1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/CodeGen/CodeGenOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/Diagnostic.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Basic/ConvertUTF.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Module.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Target/TargetData.h" 33 #include "llvm/Support/ErrorHandling.h" 34 using namespace clang; 35 using namespace CodeGen; 36 37 38 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 39 llvm::Module &M, const llvm::TargetData &TD, 40 Diagnostic &diags) 41 : BlockModule(C, M, TD, Types, *this), Context(C), 42 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 43 TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C), 44 VtableInfo(*this), Runtime(0), 45 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 46 VMContext(M.getContext()) { 47 48 if (!Features.ObjC1) 49 Runtime = 0; 50 else if (!Features.NeXTRuntime) 51 Runtime = CreateGNUObjCRuntime(*this); 52 else if (Features.ObjCNonFragileABI) 53 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 54 else 55 Runtime = CreateMacObjCRuntime(*this); 56 57 // If debug info generation is enabled, create the CGDebugInfo object. 58 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(this) : 0; 59 } 60 61 CodeGenModule::~CodeGenModule() { 62 delete Runtime; 63 delete DebugInfo; 64 } 65 66 void CodeGenModule::Release() { 67 // We need to call this first because it can add deferred declarations. 68 EmitCXXGlobalInitFunc(); 69 70 EmitDeferred(); 71 if (Runtime) 72 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 73 AddGlobalCtor(ObjCInitFunction); 74 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 75 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 76 EmitAnnotations(); 77 EmitLLVMUsed(); 78 } 79 80 /// ErrorUnsupported - Print out an error that codegen doesn't support the 81 /// specified stmt yet. 82 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 83 bool OmitOnError) { 84 if (OmitOnError && getDiags().hasErrorOccurred()) 85 return; 86 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 87 "cannot compile this %0 yet"); 88 std::string Msg = Type; 89 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 90 << Msg << S->getSourceRange(); 91 } 92 93 /// ErrorUnsupported - Print out an error that codegen doesn't support the 94 /// specified decl yet. 95 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 96 bool OmitOnError) { 97 if (OmitOnError && getDiags().hasErrorOccurred()) 98 return; 99 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 100 "cannot compile this %0 yet"); 101 std::string Msg = Type; 102 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 103 } 104 105 LangOptions::VisibilityMode 106 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 107 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 108 if (VD->getStorageClass() == VarDecl::PrivateExtern) 109 return LangOptions::Hidden; 110 111 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 112 switch (attr->getVisibility()) { 113 default: assert(0 && "Unknown visibility!"); 114 case VisibilityAttr::DefaultVisibility: 115 return LangOptions::Default; 116 case VisibilityAttr::HiddenVisibility: 117 return LangOptions::Hidden; 118 case VisibilityAttr::ProtectedVisibility: 119 return LangOptions::Protected; 120 } 121 } 122 123 return getLangOptions().getVisibilityMode(); 124 } 125 126 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 127 const Decl *D) const { 128 // Internal definitions always have default visibility. 129 if (GV->hasLocalLinkage()) { 130 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 131 return; 132 } 133 134 switch (getDeclVisibilityMode(D)) { 135 default: assert(0 && "Unknown visibility!"); 136 case LangOptions::Default: 137 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 138 case LangOptions::Hidden: 139 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 140 case LangOptions::Protected: 141 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 142 } 143 } 144 145 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 146 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 147 148 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 149 return getMangledCXXCtorName(D, GD.getCtorType()); 150 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 151 return getMangledCXXDtorName(D, GD.getDtorType()); 152 153 return getMangledName(ND); 154 } 155 156 /// \brief Retrieves the mangled name for the given declaration. 157 /// 158 /// If the given declaration requires a mangled name, returns an 159 /// const char* containing the mangled name. Otherwise, returns 160 /// the unmangled name. 161 /// 162 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 163 // In C, functions with no attributes never need to be mangled. Fastpath them. 164 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 165 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 166 return ND->getNameAsCString(); 167 } 168 169 llvm::SmallString<256> Name; 170 llvm::raw_svector_ostream Out(Name); 171 if (!getMangleContext().mangleName(ND, Out)) { 172 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 173 return ND->getNameAsCString(); 174 } 175 176 Name += '\0'; 177 return UniqueMangledName(Name.begin(), Name.end()); 178 } 179 180 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 181 const char *NameEnd) { 182 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 183 184 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 185 } 186 187 /// AddGlobalCtor - Add a function to the list that will be called before 188 /// main() runs. 189 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 190 // FIXME: Type coercion of void()* types. 191 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 192 } 193 194 /// AddGlobalDtor - Add a function to the list that will be called 195 /// when the module is unloaded. 196 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 197 // FIXME: Type coercion of void()* types. 198 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 199 } 200 201 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 202 // Ctor function type is void()*. 203 llvm::FunctionType* CtorFTy = 204 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 205 std::vector<const llvm::Type*>(), 206 false); 207 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 208 209 // Get the type of a ctor entry, { i32, void ()* }. 210 llvm::StructType* CtorStructTy = 211 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 212 llvm::PointerType::getUnqual(CtorFTy), NULL); 213 214 // Construct the constructor and destructor arrays. 215 std::vector<llvm::Constant*> Ctors; 216 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 217 std::vector<llvm::Constant*> S; 218 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 219 I->second, false)); 220 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 221 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 222 } 223 224 if (!Ctors.empty()) { 225 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 226 new llvm::GlobalVariable(TheModule, AT, false, 227 llvm::GlobalValue::AppendingLinkage, 228 llvm::ConstantArray::get(AT, Ctors), 229 GlobalName); 230 } 231 } 232 233 void CodeGenModule::EmitAnnotations() { 234 if (Annotations.empty()) 235 return; 236 237 // Create a new global variable for the ConstantStruct in the Module. 238 llvm::Constant *Array = 239 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 240 Annotations.size()), 241 Annotations); 242 llvm::GlobalValue *gv = 243 new llvm::GlobalVariable(TheModule, Array->getType(), false, 244 llvm::GlobalValue::AppendingLinkage, Array, 245 "llvm.global.annotations"); 246 gv->setSection("llvm.metadata"); 247 } 248 249 static CodeGenModule::GVALinkage 250 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 251 const LangOptions &Features) { 252 // Everything located semantically within an anonymous namespace is 253 // always internal. 254 if (FD->isInAnonymousNamespace()) 255 return CodeGenModule::GVA_Internal; 256 257 // "static" functions get internal linkage. 258 if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD)) 259 return CodeGenModule::GVA_Internal; 260 261 // The kind of external linkage this function will have, if it is not 262 // inline or static. 263 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 264 if (Context.getLangOptions().CPlusPlus && 265 FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 266 External = CodeGenModule::GVA_TemplateInstantiation; 267 268 if (!FD->isInlined()) 269 return External; 270 271 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 272 // GNU or C99 inline semantics. Determine whether this symbol should be 273 // externally visible. 274 if (FD->isInlineDefinitionExternallyVisible()) 275 return External; 276 277 // C99 inline semantics, where the symbol is not externally visible. 278 return CodeGenModule::GVA_C99Inline; 279 } 280 281 // C++0x [temp.explicit]p9: 282 // [ Note: The intent is that an inline function that is the subject of 283 // an explicit instantiation declaration will still be implicitly 284 // instantiated when used so that the body can be considered for 285 // inlining, but that no out-of-line copy of the inline function would be 286 // generated in the translation unit. -- end note ] 287 if (FD->getTemplateSpecializationKind() 288 == TSK_ExplicitInstantiationDeclaration) 289 return CodeGenModule::GVA_C99Inline; 290 291 return CodeGenModule::GVA_CXXInline; 292 } 293 294 /// SetFunctionDefinitionAttributes - Set attributes for a global. 295 /// 296 /// FIXME: This is currently only done for aliases and functions, but not for 297 /// variables (these details are set in EmitGlobalVarDefinition for variables). 298 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 299 llvm::GlobalValue *GV) { 300 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 301 302 if (Linkage == GVA_Internal) { 303 GV->setLinkage(llvm::Function::InternalLinkage); 304 } else if (D->hasAttr<DLLExportAttr>()) { 305 GV->setLinkage(llvm::Function::DLLExportLinkage); 306 } else if (D->hasAttr<WeakAttr>()) { 307 GV->setLinkage(llvm::Function::WeakAnyLinkage); 308 } else if (Linkage == GVA_C99Inline) { 309 // In C99 mode, 'inline' functions are guaranteed to have a strong 310 // definition somewhere else, so we can use available_externally linkage. 311 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 312 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 313 // In C++, the compiler has to emit a definition in every translation unit 314 // that references the function. We should use linkonce_odr because 315 // a) if all references in this translation unit are optimized away, we 316 // don't need to codegen it. b) if the function persists, it needs to be 317 // merged with other definitions. c) C++ has the ODR, so we know the 318 // definition is dependable. 319 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 320 } else { 321 assert(Linkage == GVA_StrongExternal); 322 // Otherwise, we have strong external linkage. 323 GV->setLinkage(llvm::Function::ExternalLinkage); 324 } 325 326 SetCommonAttributes(D, GV); 327 } 328 329 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 330 const CGFunctionInfo &Info, 331 llvm::Function *F) { 332 unsigned CallingConv; 333 AttributeListType AttributeList; 334 ConstructAttributeList(Info, D, AttributeList, CallingConv); 335 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 336 AttributeList.size())); 337 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 338 } 339 340 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 341 llvm::Function *F) { 342 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 343 F->addFnAttr(llvm::Attribute::NoUnwind); 344 345 if (D->hasAttr<AlwaysInlineAttr>()) 346 F->addFnAttr(llvm::Attribute::AlwaysInline); 347 348 if (D->hasAttr<NoInlineAttr>()) 349 F->addFnAttr(llvm::Attribute::NoInline); 350 351 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 352 F->addFnAttr(llvm::Attribute::StackProtect); 353 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 354 F->addFnAttr(llvm::Attribute::StackProtectReq); 355 356 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 357 unsigned width = Context.Target.getCharWidth(); 358 F->setAlignment(AA->getAlignment() / width); 359 while ((AA = AA->getNext<AlignedAttr>())) 360 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 361 } 362 // C++ ABI requires 2-byte alignment for member functions. 363 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 364 F->setAlignment(2); 365 } 366 367 void CodeGenModule::SetCommonAttributes(const Decl *D, 368 llvm::GlobalValue *GV) { 369 setGlobalVisibility(GV, D); 370 371 if (D->hasAttr<UsedAttr>()) 372 AddUsedGlobal(GV); 373 374 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 375 GV->setSection(SA->getName()); 376 } 377 378 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 379 llvm::Function *F, 380 const CGFunctionInfo &FI) { 381 SetLLVMFunctionAttributes(D, FI, F); 382 SetLLVMFunctionAttributesForDefinition(D, F); 383 384 F->setLinkage(llvm::Function::InternalLinkage); 385 386 SetCommonAttributes(D, F); 387 } 388 389 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 390 llvm::Function *F, 391 bool IsIncompleteFunction) { 392 if (!IsIncompleteFunction) 393 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 394 395 // Only a few attributes are set on declarations; these may later be 396 // overridden by a definition. 397 398 if (FD->hasAttr<DLLImportAttr>()) { 399 F->setLinkage(llvm::Function::DLLImportLinkage); 400 } else if (FD->hasAttr<WeakAttr>() || 401 FD->hasAttr<WeakImportAttr>()) { 402 // "extern_weak" is overloaded in LLVM; we probably should have 403 // separate linkage types for this. 404 F->setLinkage(llvm::Function::ExternalWeakLinkage); 405 } else { 406 F->setLinkage(llvm::Function::ExternalLinkage); 407 } 408 409 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 410 F->setSection(SA->getName()); 411 } 412 413 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 414 assert(!GV->isDeclaration() && 415 "Only globals with definition can force usage."); 416 LLVMUsed.push_back(GV); 417 } 418 419 void CodeGenModule::EmitLLVMUsed() { 420 // Don't create llvm.used if there is no need. 421 if (LLVMUsed.empty()) 422 return; 423 424 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 425 426 // Convert LLVMUsed to what ConstantArray needs. 427 std::vector<llvm::Constant*> UsedArray; 428 UsedArray.resize(LLVMUsed.size()); 429 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 430 UsedArray[i] = 431 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 432 i8PTy); 433 } 434 435 if (UsedArray.empty()) 436 return; 437 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 438 439 llvm::GlobalVariable *GV = 440 new llvm::GlobalVariable(getModule(), ATy, false, 441 llvm::GlobalValue::AppendingLinkage, 442 llvm::ConstantArray::get(ATy, UsedArray), 443 "llvm.used"); 444 445 GV->setSection("llvm.metadata"); 446 } 447 448 void CodeGenModule::EmitDeferred() { 449 // Emit code for any potentially referenced deferred decls. Since a 450 // previously unused static decl may become used during the generation of code 451 // for a static function, iterate until no changes are made. 452 while (!DeferredDeclsToEmit.empty()) { 453 GlobalDecl D = DeferredDeclsToEmit.back(); 454 DeferredDeclsToEmit.pop_back(); 455 456 // The mangled name for the decl must have been emitted in GlobalDeclMap. 457 // Look it up to see if it was defined with a stronger definition (e.g. an 458 // extern inline function with a strong function redefinition). If so, 459 // just ignore the deferred decl. 460 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 461 assert(CGRef && "Deferred decl wasn't referenced?"); 462 463 if (!CGRef->isDeclaration()) 464 continue; 465 466 // Otherwise, emit the definition and move on to the next one. 467 EmitGlobalDefinition(D); 468 } 469 } 470 471 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 472 /// annotation information for a given GlobalValue. The annotation struct is 473 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 474 /// GlobalValue being annotated. The second field is the constant string 475 /// created from the AnnotateAttr's annotation. The third field is a constant 476 /// string containing the name of the translation unit. The fourth field is 477 /// the line number in the file of the annotated value declaration. 478 /// 479 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 480 /// appears to. 481 /// 482 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 483 const AnnotateAttr *AA, 484 unsigned LineNo) { 485 llvm::Module *M = &getModule(); 486 487 // get [N x i8] constants for the annotation string, and the filename string 488 // which are the 2nd and 3rd elements of the global annotation structure. 489 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 490 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 491 AA->getAnnotation(), true); 492 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 493 M->getModuleIdentifier(), 494 true); 495 496 // Get the two global values corresponding to the ConstantArrays we just 497 // created to hold the bytes of the strings. 498 llvm::GlobalValue *annoGV = 499 new llvm::GlobalVariable(*M, anno->getType(), false, 500 llvm::GlobalValue::PrivateLinkage, anno, 501 GV->getName()); 502 // translation unit name string, emitted into the llvm.metadata section. 503 llvm::GlobalValue *unitGV = 504 new llvm::GlobalVariable(*M, unit->getType(), false, 505 llvm::GlobalValue::PrivateLinkage, unit, 506 ".str"); 507 508 // Create the ConstantStruct for the global annotation. 509 llvm::Constant *Fields[4] = { 510 llvm::ConstantExpr::getBitCast(GV, SBP), 511 llvm::ConstantExpr::getBitCast(annoGV, SBP), 512 llvm::ConstantExpr::getBitCast(unitGV, SBP), 513 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 514 }; 515 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 516 } 517 518 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 519 // Never defer when EmitAllDecls is specified or the decl has 520 // attribute used. 521 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 522 return false; 523 524 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 525 // Constructors and destructors should never be deferred. 526 if (FD->hasAttr<ConstructorAttr>() || 527 FD->hasAttr<DestructorAttr>()) 528 return false; 529 530 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 531 532 // static, static inline, always_inline, and extern inline functions can 533 // always be deferred. Normal inline functions can be deferred in C99/C++. 534 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 535 Linkage == GVA_CXXInline) 536 return true; 537 return false; 538 } 539 540 const VarDecl *VD = cast<VarDecl>(Global); 541 assert(VD->isFileVarDecl() && "Invalid decl"); 542 543 // We never want to defer structs that have non-trivial constructors or 544 // destructors. 545 546 // FIXME: Handle references. 547 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 548 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 549 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 550 return false; 551 } 552 } 553 554 // Static data may be deferred, but out-of-line static data members 555 // cannot be. 556 if (VD->isInAnonymousNamespace()) 557 return true; 558 if (VD->getStorageClass() == VarDecl::Static) { 559 // Initializer has side effects? 560 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 561 return false; 562 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 563 } 564 return false; 565 } 566 567 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 568 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 569 570 // If this is an alias definition (which otherwise looks like a declaration) 571 // emit it now. 572 if (Global->hasAttr<AliasAttr>()) 573 return EmitAliasDefinition(Global); 574 575 // Ignore declarations, they will be emitted on their first use. 576 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 577 // Forward declarations are emitted lazily on first use. 578 if (!FD->isThisDeclarationADefinition()) 579 return; 580 } else { 581 const VarDecl *VD = cast<VarDecl>(Global); 582 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 583 584 // In C++, if this is marked "extern", defer code generation. 585 if (getLangOptions().CPlusPlus && !VD->getInit() && 586 (VD->getStorageClass() == VarDecl::Extern || 587 VD->isExternC())) 588 return; 589 590 // In C, if this isn't a definition, defer code generation. 591 if (!getLangOptions().CPlusPlus && !VD->getInit()) 592 return; 593 } 594 595 // Defer code generation when possible if this is a static definition, inline 596 // function etc. These we only want to emit if they are used. 597 if (MayDeferGeneration(Global)) { 598 // If the value has already been used, add it directly to the 599 // DeferredDeclsToEmit list. 600 const char *MangledName = getMangledName(GD); 601 if (GlobalDeclMap.count(MangledName)) 602 DeferredDeclsToEmit.push_back(GD); 603 else { 604 // Otherwise, remember that we saw a deferred decl with this name. The 605 // first use of the mangled name will cause it to move into 606 // DeferredDeclsToEmit. 607 DeferredDecls[MangledName] = GD; 608 } 609 return; 610 } 611 612 // Otherwise emit the definition. 613 EmitGlobalDefinition(GD); 614 } 615 616 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 617 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 618 619 PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(), 620 Context.getSourceManager(), 621 "Generating code for declaration"); 622 623 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 624 const CXXRecordDecl *RD = MD->getParent(); 625 // We have to convert it to have a record layout. 626 Types.ConvertTagDeclType(RD); 627 const CGRecordLayout &CGLayout = Types.getCGRecordLayout(RD); 628 // A definition of a KeyFunction, generates all the class data, such 629 // as vtable, rtti and the VTT. 630 if (CGLayout.getKeyFunction() 631 && (CGLayout.getKeyFunction()->getCanonicalDecl() 632 == MD->getCanonicalDecl())) 633 getVtableInfo().GenerateClassData(RD); 634 } 635 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 636 EmitCXXConstructor(CD, GD.getCtorType()); 637 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 638 EmitCXXDestructor(DD, GD.getDtorType()); 639 else if (isa<FunctionDecl>(D)) 640 EmitGlobalFunctionDefinition(GD); 641 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 642 EmitGlobalVarDefinition(VD); 643 else { 644 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 645 } 646 } 647 648 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 649 /// module, create and return an llvm Function with the specified type. If there 650 /// is something in the module with the specified name, return it potentially 651 /// bitcasted to the right type. 652 /// 653 /// If D is non-null, it specifies a decl that correspond to this. This is used 654 /// to set the attributes on the function when it is first created. 655 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 656 const llvm::Type *Ty, 657 GlobalDecl D) { 658 // Lookup the entry, lazily creating it if necessary. 659 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 660 if (Entry) { 661 if (Entry->getType()->getElementType() == Ty) 662 return Entry; 663 664 // Make sure the result is of the correct type. 665 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 666 return llvm::ConstantExpr::getBitCast(Entry, PTy); 667 } 668 669 // This function doesn't have a complete type (for example, the return 670 // type is an incomplete struct). Use a fake type instead, and make 671 // sure not to try to set attributes. 672 bool IsIncompleteFunction = false; 673 if (!isa<llvm::FunctionType>(Ty)) { 674 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 675 std::vector<const llvm::Type*>(), false); 676 IsIncompleteFunction = true; 677 } 678 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 679 llvm::Function::ExternalLinkage, 680 "", &getModule()); 681 F->setName(MangledName); 682 if (D.getDecl()) 683 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 684 IsIncompleteFunction); 685 Entry = F; 686 687 // This is the first use or definition of a mangled name. If there is a 688 // deferred decl with this name, remember that we need to emit it at the end 689 // of the file. 690 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 691 DeferredDecls.find(MangledName); 692 if (DDI != DeferredDecls.end()) { 693 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 694 // list, and remove it from DeferredDecls (since we don't need it anymore). 695 DeferredDeclsToEmit.push_back(DDI->second); 696 DeferredDecls.erase(DDI); 697 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 698 // If this the first reference to a C++ inline function in a class, queue up 699 // the deferred function body for emission. These are not seen as 700 // top-level declarations. 701 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 702 DeferredDeclsToEmit.push_back(D); 703 // A called constructor which has no definition or declaration need be 704 // synthesized. 705 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 706 const CXXRecordDecl *ClassDecl = 707 cast<CXXRecordDecl>(CD->getDeclContext()); 708 if (CD->isCopyConstructor(getContext())) 709 DeferredCopyConstructorToEmit(D); 710 else if (!ClassDecl->hasUserDeclaredConstructor()) 711 DeferredDeclsToEmit.push_back(D); 712 } 713 else if (isa<CXXDestructorDecl>(FD)) 714 DeferredDestructorToEmit(D); 715 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 716 if (MD->isCopyAssignment()) 717 DeferredCopyAssignmentToEmit(D); 718 } 719 720 return F; 721 } 722 723 /// Defer definition of copy constructor(s) which need be implicitly defined. 724 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) { 725 const CXXConstructorDecl *CD = 726 cast<CXXConstructorDecl>(CopyCtorDecl.getDecl()); 727 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 728 if (ClassDecl->hasTrivialCopyConstructor() || 729 ClassDecl->hasUserDeclaredCopyConstructor()) 730 return; 731 732 // First make sure all direct base classes and virtual bases and non-static 733 // data mebers which need to have their copy constructors implicitly defined 734 // are defined. 12.8.p7 735 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 736 Base != ClassDecl->bases_end(); ++Base) { 737 CXXRecordDecl *BaseClassDecl 738 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 739 if (CXXConstructorDecl *BaseCopyCtor = 740 BaseClassDecl->getCopyConstructor(Context, 0)) 741 GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete); 742 } 743 744 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 745 FieldEnd = ClassDecl->field_end(); 746 Field != FieldEnd; ++Field) { 747 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 748 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 749 FieldType = Array->getElementType(); 750 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 751 if ((*Field)->isAnonymousStructOrUnion()) 752 continue; 753 CXXRecordDecl *FieldClassDecl 754 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 755 if (CXXConstructorDecl *FieldCopyCtor = 756 FieldClassDecl->getCopyConstructor(Context, 0)) 757 GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete); 758 } 759 } 760 DeferredDeclsToEmit.push_back(CopyCtorDecl); 761 } 762 763 /// Defer definition of copy assignments which need be implicitly defined. 764 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) { 765 const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl()); 766 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 767 768 if (ClassDecl->hasTrivialCopyAssignment() || 769 ClassDecl->hasUserDeclaredCopyAssignment()) 770 return; 771 772 // First make sure all direct base classes and virtual bases and non-static 773 // data mebers which need to have their copy assignments implicitly defined 774 // are defined. 12.8.p12 775 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 776 Base != ClassDecl->bases_end(); ++Base) { 777 CXXRecordDecl *BaseClassDecl 778 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 779 const CXXMethodDecl *MD = 0; 780 if (!BaseClassDecl->hasTrivialCopyAssignment() && 781 !BaseClassDecl->hasUserDeclaredCopyAssignment() && 782 BaseClassDecl->hasConstCopyAssignment(getContext(), MD)) 783 GetAddrOfFunction(MD, 0); 784 } 785 786 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 787 FieldEnd = ClassDecl->field_end(); 788 Field != FieldEnd; ++Field) { 789 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 790 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 791 FieldType = Array->getElementType(); 792 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 793 if ((*Field)->isAnonymousStructOrUnion()) 794 continue; 795 CXXRecordDecl *FieldClassDecl 796 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 797 const CXXMethodDecl *MD = 0; 798 if (!FieldClassDecl->hasTrivialCopyAssignment() && 799 !FieldClassDecl->hasUserDeclaredCopyAssignment() && 800 FieldClassDecl->hasConstCopyAssignment(getContext(), MD)) 801 GetAddrOfFunction(MD, 0); 802 } 803 } 804 DeferredDeclsToEmit.push_back(CopyAssignDecl); 805 } 806 807 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) { 808 const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl()); 809 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext()); 810 if (ClassDecl->hasTrivialDestructor() || 811 ClassDecl->hasUserDeclaredDestructor()) 812 return; 813 814 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 815 Base != ClassDecl->bases_end(); ++Base) { 816 CXXRecordDecl *BaseClassDecl 817 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 818 if (const CXXDestructorDecl *BaseDtor = 819 BaseClassDecl->getDestructor(Context)) 820 GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete); 821 } 822 823 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 824 FieldEnd = ClassDecl->field_end(); 825 Field != FieldEnd; ++Field) { 826 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 827 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 828 FieldType = Array->getElementType(); 829 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 830 if ((*Field)->isAnonymousStructOrUnion()) 831 continue; 832 CXXRecordDecl *FieldClassDecl 833 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 834 if (const CXXDestructorDecl *FieldDtor = 835 FieldClassDecl->getDestructor(Context)) 836 GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete); 837 } 838 } 839 DeferredDeclsToEmit.push_back(DtorDecl); 840 } 841 842 843 /// GetAddrOfFunction - Return the address of the given function. If Ty is 844 /// non-null, then this function will use the specified type if it has to 845 /// create it (this occurs when we see a definition of the function). 846 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 847 const llvm::Type *Ty) { 848 // If there was no specific requested type, just convert it now. 849 if (!Ty) 850 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 851 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 852 } 853 854 /// CreateRuntimeFunction - Create a new runtime function with the specified 855 /// type and name. 856 llvm::Constant * 857 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 858 const char *Name) { 859 // Convert Name to be a uniqued string from the IdentifierInfo table. 860 Name = getContext().Idents.get(Name).getNameStart(); 861 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 862 } 863 864 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 865 /// create and return an llvm GlobalVariable with the specified type. If there 866 /// is something in the module with the specified name, return it potentially 867 /// bitcasted to the right type. 868 /// 869 /// If D is non-null, it specifies a decl that correspond to this. This is used 870 /// to set the attributes on the global when it is first created. 871 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 872 const llvm::PointerType*Ty, 873 const VarDecl *D) { 874 // Lookup the entry, lazily creating it if necessary. 875 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 876 if (Entry) { 877 if (Entry->getType() == Ty) 878 return Entry; 879 880 // Make sure the result is of the correct type. 881 return llvm::ConstantExpr::getBitCast(Entry, Ty); 882 } 883 884 // This is the first use or definition of a mangled name. If there is a 885 // deferred decl with this name, remember that we need to emit it at the end 886 // of the file. 887 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 888 DeferredDecls.find(MangledName); 889 if (DDI != DeferredDecls.end()) { 890 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 891 // list, and remove it from DeferredDecls (since we don't need it anymore). 892 DeferredDeclsToEmit.push_back(DDI->second); 893 DeferredDecls.erase(DDI); 894 } 895 896 llvm::GlobalVariable *GV = 897 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 898 llvm::GlobalValue::ExternalLinkage, 899 0, "", 0, 900 false, Ty->getAddressSpace()); 901 GV->setName(MangledName); 902 903 // Handle things which are present even on external declarations. 904 if (D) { 905 // FIXME: This code is overly simple and should be merged with other global 906 // handling. 907 GV->setConstant(D->getType().isConstant(Context)); 908 909 // FIXME: Merge with other attribute handling code. 910 if (D->getStorageClass() == VarDecl::PrivateExtern) 911 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 912 913 if (D->hasAttr<WeakAttr>() || 914 D->hasAttr<WeakImportAttr>()) 915 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 916 917 GV->setThreadLocal(D->isThreadSpecified()); 918 } 919 920 return Entry = GV; 921 } 922 923 924 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 925 /// given global variable. If Ty is non-null and if the global doesn't exist, 926 /// then it will be greated with the specified type instead of whatever the 927 /// normal requested type would be. 928 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 929 const llvm::Type *Ty) { 930 assert(D->hasGlobalStorage() && "Not a global variable"); 931 QualType ASTTy = D->getType(); 932 if (Ty == 0) 933 Ty = getTypes().ConvertTypeForMem(ASTTy); 934 935 const llvm::PointerType *PTy = 936 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 937 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 938 } 939 940 /// CreateRuntimeVariable - Create a new runtime global variable with the 941 /// specified type and name. 942 llvm::Constant * 943 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 944 const char *Name) { 945 // Convert Name to be a uniqued string from the IdentifierInfo table. 946 Name = getContext().Idents.get(Name).getNameStart(); 947 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 948 } 949 950 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 951 assert(!D->getInit() && "Cannot emit definite definitions here!"); 952 953 if (MayDeferGeneration(D)) { 954 // If we have not seen a reference to this variable yet, place it 955 // into the deferred declarations table to be emitted if needed 956 // later. 957 const char *MangledName = getMangledName(D); 958 if (GlobalDeclMap.count(MangledName) == 0) { 959 DeferredDecls[MangledName] = D; 960 return; 961 } 962 } 963 964 // The tentative definition is the only definition. 965 EmitGlobalVarDefinition(D); 966 } 967 968 static CodeGenModule::GVALinkage 969 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 970 // Everything located semantically within an anonymous namespace is 971 // always internal. 972 if (VD->isInAnonymousNamespace()) 973 return CodeGenModule::GVA_Internal; 974 975 // Handle linkage for static data members. 976 if (VD->isStaticDataMember()) { 977 switch (VD->getTemplateSpecializationKind()) { 978 case TSK_Undeclared: 979 case TSK_ExplicitSpecialization: 980 case TSK_ExplicitInstantiationDefinition: 981 return CodeGenModule::GVA_StrongExternal; 982 983 case TSK_ExplicitInstantiationDeclaration: 984 llvm::llvm_unreachable("Variable should not be instantiated"); 985 // Fall through to treat this like any other instantiation. 986 987 case TSK_ImplicitInstantiation: 988 return CodeGenModule::GVA_TemplateInstantiation; 989 } 990 } 991 992 // Static variables get internal linkage. 993 if (VD->getStorageClass() == VarDecl::Static) 994 return CodeGenModule::GVA_Internal; 995 996 return CodeGenModule::GVA_StrongExternal; 997 } 998 999 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1000 llvm::Constant *Init = 0; 1001 QualType ASTTy = D->getType(); 1002 1003 if (D->getInit() == 0) { 1004 // This is a tentative definition; tentative definitions are 1005 // implicitly initialized with { 0 }. 1006 // 1007 // Note that tentative definitions are only emitted at the end of 1008 // a translation unit, so they should never have incomplete 1009 // type. In addition, EmitTentativeDefinition makes sure that we 1010 // never attempt to emit a tentative definition if a real one 1011 // exists. A use may still exists, however, so we still may need 1012 // to do a RAUW. 1013 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1014 Init = EmitNullConstant(D->getType()); 1015 } else { 1016 Init = EmitConstantExpr(D->getInit(), D->getType()); 1017 1018 if (!Init) { 1019 QualType T = D->getInit()->getType(); 1020 if (getLangOptions().CPlusPlus) { 1021 CXXGlobalInits.push_back(D); 1022 Init = EmitNullConstant(T); 1023 } else { 1024 ErrorUnsupported(D, "static initializer"); 1025 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1026 } 1027 } 1028 } 1029 1030 const llvm::Type* InitType = Init->getType(); 1031 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1032 1033 // Strip off a bitcast if we got one back. 1034 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1035 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1036 // all zero index gep. 1037 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1038 Entry = CE->getOperand(0); 1039 } 1040 1041 // Entry is now either a Function or GlobalVariable. 1042 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1043 1044 // We have a definition after a declaration with the wrong type. 1045 // We must make a new GlobalVariable* and update everything that used OldGV 1046 // (a declaration or tentative definition) with the new GlobalVariable* 1047 // (which will be a definition). 1048 // 1049 // This happens if there is a prototype for a global (e.g. 1050 // "extern int x[];") and then a definition of a different type (e.g. 1051 // "int x[10];"). This also happens when an initializer has a different type 1052 // from the type of the global (this happens with unions). 1053 if (GV == 0 || 1054 GV->getType()->getElementType() != InitType || 1055 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1056 1057 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 1058 GlobalDeclMap.erase(getMangledName(D)); 1059 1060 // Make a new global with the correct type, this is now guaranteed to work. 1061 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1062 GV->takeName(cast<llvm::GlobalValue>(Entry)); 1063 1064 // Replace all uses of the old global with the new global 1065 llvm::Constant *NewPtrForOldDecl = 1066 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1067 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1068 1069 // Erase the old global, since it is no longer used. 1070 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1071 } 1072 1073 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1074 SourceManager &SM = Context.getSourceManager(); 1075 AddAnnotation(EmitAnnotateAttr(GV, AA, 1076 SM.getInstantiationLineNumber(D->getLocation()))); 1077 } 1078 1079 GV->setInitializer(Init); 1080 1081 // If it is safe to mark the global 'constant', do so now. 1082 GV->setConstant(false); 1083 if (D->getType().isConstant(Context)) { 1084 // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable 1085 // members, it cannot be declared "LLVM const". 1086 GV->setConstant(true); 1087 } 1088 1089 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 1090 1091 // Set the llvm linkage type as appropriate. 1092 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1093 if (Linkage == GVA_Internal) 1094 GV->setLinkage(llvm::Function::InternalLinkage); 1095 else if (D->hasAttr<DLLImportAttr>()) 1096 GV->setLinkage(llvm::Function::DLLImportLinkage); 1097 else if (D->hasAttr<DLLExportAttr>()) 1098 GV->setLinkage(llvm::Function::DLLExportLinkage); 1099 else if (D->hasAttr<WeakAttr>()) { 1100 if (GV->isConstant()) 1101 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1102 else 1103 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1104 } else if (Linkage == GVA_TemplateInstantiation) 1105 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1106 else if (!CodeGenOpts.NoCommon && 1107 !D->hasExternalStorage() && !D->getInit() && 1108 !D->getAttr<SectionAttr>()) { 1109 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1110 // common vars aren't constant even if declared const. 1111 GV->setConstant(false); 1112 } else 1113 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1114 1115 SetCommonAttributes(D, GV); 1116 1117 // Emit global variable debug information. 1118 if (CGDebugInfo *DI = getDebugInfo()) { 1119 DI->setLocation(D->getLocation()); 1120 DI->EmitGlobalVariable(GV, D); 1121 } 1122 } 1123 1124 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1125 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1126 /// existing call uses of the old function in the module, this adjusts them to 1127 /// call the new function directly. 1128 /// 1129 /// This is not just a cleanup: the always_inline pass requires direct calls to 1130 /// functions to be able to inline them. If there is a bitcast in the way, it 1131 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1132 /// run at -O0. 1133 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1134 llvm::Function *NewFn) { 1135 // If we're redefining a global as a function, don't transform it. 1136 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1137 if (OldFn == 0) return; 1138 1139 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1140 llvm::SmallVector<llvm::Value*, 4> ArgList; 1141 1142 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1143 UI != E; ) { 1144 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1145 unsigned OpNo = UI.getOperandNo(); 1146 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1147 if (!CI || OpNo != 0) continue; 1148 1149 // If the return types don't match exactly, and if the call isn't dead, then 1150 // we can't transform this call. 1151 if (CI->getType() != NewRetTy && !CI->use_empty()) 1152 continue; 1153 1154 // If the function was passed too few arguments, don't transform. If extra 1155 // arguments were passed, we silently drop them. If any of the types 1156 // mismatch, we don't transform. 1157 unsigned ArgNo = 0; 1158 bool DontTransform = false; 1159 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1160 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1161 if (CI->getNumOperands()-1 == ArgNo || 1162 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1163 DontTransform = true; 1164 break; 1165 } 1166 } 1167 if (DontTransform) 1168 continue; 1169 1170 // Okay, we can transform this. Create the new call instruction and copy 1171 // over the required information. 1172 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1173 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1174 ArgList.end(), "", CI); 1175 ArgList.clear(); 1176 if (!NewCall->getType()->isVoidTy()) 1177 NewCall->takeName(CI); 1178 NewCall->setAttributes(CI->getAttributes()); 1179 NewCall->setCallingConv(CI->getCallingConv()); 1180 1181 // Finally, remove the old call, replacing any uses with the new one. 1182 if (!CI->use_empty()) 1183 CI->replaceAllUsesWith(NewCall); 1184 1185 // Copy any custom metadata attached with CI. 1186 llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata(); 1187 TheMetadata.copyMD(CI, NewCall); 1188 1189 CI->eraseFromParent(); 1190 } 1191 } 1192 1193 1194 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1195 const llvm::FunctionType *Ty; 1196 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1197 1198 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1199 bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic(); 1200 1201 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1202 } else { 1203 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1204 1205 // As a special case, make sure that definitions of K&R function 1206 // "type foo()" aren't declared as varargs (which forces the backend 1207 // to do unnecessary work). 1208 if (D->getType()->isFunctionNoProtoType()) { 1209 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1210 // Due to stret, the lowered function could have arguments. 1211 // Just create the same type as was lowered by ConvertType 1212 // but strip off the varargs bit. 1213 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1214 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1215 } 1216 } 1217 1218 // Get or create the prototype for the function. 1219 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1220 1221 // Strip off a bitcast if we got one back. 1222 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1223 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1224 Entry = CE->getOperand(0); 1225 } 1226 1227 1228 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1229 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1230 1231 // If the types mismatch then we have to rewrite the definition. 1232 assert(OldFn->isDeclaration() && 1233 "Shouldn't replace non-declaration"); 1234 1235 // F is the Function* for the one with the wrong type, we must make a new 1236 // Function* and update everything that used F (a declaration) with the new 1237 // Function* (which will be a definition). 1238 // 1239 // This happens if there is a prototype for a function 1240 // (e.g. "int f()") and then a definition of a different type 1241 // (e.g. "int f(int x)"). Start by making a new function of the 1242 // correct type, RAUW, then steal the name. 1243 GlobalDeclMap.erase(getMangledName(D)); 1244 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1245 NewFn->takeName(OldFn); 1246 1247 // If this is an implementation of a function without a prototype, try to 1248 // replace any existing uses of the function (which may be calls) with uses 1249 // of the new function 1250 if (D->getType()->isFunctionNoProtoType()) { 1251 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1252 OldFn->removeDeadConstantUsers(); 1253 } 1254 1255 // Replace uses of F with the Function we will endow with a body. 1256 if (!Entry->use_empty()) { 1257 llvm::Constant *NewPtrForOldDecl = 1258 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1259 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1260 } 1261 1262 // Ok, delete the old function now, which is dead. 1263 OldFn->eraseFromParent(); 1264 1265 Entry = NewFn; 1266 } 1267 1268 llvm::Function *Fn = cast<llvm::Function>(Entry); 1269 1270 CodeGenFunction(*this).GenerateCode(D, Fn); 1271 1272 SetFunctionDefinitionAttributes(D, Fn); 1273 SetLLVMFunctionAttributesForDefinition(D, Fn); 1274 1275 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1276 AddGlobalCtor(Fn, CA->getPriority()); 1277 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1278 AddGlobalDtor(Fn, DA->getPriority()); 1279 } 1280 1281 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1282 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1283 assert(AA && "Not an alias?"); 1284 1285 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1286 1287 // Unique the name through the identifier table. 1288 const char *AliaseeName = AA->getAliasee().c_str(); 1289 AliaseeName = getContext().Idents.get(AliaseeName).getNameStart(); 1290 1291 // Create a reference to the named value. This ensures that it is emitted 1292 // if a deferred decl. 1293 llvm::Constant *Aliasee; 1294 if (isa<llvm::FunctionType>(DeclTy)) 1295 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1296 else 1297 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1298 llvm::PointerType::getUnqual(DeclTy), 0); 1299 1300 // Create the new alias itself, but don't set a name yet. 1301 llvm::GlobalValue *GA = 1302 new llvm::GlobalAlias(Aliasee->getType(), 1303 llvm::Function::ExternalLinkage, 1304 "", Aliasee, &getModule()); 1305 1306 // See if there is already something with the alias' name in the module. 1307 const char *MangledName = getMangledName(D); 1308 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1309 1310 if (Entry && !Entry->isDeclaration()) { 1311 // If there is a definition in the module, then it wins over the alias. 1312 // This is dubious, but allow it to be safe. Just ignore the alias. 1313 GA->eraseFromParent(); 1314 return; 1315 } 1316 1317 if (Entry) { 1318 // If there is a declaration in the module, then we had an extern followed 1319 // by the alias, as in: 1320 // extern int test6(); 1321 // ... 1322 // int test6() __attribute__((alias("test7"))); 1323 // 1324 // Remove it and replace uses of it with the alias. 1325 1326 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1327 Entry->getType())); 1328 Entry->eraseFromParent(); 1329 } 1330 1331 // Now we know that there is no conflict, set the name. 1332 Entry = GA; 1333 GA->setName(MangledName); 1334 1335 // Set attributes which are particular to an alias; this is a 1336 // specialization of the attributes which may be set on a global 1337 // variable/function. 1338 if (D->hasAttr<DLLExportAttr>()) { 1339 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1340 // The dllexport attribute is ignored for undefined symbols. 1341 if (FD->getBody()) 1342 GA->setLinkage(llvm::Function::DLLExportLinkage); 1343 } else { 1344 GA->setLinkage(llvm::Function::DLLExportLinkage); 1345 } 1346 } else if (D->hasAttr<WeakAttr>() || 1347 D->hasAttr<WeakImportAttr>()) { 1348 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1349 } 1350 1351 SetCommonAttributes(D, GA); 1352 } 1353 1354 /// getBuiltinLibFunction - Given a builtin id for a function like 1355 /// "__builtin_fabsf", return a Function* for "fabsf". 1356 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1357 unsigned BuiltinID) { 1358 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1359 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1360 "isn't a lib fn"); 1361 1362 // Get the name, skip over the __builtin_ prefix (if necessary). 1363 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1364 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1365 Name += 10; 1366 1367 // Get the type for the builtin. 1368 ASTContext::GetBuiltinTypeError Error; 1369 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1370 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1371 1372 const llvm::FunctionType *Ty = 1373 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1374 1375 // Unique the name through the identifier table. 1376 Name = getContext().Idents.get(Name).getNameStart(); 1377 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1378 } 1379 1380 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1381 unsigned NumTys) { 1382 return llvm::Intrinsic::getDeclaration(&getModule(), 1383 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1384 } 1385 1386 llvm::Function *CodeGenModule::getMemCpyFn() { 1387 if (MemCpyFn) return MemCpyFn; 1388 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1389 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1390 } 1391 1392 llvm::Function *CodeGenModule::getMemMoveFn() { 1393 if (MemMoveFn) return MemMoveFn; 1394 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1395 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1396 } 1397 1398 llvm::Function *CodeGenModule::getMemSetFn() { 1399 if (MemSetFn) return MemSetFn; 1400 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1401 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1402 } 1403 1404 static llvm::StringMapEntry<llvm::Constant*> & 1405 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1406 const StringLiteral *Literal, 1407 bool TargetIsLSB, 1408 bool &IsUTF16, 1409 unsigned &StringLength) { 1410 unsigned NumBytes = Literal->getByteLength(); 1411 1412 // Check for simple case. 1413 if (!Literal->containsNonAsciiOrNull()) { 1414 StringLength = NumBytes; 1415 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1416 StringLength)); 1417 } 1418 1419 // Otherwise, convert the UTF8 literals into a byte string. 1420 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1421 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1422 UTF16 *ToPtr = &ToBuf[0]; 1423 1424 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1425 &ToPtr, ToPtr + NumBytes, 1426 strictConversion); 1427 1428 // Check for conversion failure. 1429 if (Result != conversionOK) { 1430 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1431 // this duplicate code. 1432 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1433 StringLength = NumBytes; 1434 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1435 StringLength)); 1436 } 1437 1438 // ConvertUTF8toUTF16 returns the length in ToPtr. 1439 StringLength = ToPtr - &ToBuf[0]; 1440 1441 // Render the UTF-16 string into a byte array and convert to the target byte 1442 // order. 1443 // 1444 // FIXME: This isn't something we should need to do here. 1445 llvm::SmallString<128> AsBytes; 1446 AsBytes.reserve(StringLength * 2); 1447 for (unsigned i = 0; i != StringLength; ++i) { 1448 unsigned short Val = ToBuf[i]; 1449 if (TargetIsLSB) { 1450 AsBytes.push_back(Val & 0xFF); 1451 AsBytes.push_back(Val >> 8); 1452 } else { 1453 AsBytes.push_back(Val >> 8); 1454 AsBytes.push_back(Val & 0xFF); 1455 } 1456 } 1457 // Append one extra null character, the second is automatically added by our 1458 // caller. 1459 AsBytes.push_back(0); 1460 1461 IsUTF16 = true; 1462 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1463 } 1464 1465 llvm::Constant * 1466 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1467 unsigned StringLength = 0; 1468 bool isUTF16 = false; 1469 llvm::StringMapEntry<llvm::Constant*> &Entry = 1470 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1471 getTargetData().isLittleEndian(), 1472 isUTF16, StringLength); 1473 1474 if (llvm::Constant *C = Entry.getValue()) 1475 return C; 1476 1477 llvm::Constant *Zero = 1478 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1479 llvm::Constant *Zeros[] = { Zero, Zero }; 1480 1481 // If we don't already have it, get __CFConstantStringClassReference. 1482 if (!CFConstantStringClassRef) { 1483 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1484 Ty = llvm::ArrayType::get(Ty, 0); 1485 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1486 "__CFConstantStringClassReference"); 1487 // Decay array -> ptr 1488 CFConstantStringClassRef = 1489 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1490 } 1491 1492 QualType CFTy = getContext().getCFConstantStringType(); 1493 1494 const llvm::StructType *STy = 1495 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1496 1497 std::vector<llvm::Constant*> Fields(4); 1498 1499 // Class pointer. 1500 Fields[0] = CFConstantStringClassRef; 1501 1502 // Flags. 1503 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1504 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1505 llvm::ConstantInt::get(Ty, 0x07C8); 1506 1507 // String pointer. 1508 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1509 1510 const char *Sect = 0; 1511 llvm::GlobalValue::LinkageTypes Linkage; 1512 bool isConstant; 1513 if (isUTF16) { 1514 Sect = getContext().Target.getUnicodeStringSection(); 1515 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1516 Linkage = llvm::GlobalValue::InternalLinkage; 1517 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1518 // does make plain ascii ones writable. 1519 isConstant = true; 1520 } else { 1521 Linkage = llvm::GlobalValue::PrivateLinkage; 1522 isConstant = !Features.WritableStrings; 1523 } 1524 1525 llvm::GlobalVariable *GV = 1526 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1527 ".str"); 1528 if (Sect) 1529 GV->setSection(Sect); 1530 if (isUTF16) { 1531 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1532 GV->setAlignment(Align); 1533 } 1534 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1535 1536 // String length. 1537 Ty = getTypes().ConvertType(getContext().LongTy); 1538 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1539 1540 // The struct. 1541 C = llvm::ConstantStruct::get(STy, Fields); 1542 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1543 llvm::GlobalVariable::PrivateLinkage, C, 1544 "_unnamed_cfstring_"); 1545 if (const char *Sect = getContext().Target.getCFStringSection()) 1546 GV->setSection(Sect); 1547 Entry.setValue(GV); 1548 1549 return GV; 1550 } 1551 1552 /// GetStringForStringLiteral - Return the appropriate bytes for a 1553 /// string literal, properly padded to match the literal type. 1554 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1555 const char *StrData = E->getStrData(); 1556 unsigned Len = E->getByteLength(); 1557 1558 const ConstantArrayType *CAT = 1559 getContext().getAsConstantArrayType(E->getType()); 1560 assert(CAT && "String isn't pointer or array!"); 1561 1562 // Resize the string to the right size. 1563 std::string Str(StrData, StrData+Len); 1564 uint64_t RealLen = CAT->getSize().getZExtValue(); 1565 1566 if (E->isWide()) 1567 RealLen *= getContext().Target.getWCharWidth()/8; 1568 1569 Str.resize(RealLen, '\0'); 1570 1571 return Str; 1572 } 1573 1574 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1575 /// constant array for the given string literal. 1576 llvm::Constant * 1577 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1578 // FIXME: This can be more efficient. 1579 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1580 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1581 if (S->isWide()) { 1582 llvm::Type *DestTy = 1583 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1584 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1585 } 1586 return C; 1587 } 1588 1589 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1590 /// array for the given ObjCEncodeExpr node. 1591 llvm::Constant * 1592 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1593 std::string Str; 1594 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1595 1596 return GetAddrOfConstantCString(Str); 1597 } 1598 1599 1600 /// GenerateWritableString -- Creates storage for a string literal. 1601 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1602 bool constant, 1603 CodeGenModule &CGM, 1604 const char *GlobalName) { 1605 // Create Constant for this string literal. Don't add a '\0'. 1606 llvm::Constant *C = 1607 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1608 1609 // Create a global variable for this string 1610 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1611 llvm::GlobalValue::PrivateLinkage, 1612 C, GlobalName); 1613 } 1614 1615 /// GetAddrOfConstantString - Returns a pointer to a character array 1616 /// containing the literal. This contents are exactly that of the 1617 /// given string, i.e. it will not be null terminated automatically; 1618 /// see GetAddrOfConstantCString. Note that whether the result is 1619 /// actually a pointer to an LLVM constant depends on 1620 /// Feature.WriteableStrings. 1621 /// 1622 /// The result has pointer to array type. 1623 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1624 const char *GlobalName) { 1625 bool IsConstant = !Features.WritableStrings; 1626 1627 // Get the default prefix if a name wasn't specified. 1628 if (!GlobalName) 1629 GlobalName = ".str"; 1630 1631 // Don't share any string literals if strings aren't constant. 1632 if (!IsConstant) 1633 return GenerateStringLiteral(str, false, *this, GlobalName); 1634 1635 llvm::StringMapEntry<llvm::Constant *> &Entry = 1636 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1637 1638 if (Entry.getValue()) 1639 return Entry.getValue(); 1640 1641 // Create a global variable for this. 1642 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1643 Entry.setValue(C); 1644 return C; 1645 } 1646 1647 /// GetAddrOfConstantCString - Returns a pointer to a character 1648 /// array containing the literal and a terminating '\-' 1649 /// character. The result has pointer to array type. 1650 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1651 const char *GlobalName){ 1652 return GetAddrOfConstantString(str + '\0', GlobalName); 1653 } 1654 1655 /// EmitObjCPropertyImplementations - Emit information for synthesized 1656 /// properties for an implementation. 1657 void CodeGenModule::EmitObjCPropertyImplementations(const 1658 ObjCImplementationDecl *D) { 1659 for (ObjCImplementationDecl::propimpl_iterator 1660 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1661 ObjCPropertyImplDecl *PID = *i; 1662 1663 // Dynamic is just for type-checking. 1664 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1665 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1666 1667 // Determine which methods need to be implemented, some may have 1668 // been overridden. Note that ::isSynthesized is not the method 1669 // we want, that just indicates if the decl came from a 1670 // property. What we want to know is if the method is defined in 1671 // this implementation. 1672 if (!D->getInstanceMethod(PD->getGetterName())) 1673 CodeGenFunction(*this).GenerateObjCGetter( 1674 const_cast<ObjCImplementationDecl *>(D), PID); 1675 if (!PD->isReadOnly() && 1676 !D->getInstanceMethod(PD->getSetterName())) 1677 CodeGenFunction(*this).GenerateObjCSetter( 1678 const_cast<ObjCImplementationDecl *>(D), PID); 1679 } 1680 } 1681 } 1682 1683 /// EmitNamespace - Emit all declarations in a namespace. 1684 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1685 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1686 I != E; ++I) 1687 EmitTopLevelDecl(*I); 1688 } 1689 1690 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1691 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1692 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1693 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1694 ErrorUnsupported(LSD, "linkage spec"); 1695 return; 1696 } 1697 1698 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1699 I != E; ++I) 1700 EmitTopLevelDecl(*I); 1701 } 1702 1703 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1704 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1705 // If an error has occurred, stop code generation, but continue 1706 // parsing and semantic analysis (to ensure all warnings and errors 1707 // are emitted). 1708 if (Diags.hasErrorOccurred()) 1709 return; 1710 1711 // Ignore dependent declarations. 1712 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1713 return; 1714 1715 switch (D->getKind()) { 1716 case Decl::CXXConversion: 1717 case Decl::CXXMethod: 1718 case Decl::Function: 1719 // Skip function templates 1720 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1721 return; 1722 1723 EmitGlobal(cast<FunctionDecl>(D)); 1724 break; 1725 1726 case Decl::Var: 1727 EmitGlobal(cast<VarDecl>(D)); 1728 break; 1729 1730 // C++ Decls 1731 case Decl::Namespace: 1732 EmitNamespace(cast<NamespaceDecl>(D)); 1733 break; 1734 // No code generation needed. 1735 case Decl::UsingShadow: 1736 case Decl::Using: 1737 case Decl::UsingDirective: 1738 case Decl::ClassTemplate: 1739 case Decl::FunctionTemplate: 1740 case Decl::NamespaceAlias: 1741 break; 1742 case Decl::CXXConstructor: 1743 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1744 break; 1745 case Decl::CXXDestructor: 1746 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1747 break; 1748 1749 case Decl::StaticAssert: 1750 // Nothing to do. 1751 break; 1752 1753 // Objective-C Decls 1754 1755 // Forward declarations, no (immediate) code generation. 1756 case Decl::ObjCClass: 1757 case Decl::ObjCForwardProtocol: 1758 case Decl::ObjCCategory: 1759 case Decl::ObjCInterface: 1760 break; 1761 1762 case Decl::ObjCProtocol: 1763 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1764 break; 1765 1766 case Decl::ObjCCategoryImpl: 1767 // Categories have properties but don't support synthesize so we 1768 // can ignore them here. 1769 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1770 break; 1771 1772 case Decl::ObjCImplementation: { 1773 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1774 EmitObjCPropertyImplementations(OMD); 1775 Runtime->GenerateClass(OMD); 1776 break; 1777 } 1778 case Decl::ObjCMethod: { 1779 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1780 // If this is not a prototype, emit the body. 1781 if (OMD->getBody()) 1782 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1783 break; 1784 } 1785 case Decl::ObjCCompatibleAlias: 1786 // compatibility-alias is a directive and has no code gen. 1787 break; 1788 1789 case Decl::LinkageSpec: 1790 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1791 break; 1792 1793 case Decl::FileScopeAsm: { 1794 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1795 std::string AsmString(AD->getAsmString()->getStrData(), 1796 AD->getAsmString()->getByteLength()); 1797 1798 const std::string &S = getModule().getModuleInlineAsm(); 1799 if (S.empty()) 1800 getModule().setModuleInlineAsm(AsmString); 1801 else 1802 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1803 break; 1804 } 1805 1806 default: 1807 // Make sure we handled everything we should, every other kind is a 1808 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1809 // function. Need to recode Decl::Kind to do that easily. 1810 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1811 } 1812 } 1813