1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/CodeGen/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/Diagnostic.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Basic/ConvertUTF.h"
32 #include "llvm/CallingConv.h"
33 #include "llvm/Module.h"
34 #include "llvm/Intrinsics.h"
35 #include "llvm/LLVMContext.h"
36 #include "llvm/ADT/Triple.h"
37 #include "llvm/Target/TargetData.h"
38 #include "llvm/Support/ErrorHandling.h"
39 using namespace clang;
40 using namespace CodeGen;
41 
42 
43 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
44                              llvm::Module &M, const llvm::TargetData &TD,
45                              Diagnostic &diags)
46   : BlockModule(C, M, TD, Types, *this), Context(C),
47     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
48     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
49     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
50     MangleCtx(C), VTables(*this), Runtime(0), CFConstantStringClassRef(0),
51     VMContext(M.getContext()) {
52 
53   if (!Features.ObjC1)
54     Runtime = 0;
55   else if (!Features.NeXTRuntime)
56     Runtime = CreateGNUObjCRuntime(*this);
57   else if (Features.ObjCNonFragileABI)
58     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
59   else
60     Runtime = CreateMacObjCRuntime(*this);
61 
62   // If debug info generation is enabled, create the CGDebugInfo object.
63   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
64 }
65 
66 CodeGenModule::~CodeGenModule() {
67   delete Runtime;
68   delete DebugInfo;
69 }
70 
71 void CodeGenModule::createObjCRuntime() {
72   if (!Features.NeXTRuntime)
73     Runtime = CreateGNUObjCRuntime(*this);
74   else if (Features.ObjCNonFragileABI)
75     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
76   else
77     Runtime = CreateMacObjCRuntime(*this);
78 }
79 
80 void CodeGenModule::Release() {
81   EmitDeferred();
82   EmitCXXGlobalInitFunc();
83   EmitCXXGlobalDtorFunc();
84   if (Runtime)
85     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
86       AddGlobalCtor(ObjCInitFunction);
87   EmitCtorList(GlobalCtors, "llvm.global_ctors");
88   EmitCtorList(GlobalDtors, "llvm.global_dtors");
89   EmitAnnotations();
90   EmitLLVMUsed();
91 }
92 
93 bool CodeGenModule::isTargetDarwin() const {
94   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
95 }
96 
97 /// ErrorUnsupported - Print out an error that codegen doesn't support the
98 /// specified stmt yet.
99 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
100                                      bool OmitOnError) {
101   if (OmitOnError && getDiags().hasErrorOccurred())
102     return;
103   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
104                                                "cannot compile this %0 yet");
105   std::string Msg = Type;
106   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
107     << Msg << S->getSourceRange();
108 }
109 
110 /// ErrorUnsupported - Print out an error that codegen doesn't support the
111 /// specified decl yet.
112 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
113                                      bool OmitOnError) {
114   if (OmitOnError && getDiags().hasErrorOccurred())
115     return;
116   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
117                                                "cannot compile this %0 yet");
118   std::string Msg = Type;
119   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
120 }
121 
122 LangOptions::VisibilityMode
123 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
124   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
125     if (VD->getStorageClass() == VarDecl::PrivateExtern)
126       return LangOptions::Hidden;
127 
128   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
129     switch (attr->getVisibility()) {
130     default: assert(0 && "Unknown visibility!");
131     case VisibilityAttr::DefaultVisibility:
132       return LangOptions::Default;
133     case VisibilityAttr::HiddenVisibility:
134       return LangOptions::Hidden;
135     case VisibilityAttr::ProtectedVisibility:
136       return LangOptions::Protected;
137     }
138   }
139 
140   // This decl should have the same visibility as its parent.
141   if (const DeclContext *DC = D->getDeclContext())
142     return getDeclVisibilityMode(cast<Decl>(DC));
143 
144   return getLangOptions().getVisibilityMode();
145 }
146 
147 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
148                                         const Decl *D) const {
149   // Internal definitions always have default visibility.
150   if (GV->hasLocalLinkage()) {
151     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
152     return;
153   }
154 
155   switch (getDeclVisibilityMode(D)) {
156   default: assert(0 && "Unknown visibility!");
157   case LangOptions::Default:
158     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
159   case LangOptions::Hidden:
160     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
161   case LangOptions::Protected:
162     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
163   }
164 }
165 
166 void CodeGenModule::getMangledName(MangleBuffer &Buffer, GlobalDecl GD) {
167   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
168 
169   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
170     return getMangledCXXCtorName(Buffer, D, GD.getCtorType());
171   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
172     return getMangledCXXDtorName(Buffer, D, GD.getDtorType());
173 
174   return getMangledName(Buffer, ND);
175 }
176 
177 /// \brief Retrieves the mangled name for the given declaration.
178 ///
179 /// If the given declaration requires a mangled name, returns an
180 /// const char* containing the mangled name.  Otherwise, returns
181 /// the unmangled name.
182 ///
183 void CodeGenModule::getMangledName(MangleBuffer &Buffer,
184                                    const NamedDecl *ND) {
185   if (!getMangleContext().shouldMangleDeclName(ND)) {
186     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
187     Buffer.setString(ND->getNameAsCString());
188     return;
189   }
190 
191   getMangleContext().mangleName(ND, Buffer.getBuffer());
192 }
193 
194 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
195   return getModule().getNamedValue(Name);
196 }
197 
198 /// AddGlobalCtor - Add a function to the list that will be called before
199 /// main() runs.
200 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
201   // FIXME: Type coercion of void()* types.
202   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
203 }
204 
205 /// AddGlobalDtor - Add a function to the list that will be called
206 /// when the module is unloaded.
207 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
208   // FIXME: Type coercion of void()* types.
209   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
210 }
211 
212 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
213   // Ctor function type is void()*.
214   llvm::FunctionType* CtorFTy =
215     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
216                             std::vector<const llvm::Type*>(),
217                             false);
218   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
219 
220   // Get the type of a ctor entry, { i32, void ()* }.
221   llvm::StructType* CtorStructTy =
222     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
223                           llvm::PointerType::getUnqual(CtorFTy), NULL);
224 
225   // Construct the constructor and destructor arrays.
226   std::vector<llvm::Constant*> Ctors;
227   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
228     std::vector<llvm::Constant*> S;
229     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
230                 I->second, false));
231     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
232     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
233   }
234 
235   if (!Ctors.empty()) {
236     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
237     new llvm::GlobalVariable(TheModule, AT, false,
238                              llvm::GlobalValue::AppendingLinkage,
239                              llvm::ConstantArray::get(AT, Ctors),
240                              GlobalName);
241   }
242 }
243 
244 void CodeGenModule::EmitAnnotations() {
245   if (Annotations.empty())
246     return;
247 
248   // Create a new global variable for the ConstantStruct in the Module.
249   llvm::Constant *Array =
250   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
251                                                 Annotations.size()),
252                            Annotations);
253   llvm::GlobalValue *gv =
254   new llvm::GlobalVariable(TheModule, Array->getType(), false,
255                            llvm::GlobalValue::AppendingLinkage, Array,
256                            "llvm.global.annotations");
257   gv->setSection("llvm.metadata");
258 }
259 
260 static CodeGenModule::GVALinkage
261 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
262                       const LangOptions &Features) {
263   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
264 
265   Linkage L = FD->getLinkage();
266   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
267       FD->getType()->getLinkage() == UniqueExternalLinkage)
268     L = UniqueExternalLinkage;
269 
270   switch (L) {
271   case NoLinkage:
272   case InternalLinkage:
273   case UniqueExternalLinkage:
274     return CodeGenModule::GVA_Internal;
275 
276   case ExternalLinkage:
277     switch (FD->getTemplateSpecializationKind()) {
278     case TSK_Undeclared:
279     case TSK_ExplicitSpecialization:
280       External = CodeGenModule::GVA_StrongExternal;
281       break;
282 
283     case TSK_ExplicitInstantiationDefinition:
284       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
285 
286     case TSK_ExplicitInstantiationDeclaration:
287     case TSK_ImplicitInstantiation:
288       External = CodeGenModule::GVA_TemplateInstantiation;
289       break;
290     }
291   }
292 
293   if (!FD->isInlined())
294     return External;
295 
296   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
297     // GNU or C99 inline semantics. Determine whether this symbol should be
298     // externally visible.
299     if (FD->isInlineDefinitionExternallyVisible())
300       return External;
301 
302     // C99 inline semantics, where the symbol is not externally visible.
303     return CodeGenModule::GVA_C99Inline;
304   }
305 
306   // C++0x [temp.explicit]p9:
307   //   [ Note: The intent is that an inline function that is the subject of
308   //   an explicit instantiation declaration will still be implicitly
309   //   instantiated when used so that the body can be considered for
310   //   inlining, but that no out-of-line copy of the inline function would be
311   //   generated in the translation unit. -- end note ]
312   if (FD->getTemplateSpecializationKind()
313                                        == TSK_ExplicitInstantiationDeclaration)
314     return CodeGenModule::GVA_C99Inline;
315 
316   return CodeGenModule::GVA_CXXInline;
317 }
318 
319 llvm::GlobalValue::LinkageTypes
320 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
321   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
322 
323   if (Linkage == GVA_Internal) {
324     return llvm::Function::InternalLinkage;
325   } else if (D->hasAttr<DLLExportAttr>()) {
326     return llvm::Function::DLLExportLinkage;
327   } else if (D->hasAttr<WeakAttr>()) {
328     return llvm::Function::WeakAnyLinkage;
329   } else if (Linkage == GVA_C99Inline) {
330     // In C99 mode, 'inline' functions are guaranteed to have a strong
331     // definition somewhere else, so we can use available_externally linkage.
332     return llvm::Function::AvailableExternallyLinkage;
333   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
334     // In C++, the compiler has to emit a definition in every translation unit
335     // that references the function.  We should use linkonce_odr because
336     // a) if all references in this translation unit are optimized away, we
337     // don't need to codegen it.  b) if the function persists, it needs to be
338     // merged with other definitions. c) C++ has the ODR, so we know the
339     // definition is dependable.
340     return llvm::Function::LinkOnceODRLinkage;
341   } else if (Linkage == GVA_ExplicitTemplateInstantiation) {
342     // An explicit instantiation of a template has weak linkage, since
343     // explicit instantiations can occur in multiple translation units
344     // and must all be equivalent. However, we are not allowed to
345     // throw away these explicit instantiations.
346     return llvm::Function::WeakODRLinkage;
347   } else {
348     assert(Linkage == GVA_StrongExternal);
349     // Otherwise, we have strong external linkage.
350     return llvm::Function::ExternalLinkage;
351   }
352 }
353 
354 
355 /// SetFunctionDefinitionAttributes - Set attributes for a global.
356 ///
357 /// FIXME: This is currently only done for aliases and functions, but not for
358 /// variables (these details are set in EmitGlobalVarDefinition for variables).
359 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
360                                                     llvm::GlobalValue *GV) {
361   GV->setLinkage(getFunctionLinkage(D));
362   SetCommonAttributes(D, GV);
363 }
364 
365 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
366                                               const CGFunctionInfo &Info,
367                                               llvm::Function *F) {
368   unsigned CallingConv;
369   AttributeListType AttributeList;
370   ConstructAttributeList(Info, D, AttributeList, CallingConv);
371   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
372                                           AttributeList.size()));
373   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
374 }
375 
376 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
377                                                            llvm::Function *F) {
378   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
379     F->addFnAttr(llvm::Attribute::NoUnwind);
380 
381   if (D->hasAttr<AlwaysInlineAttr>())
382     F->addFnAttr(llvm::Attribute::AlwaysInline);
383 
384   if (D->hasAttr<NoInlineAttr>())
385     F->addFnAttr(llvm::Attribute::NoInline);
386 
387   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
388     F->addFnAttr(llvm::Attribute::StackProtect);
389   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
390     F->addFnAttr(llvm::Attribute::StackProtectReq);
391 
392   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
393     unsigned width = Context.Target.getCharWidth();
394     F->setAlignment(AA->getAlignment() / width);
395     while ((AA = AA->getNext<AlignedAttr>()))
396       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
397   }
398   // C++ ABI requires 2-byte alignment for member functions.
399   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
400     F->setAlignment(2);
401 }
402 
403 void CodeGenModule::SetCommonAttributes(const Decl *D,
404                                         llvm::GlobalValue *GV) {
405   setGlobalVisibility(GV, D);
406 
407   if (D->hasAttr<UsedAttr>())
408     AddUsedGlobal(GV);
409 
410   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
411     GV->setSection(SA->getName());
412 
413   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
414 }
415 
416 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
417                                                   llvm::Function *F,
418                                                   const CGFunctionInfo &FI) {
419   SetLLVMFunctionAttributes(D, FI, F);
420   SetLLVMFunctionAttributesForDefinition(D, F);
421 
422   F->setLinkage(llvm::Function::InternalLinkage);
423 
424   SetCommonAttributes(D, F);
425 }
426 
427 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
428                                           llvm::Function *F,
429                                           bool IsIncompleteFunction) {
430   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
431 
432   if (!IsIncompleteFunction)
433     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
434 
435   // Only a few attributes are set on declarations; these may later be
436   // overridden by a definition.
437 
438   if (FD->hasAttr<DLLImportAttr>()) {
439     F->setLinkage(llvm::Function::DLLImportLinkage);
440   } else if (FD->hasAttr<WeakAttr>() ||
441              FD->hasAttr<WeakImportAttr>()) {
442     // "extern_weak" is overloaded in LLVM; we probably should have
443     // separate linkage types for this.
444     F->setLinkage(llvm::Function::ExternalWeakLinkage);
445   } else {
446     F->setLinkage(llvm::Function::ExternalLinkage);
447   }
448 
449   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
450     F->setSection(SA->getName());
451 }
452 
453 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
454   assert(!GV->isDeclaration() &&
455          "Only globals with definition can force usage.");
456   LLVMUsed.push_back(GV);
457 }
458 
459 void CodeGenModule::EmitLLVMUsed() {
460   // Don't create llvm.used if there is no need.
461   if (LLVMUsed.empty())
462     return;
463 
464   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
465 
466   // Convert LLVMUsed to what ConstantArray needs.
467   std::vector<llvm::Constant*> UsedArray;
468   UsedArray.resize(LLVMUsed.size());
469   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
470     UsedArray[i] =
471      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
472                                       i8PTy);
473   }
474 
475   if (UsedArray.empty())
476     return;
477   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
478 
479   llvm::GlobalVariable *GV =
480     new llvm::GlobalVariable(getModule(), ATy, false,
481                              llvm::GlobalValue::AppendingLinkage,
482                              llvm::ConstantArray::get(ATy, UsedArray),
483                              "llvm.used");
484 
485   GV->setSection("llvm.metadata");
486 }
487 
488 void CodeGenModule::EmitDeferred() {
489   // Emit code for any potentially referenced deferred decls.  Since a
490   // previously unused static decl may become used during the generation of code
491   // for a static function, iterate until no  changes are made.
492 
493   while (!DeferredDeclsToEmit.empty() || !DeferredVtables.empty()) {
494     if (!DeferredVtables.empty()) {
495       const CXXRecordDecl *RD = DeferredVtables.back();
496       DeferredVtables.pop_back();
497       getVTables().GenerateClassData(getVtableLinkage(RD), RD);
498       continue;
499     }
500 
501     GlobalDecl D = DeferredDeclsToEmit.back();
502     DeferredDeclsToEmit.pop_back();
503 
504     // Look it up to see if it was defined with a stronger definition (e.g. an
505     // extern inline function with a strong function redefinition).  If so,
506     // just ignore the deferred decl.
507     MangleBuffer Name;
508     getMangledName(Name, D);
509     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
510     assert(CGRef && "Deferred decl wasn't referenced?");
511 
512     if (!CGRef->isDeclaration())
513       continue;
514 
515     // Otherwise, emit the definition and move on to the next one.
516     EmitGlobalDefinition(D);
517   }
518 }
519 
520 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
521 /// annotation information for a given GlobalValue.  The annotation struct is
522 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
523 /// GlobalValue being annotated.  The second field is the constant string
524 /// created from the AnnotateAttr's annotation.  The third field is a constant
525 /// string containing the name of the translation unit.  The fourth field is
526 /// the line number in the file of the annotated value declaration.
527 ///
528 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
529 ///        appears to.
530 ///
531 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
532                                                 const AnnotateAttr *AA,
533                                                 unsigned LineNo) {
534   llvm::Module *M = &getModule();
535 
536   // get [N x i8] constants for the annotation string, and the filename string
537   // which are the 2nd and 3rd elements of the global annotation structure.
538   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
539   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
540                                                   AA->getAnnotation(), true);
541   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
542                                                   M->getModuleIdentifier(),
543                                                   true);
544 
545   // Get the two global values corresponding to the ConstantArrays we just
546   // created to hold the bytes of the strings.
547   llvm::GlobalValue *annoGV =
548     new llvm::GlobalVariable(*M, anno->getType(), false,
549                              llvm::GlobalValue::PrivateLinkage, anno,
550                              GV->getName());
551   // translation unit name string, emitted into the llvm.metadata section.
552   llvm::GlobalValue *unitGV =
553     new llvm::GlobalVariable(*M, unit->getType(), false,
554                              llvm::GlobalValue::PrivateLinkage, unit,
555                              ".str");
556 
557   // Create the ConstantStruct for the global annotation.
558   llvm::Constant *Fields[4] = {
559     llvm::ConstantExpr::getBitCast(GV, SBP),
560     llvm::ConstantExpr::getBitCast(annoGV, SBP),
561     llvm::ConstantExpr::getBitCast(unitGV, SBP),
562     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
563   };
564   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
565 }
566 
567 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
568   // Never defer when EmitAllDecls is specified or the decl has
569   // attribute used.
570   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
571     return false;
572 
573   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
574     // Constructors and destructors should never be deferred.
575     if (FD->hasAttr<ConstructorAttr>() ||
576         FD->hasAttr<DestructorAttr>())
577       return false;
578 
579     // The key function for a class must never be deferred.
580     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
581       const CXXRecordDecl *RD = MD->getParent();
582       if (MD->isOutOfLine() && RD->isDynamicClass()) {
583         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
584         if (KeyFunction &&
585             KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
586           return false;
587       }
588     }
589 
590     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
591 
592     // static, static inline, always_inline, and extern inline functions can
593     // always be deferred.  Normal inline functions can be deferred in C99/C++.
594     // Implicit template instantiations can also be deferred in C++.
595     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
596         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
597       return true;
598     return false;
599   }
600 
601   const VarDecl *VD = cast<VarDecl>(Global);
602   assert(VD->isFileVarDecl() && "Invalid decl");
603 
604   // We never want to defer structs that have non-trivial constructors or
605   // destructors.
606 
607   // FIXME: Handle references.
608   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
609     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
610       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
611         return false;
612     }
613   }
614 
615   // Static data may be deferred, but out-of-line static data members
616   // cannot be.
617   Linkage L = VD->getLinkage();
618   if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus &&
619       VD->getType()->getLinkage() == UniqueExternalLinkage)
620     L = UniqueExternalLinkage;
621 
622   switch (L) {
623   case NoLinkage:
624   case InternalLinkage:
625   case UniqueExternalLinkage:
626     // Initializer has side effects?
627     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
628       return false;
629     return !(VD->isStaticDataMember() && VD->isOutOfLine());
630 
631   case ExternalLinkage:
632     break;
633   }
634 
635   return false;
636 }
637 
638 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
639   const AliasAttr *AA = VD->getAttr<AliasAttr>();
640   assert(AA && "No alias?");
641 
642   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
643 
644   // See if there is already something with the target's name in the module.
645   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
646 
647   llvm::Constant *Aliasee;
648   if (isa<llvm::FunctionType>(DeclTy))
649     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
650   else
651     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
652                                     llvm::PointerType::getUnqual(DeclTy), 0);
653   if (!Entry) {
654     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
655     F->setLinkage(llvm::Function::ExternalWeakLinkage);
656     WeakRefReferences.insert(F);
657   }
658 
659   return Aliasee;
660 }
661 
662 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
663   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
664 
665   // Weak references don't produce any output by themselves.
666   if (Global->hasAttr<WeakRefAttr>())
667     return;
668 
669   // If this is an alias definition (which otherwise looks like a declaration)
670   // emit it now.
671   if (Global->hasAttr<AliasAttr>())
672     return EmitAliasDefinition(GD);
673 
674   // Ignore declarations, they will be emitted on their first use.
675   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
676     // Forward declarations are emitted lazily on first use.
677     if (!FD->isThisDeclarationADefinition())
678       return;
679   } else {
680     const VarDecl *VD = cast<VarDecl>(Global);
681     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
682 
683     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
684       return;
685   }
686 
687   // Defer code generation when possible if this is a static definition, inline
688   // function etc.  These we only want to emit if they are used.
689   if (MayDeferGeneration(Global)) {
690     // If the value has already been used, add it directly to the
691     // DeferredDeclsToEmit list.
692     MangleBuffer MangledName;
693     getMangledName(MangledName, GD);
694     if (GetGlobalValue(MangledName))
695       DeferredDeclsToEmit.push_back(GD);
696     else {
697       // Otherwise, remember that we saw a deferred decl with this name.  The
698       // first use of the mangled name will cause it to move into
699       // DeferredDeclsToEmit.
700       DeferredDecls[MangledName] = GD;
701     }
702     return;
703   }
704 
705   // Otherwise emit the definition.
706   EmitGlobalDefinition(GD);
707 }
708 
709 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
710   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
711 
712   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
713                                  Context.getSourceManager(),
714                                  "Generating code for declaration");
715 
716   if (isa<CXXMethodDecl>(D))
717     getVTables().EmitVTableRelatedData(GD);
718 
719   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
720     EmitCXXConstructor(CD, GD.getCtorType());
721   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
722     EmitCXXDestructor(DD, GD.getDtorType());
723   else if (isa<FunctionDecl>(D))
724     EmitGlobalFunctionDefinition(GD);
725   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
726     EmitGlobalVarDefinition(VD);
727   else {
728     assert(0 && "Invalid argument to EmitGlobalDefinition()");
729   }
730 }
731 
732 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
733 /// module, create and return an llvm Function with the specified type. If there
734 /// is something in the module with the specified name, return it potentially
735 /// bitcasted to the right type.
736 ///
737 /// If D is non-null, it specifies a decl that correspond to this.  This is used
738 /// to set the attributes on the function when it is first created.
739 llvm::Constant *
740 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
741                                        const llvm::Type *Ty,
742                                        GlobalDecl D) {
743   // Lookup the entry, lazily creating it if necessary.
744   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
745   if (Entry) {
746     if (WeakRefReferences.count(Entry)) {
747       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
748       if (FD && !FD->hasAttr<WeakAttr>())
749         Entry->setLinkage(llvm::Function::ExternalLinkage);
750 
751       WeakRefReferences.erase(Entry);
752     }
753 
754     if (Entry->getType()->getElementType() == Ty)
755       return Entry;
756 
757     // Make sure the result is of the correct type.
758     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
759     return llvm::ConstantExpr::getBitCast(Entry, PTy);
760   }
761 
762   // This function doesn't have a complete type (for example, the return
763   // type is an incomplete struct). Use a fake type instead, and make
764   // sure not to try to set attributes.
765   bool IsIncompleteFunction = false;
766   if (!isa<llvm::FunctionType>(Ty)) {
767     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
768                                  std::vector<const llvm::Type*>(), false);
769     IsIncompleteFunction = true;
770   }
771   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
772                                              llvm::Function::ExternalLinkage,
773                                              MangledName, &getModule());
774   assert(F->getName() == MangledName && "name was uniqued!");
775   if (D.getDecl())
776     SetFunctionAttributes(D, F, IsIncompleteFunction);
777 
778   // This is the first use or definition of a mangled name.  If there is a
779   // deferred decl with this name, remember that we need to emit it at the end
780   // of the file.
781   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
782   if (DDI != DeferredDecls.end()) {
783     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
784     // list, and remove it from DeferredDecls (since we don't need it anymore).
785     DeferredDeclsToEmit.push_back(DDI->second);
786     DeferredDecls.erase(DDI);
787   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
788     // If this the first reference to a C++ inline function in a class, queue up
789     // the deferred function body for emission.  These are not seen as
790     // top-level declarations.
791     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
792       DeferredDeclsToEmit.push_back(D);
793     // A called constructor which has no definition or declaration need be
794     // synthesized.
795     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
796       if (CD->isImplicit()) {
797         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
798         DeferredDeclsToEmit.push_back(D);
799       }
800     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
801       if (DD->isImplicit()) {
802         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
803         DeferredDeclsToEmit.push_back(D);
804       }
805     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
806       if (MD->isCopyAssignment() && MD->isImplicit()) {
807         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
808         DeferredDeclsToEmit.push_back(D);
809       }
810     }
811   }
812 
813   return F;
814 }
815 
816 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
817 /// non-null, then this function will use the specified type if it has to
818 /// create it (this occurs when we see a definition of the function).
819 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
820                                                  const llvm::Type *Ty) {
821   // If there was no specific requested type, just convert it now.
822   if (!Ty)
823     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
824   MangleBuffer MangledName;
825   getMangledName(MangledName, GD);
826   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
827 }
828 
829 /// CreateRuntimeFunction - Create a new runtime function with the specified
830 /// type and name.
831 llvm::Constant *
832 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
833                                      llvm::StringRef Name) {
834   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
835 }
836 
837 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
838   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
839     return false;
840   if (Context.getLangOptions().CPlusPlus &&
841       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
842     // FIXME: We should do something fancier here!
843     return false;
844   }
845   return true;
846 }
847 
848 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
849 /// create and return an llvm GlobalVariable with the specified type.  If there
850 /// is something in the module with the specified name, return it potentially
851 /// bitcasted to the right type.
852 ///
853 /// If D is non-null, it specifies a decl that correspond to this.  This is used
854 /// to set the attributes on the global when it is first created.
855 llvm::Constant *
856 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
857                                      const llvm::PointerType *Ty,
858                                      const VarDecl *D) {
859   // Lookup the entry, lazily creating it if necessary.
860   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
861   if (Entry) {
862     if (WeakRefReferences.count(Entry)) {
863       if (D && !D->hasAttr<WeakAttr>())
864         Entry->setLinkage(llvm::Function::ExternalLinkage);
865 
866       WeakRefReferences.erase(Entry);
867     }
868 
869     if (Entry->getType() == Ty)
870       return Entry;
871 
872     // Make sure the result is of the correct type.
873     return llvm::ConstantExpr::getBitCast(Entry, Ty);
874   }
875 
876   // This is the first use or definition of a mangled name.  If there is a
877   // deferred decl with this name, remember that we need to emit it at the end
878   // of the file.
879   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
880   if (DDI != DeferredDecls.end()) {
881     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
882     // list, and remove it from DeferredDecls (since we don't need it anymore).
883     DeferredDeclsToEmit.push_back(DDI->second);
884     DeferredDecls.erase(DDI);
885   }
886 
887   llvm::GlobalVariable *GV =
888     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
889                              llvm::GlobalValue::ExternalLinkage,
890                              0, MangledName, 0,
891                              false, Ty->getAddressSpace());
892 
893   // Handle things which are present even on external declarations.
894   if (D) {
895     // FIXME: This code is overly simple and should be merged with other global
896     // handling.
897     GV->setConstant(DeclIsConstantGlobal(Context, D));
898 
899     // FIXME: Merge with other attribute handling code.
900     if (D->getStorageClass() == VarDecl::PrivateExtern)
901       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
902 
903     if (D->hasAttr<WeakAttr>() ||
904         D->hasAttr<WeakImportAttr>())
905       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
906 
907     GV->setThreadLocal(D->isThreadSpecified());
908   }
909 
910   return GV;
911 }
912 
913 
914 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
915 /// given global variable.  If Ty is non-null and if the global doesn't exist,
916 /// then it will be greated with the specified type instead of whatever the
917 /// normal requested type would be.
918 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
919                                                   const llvm::Type *Ty) {
920   assert(D->hasGlobalStorage() && "Not a global variable");
921   QualType ASTTy = D->getType();
922   if (Ty == 0)
923     Ty = getTypes().ConvertTypeForMem(ASTTy);
924 
925   const llvm::PointerType *PTy =
926     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
927 
928   MangleBuffer MangledName;
929   getMangledName(MangledName, D);
930   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
931 }
932 
933 /// CreateRuntimeVariable - Create a new runtime global variable with the
934 /// specified type and name.
935 llvm::Constant *
936 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
937                                      llvm::StringRef Name) {
938   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
939 }
940 
941 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
942   assert(!D->getInit() && "Cannot emit definite definitions here!");
943 
944   if (MayDeferGeneration(D)) {
945     // If we have not seen a reference to this variable yet, place it
946     // into the deferred declarations table to be emitted if needed
947     // later.
948     MangleBuffer MangledName;
949     getMangledName(MangledName, D);
950     if (!GetGlobalValue(MangledName)) {
951       DeferredDecls[MangledName] = D;
952       return;
953     }
954   }
955 
956   // The tentative definition is the only definition.
957   EmitGlobalVarDefinition(D);
958 }
959 
960 llvm::GlobalVariable::LinkageTypes
961 CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) {
962   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
963     return llvm::GlobalVariable::InternalLinkage;
964 
965   if (const CXXMethodDecl *KeyFunction
966                                     = RD->getASTContext().getKeyFunction(RD)) {
967     // If this class has a key function, use that to determine the linkage of
968     // the vtable.
969     const FunctionDecl *Def = 0;
970     if (KeyFunction->getBody(Def))
971       KeyFunction = cast<CXXMethodDecl>(Def);
972 
973     switch (KeyFunction->getTemplateSpecializationKind()) {
974       case TSK_Undeclared:
975       case TSK_ExplicitSpecialization:
976         if (KeyFunction->isInlined())
977           return llvm::GlobalVariable::WeakODRLinkage;
978 
979         return llvm::GlobalVariable::ExternalLinkage;
980 
981       case TSK_ImplicitInstantiation:
982       case TSK_ExplicitInstantiationDefinition:
983         return llvm::GlobalVariable::WeakODRLinkage;
984 
985       case TSK_ExplicitInstantiationDeclaration:
986         // FIXME: Use available_externally linkage. However, this currently
987         // breaks LLVM's build due to undefined symbols.
988         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
989         return llvm::GlobalVariable::WeakODRLinkage;
990     }
991   }
992 
993   switch (RD->getTemplateSpecializationKind()) {
994   case TSK_Undeclared:
995   case TSK_ExplicitSpecialization:
996   case TSK_ImplicitInstantiation:
997   case TSK_ExplicitInstantiationDefinition:
998     return llvm::GlobalVariable::WeakODRLinkage;
999 
1000   case TSK_ExplicitInstantiationDeclaration:
1001     // FIXME: Use available_externally linkage. However, this currently
1002     // breaks LLVM's build due to undefined symbols.
1003     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1004     return llvm::GlobalVariable::WeakODRLinkage;
1005   }
1006 
1007   // Silence GCC warning.
1008   return llvm::GlobalVariable::WeakODRLinkage;
1009 }
1010 
1011 static CodeGenModule::GVALinkage
1012 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
1013   // If this is a static data member, compute the kind of template
1014   // specialization. Otherwise, this variable is not part of a
1015   // template.
1016   TemplateSpecializationKind TSK = TSK_Undeclared;
1017   if (VD->isStaticDataMember())
1018     TSK = VD->getTemplateSpecializationKind();
1019 
1020   Linkage L = VD->getLinkage();
1021   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
1022       VD->getType()->getLinkage() == UniqueExternalLinkage)
1023     L = UniqueExternalLinkage;
1024 
1025   switch (L) {
1026   case NoLinkage:
1027   case InternalLinkage:
1028   case UniqueExternalLinkage:
1029     return CodeGenModule::GVA_Internal;
1030 
1031   case ExternalLinkage:
1032     switch (TSK) {
1033     case TSK_Undeclared:
1034     case TSK_ExplicitSpecialization:
1035       return CodeGenModule::GVA_StrongExternal;
1036 
1037     case TSK_ExplicitInstantiationDeclaration:
1038       llvm_unreachable("Variable should not be instantiated");
1039       // Fall through to treat this like any other instantiation.
1040 
1041     case TSK_ExplicitInstantiationDefinition:
1042       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
1043 
1044     case TSK_ImplicitInstantiation:
1045       return CodeGenModule::GVA_TemplateInstantiation;
1046     }
1047   }
1048 
1049   return CodeGenModule::GVA_StrongExternal;
1050 }
1051 
1052 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1053     return CharUnits::fromQuantity(
1054       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1055 }
1056 
1057 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1058   llvm::Constant *Init = 0;
1059   QualType ASTTy = D->getType();
1060   bool NonConstInit = false;
1061 
1062   const Expr *InitExpr = D->getAnyInitializer();
1063 
1064   if (!InitExpr) {
1065     // This is a tentative definition; tentative definitions are
1066     // implicitly initialized with { 0 }.
1067     //
1068     // Note that tentative definitions are only emitted at the end of
1069     // a translation unit, so they should never have incomplete
1070     // type. In addition, EmitTentativeDefinition makes sure that we
1071     // never attempt to emit a tentative definition if a real one
1072     // exists. A use may still exists, however, so we still may need
1073     // to do a RAUW.
1074     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1075     Init = EmitNullConstant(D->getType());
1076   } else {
1077     Init = EmitConstantExpr(InitExpr, D->getType());
1078 
1079     if (!Init) {
1080       QualType T = InitExpr->getType();
1081       if (getLangOptions().CPlusPlus) {
1082         EmitCXXGlobalVarDeclInitFunc(D);
1083         Init = EmitNullConstant(T);
1084         NonConstInit = true;
1085       } else {
1086         ErrorUnsupported(D, "static initializer");
1087         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1088       }
1089     }
1090   }
1091 
1092   const llvm::Type* InitType = Init->getType();
1093   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1094 
1095   // Strip off a bitcast if we got one back.
1096   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1097     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1098            // all zero index gep.
1099            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1100     Entry = CE->getOperand(0);
1101   }
1102 
1103   // Entry is now either a Function or GlobalVariable.
1104   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1105 
1106   // We have a definition after a declaration with the wrong type.
1107   // We must make a new GlobalVariable* and update everything that used OldGV
1108   // (a declaration or tentative definition) with the new GlobalVariable*
1109   // (which will be a definition).
1110   //
1111   // This happens if there is a prototype for a global (e.g.
1112   // "extern int x[];") and then a definition of a different type (e.g.
1113   // "int x[10];"). This also happens when an initializer has a different type
1114   // from the type of the global (this happens with unions).
1115   if (GV == 0 ||
1116       GV->getType()->getElementType() != InitType ||
1117       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1118 
1119     // Move the old entry aside so that we'll create a new one.
1120     Entry->setName(llvm::StringRef());
1121 
1122     // Make a new global with the correct type, this is now guaranteed to work.
1123     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1124 
1125     // Replace all uses of the old global with the new global
1126     llvm::Constant *NewPtrForOldDecl =
1127         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1128     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1129 
1130     // Erase the old global, since it is no longer used.
1131     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1132   }
1133 
1134   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1135     SourceManager &SM = Context.getSourceManager();
1136     AddAnnotation(EmitAnnotateAttr(GV, AA,
1137                               SM.getInstantiationLineNumber(D->getLocation())));
1138   }
1139 
1140   GV->setInitializer(Init);
1141 
1142   // If it is safe to mark the global 'constant', do so now.
1143   GV->setConstant(false);
1144   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1145     GV->setConstant(true);
1146 
1147   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1148 
1149   // Set the llvm linkage type as appropriate.
1150   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1151   if (Linkage == GVA_Internal)
1152     GV->setLinkage(llvm::Function::InternalLinkage);
1153   else if (D->hasAttr<DLLImportAttr>())
1154     GV->setLinkage(llvm::Function::DLLImportLinkage);
1155   else if (D->hasAttr<DLLExportAttr>())
1156     GV->setLinkage(llvm::Function::DLLExportLinkage);
1157   else if (D->hasAttr<WeakAttr>()) {
1158     if (GV->isConstant())
1159       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1160     else
1161       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1162   } else if (Linkage == GVA_TemplateInstantiation ||
1163              Linkage == GVA_ExplicitTemplateInstantiation)
1164     // FIXME: It seems like we can provide more specific linkage here
1165     // (LinkOnceODR, WeakODR).
1166     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1167   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1168            !D->hasExternalStorage() && !D->getInit() &&
1169            !D->getAttr<SectionAttr>()) {
1170     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1171     // common vars aren't constant even if declared const.
1172     GV->setConstant(false);
1173   } else
1174     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1175 
1176   SetCommonAttributes(D, GV);
1177 
1178   // Emit global variable debug information.
1179   if (CGDebugInfo *DI = getDebugInfo()) {
1180     DI->setLocation(D->getLocation());
1181     DI->EmitGlobalVariable(GV, D);
1182   }
1183 }
1184 
1185 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1186 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1187 /// existing call uses of the old function in the module, this adjusts them to
1188 /// call the new function directly.
1189 ///
1190 /// This is not just a cleanup: the always_inline pass requires direct calls to
1191 /// functions to be able to inline them.  If there is a bitcast in the way, it
1192 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1193 /// run at -O0.
1194 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1195                                                       llvm::Function *NewFn) {
1196   // If we're redefining a global as a function, don't transform it.
1197   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1198   if (OldFn == 0) return;
1199 
1200   const llvm::Type *NewRetTy = NewFn->getReturnType();
1201   llvm::SmallVector<llvm::Value*, 4> ArgList;
1202 
1203   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1204        UI != E; ) {
1205     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1206     unsigned OpNo = UI.getOperandNo();
1207     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1208     if (!CI || OpNo != 0) continue;
1209 
1210     // If the return types don't match exactly, and if the call isn't dead, then
1211     // we can't transform this call.
1212     if (CI->getType() != NewRetTy && !CI->use_empty())
1213       continue;
1214 
1215     // If the function was passed too few arguments, don't transform.  If extra
1216     // arguments were passed, we silently drop them.  If any of the types
1217     // mismatch, we don't transform.
1218     unsigned ArgNo = 0;
1219     bool DontTransform = false;
1220     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1221          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1222       if (CI->getNumOperands()-1 == ArgNo ||
1223           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1224         DontTransform = true;
1225         break;
1226       }
1227     }
1228     if (DontTransform)
1229       continue;
1230 
1231     // Okay, we can transform this.  Create the new call instruction and copy
1232     // over the required information.
1233     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1234     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1235                                                      ArgList.end(), "", CI);
1236     ArgList.clear();
1237     if (!NewCall->getType()->isVoidTy())
1238       NewCall->takeName(CI);
1239     NewCall->setAttributes(CI->getAttributes());
1240     NewCall->setCallingConv(CI->getCallingConv());
1241 
1242     // Finally, remove the old call, replacing any uses with the new one.
1243     if (!CI->use_empty())
1244       CI->replaceAllUsesWith(NewCall);
1245 
1246     // Copy debug location attached to CI.
1247     if (!CI->getDebugLoc().isUnknown())
1248       NewCall->setDebugLoc(CI->getDebugLoc());
1249     CI->eraseFromParent();
1250   }
1251 }
1252 
1253 
1254 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1255   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1256   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1257   getMangleContext().mangleInitDiscriminator();
1258   // Get or create the prototype for the function.
1259   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1260 
1261   // Strip off a bitcast if we got one back.
1262   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1263     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1264     Entry = CE->getOperand(0);
1265   }
1266 
1267 
1268   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1269     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1270 
1271     // If the types mismatch then we have to rewrite the definition.
1272     assert(OldFn->isDeclaration() &&
1273            "Shouldn't replace non-declaration");
1274 
1275     // F is the Function* for the one with the wrong type, we must make a new
1276     // Function* and update everything that used F (a declaration) with the new
1277     // Function* (which will be a definition).
1278     //
1279     // This happens if there is a prototype for a function
1280     // (e.g. "int f()") and then a definition of a different type
1281     // (e.g. "int f(int x)").  Move the old function aside so that it
1282     // doesn't interfere with GetAddrOfFunction.
1283     OldFn->setName(llvm::StringRef());
1284     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1285 
1286     // If this is an implementation of a function without a prototype, try to
1287     // replace any existing uses of the function (which may be calls) with uses
1288     // of the new function
1289     if (D->getType()->isFunctionNoProtoType()) {
1290       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1291       OldFn->removeDeadConstantUsers();
1292     }
1293 
1294     // Replace uses of F with the Function we will endow with a body.
1295     if (!Entry->use_empty()) {
1296       llvm::Constant *NewPtrForOldDecl =
1297         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1298       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1299     }
1300 
1301     // Ok, delete the old function now, which is dead.
1302     OldFn->eraseFromParent();
1303 
1304     Entry = NewFn;
1305   }
1306 
1307   llvm::Function *Fn = cast<llvm::Function>(Entry);
1308 
1309   CodeGenFunction(*this).GenerateCode(D, Fn);
1310 
1311   SetFunctionDefinitionAttributes(D, Fn);
1312   SetLLVMFunctionAttributesForDefinition(D, Fn);
1313 
1314   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1315     AddGlobalCtor(Fn, CA->getPriority());
1316   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1317     AddGlobalDtor(Fn, DA->getPriority());
1318 }
1319 
1320 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1321   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1322   const AliasAttr *AA = D->getAttr<AliasAttr>();
1323   assert(AA && "Not an alias?");
1324 
1325   MangleBuffer MangledName;
1326   getMangledName(MangledName, GD);
1327 
1328   // If there is a definition in the module, then it wins over the alias.
1329   // This is dubious, but allow it to be safe.  Just ignore the alias.
1330   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1331   if (Entry && !Entry->isDeclaration())
1332     return;
1333 
1334   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1335 
1336   // Create a reference to the named value.  This ensures that it is emitted
1337   // if a deferred decl.
1338   llvm::Constant *Aliasee;
1339   if (isa<llvm::FunctionType>(DeclTy))
1340     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1341   else
1342     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1343                                     llvm::PointerType::getUnqual(DeclTy), 0);
1344 
1345   // Create the new alias itself, but don't set a name yet.
1346   llvm::GlobalValue *GA =
1347     new llvm::GlobalAlias(Aliasee->getType(),
1348                           llvm::Function::ExternalLinkage,
1349                           "", Aliasee, &getModule());
1350 
1351   if (Entry) {
1352     assert(Entry->isDeclaration());
1353 
1354     // If there is a declaration in the module, then we had an extern followed
1355     // by the alias, as in:
1356     //   extern int test6();
1357     //   ...
1358     //   int test6() __attribute__((alias("test7")));
1359     //
1360     // Remove it and replace uses of it with the alias.
1361     GA->takeName(Entry);
1362 
1363     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1364                                                           Entry->getType()));
1365     Entry->eraseFromParent();
1366   } else {
1367     GA->setName(MangledName.getString());
1368   }
1369 
1370   // Set attributes which are particular to an alias; this is a
1371   // specialization of the attributes which may be set on a global
1372   // variable/function.
1373   if (D->hasAttr<DLLExportAttr>()) {
1374     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1375       // The dllexport attribute is ignored for undefined symbols.
1376       if (FD->getBody())
1377         GA->setLinkage(llvm::Function::DLLExportLinkage);
1378     } else {
1379       GA->setLinkage(llvm::Function::DLLExportLinkage);
1380     }
1381   } else if (D->hasAttr<WeakAttr>() ||
1382              D->hasAttr<WeakRefAttr>() ||
1383              D->hasAttr<WeakImportAttr>()) {
1384     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1385   }
1386 
1387   SetCommonAttributes(D, GA);
1388 }
1389 
1390 /// getBuiltinLibFunction - Given a builtin id for a function like
1391 /// "__builtin_fabsf", return a Function* for "fabsf".
1392 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1393                                                   unsigned BuiltinID) {
1394   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1395           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1396          "isn't a lib fn");
1397 
1398   // Get the name, skip over the __builtin_ prefix (if necessary).
1399   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1400   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1401     Name += 10;
1402 
1403   const llvm::FunctionType *Ty =
1404     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1405 
1406   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1407 }
1408 
1409 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1410                                             unsigned NumTys) {
1411   return llvm::Intrinsic::getDeclaration(&getModule(),
1412                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1413 }
1414 
1415 
1416 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1417                                            const llvm::Type *SrcType,
1418                                            const llvm::Type *SizeType) {
1419   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1420   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1421 }
1422 
1423 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1424                                             const llvm::Type *SrcType,
1425                                             const llvm::Type *SizeType) {
1426   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1427   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1428 }
1429 
1430 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1431                                            const llvm::Type *SizeType) {
1432   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1433   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1434 }
1435 
1436 static llvm::StringMapEntry<llvm::Constant*> &
1437 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1438                          const StringLiteral *Literal,
1439                          bool TargetIsLSB,
1440                          bool &IsUTF16,
1441                          unsigned &StringLength) {
1442   unsigned NumBytes = Literal->getByteLength();
1443 
1444   // Check for simple case.
1445   if (!Literal->containsNonAsciiOrNull()) {
1446     StringLength = NumBytes;
1447     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1448                                                 StringLength));
1449   }
1450 
1451   // Otherwise, convert the UTF8 literals into a byte string.
1452   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1453   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1454   UTF16 *ToPtr = &ToBuf[0];
1455 
1456   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1457                                                &ToPtr, ToPtr + NumBytes,
1458                                                strictConversion);
1459 
1460   // Check for conversion failure.
1461   if (Result != conversionOK) {
1462     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1463     // this duplicate code.
1464     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1465     StringLength = NumBytes;
1466     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1467                                                 StringLength));
1468   }
1469 
1470   // ConvertUTF8toUTF16 returns the length in ToPtr.
1471   StringLength = ToPtr - &ToBuf[0];
1472 
1473   // Render the UTF-16 string into a byte array and convert to the target byte
1474   // order.
1475   //
1476   // FIXME: This isn't something we should need to do here.
1477   llvm::SmallString<128> AsBytes;
1478   AsBytes.reserve(StringLength * 2);
1479   for (unsigned i = 0; i != StringLength; ++i) {
1480     unsigned short Val = ToBuf[i];
1481     if (TargetIsLSB) {
1482       AsBytes.push_back(Val & 0xFF);
1483       AsBytes.push_back(Val >> 8);
1484     } else {
1485       AsBytes.push_back(Val >> 8);
1486       AsBytes.push_back(Val & 0xFF);
1487     }
1488   }
1489   // Append one extra null character, the second is automatically added by our
1490   // caller.
1491   AsBytes.push_back(0);
1492 
1493   IsUTF16 = true;
1494   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1495 }
1496 
1497 llvm::Constant *
1498 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1499   unsigned StringLength = 0;
1500   bool isUTF16 = false;
1501   llvm::StringMapEntry<llvm::Constant*> &Entry =
1502     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1503                              getTargetData().isLittleEndian(),
1504                              isUTF16, StringLength);
1505 
1506   if (llvm::Constant *C = Entry.getValue())
1507     return C;
1508 
1509   llvm::Constant *Zero =
1510       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1511   llvm::Constant *Zeros[] = { Zero, Zero };
1512 
1513   // If we don't already have it, get __CFConstantStringClassReference.
1514   if (!CFConstantStringClassRef) {
1515     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1516     Ty = llvm::ArrayType::get(Ty, 0);
1517     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1518                                            "__CFConstantStringClassReference");
1519     // Decay array -> ptr
1520     CFConstantStringClassRef =
1521       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1522   }
1523 
1524   QualType CFTy = getContext().getCFConstantStringType();
1525 
1526   const llvm::StructType *STy =
1527     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1528 
1529   std::vector<llvm::Constant*> Fields(4);
1530 
1531   // Class pointer.
1532   Fields[0] = CFConstantStringClassRef;
1533 
1534   // Flags.
1535   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1536   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1537     llvm::ConstantInt::get(Ty, 0x07C8);
1538 
1539   // String pointer.
1540   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1541 
1542   llvm::GlobalValue::LinkageTypes Linkage;
1543   bool isConstant;
1544   if (isUTF16) {
1545     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1546     Linkage = llvm::GlobalValue::InternalLinkage;
1547     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1548     // does make plain ascii ones writable.
1549     isConstant = true;
1550   } else {
1551     Linkage = llvm::GlobalValue::PrivateLinkage;
1552     isConstant = !Features.WritableStrings;
1553   }
1554 
1555   llvm::GlobalVariable *GV =
1556     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1557                              ".str");
1558   if (isUTF16) {
1559     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1560     GV->setAlignment(Align.getQuantity());
1561   }
1562   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1563 
1564   // String length.
1565   Ty = getTypes().ConvertType(getContext().LongTy);
1566   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1567 
1568   // The struct.
1569   C = llvm::ConstantStruct::get(STy, Fields);
1570   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1571                                 llvm::GlobalVariable::PrivateLinkage, C,
1572                                 "_unnamed_cfstring_");
1573   if (const char *Sect = getContext().Target.getCFStringSection())
1574     GV->setSection(Sect);
1575   Entry.setValue(GV);
1576 
1577   return GV;
1578 }
1579 
1580 /// GetStringForStringLiteral - Return the appropriate bytes for a
1581 /// string literal, properly padded to match the literal type.
1582 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1583   const char *StrData = E->getStrData();
1584   unsigned Len = E->getByteLength();
1585 
1586   const ConstantArrayType *CAT =
1587     getContext().getAsConstantArrayType(E->getType());
1588   assert(CAT && "String isn't pointer or array!");
1589 
1590   // Resize the string to the right size.
1591   std::string Str(StrData, StrData+Len);
1592   uint64_t RealLen = CAT->getSize().getZExtValue();
1593 
1594   if (E->isWide())
1595     RealLen *= getContext().Target.getWCharWidth()/8;
1596 
1597   Str.resize(RealLen, '\0');
1598 
1599   return Str;
1600 }
1601 
1602 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1603 /// constant array for the given string literal.
1604 llvm::Constant *
1605 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1606   // FIXME: This can be more efficient.
1607   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1608   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1609   if (S->isWide()) {
1610     llvm::Type *DestTy =
1611         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1612     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1613   }
1614   return C;
1615 }
1616 
1617 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1618 /// array for the given ObjCEncodeExpr node.
1619 llvm::Constant *
1620 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1621   std::string Str;
1622   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1623 
1624   return GetAddrOfConstantCString(Str);
1625 }
1626 
1627 
1628 /// GenerateWritableString -- Creates storage for a string literal.
1629 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1630                                              bool constant,
1631                                              CodeGenModule &CGM,
1632                                              const char *GlobalName) {
1633   // Create Constant for this string literal. Don't add a '\0'.
1634   llvm::Constant *C =
1635       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1636 
1637   // Create a global variable for this string
1638   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1639                                   llvm::GlobalValue::PrivateLinkage,
1640                                   C, GlobalName);
1641 }
1642 
1643 /// GetAddrOfConstantString - Returns a pointer to a character array
1644 /// containing the literal. This contents are exactly that of the
1645 /// given string, i.e. it will not be null terminated automatically;
1646 /// see GetAddrOfConstantCString. Note that whether the result is
1647 /// actually a pointer to an LLVM constant depends on
1648 /// Feature.WriteableStrings.
1649 ///
1650 /// The result has pointer to array type.
1651 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1652                                                        const char *GlobalName) {
1653   bool IsConstant = !Features.WritableStrings;
1654 
1655   // Get the default prefix if a name wasn't specified.
1656   if (!GlobalName)
1657     GlobalName = ".str";
1658 
1659   // Don't share any string literals if strings aren't constant.
1660   if (!IsConstant)
1661     return GenerateStringLiteral(str, false, *this, GlobalName);
1662 
1663   llvm::StringMapEntry<llvm::Constant *> &Entry =
1664     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1665 
1666   if (Entry.getValue())
1667     return Entry.getValue();
1668 
1669   // Create a global variable for this.
1670   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1671   Entry.setValue(C);
1672   return C;
1673 }
1674 
1675 /// GetAddrOfConstantCString - Returns a pointer to a character
1676 /// array containing the literal and a terminating '\-'
1677 /// character. The result has pointer to array type.
1678 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1679                                                         const char *GlobalName){
1680   return GetAddrOfConstantString(str + '\0', GlobalName);
1681 }
1682 
1683 /// EmitObjCPropertyImplementations - Emit information for synthesized
1684 /// properties for an implementation.
1685 void CodeGenModule::EmitObjCPropertyImplementations(const
1686                                                     ObjCImplementationDecl *D) {
1687   for (ObjCImplementationDecl::propimpl_iterator
1688          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1689     ObjCPropertyImplDecl *PID = *i;
1690 
1691     // Dynamic is just for type-checking.
1692     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1693       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1694 
1695       // Determine which methods need to be implemented, some may have
1696       // been overridden. Note that ::isSynthesized is not the method
1697       // we want, that just indicates if the decl came from a
1698       // property. What we want to know is if the method is defined in
1699       // this implementation.
1700       if (!D->getInstanceMethod(PD->getGetterName()))
1701         CodeGenFunction(*this).GenerateObjCGetter(
1702                                  const_cast<ObjCImplementationDecl *>(D), PID);
1703       if (!PD->isReadOnly() &&
1704           !D->getInstanceMethod(PD->getSetterName()))
1705         CodeGenFunction(*this).GenerateObjCSetter(
1706                                  const_cast<ObjCImplementationDecl *>(D), PID);
1707     }
1708   }
1709 }
1710 
1711 /// EmitNamespace - Emit all declarations in a namespace.
1712 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1713   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1714        I != E; ++I)
1715     EmitTopLevelDecl(*I);
1716 }
1717 
1718 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1719 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1720   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1721       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1722     ErrorUnsupported(LSD, "linkage spec");
1723     return;
1724   }
1725 
1726   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1727        I != E; ++I)
1728     EmitTopLevelDecl(*I);
1729 }
1730 
1731 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1732 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1733   // If an error has occurred, stop code generation, but continue
1734   // parsing and semantic analysis (to ensure all warnings and errors
1735   // are emitted).
1736   if (Diags.hasErrorOccurred())
1737     return;
1738 
1739   // Ignore dependent declarations.
1740   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1741     return;
1742 
1743   switch (D->getKind()) {
1744   case Decl::CXXConversion:
1745   case Decl::CXXMethod:
1746   case Decl::Function:
1747     // Skip function templates
1748     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1749       return;
1750 
1751     EmitGlobal(cast<FunctionDecl>(D));
1752     break;
1753 
1754   case Decl::Var:
1755     EmitGlobal(cast<VarDecl>(D));
1756     break;
1757 
1758   // C++ Decls
1759   case Decl::Namespace:
1760     EmitNamespace(cast<NamespaceDecl>(D));
1761     break;
1762     // No code generation needed.
1763   case Decl::UsingShadow:
1764   case Decl::Using:
1765   case Decl::UsingDirective:
1766   case Decl::ClassTemplate:
1767   case Decl::FunctionTemplate:
1768   case Decl::NamespaceAlias:
1769     break;
1770   case Decl::CXXConstructor:
1771     // Skip function templates
1772     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1773       return;
1774 
1775     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1776     break;
1777   case Decl::CXXDestructor:
1778     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1779     break;
1780 
1781   case Decl::StaticAssert:
1782     // Nothing to do.
1783     break;
1784 
1785   // Objective-C Decls
1786 
1787   // Forward declarations, no (immediate) code generation.
1788   case Decl::ObjCClass:
1789   case Decl::ObjCForwardProtocol:
1790   case Decl::ObjCCategory:
1791   case Decl::ObjCInterface:
1792     break;
1793 
1794   case Decl::ObjCProtocol:
1795     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1796     break;
1797 
1798   case Decl::ObjCCategoryImpl:
1799     // Categories have properties but don't support synthesize so we
1800     // can ignore them here.
1801     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1802     break;
1803 
1804   case Decl::ObjCImplementation: {
1805     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1806     EmitObjCPropertyImplementations(OMD);
1807     Runtime->GenerateClass(OMD);
1808     break;
1809   }
1810   case Decl::ObjCMethod: {
1811     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1812     // If this is not a prototype, emit the body.
1813     if (OMD->getBody())
1814       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1815     break;
1816   }
1817   case Decl::ObjCCompatibleAlias:
1818     // compatibility-alias is a directive and has no code gen.
1819     break;
1820 
1821   case Decl::LinkageSpec:
1822     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1823     break;
1824 
1825   case Decl::FileScopeAsm: {
1826     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1827     llvm::StringRef AsmString = AD->getAsmString()->getString();
1828 
1829     const std::string &S = getModule().getModuleInlineAsm();
1830     if (S.empty())
1831       getModule().setModuleInlineAsm(AsmString);
1832     else
1833       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1834     break;
1835   }
1836 
1837   default:
1838     // Make sure we handled everything we should, every other kind is a
1839     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1840     // function. Need to recode Decl::Kind to do that easily.
1841     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1842   }
1843 }
1844