()) {
2625         // A thread-local variable cannot be imported.
2626         SafeToInline = false;
2627         return SafeToInline;
2628       }
2629 
2630       // A variable definition might imply a destructor call.
2631       if (VD->isThisDeclarationADefinition())
2632         SafeToInline = !HasNonDllImportDtor(VD->getType());
2633 
2634       return SafeToInline;
2635     }
2636 
2637     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2638       if (const auto *D = E->getTemporary()->getDestructor())
2639         SafeToInline = D->hasAttr<DLLImportAttr>();
2640       return SafeToInline;
2641     }
2642 
2643     bool VisitDeclRefExpr(DeclRefExpr *E) {
2644       ValueDecl *VD = E->getDecl();
2645       if (isa<FunctionDecl>(VD))
2646         SafeToInline = VD->hasAttr<DLLImportAttr>();
2647       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2648         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2649       return SafeToInline;
2650     }
2651 
2652     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2653       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2654       return SafeToInline;
2655     }
2656 
2657     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2658       CXXMethodDecl *M = E->getMethodDecl();
2659       if (!M) {
2660         // Call through a pointer to member function. This is safe to inline.
2661         SafeToInline = true;
2662       } else {
2663         SafeToInline = M->hasAttr<DLLImportAttr>();
2664       }
2665       return SafeToInline;
2666     }
2667 
2668     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2669       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2670       return SafeToInline;
2671     }
2672 
2673     bool VisitCXXNewExpr(CXXNewExpr *E) {
2674       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2675       return SafeToInline;
2676     }
2677   };
2678 }
2679 
2680 // isTriviallyRecursive - Check if this function calls another
2681 // decl that, because of the asm attribute or the other decl being a builtin,
2682 // ends up pointing to itself.
2683 bool
2684 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2685   StringRef Name;
2686   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2687     // asm labels are a special kind of mangling we have to support.
2688     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2689     if (!Attr)
2690       return false;
2691     Name = Attr->getLabel();
2692   } else {
2693     Name = FD->getName();
2694   }
2695 
2696   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2697   const Stmt *Body = FD->getBody();
2698   return Body ? Walker.Visit(Body) : false;
2699 }
2700 
2701 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2702   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2703     return true;
2704   const auto *F = cast<FunctionDecl>(GD.getDecl());
2705   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2706     return false;
2707 
2708   if (F->hasAttr<DLLImportAttr>()) {
2709     // Check whether it would be safe to inline this dllimport function.
2710     DLLImportFunctionVisitor Visitor;
2711     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2712     if (!Visitor.SafeToInline)
2713       return false;
2714 
2715     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2716       // Implicit destructor invocations aren't captured in the AST, so the
2717       // check above can't see them. Check for them manually here.
2718       for (const Decl *Member : Dtor->getParent()->decls())
2719         if (isa<FieldDecl>(Member))
2720           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2721             return false;
2722       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2723         if (HasNonDllImportDtor(B.getType()))
2724           return false;
2725     }
2726   }
2727 
2728   // PR9614. Avoid cases where the source code is lying to us. An available
2729   // externally function should have an equivalent function somewhere else,
2730   // but a function that calls itself is clearly not equivalent to the real
2731   // implementation.
2732   // This happens in glibc's btowc and in some configure checks.
2733   return !isTriviallyRecursive(F);
2734 }
2735 
2736 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2737   return CodeGenOpts.OptimizationLevel > 0;
2738 }
2739 
2740 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2741                                                        llvm::GlobalValue *GV) {
2742   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2743 
2744   if (FD->isCPUSpecificMultiVersion()) {
2745     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2746     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2747       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2748     // Requires multiple emits.
2749   } else
2750     EmitGlobalFunctionDefinition(GD, GV);
2751 }
2752 
2753 void CodeGenModule::emitOpenMPDeviceFunctionRedefinition(
2754     GlobalDecl OldGD, GlobalDecl NewGD, llvm::GlobalValue *GV) {
2755   assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2756          OpenMPRuntime && "Expected OpenMP device mode.");
2757   const auto *D = cast<FunctionDecl>(OldGD.getDecl());
2758 
2759   // Compute the function info and LLVM type.
2760   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(OldGD);
2761   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2762 
2763   // Get or create the prototype for the function.
2764   if (!GV || (GV->getType()->getElementType() != Ty)) {
2765     GV = cast<llvm::GlobalValue>(GetOrCreateLLVMFunction(
2766         getMangledName(OldGD), Ty, GlobalDecl(), /*ForVTable=*/false,
2767         /*DontDefer=*/true, /*IsThunk=*/false, llvm::AttributeList(),
2768         ForDefinition));
2769     SetFunctionAttributes(OldGD, cast<llvm::Function>(GV),
2770                           /*IsIncompleteFunction=*/false,
2771                           /*IsThunk=*/false);
2772   }
2773   // We need to set linkage and visibility on the function before
2774   // generating code for it because various parts of IR generation
2775   // want to propagate this information down (e.g. to local static
2776   // declarations).
2777   auto *Fn = cast<llvm::Function>(GV);
2778   setFunctionLinkage(OldGD, Fn);
2779 
2780   // FIXME: this is redundant with part of
2781   // setFunctionDefinitionAttributes
2782   setGVProperties(Fn, OldGD);
2783 
2784   MaybeHandleStaticInExternC(D, Fn);
2785 
2786   maybeSetTrivialComdat(*D, *Fn);
2787 
2788   CodeGenFunction(*this).GenerateCode(NewGD, Fn, FI);
2789 
2790   setNonAliasAttributes(OldGD, Fn);
2791   SetLLVMFunctionAttributesForDefinition(D, Fn);
2792 
2793   if (D->hasAttr<AnnotateAttr>())
2794     AddGlobalAnnotations(D, Fn);
2795 }
2796 
2797 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2798   const auto *D = cast<ValueDecl>(GD.getDecl());
2799 
2800   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2801                                  Context.getSourceManager(),
2802                                  "Generating code for declaration");
2803 
2804   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2805     // At -O0, don't generate IR for functions with available_externally
2806     // linkage.
2807     if (!shouldEmitFunction(GD))
2808       return;
2809 
2810     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2811       std::string Name;
2812       llvm::raw_string_ostream OS(Name);
2813       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2814                                /*Qualified=*/true);
2815       return Name;
2816     });
2817 
2818     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2819       // Make sure to emit the definition(s) before we emit the thunks.
2820       // This is necessary for the generation of certain thunks.
2821       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2822         ABI->emitCXXStructor(GD);
2823       else if (FD->isMultiVersion())
2824         EmitMultiVersionFunctionDefinition(GD, GV);
2825       else
2826         EmitGlobalFunctionDefinition(GD, GV);
2827 
2828       if (Method->isVirtual())
2829         getVTables().EmitThunks(GD);
2830 
2831       return;
2832     }
2833 
2834     if (FD->isMultiVersion())
2835       return EmitMultiVersionFunctionDefinition(GD, GV);
2836     return EmitGlobalFunctionDefinition(GD, GV);
2837   }
2838 
2839   if (const auto *VD = dyn_cast<VarDecl>(D))
2840     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2841 
2842   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2843 }
2844 
2845 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2846                                                       llvm::Function *NewFn);
2847 
2848 static unsigned
2849 TargetMVPriority(const TargetInfo &TI,
2850                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2851   unsigned Priority = 0;
2852   for (StringRef Feat : RO.Conditions.Features)
2853     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2854 
2855   if (!RO.Conditions.Architecture.empty())
2856     Priority = std::max(
2857         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2858   return Priority;
2859 }
2860 
2861 void CodeGenModule::emitMultiVersionFunctions() {
2862   for (GlobalDecl GD : MultiVersionFuncs) {
2863     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2864     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2865     getContext().forEachMultiversionedFunctionVersion(
2866         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2867           GlobalDecl CurGD{
2868               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2869           StringRef MangledName = getMangledName(CurGD);
2870           llvm::Constant *Func = GetGlobalValue(MangledName);
2871           if (!Func) {
2872             if (CurFD->isDefined()) {
2873               EmitGlobalFunctionDefinition(CurGD, nullptr);
2874               Func = GetGlobalValue(MangledName);
2875             } else {
2876               const CGFunctionInfo &FI =
2877                   getTypes().arrangeGlobalDeclaration(GD);
2878               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2879               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2880                                        /*DontDefer=*/false, ForDefinition);
2881             }
2882             assert(Func && "This should have just been created");
2883           }
2884 
2885           const auto *TA = CurFD->getAttr<TargetAttr>();
2886           llvm::SmallVector<StringRef, 8> Feats;
2887           TA->getAddedFeatures(Feats);
2888 
2889           Options.emplace_back(cast<llvm::Function>(Func),
2890                                TA->getArchitecture(), Feats);
2891         });
2892 
2893     llvm::Function *ResolverFunc;
2894     const TargetInfo &TI = getTarget();
2895 
2896     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
2897       ResolverFunc = cast<llvm::Function>(
2898           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2899       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2900     } else {
2901       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2902     }
2903 
2904     if (supportsCOMDAT())
2905       ResolverFunc->setComdat(
2906           getModule().getOrInsertComdat(ResolverFunc->getName()));
2907 
2908     llvm::stable_sort(
2909         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2910                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
2911           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2912         });
2913     CodeGenFunction CGF(*this);
2914     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2915   }
2916 }
2917 
2918 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2919   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2920   assert(FD && "Not a FunctionDecl?");
2921   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2922   assert(DD && "Not a cpu_dispatch Function?");
2923   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2924 
2925   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2926     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2927     DeclTy = getTypes().GetFunctionType(FInfo);
2928   }
2929 
2930   StringRef ResolverName = getMangledName(GD);
2931 
2932   llvm::Type *ResolverType;
2933   GlobalDecl ResolverGD;
2934   if (getTarget().supportsIFunc())
2935     ResolverType = llvm::FunctionType::get(
2936         llvm::PointerType::get(DeclTy,
2937                                Context.getTargetAddressSpace(FD->getType())),
2938         false);
2939   else {
2940     ResolverType = DeclTy;
2941     ResolverGD = GD;
2942   }
2943 
2944   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2945       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2946   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2947   if (supportsCOMDAT())
2948     ResolverFunc->setComdat(
2949         getModule().getOrInsertComdat(ResolverFunc->getName()));
2950 
2951   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2952   const TargetInfo &Target = getTarget();
2953   unsigned Index = 0;
2954   for (const IdentifierInfo *II : DD->cpus()) {
2955     // Get the name of the target function so we can look it up/create it.
2956     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2957                               getCPUSpecificMangling(*this, II->getName());
2958 
2959     llvm::Constant *Func = GetGlobalValue(MangledName);
2960 
2961     if (!Func) {
2962       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2963       if (ExistingDecl.getDecl() &&
2964           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2965         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2966         Func = GetGlobalValue(MangledName);
2967       } else {
2968         if (!ExistingDecl.getDecl())
2969           ExistingDecl = GD.getWithMultiVersionIndex(Index);
2970 
2971       Func = GetOrCreateLLVMFunction(
2972           MangledName, DeclTy, ExistingDecl,
2973           /*ForVTable=*/false, /*DontDefer=*/true,
2974           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2975       }
2976     }
2977 
2978     llvm::SmallVector<StringRef, 32> Features;
2979     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2980     llvm::transform(Features, Features.begin(),
2981                     [](StringRef Str) { return Str.substr(1); });
2982     Features.erase(std::remove_if(
2983         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2984           return !Target.validateCpuSupports(Feat);
2985         }), Features.end());
2986     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
2987     ++Index;
2988   }
2989 
2990   llvm::sort(
2991       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2992                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
2993         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
2994                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
2995       });
2996 
2997   // If the list contains multiple 'default' versions, such as when it contains
2998   // 'pentium' and 'generic', don't emit the call to the generic one (since we
2999   // always run on at least a 'pentium'). We do this by deleting the 'least
3000   // advanced' (read, lowest mangling letter).
3001   while (Options.size() > 1 &&
3002          CodeGenFunction::GetX86CpuSupportsMask(
3003              (Options.end() - 2)->Conditions.Features) == 0) {
3004     StringRef LHSName = (Options.end() - 2)->Function->getName();
3005     StringRef RHSName = (Options.end() - 1)->Function->getName();
3006     if (LHSName.compare(RHSName) < 0)
3007       Options.erase(Options.end() - 2);
3008     else
3009       Options.erase(Options.end() - 1);
3010   }
3011 
3012   CodeGenFunction CGF(*this);
3013   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3014 
3015   if (getTarget().supportsIFunc()) {
3016     std::string AliasName = getMangledNameImpl(
3017         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3018     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3019     if (!AliasFunc) {
3020       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3021           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3022           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3023       auto *GA = llvm::GlobalAlias::create(
3024          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3025       GA->setLinkage(llvm::Function::WeakODRLinkage);
3026       SetCommonAttributes(GD, GA);
3027     }
3028   }
3029 }
3030 
3031 /// If a dispatcher for the specified mangled name is not in the module, create
3032 /// and return an llvm Function with the specified type.
3033 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3034     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3035   std::string MangledName =
3036       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3037 
3038   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3039   // a separate resolver).
3040   std::string ResolverName = MangledName;
3041   if (getTarget().supportsIFunc())
3042     ResolverName += ".ifunc";
3043   else if (FD->isTargetMultiVersion())
3044     ResolverName += ".resolver";
3045 
3046   // If this already exists, just return that one.
3047   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3048     return ResolverGV;
3049 
3050   // Since this is the first time we've created this IFunc, make sure
3051   // that we put this multiversioned function into the list to be
3052   // replaced later if necessary (target multiversioning only).
3053   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3054     MultiVersionFuncs.push_back(GD);
3055 
3056   if (getTarget().supportsIFunc()) {
3057     llvm::Type *ResolverType = llvm::FunctionType::get(
3058         llvm::PointerType::get(
3059             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3060         false);
3061     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3062         MangledName + ".resolver", ResolverType, GlobalDecl{},
3063         /*ForVTable=*/false);
3064     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3065         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3066     GIF->setName(ResolverName);
3067     SetCommonAttributes(FD, GIF);
3068 
3069     return GIF;
3070   }
3071 
3072   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3073       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3074   assert(isa<llvm::GlobalValue>(Resolver) &&
3075          "Resolver should be created for the first time");
3076   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3077   return Resolver;
3078 }
3079 
3080 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3081 /// module, create and return an llvm Function with the specified type. If there
3082 /// is something in the module with the specified name, return it potentially
3083 /// bitcasted to the right type.
3084 ///
3085 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3086 /// to set the attributes on the function when it is first created.
3087 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3088     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3089     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3090     ForDefinition_t IsForDefinition) {
3091   const Decl *D = GD.getDecl();
3092 
3093   // Any attempts to use a MultiVersion function should result in retrieving
3094   // the iFunc instead. Name Mangling will handle the rest of the changes.
3095   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3096     // For the device mark the function as one that should be emitted.
3097     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3098         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3099         !DontDefer && !IsForDefinition) {
3100       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3101         GlobalDecl GDDef;
3102         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3103           GDDef = GlobalDecl(CD, GD.getCtorType());
3104         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3105           GDDef = GlobalDecl(DD, GD.getDtorType());
3106         else
3107           GDDef = GlobalDecl(FDDef);
3108         EmitGlobal(GDDef);
3109       }
3110     }
3111     // Check if this must be emitted as declare variant and emit reference to
3112     // the the declare variant function.
3113     if (LangOpts.OpenMP && OpenMPRuntime)
3114       (void)OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true);
3115 
3116     if (FD->isMultiVersion()) {
3117       const auto *TA = FD->getAttr<TargetAttr>();
3118       if (TA && TA->isDefaultVersion())
3119         UpdateMultiVersionNames(GD, FD);
3120       if (!IsForDefinition)
3121         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3122     }
3123   }
3124 
3125   // Lookup the entry, lazily creating it if necessary.
3126   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3127   if (Entry) {
3128     if (WeakRefReferences.erase(Entry)) {
3129       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3130       if (FD && !FD->hasAttr<WeakAttr>())
3131         Entry->setLinkage(llvm::Function::ExternalLinkage);
3132     }
3133 
3134     // Handle dropped DLL attributes.
3135     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3136       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3137       setDSOLocal(Entry);
3138     }
3139 
3140     // If there are two attempts to define the same mangled name, issue an
3141     // error.
3142     if (IsForDefinition && !Entry->isDeclaration()) {
3143       GlobalDecl OtherGD;
3144       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3145       // to make sure that we issue an error only once.
3146       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3147           (GD.getCanonicalDecl().getDecl() !=
3148            OtherGD.getCanonicalDecl().getDecl()) &&
3149           DiagnosedConflictingDefinitions.insert(GD).second) {
3150         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3151             << MangledName;
3152         getDiags().Report(OtherGD.getDecl()->getLocation(),
3153                           diag::note_previous_definition);
3154       }
3155     }
3156 
3157     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3158         (Entry->getType()->getElementType() == Ty)) {
3159       return Entry;
3160     }
3161 
3162     // Make sure the result is of the correct type.
3163     // (If function is requested for a definition, we always need to create a new
3164     // function, not just return a bitcast.)
3165     if (!IsForDefinition)
3166       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3167   }
3168 
3169   // This function doesn't have a complete type (for example, the return
3170   // type is an incomplete struct). Use a fake type instead, and make
3171   // sure not to try to set attributes.
3172   bool IsIncompleteFunction = false;
3173 
3174   llvm::FunctionType *FTy;
3175   if (isa<llvm::FunctionType>(Ty)) {
3176     FTy = cast<llvm::FunctionType>(Ty);
3177   } else {
3178     FTy = llvm::FunctionType::get(VoidTy, false);
3179     IsIncompleteFunction = true;
3180   }
3181 
3182   llvm::Function *F =
3183       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3184                              Entry ? StringRef() : MangledName, &getModule());
3185 
3186   // If we already created a function with the same mangled name (but different
3187   // type) before, take its name and add it to the list of functions to be
3188   // replaced with F at the end of CodeGen.
3189   //
3190   // This happens if there is a prototype for a function (e.g. "int f()") and
3191   // then a definition of a different type (e.g. "int f(int x)").
3192   if (Entry) {
3193     F->takeName(Entry);
3194 
3195     // This might be an implementation of a function without a prototype, in
3196     // which case, try to do special replacement of calls which match the new
3197     // prototype.  The really key thing here is that we also potentially drop
3198     // arguments from the call site so as to make a direct call, which makes the
3199     // inliner happier and suppresses a number of optimizer warnings (!) about
3200     // dropping arguments.
3201     if (!Entry->use_empty()) {
3202       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3203       Entry->removeDeadConstantUsers();
3204     }
3205 
3206     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3207         F, Entry->getType()->getElementType()->getPointerTo());
3208     addGlobalValReplacement(Entry, BC);
3209   }
3210 
3211   assert(F->getName() == MangledName && "name was uniqued!");
3212   if (D)
3213     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3214   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3215     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3216     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3217   }
3218 
3219   if (!DontDefer) {
3220     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3221     // each other bottoming out with the base dtor.  Therefore we emit non-base
3222     // dtors on usage, even if there is no dtor definition in the TU.
3223     if (D && isa<CXXDestructorDecl>(D) &&
3224         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3225                                            GD.getDtorType()))
3226       addDeferredDeclToEmit(GD);
3227 
3228     // This is the first use or definition of a mangled name.  If there is a
3229     // deferred decl with this name, remember that we need to emit it at the end
3230     // of the file.
3231     auto DDI = DeferredDecls.find(MangledName);
3232     if (DDI != DeferredDecls.end()) {
3233       // Move the potentially referenced deferred decl to the
3234       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3235       // don't need it anymore).
3236       addDeferredDeclToEmit(DDI->second);
3237       DeferredDecls.erase(DDI);
3238 
3239       // Otherwise, there are cases we have to worry about where we're
3240       // using a declaration for which we must emit a definition but where
3241       // we might not find a top-level definition:
3242       //   - member functions defined inline in their classes
3243       //   - friend functions defined inline in some class
3244       //   - special member functions with implicit definitions
3245       // If we ever change our AST traversal to walk into class methods,
3246       // this will be unnecessary.
3247       //
3248       // We also don't emit a definition for a function if it's going to be an
3249       // entry in a vtable, unless it's already marked as used.
3250     } else if (getLangOpts().CPlusPlus && D) {
3251       // Look for a declaration that's lexically in a record.
3252       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3253            FD = FD->getPreviousDecl()) {
3254         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3255           if (FD->doesThisDeclarationHaveABody()) {
3256             addDeferredDeclToEmit(GD.getWithDecl(FD));
3257             break;
3258           }
3259         }
3260       }
3261     }
3262   }
3263 
3264   // Make sure the result is of the requested type.
3265   if (!IsIncompleteFunction) {
3266     assert(F->getType()->getElementType() == Ty);
3267     return F;
3268   }
3269 
3270   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3271   return llvm::ConstantExpr::getBitCast(F, PTy);
3272 }
3273 
3274 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3275 /// non-null, then this function will use the specified type if it has to
3276 /// create it (this occurs when we see a definition of the function).
3277 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3278                                                  llvm::Type *Ty,
3279                                                  bool ForVTable,
3280                                                  bool DontDefer,
3281                                               ForDefinition_t IsForDefinition) {
3282   // If there was no specific requested type, just convert it now.
3283   if (!Ty) {
3284     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3285     Ty = getTypes().ConvertType(FD->getType());
3286   }
3287 
3288   // Devirtualized destructor calls may come through here instead of via
3289   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3290   // of the complete destructor when necessary.
3291   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3292     if (getTarget().getCXXABI().isMicrosoft() &&
3293         GD.getDtorType() == Dtor_Complete &&
3294         DD->getParent()->getNumVBases() == 0)
3295       GD = GlobalDecl(DD, Dtor_Base);
3296   }
3297 
3298   StringRef MangledName = getMangledName(GD);
3299   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3300                                  /*IsThunk=*/false, llvm::AttributeList(),
3301                                  IsForDefinition);
3302 }
3303 
3304 static const FunctionDecl *
3305 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3306   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3307   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3308 
3309   IdentifierInfo &CII = C.Idents.get(Name);
3310   for (const auto &Result : DC->lookup(&CII))
3311     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3312       return FD;
3313 
3314   if (!C.getLangOpts().CPlusPlus)
3315     return nullptr;
3316 
3317   // Demangle the premangled name from getTerminateFn()
3318   IdentifierInfo &CXXII =
3319       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3320           ? C.Idents.get("terminate")
3321           : C.Idents.get(Name);
3322 
3323   for (const auto &N : {"__cxxabiv1", "std"}) {
3324     IdentifierInfo &NS = C.Idents.get(N);
3325     for (const auto &Result : DC->lookup(&NS)) {
3326       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3327       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3328         for (const auto &Result : LSD->lookup(&NS))
3329           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3330             break;
3331 
3332       if (ND)
3333         for (const auto &Result : ND->lookup(&CXXII))
3334           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3335             return FD;
3336     }
3337   }
3338 
3339   return nullptr;
3340 }
3341 
3342 /// CreateRuntimeFunction - Create a new runtime function with the specified
3343 /// type and name.
3344 llvm::FunctionCallee
3345 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3346                                      llvm::AttributeList ExtraAttrs, bool Local,
3347                                      bool AssumeConvergent) {
3348   if (AssumeConvergent) {
3349     ExtraAttrs =
3350         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3351                                 llvm::Attribute::Convergent);
3352   }
3353 
3354   llvm::Constant *C =
3355       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3356                               /*DontDefer=*/false, /*IsThunk=*/false,
3357                               ExtraAttrs);
3358 
3359   if (auto *F = dyn_cast<llvm::Function>(C)) {
3360     if (F->empty()) {
3361       F->setCallingConv(getRuntimeCC());
3362 
3363       // In Windows Itanium environments, try to mark runtime functions
3364       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3365       // will link their standard library statically or dynamically. Marking
3366       // functions imported when they are not imported can cause linker errors
3367       // and warnings.
3368       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3369           !getCodeGenOpts().LTOVisibilityPublicStd) {
3370         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3371         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3372           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3373           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3374         }
3375       }
3376       setDSOLocal(F);
3377     }
3378   }
3379 
3380   return {FTy, C};
3381 }
3382 
3383 /// isTypeConstant - Determine whether an object of this type can be emitted
3384 /// as a constant.
3385 ///
3386 /// If ExcludeCtor is true, the duration when the object's constructor runs
3387 /// will not be considered. The caller will need to verify that the object is
3388 /// not written to during its construction.
3389 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3390   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3391     return false;
3392 
3393   if (Context.getLangOpts().CPlusPlus) {
3394     if (const CXXRecordDecl *Record
3395           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3396       return ExcludeCtor && !Record->hasMutableFields() &&
3397              Record->hasTrivialDestructor();
3398   }
3399 
3400   return true;
3401 }
3402 
3403 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3404 /// create and return an llvm GlobalVariable with the specified type.  If there
3405 /// is something in the module with the specified name, return it potentially
3406 /// bitcasted to the right type.
3407 ///
3408 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3409 /// to set the attributes on the global when it is first created.
3410 ///
3411 /// If IsForDefinition is true, it is guaranteed that an actual global with
3412 /// type Ty will be returned, not conversion of a variable with the same
3413 /// mangled name but some other type.
3414 llvm::Constant *
3415 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3416                                      llvm::PointerType *Ty,
3417                                      const VarDecl *D,
3418                                      ForDefinition_t IsForDefinition) {
3419   // Lookup the entry, lazily creating it if necessary.
3420   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3421   if (Entry) {
3422     if (WeakRefReferences.erase(Entry)) {
3423       if (D && !D->hasAttr<WeakAttr>())
3424         Entry->setLinkage(llvm::Function::ExternalLinkage);
3425     }
3426 
3427     // Handle dropped DLL attributes.
3428     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3429       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3430 
3431     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3432       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3433 
3434     if (Entry->getType() == Ty)
3435       return Entry;
3436 
3437     // If there are two attempts to define the same mangled name, issue an
3438     // error.
3439     if (IsForDefinition && !Entry->isDeclaration()) {
3440       GlobalDecl OtherGD;
3441       const VarDecl *OtherD;
3442 
3443       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3444       // to make sure that we issue an error only once.
3445       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3446           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3447           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3448           OtherD->hasInit() &&
3449           DiagnosedConflictingDefinitions.insert(D).second) {
3450         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3451             << MangledName;
3452         getDiags().Report(OtherGD.getDecl()->getLocation(),
3453                           diag::note_previous_definition);
3454       }
3455     }
3456 
3457     // Make sure the result is of the correct type.
3458     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3459       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3460 
3461     // (If global is requested for a definition, we always need to create a new
3462     // global, not just return a bitcast.)
3463     if (!IsForDefinition)
3464       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3465   }
3466 
3467   auto AddrSpace = GetGlobalVarAddressSpace(D);
3468   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3469 
3470   auto *GV = new llvm::GlobalVariable(
3471       getModule(), Ty->getElementType(), false,
3472       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3473       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3474 
3475   // If we already created a global with the same mangled name (but different
3476   // type) before, take its name and remove it from its parent.
3477   if (Entry) {
3478     GV->takeName(Entry);
3479 
3480     if (!Entry->use_empty()) {
3481       llvm::Constant *NewPtrForOldDecl =
3482           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3483       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3484     }
3485 
3486     Entry->eraseFromParent();
3487   }
3488 
3489   // This is the first use or definition of a mangled name.  If there is a
3490   // deferred decl with this name, remember that we need to emit it at the end
3491   // of the file.
3492   auto DDI = DeferredDecls.find(MangledName);
3493   if (DDI != DeferredDecls.end()) {
3494     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3495     // list, and remove it from DeferredDecls (since we don't need it anymore).
3496     addDeferredDeclToEmit(DDI->second);
3497     DeferredDecls.erase(DDI);
3498   }
3499 
3500   // Handle things which are present even on external declarations.
3501   if (D) {
3502     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3503       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3504 
3505     // FIXME: This code is overly simple and should be merged with other global
3506     // handling.
3507     GV->setConstant(isTypeConstant(D->getType(), false));
3508 
3509     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3510 
3511     setLinkageForGV(GV, D);
3512 
3513     if (D->getTLSKind()) {
3514       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3515         CXXThreadLocals.push_back(D);
3516       setTLSMode(GV, *D);
3517     }
3518 
3519     setGVProperties(GV, D);
3520 
3521     // If required by the ABI, treat declarations of static data members with
3522     // inline initializers as definitions.
3523     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3524       EmitGlobalVarDefinition(D);
3525     }
3526 
3527     // Emit section information for extern variables.
3528     if (D->hasExternalStorage()) {
3529       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3530         GV->setSection(SA->getName());
3531     }
3532 
3533     // Handle XCore specific ABI requirements.
3534     if (getTriple().getArch() == llvm::Triple::xcore &&
3535         D->getLanguageLinkage() == CLanguageLinkage &&
3536         D->getType().isConstant(Context) &&
3537         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3538       GV->setSection(".cp.rodata");
3539 
3540     // Check if we a have a const declaration with an initializer, we may be
3541     // able to emit it as available_externally to expose it's value to the
3542     // optimizer.
3543     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3544         D->getType().isConstQualified() && !GV->hasInitializer() &&
3545         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3546       const auto *Record =
3547           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3548       bool HasMutableFields = Record && Record->hasMutableFields();
3549       if (!HasMutableFields) {
3550         const VarDecl *InitDecl;
3551         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3552         if (InitExpr) {
3553           ConstantEmitter emitter(*this);
3554           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3555           if (Init) {
3556             auto *InitType = Init->getType();
3557             if (GV->getType()->getElementType() != InitType) {
3558               // The type of the initializer does not match the definition.
3559               // This happens when an initializer has a different type from
3560               // the type of the global (because of padding at the end of a
3561               // structure for instance).
3562               GV->setName(StringRef());
3563               // Make a new global with the correct type, this is now guaranteed
3564               // to work.
3565               auto *NewGV = cast<llvm::GlobalVariable>(
3566                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3567                       ->stripPointerCasts());
3568 
3569               // Erase the old global, since it is no longer used.
3570               GV->eraseFromParent();
3571               GV = NewGV;
3572             } else {
3573               GV->setInitializer(Init);
3574               GV->setConstant(true);
3575               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3576             }
3577             emitter.finalize(GV);
3578           }
3579         }
3580       }
3581     }
3582   }
3583 
3584   if (GV->isDeclaration())
3585     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3586 
3587   LangAS ExpectedAS =
3588       D ? D->getType().getAddressSpace()
3589         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3590   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3591          Ty->getPointerAddressSpace());
3592   if (AddrSpace != ExpectedAS)
3593     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3594                                                        ExpectedAS, Ty);
3595 
3596   return GV;
3597 }
3598 
3599 llvm::Constant *
3600 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3601                                ForDefinition_t IsForDefinition) {
3602   const Decl *D = GD.getDecl();
3603   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3604     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3605                                 /*DontDefer=*/false, IsForDefinition);
3606   else if (isa<CXXMethodDecl>(D)) {
3607     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3608         cast<CXXMethodDecl>(D));
3609     auto Ty = getTypes().GetFunctionType(*FInfo);
3610     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3611                              IsForDefinition);
3612   } else if (isa<FunctionDecl>(D)) {
3613     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3614     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3615     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3616                              IsForDefinition);
3617   } else
3618     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3619                               IsForDefinition);
3620 }
3621 
3622 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3623     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3624     unsigned Alignment) {
3625   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3626   llvm::GlobalVariable *OldGV = nullptr;
3627 
3628   if (GV) {
3629     // Check if the variable has the right type.
3630     if (GV->getType()->getElementType() == Ty)
3631       return GV;
3632 
3633     // Because C++ name mangling, the only way we can end up with an already
3634     // existing global with the same name is if it has been declared extern "C".
3635     assert(GV->isDeclaration() && "Declaration has wrong type!");
3636     OldGV = GV;
3637   }
3638 
3639   // Create a new variable.
3640   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3641                                 Linkage, nullptr, Name);
3642 
3643   if (OldGV) {
3644     // Replace occurrences of the old variable if needed.
3645     GV->takeName(OldGV);
3646 
3647     if (!OldGV->use_empty()) {
3648       llvm::Constant *NewPtrForOldDecl =
3649       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3650       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3651     }
3652 
3653     OldGV->eraseFromParent();
3654   }
3655 
3656   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3657       !GV->hasAvailableExternallyLinkage())
3658     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3659 
3660   GV->setAlignment(llvm::MaybeAlign(Alignment));
3661 
3662   return GV;
3663 }
3664 
3665 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3666 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3667 /// then it will be created with the specified type instead of whatever the
3668 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3669 /// that an actual global with type Ty will be returned, not conversion of a
3670 /// variable with the same mangled name but some other type.
3671 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3672                                                   llvm::Type *Ty,
3673                                            ForDefinition_t IsForDefinition) {
3674   assert(D->hasGlobalStorage() && "Not a global variable");
3675   QualType ASTTy = D->getType();
3676   if (!Ty)
3677     Ty = getTypes().ConvertTypeForMem(ASTTy);
3678 
3679   llvm::PointerType *PTy =
3680     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3681 
3682   StringRef MangledName = getMangledName(D);
3683   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3684 }
3685 
3686 /// CreateRuntimeVariable - Create a new runtime global variable with the
3687 /// specified type and name.
3688 llvm::Constant *
3689 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3690                                      StringRef Name) {
3691   auto PtrTy =
3692       getContext().getLangOpts().OpenCL
3693           ? llvm::PointerType::get(
3694                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3695           : llvm::PointerType::getUnqual(Ty);
3696   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3697   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3698   return Ret;
3699 }
3700 
3701 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3702   assert(!D->getInit() && "Cannot emit definite definitions here!");
3703 
3704   StringRef MangledName = getMangledName(D);
3705   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3706 
3707   // We already have a definition, not declaration, with the same mangled name.
3708   // Emitting of declaration is not required (and actually overwrites emitted
3709   // definition).
3710   if (GV && !GV->isDeclaration())
3711     return;
3712 
3713   // If we have not seen a reference to this variable yet, place it into the
3714   // deferred declarations table to be emitted if needed later.
3715   if (!MustBeEmitted(D) && !GV) {
3716       DeferredDecls[MangledName] = D;
3717       return;
3718   }
3719 
3720   // The tentative definition is the only definition.
3721   EmitGlobalVarDefinition(D);
3722 }
3723 
3724 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3725   EmitExternalVarDeclaration(D);
3726 }
3727 
3728 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3729   return Context.toCharUnitsFromBits(
3730       getDataLayout().getTypeStoreSizeInBits(Ty));
3731 }
3732 
3733 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3734   LangAS AddrSpace = LangAS::Default;
3735   if (LangOpts.OpenCL) {
3736     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3737     assert(AddrSpace == LangAS::opencl_global ||
3738            AddrSpace == LangAS::opencl_constant ||
3739            AddrSpace == LangAS::opencl_local ||
3740            AddrSpace >= LangAS::FirstTargetAddressSpace);
3741     return AddrSpace;
3742   }
3743 
3744   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3745     if (D && D->hasAttr<CUDAConstantAttr>())
3746       return LangAS::cuda_constant;
3747     else if (D && D->hasAttr<CUDASharedAttr>())
3748       return LangAS::cuda_shared;
3749     else if (D && D->hasAttr<CUDADeviceAttr>())
3750       return LangAS::cuda_device;
3751     else if (D && D->getType().isConstQualified())
3752       return LangAS::cuda_constant;
3753     else
3754       return LangAS::cuda_device;
3755   }
3756 
3757   if (LangOpts.OpenMP) {
3758     LangAS AS;
3759     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3760       return AS;
3761   }
3762   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3763 }
3764 
3765 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3766   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3767   if (LangOpts.OpenCL)
3768     return LangAS::opencl_constant;
3769   if (auto AS = getTarget().getConstantAddressSpace())
3770     return AS.getValue();
3771   return LangAS::Default;
3772 }
3773 
3774 // In address space agnostic languages, string literals are in default address
3775 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3776 // emitted in constant address space in LLVM IR. To be consistent with other
3777 // parts of AST, string literal global variables in constant address space
3778 // need to be casted to default address space before being put into address
3779 // map and referenced by other part of CodeGen.
3780 // In OpenCL, string literals are in constant address space in AST, therefore
3781 // they should not be casted to default address space.
3782 static llvm::Constant *
3783 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3784                                        llvm::GlobalVariable *GV) {
3785   llvm::Constant *Cast = GV;
3786   if (!CGM.getLangOpts().OpenCL) {
3787     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3788       if (AS != LangAS::Default)
3789         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3790             CGM, GV, AS.getValue(), LangAS::Default,
3791             GV->getValueType()->getPointerTo(
3792                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3793     }
3794   }
3795   return Cast;
3796 }
3797 
3798 template<typename SomeDecl>
3799 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3800                                                llvm::GlobalValue *GV) {
3801   if (!getLangOpts().CPlusPlus)
3802     return;
3803 
3804   // Must have 'used' attribute, or else inline assembly can't rely on
3805   // the name existing.
3806   if (!D->template hasAttr<UsedAttr>())
3807     return;
3808 
3809   // Must have internal linkage and an ordinary name.
3810   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3811     return;
3812 
3813   // Must be in an extern "C" context. Entities declared directly within
3814   // a record are not extern "C" even if the record is in such a context.
3815   const SomeDecl *First = D->getFirstDecl();
3816   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3817     return;
3818 
3819   // OK, this is an internal linkage entity inside an extern "C" linkage
3820   // specification. Make a note of that so we can give it the "expected"
3821   // mangled name if nothing else is using that name.
3822   std::pair<StaticExternCMap::iterator, bool> R =
3823       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3824 
3825   // If we have multiple internal linkage entities with the same name
3826   // in extern "C" regions, none of them gets that name.
3827   if (!R.second)
3828     R.first->second = nullptr;
3829 }
3830 
3831 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3832   if (!CGM.supportsCOMDAT())
3833     return false;
3834 
3835   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3836   // them being "merged" by the COMDAT Folding linker optimization.
3837   if (D.hasAttr<CUDAGlobalAttr>())
3838     return false;
3839 
3840   if (D.hasAttr<SelectAnyAttr>())
3841     return true;
3842 
3843   GVALinkage Linkage;
3844   if (auto *VD = dyn_cast<VarDecl>(&D))
3845     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3846   else
3847     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3848 
3849   switch (Linkage) {
3850   case GVA_Internal:
3851   case GVA_AvailableExternally:
3852   case GVA_StrongExternal:
3853     return false;
3854   case GVA_DiscardableODR:
3855   case GVA_StrongODR:
3856     return true;
3857   }
3858   llvm_unreachable("No such linkage");
3859 }
3860 
3861 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3862                                           llvm::GlobalObject &GO) {
3863   if (!shouldBeInCOMDAT(*this, D))
3864     return;
3865   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3866 }
3867 
3868 /// Pass IsTentative as true if you want to create a tentative definition.
3869 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3870                                             bool IsTentative) {
3871   // OpenCL global variables of sampler type are translated to function calls,
3872   // therefore no need to be translated.
3873   QualType ASTTy = D->getType();
3874   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3875     return;
3876 
3877   // If this is OpenMP device, check if it is legal to emit this global
3878   // normally.
3879   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3880       OpenMPRuntime->emitTargetGlobalVariable(D))
3881     return;
3882 
3883   llvm::Constant *Init = nullptr;
3884   bool NeedsGlobalCtor = false;
3885   bool NeedsGlobalDtor =
3886       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
3887 
3888   const VarDecl *InitDecl;
3889   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3890 
3891   Optional<ConstantEmitter> emitter;
3892 
3893   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3894   // as part of their declaration."  Sema has already checked for
3895   // error cases, so we just need to set Init to UndefValue.
3896   bool IsCUDASharedVar =
3897       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3898   // Shadows of initialized device-side global variables are also left
3899   // undefined.
3900   bool IsCUDAShadowVar =
3901       !getLangOpts().CUDAIsDevice &&
3902       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3903        D->hasAttr<CUDASharedAttr>());
3904   // HIP pinned shadow of initialized host-side global variables are also
3905   // left undefined.
3906   bool IsHIPPinnedShadowVar =
3907       getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>();
3908   if (getLangOpts().CUDA &&
3909       (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar))
3910     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3911   else if (!InitExpr) {
3912     // This is a tentative definition; tentative definitions are
3913     // implicitly initialized with { 0 }.
3914     //
3915     // Note that tentative definitions are only emitted at the end of
3916     // a translation unit, so they should never have incomplete
3917     // type. In addition, EmitTentativeDefinition makes sure that we
3918     // never attempt to emit a tentative definition if a real one
3919     // exists. A use may still exists, however, so we still may need
3920     // to do a RAUW.
3921     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3922     Init = EmitNullConstant(D->getType());
3923   } else {
3924     initializedGlobalDecl = GlobalDecl(D);
3925     emitter.emplace(*this);
3926     Init = emitter->tryEmitForInitializer(*InitDecl);
3927 
3928     if (!Init) {
3929       QualType T = InitExpr->getType();
3930       if (D->getType()->isReferenceType())
3931         T = D->getType();
3932 
3933       if (getLangOpts().CPlusPlus) {
3934         Init = EmitNullConstant(T);
3935         NeedsGlobalCtor = true;
3936       } else {
3937         ErrorUnsupported(D, "static initializer");
3938         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3939       }
3940     } else {
3941       // We don't need an initializer, so remove the entry for the delayed
3942       // initializer position (just in case this entry was delayed) if we
3943       // also don't need to register a destructor.
3944       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3945         DelayedCXXInitPosition.erase(D);
3946     }
3947   }
3948 
3949   llvm::Type* InitType = Init->getType();
3950   llvm::Constant *Entry =
3951       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3952 
3953   // Strip off pointer casts if we got them.
3954   Entry = Entry->stripPointerCasts();
3955 
3956   // Entry is now either a Function or GlobalVariable.
3957   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3958 
3959   // We have a definition after a declaration with the wrong type.
3960   // We must make a new GlobalVariable* and update everything that used OldGV
3961   // (a declaration or tentative definition) with the new GlobalVariable*
3962   // (which will be a definition).
3963   //
3964   // This happens if there is a prototype for a global (e.g.
3965   // "extern int x[];") and then a definition of a different type (e.g.
3966   // "int x[10];"). This also happens when an initializer has a different type
3967   // from the type of the global (this happens with unions).
3968   if (!GV || GV->getType()->getElementType() != InitType ||
3969       GV->getType()->getAddressSpace() !=
3970           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3971 
3972     // Move the old entry aside so that we'll create a new one.
3973     Entry->setName(StringRef());
3974 
3975     // Make a new global with the correct type, this is now guaranteed to work.
3976     GV = cast<llvm::GlobalVariable>(
3977         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
3978             ->stripPointerCasts());
3979 
3980     // Replace all uses of the old global with the new global
3981     llvm::Constant *NewPtrForOldDecl =
3982         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3983     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3984 
3985     // Erase the old global, since it is no longer used.
3986     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3987   }
3988 
3989   MaybeHandleStaticInExternC(D, GV);
3990 
3991   if (D->hasAttr<AnnotateAttr>())
3992     AddGlobalAnnotations(D, GV);
3993 
3994   // Set the llvm linkage type as appropriate.
3995   llvm::GlobalValue::LinkageTypes Linkage =
3996       getLLVMLinkageVarDefinition(D, GV->isConstant());
3997 
3998   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3999   // the device. [...]"
4000   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4001   // __device__, declares a variable that: [...]
4002   // Is accessible from all the threads within the grid and from the host
4003   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4004   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4005   if (GV && LangOpts.CUDA) {
4006     if (LangOpts.CUDAIsDevice) {
4007       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4008           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4009         GV->setExternallyInitialized(true);
4010     } else {
4011       // Host-side shadows of external declarations of device-side
4012       // global variables become internal definitions. These have to
4013       // be internal in order to prevent name conflicts with global
4014       // host variables with the same name in a different TUs.
4015       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4016           D->hasAttr<HIPPinnedShadowAttr>()) {
4017         Linkage = llvm::GlobalValue::InternalLinkage;
4018 
4019         // Shadow variables and their properties must be registered
4020         // with CUDA runtime.
4021         unsigned Flags = 0;
4022         if (!D->hasDefinition())
4023           Flags |= CGCUDARuntime::ExternDeviceVar;
4024         if (D->hasAttr<CUDAConstantAttr>())
4025           Flags |= CGCUDARuntime::ConstantDeviceVar;
4026         // Extern global variables will be registered in the TU where they are
4027         // defined.
4028         if (!D->hasExternalStorage())
4029           getCUDARuntime().registerDeviceVar(D, *GV, Flags);
4030       } else if (D->hasAttr<CUDASharedAttr>())
4031         // __shared__ variables are odd. Shadows do get created, but
4032         // they are not registered with the CUDA runtime, so they
4033         // can't really be used to access their device-side
4034         // counterparts. It's not clear yet whether it's nvcc's bug or
4035         // a feature, but we've got to do the same for compatibility.
4036         Linkage = llvm::GlobalValue::InternalLinkage;
4037     }
4038   }
4039 
4040   if (!IsHIPPinnedShadowVar)
4041     GV->setInitializer(Init);
4042   if (emitter) emitter->finalize(GV);
4043 
4044   // If it is safe to mark the global 'constant', do so now.
4045   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4046                   isTypeConstant(D->getType(), true));
4047 
4048   // If it is in a read-only section, mark it 'constant'.
4049   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4050     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4051     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4052       GV->setConstant(true);
4053   }
4054 
4055   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4056 
4057   // On Darwin, if the normal linkage of a C++ thread_local variable is
4058   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
4059   // copies within a linkage unit; otherwise, the backing variable has
4060   // internal linkage and all accesses should just be calls to the
4061   // Itanium-specified entry point, which has the normal linkage of the
4062   // variable. This is to preserve the ability to change the implementation
4063   // behind the scenes.
4064   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
4065       Context.getTargetInfo().getTriple().isOSDarwin() &&
4066       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
4067       !llvm::GlobalVariable::isWeakLinkage(Linkage))
4068     Linkage = llvm::GlobalValue::InternalLinkage;
4069 
4070   GV->setLinkage(Linkage);
4071   if (D->hasAttr<DLLImportAttr>())
4072     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4073   else if (D->hasAttr<DLLExportAttr>())
4074     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4075   else
4076     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4077 
4078   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4079     // common vars aren't constant even if declared const.
4080     GV->setConstant(false);
4081     // Tentative definition of global variables may be initialized with
4082     // non-zero null pointers. In this case they should have weak linkage
4083     // since common linkage must have zero initializer and must not have
4084     // explicit section therefore cannot have non-zero initial value.
4085     if (!GV->getInitializer()->isNullValue())
4086       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4087   }
4088 
4089   setNonAliasAttributes(D, GV);
4090 
4091   if (D->getTLSKind() && !GV->isThreadLocal()) {
4092     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4093       CXXThreadLocals.push_back(D);
4094     setTLSMode(GV, *D);
4095   }
4096 
4097   maybeSetTrivialComdat(*D, *GV);
4098 
4099   // Emit the initializer function if necessary.
4100   if (NeedsGlobalCtor || NeedsGlobalDtor)
4101     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4102 
4103   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4104 
4105   // Emit global variable debug information.
4106   if (CGDebugInfo *DI = getModuleDebugInfo())
4107     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4108       DI->EmitGlobalVariable(GV, D);
4109 }
4110 
4111 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4112   if (CGDebugInfo *DI = getModuleDebugInfo())
4113     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
4114       QualType ASTTy = D->getType();
4115       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4116       llvm::PointerType *PTy =
4117           llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4118       llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4119       DI->EmitExternalVariable(
4120           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4121     }
4122 }
4123 
4124 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4125                                       CodeGenModule &CGM, const VarDecl *D,
4126                                       bool NoCommon) {
4127   // Don't give variables common linkage if -fno-common was specified unless it
4128   // was overridden by a NoCommon attribute.
4129   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4130     return true;
4131 
4132   // C11 6.9.2/2:
4133   //   A declaration of an identifier for an object that has file scope without
4134   //   an initializer, and without a storage-class specifier or with the
4135   //   storage-class specifier static, constitutes a tentative definition.
4136   if (D->getInit() || D->hasExternalStorage())
4137     return true;
4138 
4139   // A variable cannot be both common and exist in a section.
4140   if (D->hasAttr<SectionAttr>())
4141     return true;
4142 
4143   // A variable cannot be both common and exist in a section.
4144   // We don't try to determine which is the right section in the front-end.
4145   // If no specialized section name is applicable, it will resort to default.
4146   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4147       D->hasAttr<PragmaClangDataSectionAttr>() ||
4148       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4149       D->hasAttr<PragmaClangRodataSectionAttr>())
4150     return true;
4151 
4152   // Thread local vars aren't considered common linkage.
4153   if (D->getTLSKind())
4154     return true;
4155 
4156   // Tentative definitions marked with WeakImportAttr are true definitions.
4157   if (D->hasAttr<WeakImportAttr>())
4158     return true;
4159 
4160   // A variable cannot be both common and exist in a comdat.
4161   if (shouldBeInCOMDAT(CGM, *D))
4162     return true;
4163 
4164   // Declarations with a required alignment do not have common linkage in MSVC
4165   // mode.
4166   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4167     if (D->hasAttr<AlignedAttr>())
4168       return true;
4169     QualType VarType = D->getType();
4170     if (Context.isAlignmentRequired(VarType))
4171       return true;
4172 
4173     if (const auto *RT = VarType->getAs<RecordType>()) {
4174       const RecordDecl *RD = RT->getDecl();
4175       for (const FieldDecl *FD : RD->fields()) {
4176         if (FD->isBitField())
4177           continue;
4178         if (FD->hasAttr<AlignedAttr>())
4179           return true;
4180         if (Context.isAlignmentRequired(FD->getType()))
4181           return true;
4182       }
4183     }
4184   }
4185 
4186   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4187   // common symbols, so symbols with greater alignment requirements cannot be
4188   // common.
4189   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4190   // alignments for common symbols via the aligncomm directive, so this
4191   // restriction only applies to MSVC environments.
4192   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4193       Context.getTypeAlignIfKnown(D->getType()) >
4194           Context.toBits(CharUnits::fromQuantity(32)))
4195     return true;
4196 
4197   return false;
4198 }
4199 
4200 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4201     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4202   if (Linkage == GVA_Internal)
4203     return llvm::Function::InternalLinkage;
4204 
4205   if (D->hasAttr<WeakAttr>()) {
4206     if (IsConstantVariable)
4207       return llvm::GlobalVariable::WeakODRLinkage;
4208     else
4209       return llvm::GlobalVariable::WeakAnyLinkage;
4210   }
4211 
4212   if (const auto *FD = D->getAsFunction())
4213     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4214       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4215 
4216   // We are guaranteed to have a strong definition somewhere else,
4217   // so we can use available_externally linkage.
4218   if (Linkage == GVA_AvailableExternally)
4219     return llvm::GlobalValue::AvailableExternallyLinkage;
4220 
4221   // Note that Apple's kernel linker doesn't support symbol
4222   // coalescing, so we need to avoid linkonce and weak linkages there.
4223   // Normally, this means we just map to internal, but for explicit
4224   // instantiations we'll map to external.
4225 
4226   // In C++, the compiler has to emit a definition in every translation unit
4227   // that references the function.  We should use linkonce_odr because
4228   // a) if all references in this translation unit are optimized away, we
4229   // don't need to codegen it.  b) if the function persists, it needs to be
4230   // merged with other definitions. c) C++ has the ODR, so we know the
4231   // definition is dependable.
4232   if (Linkage == GVA_DiscardableODR)
4233     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4234                                             : llvm::Function::InternalLinkage;
4235 
4236   // An explicit instantiation of a template has weak linkage, since
4237   // explicit instantiations can occur in multiple translation units
4238   // and must all be equivalent. However, we are not allowed to
4239   // throw away these explicit instantiations.
4240   //
4241   // We don't currently support CUDA device code spread out across multiple TUs,
4242   // so say that CUDA templates are either external (for kernels) or internal.
4243   // This lets llvm perform aggressive inter-procedural optimizations.
4244   if (Linkage == GVA_StrongODR) {
4245     if (Context.getLangOpts().AppleKext)
4246       return llvm::Function::ExternalLinkage;
4247     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4248       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4249                                           : llvm::Function::InternalLinkage;
4250     return llvm::Function::WeakODRLinkage;
4251   }
4252 
4253   // C++ doesn't have tentative definitions and thus cannot have common
4254   // linkage.
4255   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4256       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4257                                  CodeGenOpts.NoCommon))
4258     return llvm::GlobalVariable::CommonLinkage;
4259 
4260   // selectany symbols are externally visible, so use weak instead of
4261   // linkonce.  MSVC optimizes away references to const selectany globals, so
4262   // all definitions should be the same and ODR linkage should be used.
4263   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4264   if (D->hasAttr<SelectAnyAttr>())
4265     return llvm::GlobalVariable::WeakODRLinkage;
4266 
4267   // Otherwise, we have strong external linkage.
4268   assert(Linkage == GVA_StrongExternal);
4269   return llvm::GlobalVariable::ExternalLinkage;
4270 }
4271 
4272 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4273     const VarDecl *VD, bool IsConstant) {
4274   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4275   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4276 }
4277 
4278 /// Replace the uses of a function that was declared with a non-proto type.
4279 /// We want to silently drop extra arguments from call sites
4280 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4281                                           llvm::Function *newFn) {
4282   // Fast path.
4283   if (old->use_empty()) return;
4284 
4285   llvm::Type *newRetTy = newFn->getReturnType();
4286   SmallVector<llvm::Value*, 4> newArgs;
4287   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4288 
4289   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4290          ui != ue; ) {
4291     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4292     llvm::User *user = use->getUser();
4293 
4294     // Recognize and replace uses of bitcasts.  Most calls to
4295     // unprototyped functions will use bitcasts.
4296     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4297       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4298         replaceUsesOfNonProtoConstant(bitcast, newFn);
4299       continue;
4300     }
4301 
4302     // Recognize calls to the function.
4303     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4304     if (!callSite) continue;
4305     if (!callSite->isCallee(&*use))
4306       continue;
4307 
4308     // If the return types don't match exactly, then we can't
4309     // transform this call unless it's dead.
4310     if (callSite->getType() != newRetTy && !callSite->use_empty())
4311       continue;
4312 
4313     // Get the call site's attribute list.
4314     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4315     llvm::AttributeList oldAttrs = callSite->getAttributes();
4316 
4317     // If the function was passed too few arguments, don't transform.
4318     unsigned newNumArgs = newFn->arg_size();
4319     if (callSite->arg_size() < newNumArgs)
4320       continue;
4321 
4322     // If extra arguments were passed, we silently drop them.
4323     // If any of the types mismatch, we don't transform.
4324     unsigned argNo = 0;
4325     bool dontTransform = false;
4326     for (llvm::Argument &A : newFn->args()) {
4327       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4328         dontTransform = true;
4329         break;
4330       }
4331 
4332       // Add any parameter attributes.
4333       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4334       argNo++;
4335     }
4336     if (dontTransform)
4337       continue;
4338 
4339     // Okay, we can transform this.  Create the new call instruction and copy
4340     // over the required information.
4341     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4342 
4343     // Copy over any operand bundles.
4344     callSite->getOperandBundlesAsDefs(newBundles);
4345 
4346     llvm::CallBase *newCall;
4347     if (dyn_cast<llvm::CallInst>(callSite)) {
4348       newCall =
4349           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4350     } else {
4351       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4352       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4353                                          oldInvoke->getUnwindDest(), newArgs,
4354                                          newBundles, "", callSite);
4355     }
4356     newArgs.clear(); // for the next iteration
4357 
4358     if (!newCall->getType()->isVoidTy())
4359       newCall->takeName(callSite);
4360     newCall->setAttributes(llvm::AttributeList::get(
4361         newFn->getContext(), oldAttrs.getFnAttributes(),
4362         oldAttrs.getRetAttributes(), newArgAttrs));
4363     newCall->setCallingConv(callSite->getCallingConv());
4364 
4365     // Finally, remove the old call, replacing any uses with the new one.
4366     if (!callSite->use_empty())
4367       callSite->replaceAllUsesWith(newCall);
4368 
4369     // Copy debug location attached to CI.
4370     if (callSite->getDebugLoc())
4371       newCall->setDebugLoc(callSite->getDebugLoc());
4372 
4373     callSite->eraseFromParent();
4374   }
4375 }
4376 
4377 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4378 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4379 /// existing call uses of the old function in the module, this adjusts them to
4380 /// call the new function directly.
4381 ///
4382 /// This is not just a cleanup: the always_inline pass requires direct calls to
4383 /// functions to be able to inline them.  If there is a bitcast in the way, it
4384 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4385 /// run at -O0.
4386 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4387                                                       llvm::Function *NewFn) {
4388   // If we're redefining a global as a function, don't transform it.
4389   if (!isa<llvm::Function>(Old)) return;
4390 
4391   replaceUsesOfNonProtoConstant(Old, NewFn);
4392 }
4393 
4394 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4395   auto DK = VD->isThisDeclarationADefinition();
4396   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4397     return;
4398 
4399   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4400   // If we have a definition, this might be a deferred decl. If the
4401   // instantiation is explicit, make sure we emit it at the end.
4402   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4403     GetAddrOfGlobalVar(VD);
4404 
4405   EmitTopLevelDecl(VD);
4406 }
4407 
4408 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4409                                                  llvm::GlobalValue *GV) {
4410   // Check if this must be emitted as declare variant.
4411   if (LangOpts.OpenMP && OpenMPRuntime &&
4412       OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true))
4413     return;
4414 
4415   const auto *D = cast<FunctionDecl>(GD.getDecl());
4416 
4417   // Compute the function info and LLVM type.
4418   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4419   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4420 
4421   // Get or create the prototype for the function.
4422   if (!GV || (GV->getType()->getElementType() != Ty))
4423     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4424                                                    /*DontDefer=*/true,
4425                                                    ForDefinition));
4426 
4427   // Already emitted.
4428   if (!GV->isDeclaration())
4429     return;
4430 
4431   // We need to set linkage and visibility on the function before
4432   // generating code for it because various parts of IR generation
4433   // want to propagate this information down (e.g. to local static
4434   // declarations).
4435   auto *Fn = cast<llvm::Function>(GV);
4436   setFunctionLinkage(GD, Fn);
4437 
4438   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4439   setGVProperties(Fn, GD);
4440 
4441   MaybeHandleStaticInExternC(D, Fn);
4442 
4443 
4444   maybeSetTrivialComdat(*D, *Fn);
4445 
4446   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4447 
4448   setNonAliasAttributes(GD, Fn);
4449   SetLLVMFunctionAttributesForDefinition(D, Fn);
4450 
4451   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4452     AddGlobalCtor(Fn, CA->getPriority());
4453   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4454     AddGlobalDtor(Fn, DA->getPriority());
4455   if (D->hasAttr<AnnotateAttr>())
4456     AddGlobalAnnotations(D, Fn);
4457 }
4458 
4459 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4460   const auto *D = cast<ValueDecl>(GD.getDecl());
4461   const AliasAttr *AA = D->getAttr<AliasAttr>();
4462   assert(AA && "Not an alias?");
4463 
4464   StringRef MangledName = getMangledName(GD);
4465 
4466   if (AA->getAliasee() == MangledName) {
4467     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4468     return;
4469   }
4470 
4471   // If there is a definition in the module, then it wins over the alias.
4472   // This is dubious, but allow it to be safe.  Just ignore the alias.
4473   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4474   if (Entry && !Entry->isDeclaration())
4475     return;
4476 
4477   Aliases.push_back(GD);
4478 
4479   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4480 
4481   // Create a reference to the named value.  This ensures that it is emitted
4482   // if a deferred decl.
4483   llvm::Constant *Aliasee;
4484   llvm::GlobalValue::LinkageTypes LT;
4485   if (isa<llvm::FunctionType>(DeclTy)) {
4486     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4487                                       /*ForVTable=*/false);
4488     LT = getFunctionLinkage(GD);
4489   } else {
4490     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4491                                     llvm::PointerType::getUnqual(DeclTy),
4492                                     /*D=*/nullptr);
4493     LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4494                                      D->getType().isConstQualified());
4495   }
4496 
4497   // Create the new alias itself, but don't set a name yet.
4498   auto *GA =
4499       llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule());
4500 
4501   if (Entry) {
4502     if (GA->getAliasee() == Entry) {
4503       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4504       return;
4505     }
4506 
4507     assert(Entry->isDeclaration());
4508 
4509     // If there is a declaration in the module, then we had an extern followed
4510     // by the alias, as in:
4511     //   extern int test6();
4512     //   ...
4513     //   int test6() __attribute__((alias("test7")));
4514     //
4515     // Remove it and replace uses of it with the alias.
4516     GA->takeName(Entry);
4517 
4518     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4519                                                           Entry->getType()));
4520     Entry->eraseFromParent();
4521   } else {
4522     GA->setName(MangledName);
4523   }
4524 
4525   // Set attributes which are particular to an alias; this is a
4526   // specialization of the attributes which may be set on a global
4527   // variable/function.
4528   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4529       D->isWeakImported()) {
4530     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4531   }
4532 
4533   if (const auto *VD = dyn_cast<VarDecl>(D))
4534     if (VD->getTLSKind())
4535       setTLSMode(GA, *VD);
4536 
4537   SetCommonAttributes(GD, GA);
4538 }
4539 
4540 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4541   const auto *D = cast<ValueDecl>(GD.getDecl());
4542   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4543   assert(IFA && "Not an ifunc?");
4544 
4545   StringRef MangledName = getMangledName(GD);
4546 
4547   if (IFA->getResolver() == MangledName) {
4548     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4549     return;
4550   }
4551 
4552   // Report an error if some definition overrides ifunc.
4553   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4554   if (Entry && !Entry->isDeclaration()) {
4555     GlobalDecl OtherGD;
4556     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4557         DiagnosedConflictingDefinitions.insert(GD).second) {
4558       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4559           << MangledName;
4560       Diags.Report(OtherGD.getDecl()->getLocation(),
4561                    diag::note_previous_definition);
4562     }
4563     return;
4564   }
4565 
4566   Aliases.push_back(GD);
4567 
4568   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4569   llvm::Constant *Resolver =
4570       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4571                               /*ForVTable=*/false);
4572   llvm::GlobalIFunc *GIF =
4573       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4574                                 "", Resolver, &getModule());
4575   if (Entry) {
4576     if (GIF->getResolver() == Entry) {
4577       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4578       return;
4579     }
4580     assert(Entry->isDeclaration());
4581 
4582     // If there is a declaration in the module, then we had an extern followed
4583     // by the ifunc, as in:
4584     //   extern int test();
4585     //   ...
4586     //   int test() __attribute__((ifunc("resolver")));
4587     //
4588     // Remove it and replace uses of it with the ifunc.
4589     GIF->takeName(Entry);
4590 
4591     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4592                                                           Entry->getType()));
4593     Entry->eraseFromParent();
4594   } else
4595     GIF->setName(MangledName);
4596 
4597   SetCommonAttributes(GD, GIF);
4598 }
4599 
4600 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4601                                             ArrayRef<llvm::Type*> Tys) {
4602   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4603                                          Tys);
4604 }
4605 
4606 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4607 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4608                          const StringLiteral *Literal, bool TargetIsLSB,
4609                          bool &IsUTF16, unsigned &StringLength) {
4610   StringRef String = Literal->getString();
4611   unsigned NumBytes = String.size();
4612 
4613   // Check for simple case.
4614   if (!Literal->containsNonAsciiOrNull()) {
4615     StringLength = NumBytes;
4616     return *Map.insert(std::make_pair(String, nullptr)).first;
4617   }
4618 
4619   // Otherwise, convert the UTF8 literals into a string of shorts.
4620   IsUTF16 = true;
4621 
4622   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4623   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4624   llvm::UTF16 *ToPtr = &ToBuf[0];
4625 
4626   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4627                                  ToPtr + NumBytes, llvm::strictConversion);
4628 
4629   // ConvertUTF8toUTF16 returns the length in ToPtr.
4630   StringLength = ToPtr - &ToBuf[0];
4631 
4632   // Add an explicit null.
4633   *ToPtr = 0;
4634   return *Map.insert(std::make_pair(
4635                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4636                                    (StringLength + 1) * 2),
4637                          nullptr)).first;
4638 }
4639 
4640 ConstantAddress
4641 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4642   unsigned StringLength = 0;
4643   bool isUTF16 = false;
4644   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4645       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4646                                getDataLayout().isLittleEndian(), isUTF16,
4647                                StringLength);
4648 
4649   if (auto *C = Entry.second)
4650     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4651 
4652   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4653   llvm::Constant *Zeros[] = { Zero, Zero };
4654 
4655   const ASTContext &Context = getContext();
4656   const llvm::Triple &Triple = getTriple();
4657 
4658   const auto CFRuntime = getLangOpts().CFRuntime;
4659   const bool IsSwiftABI =
4660       static_cast<unsigned>(CFRuntime) >=
4661       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4662   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4663 
4664   // If we don't already have it, get __CFConstantStringClassReference.
4665   if (!CFConstantStringClassRef) {
4666     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4667     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4668     Ty = llvm::ArrayType::get(Ty, 0);
4669 
4670     switch (CFRuntime) {
4671     default: break;
4672     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4673     case LangOptions::CoreFoundationABI::Swift5_0:
4674       CFConstantStringClassName =
4675           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4676                               : "$s10Foundation19_NSCFConstantStringCN";
4677       Ty = IntPtrTy;
4678       break;
4679     case LangOptions::CoreFoundationABI::Swift4_2:
4680       CFConstantStringClassName =
4681           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4682                               : "$S10Foundation19_NSCFConstantStringCN";
4683       Ty = IntPtrTy;
4684       break;
4685     case LangOptions::CoreFoundationABI::Swift4_1:
4686       CFConstantStringClassName =
4687           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4688                               : "__T010Foundation19_NSCFConstantStringCN";
4689       Ty = IntPtrTy;
4690       break;
4691     }
4692 
4693     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4694 
4695     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4696       llvm::GlobalValue *GV = nullptr;
4697 
4698       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4699         IdentifierInfo &II = Context.Idents.get(GV->getName());
4700         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4701         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4702 
4703         const VarDecl *VD = nullptr;
4704         for (const auto &Result : DC->lookup(&II))
4705           if ((VD = dyn_cast<VarDecl>(Result)))
4706             break;
4707 
4708         if (Triple.isOSBinFormatELF()) {
4709           if (!VD)
4710             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4711         } else {
4712           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4713           if (!VD || !VD->hasAttr<DLLExportAttr>())
4714             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4715           else
4716             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4717         }
4718 
4719         setDSOLocal(GV);
4720       }
4721     }
4722 
4723     // Decay array -> ptr
4724     CFConstantStringClassRef =
4725         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4726                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4727   }
4728 
4729   QualType CFTy = Context.getCFConstantStringType();
4730 
4731   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4732 
4733   ConstantInitBuilder Builder(*this);
4734   auto Fields = Builder.beginStruct(STy);
4735 
4736   // Class pointer.
4737   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4738 
4739   // Flags.
4740   if (IsSwiftABI) {
4741     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4742     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4743   } else {
4744     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4745   }
4746 
4747   // String pointer.
4748   llvm::Constant *C = nullptr;
4749   if (isUTF16) {
4750     auto Arr = llvm::makeArrayRef(
4751         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4752         Entry.first().size() / 2);
4753     C = llvm::ConstantDataArray::get(VMContext, Arr);
4754   } else {
4755     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4756   }
4757 
4758   // Note: -fwritable-strings doesn't make the backing store strings of
4759   // CFStrings writable. (See <rdar://problem/10657500>)
4760   auto *GV =
4761       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4762                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4763   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4764   // Don't enforce the target's minimum global alignment, since the only use
4765   // of the string is via this class initializer.
4766   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4767                             : Context.getTypeAlignInChars(Context.CharTy);
4768   GV->setAlignment(Align.getAsAlign());
4769 
4770   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4771   // Without it LLVM can merge the string with a non unnamed_addr one during
4772   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4773   if (Triple.isOSBinFormatMachO())
4774     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4775                            : "__TEXT,__cstring,cstring_literals");
4776   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4777   // the static linker to adjust permissions to read-only later on.
4778   else if (Triple.isOSBinFormatELF())
4779     GV->setSection(".rodata");
4780 
4781   // String.
4782   llvm::Constant *Str =
4783       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4784 
4785   if (isUTF16)
4786     // Cast the UTF16 string to the correct type.
4787     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4788   Fields.add(Str);
4789 
4790   // String length.
4791   llvm::IntegerType *LengthTy =
4792       llvm::IntegerType::get(getModule().getContext(),
4793                              Context.getTargetInfo().getLongWidth());
4794   if (IsSwiftABI) {
4795     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4796         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4797       LengthTy = Int32Ty;
4798     else
4799       LengthTy = IntPtrTy;
4800   }
4801   Fields.addInt(LengthTy, StringLength);
4802 
4803   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4804   // properly aligned on 32-bit platforms.
4805   CharUnits Alignment =
4806       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4807 
4808   // The struct.
4809   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4810                                     /*isConstant=*/false,
4811                                     llvm::GlobalVariable::PrivateLinkage);
4812   GV->addAttribute("objc_arc_inert");
4813   switch (Triple.getObjectFormat()) {
4814   case llvm::Triple::UnknownObjectFormat:
4815     llvm_unreachable("unknown file format");
4816   case llvm::Triple::XCOFF:
4817     llvm_unreachable("XCOFF is not yet implemented");
4818   case llvm::Triple::COFF:
4819   case llvm::Triple::ELF:
4820   case llvm::Triple::Wasm:
4821     GV->setSection("cfstring");
4822     break;
4823   case llvm::Triple::MachO:
4824     GV->setSection("__DATA,__cfstring");
4825     break;
4826   }
4827   Entry.second = GV;
4828 
4829   return ConstantAddress(GV, Alignment);
4830 }
4831 
4832 bool CodeGenModule::getExpressionLocationsEnabled() const {
4833   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4834 }
4835 
4836 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4837   if (ObjCFastEnumerationStateType.isNull()) {
4838     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4839     D->startDefinition();
4840 
4841     QualType FieldTypes[] = {
4842       Context.UnsignedLongTy,
4843       Context.getPointerType(Context.getObjCIdType()),
4844       Context.getPointerType(Context.UnsignedLongTy),
4845       Context.getConstantArrayType(Context.UnsignedLongTy,
4846                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
4847     };
4848 
4849     for (size_t i = 0; i < 4; ++i) {
4850       FieldDecl *Field = FieldDecl::Create(Context,
4851                                            D,
4852                                            SourceLocation(),
4853                                            SourceLocation(), nullptr,
4854                                            FieldTypes[i], /*TInfo=*/nullptr,
4855                                            /*BitWidth=*/nullptr,
4856                                            /*Mutable=*/false,
4857                                            ICIS_NoInit);
4858       Field->setAccess(AS_public);
4859       D->addDecl(Field);
4860     }
4861 
4862     D->completeDefinition();
4863     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4864   }
4865 
4866   return ObjCFastEnumerationStateType;
4867 }
4868 
4869 llvm::Constant *
4870 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4871   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4872 
4873   // Don't emit it as the address of the string, emit the string data itself
4874   // as an inline array.
4875   if (E->getCharByteWidth() == 1) {
4876     SmallString<64> Str(E->getString());
4877 
4878     // Resize the string to the right size, which is indicated by its type.
4879     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4880     Str.resize(CAT->getSize().getZExtValue());
4881     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4882   }
4883 
4884   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4885   llvm::Type *ElemTy = AType->getElementType();
4886   unsigned NumElements = AType->getNumElements();
4887 
4888   // Wide strings have either 2-byte or 4-byte elements.
4889   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4890     SmallVector<uint16_t, 32> Elements;
4891     Elements.reserve(NumElements);
4892 
4893     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4894       Elements.push_back(E->getCodeUnit(i));
4895     Elements.resize(NumElements);
4896     return llvm::ConstantDataArray::get(VMContext, Elements);
4897   }
4898 
4899   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4900   SmallVector<uint32_t, 32> Elements;
4901   Elements.reserve(NumElements);
4902 
4903   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4904     Elements.push_back(E->getCodeUnit(i));
4905   Elements.resize(NumElements);
4906   return llvm::ConstantDataArray::get(VMContext, Elements);
4907 }
4908 
4909 static llvm::GlobalVariable *
4910 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4911                       CodeGenModule &CGM, StringRef GlobalName,
4912                       CharUnits Alignment) {
4913   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4914       CGM.getStringLiteralAddressSpace());
4915 
4916   llvm::Module &M = CGM.getModule();
4917   // Create a global variable for this string
4918   auto *GV = new llvm::GlobalVariable(
4919       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4920       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4921   GV->setAlignment(Alignment.getAsAlign());
4922   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4923   if (GV->isWeakForLinker()) {
4924     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4925     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4926   }
4927   CGM.setDSOLocal(GV);
4928 
4929   return GV;
4930 }
4931 
4932 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4933 /// constant array for the given string literal.
4934 ConstantAddress
4935 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4936                                                   StringRef Name) {
4937   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4938 
4939   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4940   llvm::GlobalVariable **Entry = nullptr;
4941   if (!LangOpts.WritableStrings) {
4942     Entry = &ConstantStringMap[C];
4943     if (auto GV = *Entry) {
4944       if (Alignment.getQuantity() > GV->getAlignment())
4945         GV->setAlignment(Alignment.getAsAlign());
4946       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4947                              Alignment);
4948     }
4949   }
4950 
4951   SmallString<256> MangledNameBuffer;
4952   StringRef GlobalVariableName;
4953   llvm::GlobalValue::LinkageTypes LT;
4954 
4955   // Mangle the string literal if that's how the ABI merges duplicate strings.
4956   // Don't do it if they are writable, since we don't want writes in one TU to
4957   // affect strings in another.
4958   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4959       !LangOpts.WritableStrings) {
4960     llvm::raw_svector_ostream Out(MangledNameBuffer);
4961     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4962     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4963     GlobalVariableName = MangledNameBuffer;
4964   } else {
4965     LT = llvm::GlobalValue::PrivateLinkage;
4966     GlobalVariableName = Name;
4967   }
4968 
4969   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4970   if (Entry)
4971     *Entry = GV;
4972 
4973   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4974                                   QualType());
4975 
4976   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4977                          Alignment);
4978 }
4979 
4980 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4981 /// array for the given ObjCEncodeExpr node.
4982 ConstantAddress
4983 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4984   std::string Str;
4985   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4986 
4987   return GetAddrOfConstantCString(Str);
4988 }
4989 
4990 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4991 /// the literal and a terminating '\0' character.
4992 /// The result has pointer to array type.
4993 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4994     const std::string &Str, const char *GlobalName) {
4995   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4996   CharUnits Alignment =
4997     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4998 
4999   llvm::Constant *C =
5000       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5001 
5002   // Don't share any string literals if strings aren't constant.
5003   llvm::GlobalVariable **Entry = nullptr;
5004   if (!LangOpts.WritableStrings) {
5005     Entry = &ConstantStringMap[C];
5006     if (auto GV = *Entry) {
5007       if (Alignment.getQuantity() > GV->getAlignment())
5008         GV->setAlignment(Alignment.getAsAlign());
5009       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5010                              Alignment);
5011     }
5012   }
5013 
5014   // Get the default prefix if a name wasn't specified.
5015   if (!GlobalName)
5016     GlobalName = ".str";
5017   // Create a global variable for this.
5018   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5019                                   GlobalName, Alignment);
5020   if (Entry)
5021     *Entry = GV;
5022 
5023   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5024                          Alignment);
5025 }
5026 
5027 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5028     const MaterializeTemporaryExpr *E, const Expr *Init) {
5029   assert((E->getStorageDuration() == SD_Static ||
5030           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5031   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5032 
5033   // If we're not materializing a subobject of the temporary, keep the
5034   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5035   QualType MaterializedType = Init->getType();
5036   if (Init == E->getSubExpr())
5037     MaterializedType = E->getType();
5038 
5039   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5040 
5041   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5042     return ConstantAddress(Slot, Align);
5043 
5044   // FIXME: If an externally-visible declaration extends multiple temporaries,
5045   // we need to give each temporary the same name in every translation unit (and
5046   // we also need to make the temporaries externally-visible).
5047   SmallString<256> Name;
5048   llvm::raw_svector_ostream Out(Name);
5049   getCXXABI().getMangleContext().mangleReferenceTemporary(
5050       VD, E->getManglingNumber(), Out);
5051 
5052   APValue *Value = nullptr;
5053   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5054     // If the initializer of the extending declaration is a constant
5055     // initializer, we should have a cached constant initializer for this
5056     // temporary. Note that this might have a different value from the value
5057     // computed by evaluating the initializer if the surrounding constant
5058     // expression modifies the temporary.
5059     Value = E->getOrCreateValue(false);
5060   }
5061 
5062   // Try evaluating it now, it might have a constant initializer.
5063   Expr::EvalResult EvalResult;
5064   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5065       !EvalResult.hasSideEffects())
5066     Value = &EvalResult.Val;
5067 
5068   LangAS AddrSpace =
5069       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5070 
5071   Optional<ConstantEmitter> emitter;
5072   llvm::Constant *InitialValue = nullptr;
5073   bool Constant = false;
5074   llvm::Type *Type;
5075   if (Value) {
5076     // The temporary has a constant initializer, use it.
5077     emitter.emplace(*this);
5078     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5079                                                MaterializedType);
5080     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5081     Type = InitialValue->getType();
5082   } else {
5083     // No initializer, the initialization will be provided when we
5084     // initialize the declaration which performed lifetime extension.
5085     Type = getTypes().ConvertTypeForMem(MaterializedType);
5086   }
5087 
5088   // Create a global variable for this lifetime-extended temporary.
5089   llvm::GlobalValue::LinkageTypes Linkage =
5090       getLLVMLinkageVarDefinition(VD, Constant);
5091   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5092     const VarDecl *InitVD;
5093     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5094         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5095       // Temporaries defined inside a class get linkonce_odr linkage because the
5096       // class can be defined in multiple translation units.
5097       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5098     } else {
5099       // There is no need for this temporary to have external linkage if the
5100       // VarDecl has external linkage.
5101       Linkage = llvm::GlobalVariable::InternalLinkage;
5102     }
5103   }
5104   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5105   auto *GV = new llvm::GlobalVariable(
5106       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5107       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5108   if (emitter) emitter->finalize(GV);
5109   setGVProperties(GV, VD);
5110   GV->setAlignment(Align.getAsAlign());
5111   if (supportsCOMDAT() && GV->isWeakForLinker())
5112     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5113   if (VD->getTLSKind())
5114     setTLSMode(GV, *VD);
5115   llvm::Constant *CV = GV;
5116   if (AddrSpace != LangAS::Default)
5117     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5118         *this, GV, AddrSpace, LangAS::Default,
5119         Type->getPointerTo(
5120             getContext().getTargetAddressSpace(LangAS::Default)));
5121   MaterializedGlobalTemporaryMap[E] = CV;
5122   return ConstantAddress(CV, Align);
5123 }
5124 
5125 /// EmitObjCPropertyImplementations - Emit information for synthesized
5126 /// properties for an implementation.
5127 void CodeGenModule::EmitObjCPropertyImplementations(const
5128                                                     ObjCImplementationDecl *D) {
5129   for (const auto *PID : D->property_impls()) {
5130     // Dynamic is just for type-checking.
5131     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5132       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5133 
5134       // Determine which methods need to be implemented, some may have
5135       // been overridden. Note that ::isPropertyAccessor is not the method
5136       // we want, that just indicates if the decl came from a
5137       // property. What we want to know is if the method is defined in
5138       // this implementation.
5139       auto *Getter = PID->getGetterMethodDecl();
5140       if (!Getter || Getter->isSynthesizedAccessorStub())
5141         CodeGenFunction(*this).GenerateObjCGetter(
5142             const_cast<ObjCImplementationDecl *>(D), PID);
5143       auto *Setter = PID->getSetterMethodDecl();
5144       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5145         CodeGenFunction(*this).GenerateObjCSetter(
5146                                  const_cast<ObjCImplementationDecl *>(D), PID);
5147     }
5148   }
5149 }
5150 
5151 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5152   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5153   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5154        ivar; ivar = ivar->getNextIvar())
5155     if (ivar->getType().isDestructedType())
5156       return true;
5157 
5158   return false;
5159 }
5160 
5161 static bool AllTrivialInitializers(CodeGenModule &CGM,
5162                                    ObjCImplementationDecl *D) {
5163   CodeGenFunction CGF(CGM);
5164   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5165        E = D->init_end(); B != E; ++B) {
5166     CXXCtorInitializer *CtorInitExp = *B;
5167     Expr *Init = CtorInitExp->getInit();
5168     if (!CGF.isTrivialInitializer(Init))
5169       return false;
5170   }
5171   return true;
5172 }
5173 
5174 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5175 /// for an implementation.
5176 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5177   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5178   if (needsDestructMethod(D)) {
5179     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5180     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5181     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5182         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5183         getContext().VoidTy, nullptr, D,
5184         /*isInstance=*/true, /*isVariadic=*/false,
5185         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5186         /*isImplicitlyDeclared=*/true,
5187         /*isDefined=*/false, ObjCMethodDecl::Required);
5188     D->addInstanceMethod(DTORMethod);
5189     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5190     D->setHasDestructors(true);
5191   }
5192 
5193   // If the implementation doesn't have any ivar initializers, we don't need
5194   // a .cxx_construct.
5195   if (D->getNumIvarInitializers() == 0 ||
5196       AllTrivialInitializers(*this, D))
5197     return;
5198 
5199   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5200   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5201   // The constructor returns 'self'.
5202   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5203       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5204       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5205       /*isVariadic=*/false,
5206       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5207       /*isImplicitlyDeclared=*/true,
5208       /*isDefined=*/false, ObjCMethodDecl::Required);
5209   D->addInstanceMethod(CTORMethod);
5210   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5211   D->setHasNonZeroConstructors(true);
5212 }
5213 
5214 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5215 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5216   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5217       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5218     ErrorUnsupported(LSD, "linkage spec");
5219     return;
5220   }
5221 
5222   EmitDeclContext(LSD);
5223 }
5224 
5225 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5226   for (auto *I : DC->decls()) {
5227     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5228     // are themselves considered "top-level", so EmitTopLevelDecl on an
5229     // ObjCImplDecl does not recursively visit them. We need to do that in
5230     // case they're nested inside another construct (LinkageSpecDecl /
5231     // ExportDecl) that does stop them from being considered "top-level".
5232     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5233       for (auto *M : OID->methods())
5234         EmitTopLevelDecl(M);
5235     }
5236 
5237     EmitTopLevelDecl(I);
5238   }
5239 }
5240 
5241 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5242 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5243   // Ignore dependent declarations.
5244   if (D->isTemplated())
5245     return;
5246 
5247   switch (D->getKind()) {
5248   case Decl::CXXConversion:
5249   case Decl::CXXMethod:
5250   case Decl::Function:
5251     EmitGlobal(cast<FunctionDecl>(D));
5252     // Always provide some coverage mapping
5253     // even for the functions that aren't emitted.
5254     AddDeferredUnusedCoverageMapping(D);
5255     break;
5256 
5257   case Decl::CXXDeductionGuide:
5258     // Function-like, but does not result in code emission.
5259     break;
5260 
5261   case Decl::Var:
5262   case Decl::Decomposition:
5263   case Decl::VarTemplateSpecialization:
5264     EmitGlobal(cast<VarDecl>(D));
5265     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5266       for (auto *B : DD->bindings())
5267         if (auto *HD = B->getHoldingVar())
5268           EmitGlobal(HD);
5269     break;
5270 
5271   // Indirect fields from global anonymous structs and unions can be
5272   // ignored; only the actual variable requires IR gen support.
5273   case Decl::IndirectField:
5274     break;
5275 
5276   // C++ Decls
5277   case Decl::Namespace:
5278     EmitDeclContext(cast<NamespaceDecl>(D));
5279     break;
5280   case Decl::ClassTemplateSpecialization: {
5281     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5282     if (DebugInfo &&
5283         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
5284         Spec->hasDefinition())
5285       DebugInfo->completeTemplateDefinition(*Spec);
5286   } LLVM_FALLTHROUGH;
5287   case Decl::CXXRecord:
5288     if (DebugInfo) {
5289       if (auto *ES = D->getASTContext().getExternalSource())
5290         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5291           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
5292     }
5293     // Emit any static data members, they may be definitions.
5294     for (auto *I : cast<CXXRecordDecl>(D)->decls())
5295       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5296         EmitTopLevelDecl(I);
5297     break;
5298     // No code generation needed.
5299   case Decl::UsingShadow:
5300   case Decl::ClassTemplate:
5301   case Decl::VarTemplate:
5302   case Decl::Concept:
5303   case Decl::VarTemplatePartialSpecialization:
5304   case Decl::FunctionTemplate:
5305   case Decl::TypeAliasTemplate:
5306   case Decl::Block:
5307   case Decl::Empty:
5308   case Decl::Binding:
5309     break;
5310   case Decl::Using:          // using X; [C++]
5311     if (CGDebugInfo *DI = getModuleDebugInfo())
5312         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5313     return;
5314   case Decl::NamespaceAlias:
5315     if (CGDebugInfo *DI = getModuleDebugInfo())
5316         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5317     return;
5318   case Decl::UsingDirective: // using namespace X; [C++]
5319     if (CGDebugInfo *DI = getModuleDebugInfo())
5320       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5321     return;
5322   case Decl::CXXConstructor:
5323     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5324     break;
5325   case Decl::CXXDestructor:
5326     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5327     break;
5328 
5329   case Decl::StaticAssert:
5330     // Nothing to do.
5331     break;
5332 
5333   // Objective-C Decls
5334 
5335   // Forward declarations, no (immediate) code generation.
5336   case Decl::ObjCInterface:
5337   case Decl::ObjCCategory:
5338     break;
5339 
5340   case Decl::ObjCProtocol: {
5341     auto *Proto = cast<ObjCProtocolDecl>(D);
5342     if (Proto->isThisDeclarationADefinition())
5343       ObjCRuntime->GenerateProtocol(Proto);
5344     break;
5345   }
5346 
5347   case Decl::ObjCCategoryImpl:
5348     // Categories have properties but don't support synthesize so we
5349     // can ignore them here.
5350     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5351     break;
5352 
5353   case Decl::ObjCImplementation: {
5354     auto *OMD = cast<ObjCImplementationDecl>(D);
5355     EmitObjCPropertyImplementations(OMD);
5356     EmitObjCIvarInitializations(OMD);
5357     ObjCRuntime->GenerateClass(OMD);
5358     // Emit global variable debug information.
5359     if (CGDebugInfo *DI = getModuleDebugInfo())
5360       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
5361         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5362             OMD->getClassInterface()), OMD->getLocation());
5363     break;
5364   }
5365   case Decl::ObjCMethod: {
5366     auto *OMD = cast<ObjCMethodDecl>(D);
5367     // If this is not a prototype, emit the body.
5368     if (OMD->getBody())
5369       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5370     break;
5371   }
5372   case Decl::ObjCCompatibleAlias:
5373     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5374     break;
5375 
5376   case Decl::PragmaComment: {
5377     const auto *PCD = cast<PragmaCommentDecl>(D);
5378     switch (PCD->getCommentKind()) {
5379     case PCK_Unknown:
5380       llvm_unreachable("unexpected pragma comment kind");
5381     case PCK_Linker:
5382       AppendLinkerOptions(PCD->getArg());
5383       break;
5384     case PCK_Lib:
5385         AddDependentLib(PCD->getArg());
5386       break;
5387     case PCK_Compiler:
5388     case PCK_ExeStr:
5389     case PCK_User:
5390       break; // We ignore all of these.
5391     }
5392     break;
5393   }
5394 
5395   case Decl::PragmaDetectMismatch: {
5396     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5397     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5398     break;
5399   }
5400 
5401   case Decl::LinkageSpec:
5402     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5403     break;
5404 
5405   case Decl::FileScopeAsm: {
5406     // File-scope asm is ignored during device-side CUDA compilation.
5407     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5408       break;
5409     // File-scope asm is ignored during device-side OpenMP compilation.
5410     if (LangOpts.OpenMPIsDevice)
5411       break;
5412     auto *AD = cast<FileScopeAsmDecl>(D);
5413     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5414     break;
5415   }
5416 
5417   case Decl::Import: {
5418     auto *Import = cast<ImportDecl>(D);
5419 
5420     // If we've already imported this module, we're done.
5421     if (!ImportedModules.insert(Import->getImportedModule()))
5422       break;
5423 
5424     // Emit debug information for direct imports.
5425     if (!Import->getImportedOwningModule()) {
5426       if (CGDebugInfo *DI = getModuleDebugInfo())
5427         DI->EmitImportDecl(*Import);
5428     }
5429 
5430     // Find all of the submodules and emit the module initializers.
5431     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5432     SmallVector<clang::Module *, 16> Stack;
5433     Visited.insert(Import->getImportedModule());
5434     Stack.push_back(Import->getImportedModule());
5435 
5436     while (!Stack.empty()) {
5437       clang::Module *Mod = Stack.pop_back_val();
5438       if (!EmittedModuleInitializers.insert(Mod).second)
5439         continue;
5440 
5441       for (auto *D : Context.getModuleInitializers(Mod))
5442         EmitTopLevelDecl(D);
5443 
5444       // Visit the submodules of this module.
5445       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5446                                              SubEnd = Mod->submodule_end();
5447            Sub != SubEnd; ++Sub) {
5448         // Skip explicit children; they need to be explicitly imported to emit
5449         // the initializers.
5450         if ((*Sub)->IsExplicit)
5451           continue;
5452 
5453         if (Visited.insert(*Sub).second)
5454           Stack.push_back(*Sub);
5455       }
5456     }
5457     break;
5458   }
5459 
5460   case Decl::Export:
5461     EmitDeclContext(cast<ExportDecl>(D));
5462     break;
5463 
5464   case Decl::OMPThreadPrivate:
5465     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5466     break;
5467 
5468   case Decl::OMPAllocate:
5469     break;
5470 
5471   case Decl::OMPDeclareReduction:
5472     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5473     break;
5474 
5475   case Decl::OMPDeclareMapper:
5476     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5477     break;
5478 
5479   case Decl::OMPRequires:
5480     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5481     break;
5482 
5483   default:
5484     // Make sure we handled everything we should, every other kind is a
5485     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5486     // function. Need to recode Decl::Kind to do that easily.
5487     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5488     break;
5489   }
5490 }
5491 
5492 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5493   // Do we need to generate coverage mapping?
5494   if (!CodeGenOpts.CoverageMapping)
5495     return;
5496   switch (D->getKind()) {
5497   case Decl::CXXConversion:
5498   case Decl::CXXMethod:
5499   case Decl::Function:
5500   case Decl::ObjCMethod:
5501   case Decl::CXXConstructor:
5502   case Decl::CXXDestructor: {
5503     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5504       return;
5505     SourceManager &SM = getContext().getSourceManager();
5506     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5507       return;
5508     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5509     if (I == DeferredEmptyCoverageMappingDecls.end())
5510       DeferredEmptyCoverageMappingDecls[D] = true;
5511     break;
5512   }
5513   default:
5514     break;
5515   };
5516 }
5517 
5518 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5519   // Do we need to generate coverage mapping?
5520   if (!CodeGenOpts.CoverageMapping)
5521     return;
5522   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5523     if (Fn->isTemplateInstantiation())
5524       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5525   }
5526   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5527   if (I == DeferredEmptyCoverageMappingDecls.end())
5528     DeferredEmptyCoverageMappingDecls[D] = false;
5529   else
5530     I->second = false;
5531 }
5532 
5533 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5534   // We call takeVector() here to avoid use-after-free.
5535   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5536   // we deserialize function bodies to emit coverage info for them, and that
5537   // deserializes more declarations. How should we handle that case?
5538   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5539     if (!Entry.second)
5540       continue;
5541     const Decl *D = Entry.first;
5542     switch (D->getKind()) {
5543     case Decl::CXXConversion:
5544     case Decl::CXXMethod:
5545     case Decl::Function:
5546     case Decl::ObjCMethod: {
5547       CodeGenPGO PGO(*this);
5548       GlobalDecl GD(cast<FunctionDecl>(D));
5549       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5550                                   getFunctionLinkage(GD));
5551       break;
5552     }
5553     case Decl::CXXConstructor: {
5554       CodeGenPGO PGO(*this);
5555       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5556       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5557                                   getFunctionLinkage(GD));
5558       break;
5559     }
5560     case Decl::CXXDestructor: {
5561       CodeGenPGO PGO(*this);
5562       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5563       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5564                                   getFunctionLinkage(GD));
5565       break;
5566     }
5567     default:
5568       break;
5569     };
5570   }
5571 }
5572 
5573 /// Turns the given pointer into a constant.
5574 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5575                                           const void *Ptr) {
5576   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5577   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5578   return llvm::ConstantInt::get(i64, PtrInt);
5579 }
5580 
5581 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5582                                    llvm::NamedMDNode *&GlobalMetadata,
5583                                    GlobalDecl D,
5584                                    llvm::GlobalValue *Addr) {
5585   if (!GlobalMetadata)
5586     GlobalMetadata =
5587       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5588 
5589   // TODO: should we report variant information for ctors/dtors?
5590   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5591                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5592                                CGM.getLLVMContext(), D.getDecl()))};
5593   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5594 }
5595 
5596 /// For each function which is declared within an extern "C" region and marked
5597 /// as 'used', but has internal linkage, create an alias from the unmangled
5598 /// name to the mangled name if possible. People expect to be able to refer
5599 /// to such functions with an unmangled name from inline assembly within the
5600 /// same translation unit.
5601 void CodeGenModule::EmitStaticExternCAliases() {
5602   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5603     return;
5604   for (auto &I : StaticExternCValues) {
5605     IdentifierInfo *Name = I.first;
5606     llvm::GlobalValue *Val = I.second;
5607     if (Val && !getModule().getNamedValue(Name->getName()))
5608       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5609   }
5610 }
5611 
5612 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5613                                              GlobalDecl &Result) const {
5614   auto Res = Manglings.find(MangledName);
5615   if (Res == Manglings.end())
5616     return false;
5617   Result = Res->getValue();
5618   return true;
5619 }
5620 
5621 /// Emits metadata nodes associating all the global values in the
5622 /// current module with the Decls they came from.  This is useful for
5623 /// projects using IR gen as a subroutine.
5624 ///
5625 /// Since there's currently no way to associate an MDNode directly
5626 /// with an llvm::GlobalValue, we create a global named metadata
5627 /// with the name 'clang.global.decl.ptrs'.
5628 void CodeGenModule::EmitDeclMetadata() {
5629   llvm::NamedMDNode *GlobalMetadata = nullptr;
5630 
5631   for (auto &I : MangledDeclNames) {
5632     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5633     // Some mangled names don't necessarily have an associated GlobalValue
5634     // in this module, e.g. if we mangled it for DebugInfo.
5635     if (Addr)
5636       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5637   }
5638 }
5639 
5640 /// Emits metadata nodes for all the local variables in the current
5641 /// function.
5642 void CodeGenFunction::EmitDeclMetadata() {
5643   if (LocalDeclMap.empty()) return;
5644 
5645   llvm::LLVMContext &Context = getLLVMContext();
5646 
5647   // Find the unique metadata ID for this name.
5648   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5649 
5650   llvm::NamedMDNode *GlobalMetadata = nullptr;
5651 
5652   for (auto &I : LocalDeclMap) {
5653     const Decl *D = I.first;
5654     llvm::Value *Addr = I.second.getPointer();
5655     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5656       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5657       Alloca->setMetadata(
5658           DeclPtrKind, llvm::MDNode::get(
5659                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5660     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5661       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5662       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5663     }
5664   }
5665 }
5666 
5667 void CodeGenModule::EmitVersionIdentMetadata() {
5668   llvm::NamedMDNode *IdentMetadata =
5669     TheModule.getOrInsertNamedMetadata("llvm.ident");
5670   std::string Version = getClangFullVersion();
5671   llvm::LLVMContext &Ctx = TheModule.getContext();
5672 
5673   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5674   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5675 }
5676 
5677 void CodeGenModule::EmitCommandLineMetadata() {
5678   llvm::NamedMDNode *CommandLineMetadata =
5679     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5680   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5681   llvm::LLVMContext &Ctx = TheModule.getContext();
5682 
5683   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5684   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5685 }
5686 
5687 void CodeGenModule::EmitTargetMetadata() {
5688   // Warning, new MangledDeclNames may be appended within this loop.
5689   // We rely on MapVector insertions adding new elements to the end
5690   // of the container.
5691   // FIXME: Move this loop into the one target that needs it, and only
5692   // loop over those declarations for which we couldn't emit the target
5693   // metadata when we emitted the declaration.
5694   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5695     auto Val = *(MangledDeclNames.begin() + I);
5696     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5697     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5698     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5699   }
5700 }
5701 
5702 void CodeGenModule::EmitCoverageFile() {
5703   if (getCodeGenOpts().CoverageDataFile.empty() &&
5704       getCodeGenOpts().CoverageNotesFile.empty())
5705     return;
5706 
5707   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5708   if (!CUNode)
5709     return;
5710 
5711   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5712   llvm::LLVMContext &Ctx = TheModule.getContext();
5713   auto *CoverageDataFile =
5714       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5715   auto *CoverageNotesFile =
5716       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5717   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5718     llvm::MDNode *CU = CUNode->getOperand(i);
5719     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5720     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5721   }
5722 }
5723 
5724 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5725   // Sema has checked that all uuid strings are of the form
5726   // "12345678-1234-1234-1234-1234567890ab".
5727   assert(Uuid.size() == 36);
5728   for (unsigned i = 0; i < 36; ++i) {
5729     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5730     else                                         assert(isHexDigit(Uuid[i]));
5731   }
5732 
5733   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5734   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5735 
5736   llvm::Constant *Field3[8];
5737   for (unsigned Idx = 0; Idx < 8; ++Idx)
5738     Field3[Idx] = llvm::ConstantInt::get(
5739         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5740 
5741   llvm::Constant *Fields[4] = {
5742     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5743     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5744     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5745     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5746   };
5747 
5748   return llvm::ConstantStruct::getAnon(Fields);
5749 }
5750 
5751 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5752                                                        bool ForEH) {
5753   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5754   // FIXME: should we even be calling this method if RTTI is disabled
5755   // and it's not for EH?
5756   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5757     return llvm::Constant::getNullValue(Int8PtrTy);
5758 
5759   if (ForEH && Ty->isObjCObjectPointerType() &&
5760       LangOpts.ObjCRuntime.isGNUFamily())
5761     return ObjCRuntime->GetEHType(Ty);
5762 
5763   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5764 }
5765 
5766 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5767   // Do not emit threadprivates in simd-only mode.
5768   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5769     return;
5770   for (auto RefExpr : D->varlists()) {
5771     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5772     bool PerformInit =
5773         VD->getAnyInitializer() &&
5774         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5775                                                         /*ForRef=*/false);
5776 
5777     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5778     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5779             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5780       CXXGlobalInits.push_back(InitFunction);
5781   }
5782 }
5783 
5784 llvm::Metadata *
5785 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5786                                             StringRef Suffix) {
5787   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5788   if (InternalId)
5789     return InternalId;
5790 
5791   if (isExternallyVisible(T->getLinkage())) {
5792     std::string OutName;
5793     llvm::raw_string_ostream Out(OutName);
5794     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5795     Out << Suffix;
5796 
5797     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5798   } else {
5799     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5800                                            llvm::ArrayRef<llvm::Metadata *>());
5801   }
5802 
5803   return InternalId;
5804 }
5805 
5806 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5807   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5808 }
5809 
5810 llvm::Metadata *
5811 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5812   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5813 }
5814 
5815 // Generalize pointer types to a void pointer with the qualifiers of the
5816 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5817 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5818 // 'void *'.
5819 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5820   if (!Ty->isPointerType())
5821     return Ty;
5822 
5823   return Ctx.getPointerType(
5824       QualType(Ctx.VoidTy).withCVRQualifiers(
5825           Ty->getPointeeType().getCVRQualifiers()));
5826 }
5827 
5828 // Apply type generalization to a FunctionType's return and argument types
5829 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5830   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5831     SmallVector<QualType, 8> GeneralizedParams;
5832     for (auto &Param : FnType->param_types())
5833       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5834 
5835     return Ctx.getFunctionType(
5836         GeneralizeType(Ctx, FnType->getReturnType()),
5837         GeneralizedParams, FnType->getExtProtoInfo());
5838   }
5839 
5840   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5841     return Ctx.getFunctionNoProtoType(
5842         GeneralizeType(Ctx, FnType->getReturnType()));
5843 
5844   llvm_unreachable("Encountered unknown FunctionType");
5845 }
5846 
5847 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5848   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5849                                       GeneralizedMetadataIdMap, ".generalized");
5850 }
5851 
5852 /// Returns whether this module needs the "all-vtables" type identifier.
5853 bool CodeGenModule::NeedAllVtablesTypeId() const {
5854   // Returns true if at least one of vtable-based CFI checkers is enabled and
5855   // is not in the trapping mode.
5856   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5857            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5858           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5859            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5860           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5861            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5862           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5863            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5864 }
5865 
5866 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5867                                           CharUnits Offset,
5868                                           const CXXRecordDecl *RD) {
5869   llvm::Metadata *MD =
5870       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5871   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5872 
5873   if (CodeGenOpts.SanitizeCfiCrossDso)
5874     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5875       VTable->addTypeMetadata(Offset.getQuantity(),
5876                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5877 
5878   if (NeedAllVtablesTypeId()) {
5879     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5880     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5881   }
5882 }
5883 
5884 ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5885   assert(TD != nullptr);
5886   ParsedTargetAttr ParsedAttr = TD->parse();
5887 
5888   ParsedAttr.Features.erase(
5889       llvm::remove_if(ParsedAttr.Features,
5890                       [&](const std::string &Feat) {
5891                         return !Target.isValidFeatureName(
5892                             StringRef{Feat}.substr(1));
5893                       }),
5894       ParsedAttr.Features.end());
5895   return ParsedAttr;
5896 }
5897 
5898 
5899 // Fills in the supplied string map with the set of target features for the
5900 // passed in function.
5901 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5902                                           GlobalDecl GD) {
5903   StringRef TargetCPU = Target.getTargetOpts().CPU;
5904   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
5905   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5906     ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5907 
5908     // Make a copy of the features as passed on the command line into the
5909     // beginning of the additional features from the function to override.
5910     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5911                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5912                             Target.getTargetOpts().FeaturesAsWritten.end());
5913 
5914     if (ParsedAttr.Architecture != "" &&
5915         Target.isValidCPUName(ParsedAttr.Architecture))
5916       TargetCPU = ParsedAttr.Architecture;
5917 
5918     // Now populate the feature map, first with the TargetCPU which is either
5919     // the default or a new one from the target attribute string. Then we'll use
5920     // the passed in features (FeaturesAsWritten) along with the new ones from
5921     // the attribute.
5922     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5923                           ParsedAttr.Features);
5924   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5925     llvm::SmallVector<StringRef, 32> FeaturesTmp;
5926     Target.getCPUSpecificCPUDispatchFeatures(
5927         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
5928     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5929     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5930   } else {
5931     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5932                           Target.getTargetOpts().Features);
5933   }
5934 }
5935 
5936 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5937   if (!SanStats)
5938     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
5939 
5940   return *SanStats;
5941 }
5942 llvm::Value *
5943 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5944                                                   CodeGenFunction &CGF) {
5945   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5946   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5947   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5948   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5949                                 "__translate_sampler_initializer"),
5950                                 {C});
5951 }
5952