1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
44     VMContext(M.getContext()) {
45 
46   if (!Features.ObjC1)
47     Runtime = 0;
48   else if (!Features.NeXTRuntime)
49     Runtime = CreateGNUObjCRuntime(*this);
50   else if (Features.ObjCNonFragileABI)
51     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
52   else
53     Runtime = CreateMacObjCRuntime(*this);
54 
55   // If debug info generation is enabled, create the CGDebugInfo object.
56   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
57 }
58 
59 CodeGenModule::~CodeGenModule() {
60   delete Runtime;
61   delete DebugInfo;
62 }
63 
64 void CodeGenModule::Release() {
65   // We need to call this first because it can add deferred declarations.
66   EmitCXXGlobalInitFunc();
67 
68   EmitDeferred();
69   if (Runtime)
70     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
71       AddGlobalCtor(ObjCInitFunction);
72   EmitCtorList(GlobalCtors, "llvm.global_ctors");
73   EmitCtorList(GlobalDtors, "llvm.global_dtors");
74   EmitAnnotations();
75   EmitLLVMUsed();
76 }
77 
78 /// ErrorUnsupported - Print out an error that codegen doesn't support the
79 /// specified stmt yet.
80 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
81                                      bool OmitOnError) {
82   if (OmitOnError && getDiags().hasErrorOccurred())
83     return;
84   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
85                                                "cannot compile this %0 yet");
86   std::string Msg = Type;
87   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
88     << Msg << S->getSourceRange();
89 }
90 
91 /// ErrorUnsupported - Print out an error that codegen doesn't support the
92 /// specified decl yet.
93 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
94                                      bool OmitOnError) {
95   if (OmitOnError && getDiags().hasErrorOccurred())
96     return;
97   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
98                                                "cannot compile this %0 yet");
99   std::string Msg = Type;
100   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
101 }
102 
103 LangOptions::VisibilityMode
104 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
105   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
106     if (VD->getStorageClass() == VarDecl::PrivateExtern)
107       return LangOptions::Hidden;
108 
109   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
110     switch (attr->getVisibility()) {
111     default: assert(0 && "Unknown visibility!");
112     case VisibilityAttr::DefaultVisibility:
113       return LangOptions::Default;
114     case VisibilityAttr::HiddenVisibility:
115       return LangOptions::Hidden;
116     case VisibilityAttr::ProtectedVisibility:
117       return LangOptions::Protected;
118     }
119   }
120 
121   return getLangOptions().getVisibilityMode();
122 }
123 
124 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
125                                         const Decl *D) const {
126   // Internal definitions always have default visibility.
127   if (GV->hasLocalLinkage()) {
128     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
129     return;
130   }
131 
132   switch (getDeclVisibilityMode(D)) {
133   default: assert(0 && "Unknown visibility!");
134   case LangOptions::Default:
135     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
136   case LangOptions::Hidden:
137     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
138   case LangOptions::Protected:
139     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
140   }
141 }
142 
143 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
144   const NamedDecl *ND = GD.getDecl();
145 
146   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
147     return getMangledCXXCtorName(D, GD.getCtorType());
148   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
149     return getMangledCXXDtorName(D, GD.getDtorType());
150 
151   return getMangledName(ND);
152 }
153 
154 /// \brief Retrieves the mangled name for the given declaration.
155 ///
156 /// If the given declaration requires a mangled name, returns an
157 /// const char* containing the mangled name.  Otherwise, returns
158 /// the unmangled name.
159 ///
160 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
161   // In C, functions with no attributes never need to be mangled. Fastpath them.
162   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
163     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
164     return ND->getNameAsCString();
165   }
166 
167   llvm::SmallString<256> Name;
168   llvm::raw_svector_ostream Out(Name);
169   if (!mangleName(ND, Context, Out)) {
170     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
171     return ND->getNameAsCString();
172   }
173 
174   Name += '\0';
175   return UniqueMangledName(Name.begin(), Name.end());
176 }
177 
178 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
179                                              const char *NameEnd) {
180   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
181 
182   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
183 }
184 
185 /// AddGlobalCtor - Add a function to the list that will be called before
186 /// main() runs.
187 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
188   // FIXME: Type coercion of void()* types.
189   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
190 }
191 
192 /// AddGlobalDtor - Add a function to the list that will be called
193 /// when the module is unloaded.
194 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
195   // FIXME: Type coercion of void()* types.
196   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
197 }
198 
199 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
200   // Ctor function type is void()*.
201   llvm::FunctionType* CtorFTy =
202     llvm::FunctionType::get(llvm::Type::VoidTy,
203                             std::vector<const llvm::Type*>(),
204                             false);
205   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
206 
207   // Get the type of a ctor entry, { i32, void ()* }.
208   llvm::StructType* CtorStructTy =
209     llvm::StructType::get(VMContext, llvm::Type::Int32Ty,
210                           llvm::PointerType::getUnqual(CtorFTy), NULL);
211 
212   // Construct the constructor and destructor arrays.
213   std::vector<llvm::Constant*> Ctors;
214   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
215     std::vector<llvm::Constant*> S;
216     S.push_back(
217       llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
218     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
219     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
220   }
221 
222   if (!Ctors.empty()) {
223     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
224     new llvm::GlobalVariable(TheModule, AT, false,
225                              llvm::GlobalValue::AppendingLinkage,
226                              llvm::ConstantArray::get(AT, Ctors),
227                              GlobalName);
228   }
229 }
230 
231 void CodeGenModule::EmitAnnotations() {
232   if (Annotations.empty())
233     return;
234 
235   // Create a new global variable for the ConstantStruct in the Module.
236   llvm::Constant *Array =
237   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
238                                                 Annotations.size()),
239                            Annotations);
240   llvm::GlobalValue *gv =
241   new llvm::GlobalVariable(TheModule, Array->getType(), false,
242                            llvm::GlobalValue::AppendingLinkage, Array,
243                            "llvm.global.annotations");
244   gv->setSection("llvm.metadata");
245 }
246 
247 static CodeGenModule::GVALinkage
248 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
249                       const LangOptions &Features) {
250   // The kind of external linkage this function will have, if it is not
251   // inline or static.
252   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
253   if (Context.getLangOptions().CPlusPlus &&
254       (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) &&
255       !FD->isExplicitSpecialization())
256     External = CodeGenModule::GVA_TemplateInstantiation;
257 
258   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
259     // C++ member functions defined inside the class are always inline.
260     if (MD->isInline() || !MD->isOutOfLine())
261       return CodeGenModule::GVA_CXXInline;
262 
263     return External;
264   }
265 
266   // "static" functions get internal linkage.
267   if (FD->getStorageClass() == FunctionDecl::Static)
268     return CodeGenModule::GVA_Internal;
269 
270   if (!FD->isInline())
271     return External;
272 
273   // If the inline function explicitly has the GNU inline attribute on it, or if
274   // this is C89 mode, we use to GNU semantics.
275   if (!Features.C99 && !Features.CPlusPlus) {
276     // extern inline in GNU mode is like C99 inline.
277     if (FD->getStorageClass() == FunctionDecl::Extern)
278       return CodeGenModule::GVA_C99Inline;
279     // Normal inline is a strong symbol.
280     return CodeGenModule::GVA_StrongExternal;
281   } else if (FD->hasActiveGNUInlineAttribute(Context)) {
282     // GCC in C99 mode seems to use a different decision-making
283     // process for extern inline, which factors in previous
284     // declarations.
285     if (FD->isExternGNUInline(Context))
286       return CodeGenModule::GVA_C99Inline;
287     // Normal inline is a strong symbol.
288     return External;
289   }
290 
291   // The definition of inline changes based on the language.  Note that we
292   // have already handled "static inline" above, with the GVA_Internal case.
293   if (Features.CPlusPlus)  // inline and extern inline.
294     return CodeGenModule::GVA_CXXInline;
295 
296   assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
297   if (FD->isC99InlineDefinition())
298     return CodeGenModule::GVA_C99Inline;
299 
300   return CodeGenModule::GVA_StrongExternal;
301 }
302 
303 /// SetFunctionDefinitionAttributes - Set attributes for a global.
304 ///
305 /// FIXME: This is currently only done for aliases and functions, but not for
306 /// variables (these details are set in EmitGlobalVarDefinition for variables).
307 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
308                                                     llvm::GlobalValue *GV) {
309   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
310 
311   if (Linkage == GVA_Internal) {
312     GV->setLinkage(llvm::Function::InternalLinkage);
313   } else if (D->hasAttr<DLLExportAttr>()) {
314     GV->setLinkage(llvm::Function::DLLExportLinkage);
315   } else if (D->hasAttr<WeakAttr>()) {
316     GV->setLinkage(llvm::Function::WeakAnyLinkage);
317   } else if (Linkage == GVA_C99Inline) {
318     // In C99 mode, 'inline' functions are guaranteed to have a strong
319     // definition somewhere else, so we can use available_externally linkage.
320     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
321   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
322     // In C++, the compiler has to emit a definition in every translation unit
323     // that references the function.  We should use linkonce_odr because
324     // a) if all references in this translation unit are optimized away, we
325     // don't need to codegen it.  b) if the function persists, it needs to be
326     // merged with other definitions. c) C++ has the ODR, so we know the
327     // definition is dependable.
328     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
329   } else {
330     assert(Linkage == GVA_StrongExternal);
331     // Otherwise, we have strong external linkage.
332     GV->setLinkage(llvm::Function::ExternalLinkage);
333   }
334 
335   SetCommonAttributes(D, GV);
336 }
337 
338 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
339                                               const CGFunctionInfo &Info,
340                                               llvm::Function *F) {
341   AttributeListType AttributeList;
342   ConstructAttributeList(Info, D, AttributeList);
343 
344   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
345                                         AttributeList.size()));
346 
347   // Set the appropriate calling convention for the Function.
348   if (D->hasAttr<FastCallAttr>())
349     F->setCallingConv(llvm::CallingConv::X86_FastCall);
350 
351   if (D->hasAttr<StdCallAttr>())
352     F->setCallingConv(llvm::CallingConv::X86_StdCall);
353 }
354 
355 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
356                                                            llvm::Function *F) {
357   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
358     F->addFnAttr(llvm::Attribute::NoUnwind);
359 
360   if (D->hasAttr<AlwaysInlineAttr>())
361     F->addFnAttr(llvm::Attribute::AlwaysInline);
362 
363   if (D->hasAttr<NoinlineAttr>())
364     F->addFnAttr(llvm::Attribute::NoInline);
365 }
366 
367 void CodeGenModule::SetCommonAttributes(const Decl *D,
368                                         llvm::GlobalValue *GV) {
369   setGlobalVisibility(GV, D);
370 
371   if (D->hasAttr<UsedAttr>())
372     AddUsedGlobal(GV);
373 
374   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
375     GV->setSection(SA->getName());
376 }
377 
378 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
379                                                   llvm::Function *F,
380                                                   const CGFunctionInfo &FI) {
381   SetLLVMFunctionAttributes(D, FI, F);
382   SetLLVMFunctionAttributesForDefinition(D, F);
383 
384   F->setLinkage(llvm::Function::InternalLinkage);
385 
386   SetCommonAttributes(D, F);
387 }
388 
389 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
390                                           llvm::Function *F,
391                                           bool IsIncompleteFunction) {
392   if (!IsIncompleteFunction)
393     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
394 
395   // Only a few attributes are set on declarations; these may later be
396   // overridden by a definition.
397 
398   if (FD->hasAttr<DLLImportAttr>()) {
399     F->setLinkage(llvm::Function::DLLImportLinkage);
400   } else if (FD->hasAttr<WeakAttr>() ||
401              FD->hasAttr<WeakImportAttr>()) {
402     // "extern_weak" is overloaded in LLVM; we probably should have
403     // separate linkage types for this.
404     F->setLinkage(llvm::Function::ExternalWeakLinkage);
405   } else {
406     F->setLinkage(llvm::Function::ExternalLinkage);
407   }
408 
409   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
410     F->setSection(SA->getName());
411 }
412 
413 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
414   assert(!GV->isDeclaration() &&
415          "Only globals with definition can force usage.");
416   LLVMUsed.push_back(GV);
417 }
418 
419 void CodeGenModule::EmitLLVMUsed() {
420   // Don't create llvm.used if there is no need.
421   if (LLVMUsed.empty())
422     return;
423 
424   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
425 
426   // Convert LLVMUsed to what ConstantArray needs.
427   std::vector<llvm::Constant*> UsedArray;
428   UsedArray.resize(LLVMUsed.size());
429   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
430     UsedArray[i] =
431      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
432                                       i8PTy);
433   }
434 
435   if (UsedArray.empty())
436     return;
437   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
438 
439   llvm::GlobalVariable *GV =
440     new llvm::GlobalVariable(getModule(), ATy, false,
441                              llvm::GlobalValue::AppendingLinkage,
442                              llvm::ConstantArray::get(ATy, UsedArray),
443                              "llvm.used");
444 
445   GV->setSection("llvm.metadata");
446 }
447 
448 void CodeGenModule::EmitDeferred() {
449   // Emit code for any potentially referenced deferred decls.  Since a
450   // previously unused static decl may become used during the generation of code
451   // for a static function, iterate until no  changes are made.
452   while (!DeferredDeclsToEmit.empty()) {
453     GlobalDecl D = DeferredDeclsToEmit.back();
454     DeferredDeclsToEmit.pop_back();
455 
456     // The mangled name for the decl must have been emitted in GlobalDeclMap.
457     // Look it up to see if it was defined with a stronger definition (e.g. an
458     // extern inline function with a strong function redefinition).  If so,
459     // just ignore the deferred decl.
460     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
461     assert(CGRef && "Deferred decl wasn't referenced?");
462 
463     if (!CGRef->isDeclaration())
464       continue;
465 
466     // Otherwise, emit the definition and move on to the next one.
467     EmitGlobalDefinition(D);
468   }
469 }
470 
471 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
472 /// annotation information for a given GlobalValue.  The annotation struct is
473 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
474 /// GlobalValue being annotated.  The second field is the constant string
475 /// created from the AnnotateAttr's annotation.  The third field is a constant
476 /// string containing the name of the translation unit.  The fourth field is
477 /// the line number in the file of the annotated value declaration.
478 ///
479 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
480 ///        appears to.
481 ///
482 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
483                                                 const AnnotateAttr *AA,
484                                                 unsigned LineNo) {
485   llvm::Module *M = &getModule();
486 
487   // get [N x i8] constants for the annotation string, and the filename string
488   // which are the 2nd and 3rd elements of the global annotation structure.
489   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
490   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
491   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
492                                                   true);
493 
494   // Get the two global values corresponding to the ConstantArrays we just
495   // created to hold the bytes of the strings.
496   llvm::GlobalValue *annoGV =
497     new llvm::GlobalVariable(*M, anno->getType(), false,
498                              llvm::GlobalValue::PrivateLinkage, anno,
499                              GV->getName());
500   // translation unit name string, emitted into the llvm.metadata section.
501   llvm::GlobalValue *unitGV =
502     new llvm::GlobalVariable(*M, unit->getType(), false,
503                              llvm::GlobalValue::PrivateLinkage, unit,
504                              ".str");
505 
506   // Create the ConstantStruct for the global annotation.
507   llvm::Constant *Fields[4] = {
508     llvm::ConstantExpr::getBitCast(GV, SBP),
509     llvm::ConstantExpr::getBitCast(annoGV, SBP),
510     llvm::ConstantExpr::getBitCast(unitGV, SBP),
511     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
512   };
513   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
514 }
515 
516 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
517   // Never defer when EmitAllDecls is specified or the decl has
518   // attribute used.
519   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
520     return false;
521 
522   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
523     // Constructors and destructors should never be deferred.
524     if (FD->hasAttr<ConstructorAttr>() ||
525         FD->hasAttr<DestructorAttr>())
526       return false;
527 
528     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
529 
530     // static, static inline, always_inline, and extern inline functions can
531     // always be deferred.  Normal inline functions can be deferred in C99/C++.
532     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
533         Linkage == GVA_CXXInline)
534       return true;
535     return false;
536   }
537 
538   const VarDecl *VD = cast<VarDecl>(Global);
539   assert(VD->isFileVarDecl() && "Invalid decl");
540 
541   return VD->getStorageClass() == VarDecl::Static;
542 }
543 
544 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
545   const ValueDecl *Global = GD.getDecl();
546 
547   // If this is an alias definition (which otherwise looks like a declaration)
548   // emit it now.
549   if (Global->hasAttr<AliasAttr>())
550     return EmitAliasDefinition(Global);
551 
552   // Ignore declarations, they will be emitted on their first use.
553   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
554     // Forward declarations are emitted lazily on first use.
555     if (!FD->isThisDeclarationADefinition())
556       return;
557   } else {
558     const VarDecl *VD = cast<VarDecl>(Global);
559     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
560 
561     // In C++, if this is marked "extern", defer code generation.
562     if (getLangOptions().CPlusPlus && !VD->getInit() &&
563         (VD->getStorageClass() == VarDecl::Extern ||
564          VD->isExternC(getContext())))
565       return;
566 
567     // In C, if this isn't a definition, defer code generation.
568     if (!getLangOptions().CPlusPlus && !VD->getInit())
569       return;
570   }
571 
572   // Defer code generation when possible if this is a static definition, inline
573   // function etc.  These we only want to emit if they are used.
574   if (MayDeferGeneration(Global)) {
575     // If the value has already been used, add it directly to the
576     // DeferredDeclsToEmit list.
577     const char *MangledName = getMangledName(GD);
578     if (GlobalDeclMap.count(MangledName))
579       DeferredDeclsToEmit.push_back(GD);
580     else {
581       // Otherwise, remember that we saw a deferred decl with this name.  The
582       // first use of the mangled name will cause it to move into
583       // DeferredDeclsToEmit.
584       DeferredDecls[MangledName] = GD;
585     }
586     return;
587   }
588 
589   // Otherwise emit the definition.
590   EmitGlobalDefinition(GD);
591 }
592 
593 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
594   const ValueDecl *D = GD.getDecl();
595 
596   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
597     EmitCXXConstructor(CD, GD.getCtorType());
598   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
599     EmitCXXDestructor(DD, GD.getDtorType());
600   else if (isa<FunctionDecl>(D))
601     EmitGlobalFunctionDefinition(GD);
602   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
603     EmitGlobalVarDefinition(VD);
604   else {
605     assert(0 && "Invalid argument to EmitGlobalDefinition()");
606   }
607 }
608 
609 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
610 /// module, create and return an llvm Function with the specified type. If there
611 /// is something in the module with the specified name, return it potentially
612 /// bitcasted to the right type.
613 ///
614 /// If D is non-null, it specifies a decl that correspond to this.  This is used
615 /// to set the attributes on the function when it is first created.
616 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
617                                                        const llvm::Type *Ty,
618                                                        GlobalDecl D) {
619   // Lookup the entry, lazily creating it if necessary.
620   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
621   if (Entry) {
622     if (Entry->getType()->getElementType() == Ty)
623       return Entry;
624 
625     // Make sure the result is of the correct type.
626     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
627     return llvm::ConstantExpr::getBitCast(Entry, PTy);
628   }
629 
630   // This is the first use or definition of a mangled name.  If there is a
631   // deferred decl with this name, remember that we need to emit it at the end
632   // of the file.
633   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
634     DeferredDecls.find(MangledName);
635   if (DDI != DeferredDecls.end()) {
636     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
637     // list, and remove it from DeferredDecls (since we don't need it anymore).
638     DeferredDeclsToEmit.push_back(DDI->second);
639     DeferredDecls.erase(DDI);
640   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
641     // If this the first reference to a C++ inline function in a class, queue up
642     // the deferred function body for emission.  These are not seen as
643     // top-level declarations.
644     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
645       DeferredDeclsToEmit.push_back(D);
646     // A called constructor which has no definition or declaration need be
647     // synthesized.
648     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
649       const CXXRecordDecl *ClassDecl =
650         cast<CXXRecordDecl>(CD->getDeclContext());
651       if (CD->isCopyConstructor(getContext()))
652         DeferredCopyConstructorToEmit(D);
653       else if (!ClassDecl->hasUserDeclaredConstructor())
654         DeferredDeclsToEmit.push_back(D);
655     }
656     else
657       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
658         if (MD->isCopyAssignment()) {
659           DeferredDeclsToEmit.push_back(D);
660         }
661   }
662 
663   // This function doesn't have a complete type (for example, the return
664   // type is an incomplete struct). Use a fake type instead, and make
665   // sure not to try to set attributes.
666   bool IsIncompleteFunction = false;
667   if (!isa<llvm::FunctionType>(Ty)) {
668     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
669                                  std::vector<const llvm::Type*>(), false);
670     IsIncompleteFunction = true;
671   }
672   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
673                                              llvm::Function::ExternalLinkage,
674                                              "", &getModule());
675   F->setName(MangledName);
676   if (D.getDecl())
677     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
678                           IsIncompleteFunction);
679   Entry = F;
680   return F;
681 }
682 
683 /// Defer definition of copy constructor(s) which need be implicitly defined.
684 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
685   const CXXConstructorDecl *CD =
686     cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
687   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
688   if (ClassDecl->hasTrivialCopyConstructor() ||
689       ClassDecl->hasUserDeclaredCopyConstructor())
690     return;
691 
692   // First make sure all direct base classes and virtual bases and non-static
693   // data mebers which need to have their copy constructors implicitly defined
694   // are defined. 12.8.p7
695   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
696        Base != ClassDecl->bases_end(); ++Base) {
697     CXXRecordDecl *BaseClassDecl
698       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
699     if (CXXConstructorDecl *BaseCopyCtor =
700         BaseClassDecl->getCopyConstructor(Context, 0))
701       GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
702   }
703 
704   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
705        FieldEnd = ClassDecl->field_end();
706        Field != FieldEnd; ++Field) {
707     QualType FieldType = Context.getCanonicalType((*Field)->getType());
708     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
709       FieldType = Array->getElementType();
710     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
711       if ((*Field)->isAnonymousStructOrUnion())
712         continue;
713       CXXRecordDecl *FieldClassDecl
714         = cast<CXXRecordDecl>(FieldClassType->getDecl());
715       if (CXXConstructorDecl *FieldCopyCtor =
716           FieldClassDecl->getCopyConstructor(Context, 0))
717         GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
718     }
719   }
720   DeferredDeclsToEmit.push_back(CopyCtorDecl);
721 
722 }
723 
724 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
725 /// non-null, then this function will use the specified type if it has to
726 /// create it (this occurs when we see a definition of the function).
727 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
728                                                  const llvm::Type *Ty) {
729   // If there was no specific requested type, just convert it now.
730   if (!Ty)
731     Ty = getTypes().ConvertType(GD.getDecl()->getType());
732   return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD);
733 }
734 
735 /// CreateRuntimeFunction - Create a new runtime function with the specified
736 /// type and name.
737 llvm::Constant *
738 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
739                                      const char *Name) {
740   // Convert Name to be a uniqued string from the IdentifierInfo table.
741   Name = getContext().Idents.get(Name).getName();
742   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
743 }
744 
745 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
746 /// create and return an llvm GlobalVariable with the specified type.  If there
747 /// is something in the module with the specified name, return it potentially
748 /// bitcasted to the right type.
749 ///
750 /// If D is non-null, it specifies a decl that correspond to this.  This is used
751 /// to set the attributes on the global when it is first created.
752 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
753                                                      const llvm::PointerType*Ty,
754                                                      const VarDecl *D) {
755   // Lookup the entry, lazily creating it if necessary.
756   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
757   if (Entry) {
758     if (Entry->getType() == Ty)
759       return Entry;
760 
761     // Make sure the result is of the correct type.
762     return llvm::ConstantExpr::getBitCast(Entry, Ty);
763   }
764 
765   // This is the first use or definition of a mangled name.  If there is a
766   // deferred decl with this name, remember that we need to emit it at the end
767   // of the file.
768   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
769     DeferredDecls.find(MangledName);
770   if (DDI != DeferredDecls.end()) {
771     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
772     // list, and remove it from DeferredDecls (since we don't need it anymore).
773     DeferredDeclsToEmit.push_back(DDI->second);
774     DeferredDecls.erase(DDI);
775   }
776 
777   llvm::GlobalVariable *GV =
778     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
779                              llvm::GlobalValue::ExternalLinkage,
780                              0, "", 0,
781                              false, Ty->getAddressSpace());
782   GV->setName(MangledName);
783 
784   // Handle things which are present even on external declarations.
785   if (D) {
786     // FIXME: This code is overly simple and should be merged with other global
787     // handling.
788     GV->setConstant(D->getType().isConstant(Context));
789 
790     // FIXME: Merge with other attribute handling code.
791     if (D->getStorageClass() == VarDecl::PrivateExtern)
792       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
793 
794     if (D->hasAttr<WeakAttr>() ||
795         D->hasAttr<WeakImportAttr>())
796       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
797 
798     GV->setThreadLocal(D->isThreadSpecified());
799   }
800 
801   return Entry = GV;
802 }
803 
804 
805 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
806 /// given global variable.  If Ty is non-null and if the global doesn't exist,
807 /// then it will be greated with the specified type instead of whatever the
808 /// normal requested type would be.
809 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
810                                                   const llvm::Type *Ty) {
811   assert(D->hasGlobalStorage() && "Not a global variable");
812   QualType ASTTy = D->getType();
813   if (Ty == 0)
814     Ty = getTypes().ConvertTypeForMem(ASTTy);
815 
816   const llvm::PointerType *PTy =
817     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
818   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
819 }
820 
821 /// CreateRuntimeVariable - Create a new runtime global variable with the
822 /// specified type and name.
823 llvm::Constant *
824 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
825                                      const char *Name) {
826   // Convert Name to be a uniqued string from the IdentifierInfo table.
827   Name = getContext().Idents.get(Name).getName();
828   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
829 }
830 
831 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
832   assert(!D->getInit() && "Cannot emit definite definitions here!");
833 
834   if (MayDeferGeneration(D)) {
835     // If we have not seen a reference to this variable yet, place it
836     // into the deferred declarations table to be emitted if needed
837     // later.
838     const char *MangledName = getMangledName(D);
839     if (GlobalDeclMap.count(MangledName) == 0) {
840       DeferredDecls[MangledName] = GlobalDecl(D);
841       return;
842     }
843   }
844 
845   // The tentative definition is the only definition.
846   EmitGlobalVarDefinition(D);
847 }
848 
849 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
850   llvm::Constant *Init = 0;
851   QualType ASTTy = D->getType();
852 
853   if (D->getInit() == 0) {
854     // This is a tentative definition; tentative definitions are
855     // implicitly initialized with { 0 }.
856     //
857     // Note that tentative definitions are only emitted at the end of
858     // a translation unit, so they should never have incomplete
859     // type. In addition, EmitTentativeDefinition makes sure that we
860     // never attempt to emit a tentative definition if a real one
861     // exists. A use may still exists, however, so we still may need
862     // to do a RAUW.
863     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
864     Init = EmitNullConstant(D->getType());
865   } else {
866     Init = EmitConstantExpr(D->getInit(), D->getType());
867 
868     if (!Init) {
869       QualType T = D->getInit()->getType();
870       if (getLangOptions().CPlusPlus) {
871         CXXGlobalInits.push_back(D);
872         Init = EmitNullConstant(T);
873       } else {
874         ErrorUnsupported(D, "static initializer");
875         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
876       }
877     }
878   }
879 
880   const llvm::Type* InitType = Init->getType();
881   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
882 
883   // Strip off a bitcast if we got one back.
884   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
885     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
886            // all zero index gep.
887            CE->getOpcode() == llvm::Instruction::GetElementPtr);
888     Entry = CE->getOperand(0);
889   }
890 
891   // Entry is now either a Function or GlobalVariable.
892   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
893 
894   // We have a definition after a declaration with the wrong type.
895   // We must make a new GlobalVariable* and update everything that used OldGV
896   // (a declaration or tentative definition) with the new GlobalVariable*
897   // (which will be a definition).
898   //
899   // This happens if there is a prototype for a global (e.g.
900   // "extern int x[];") and then a definition of a different type (e.g.
901   // "int x[10];"). This also happens when an initializer has a different type
902   // from the type of the global (this happens with unions).
903   if (GV == 0 ||
904       GV->getType()->getElementType() != InitType ||
905       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
906 
907     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
908     GlobalDeclMap.erase(getMangledName(D));
909 
910     // Make a new global with the correct type, this is now guaranteed to work.
911     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
912     GV->takeName(cast<llvm::GlobalValue>(Entry));
913 
914     // Replace all uses of the old global with the new global
915     llvm::Constant *NewPtrForOldDecl =
916         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
917     Entry->replaceAllUsesWith(NewPtrForOldDecl);
918 
919     // Erase the old global, since it is no longer used.
920     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
921   }
922 
923   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
924     SourceManager &SM = Context.getSourceManager();
925     AddAnnotation(EmitAnnotateAttr(GV, AA,
926                               SM.getInstantiationLineNumber(D->getLocation())));
927   }
928 
929   GV->setInitializer(Init);
930 
931   // If it is safe to mark the global 'constant', do so now.
932   GV->setConstant(false);
933   if (D->getType().isConstant(Context)) {
934     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
935     // members, it cannot be declared "LLVM const".
936     GV->setConstant(true);
937   }
938 
939   GV->setAlignment(getContext().getDeclAlignInBytes(D));
940 
941   // Set the llvm linkage type as appropriate.
942   if (D->getStorageClass() == VarDecl::Static)
943     GV->setLinkage(llvm::Function::InternalLinkage);
944   else if (D->hasAttr<DLLImportAttr>())
945     GV->setLinkage(llvm::Function::DLLImportLinkage);
946   else if (D->hasAttr<DLLExportAttr>())
947     GV->setLinkage(llvm::Function::DLLExportLinkage);
948   else if (D->hasAttr<WeakAttr>()) {
949     if (GV->isConstant())
950       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
951     else
952       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
953   } else if (!CompileOpts.NoCommon &&
954            !D->hasExternalStorage() && !D->getInit() &&
955            !D->getAttr<SectionAttr>()) {
956     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
957     // common vars aren't constant even if declared const.
958     GV->setConstant(false);
959   } else
960     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
961 
962   SetCommonAttributes(D, GV);
963 
964   // Emit global variable debug information.
965   if (CGDebugInfo *DI = getDebugInfo()) {
966     DI->setLocation(D->getLocation());
967     DI->EmitGlobalVariable(GV, D);
968   }
969 }
970 
971 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
972 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
973 /// existing call uses of the old function in the module, this adjusts them to
974 /// call the new function directly.
975 ///
976 /// This is not just a cleanup: the always_inline pass requires direct calls to
977 /// functions to be able to inline them.  If there is a bitcast in the way, it
978 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
979 /// run at -O0.
980 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
981                                                       llvm::Function *NewFn) {
982   // If we're redefining a global as a function, don't transform it.
983   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
984   if (OldFn == 0) return;
985 
986   const llvm::Type *NewRetTy = NewFn->getReturnType();
987   llvm::SmallVector<llvm::Value*, 4> ArgList;
988 
989   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
990        UI != E; ) {
991     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
992     unsigned OpNo = UI.getOperandNo();
993     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
994     if (!CI || OpNo != 0) continue;
995 
996     // If the return types don't match exactly, and if the call isn't dead, then
997     // we can't transform this call.
998     if (CI->getType() != NewRetTy && !CI->use_empty())
999       continue;
1000 
1001     // If the function was passed too few arguments, don't transform.  If extra
1002     // arguments were passed, we silently drop them.  If any of the types
1003     // mismatch, we don't transform.
1004     unsigned ArgNo = 0;
1005     bool DontTransform = false;
1006     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1007          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1008       if (CI->getNumOperands()-1 == ArgNo ||
1009           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1010         DontTransform = true;
1011         break;
1012       }
1013     }
1014     if (DontTransform)
1015       continue;
1016 
1017     // Okay, we can transform this.  Create the new call instruction and copy
1018     // over the required information.
1019     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1020     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1021                                                      ArgList.end(), "", CI);
1022     ArgList.clear();
1023     if (NewCall->getType() != llvm::Type::VoidTy)
1024       NewCall->takeName(CI);
1025     NewCall->setCallingConv(CI->getCallingConv());
1026     NewCall->setAttributes(CI->getAttributes());
1027 
1028     // Finally, remove the old call, replacing any uses with the new one.
1029     if (!CI->use_empty())
1030       CI->replaceAllUsesWith(NewCall);
1031     CI->eraseFromParent();
1032   }
1033 }
1034 
1035 
1036 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1037   const llvm::FunctionType *Ty;
1038   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1039 
1040   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1041     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
1042 
1043     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1044   } else {
1045     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1046 
1047     // As a special case, make sure that definitions of K&R function
1048     // "type foo()" aren't declared as varargs (which forces the backend
1049     // to do unnecessary work).
1050     if (D->getType()->isFunctionNoProtoType()) {
1051       assert(Ty->isVarArg() && "Didn't lower type as expected");
1052       // Due to stret, the lowered function could have arguments.
1053       // Just create the same type as was lowered by ConvertType
1054       // but strip off the varargs bit.
1055       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1056       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1057     }
1058   }
1059 
1060   // Get or create the prototype for the function.
1061   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1062 
1063   // Strip off a bitcast if we got one back.
1064   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1065     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1066     Entry = CE->getOperand(0);
1067   }
1068 
1069 
1070   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1071     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1072 
1073     // If the types mismatch then we have to rewrite the definition.
1074     assert(OldFn->isDeclaration() &&
1075            "Shouldn't replace non-declaration");
1076 
1077     // F is the Function* for the one with the wrong type, we must make a new
1078     // Function* and update everything that used F (a declaration) with the new
1079     // Function* (which will be a definition).
1080     //
1081     // This happens if there is a prototype for a function
1082     // (e.g. "int f()") and then a definition of a different type
1083     // (e.g. "int f(int x)").  Start by making a new function of the
1084     // correct type, RAUW, then steal the name.
1085     GlobalDeclMap.erase(getMangledName(D));
1086     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1087     NewFn->takeName(OldFn);
1088 
1089     // If this is an implementation of a function without a prototype, try to
1090     // replace any existing uses of the function (which may be calls) with uses
1091     // of the new function
1092     if (D->getType()->isFunctionNoProtoType()) {
1093       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1094       OldFn->removeDeadConstantUsers();
1095     }
1096 
1097     // Replace uses of F with the Function we will endow with a body.
1098     if (!Entry->use_empty()) {
1099       llvm::Constant *NewPtrForOldDecl =
1100         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1101       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1102     }
1103 
1104     // Ok, delete the old function now, which is dead.
1105     OldFn->eraseFromParent();
1106 
1107     Entry = NewFn;
1108   }
1109 
1110   llvm::Function *Fn = cast<llvm::Function>(Entry);
1111 
1112   CodeGenFunction(*this).GenerateCode(D, Fn);
1113 
1114   SetFunctionDefinitionAttributes(D, Fn);
1115   SetLLVMFunctionAttributesForDefinition(D, Fn);
1116 
1117   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1118     AddGlobalCtor(Fn, CA->getPriority());
1119   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1120     AddGlobalDtor(Fn, DA->getPriority());
1121 }
1122 
1123 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1124   const AliasAttr *AA = D->getAttr<AliasAttr>();
1125   assert(AA && "Not an alias?");
1126 
1127   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1128 
1129   // Unique the name through the identifier table.
1130   const char *AliaseeName = AA->getAliasee().c_str();
1131   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1132 
1133   // Create a reference to the named value.  This ensures that it is emitted
1134   // if a deferred decl.
1135   llvm::Constant *Aliasee;
1136   if (isa<llvm::FunctionType>(DeclTy))
1137     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1138   else
1139     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1140                                     llvm::PointerType::getUnqual(DeclTy), 0);
1141 
1142   // Create the new alias itself, but don't set a name yet.
1143   llvm::GlobalValue *GA =
1144     new llvm::GlobalAlias(Aliasee->getType(),
1145                           llvm::Function::ExternalLinkage,
1146                           "", Aliasee, &getModule());
1147 
1148   // See if there is already something with the alias' name in the module.
1149   const char *MangledName = getMangledName(D);
1150   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1151 
1152   if (Entry && !Entry->isDeclaration()) {
1153     // If there is a definition in the module, then it wins over the alias.
1154     // This is dubious, but allow it to be safe.  Just ignore the alias.
1155     GA->eraseFromParent();
1156     return;
1157   }
1158 
1159   if (Entry) {
1160     // If there is a declaration in the module, then we had an extern followed
1161     // by the alias, as in:
1162     //   extern int test6();
1163     //   ...
1164     //   int test6() __attribute__((alias("test7")));
1165     //
1166     // Remove it and replace uses of it with the alias.
1167 
1168     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1169                                                           Entry->getType()));
1170     Entry->eraseFromParent();
1171   }
1172 
1173   // Now we know that there is no conflict, set the name.
1174   Entry = GA;
1175   GA->setName(MangledName);
1176 
1177   // Set attributes which are particular to an alias; this is a
1178   // specialization of the attributes which may be set on a global
1179   // variable/function.
1180   if (D->hasAttr<DLLExportAttr>()) {
1181     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1182       // The dllexport attribute is ignored for undefined symbols.
1183       if (FD->getBody())
1184         GA->setLinkage(llvm::Function::DLLExportLinkage);
1185     } else {
1186       GA->setLinkage(llvm::Function::DLLExportLinkage);
1187     }
1188   } else if (D->hasAttr<WeakAttr>() ||
1189              D->hasAttr<WeakImportAttr>()) {
1190     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1191   }
1192 
1193   SetCommonAttributes(D, GA);
1194 }
1195 
1196 /// getBuiltinLibFunction - Given a builtin id for a function like
1197 /// "__builtin_fabsf", return a Function* for "fabsf".
1198 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1199   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1200           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1201          "isn't a lib fn");
1202 
1203   // Get the name, skip over the __builtin_ prefix (if necessary).
1204   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1205   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1206     Name += 10;
1207 
1208   // Get the type for the builtin.
1209   ASTContext::GetBuiltinTypeError Error;
1210   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1211   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1212 
1213   const llvm::FunctionType *Ty =
1214     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1215 
1216   // Unique the name through the identifier table.
1217   Name = getContext().Idents.get(Name).getName();
1218   // FIXME: param attributes for sext/zext etc.
1219   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1220 }
1221 
1222 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1223                                             unsigned NumTys) {
1224   return llvm::Intrinsic::getDeclaration(&getModule(),
1225                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1226 }
1227 
1228 llvm::Function *CodeGenModule::getMemCpyFn() {
1229   if (MemCpyFn) return MemCpyFn;
1230   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1231   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1232 }
1233 
1234 llvm::Function *CodeGenModule::getMemMoveFn() {
1235   if (MemMoveFn) return MemMoveFn;
1236   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1237   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1238 }
1239 
1240 llvm::Function *CodeGenModule::getMemSetFn() {
1241   if (MemSetFn) return MemSetFn;
1242   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1243   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1244 }
1245 
1246 static void appendFieldAndPadding(CodeGenModule &CGM,
1247                                   std::vector<llvm::Constant*>& Fields,
1248                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1249                                   llvm::Constant* Field,
1250                                   RecordDecl* RD, const llvm::StructType *STy) {
1251   // Append the field.
1252   Fields.push_back(Field);
1253 
1254   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1255 
1256   int NextStructFieldNo;
1257   if (!NextFieldD) {
1258     NextStructFieldNo = STy->getNumElements();
1259   } else {
1260     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1261   }
1262 
1263   // Append padding
1264   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1265     llvm::Constant *C =
1266       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1267 
1268     Fields.push_back(C);
1269   }
1270 }
1271 
1272 static llvm::StringMapEntry<llvm::Constant*> &
1273 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1274                          const StringLiteral *Literal,
1275                          bool TargetIsLSB,
1276                          bool &IsUTF16,
1277                          unsigned &StringLength) {
1278   unsigned NumBytes = Literal->getByteLength();
1279 
1280   // Check for simple case.
1281   if (!Literal->containsNonAsciiOrNull()) {
1282     StringLength = NumBytes;
1283     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1284                                                 StringLength));
1285   }
1286 
1287   // Otherwise, convert the UTF8 literals into a byte string.
1288   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1289   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1290   UTF16 *ToPtr = &ToBuf[0];
1291 
1292   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1293                                                &ToPtr, ToPtr + NumBytes,
1294                                                strictConversion);
1295 
1296   // Check for conversion failure.
1297   if (Result != conversionOK) {
1298     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1299     // this duplicate code.
1300     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1301     StringLength = NumBytes;
1302     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1303                                                 StringLength));
1304   }
1305 
1306   // ConvertUTF8toUTF16 returns the length in ToPtr.
1307   StringLength = ToPtr - &ToBuf[0];
1308 
1309   // Render the UTF-16 string into a byte array and convert to the target byte
1310   // order.
1311   //
1312   // FIXME: This isn't something we should need to do here.
1313   llvm::SmallString<128> AsBytes;
1314   AsBytes.reserve(StringLength * 2);
1315   for (unsigned i = 0; i != StringLength; ++i) {
1316     unsigned short Val = ToBuf[i];
1317     if (TargetIsLSB) {
1318       AsBytes.push_back(Val & 0xFF);
1319       AsBytes.push_back(Val >> 8);
1320     } else {
1321       AsBytes.push_back(Val >> 8);
1322       AsBytes.push_back(Val & 0xFF);
1323     }
1324   }
1325   // Append one extra null character, the second is automatically added by our
1326   // caller.
1327   AsBytes.push_back(0);
1328 
1329   IsUTF16 = true;
1330   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1331 }
1332 
1333 llvm::Constant *
1334 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1335   unsigned StringLength = 0;
1336   bool isUTF16 = false;
1337   llvm::StringMapEntry<llvm::Constant*> &Entry =
1338     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1339                              getTargetData().isLittleEndian(),
1340                              isUTF16, StringLength);
1341 
1342   if (llvm::Constant *C = Entry.getValue())
1343     return C;
1344 
1345   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1346   llvm::Constant *Zeros[] = { Zero, Zero };
1347 
1348   // If we don't already have it, get __CFConstantStringClassReference.
1349   if (!CFConstantStringClassRef) {
1350     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1351     Ty = llvm::ArrayType::get(Ty, 0);
1352     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1353                                            "__CFConstantStringClassReference");
1354     // Decay array -> ptr
1355     CFConstantStringClassRef =
1356       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1357   }
1358 
1359   QualType CFTy = getContext().getCFConstantStringType();
1360   RecordDecl *CFRD = CFTy->getAs<RecordType>()->getDecl();
1361 
1362   const llvm::StructType *STy =
1363     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1364 
1365   std::vector<llvm::Constant*> Fields;
1366   RecordDecl::field_iterator Field = CFRD->field_begin();
1367 
1368   // Class pointer.
1369   FieldDecl *CurField = *Field++;
1370   FieldDecl *NextField = *Field++;
1371   appendFieldAndPadding(*this, Fields, CurField, NextField,
1372                         CFConstantStringClassRef, CFRD, STy);
1373 
1374   // Flags.
1375   CurField = NextField;
1376   NextField = *Field++;
1377   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1378   appendFieldAndPadding(*this, Fields, CurField, NextField,
1379                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1380                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1381                         CFRD, STy);
1382 
1383   // String pointer.
1384   CurField = NextField;
1385   NextField = *Field++;
1386   llvm::Constant *C = llvm::ConstantArray::get(Entry.getKey().str());
1387 
1388   const char *Sect, *Prefix;
1389   bool isConstant;
1390   llvm::GlobalValue::LinkageTypes Linkage;
1391   if (isUTF16) {
1392     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1393     Sect = getContext().Target.getUnicodeStringSection();
1394     // FIXME: why do utf strings get "l" labels instead of "L" labels?
1395     Linkage = llvm::GlobalValue::InternalLinkage;
1396     // FIXME: Why does GCC not set constant here?
1397     isConstant = false;
1398   } else {
1399     Prefix = ".str";
1400     Sect = getContext().Target.getCFStringDataSection();
1401     Linkage = llvm::GlobalValue::PrivateLinkage;
1402     // FIXME: -fwritable-strings should probably affect this, but we
1403     // are following gcc here.
1404     isConstant = true;
1405   }
1406   llvm::GlobalVariable *GV =
1407     new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
1408                              Linkage, C, Prefix);
1409   if (Sect)
1410     GV->setSection(Sect);
1411   if (isUTF16) {
1412     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1413     GV->setAlignment(Align);
1414   }
1415   appendFieldAndPadding(*this, Fields, CurField, NextField,
1416                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1417                         CFRD, STy);
1418 
1419   // String length.
1420   CurField = NextField;
1421   NextField = 0;
1422   Ty = getTypes().ConvertType(getContext().LongTy);
1423   appendFieldAndPadding(*this, Fields, CurField, NextField,
1424                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1425 
1426   // The struct.
1427   C = llvm::ConstantStruct::get(STy, Fields);
1428   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1429                                 llvm::GlobalVariable::PrivateLinkage, C,
1430                                 "_unnamed_cfstring_");
1431   if (const char *Sect = getContext().Target.getCFStringSection())
1432     GV->setSection(Sect);
1433   Entry.setValue(GV);
1434 
1435   return GV;
1436 }
1437 
1438 /// GetStringForStringLiteral - Return the appropriate bytes for a
1439 /// string literal, properly padded to match the literal type.
1440 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1441   const char *StrData = E->getStrData();
1442   unsigned Len = E->getByteLength();
1443 
1444   const ConstantArrayType *CAT =
1445     getContext().getAsConstantArrayType(E->getType());
1446   assert(CAT && "String isn't pointer or array!");
1447 
1448   // Resize the string to the right size.
1449   std::string Str(StrData, StrData+Len);
1450   uint64_t RealLen = CAT->getSize().getZExtValue();
1451 
1452   if (E->isWide())
1453     RealLen *= getContext().Target.getWCharWidth()/8;
1454 
1455   Str.resize(RealLen, '\0');
1456 
1457   return Str;
1458 }
1459 
1460 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1461 /// constant array for the given string literal.
1462 llvm::Constant *
1463 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1464   // FIXME: This can be more efficient.
1465   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1466 }
1467 
1468 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1469 /// array for the given ObjCEncodeExpr node.
1470 llvm::Constant *
1471 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1472   std::string Str;
1473   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1474 
1475   return GetAddrOfConstantCString(Str);
1476 }
1477 
1478 
1479 /// GenerateWritableString -- Creates storage for a string literal.
1480 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1481                                              bool constant,
1482                                              CodeGenModule &CGM,
1483                                              const char *GlobalName) {
1484   // Create Constant for this string literal. Don't add a '\0'.
1485   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1486 
1487   // Create a global variable for this string
1488   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1489                                   llvm::GlobalValue::PrivateLinkage,
1490                                   C, GlobalName);
1491 }
1492 
1493 /// GetAddrOfConstantString - Returns a pointer to a character array
1494 /// containing the literal. This contents are exactly that of the
1495 /// given string, i.e. it will not be null terminated automatically;
1496 /// see GetAddrOfConstantCString. Note that whether the result is
1497 /// actually a pointer to an LLVM constant depends on
1498 /// Feature.WriteableStrings.
1499 ///
1500 /// The result has pointer to array type.
1501 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1502                                                        const char *GlobalName) {
1503   bool IsConstant = !Features.WritableStrings;
1504 
1505   // Get the default prefix if a name wasn't specified.
1506   if (!GlobalName)
1507     GlobalName = ".str";
1508 
1509   // Don't share any string literals if strings aren't constant.
1510   if (!IsConstant)
1511     return GenerateStringLiteral(str, false, *this, GlobalName);
1512 
1513   llvm::StringMapEntry<llvm::Constant *> &Entry =
1514     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1515 
1516   if (Entry.getValue())
1517     return Entry.getValue();
1518 
1519   // Create a global variable for this.
1520   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1521   Entry.setValue(C);
1522   return C;
1523 }
1524 
1525 /// GetAddrOfConstantCString - Returns a pointer to a character
1526 /// array containing the literal and a terminating '\-'
1527 /// character. The result has pointer to array type.
1528 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1529                                                         const char *GlobalName){
1530   return GetAddrOfConstantString(str + '\0', GlobalName);
1531 }
1532 
1533 /// EmitObjCPropertyImplementations - Emit information for synthesized
1534 /// properties for an implementation.
1535 void CodeGenModule::EmitObjCPropertyImplementations(const
1536                                                     ObjCImplementationDecl *D) {
1537   for (ObjCImplementationDecl::propimpl_iterator
1538          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1539     ObjCPropertyImplDecl *PID = *i;
1540 
1541     // Dynamic is just for type-checking.
1542     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1543       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1544 
1545       // Determine which methods need to be implemented, some may have
1546       // been overridden. Note that ::isSynthesized is not the method
1547       // we want, that just indicates if the decl came from a
1548       // property. What we want to know is if the method is defined in
1549       // this implementation.
1550       if (!D->getInstanceMethod(PD->getGetterName()))
1551         CodeGenFunction(*this).GenerateObjCGetter(
1552                                  const_cast<ObjCImplementationDecl *>(D), PID);
1553       if (!PD->isReadOnly() &&
1554           !D->getInstanceMethod(PD->getSetterName()))
1555         CodeGenFunction(*this).GenerateObjCSetter(
1556                                  const_cast<ObjCImplementationDecl *>(D), PID);
1557     }
1558   }
1559 }
1560 
1561 /// EmitNamespace - Emit all declarations in a namespace.
1562 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1563   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1564        I != E; ++I)
1565     EmitTopLevelDecl(*I);
1566 }
1567 
1568 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1569 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1570   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1571       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1572     ErrorUnsupported(LSD, "linkage spec");
1573     return;
1574   }
1575 
1576   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1577        I != E; ++I)
1578     EmitTopLevelDecl(*I);
1579 }
1580 
1581 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1582 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1583   // If an error has occurred, stop code generation, but continue
1584   // parsing and semantic analysis (to ensure all warnings and errors
1585   // are emitted).
1586   if (Diags.hasErrorOccurred())
1587     return;
1588 
1589   // Ignore dependent declarations.
1590   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1591     return;
1592 
1593   switch (D->getKind()) {
1594   case Decl::CXXMethod:
1595   case Decl::Function:
1596     // Skip function templates
1597     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1598       return;
1599 
1600     // Fall through
1601 
1602   case Decl::Var:
1603     EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
1604     break;
1605 
1606   // C++ Decls
1607   case Decl::Namespace:
1608     EmitNamespace(cast<NamespaceDecl>(D));
1609     break;
1610     // No code generation needed.
1611   case Decl::Using:
1612   case Decl::ClassTemplate:
1613   case Decl::FunctionTemplate:
1614     break;
1615   case Decl::CXXConstructor:
1616     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1617     break;
1618   case Decl::CXXDestructor:
1619     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1620     break;
1621 
1622   case Decl::StaticAssert:
1623     // Nothing to do.
1624     break;
1625 
1626   // Objective-C Decls
1627 
1628   // Forward declarations, no (immediate) code generation.
1629   case Decl::ObjCClass:
1630   case Decl::ObjCForwardProtocol:
1631   case Decl::ObjCCategory:
1632   case Decl::ObjCInterface:
1633     break;
1634 
1635   case Decl::ObjCProtocol:
1636     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1637     break;
1638 
1639   case Decl::ObjCCategoryImpl:
1640     // Categories have properties but don't support synthesize so we
1641     // can ignore them here.
1642     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1643     break;
1644 
1645   case Decl::ObjCImplementation: {
1646     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1647     EmitObjCPropertyImplementations(OMD);
1648     Runtime->GenerateClass(OMD);
1649     break;
1650   }
1651   case Decl::ObjCMethod: {
1652     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1653     // If this is not a prototype, emit the body.
1654     if (OMD->getBody())
1655       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1656     break;
1657   }
1658   case Decl::ObjCCompatibleAlias:
1659     // compatibility-alias is a directive and has no code gen.
1660     break;
1661 
1662   case Decl::LinkageSpec:
1663     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1664     break;
1665 
1666   case Decl::FileScopeAsm: {
1667     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1668     std::string AsmString(AD->getAsmString()->getStrData(),
1669                           AD->getAsmString()->getByteLength());
1670 
1671     const std::string &S = getModule().getModuleInlineAsm();
1672     if (S.empty())
1673       getModule().setModuleInlineAsm(AsmString);
1674     else
1675       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1676     break;
1677   }
1678 
1679   default:
1680     // Make sure we handled everything we should, every other kind is a
1681     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1682     // function. Need to recode Decl::Kind to do that easily.
1683     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1684   }
1685 }
1686