1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Diagnostic.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Basic/ConvertUTF.h" 28 #include "llvm/CallingConv.h" 29 #include "llvm/Module.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/Target/TargetData.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 37 llvm::Module &M, const llvm::TargetData &TD, 38 Diagnostic &diags) 39 : BlockModule(C, M, TD, Types, *this), Context(C), 40 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 41 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 42 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 43 44 if (!Features.ObjC1) 45 Runtime = 0; 46 else if (!Features.NeXTRuntime) 47 Runtime = CreateGNUObjCRuntime(*this); 48 else if (Features.ObjCNonFragileABI) 49 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 50 else 51 Runtime = CreateMacObjCRuntime(*this); 52 53 // If debug info generation is enabled, create the CGDebugInfo object. 54 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 55 } 56 57 CodeGenModule::~CodeGenModule() { 58 delete Runtime; 59 delete DebugInfo; 60 } 61 62 void CodeGenModule::Release() { 63 EmitDeferred(); 64 if (Runtime) 65 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 66 AddGlobalCtor(ObjCInitFunction); 67 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 68 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 69 EmitAnnotations(); 70 EmitLLVMUsed(); 71 } 72 73 /// ErrorUnsupported - Print out an error that codegen doesn't support the 74 /// specified stmt yet. 75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 76 bool OmitOnError) { 77 if (OmitOnError && getDiags().hasErrorOccurred()) 78 return; 79 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 80 "cannot compile this %0 yet"); 81 std::string Msg = Type; 82 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 83 << Msg << S->getSourceRange(); 84 } 85 86 /// ErrorUnsupported - Print out an error that codegen doesn't support the 87 /// specified decl yet. 88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 89 bool OmitOnError) { 90 if (OmitOnError && getDiags().hasErrorOccurred()) 91 return; 92 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 93 "cannot compile this %0 yet"); 94 std::string Msg = Type; 95 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 96 } 97 98 LangOptions::VisibilityMode 99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 100 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 101 if (VD->getStorageClass() == VarDecl::PrivateExtern) 102 return LangOptions::Hidden; 103 104 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 105 switch (attr->getVisibility()) { 106 default: assert(0 && "Unknown visibility!"); 107 case VisibilityAttr::DefaultVisibility: 108 return LangOptions::Default; 109 case VisibilityAttr::HiddenVisibility: 110 return LangOptions::Hidden; 111 case VisibilityAttr::ProtectedVisibility: 112 return LangOptions::Protected; 113 } 114 } 115 116 return getLangOptions().getVisibilityMode(); 117 } 118 119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 120 const Decl *D) const { 121 // Internal definitions always have default visibility. 122 if (GV->hasLocalLinkage()) { 123 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 124 return; 125 } 126 127 switch (getDeclVisibilityMode(D)) { 128 default: assert(0 && "Unknown visibility!"); 129 case LangOptions::Default: 130 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 131 case LangOptions::Hidden: 132 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 133 case LangOptions::Protected: 134 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 135 } 136 } 137 138 /// \brief Retrieves the mangled name for the given declaration. 139 /// 140 /// If the given declaration requires a mangled name, returns an 141 /// const char* containing the mangled name. Otherwise, returns 142 /// the unmangled name. 143 /// 144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 145 // In C, functions with no attributes never need to be mangled. Fastpath them. 146 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 147 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 148 return ND->getNameAsCString(); 149 } 150 151 llvm::SmallString<256> Name; 152 llvm::raw_svector_ostream Out(Name); 153 if (!mangleName(ND, Context, Out)) { 154 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 155 return ND->getNameAsCString(); 156 } 157 158 Name += '\0'; 159 return UniqueMangledName(Name.begin(), Name.end()); 160 } 161 162 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 163 const char *NameEnd) { 164 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 165 166 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 167 } 168 169 /// AddGlobalCtor - Add a function to the list that will be called before 170 /// main() runs. 171 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 172 // FIXME: Type coercion of void()* types. 173 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 174 } 175 176 /// AddGlobalDtor - Add a function to the list that will be called 177 /// when the module is unloaded. 178 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 179 // FIXME: Type coercion of void()* types. 180 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 181 } 182 183 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 184 // Ctor function type is void()*. 185 llvm::FunctionType* CtorFTy = 186 llvm::FunctionType::get(llvm::Type::VoidTy, 187 std::vector<const llvm::Type*>(), 188 false); 189 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 190 191 // Get the type of a ctor entry, { i32, void ()* }. 192 llvm::StructType* CtorStructTy = 193 llvm::StructType::get(llvm::Type::Int32Ty, 194 llvm::PointerType::getUnqual(CtorFTy), NULL); 195 196 // Construct the constructor and destructor arrays. 197 std::vector<llvm::Constant*> Ctors; 198 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 199 std::vector<llvm::Constant*> S; 200 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 201 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 202 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 203 } 204 205 if (!Ctors.empty()) { 206 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 207 new llvm::GlobalVariable(AT, false, 208 llvm::GlobalValue::AppendingLinkage, 209 llvm::ConstantArray::get(AT, Ctors), 210 GlobalName, 211 &TheModule); 212 } 213 } 214 215 void CodeGenModule::EmitAnnotations() { 216 if (Annotations.empty()) 217 return; 218 219 // Create a new global variable for the ConstantStruct in the Module. 220 llvm::Constant *Array = 221 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 222 Annotations.size()), 223 Annotations); 224 llvm::GlobalValue *gv = 225 new llvm::GlobalVariable(Array->getType(), false, 226 llvm::GlobalValue::AppendingLinkage, Array, 227 "llvm.global.annotations", &TheModule); 228 gv->setSection("llvm.metadata"); 229 } 230 231 static CodeGenModule::GVALinkage 232 GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) { 233 // "static" and attr(always_inline) functions get internal linkage. 234 if (FD->getStorageClass() == FunctionDecl::Static || 235 FD->hasAttr<AlwaysInlineAttr>()) 236 return CodeGenModule::GVA_Internal; 237 238 if (!FD->isInline()) 239 return CodeGenModule::GVA_StrongExternal; 240 241 // If the inline function explicitly has the GNU inline attribute on it, then 242 // force to GNUC semantics (which is strong external), regardless of language. 243 if (FD->hasAttr<GNUCInlineAttr>()) 244 return CodeGenModule::GVA_StrongExternal; 245 246 // The definition of inline changes based on the language. Note that we 247 // have already handled "static inline" above, with the GVA_Internal case. 248 if (Features.CPlusPlus) // inline and extern inline. 249 return CodeGenModule::GVA_CXXInline; 250 251 if (FD->getStorageClass() == FunctionDecl::Extern) { 252 // extern inline in C99 is a strong definition. In C89, it is extern inline. 253 if (Features.C99) 254 return CodeGenModule::GVA_StrongExternal; 255 256 // In C89 mode, an 'extern inline' works like a C99 inline function. 257 return CodeGenModule::GVA_C99Inline; 258 } 259 260 if (Features.C99) 261 return CodeGenModule::GVA_C99Inline; 262 263 // Otherwise, this is the GNU inline extension in K&R and GNU C89 mode. 264 return CodeGenModule::GVA_StrongExternal; 265 } 266 267 /// SetFunctionDefinitionAttributes - Set attributes for a global. 268 /// 269 /// FIXME: This is currently only done for aliases and functions, but 270 /// not for variables (these details are set in 271 /// EmitGlobalVarDefinition for variables). 272 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 273 llvm::GlobalValue *GV) { 274 GVALinkage Linkage = GetLinkageForFunction(D, Features); 275 276 if (Linkage == GVA_Internal) { 277 GV->setLinkage(llvm::Function::InternalLinkage); 278 } else if (D->hasAttr<DLLExportAttr>()) { 279 GV->setLinkage(llvm::Function::DLLExportLinkage); 280 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 281 GV->setLinkage(llvm::Function::WeakAnyLinkage); 282 } else if (Linkage == GVA_C99Inline) { 283 // In C99 mode, 'inline' functions are guaranteed to have a strong 284 // definition somewhere else, so we can use available_externally linkage. 285 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 286 } else if (Linkage == GVA_CXXInline) { 287 // In C++, the compiler has to emit a definition in every translation unit 288 // that references the function. We should use linkonce_odr because 289 // a) if all references in this translation unit are optimized away, we 290 // don't need to codegen it. b) if the function persists, it needs to be 291 // merged with other definitions. c) C++ has the ODR, so we know the 292 // definition is dependable. 293 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 294 } else { 295 assert(Linkage == GVA_StrongExternal); 296 // Otherwise, we have strong external linkage. 297 GV->setLinkage(llvm::Function::ExternalLinkage); 298 } 299 300 SetCommonAttributes(D, GV); 301 } 302 303 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 304 const CGFunctionInfo &Info, 305 llvm::Function *F) { 306 AttributeListType AttributeList; 307 ConstructAttributeList(Info, D, AttributeList); 308 309 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 310 AttributeList.size())); 311 312 // Set the appropriate calling convention for the Function. 313 if (D->hasAttr<FastCallAttr>()) 314 F->setCallingConv(llvm::CallingConv::X86_FastCall); 315 316 if (D->hasAttr<StdCallAttr>()) 317 F->setCallingConv(llvm::CallingConv::X86_StdCall); 318 } 319 320 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 321 llvm::Function *F) { 322 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 323 F->addFnAttr(llvm::Attribute::NoUnwind); 324 325 if (D->hasAttr<AlwaysInlineAttr>()) 326 F->addFnAttr(llvm::Attribute::AlwaysInline); 327 328 if (D->hasAttr<NoinlineAttr>()) 329 F->addFnAttr(llvm::Attribute::NoInline); 330 } 331 332 void CodeGenModule::SetCommonAttributes(const Decl *D, 333 llvm::GlobalValue *GV) { 334 setGlobalVisibility(GV, D); 335 336 if (D->hasAttr<UsedAttr>()) 337 AddUsedGlobal(GV); 338 339 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 340 GV->setSection(SA->getName()); 341 } 342 343 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 344 llvm::Function *F, 345 const CGFunctionInfo &FI) { 346 SetLLVMFunctionAttributes(D, FI, F); 347 SetLLVMFunctionAttributesForDefinition(D, F); 348 349 F->setLinkage(llvm::Function::InternalLinkage); 350 351 SetCommonAttributes(D, F); 352 } 353 354 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 355 llvm::Function *F) { 356 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 357 358 // Only a few attributes are set on declarations; these may later be 359 // overridden by a definition. 360 361 if (FD->hasAttr<DLLImportAttr>()) { 362 F->setLinkage(llvm::Function::DLLImportLinkage); 363 } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) { 364 // "extern_weak" is overloaded in LLVM; we probably should have 365 // separate linkage types for this. 366 F->setLinkage(llvm::Function::ExternalWeakLinkage); 367 } else { 368 F->setLinkage(llvm::Function::ExternalLinkage); 369 } 370 371 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 372 F->setSection(SA->getName()); 373 } 374 375 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 376 assert(!GV->isDeclaration() && 377 "Only globals with definition can force usage."); 378 LLVMUsed.push_back(GV); 379 } 380 381 void CodeGenModule::EmitLLVMUsed() { 382 // Don't create llvm.used if there is no need. 383 if (LLVMUsed.empty()) 384 return; 385 386 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 387 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size()); 388 389 // Convert LLVMUsed to what ConstantArray needs. 390 std::vector<llvm::Constant*> UsedArray; 391 UsedArray.resize(LLVMUsed.size()); 392 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 393 UsedArray[i] = 394 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 395 } 396 397 llvm::GlobalVariable *GV = 398 new llvm::GlobalVariable(ATy, false, 399 llvm::GlobalValue::AppendingLinkage, 400 llvm::ConstantArray::get(ATy, UsedArray), 401 "llvm.used", &getModule()); 402 403 GV->setSection("llvm.metadata"); 404 } 405 406 void CodeGenModule::EmitDeferred() { 407 // Emit code for any potentially referenced deferred decls. Since a 408 // previously unused static decl may become used during the generation of code 409 // for a static function, iterate until no changes are made. 410 while (!DeferredDeclsToEmit.empty()) { 411 const ValueDecl *D = DeferredDeclsToEmit.back(); 412 DeferredDeclsToEmit.pop_back(); 413 414 // The mangled name for the decl must have been emitted in GlobalDeclMap. 415 // Look it up to see if it was defined with a stronger definition (e.g. an 416 // extern inline function with a strong function redefinition). If so, 417 // just ignore the deferred decl. 418 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 419 assert(CGRef && "Deferred decl wasn't referenced?"); 420 421 if (!CGRef->isDeclaration()) 422 continue; 423 424 // Otherwise, emit the definition and move on to the next one. 425 EmitGlobalDefinition(D); 426 } 427 428 // Emit any tentative definitions, in reverse order so the most 429 // important (merged) decl will be seen and emitted first. 430 for (std::vector<const VarDecl*>::reverse_iterator 431 it = TentativeDefinitions.rbegin(), ie = TentativeDefinitions.rend(); 432 it != ie; ++it) 433 EmitTentativeDefinition(*it); 434 } 435 436 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 437 /// annotation information for a given GlobalValue. The annotation struct is 438 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 439 /// GlobalValue being annotated. The second field is the constant string 440 /// created from the AnnotateAttr's annotation. The third field is a constant 441 /// string containing the name of the translation unit. The fourth field is 442 /// the line number in the file of the annotated value declaration. 443 /// 444 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 445 /// appears to. 446 /// 447 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 448 const AnnotateAttr *AA, 449 unsigned LineNo) { 450 llvm::Module *M = &getModule(); 451 452 // get [N x i8] constants for the annotation string, and the filename string 453 // which are the 2nd and 3rd elements of the global annotation structure. 454 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 455 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 456 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 457 true); 458 459 // Get the two global values corresponding to the ConstantArrays we just 460 // created to hold the bytes of the strings. 461 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 462 llvm::GlobalValue *annoGV = 463 new llvm::GlobalVariable(anno->getType(), false, 464 llvm::GlobalValue::InternalLinkage, anno, 465 GV->getName() + StringPrefix, M); 466 // translation unit name string, emitted into the llvm.metadata section. 467 llvm::GlobalValue *unitGV = 468 new llvm::GlobalVariable(unit->getType(), false, 469 llvm::GlobalValue::InternalLinkage, unit, 470 StringPrefix, M); 471 472 // Create the ConstantStruct for the global annotation. 473 llvm::Constant *Fields[4] = { 474 llvm::ConstantExpr::getBitCast(GV, SBP), 475 llvm::ConstantExpr::getBitCast(annoGV, SBP), 476 llvm::ConstantExpr::getBitCast(unitGV, SBP), 477 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 478 }; 479 return llvm::ConstantStruct::get(Fields, 4, false); 480 } 481 482 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 483 // Never defer when EmitAllDecls is specified or the decl has 484 // attribute used. 485 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 486 return false; 487 488 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 489 // Constructors and destructors should never be deferred. 490 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 491 return false; 492 493 GVALinkage Linkage = GetLinkageForFunction(FD, Features); 494 495 // static, static inline, always_inline, and extern inline functions can 496 // always be deferred. Normal inline functions can be deferred in C99/C++. 497 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 498 Linkage == GVA_CXXInline) 499 return true; 500 return false; 501 } 502 503 const VarDecl *VD = cast<VarDecl>(Global); 504 assert(VD->isFileVarDecl() && "Invalid decl"); 505 return VD->getStorageClass() == VarDecl::Static; 506 } 507 508 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 509 // If this is an alias definition (which otherwise looks like a declaration) 510 // emit it now. 511 if (Global->hasAttr<AliasAttr>()) 512 return EmitAliasDefinition(Global); 513 514 // Ignore declarations, they will be emitted on their first use. 515 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 516 // Forward declarations are emitted lazily on first use. 517 if (!FD->isThisDeclarationADefinition()) 518 return; 519 } else { 520 const VarDecl *VD = cast<VarDecl>(Global); 521 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 522 523 // If this isn't a definition, defer code generation. 524 if (!VD->getInit()) { 525 // If this is a tentative definition, remember it so that we can 526 // emit the common definition if needed. It is important to 527 // defer tentative definitions, since they may have incomplete 528 // type. 529 if (!VD->hasExternalStorage()) 530 TentativeDefinitions.push_back(VD); 531 return; 532 } 533 } 534 535 // Defer code generation when possible if this is a static definition, inline 536 // function etc. These we only want to emit if they are used. 537 if (MayDeferGeneration(Global)) { 538 // If the value has already been used, add it directly to the 539 // DeferredDeclsToEmit list. 540 const char *MangledName = getMangledName(Global); 541 if (GlobalDeclMap.count(MangledName)) 542 DeferredDeclsToEmit.push_back(Global); 543 else { 544 // Otherwise, remember that we saw a deferred decl with this name. The 545 // first use of the mangled name will cause it to move into 546 // DeferredDeclsToEmit. 547 DeferredDecls[MangledName] = Global; 548 } 549 return; 550 } 551 552 // Otherwise emit the definition. 553 EmitGlobalDefinition(Global); 554 } 555 556 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 557 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 558 EmitGlobalFunctionDefinition(FD); 559 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 560 EmitGlobalVarDefinition(VD); 561 } else { 562 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 563 } 564 } 565 566 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 567 /// module, create and return an llvm Function with the specified type. If there 568 /// is something in the module with the specified name, return it potentially 569 /// bitcasted to the right type. 570 /// 571 /// If D is non-null, it specifies a decl that correspond to this. This is used 572 /// to set the attributes on the function when it is first created. 573 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 574 const llvm::Type *Ty, 575 const FunctionDecl *D) { 576 // Lookup the entry, lazily creating it if necessary. 577 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 578 if (Entry) { 579 if (Entry->getType()->getElementType() == Ty) 580 return Entry; 581 582 // Make sure the result is of the correct type. 583 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 584 return llvm::ConstantExpr::getBitCast(Entry, PTy); 585 } 586 587 // This is the first use or definition of a mangled name. If there is a 588 // deferred decl with this name, remember that we need to emit it at the end 589 // of the file. 590 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 591 DeferredDecls.find(MangledName); 592 if (DDI != DeferredDecls.end()) { 593 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 594 // list, and remove it from DeferredDecls (since we don't need it anymore). 595 DeferredDeclsToEmit.push_back(DDI->second); 596 DeferredDecls.erase(DDI); 597 } 598 599 // This function doesn't have a complete type (for example, the return 600 // type is an incomplete struct). Use a fake type instead, and make 601 // sure not to try to set attributes. 602 bool ShouldSetAttributes = true; 603 if (!isa<llvm::FunctionType>(Ty)) { 604 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 605 std::vector<const llvm::Type*>(), false); 606 ShouldSetAttributes = false; 607 } 608 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 609 llvm::Function::ExternalLinkage, 610 "", &getModule()); 611 F->setName(MangledName); 612 if (D && ShouldSetAttributes) 613 SetFunctionAttributes(D, F); 614 Entry = F; 615 return F; 616 } 617 618 /// GetAddrOfFunction - Return the address of the given function. If Ty is 619 /// non-null, then this function will use the specified type if it has to 620 /// create it (this occurs when we see a definition of the function). 621 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D, 622 const llvm::Type *Ty) { 623 // If there was no specific requested type, just convert it now. 624 if (!Ty) 625 Ty = getTypes().ConvertType(D->getType()); 626 return GetOrCreateLLVMFunction(getMangledName(D), Ty, D); 627 } 628 629 /// CreateRuntimeFunction - Create a new runtime function with the specified 630 /// type and name. 631 llvm::Constant * 632 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 633 const char *Name) { 634 // Convert Name to be a uniqued string from the IdentifierInfo table. 635 Name = getContext().Idents.get(Name).getName(); 636 return GetOrCreateLLVMFunction(Name, FTy, 0); 637 } 638 639 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 640 /// create and return an llvm GlobalVariable with the specified type. If there 641 /// is something in the module with the specified name, return it potentially 642 /// bitcasted to the right type. 643 /// 644 /// If D is non-null, it specifies a decl that correspond to this. This is used 645 /// to set the attributes on the global when it is first created. 646 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 647 const llvm::PointerType*Ty, 648 const VarDecl *D) { 649 // Lookup the entry, lazily creating it if necessary. 650 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 651 if (Entry) { 652 if (Entry->getType() == Ty) 653 return Entry; 654 655 // Make sure the result is of the correct type. 656 return llvm::ConstantExpr::getBitCast(Entry, Ty); 657 } 658 659 // We don't support __thread yet. 660 if (D && D->isThreadSpecified()) 661 ErrorUnsupported(D, "thread local ('__thread') variable", true); 662 663 // This is the first use or definition of a mangled name. If there is a 664 // deferred decl with this name, remember that we need to emit it at the end 665 // of the file. 666 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 667 DeferredDecls.find(MangledName); 668 if (DDI != DeferredDecls.end()) { 669 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 670 // list, and remove it from DeferredDecls (since we don't need it anymore). 671 DeferredDeclsToEmit.push_back(DDI->second); 672 DeferredDecls.erase(DDI); 673 } 674 675 llvm::GlobalVariable *GV = 676 new llvm::GlobalVariable(Ty->getElementType(), false, 677 llvm::GlobalValue::ExternalLinkage, 678 0, "", &getModule(), 679 0, Ty->getAddressSpace()); 680 GV->setName(MangledName); 681 682 // Handle things which are present even on external declarations. 683 if (D) { 684 // FIXME: This code is overly simple and should be merged with 685 // other global handling. 686 GV->setConstant(D->getType().isConstant(Context)); 687 688 // FIXME: Merge with other attribute handling code. 689 if (D->getStorageClass() == VarDecl::PrivateExtern) 690 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 691 692 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 693 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 694 } 695 696 return Entry = GV; 697 } 698 699 700 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 701 /// given global variable. If Ty is non-null and if the global doesn't exist, 702 /// then it will be greated with the specified type instead of whatever the 703 /// normal requested type would be. 704 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 705 const llvm::Type *Ty) { 706 assert(D->hasGlobalStorage() && "Not a global variable"); 707 QualType ASTTy = D->getType(); 708 if (Ty == 0) 709 Ty = getTypes().ConvertTypeForMem(ASTTy); 710 711 const llvm::PointerType *PTy = 712 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 713 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 714 } 715 716 /// CreateRuntimeVariable - Create a new runtime global variable with the 717 /// specified type and name. 718 llvm::Constant * 719 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 720 const char *Name) { 721 // Convert Name to be a uniqued string from the IdentifierInfo table. 722 Name = getContext().Idents.get(Name).getName(); 723 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 724 } 725 726 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 727 assert(!D->getInit() && "Cannot emit definite definitions here!"); 728 729 // See if we have already defined this (as a variable), if so we do 730 // not need to do anything. 731 llvm::GlobalValue *GV = GlobalDeclMap[getMangledName(D)]; 732 if (llvm::GlobalVariable *Var = dyn_cast_or_null<llvm::GlobalVariable>(GV)) 733 if (Var->hasInitializer()) 734 return; 735 736 EmitGlobalVarDefinition(D); 737 } 738 739 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 740 llvm::Constant *Init = 0; 741 QualType ASTTy = D->getType(); 742 743 if (D->getInit() == 0) { 744 // This is a tentative definition; tentative definitions are 745 // implicitly initialized with { 0 }. 746 // 747 // Note that tentative definitions are only emitted at the end of 748 // a translation unit, so they should never have incomplete 749 // type. In addition, EmitTentativeDefinition makes sure that we 750 // never attempt to emit a tentative definition if a real one 751 // exists. A use may still exists, however, so we still may need 752 // to do a RAUW. 753 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 754 Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy)); 755 } else { 756 Init = EmitConstantExpr(D->getInit(), D->getType()); 757 if (!Init) { 758 ErrorUnsupported(D, "static initializer"); 759 QualType T = D->getInit()->getType(); 760 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 761 } 762 } 763 764 const llvm::Type* InitType = Init->getType(); 765 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 766 767 // Strip off a bitcast if we got one back. 768 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 769 assert(CE->getOpcode() == llvm::Instruction::BitCast); 770 Entry = CE->getOperand(0); 771 } 772 773 // Entry is now either a Function or GlobalVariable. 774 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 775 776 // We have a definition after a declaration with the wrong type. 777 // We must make a new GlobalVariable* and update everything that used OldGV 778 // (a declaration or tentative definition) with the new GlobalVariable* 779 // (which will be a definition). 780 // 781 // This happens if there is a prototype for a global (e.g. 782 // "extern int x[];") and then a definition of a different type (e.g. 783 // "int x[10];"). This also happens when an initializer has a different type 784 // from the type of the global (this happens with unions). 785 if (GV == 0 || 786 GV->getType()->getElementType() != InitType || 787 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 788 789 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 790 GlobalDeclMap.erase(getMangledName(D)); 791 792 // Make a new global with the correct type, this is now guaranteed to work. 793 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 794 GV->takeName(cast<llvm::GlobalValue>(Entry)); 795 796 // Replace all uses of the old global with the new global 797 llvm::Constant *NewPtrForOldDecl = 798 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 799 Entry->replaceAllUsesWith(NewPtrForOldDecl); 800 801 // Erase the old global, since it is no longer used. 802 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 803 } 804 805 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 806 SourceManager &SM = Context.getSourceManager(); 807 AddAnnotation(EmitAnnotateAttr(GV, AA, 808 SM.getInstantiationLineNumber(D->getLocation()))); 809 } 810 811 GV->setInitializer(Init); 812 GV->setConstant(D->getType().isConstant(Context)); 813 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 814 815 // Set the llvm linkage type as appropriate. 816 if (D->getStorageClass() == VarDecl::Static) 817 GV->setLinkage(llvm::Function::InternalLinkage); 818 else if (D->hasAttr<DLLImportAttr>()) 819 GV->setLinkage(llvm::Function::DLLImportLinkage); 820 else if (D->hasAttr<DLLExportAttr>()) 821 GV->setLinkage(llvm::Function::DLLExportLinkage); 822 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 823 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 824 else if (!CompileOpts.NoCommon && 825 (!D->hasExternalStorage() && !D->getInit())) 826 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 827 else 828 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 829 830 SetCommonAttributes(D, GV); 831 832 // Emit global variable debug information. 833 if (CGDebugInfo *DI = getDebugInfo()) { 834 DI->setLocation(D->getLocation()); 835 DI->EmitGlobalVariable(GV, D); 836 } 837 } 838 839 840 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 841 const llvm::FunctionType *Ty; 842 843 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 844 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 845 846 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 847 } else { 848 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 849 850 // As a special case, make sure that definitions of K&R function 851 // "type foo()" aren't declared as varargs (which forces the backend 852 // to do unnecessary work). 853 if (D->getType()->isFunctionNoProtoType()) { 854 assert(Ty->isVarArg() && "Didn't lower type as expected"); 855 // Due to stret, the lowered function could have arguments. 856 // Just create the same type as was lowered by ConvertType 857 // but strip off the varargs bit. 858 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 859 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 860 } 861 } 862 863 // Get or create the prototype for teh function. 864 llvm::Constant *Entry = GetAddrOfFunction(D, Ty); 865 866 // Strip off a bitcast if we got one back. 867 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 868 assert(CE->getOpcode() == llvm::Instruction::BitCast); 869 Entry = CE->getOperand(0); 870 } 871 872 873 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 874 // If the types mismatch then we have to rewrite the definition. 875 assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() && 876 "Shouldn't replace non-declaration"); 877 878 // F is the Function* for the one with the wrong type, we must make a new 879 // Function* and update everything that used F (a declaration) with the new 880 // Function* (which will be a definition). 881 // 882 // This happens if there is a prototype for a function 883 // (e.g. "int f()") and then a definition of a different type 884 // (e.g. "int f(int x)"). Start by making a new function of the 885 // correct type, RAUW, then steal the name. 886 GlobalDeclMap.erase(getMangledName(D)); 887 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty)); 888 NewFn->takeName(cast<llvm::GlobalValue>(Entry)); 889 890 // Replace uses of F with the Function we will endow with a body. 891 llvm::Constant *NewPtrForOldDecl = 892 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 893 Entry->replaceAllUsesWith(NewPtrForOldDecl); 894 895 // Ok, delete the old function now, which is dead. 896 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 897 898 Entry = NewFn; 899 } 900 901 llvm::Function *Fn = cast<llvm::Function>(Entry); 902 903 CodeGenFunction(*this).GenerateCode(D, Fn); 904 905 SetFunctionDefinitionAttributes(D, Fn); 906 SetLLVMFunctionAttributesForDefinition(D, Fn); 907 908 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 909 AddGlobalCtor(Fn, CA->getPriority()); 910 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 911 AddGlobalDtor(Fn, DA->getPriority()); 912 } 913 914 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 915 const AliasAttr *AA = D->getAttr<AliasAttr>(); 916 assert(AA && "Not an alias?"); 917 918 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 919 920 // Unique the name through the identifier table. 921 const char *AliaseeName = AA->getAliasee().c_str(); 922 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 923 924 // Create a reference to the named value. This ensures that it is emitted 925 // if a deferred decl. 926 llvm::Constant *Aliasee; 927 if (isa<llvm::FunctionType>(DeclTy)) 928 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0); 929 else 930 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 931 llvm::PointerType::getUnqual(DeclTy), 0); 932 933 // Create the new alias itself, but don't set a name yet. 934 llvm::GlobalValue *GA = 935 new llvm::GlobalAlias(Aliasee->getType(), 936 llvm::Function::ExternalLinkage, 937 "", Aliasee, &getModule()); 938 939 // See if there is already something with the alias' name in the module. 940 const char *MangledName = getMangledName(D); 941 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 942 943 if (Entry && !Entry->isDeclaration()) { 944 // If there is a definition in the module, then it wins over the alias. 945 // This is dubious, but allow it to be safe. Just ignore the alias. 946 GA->eraseFromParent(); 947 return; 948 } 949 950 if (Entry) { 951 // If there is a declaration in the module, then we had an extern followed 952 // by the alias, as in: 953 // extern int test6(); 954 // ... 955 // int test6() __attribute__((alias("test7"))); 956 // 957 // Remove it and replace uses of it with the alias. 958 959 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 960 Entry->getType())); 961 Entry->eraseFromParent(); 962 } 963 964 // Now we know that there is no conflict, set the name. 965 Entry = GA; 966 GA->setName(MangledName); 967 968 // Set attributes which are particular to an alias; this is a 969 // specialization of the attributes which may be set on a global 970 // variable/function. 971 if (D->hasAttr<DLLExportAttr>()) { 972 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 973 // The dllexport attribute is ignored for undefined symbols. 974 if (FD->getBody()) 975 GA->setLinkage(llvm::Function::DLLExportLinkage); 976 } else { 977 GA->setLinkage(llvm::Function::DLLExportLinkage); 978 } 979 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 980 GA->setLinkage(llvm::Function::WeakAnyLinkage); 981 } 982 983 SetCommonAttributes(D, GA); 984 } 985 986 /// getBuiltinLibFunction - Given a builtin id for a function like 987 /// "__builtin_fabsf", return a Function* for "fabsf". 988 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 989 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 990 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 991 "isn't a lib fn"); 992 993 // Get the name, skip over the __builtin_ prefix (if necessary). 994 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 995 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 996 Name += 10; 997 998 // Get the type for the builtin. 999 Builtin::Context::GetBuiltinTypeError Error; 1000 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); 1001 assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); 1002 1003 const llvm::FunctionType *Ty = 1004 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1005 1006 // Unique the name through the identifier table. 1007 Name = getContext().Idents.get(Name).getName(); 1008 // FIXME: param attributes for sext/zext etc. 1009 return GetOrCreateLLVMFunction(Name, Ty, 0); 1010 } 1011 1012 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1013 unsigned NumTys) { 1014 return llvm::Intrinsic::getDeclaration(&getModule(), 1015 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1016 } 1017 1018 llvm::Function *CodeGenModule::getMemCpyFn() { 1019 if (MemCpyFn) return MemCpyFn; 1020 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1021 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1022 } 1023 1024 llvm::Function *CodeGenModule::getMemMoveFn() { 1025 if (MemMoveFn) return MemMoveFn; 1026 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1027 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1028 } 1029 1030 llvm::Function *CodeGenModule::getMemSetFn() { 1031 if (MemSetFn) return MemSetFn; 1032 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1033 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1034 } 1035 1036 static void appendFieldAndPadding(CodeGenModule &CGM, 1037 std::vector<llvm::Constant*>& Fields, 1038 FieldDecl *FieldD, FieldDecl *NextFieldD, 1039 llvm::Constant* Field, 1040 RecordDecl* RD, const llvm::StructType *STy) { 1041 // Append the field. 1042 Fields.push_back(Field); 1043 1044 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1045 1046 int NextStructFieldNo; 1047 if (!NextFieldD) { 1048 NextStructFieldNo = STy->getNumElements(); 1049 } else { 1050 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1051 } 1052 1053 // Append padding 1054 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1055 llvm::Constant *C = 1056 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1057 1058 Fields.push_back(C); 1059 } 1060 } 1061 1062 llvm::Constant *CodeGenModule:: 1063 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1064 std::string str; 1065 unsigned StringLength; 1066 1067 bool isUTF16 = false; 1068 if (Literal->containsNonAsciiOrNull()) { 1069 // Convert from UTF-8 to UTF-16. 1070 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1071 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1072 UTF16 *ToPtr = &ToBuf[0]; 1073 1074 ConversionResult Result; 1075 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1076 &ToPtr, ToPtr+Literal->getByteLength(), 1077 strictConversion); 1078 if (Result == conversionOK) { 1079 // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings 1080 // without doing more surgery to this routine. Since we aren't explicitly 1081 // checking for endianness here, it's also a bug (when generating code for 1082 // a target that doesn't match the host endianness). Modeling this as an 1083 // i16 array is likely the cleanest solution. 1084 StringLength = ToPtr-&ToBuf[0]; 1085 str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars. 1086 isUTF16 = true; 1087 } else if (Result == sourceIllegal) { 1088 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string. 1089 str.assign(Literal->getStrData(), Literal->getByteLength()); 1090 StringLength = str.length(); 1091 } else 1092 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1093 1094 } else { 1095 str.assign(Literal->getStrData(), Literal->getByteLength()); 1096 StringLength = str.length(); 1097 } 1098 llvm::StringMapEntry<llvm::Constant *> &Entry = 1099 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1100 1101 if (llvm::Constant *C = Entry.getValue()) 1102 return C; 1103 1104 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1105 llvm::Constant *Zeros[] = { Zero, Zero }; 1106 1107 if (!CFConstantStringClassRef) { 1108 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1109 Ty = llvm::ArrayType::get(Ty, 0); 1110 1111 // FIXME: This is fairly broken if 1112 // __CFConstantStringClassReference is already defined, in that it 1113 // will get renamed and the user will most likely see an opaque 1114 // error message. This is a general issue with relying on 1115 // particular names. 1116 llvm::GlobalVariable *GV = 1117 new llvm::GlobalVariable(Ty, false, 1118 llvm::GlobalVariable::ExternalLinkage, 0, 1119 "__CFConstantStringClassReference", 1120 &getModule()); 1121 1122 // Decay array -> ptr 1123 CFConstantStringClassRef = 1124 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1125 } 1126 1127 QualType CFTy = getContext().getCFConstantStringType(); 1128 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1129 1130 const llvm::StructType *STy = 1131 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1132 1133 std::vector<llvm::Constant*> Fields; 1134 RecordDecl::field_iterator Field = CFRD->field_begin(getContext()); 1135 1136 // Class pointer. 1137 FieldDecl *CurField = *Field++; 1138 FieldDecl *NextField = *Field++; 1139 appendFieldAndPadding(*this, Fields, CurField, NextField, 1140 CFConstantStringClassRef, CFRD, STy); 1141 1142 // Flags. 1143 CurField = NextField; 1144 NextField = *Field++; 1145 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1146 appendFieldAndPadding(*this, Fields, CurField, NextField, 1147 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1148 : llvm::ConstantInt::get(Ty, 0x07C8), 1149 CFRD, STy); 1150 1151 // String pointer. 1152 CurField = NextField; 1153 NextField = *Field++; 1154 llvm::Constant *C = llvm::ConstantArray::get(str); 1155 1156 const char *Sect, *Prefix; 1157 bool isConstant; 1158 if (isUTF16) { 1159 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1160 Sect = getContext().Target.getUnicodeStringSection(); 1161 // FIXME: Why does GCC not set constant here? 1162 isConstant = false; 1163 } else { 1164 Prefix = getContext().Target.getStringSymbolPrefix(true); 1165 Sect = getContext().Target.getCFStringDataSection(); 1166 // FIXME: -fwritable-strings should probably affect this, but we 1167 // are following gcc here. 1168 isConstant = true; 1169 } 1170 llvm::GlobalVariable *GV = 1171 new llvm::GlobalVariable(C->getType(), isConstant, 1172 llvm::GlobalValue::InternalLinkage, 1173 C, Prefix, &getModule()); 1174 if (Sect) 1175 GV->setSection(Sect); 1176 if (isUTF16) { 1177 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1178 GV->setAlignment(Align); 1179 } 1180 appendFieldAndPadding(*this, Fields, CurField, NextField, 1181 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1182 CFRD, STy); 1183 1184 // String length. 1185 CurField = NextField; 1186 NextField = 0; 1187 Ty = getTypes().ConvertType(getContext().LongTy); 1188 appendFieldAndPadding(*this, Fields, CurField, NextField, 1189 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1190 1191 // The struct. 1192 C = llvm::ConstantStruct::get(STy, Fields); 1193 GV = new llvm::GlobalVariable(C->getType(), true, 1194 llvm::GlobalVariable::InternalLinkage, C, 1195 getContext().Target.getCFStringSymbolPrefix(), 1196 &getModule()); 1197 if (const char *Sect = getContext().Target.getCFStringSection()) 1198 GV->setSection(Sect); 1199 Entry.setValue(GV); 1200 1201 return GV; 1202 } 1203 1204 /// GetStringForStringLiteral - Return the appropriate bytes for a 1205 /// string literal, properly padded to match the literal type. 1206 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1207 const char *StrData = E->getStrData(); 1208 unsigned Len = E->getByteLength(); 1209 1210 const ConstantArrayType *CAT = 1211 getContext().getAsConstantArrayType(E->getType()); 1212 assert(CAT && "String isn't pointer or array!"); 1213 1214 // Resize the string to the right size. 1215 std::string Str(StrData, StrData+Len); 1216 uint64_t RealLen = CAT->getSize().getZExtValue(); 1217 1218 if (E->isWide()) 1219 RealLen *= getContext().Target.getWCharWidth()/8; 1220 1221 Str.resize(RealLen, '\0'); 1222 1223 return Str; 1224 } 1225 1226 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1227 /// constant array for the given string literal. 1228 llvm::Constant * 1229 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1230 // FIXME: This can be more efficient. 1231 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1232 } 1233 1234 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1235 /// array for the given ObjCEncodeExpr node. 1236 llvm::Constant * 1237 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1238 std::string Str; 1239 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1240 1241 return GetAddrOfConstantCString(Str); 1242 } 1243 1244 1245 /// GenerateWritableString -- Creates storage for a string literal. 1246 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1247 bool constant, 1248 CodeGenModule &CGM, 1249 const char *GlobalName) { 1250 // Create Constant for this string literal. Don't add a '\0'. 1251 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1252 1253 // Create a global variable for this string 1254 return new llvm::GlobalVariable(C->getType(), constant, 1255 llvm::GlobalValue::InternalLinkage, 1256 C, GlobalName, &CGM.getModule()); 1257 } 1258 1259 /// GetAddrOfConstantString - Returns a pointer to a character array 1260 /// containing the literal. This contents are exactly that of the 1261 /// given string, i.e. it will not be null terminated automatically; 1262 /// see GetAddrOfConstantCString. Note that whether the result is 1263 /// actually a pointer to an LLVM constant depends on 1264 /// Feature.WriteableStrings. 1265 /// 1266 /// The result has pointer to array type. 1267 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1268 const char *GlobalName) { 1269 bool IsConstant = !Features.WritableStrings; 1270 1271 // Get the default prefix if a name wasn't specified. 1272 if (!GlobalName) 1273 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1274 1275 // Don't share any string literals if strings aren't constant. 1276 if (!IsConstant) 1277 return GenerateStringLiteral(str, false, *this, GlobalName); 1278 1279 llvm::StringMapEntry<llvm::Constant *> &Entry = 1280 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1281 1282 if (Entry.getValue()) 1283 return Entry.getValue(); 1284 1285 // Create a global variable for this. 1286 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1287 Entry.setValue(C); 1288 return C; 1289 } 1290 1291 /// GetAddrOfConstantCString - Returns a pointer to a character 1292 /// array containing the literal and a terminating '\-' 1293 /// character. The result has pointer to array type. 1294 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1295 const char *GlobalName){ 1296 return GetAddrOfConstantString(str + '\0', GlobalName); 1297 } 1298 1299 /// EmitObjCPropertyImplementations - Emit information for synthesized 1300 /// properties for an implementation. 1301 void CodeGenModule::EmitObjCPropertyImplementations(const 1302 ObjCImplementationDecl *D) { 1303 for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), 1304 e = D->propimpl_end(); i != e; ++i) { 1305 ObjCPropertyImplDecl *PID = *i; 1306 1307 // Dynamic is just for type-checking. 1308 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1309 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1310 1311 // Determine which methods need to be implemented, some may have 1312 // been overridden. Note that ::isSynthesized is not the method 1313 // we want, that just indicates if the decl came from a 1314 // property. What we want to know is if the method is defined in 1315 // this implementation. 1316 if (!D->getInstanceMethod(PD->getGetterName())) 1317 CodeGenFunction(*this).GenerateObjCGetter( 1318 const_cast<ObjCImplementationDecl *>(D), PID); 1319 if (!PD->isReadOnly() && 1320 !D->getInstanceMethod(PD->getSetterName())) 1321 CodeGenFunction(*this).GenerateObjCSetter( 1322 const_cast<ObjCImplementationDecl *>(D), PID); 1323 } 1324 } 1325 } 1326 1327 /// EmitNamespace - Emit all declarations in a namespace. 1328 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1329 for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()), 1330 E = ND->decls_end(getContext()); 1331 I != E; ++I) 1332 EmitTopLevelDecl(*I); 1333 } 1334 1335 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1336 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1337 if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { 1338 ErrorUnsupported(LSD, "linkage spec"); 1339 return; 1340 } 1341 1342 for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()), 1343 E = LSD->decls_end(getContext()); 1344 I != E; ++I) 1345 EmitTopLevelDecl(*I); 1346 } 1347 1348 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1349 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1350 // If an error has occurred, stop code generation, but continue 1351 // parsing and semantic analysis (to ensure all warnings and errors 1352 // are emitted). 1353 if (Diags.hasErrorOccurred()) 1354 return; 1355 1356 switch (D->getKind()) { 1357 case Decl::CXXMethod: 1358 case Decl::Function: 1359 case Decl::Var: 1360 EmitGlobal(cast<ValueDecl>(D)); 1361 break; 1362 1363 // C++ Decls 1364 case Decl::Namespace: 1365 EmitNamespace(cast<NamespaceDecl>(D)); 1366 break; 1367 case Decl::CXXConstructor: 1368 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1369 break; 1370 case Decl::CXXDestructor: 1371 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1372 break; 1373 1374 // Objective-C Decls 1375 1376 // Forward declarations, no (immediate) code generation. 1377 case Decl::ObjCClass: 1378 case Decl::ObjCForwardProtocol: 1379 case Decl::ObjCCategory: 1380 break; 1381 case Decl::ObjCInterface: 1382 // If we already laid out this interface due to an @class, and if we 1383 // codegen'd a reference it, update the 'opaque' type to be a real type now. 1384 Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D)); 1385 break; 1386 1387 case Decl::ObjCProtocol: 1388 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1389 break; 1390 1391 case Decl::ObjCCategoryImpl: 1392 // Categories have properties but don't support synthesize so we 1393 // can ignore them here. 1394 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1395 break; 1396 1397 case Decl::ObjCImplementation: { 1398 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1399 EmitObjCPropertyImplementations(OMD); 1400 Runtime->GenerateClass(OMD); 1401 break; 1402 } 1403 case Decl::ObjCMethod: { 1404 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1405 // If this is not a prototype, emit the body. 1406 if (OMD->getBody()) 1407 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1408 break; 1409 } 1410 case Decl::ObjCCompatibleAlias: 1411 // compatibility-alias is a directive and has no code gen. 1412 break; 1413 1414 case Decl::LinkageSpec: 1415 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1416 break; 1417 1418 case Decl::FileScopeAsm: { 1419 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1420 std::string AsmString(AD->getAsmString()->getStrData(), 1421 AD->getAsmString()->getByteLength()); 1422 1423 const std::string &S = getModule().getModuleInlineAsm(); 1424 if (S.empty()) 1425 getModule().setModuleInlineAsm(AsmString); 1426 else 1427 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1428 break; 1429 } 1430 1431 default: 1432 // Make sure we handled everything we should, every other kind is 1433 // a non-top-level decl. FIXME: Would be nice to have an 1434 // isTopLevelDeclKind function. Need to recode Decl::Kind to do 1435 // that easily. 1436 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1437 } 1438 } 1439