1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Diagnostic.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Basic/ConvertUTF.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Module.h"
30 #include "llvm/Intrinsics.h"
31 #include "llvm/Target/TargetData.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 
36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
37                              llvm::Module &M, const llvm::TargetData &TD,
38                              Diagnostic &diags)
39   : BlockModule(C, M, TD, Types, *this), Context(C),
40     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
41     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
42     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
43 
44   if (!Features.ObjC1)
45     Runtime = 0;
46   else if (!Features.NeXTRuntime)
47     Runtime = CreateGNUObjCRuntime(*this);
48   else if (Features.ObjCNonFragileABI)
49     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
50   else
51     Runtime = CreateMacObjCRuntime(*this);
52 
53   // If debug info generation is enabled, create the CGDebugInfo object.
54   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
55 }
56 
57 CodeGenModule::~CodeGenModule() {
58   delete Runtime;
59   delete DebugInfo;
60 }
61 
62 void CodeGenModule::Release() {
63   EmitDeferred();
64   if (Runtime)
65     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
66       AddGlobalCtor(ObjCInitFunction);
67   EmitCtorList(GlobalCtors, "llvm.global_ctors");
68   EmitCtorList(GlobalDtors, "llvm.global_dtors");
69   EmitAnnotations();
70   EmitLLVMUsed();
71 }
72 
73 /// ErrorUnsupported - Print out an error that codegen doesn't support the
74 /// specified stmt yet.
75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
76                                      bool OmitOnError) {
77   if (OmitOnError && getDiags().hasErrorOccurred())
78     return;
79   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
80                                                "cannot compile this %0 yet");
81   std::string Msg = Type;
82   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
83     << Msg << S->getSourceRange();
84 }
85 
86 /// ErrorUnsupported - Print out an error that codegen doesn't support the
87 /// specified decl yet.
88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
89                                      bool OmitOnError) {
90   if (OmitOnError && getDiags().hasErrorOccurred())
91     return;
92   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
93                                                "cannot compile this %0 yet");
94   std::string Msg = Type;
95   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
96 }
97 
98 LangOptions::VisibilityMode
99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
100   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
101     if (VD->getStorageClass() == VarDecl::PrivateExtern)
102       return LangOptions::Hidden;
103 
104   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
105     switch (attr->getVisibility()) {
106     default: assert(0 && "Unknown visibility!");
107     case VisibilityAttr::DefaultVisibility:
108       return LangOptions::Default;
109     case VisibilityAttr::HiddenVisibility:
110       return LangOptions::Hidden;
111     case VisibilityAttr::ProtectedVisibility:
112       return LangOptions::Protected;
113     }
114   }
115 
116   return getLangOptions().getVisibilityMode();
117 }
118 
119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
120                                         const Decl *D) const {
121   // Internal definitions always have default visibility.
122   if (GV->hasLocalLinkage()) {
123     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
124     return;
125   }
126 
127   switch (getDeclVisibilityMode(D)) {
128   default: assert(0 && "Unknown visibility!");
129   case LangOptions::Default:
130     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131   case LangOptions::Hidden:
132     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
133   case LangOptions::Protected:
134     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
135   }
136 }
137 
138 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
139   const NamedDecl *ND = GD.getDecl();
140 
141   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
142     return getMangledCXXCtorName(D, GD.getCtorType());
143   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
144     return getMangledCXXDtorName(D, GD.getDtorType());
145 
146   return getMangledName(ND);
147 }
148 
149 /// \brief Retrieves the mangled name for the given declaration.
150 ///
151 /// If the given declaration requires a mangled name, returns an
152 /// const char* containing the mangled name.  Otherwise, returns
153 /// the unmangled name.
154 ///
155 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
156   // In C, functions with no attributes never need to be mangled. Fastpath them.
157   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
158     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
159     return ND->getNameAsCString();
160   }
161 
162   llvm::SmallString<256> Name;
163   llvm::raw_svector_ostream Out(Name);
164   if (!mangleName(ND, Context, Out)) {
165     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
166     return ND->getNameAsCString();
167   }
168 
169   Name += '\0';
170   return UniqueMangledName(Name.begin(), Name.end());
171 }
172 
173 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
174                                              const char *NameEnd) {
175   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
176 
177   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
178 }
179 
180 /// AddGlobalCtor - Add a function to the list that will be called before
181 /// main() runs.
182 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
183   // FIXME: Type coercion of void()* types.
184   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
185 }
186 
187 /// AddGlobalDtor - Add a function to the list that will be called
188 /// when the module is unloaded.
189 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
190   // FIXME: Type coercion of void()* types.
191   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
192 }
193 
194 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
195   // Ctor function type is void()*.
196   llvm::FunctionType* CtorFTy =
197     llvm::FunctionType::get(llvm::Type::VoidTy,
198                             std::vector<const llvm::Type*>(),
199                             false);
200   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
201 
202   // Get the type of a ctor entry, { i32, void ()* }.
203   llvm::StructType* CtorStructTy =
204     llvm::StructType::get(llvm::Type::Int32Ty,
205                           llvm::PointerType::getUnqual(CtorFTy), NULL);
206 
207   // Construct the constructor and destructor arrays.
208   std::vector<llvm::Constant*> Ctors;
209   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
210     std::vector<llvm::Constant*> S;
211     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
212     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
213     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
214   }
215 
216   if (!Ctors.empty()) {
217     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
218     new llvm::GlobalVariable(AT, false,
219                              llvm::GlobalValue::AppendingLinkage,
220                              llvm::ConstantArray::get(AT, Ctors),
221                              GlobalName,
222                              &TheModule);
223   }
224 }
225 
226 void CodeGenModule::EmitAnnotations() {
227   if (Annotations.empty())
228     return;
229 
230   // Create a new global variable for the ConstantStruct in the Module.
231   llvm::Constant *Array =
232   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
233                                                 Annotations.size()),
234                            Annotations);
235   llvm::GlobalValue *gv =
236   new llvm::GlobalVariable(Array->getType(), false,
237                            llvm::GlobalValue::AppendingLinkage, Array,
238                            "llvm.global.annotations", &TheModule);
239   gv->setSection("llvm.metadata");
240 }
241 
242 static CodeGenModule::GVALinkage
243 GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) {
244   // "static" functions get internal linkage.
245   if (FD->getStorageClass() == FunctionDecl::Static)
246     return CodeGenModule::GVA_Internal;
247 
248   if (!FD->isInline())
249     return CodeGenModule::GVA_StrongExternal;
250 
251   // If the inline function explicitly has the GNU inline attribute on it, or if
252   // this is C89 mode, we use to GNU semantics.
253   if (!Features.C99 && !Features.CPlusPlus) {
254     // extern inline in GNU mode is like C99 inline.
255     if (FD->getStorageClass() == FunctionDecl::Extern)
256       return CodeGenModule::GVA_C99Inline;
257     // Normal inline is a strong symbol.
258     return CodeGenModule::GVA_StrongExternal;
259   } else if (FD->hasActiveGNUInlineAttribute()) {
260     // GCC in C99 mode seems to use a different decision-making
261     // process for extern inline, which factors in previous
262     // declarations.
263     if (FD->isExternGNUInline())
264       return CodeGenModule::GVA_C99Inline;
265     // Normal inline is a strong symbol.
266     return CodeGenModule::GVA_StrongExternal;
267   }
268 
269   // The definition of inline changes based on the language.  Note that we
270   // have already handled "static inline" above, with the GVA_Internal case.
271   if (Features.CPlusPlus)  // inline and extern inline.
272     return CodeGenModule::GVA_CXXInline;
273 
274   assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
275   if (FD->isC99InlineDefinition())
276     return CodeGenModule::GVA_C99Inline;
277 
278   return CodeGenModule::GVA_StrongExternal;
279 }
280 
281 /// SetFunctionDefinitionAttributes - Set attributes for a global.
282 ///
283 /// FIXME: This is currently only done for aliases and functions, but
284 /// not for variables (these details are set in
285 /// EmitGlobalVarDefinition for variables).
286 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
287                                                     llvm::GlobalValue *GV) {
288   GVALinkage Linkage = GetLinkageForFunction(D, Features);
289 
290   if (Linkage == GVA_Internal) {
291     GV->setLinkage(llvm::Function::InternalLinkage);
292   } else if (D->hasAttr<DLLExportAttr>()) {
293     GV->setLinkage(llvm::Function::DLLExportLinkage);
294   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
295     GV->setLinkage(llvm::Function::WeakAnyLinkage);
296   } else if (Linkage == GVA_C99Inline) {
297     // In C99 mode, 'inline' functions are guaranteed to have a strong
298     // definition somewhere else, so we can use available_externally linkage.
299     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
300   } else if (Linkage == GVA_CXXInline) {
301     // In C++, the compiler has to emit a definition in every translation unit
302     // that references the function.  We should use linkonce_odr because
303     // a) if all references in this translation unit are optimized away, we
304     // don't need to codegen it.  b) if the function persists, it needs to be
305     // merged with other definitions. c) C++ has the ODR, so we know the
306     // definition is dependable.
307     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
308   } else {
309     assert(Linkage == GVA_StrongExternal);
310     // Otherwise, we have strong external linkage.
311     GV->setLinkage(llvm::Function::ExternalLinkage);
312   }
313 
314   SetCommonAttributes(D, GV);
315 }
316 
317 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
318                                               const CGFunctionInfo &Info,
319                                               llvm::Function *F) {
320   AttributeListType AttributeList;
321   ConstructAttributeList(Info, D, AttributeList);
322 
323   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
324                                         AttributeList.size()));
325 
326   // Set the appropriate calling convention for the Function.
327   if (D->hasAttr<FastCallAttr>())
328     F->setCallingConv(llvm::CallingConv::X86_FastCall);
329 
330   if (D->hasAttr<StdCallAttr>())
331     F->setCallingConv(llvm::CallingConv::X86_StdCall);
332 }
333 
334 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
335                                                            llvm::Function *F) {
336   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
337     F->addFnAttr(llvm::Attribute::NoUnwind);
338 
339   if (D->hasAttr<AlwaysInlineAttr>())
340     F->addFnAttr(llvm::Attribute::AlwaysInline);
341 
342   if (D->hasAttr<NoinlineAttr>())
343     F->addFnAttr(llvm::Attribute::NoInline);
344 }
345 
346 void CodeGenModule::SetCommonAttributes(const Decl *D,
347                                         llvm::GlobalValue *GV) {
348   setGlobalVisibility(GV, D);
349 
350   if (D->hasAttr<UsedAttr>())
351     AddUsedGlobal(GV);
352 
353   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
354     GV->setSection(SA->getName());
355 }
356 
357 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
358                                                   llvm::Function *F,
359                                                   const CGFunctionInfo &FI) {
360   SetLLVMFunctionAttributes(D, FI, F);
361   SetLLVMFunctionAttributesForDefinition(D, F);
362 
363   F->setLinkage(llvm::Function::InternalLinkage);
364 
365   SetCommonAttributes(D, F);
366 }
367 
368 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
369                                           llvm::Function *F) {
370   SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
371 
372   // Only a few attributes are set on declarations; these may later be
373   // overridden by a definition.
374 
375   if (FD->hasAttr<DLLImportAttr>()) {
376     F->setLinkage(llvm::Function::DLLImportLinkage);
377   } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) {
378     // "extern_weak" is overloaded in LLVM; we probably should have
379     // separate linkage types for this.
380     F->setLinkage(llvm::Function::ExternalWeakLinkage);
381   } else {
382     F->setLinkage(llvm::Function::ExternalLinkage);
383   }
384 
385   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
386     F->setSection(SA->getName());
387 }
388 
389 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
390   assert(!GV->isDeclaration() &&
391          "Only globals with definition can force usage.");
392   LLVMUsed.push_back(GV);
393 }
394 
395 void CodeGenModule::EmitLLVMUsed() {
396   // Don't create llvm.used if there is no need.
397   if (LLVMUsed.empty())
398     return;
399 
400   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
401   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size());
402 
403   // Convert LLVMUsed to what ConstantArray needs.
404   std::vector<llvm::Constant*> UsedArray;
405   UsedArray.resize(LLVMUsed.size());
406   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
407     UsedArray[i] =
408      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
409   }
410 
411   llvm::GlobalVariable *GV =
412     new llvm::GlobalVariable(ATy, false,
413                              llvm::GlobalValue::AppendingLinkage,
414                              llvm::ConstantArray::get(ATy, UsedArray),
415                              "llvm.used", &getModule());
416 
417   GV->setSection("llvm.metadata");
418 }
419 
420 void CodeGenModule::EmitDeferred() {
421   // Emit code for any potentially referenced deferred decls.  Since a
422   // previously unused static decl may become used during the generation of code
423   // for a static function, iterate until no  changes are made.
424   while (!DeferredDeclsToEmit.empty()) {
425     GlobalDecl D = DeferredDeclsToEmit.back();
426     DeferredDeclsToEmit.pop_back();
427 
428     // The mangled name for the decl must have been emitted in GlobalDeclMap.
429     // Look it up to see if it was defined with a stronger definition (e.g. an
430     // extern inline function with a strong function redefinition).  If so,
431     // just ignore the deferred decl.
432     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
433     assert(CGRef && "Deferred decl wasn't referenced?");
434 
435     if (!CGRef->isDeclaration())
436       continue;
437 
438     // Otherwise, emit the definition and move on to the next one.
439     EmitGlobalDefinition(D);
440   }
441 }
442 
443 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
444 /// annotation information for a given GlobalValue.  The annotation struct is
445 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
446 /// GlobalValue being annotated.  The second field is the constant string
447 /// created from the AnnotateAttr's annotation.  The third field is a constant
448 /// string containing the name of the translation unit.  The fourth field is
449 /// the line number in the file of the annotated value declaration.
450 ///
451 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
452 ///        appears to.
453 ///
454 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
455                                                 const AnnotateAttr *AA,
456                                                 unsigned LineNo) {
457   llvm::Module *M = &getModule();
458 
459   // get [N x i8] constants for the annotation string, and the filename string
460   // which are the 2nd and 3rd elements of the global annotation structure.
461   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
462   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
463   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
464                                                   true);
465 
466   // Get the two global values corresponding to the ConstantArrays we just
467   // created to hold the bytes of the strings.
468   const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
469   llvm::GlobalValue *annoGV =
470   new llvm::GlobalVariable(anno->getType(), false,
471                            llvm::GlobalValue::InternalLinkage, anno,
472                            GV->getName() + StringPrefix, M);
473   // translation unit name string, emitted into the llvm.metadata section.
474   llvm::GlobalValue *unitGV =
475   new llvm::GlobalVariable(unit->getType(), false,
476                            llvm::GlobalValue::InternalLinkage, unit,
477                            StringPrefix, M);
478 
479   // Create the ConstantStruct for the global annotation.
480   llvm::Constant *Fields[4] = {
481     llvm::ConstantExpr::getBitCast(GV, SBP),
482     llvm::ConstantExpr::getBitCast(annoGV, SBP),
483     llvm::ConstantExpr::getBitCast(unitGV, SBP),
484     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
485   };
486   return llvm::ConstantStruct::get(Fields, 4, false);
487 }
488 
489 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
490   // Never defer when EmitAllDecls is specified or the decl has
491   // attribute used.
492   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
493     return false;
494 
495   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
496     // Constructors and destructors should never be deferred.
497     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
498       return false;
499 
500     GVALinkage Linkage = GetLinkageForFunction(FD, Features);
501 
502     // static, static inline, always_inline, and extern inline functions can
503     // always be deferred.  Normal inline functions can be deferred in C99/C++.
504     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
505         Linkage == GVA_CXXInline)
506       return true;
507     return false;
508   }
509 
510   const VarDecl *VD = cast<VarDecl>(Global);
511   assert(VD->isFileVarDecl() && "Invalid decl");
512 
513   return VD->getStorageClass() == VarDecl::Static;
514 }
515 
516 void CodeGenModule::EmitGlobal(const GlobalDecl &GD) {
517   const ValueDecl *Global = GD.getDecl();
518 
519   // If this is an alias definition (which otherwise looks like a declaration)
520   // emit it now.
521   if (Global->hasAttr<AliasAttr>())
522     return EmitAliasDefinition(Global);
523 
524   // Ignore declarations, they will be emitted on their first use.
525   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
526     // Forward declarations are emitted lazily on first use.
527     if (!FD->isThisDeclarationADefinition())
528       return;
529   } else {
530     const VarDecl *VD = cast<VarDecl>(Global);
531     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
532 
533     // In C++, if this is marked "extern", defer code generation.
534     if (getLangOptions().CPlusPlus &&
535         VD->getStorageClass() == VarDecl::Extern && !VD->getInit())
536       return;
537 
538     // In C, if this isn't a definition, defer code generation.
539     if (!getLangOptions().CPlusPlus && !VD->getInit())
540       return;
541   }
542 
543   // Defer code generation when possible if this is a static definition, inline
544   // function etc.  These we only want to emit if they are used.
545   if (MayDeferGeneration(Global)) {
546     // If the value has already been used, add it directly to the
547     // DeferredDeclsToEmit list.
548     const char *MangledName = getMangledName(GD);
549     if (GlobalDeclMap.count(MangledName))
550       DeferredDeclsToEmit.push_back(GD);
551     else {
552       // Otherwise, remember that we saw a deferred decl with this name.  The
553       // first use of the mangled name will cause it to move into
554       // DeferredDeclsToEmit.
555       DeferredDecls[MangledName] = GD;
556     }
557     return;
558   }
559 
560   // Otherwise emit the definition.
561   EmitGlobalDefinition(GD);
562 }
563 
564 void CodeGenModule::EmitGlobalDefinition(const GlobalDecl &GD) {
565   const ValueDecl *D = GD.getDecl();
566 
567   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
568     EmitCXXConstructor(CD, GD.getCtorType());
569   else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
570     EmitGlobalFunctionDefinition(FD);
571   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
572     EmitGlobalVarDefinition(VD);
573   else {
574     assert(0 && "Invalid argument to EmitGlobalDefinition()");
575   }
576 }
577 
578 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
579 /// module, create and return an llvm Function with the specified type. If there
580 /// is something in the module with the specified name, return it potentially
581 /// bitcasted to the right type.
582 ///
583 /// If D is non-null, it specifies a decl that correspond to this.  This is used
584 /// to set the attributes on the function when it is first created.
585 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
586                                                        const llvm::Type *Ty,
587                                                        const FunctionDecl *D) {
588   // Lookup the entry, lazily creating it if necessary.
589   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
590   if (Entry) {
591     if (Entry->getType()->getElementType() == Ty)
592       return Entry;
593 
594     // Make sure the result is of the correct type.
595     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
596     return llvm::ConstantExpr::getBitCast(Entry, PTy);
597   }
598 
599   // This is the first use or definition of a mangled name.  If there is a
600   // deferred decl with this name, remember that we need to emit it at the end
601   // of the file.
602   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
603   DeferredDecls.find(MangledName);
604   if (DDI != DeferredDecls.end()) {
605     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
606     // list, and remove it from DeferredDecls (since we don't need it anymore).
607     DeferredDeclsToEmit.push_back(DDI->second);
608     DeferredDecls.erase(DDI);
609   }
610 
611   // This function doesn't have a complete type (for example, the return
612   // type is an incomplete struct). Use a fake type instead, and make
613   // sure not to try to set attributes.
614   bool ShouldSetAttributes = true;
615   if (!isa<llvm::FunctionType>(Ty)) {
616     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
617                                  std::vector<const llvm::Type*>(), false);
618     ShouldSetAttributes = false;
619   }
620   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
621                                              llvm::Function::ExternalLinkage,
622                                              "", &getModule());
623   F->setName(MangledName);
624   if (D && ShouldSetAttributes)
625     SetFunctionAttributes(D, F);
626   Entry = F;
627   return F;
628 }
629 
630 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
631 /// non-null, then this function will use the specified type if it has to
632 /// create it (this occurs when we see a definition of the function).
633 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D,
634                                                  const llvm::Type *Ty) {
635   // If there was no specific requested type, just convert it now.
636   if (!Ty)
637     Ty = getTypes().ConvertType(D->getType());
638   return GetOrCreateLLVMFunction(getMangledName(D), Ty, D);
639 }
640 
641 /// CreateRuntimeFunction - Create a new runtime function with the specified
642 /// type and name.
643 llvm::Constant *
644 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
645                                      const char *Name) {
646   // Convert Name to be a uniqued string from the IdentifierInfo table.
647   Name = getContext().Idents.get(Name).getName();
648   return GetOrCreateLLVMFunction(Name, FTy, 0);
649 }
650 
651 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
652 /// create and return an llvm GlobalVariable with the specified type.  If there
653 /// is something in the module with the specified name, return it potentially
654 /// bitcasted to the right type.
655 ///
656 /// If D is non-null, it specifies a decl that correspond to this.  This is used
657 /// to set the attributes on the global when it is first created.
658 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
659                                                      const llvm::PointerType*Ty,
660                                                      const VarDecl *D) {
661   // Lookup the entry, lazily creating it if necessary.
662   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
663   if (Entry) {
664     if (Entry->getType() == Ty)
665       return Entry;
666 
667     // Make sure the result is of the correct type.
668     return llvm::ConstantExpr::getBitCast(Entry, Ty);
669   }
670 
671   // This is the first use or definition of a mangled name.  If there is a
672   // deferred decl with this name, remember that we need to emit it at the end
673   // of the file.
674   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
675     DeferredDecls.find(MangledName);
676   if (DDI != DeferredDecls.end()) {
677     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
678     // list, and remove it from DeferredDecls (since we don't need it anymore).
679     DeferredDeclsToEmit.push_back(DDI->second);
680     DeferredDecls.erase(DDI);
681   }
682 
683   llvm::GlobalVariable *GV =
684     new llvm::GlobalVariable(Ty->getElementType(), false,
685                              llvm::GlobalValue::ExternalLinkage,
686                              0, "", &getModule(),
687                              false, Ty->getAddressSpace());
688   GV->setName(MangledName);
689 
690   // Handle things which are present even on external declarations.
691   if (D) {
692     // FIXME: This code is overly simple and should be merged with
693     // other global handling.
694     GV->setConstant(D->getType().isConstant(Context));
695 
696     // FIXME: Merge with other attribute handling code.
697     if (D->getStorageClass() == VarDecl::PrivateExtern)
698       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
699 
700     if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
701       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
702 
703     GV->setThreadLocal(D->isThreadSpecified());
704   }
705 
706   return Entry = GV;
707 }
708 
709 
710 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
711 /// given global variable.  If Ty is non-null and if the global doesn't exist,
712 /// then it will be greated with the specified type instead of whatever the
713 /// normal requested type would be.
714 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
715                                                   const llvm::Type *Ty) {
716   assert(D->hasGlobalStorage() && "Not a global variable");
717   QualType ASTTy = D->getType();
718   if (Ty == 0)
719     Ty = getTypes().ConvertTypeForMem(ASTTy);
720 
721   const llvm::PointerType *PTy =
722     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
723   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
724 }
725 
726 /// CreateRuntimeVariable - Create a new runtime global variable with the
727 /// specified type and name.
728 llvm::Constant *
729 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
730                                      const char *Name) {
731   // Convert Name to be a uniqued string from the IdentifierInfo table.
732   Name = getContext().Idents.get(Name).getName();
733   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
734 }
735 
736 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
737   assert(!D->getInit() && "Cannot emit definite definitions here!");
738 
739   if (MayDeferGeneration(D)) {
740     // If we have not seen a reference to this variable yet, place it
741     // into the deferred declarations table to be emitted if needed
742     // later.
743     const char *MangledName = getMangledName(D);
744     if (GlobalDeclMap.count(MangledName) == 0) {
745       DeferredDecls[MangledName] = GlobalDecl(D);
746       return;
747     }
748   }
749 
750   // The tentative definition is the only definition.
751   EmitGlobalVarDefinition(D);
752 }
753 
754 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
755   llvm::Constant *Init = 0;
756   QualType ASTTy = D->getType();
757 
758   if (D->getInit() == 0) {
759     // This is a tentative definition; tentative definitions are
760     // implicitly initialized with { 0 }.
761     //
762     // Note that tentative definitions are only emitted at the end of
763     // a translation unit, so they should never have incomplete
764     // type. In addition, EmitTentativeDefinition makes sure that we
765     // never attempt to emit a tentative definition if a real one
766     // exists. A use may still exists, however, so we still may need
767     // to do a RAUW.
768     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
769     Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy));
770   } else {
771     Init = EmitConstantExpr(D->getInit(), D->getType());
772     if (!Init) {
773       ErrorUnsupported(D, "static initializer");
774       QualType T = D->getInit()->getType();
775       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
776     }
777   }
778 
779   const llvm::Type* InitType = Init->getType();
780   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
781 
782   // Strip off a bitcast if we got one back.
783   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
784     assert(CE->getOpcode() == llvm::Instruction::BitCast);
785     Entry = CE->getOperand(0);
786   }
787 
788   // Entry is now either a Function or GlobalVariable.
789   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
790 
791   // We have a definition after a declaration with the wrong type.
792   // We must make a new GlobalVariable* and update everything that used OldGV
793   // (a declaration or tentative definition) with the new GlobalVariable*
794   // (which will be a definition).
795   //
796   // This happens if there is a prototype for a global (e.g.
797   // "extern int x[];") and then a definition of a different type (e.g.
798   // "int x[10];"). This also happens when an initializer has a different type
799   // from the type of the global (this happens with unions).
800   if (GV == 0 ||
801       GV->getType()->getElementType() != InitType ||
802       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
803 
804     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
805     GlobalDeclMap.erase(getMangledName(D));
806 
807     // Make a new global with the correct type, this is now guaranteed to work.
808     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
809     GV->takeName(cast<llvm::GlobalValue>(Entry));
810 
811     // Replace all uses of the old global with the new global
812     llvm::Constant *NewPtrForOldDecl =
813         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
814     Entry->replaceAllUsesWith(NewPtrForOldDecl);
815 
816     // Erase the old global, since it is no longer used.
817     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
818   }
819 
820   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
821     SourceManager &SM = Context.getSourceManager();
822     AddAnnotation(EmitAnnotateAttr(GV, AA,
823                               SM.getInstantiationLineNumber(D->getLocation())));
824   }
825 
826   GV->setInitializer(Init);
827   GV->setConstant(D->getType().isConstant(Context));
828   GV->setAlignment(getContext().getDeclAlignInBytes(D));
829 
830   // Set the llvm linkage type as appropriate.
831   if (D->getStorageClass() == VarDecl::Static)
832     GV->setLinkage(llvm::Function::InternalLinkage);
833   else if (D->hasAttr<DLLImportAttr>())
834     GV->setLinkage(llvm::Function::DLLImportLinkage);
835   else if (D->hasAttr<DLLExportAttr>())
836     GV->setLinkage(llvm::Function::DLLExportLinkage);
837   else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
838     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
839   else if (!CompileOpts.NoCommon &&
840            (!D->hasExternalStorage() && !D->getInit()))
841     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
842   else
843     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
844 
845   SetCommonAttributes(D, GV);
846 
847   // Emit global variable debug information.
848   if (CGDebugInfo *DI = getDebugInfo()) {
849     DI->setLocation(D->getLocation());
850     DI->EmitGlobalVariable(GV, D);
851   }
852 }
853 
854 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
855 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
856 /// existing call uses of the old function in the module, this adjusts them to
857 /// call the new function directly.
858 ///
859 /// This is not just a cleanup: the always_inline pass requires direct calls to
860 /// functions to be able to inline them.  If there is a bitcast in the way, it
861 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
862 /// run at -O0.
863 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
864                                                       llvm::Function *NewFn) {
865   // If we're redefining a global as a function, don't transform it.
866   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
867   if (OldFn == 0) return;
868 
869   const llvm::Type *NewRetTy = NewFn->getReturnType();
870   llvm::SmallVector<llvm::Value*, 4> ArgList;
871 
872   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
873        UI != E; ) {
874     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
875     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
876     if (!CI) continue;
877 
878     // If the return types don't match exactly, and if the call isn't dead, then
879     // we can't transform this call.
880     if (CI->getType() != NewRetTy && !CI->use_empty())
881       continue;
882 
883     // If the function was passed too few arguments, don't transform.  If extra
884     // arguments were passed, we silently drop them.  If any of the types
885     // mismatch, we don't transform.
886     unsigned ArgNo = 0;
887     bool DontTransform = false;
888     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
889          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
890       if (CI->getNumOperands()-1 == ArgNo ||
891           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
892         DontTransform = true;
893         break;
894       }
895     }
896     if (DontTransform)
897       continue;
898 
899     // Okay, we can transform this.  Create the new call instruction and copy
900     // over the required information.
901     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
902     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
903                                                      ArgList.end(), "", CI);
904     ArgList.clear();
905     if (NewCall->getType() != llvm::Type::VoidTy)
906       NewCall->takeName(CI);
907     NewCall->setCallingConv(CI->getCallingConv());
908     NewCall->setAttributes(CI->getAttributes());
909 
910     // Finally, remove the old call, replacing any uses with the new one.
911     if (!CI->use_empty())
912       CI->replaceAllUsesWith(NewCall);
913     CI->eraseFromParent();
914   }
915 }
916 
917 
918 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) {
919   const llvm::FunctionType *Ty;
920 
921   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
922     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
923 
924     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
925   } else {
926     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
927 
928     // As a special case, make sure that definitions of K&R function
929     // "type foo()" aren't declared as varargs (which forces the backend
930     // to do unnecessary work).
931     if (D->getType()->isFunctionNoProtoType()) {
932       assert(Ty->isVarArg() && "Didn't lower type as expected");
933       // Due to stret, the lowered function could have arguments.
934       // Just create the same type as was lowered by ConvertType
935       // but strip off the varargs bit.
936       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
937       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
938     }
939   }
940 
941   // Get or create the prototype for teh function.
942   llvm::Constant *Entry = GetAddrOfFunction(D, Ty);
943 
944   // Strip off a bitcast if we got one back.
945   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
946     assert(CE->getOpcode() == llvm::Instruction::BitCast);
947     Entry = CE->getOperand(0);
948   }
949 
950 
951   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
952     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
953 
954     // If the types mismatch then we have to rewrite the definition.
955     assert(OldFn->isDeclaration() &&
956            "Shouldn't replace non-declaration");
957 
958     // F is the Function* for the one with the wrong type, we must make a new
959     // Function* and update everything that used F (a declaration) with the new
960     // Function* (which will be a definition).
961     //
962     // This happens if there is a prototype for a function
963     // (e.g. "int f()") and then a definition of a different type
964     // (e.g. "int f(int x)").  Start by making a new function of the
965     // correct type, RAUW, then steal the name.
966     GlobalDeclMap.erase(getMangledName(D));
967     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty));
968     NewFn->takeName(OldFn);
969 
970     // If this is an implementation of a function without a prototype, try to
971     // replace any existing uses of the function (which may be calls) with uses
972     // of the new function
973     if (D->getType()->isFunctionNoProtoType())
974       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
975 
976     // Replace uses of F with the Function we will endow with a body.
977     if (!Entry->use_empty()) {
978       llvm::Constant *NewPtrForOldDecl =
979         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
980       Entry->replaceAllUsesWith(NewPtrForOldDecl);
981     }
982 
983     // Ok, delete the old function now, which is dead.
984     OldFn->eraseFromParent();
985 
986     Entry = NewFn;
987   }
988 
989   llvm::Function *Fn = cast<llvm::Function>(Entry);
990 
991   CodeGenFunction(*this).GenerateCode(D, Fn);
992 
993   SetFunctionDefinitionAttributes(D, Fn);
994   SetLLVMFunctionAttributesForDefinition(D, Fn);
995 
996   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
997     AddGlobalCtor(Fn, CA->getPriority());
998   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
999     AddGlobalDtor(Fn, DA->getPriority());
1000 }
1001 
1002 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1003   const AliasAttr *AA = D->getAttr<AliasAttr>();
1004   assert(AA && "Not an alias?");
1005 
1006   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1007 
1008   // Unique the name through the identifier table.
1009   const char *AliaseeName = AA->getAliasee().c_str();
1010   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1011 
1012   // Create a reference to the named value.  This ensures that it is emitted
1013   // if a deferred decl.
1014   llvm::Constant *Aliasee;
1015   if (isa<llvm::FunctionType>(DeclTy))
1016     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0);
1017   else
1018     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1019                                     llvm::PointerType::getUnqual(DeclTy), 0);
1020 
1021   // Create the new alias itself, but don't set a name yet.
1022   llvm::GlobalValue *GA =
1023     new llvm::GlobalAlias(Aliasee->getType(),
1024                           llvm::Function::ExternalLinkage,
1025                           "", Aliasee, &getModule());
1026 
1027   // See if there is already something with the alias' name in the module.
1028   const char *MangledName = getMangledName(D);
1029   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1030 
1031   if (Entry && !Entry->isDeclaration()) {
1032     // If there is a definition in the module, then it wins over the alias.
1033     // This is dubious, but allow it to be safe.  Just ignore the alias.
1034     GA->eraseFromParent();
1035     return;
1036   }
1037 
1038   if (Entry) {
1039     // If there is a declaration in the module, then we had an extern followed
1040     // by the alias, as in:
1041     //   extern int test6();
1042     //   ...
1043     //   int test6() __attribute__((alias("test7")));
1044     //
1045     // Remove it and replace uses of it with the alias.
1046 
1047     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1048                                                           Entry->getType()));
1049     Entry->eraseFromParent();
1050   }
1051 
1052   // Now we know that there is no conflict, set the name.
1053   Entry = GA;
1054   GA->setName(MangledName);
1055 
1056   // Set attributes which are particular to an alias; this is a
1057   // specialization of the attributes which may be set on a global
1058   // variable/function.
1059   if (D->hasAttr<DLLExportAttr>()) {
1060     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1061       // The dllexport attribute is ignored for undefined symbols.
1062       if (FD->getBody(getContext()))
1063         GA->setLinkage(llvm::Function::DLLExportLinkage);
1064     } else {
1065       GA->setLinkage(llvm::Function::DLLExportLinkage);
1066     }
1067   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
1068     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1069   }
1070 
1071   SetCommonAttributes(D, GA);
1072 }
1073 
1074 /// getBuiltinLibFunction - Given a builtin id for a function like
1075 /// "__builtin_fabsf", return a Function* for "fabsf".
1076 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1077   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1078           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1079          "isn't a lib fn");
1080 
1081   // Get the name, skip over the __builtin_ prefix (if necessary).
1082   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1083   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1084     Name += 10;
1085 
1086   // Get the type for the builtin.
1087   Builtin::Context::GetBuiltinTypeError Error;
1088   QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error);
1089   assert(Error == Builtin::Context::GE_None && "Can't get builtin type");
1090 
1091   const llvm::FunctionType *Ty =
1092     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1093 
1094   // Unique the name through the identifier table.
1095   Name = getContext().Idents.get(Name).getName();
1096   // FIXME: param attributes for sext/zext etc.
1097   return GetOrCreateLLVMFunction(Name, Ty, 0);
1098 }
1099 
1100 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1101                                             unsigned NumTys) {
1102   return llvm::Intrinsic::getDeclaration(&getModule(),
1103                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1104 }
1105 
1106 llvm::Function *CodeGenModule::getMemCpyFn() {
1107   if (MemCpyFn) return MemCpyFn;
1108   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1109   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1110 }
1111 
1112 llvm::Function *CodeGenModule::getMemMoveFn() {
1113   if (MemMoveFn) return MemMoveFn;
1114   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1115   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1116 }
1117 
1118 llvm::Function *CodeGenModule::getMemSetFn() {
1119   if (MemSetFn) return MemSetFn;
1120   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1121   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1122 }
1123 
1124 static void appendFieldAndPadding(CodeGenModule &CGM,
1125                                   std::vector<llvm::Constant*>& Fields,
1126                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1127                                   llvm::Constant* Field,
1128                                   RecordDecl* RD, const llvm::StructType *STy) {
1129   // Append the field.
1130   Fields.push_back(Field);
1131 
1132   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1133 
1134   int NextStructFieldNo;
1135   if (!NextFieldD) {
1136     NextStructFieldNo = STy->getNumElements();
1137   } else {
1138     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1139   }
1140 
1141   // Append padding
1142   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1143     llvm::Constant *C =
1144       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1145 
1146     Fields.push_back(C);
1147   }
1148 }
1149 
1150 llvm::Constant *CodeGenModule::
1151 GetAddrOfConstantCFString(const StringLiteral *Literal) {
1152   std::string str;
1153   unsigned StringLength = 0;
1154 
1155   bool isUTF16 = false;
1156   if (Literal->containsNonAsciiOrNull()) {
1157     // Convert from UTF-8 to UTF-16.
1158     llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1159     const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1160     UTF16 *ToPtr = &ToBuf[0];
1161 
1162     ConversionResult Result;
1163     Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1164                                 &ToPtr, ToPtr+Literal->getByteLength(),
1165                                 strictConversion);
1166     if (Result == conversionOK) {
1167       // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1168       // without doing more surgery to this routine. Since we aren't explicitly
1169       // checking for endianness here, it's also a bug (when generating code for
1170       // a target that doesn't match the host endianness). Modeling this as an
1171       // i16 array is likely the cleanest solution.
1172       StringLength = ToPtr-&ToBuf[0];
1173       str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1174       isUTF16 = true;
1175     } else if (Result == sourceIllegal) {
1176       // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1177       str.assign(Literal->getStrData(), Literal->getByteLength());
1178       StringLength = str.length();
1179     } else
1180       assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1181 
1182   } else {
1183     str.assign(Literal->getStrData(), Literal->getByteLength());
1184     StringLength = str.length();
1185   }
1186   llvm::StringMapEntry<llvm::Constant *> &Entry =
1187     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1188 
1189   if (llvm::Constant *C = Entry.getValue())
1190     return C;
1191 
1192   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1193   llvm::Constant *Zeros[] = { Zero, Zero };
1194 
1195   if (!CFConstantStringClassRef) {
1196     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1197     Ty = llvm::ArrayType::get(Ty, 0);
1198 
1199     // FIXME: This is fairly broken if
1200     // __CFConstantStringClassReference is already defined, in that it
1201     // will get renamed and the user will most likely see an opaque
1202     // error message. This is a general issue with relying on
1203     // particular names.
1204     llvm::GlobalVariable *GV =
1205       new llvm::GlobalVariable(Ty, false,
1206                                llvm::GlobalVariable::ExternalLinkage, 0,
1207                                "__CFConstantStringClassReference",
1208                                &getModule());
1209 
1210     // Decay array -> ptr
1211     CFConstantStringClassRef =
1212       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1213   }
1214 
1215   QualType CFTy = getContext().getCFConstantStringType();
1216   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1217 
1218   const llvm::StructType *STy =
1219     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1220 
1221   std::vector<llvm::Constant*> Fields;
1222   RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
1223 
1224   // Class pointer.
1225   FieldDecl *CurField = *Field++;
1226   FieldDecl *NextField = *Field++;
1227   appendFieldAndPadding(*this, Fields, CurField, NextField,
1228                         CFConstantStringClassRef, CFRD, STy);
1229 
1230   // Flags.
1231   CurField = NextField;
1232   NextField = *Field++;
1233   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1234   appendFieldAndPadding(*this, Fields, CurField, NextField,
1235                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1236                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1237                         CFRD, STy);
1238 
1239   // String pointer.
1240   CurField = NextField;
1241   NextField = *Field++;
1242   llvm::Constant *C = llvm::ConstantArray::get(str);
1243 
1244   const char *Sect, *Prefix;
1245   bool isConstant;
1246   if (isUTF16) {
1247     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1248     Sect = getContext().Target.getUnicodeStringSection();
1249     // FIXME: Why does GCC not set constant here?
1250     isConstant = false;
1251   } else {
1252     Prefix = getContext().Target.getStringSymbolPrefix(true);
1253     Sect = getContext().Target.getCFStringDataSection();
1254     // FIXME: -fwritable-strings should probably affect this, but we
1255     // are following gcc here.
1256     isConstant = true;
1257   }
1258   llvm::GlobalVariable *GV =
1259     new llvm::GlobalVariable(C->getType(), isConstant,
1260                              llvm::GlobalValue::InternalLinkage,
1261                              C, Prefix, &getModule());
1262   if (Sect)
1263     GV->setSection(Sect);
1264   if (isUTF16) {
1265     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1266     GV->setAlignment(Align);
1267   }
1268   appendFieldAndPadding(*this, Fields, CurField, NextField,
1269                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1270                         CFRD, STy);
1271 
1272   // String length.
1273   CurField = NextField;
1274   NextField = 0;
1275   Ty = getTypes().ConvertType(getContext().LongTy);
1276   appendFieldAndPadding(*this, Fields, CurField, NextField,
1277                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1278 
1279   // The struct.
1280   C = llvm::ConstantStruct::get(STy, Fields);
1281   GV = new llvm::GlobalVariable(C->getType(), true,
1282                                 llvm::GlobalVariable::InternalLinkage, C,
1283                                 getContext().Target.getCFStringSymbolPrefix(),
1284                                 &getModule());
1285   if (const char *Sect = getContext().Target.getCFStringSection())
1286     GV->setSection(Sect);
1287   Entry.setValue(GV);
1288 
1289   return GV;
1290 }
1291 
1292 /// GetStringForStringLiteral - Return the appropriate bytes for a
1293 /// string literal, properly padded to match the literal type.
1294 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1295   const char *StrData = E->getStrData();
1296   unsigned Len = E->getByteLength();
1297 
1298   const ConstantArrayType *CAT =
1299     getContext().getAsConstantArrayType(E->getType());
1300   assert(CAT && "String isn't pointer or array!");
1301 
1302   // Resize the string to the right size.
1303   std::string Str(StrData, StrData+Len);
1304   uint64_t RealLen = CAT->getSize().getZExtValue();
1305 
1306   if (E->isWide())
1307     RealLen *= getContext().Target.getWCharWidth()/8;
1308 
1309   Str.resize(RealLen, '\0');
1310 
1311   return Str;
1312 }
1313 
1314 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1315 /// constant array for the given string literal.
1316 llvm::Constant *
1317 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1318   // FIXME: This can be more efficient.
1319   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1320 }
1321 
1322 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1323 /// array for the given ObjCEncodeExpr node.
1324 llvm::Constant *
1325 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1326   std::string Str;
1327   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1328 
1329   return GetAddrOfConstantCString(Str);
1330 }
1331 
1332 
1333 /// GenerateWritableString -- Creates storage for a string literal.
1334 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1335                                              bool constant,
1336                                              CodeGenModule &CGM,
1337                                              const char *GlobalName) {
1338   // Create Constant for this string literal. Don't add a '\0'.
1339   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1340 
1341   // Create a global variable for this string
1342   return new llvm::GlobalVariable(C->getType(), constant,
1343                                   llvm::GlobalValue::InternalLinkage,
1344                                   C, GlobalName, &CGM.getModule());
1345 }
1346 
1347 /// GetAddrOfConstantString - Returns a pointer to a character array
1348 /// containing the literal. This contents are exactly that of the
1349 /// given string, i.e. it will not be null terminated automatically;
1350 /// see GetAddrOfConstantCString. Note that whether the result is
1351 /// actually a pointer to an LLVM constant depends on
1352 /// Feature.WriteableStrings.
1353 ///
1354 /// The result has pointer to array type.
1355 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1356                                                        const char *GlobalName) {
1357   bool IsConstant = !Features.WritableStrings;
1358 
1359   // Get the default prefix if a name wasn't specified.
1360   if (!GlobalName)
1361     GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1362 
1363   // Don't share any string literals if strings aren't constant.
1364   if (!IsConstant)
1365     return GenerateStringLiteral(str, false, *this, GlobalName);
1366 
1367   llvm::StringMapEntry<llvm::Constant *> &Entry =
1368   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1369 
1370   if (Entry.getValue())
1371     return Entry.getValue();
1372 
1373   // Create a global variable for this.
1374   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1375   Entry.setValue(C);
1376   return C;
1377 }
1378 
1379 /// GetAddrOfConstantCString - Returns a pointer to a character
1380 /// array containing the literal and a terminating '\-'
1381 /// character. The result has pointer to array type.
1382 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1383                                                         const char *GlobalName){
1384   return GetAddrOfConstantString(str + '\0', GlobalName);
1385 }
1386 
1387 /// EmitObjCPropertyImplementations - Emit information for synthesized
1388 /// properties for an implementation.
1389 void CodeGenModule::EmitObjCPropertyImplementations(const
1390                                                     ObjCImplementationDecl *D) {
1391   for (ObjCImplementationDecl::propimpl_iterator
1392          i = D->propimpl_begin(getContext()),
1393          e = D->propimpl_end(getContext()); i != e; ++i) {
1394     ObjCPropertyImplDecl *PID = *i;
1395 
1396     // Dynamic is just for type-checking.
1397     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1398       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1399 
1400       // Determine which methods need to be implemented, some may have
1401       // been overridden. Note that ::isSynthesized is not the method
1402       // we want, that just indicates if the decl came from a
1403       // property. What we want to know is if the method is defined in
1404       // this implementation.
1405       if (!D->getInstanceMethod(getContext(), PD->getGetterName()))
1406         CodeGenFunction(*this).GenerateObjCGetter(
1407                                  const_cast<ObjCImplementationDecl *>(D), PID);
1408       if (!PD->isReadOnly() &&
1409           !D->getInstanceMethod(getContext(), PD->getSetterName()))
1410         CodeGenFunction(*this).GenerateObjCSetter(
1411                                  const_cast<ObjCImplementationDecl *>(D), PID);
1412     }
1413   }
1414 }
1415 
1416 /// EmitNamespace - Emit all declarations in a namespace.
1417 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1418   for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
1419          E = ND->decls_end(getContext());
1420        I != E; ++I)
1421     EmitTopLevelDecl(*I);
1422 }
1423 
1424 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1425 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1426   if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1427     ErrorUnsupported(LSD, "linkage spec");
1428     return;
1429   }
1430 
1431   for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
1432          E = LSD->decls_end(getContext());
1433        I != E; ++I)
1434     EmitTopLevelDecl(*I);
1435 }
1436 
1437 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1438 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1439   // If an error has occurred, stop code generation, but continue
1440   // parsing and semantic analysis (to ensure all warnings and errors
1441   // are emitted).
1442   if (Diags.hasErrorOccurred())
1443     return;
1444 
1445   switch (D->getKind()) {
1446   case Decl::CXXMethod:
1447   case Decl::Function:
1448   case Decl::Var:
1449     EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
1450     break;
1451 
1452   // C++ Decls
1453   case Decl::Namespace:
1454     EmitNamespace(cast<NamespaceDecl>(D));
1455     break;
1456   case Decl::CXXConstructor:
1457     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1458     break;
1459   case Decl::CXXDestructor:
1460     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1461     break;
1462 
1463   // Objective-C Decls
1464 
1465   // Forward declarations, no (immediate) code generation.
1466   case Decl::ObjCClass:
1467   case Decl::ObjCForwardProtocol:
1468   case Decl::ObjCCategory:
1469   case Decl::ObjCInterface:
1470     break;
1471 
1472   case Decl::ObjCProtocol:
1473     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1474     break;
1475 
1476   case Decl::ObjCCategoryImpl:
1477     // Categories have properties but don't support synthesize so we
1478     // can ignore them here.
1479     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1480     break;
1481 
1482   case Decl::ObjCImplementation: {
1483     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1484     EmitObjCPropertyImplementations(OMD);
1485     Runtime->GenerateClass(OMD);
1486     break;
1487   }
1488   case Decl::ObjCMethod: {
1489     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1490     // If this is not a prototype, emit the body.
1491     if (OMD->getBody(getContext()))
1492       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1493     break;
1494   }
1495   case Decl::ObjCCompatibleAlias:
1496     // compatibility-alias is a directive and has no code gen.
1497     break;
1498 
1499   case Decl::LinkageSpec:
1500     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1501     break;
1502 
1503   case Decl::FileScopeAsm: {
1504     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1505     std::string AsmString(AD->getAsmString()->getStrData(),
1506                           AD->getAsmString()->getByteLength());
1507 
1508     const std::string &S = getModule().getModuleInlineAsm();
1509     if (S.empty())
1510       getModule().setModuleInlineAsm(AsmString);
1511     else
1512       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1513     break;
1514   }
1515 
1516   default:
1517     // Make sure we handled everything we should, every other kind is
1518     // a non-top-level decl.  FIXME: Would be nice to have an
1519     // isTopLevelDeclKind function. Need to recode Decl::Kind to do
1520     // that easily.
1521     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1522   }
1523 }
1524