1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/StringSwitch.h" 51 #include "llvm/ADT/Triple.h" 52 #include "llvm/Analysis/TargetLibraryInfo.h" 53 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 54 #include "llvm/IR/CallingConv.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/Intrinsics.h" 57 #include "llvm/IR/LLVMContext.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ProfileSummary.h" 60 #include "llvm/ProfileData/InstrProfReader.h" 61 #include "llvm/Support/CRC.h" 62 #include "llvm/Support/CodeGen.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/ConvertUTF.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/MD5.h" 67 #include "llvm/Support/TimeProfiler.h" 68 #include "llvm/Support/X86TargetParser.h" 69 70 using namespace clang; 71 using namespace CodeGen; 72 73 static llvm::cl::opt<bool> LimitedCoverage( 74 "limited-coverage-experimental", llvm::cl::Hidden, 75 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 76 77 static const char AnnotationSection[] = "llvm.metadata"; 78 79 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 80 switch (CGM.getContext().getCXXABIKind()) { 81 case TargetCXXABI::AppleARM64: 82 case TargetCXXABI::Fuchsia: 83 case TargetCXXABI::GenericAArch64: 84 case TargetCXXABI::GenericARM: 85 case TargetCXXABI::iOS: 86 case TargetCXXABI::WatchOS: 87 case TargetCXXABI::GenericMIPS: 88 case TargetCXXABI::GenericItanium: 89 case TargetCXXABI::WebAssembly: 90 case TargetCXXABI::XL: 91 return CreateItaniumCXXABI(CGM); 92 case TargetCXXABI::Microsoft: 93 return CreateMicrosoftCXXABI(CGM); 94 } 95 96 llvm_unreachable("invalid C++ ABI kind"); 97 } 98 99 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 100 const PreprocessorOptions &PPO, 101 const CodeGenOptions &CGO, llvm::Module &M, 102 DiagnosticsEngine &diags, 103 CoverageSourceInfo *CoverageInfo) 104 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 105 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 106 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 107 VMContext(M.getContext()), Types(*this), VTables(*this), 108 SanitizerMD(new SanitizerMetadata(*this)) { 109 110 // Initialize the type cache. 111 llvm::LLVMContext &LLVMContext = M.getContext(); 112 VoidTy = llvm::Type::getVoidTy(LLVMContext); 113 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 114 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 115 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 116 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 117 HalfTy = llvm::Type::getHalfTy(LLVMContext); 118 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 119 FloatTy = llvm::Type::getFloatTy(LLVMContext); 120 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 121 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 122 PointerAlignInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 124 SizeSizeInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 126 IntAlignInBytes = 127 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 128 CharTy = 129 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 130 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 131 IntPtrTy = llvm::IntegerType::get(LLVMContext, 132 C.getTargetInfo().getMaxPointerWidth()); 133 Int8PtrTy = Int8Ty->getPointerTo(0); 134 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 135 const llvm::DataLayout &DL = M.getDataLayout(); 136 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 137 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 138 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 139 140 // Build C++20 Module initializers. 141 // TODO: Add Microsoft here once we know the mangling required for the 142 // initializers. 143 CXX20ModuleInits = 144 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 145 ItaniumMangleContext::MK_Itanium; 146 147 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 148 149 if (LangOpts.ObjC) 150 createObjCRuntime(); 151 if (LangOpts.OpenCL) 152 createOpenCLRuntime(); 153 if (LangOpts.OpenMP) 154 createOpenMPRuntime(); 155 if (LangOpts.CUDA) 156 createCUDARuntime(); 157 if (LangOpts.HLSL) 158 createHLSLRuntime(); 159 160 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 161 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 162 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 163 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 164 getCXXABI().getMangleContext())); 165 166 // If debug info or coverage generation is enabled, create the CGDebugInfo 167 // object. 168 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 169 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 170 DebugInfo.reset(new CGDebugInfo(*this)); 171 172 Block.GlobalUniqueCount = 0; 173 174 if (C.getLangOpts().ObjC) 175 ObjCData.reset(new ObjCEntrypoints()); 176 177 if (CodeGenOpts.hasProfileClangUse()) { 178 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 179 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 180 if (auto E = ReaderOrErr.takeError()) { 181 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 182 "Could not read profile %0: %1"); 183 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 184 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 185 << EI.message(); 186 }); 187 } else 188 PGOReader = std::move(ReaderOrErr.get()); 189 } 190 191 // If coverage mapping generation is enabled, create the 192 // CoverageMappingModuleGen object. 193 if (CodeGenOpts.CoverageMapping) 194 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 195 196 // Generate the module name hash here if needed. 197 if (CodeGenOpts.UniqueInternalLinkageNames && 198 !getModule().getSourceFileName().empty()) { 199 std::string Path = getModule().getSourceFileName(); 200 // Check if a path substitution is needed from the MacroPrefixMap. 201 for (const auto &Entry : LangOpts.MacroPrefixMap) 202 if (Path.rfind(Entry.first, 0) != std::string::npos) { 203 Path = Entry.second + Path.substr(Entry.first.size()); 204 break; 205 } 206 llvm::MD5 Md5; 207 Md5.update(Path); 208 llvm::MD5::MD5Result R; 209 Md5.final(R); 210 SmallString<32> Str; 211 llvm::MD5::stringifyResult(R, Str); 212 // Convert MD5hash to Decimal. Demangler suffixes can either contain 213 // numbers or characters but not both. 214 llvm::APInt IntHash(128, Str.str(), 16); 215 // Prepend "__uniq" before the hash for tools like profilers to understand 216 // that this symbol is of internal linkage type. The "__uniq" is the 217 // pre-determined prefix that is used to tell tools that this symbol was 218 // created with -funique-internal-linakge-symbols and the tools can strip or 219 // keep the prefix as needed. 220 ModuleNameHash = (Twine(".__uniq.") + 221 Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str(); 222 } 223 } 224 225 CodeGenModule::~CodeGenModule() {} 226 227 void CodeGenModule::createObjCRuntime() { 228 // This is just isGNUFamily(), but we want to force implementors of 229 // new ABIs to decide how best to do this. 230 switch (LangOpts.ObjCRuntime.getKind()) { 231 case ObjCRuntime::GNUstep: 232 case ObjCRuntime::GCC: 233 case ObjCRuntime::ObjFW: 234 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 235 return; 236 237 case ObjCRuntime::FragileMacOSX: 238 case ObjCRuntime::MacOSX: 239 case ObjCRuntime::iOS: 240 case ObjCRuntime::WatchOS: 241 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 242 return; 243 } 244 llvm_unreachable("bad runtime kind"); 245 } 246 247 void CodeGenModule::createOpenCLRuntime() { 248 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 249 } 250 251 void CodeGenModule::createOpenMPRuntime() { 252 // Select a specialized code generation class based on the target, if any. 253 // If it does not exist use the default implementation. 254 switch (getTriple().getArch()) { 255 case llvm::Triple::nvptx: 256 case llvm::Triple::nvptx64: 257 case llvm::Triple::amdgcn: 258 assert(getLangOpts().OpenMPIsDevice && 259 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 260 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 261 break; 262 default: 263 if (LangOpts.OpenMPSimd) 264 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 265 else 266 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 267 break; 268 } 269 } 270 271 void CodeGenModule::createCUDARuntime() { 272 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 273 } 274 275 void CodeGenModule::createHLSLRuntime() { 276 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 277 } 278 279 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 280 Replacements[Name] = C; 281 } 282 283 void CodeGenModule::applyReplacements() { 284 for (auto &I : Replacements) { 285 StringRef MangledName = I.first(); 286 llvm::Constant *Replacement = I.second; 287 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 288 if (!Entry) 289 continue; 290 auto *OldF = cast<llvm::Function>(Entry); 291 auto *NewF = dyn_cast<llvm::Function>(Replacement); 292 if (!NewF) { 293 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 294 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 295 } else { 296 auto *CE = cast<llvm::ConstantExpr>(Replacement); 297 assert(CE->getOpcode() == llvm::Instruction::BitCast || 298 CE->getOpcode() == llvm::Instruction::GetElementPtr); 299 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 300 } 301 } 302 303 // Replace old with new, but keep the old order. 304 OldF->replaceAllUsesWith(Replacement); 305 if (NewF) { 306 NewF->removeFromParent(); 307 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 308 NewF); 309 } 310 OldF->eraseFromParent(); 311 } 312 } 313 314 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 315 GlobalValReplacements.push_back(std::make_pair(GV, C)); 316 } 317 318 void CodeGenModule::applyGlobalValReplacements() { 319 for (auto &I : GlobalValReplacements) { 320 llvm::GlobalValue *GV = I.first; 321 llvm::Constant *C = I.second; 322 323 GV->replaceAllUsesWith(C); 324 GV->eraseFromParent(); 325 } 326 } 327 328 // This is only used in aliases that we created and we know they have a 329 // linear structure. 330 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 331 const llvm::Constant *C; 332 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 333 C = GA->getAliasee(); 334 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 335 C = GI->getResolver(); 336 else 337 return GV; 338 339 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 340 if (!AliaseeGV) 341 return nullptr; 342 343 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 344 if (FinalGV == GV) 345 return nullptr; 346 347 return FinalGV; 348 } 349 350 static bool checkAliasedGlobal(DiagnosticsEngine &Diags, 351 SourceLocation Location, bool IsIFunc, 352 const llvm::GlobalValue *Alias, 353 const llvm::GlobalValue *&GV) { 354 GV = getAliasedGlobal(Alias); 355 if (!GV) { 356 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 357 return false; 358 } 359 360 if (GV->isDeclaration()) { 361 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 362 return false; 363 } 364 365 if (IsIFunc) { 366 // Check resolver function type. 367 const auto *F = dyn_cast<llvm::Function>(GV); 368 if (!F) { 369 Diags.Report(Location, diag::err_alias_to_undefined) 370 << IsIFunc << IsIFunc; 371 return false; 372 } 373 374 llvm::FunctionType *FTy = F->getFunctionType(); 375 if (!FTy->getReturnType()->isPointerTy()) { 376 Diags.Report(Location, diag::err_ifunc_resolver_return); 377 return false; 378 } 379 } 380 381 return true; 382 } 383 384 void CodeGenModule::checkAliases() { 385 // Check if the constructed aliases are well formed. It is really unfortunate 386 // that we have to do this in CodeGen, but we only construct mangled names 387 // and aliases during codegen. 388 bool Error = false; 389 DiagnosticsEngine &Diags = getDiags(); 390 for (const GlobalDecl &GD : Aliases) { 391 const auto *D = cast<ValueDecl>(GD.getDecl()); 392 SourceLocation Location; 393 bool IsIFunc = D->hasAttr<IFuncAttr>(); 394 if (const Attr *A = D->getDefiningAttr()) 395 Location = A->getLocation(); 396 else 397 llvm_unreachable("Not an alias or ifunc?"); 398 399 StringRef MangledName = getMangledName(GD); 400 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 401 const llvm::GlobalValue *GV = nullptr; 402 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { 403 Error = true; 404 continue; 405 } 406 407 llvm::Constant *Aliasee = 408 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 409 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 410 411 llvm::GlobalValue *AliaseeGV; 412 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 413 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 414 else 415 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 416 417 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 418 StringRef AliasSection = SA->getName(); 419 if (AliasSection != AliaseeGV->getSection()) 420 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 421 << AliasSection << IsIFunc << IsIFunc; 422 } 423 424 // We have to handle alias to weak aliases in here. LLVM itself disallows 425 // this since the object semantics would not match the IL one. For 426 // compatibility with gcc we implement it by just pointing the alias 427 // to its aliasee's aliasee. We also warn, since the user is probably 428 // expecting the link to be weak. 429 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 430 if (GA->isInterposable()) { 431 Diags.Report(Location, diag::warn_alias_to_weak_alias) 432 << GV->getName() << GA->getName() << IsIFunc; 433 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 434 GA->getAliasee(), Alias->getType()); 435 436 if (IsIFunc) 437 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 438 else 439 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 440 } 441 } 442 } 443 if (!Error) 444 return; 445 446 for (const GlobalDecl &GD : Aliases) { 447 StringRef MangledName = getMangledName(GD); 448 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 449 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 450 Alias->eraseFromParent(); 451 } 452 } 453 454 void CodeGenModule::clear() { 455 DeferredDeclsToEmit.clear(); 456 EmittedDeferredDecls.clear(); 457 if (OpenMPRuntime) 458 OpenMPRuntime->clear(); 459 } 460 461 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 462 StringRef MainFile) { 463 if (!hasDiagnostics()) 464 return; 465 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 466 if (MainFile.empty()) 467 MainFile = "<stdin>"; 468 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 469 } else { 470 if (Mismatched > 0) 471 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 472 473 if (Missing > 0) 474 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 475 } 476 } 477 478 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 479 llvm::Module &M) { 480 if (!LO.VisibilityFromDLLStorageClass) 481 return; 482 483 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 484 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 485 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 486 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 487 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 488 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 489 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 490 CodeGenModule::GetLLVMVisibility( 491 LO.getExternDeclNoDLLStorageClassVisibility()); 492 493 for (llvm::GlobalValue &GV : M.global_values()) { 494 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 495 continue; 496 497 // Reset DSO locality before setting the visibility. This removes 498 // any effects that visibility options and annotations may have 499 // had on the DSO locality. Setting the visibility will implicitly set 500 // appropriate globals to DSO Local; however, this will be pessimistic 501 // w.r.t. to the normal compiler IRGen. 502 GV.setDSOLocal(false); 503 504 if (GV.isDeclarationForLinker()) { 505 GV.setVisibility(GV.getDLLStorageClass() == 506 llvm::GlobalValue::DLLImportStorageClass 507 ? ExternDeclDLLImportVisibility 508 : ExternDeclNoDLLStorageClassVisibility); 509 } else { 510 GV.setVisibility(GV.getDLLStorageClass() == 511 llvm::GlobalValue::DLLExportStorageClass 512 ? DLLExportVisibility 513 : NoDLLStorageClassVisibility); 514 } 515 516 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 517 } 518 } 519 520 void CodeGenModule::Release() { 521 Module *Primary = getContext().getModuleForCodeGen(); 522 if (CXX20ModuleInits && Primary && !Primary->isModuleMapModule()) 523 EmitModuleInitializers(Primary); 524 EmitDeferred(); 525 DeferredDecls.insert(EmittedDeferredDecls.begin(), 526 EmittedDeferredDecls.end()); 527 EmittedDeferredDecls.clear(); 528 EmitVTablesOpportunistically(); 529 applyGlobalValReplacements(); 530 applyReplacements(); 531 emitMultiVersionFunctions(); 532 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 533 EmitCXXModuleInitFunc(Primary); 534 else 535 EmitCXXGlobalInitFunc(); 536 EmitCXXGlobalCleanUpFunc(); 537 registerGlobalDtorsWithAtExit(); 538 EmitCXXThreadLocalInitFunc(); 539 if (ObjCRuntime) 540 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 541 AddGlobalCtor(ObjCInitFunction); 542 if (Context.getLangOpts().CUDA && CUDARuntime) { 543 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 544 AddGlobalCtor(CudaCtorFunction); 545 } 546 if (OpenMPRuntime) { 547 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 548 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 549 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 550 } 551 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 552 OpenMPRuntime->clear(); 553 } 554 if (PGOReader) { 555 getModule().setProfileSummary( 556 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 557 llvm::ProfileSummary::PSK_Instr); 558 if (PGOStats.hasDiagnostics()) 559 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 560 } 561 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 562 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 563 EmitGlobalAnnotations(); 564 EmitStaticExternCAliases(); 565 checkAliases(); 566 EmitDeferredUnusedCoverageMappings(); 567 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 568 if (CoverageMapping) 569 CoverageMapping->emit(); 570 if (CodeGenOpts.SanitizeCfiCrossDso) { 571 CodeGenFunction(*this).EmitCfiCheckFail(); 572 CodeGenFunction(*this).EmitCfiCheckStub(); 573 } 574 emitAtAvailableLinkGuard(); 575 if (Context.getTargetInfo().getTriple().isWasm()) 576 EmitMainVoidAlias(); 577 578 if (getTriple().isAMDGPU()) { 579 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 580 // preserve ASAN functions in bitcode libraries. 581 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 582 auto *FT = llvm::FunctionType::get(VoidTy, {}); 583 auto *F = llvm::Function::Create( 584 FT, llvm::GlobalValue::ExternalLinkage, 585 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 586 auto *Var = new llvm::GlobalVariable( 587 getModule(), FT->getPointerTo(), 588 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 589 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 590 llvm::GlobalVariable::NotThreadLocal); 591 addCompilerUsedGlobal(Var); 592 } 593 // Emit amdgpu_code_object_version module flag, which is code object version 594 // times 100. 595 // ToDo: Enable module flag for all code object version when ROCm device 596 // library is ready. 597 if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) { 598 getModule().addModuleFlag(llvm::Module::Error, 599 "amdgpu_code_object_version", 600 getTarget().getTargetOpts().CodeObjectVersion); 601 } 602 } 603 604 // Emit a global array containing all external kernels or device variables 605 // used by host functions and mark it as used for CUDA/HIP. This is necessary 606 // to get kernels or device variables in archives linked in even if these 607 // kernels or device variables are only used in host functions. 608 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 609 SmallVector<llvm::Constant *, 8> UsedArray; 610 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 611 GlobalDecl GD; 612 if (auto *FD = dyn_cast<FunctionDecl>(D)) 613 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 614 else 615 GD = GlobalDecl(D); 616 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 617 GetAddrOfGlobal(GD), Int8PtrTy)); 618 } 619 620 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 621 622 auto *GV = new llvm::GlobalVariable( 623 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 624 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 625 addCompilerUsedGlobal(GV); 626 } 627 628 emitLLVMUsed(); 629 if (SanStats) 630 SanStats->finish(); 631 632 if (CodeGenOpts.Autolink && 633 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 634 EmitModuleLinkOptions(); 635 } 636 637 // On ELF we pass the dependent library specifiers directly to the linker 638 // without manipulating them. This is in contrast to other platforms where 639 // they are mapped to a specific linker option by the compiler. This 640 // difference is a result of the greater variety of ELF linkers and the fact 641 // that ELF linkers tend to handle libraries in a more complicated fashion 642 // than on other platforms. This forces us to defer handling the dependent 643 // libs to the linker. 644 // 645 // CUDA/HIP device and host libraries are different. Currently there is no 646 // way to differentiate dependent libraries for host or device. Existing 647 // usage of #pragma comment(lib, *) is intended for host libraries on 648 // Windows. Therefore emit llvm.dependent-libraries only for host. 649 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 650 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 651 for (auto *MD : ELFDependentLibraries) 652 NMD->addOperand(MD); 653 } 654 655 // Record mregparm value now so it is visible through rest of codegen. 656 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 657 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 658 CodeGenOpts.NumRegisterParameters); 659 660 if (CodeGenOpts.DwarfVersion) { 661 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 662 CodeGenOpts.DwarfVersion); 663 } 664 665 if (CodeGenOpts.Dwarf64) 666 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 667 668 if (Context.getLangOpts().SemanticInterposition) 669 // Require various optimization to respect semantic interposition. 670 getModule().setSemanticInterposition(true); 671 672 if (CodeGenOpts.EmitCodeView) { 673 // Indicate that we want CodeView in the metadata. 674 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 675 } 676 if (CodeGenOpts.CodeViewGHash) { 677 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 678 } 679 if (CodeGenOpts.ControlFlowGuard) { 680 // Function ID tables and checks for Control Flow Guard (cfguard=2). 681 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 682 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 683 // Function ID tables for Control Flow Guard (cfguard=1). 684 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 685 } 686 if (CodeGenOpts.EHContGuard) { 687 // Function ID tables for EH Continuation Guard. 688 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 689 } 690 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 691 // We don't support LTO with 2 with different StrictVTablePointers 692 // FIXME: we could support it by stripping all the information introduced 693 // by StrictVTablePointers. 694 695 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 696 697 llvm::Metadata *Ops[2] = { 698 llvm::MDString::get(VMContext, "StrictVTablePointers"), 699 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 700 llvm::Type::getInt32Ty(VMContext), 1))}; 701 702 getModule().addModuleFlag(llvm::Module::Require, 703 "StrictVTablePointersRequirement", 704 llvm::MDNode::get(VMContext, Ops)); 705 } 706 if (getModuleDebugInfo()) 707 // We support a single version in the linked module. The LLVM 708 // parser will drop debug info with a different version number 709 // (and warn about it, too). 710 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 711 llvm::DEBUG_METADATA_VERSION); 712 713 // We need to record the widths of enums and wchar_t, so that we can generate 714 // the correct build attributes in the ARM backend. wchar_size is also used by 715 // TargetLibraryInfo. 716 uint64_t WCharWidth = 717 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 718 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 719 720 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 721 if ( Arch == llvm::Triple::arm 722 || Arch == llvm::Triple::armeb 723 || Arch == llvm::Triple::thumb 724 || Arch == llvm::Triple::thumbeb) { 725 // The minimum width of an enum in bytes 726 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 727 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 728 } 729 730 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 731 StringRef ABIStr = Target.getABI(); 732 llvm::LLVMContext &Ctx = TheModule.getContext(); 733 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 734 llvm::MDString::get(Ctx, ABIStr)); 735 } 736 737 if (CodeGenOpts.SanitizeCfiCrossDso) { 738 // Indicate that we want cross-DSO control flow integrity checks. 739 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 740 } 741 742 if (CodeGenOpts.WholeProgramVTables) { 743 // Indicate whether VFE was enabled for this module, so that the 744 // vcall_visibility metadata added under whole program vtables is handled 745 // appropriately in the optimizer. 746 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 747 CodeGenOpts.VirtualFunctionElimination); 748 } 749 750 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 751 getModule().addModuleFlag(llvm::Module::Override, 752 "CFI Canonical Jump Tables", 753 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 754 } 755 756 if (CodeGenOpts.CFProtectionReturn && 757 Target.checkCFProtectionReturnSupported(getDiags())) { 758 // Indicate that we want to instrument return control flow protection. 759 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 760 1); 761 } 762 763 if (CodeGenOpts.CFProtectionBranch && 764 Target.checkCFProtectionBranchSupported(getDiags())) { 765 // Indicate that we want to instrument branch control flow protection. 766 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 767 1); 768 } 769 770 if (CodeGenOpts.IBTSeal) 771 getModule().addModuleFlag(llvm::Module::Min, "ibt-seal", 1); 772 773 if (CodeGenOpts.FunctionReturnThunks) 774 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 775 776 // Add module metadata for return address signing (ignoring 777 // non-leaf/all) and stack tagging. These are actually turned on by function 778 // attributes, but we use module metadata to emit build attributes. This is 779 // needed for LTO, where the function attributes are inside bitcode 780 // serialised into a global variable by the time build attributes are 781 // emitted, so we can't access them. LTO objects could be compiled with 782 // different flags therefore module flags are set to "Min" behavior to achieve 783 // the same end result of the normal build where e.g BTI is off if any object 784 // doesn't support it. 785 if (Context.getTargetInfo().hasFeature("ptrauth") && 786 LangOpts.getSignReturnAddressScope() != 787 LangOptions::SignReturnAddressScopeKind::None) 788 getModule().addModuleFlag(llvm::Module::Override, 789 "sign-return-address-buildattr", 1); 790 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 791 getModule().addModuleFlag(llvm::Module::Override, 792 "tag-stack-memory-buildattr", 1); 793 794 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 795 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 796 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 797 Arch == llvm::Triple::aarch64_be) { 798 if (LangOpts.BranchTargetEnforcement) 799 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 800 1); 801 if (LangOpts.hasSignReturnAddress()) 802 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 803 if (LangOpts.isSignReturnAddressScopeAll()) 804 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 805 1); 806 if (!LangOpts.isSignReturnAddressWithAKey()) 807 getModule().addModuleFlag(llvm::Module::Min, 808 "sign-return-address-with-bkey", 1); 809 } 810 811 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 812 llvm::LLVMContext &Ctx = TheModule.getContext(); 813 getModule().addModuleFlag( 814 llvm::Module::Error, "MemProfProfileFilename", 815 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 816 } 817 818 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 819 // Indicate whether __nvvm_reflect should be configured to flush denormal 820 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 821 // property.) 822 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 823 CodeGenOpts.FP32DenormalMode.Output != 824 llvm::DenormalMode::IEEE); 825 } 826 827 if (LangOpts.EHAsynch) 828 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 829 830 // Indicate whether this Module was compiled with -fopenmp 831 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 832 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 833 if (getLangOpts().OpenMPIsDevice) 834 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 835 LangOpts.OpenMP); 836 837 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 838 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 839 EmitOpenCLMetadata(); 840 // Emit SPIR version. 841 if (getTriple().isSPIR()) { 842 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 843 // opencl.spir.version named metadata. 844 // C++ for OpenCL has a distinct mapping for version compatibility with 845 // OpenCL. 846 auto Version = LangOpts.getOpenCLCompatibleVersion(); 847 llvm::Metadata *SPIRVerElts[] = { 848 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 849 Int32Ty, Version / 100)), 850 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 851 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 852 llvm::NamedMDNode *SPIRVerMD = 853 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 854 llvm::LLVMContext &Ctx = TheModule.getContext(); 855 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 856 } 857 } 858 859 // HLSL related end of code gen work items. 860 if (LangOpts.HLSL) 861 getHLSLRuntime().finishCodeGen(); 862 863 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 864 assert(PLevel < 3 && "Invalid PIC Level"); 865 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 866 if (Context.getLangOpts().PIE) 867 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 868 } 869 870 if (getCodeGenOpts().CodeModel.size() > 0) { 871 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 872 .Case("tiny", llvm::CodeModel::Tiny) 873 .Case("small", llvm::CodeModel::Small) 874 .Case("kernel", llvm::CodeModel::Kernel) 875 .Case("medium", llvm::CodeModel::Medium) 876 .Case("large", llvm::CodeModel::Large) 877 .Default(~0u); 878 if (CM != ~0u) { 879 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 880 getModule().setCodeModel(codeModel); 881 } 882 } 883 884 if (CodeGenOpts.NoPLT) 885 getModule().setRtLibUseGOT(); 886 if (CodeGenOpts.UnwindTables) 887 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 888 889 switch (CodeGenOpts.getFramePointer()) { 890 case CodeGenOptions::FramePointerKind::None: 891 // 0 ("none") is the default. 892 break; 893 case CodeGenOptions::FramePointerKind::NonLeaf: 894 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 895 break; 896 case CodeGenOptions::FramePointerKind::All: 897 getModule().setFramePointer(llvm::FramePointerKind::All); 898 break; 899 } 900 901 SimplifyPersonality(); 902 903 if (getCodeGenOpts().EmitDeclMetadata) 904 EmitDeclMetadata(); 905 906 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 907 EmitCoverageFile(); 908 909 if (CGDebugInfo *DI = getModuleDebugInfo()) 910 DI->finalize(); 911 912 if (getCodeGenOpts().EmitVersionIdentMetadata) 913 EmitVersionIdentMetadata(); 914 915 if (!getCodeGenOpts().RecordCommandLine.empty()) 916 EmitCommandLineMetadata(); 917 918 if (!getCodeGenOpts().StackProtectorGuard.empty()) 919 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 920 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 921 getModule().setStackProtectorGuardReg( 922 getCodeGenOpts().StackProtectorGuardReg); 923 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 924 getModule().setStackProtectorGuardSymbol( 925 getCodeGenOpts().StackProtectorGuardSymbol); 926 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 927 getModule().setStackProtectorGuardOffset( 928 getCodeGenOpts().StackProtectorGuardOffset); 929 if (getCodeGenOpts().StackAlignment) 930 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 931 if (getCodeGenOpts().SkipRaxSetup) 932 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 933 934 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 935 936 EmitBackendOptionsMetadata(getCodeGenOpts()); 937 938 // If there is device offloading code embed it in the host now. 939 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 940 941 // Set visibility from DLL storage class 942 // We do this at the end of LLVM IR generation; after any operation 943 // that might affect the DLL storage class or the visibility, and 944 // before anything that might act on these. 945 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 946 } 947 948 void CodeGenModule::EmitOpenCLMetadata() { 949 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 950 // opencl.ocl.version named metadata node. 951 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 952 auto Version = LangOpts.getOpenCLCompatibleVersion(); 953 llvm::Metadata *OCLVerElts[] = { 954 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 955 Int32Ty, Version / 100)), 956 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 957 Int32Ty, (Version % 100) / 10))}; 958 llvm::NamedMDNode *OCLVerMD = 959 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 960 llvm::LLVMContext &Ctx = TheModule.getContext(); 961 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 962 } 963 964 void CodeGenModule::EmitBackendOptionsMetadata( 965 const CodeGenOptions CodeGenOpts) { 966 switch (getTriple().getArch()) { 967 default: 968 break; 969 case llvm::Triple::riscv32: 970 case llvm::Triple::riscv64: 971 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 972 CodeGenOpts.SmallDataLimit); 973 break; 974 } 975 } 976 977 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 978 // Make sure that this type is translated. 979 Types.UpdateCompletedType(TD); 980 } 981 982 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 983 // Make sure that this type is translated. 984 Types.RefreshTypeCacheForClass(RD); 985 } 986 987 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 988 if (!TBAA) 989 return nullptr; 990 return TBAA->getTypeInfo(QTy); 991 } 992 993 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 994 if (!TBAA) 995 return TBAAAccessInfo(); 996 if (getLangOpts().CUDAIsDevice) { 997 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 998 // access info. 999 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1000 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1001 nullptr) 1002 return TBAAAccessInfo(); 1003 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1004 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1005 nullptr) 1006 return TBAAAccessInfo(); 1007 } 1008 } 1009 return TBAA->getAccessInfo(AccessType); 1010 } 1011 1012 TBAAAccessInfo 1013 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1014 if (!TBAA) 1015 return TBAAAccessInfo(); 1016 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1017 } 1018 1019 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1020 if (!TBAA) 1021 return nullptr; 1022 return TBAA->getTBAAStructInfo(QTy); 1023 } 1024 1025 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1026 if (!TBAA) 1027 return nullptr; 1028 return TBAA->getBaseTypeInfo(QTy); 1029 } 1030 1031 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1032 if (!TBAA) 1033 return nullptr; 1034 return TBAA->getAccessTagInfo(Info); 1035 } 1036 1037 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1038 TBAAAccessInfo TargetInfo) { 1039 if (!TBAA) 1040 return TBAAAccessInfo(); 1041 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1042 } 1043 1044 TBAAAccessInfo 1045 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1046 TBAAAccessInfo InfoB) { 1047 if (!TBAA) 1048 return TBAAAccessInfo(); 1049 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1050 } 1051 1052 TBAAAccessInfo 1053 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1054 TBAAAccessInfo SrcInfo) { 1055 if (!TBAA) 1056 return TBAAAccessInfo(); 1057 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1058 } 1059 1060 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1061 TBAAAccessInfo TBAAInfo) { 1062 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1063 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1064 } 1065 1066 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1067 llvm::Instruction *I, const CXXRecordDecl *RD) { 1068 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1069 llvm::MDNode::get(getLLVMContext(), {})); 1070 } 1071 1072 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1073 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1074 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1075 } 1076 1077 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1078 /// specified stmt yet. 1079 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1080 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1081 "cannot compile this %0 yet"); 1082 std::string Msg = Type; 1083 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1084 << Msg << S->getSourceRange(); 1085 } 1086 1087 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1088 /// specified decl yet. 1089 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1090 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1091 "cannot compile this %0 yet"); 1092 std::string Msg = Type; 1093 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1094 } 1095 1096 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1097 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1098 } 1099 1100 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1101 const NamedDecl *D) const { 1102 if (GV->hasDLLImportStorageClass()) 1103 return; 1104 // Internal definitions always have default visibility. 1105 if (GV->hasLocalLinkage()) { 1106 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1107 return; 1108 } 1109 if (!D) 1110 return; 1111 // Set visibility for definitions, and for declarations if requested globally 1112 // or set explicitly. 1113 LinkageInfo LV = D->getLinkageAndVisibility(); 1114 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1115 !GV->isDeclarationForLinker()) 1116 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1117 } 1118 1119 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1120 llvm::GlobalValue *GV) { 1121 if (GV->hasLocalLinkage()) 1122 return true; 1123 1124 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1125 return true; 1126 1127 // DLLImport explicitly marks the GV as external. 1128 if (GV->hasDLLImportStorageClass()) 1129 return false; 1130 1131 const llvm::Triple &TT = CGM.getTriple(); 1132 if (TT.isWindowsGNUEnvironment()) { 1133 // In MinGW, variables without DLLImport can still be automatically 1134 // imported from a DLL by the linker; don't mark variables that 1135 // potentially could come from another DLL as DSO local. 1136 1137 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1138 // (and this actually happens in the public interface of libstdc++), so 1139 // such variables can't be marked as DSO local. (Native TLS variables 1140 // can't be dllimported at all, though.) 1141 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1142 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1143 return false; 1144 } 1145 1146 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1147 // remain unresolved in the link, they can be resolved to zero, which is 1148 // outside the current DSO. 1149 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1150 return false; 1151 1152 // Every other GV is local on COFF. 1153 // Make an exception for windows OS in the triple: Some firmware builds use 1154 // *-win32-macho triples. This (accidentally?) produced windows relocations 1155 // without GOT tables in older clang versions; Keep this behaviour. 1156 // FIXME: even thread local variables? 1157 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1158 return true; 1159 1160 // Only handle COFF and ELF for now. 1161 if (!TT.isOSBinFormatELF()) 1162 return false; 1163 1164 // If this is not an executable, don't assume anything is local. 1165 const auto &CGOpts = CGM.getCodeGenOpts(); 1166 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1167 const auto &LOpts = CGM.getLangOpts(); 1168 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1169 // On ELF, if -fno-semantic-interposition is specified and the target 1170 // supports local aliases, there will be neither CC1 1171 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1172 // dso_local on the function if using a local alias is preferable (can avoid 1173 // PLT indirection). 1174 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1175 return false; 1176 return !(CGM.getLangOpts().SemanticInterposition || 1177 CGM.getLangOpts().HalfNoSemanticInterposition); 1178 } 1179 1180 // A definition cannot be preempted from an executable. 1181 if (!GV->isDeclarationForLinker()) 1182 return true; 1183 1184 // Most PIC code sequences that assume that a symbol is local cannot produce a 1185 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1186 // depended, it seems worth it to handle it here. 1187 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1188 return false; 1189 1190 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1191 if (TT.isPPC64()) 1192 return false; 1193 1194 if (CGOpts.DirectAccessExternalData) { 1195 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1196 // for non-thread-local variables. If the symbol is not defined in the 1197 // executable, a copy relocation will be needed at link time. dso_local is 1198 // excluded for thread-local variables because they generally don't support 1199 // copy relocations. 1200 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1201 if (!Var->isThreadLocal()) 1202 return true; 1203 1204 // -fno-pic sets dso_local on a function declaration to allow direct 1205 // accesses when taking its address (similar to a data symbol). If the 1206 // function is not defined in the executable, a canonical PLT entry will be 1207 // needed at link time. -fno-direct-access-external-data can avoid the 1208 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1209 // it could just cause trouble without providing perceptible benefits. 1210 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1211 return true; 1212 } 1213 1214 // If we can use copy relocations we can assume it is local. 1215 1216 // Otherwise don't assume it is local. 1217 return false; 1218 } 1219 1220 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1221 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1222 } 1223 1224 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1225 GlobalDecl GD) const { 1226 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1227 // C++ destructors have a few C++ ABI specific special cases. 1228 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1229 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1230 return; 1231 } 1232 setDLLImportDLLExport(GV, D); 1233 } 1234 1235 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1236 const NamedDecl *D) const { 1237 if (D && D->isExternallyVisible()) { 1238 if (D->hasAttr<DLLImportAttr>()) 1239 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1240 else if ((D->hasAttr<DLLExportAttr>() || 1241 shouldMapVisibilityToDLLExport(D)) && 1242 !GV->isDeclarationForLinker()) 1243 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1244 } 1245 } 1246 1247 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1248 GlobalDecl GD) const { 1249 setDLLImportDLLExport(GV, GD); 1250 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1251 } 1252 1253 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1254 const NamedDecl *D) const { 1255 setDLLImportDLLExport(GV, D); 1256 setGVPropertiesAux(GV, D); 1257 } 1258 1259 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1260 const NamedDecl *D) const { 1261 setGlobalVisibility(GV, D); 1262 setDSOLocal(GV); 1263 GV->setPartition(CodeGenOpts.SymbolPartition); 1264 } 1265 1266 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1267 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1268 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1269 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1270 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1271 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1272 } 1273 1274 llvm::GlobalVariable::ThreadLocalMode 1275 CodeGenModule::GetDefaultLLVMTLSModel() const { 1276 switch (CodeGenOpts.getDefaultTLSModel()) { 1277 case CodeGenOptions::GeneralDynamicTLSModel: 1278 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1279 case CodeGenOptions::LocalDynamicTLSModel: 1280 return llvm::GlobalVariable::LocalDynamicTLSModel; 1281 case CodeGenOptions::InitialExecTLSModel: 1282 return llvm::GlobalVariable::InitialExecTLSModel; 1283 case CodeGenOptions::LocalExecTLSModel: 1284 return llvm::GlobalVariable::LocalExecTLSModel; 1285 } 1286 llvm_unreachable("Invalid TLS model!"); 1287 } 1288 1289 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1290 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1291 1292 llvm::GlobalValue::ThreadLocalMode TLM; 1293 TLM = GetDefaultLLVMTLSModel(); 1294 1295 // Override the TLS model if it is explicitly specified. 1296 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1297 TLM = GetLLVMTLSModel(Attr->getModel()); 1298 } 1299 1300 GV->setThreadLocalMode(TLM); 1301 } 1302 1303 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1304 StringRef Name) { 1305 const TargetInfo &Target = CGM.getTarget(); 1306 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1307 } 1308 1309 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1310 const CPUSpecificAttr *Attr, 1311 unsigned CPUIndex, 1312 raw_ostream &Out) { 1313 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1314 // supported. 1315 if (Attr) 1316 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1317 else if (CGM.getTarget().supportsIFunc()) 1318 Out << ".resolver"; 1319 } 1320 1321 static void AppendTargetMangling(const CodeGenModule &CGM, 1322 const TargetAttr *Attr, raw_ostream &Out) { 1323 if (Attr->isDefaultVersion()) 1324 return; 1325 1326 Out << '.'; 1327 const TargetInfo &Target = CGM.getTarget(); 1328 ParsedTargetAttr Info = 1329 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1330 // Multiversioning doesn't allow "no-${feature}", so we can 1331 // only have "+" prefixes here. 1332 assert(LHS.startswith("+") && RHS.startswith("+") && 1333 "Features should always have a prefix."); 1334 return Target.multiVersionSortPriority(LHS.substr(1)) > 1335 Target.multiVersionSortPriority(RHS.substr(1)); 1336 }); 1337 1338 bool IsFirst = true; 1339 1340 if (!Info.Architecture.empty()) { 1341 IsFirst = false; 1342 Out << "arch_" << Info.Architecture; 1343 } 1344 1345 for (StringRef Feat : Info.Features) { 1346 if (!IsFirst) 1347 Out << '_'; 1348 IsFirst = false; 1349 Out << Feat.substr(1); 1350 } 1351 } 1352 1353 // Returns true if GD is a function decl with internal linkage and 1354 // needs a unique suffix after the mangled name. 1355 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1356 CodeGenModule &CGM) { 1357 const Decl *D = GD.getDecl(); 1358 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1359 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1360 } 1361 1362 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1363 const TargetClonesAttr *Attr, 1364 unsigned VersionIndex, 1365 raw_ostream &Out) { 1366 Out << '.'; 1367 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1368 if (FeatureStr.startswith("arch=")) 1369 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1370 else 1371 Out << FeatureStr; 1372 1373 Out << '.' << Attr->getMangledIndex(VersionIndex); 1374 } 1375 1376 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1377 const NamedDecl *ND, 1378 bool OmitMultiVersionMangling = false) { 1379 SmallString<256> Buffer; 1380 llvm::raw_svector_ostream Out(Buffer); 1381 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1382 if (!CGM.getModuleNameHash().empty()) 1383 MC.needsUniqueInternalLinkageNames(); 1384 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1385 if (ShouldMangle) 1386 MC.mangleName(GD.getWithDecl(ND), Out); 1387 else { 1388 IdentifierInfo *II = ND->getIdentifier(); 1389 assert(II && "Attempt to mangle unnamed decl."); 1390 const auto *FD = dyn_cast<FunctionDecl>(ND); 1391 1392 if (FD && 1393 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1394 Out << "__regcall3__" << II->getName(); 1395 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1396 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1397 Out << "__device_stub__" << II->getName(); 1398 } else { 1399 Out << II->getName(); 1400 } 1401 } 1402 1403 // Check if the module name hash should be appended for internal linkage 1404 // symbols. This should come before multi-version target suffixes are 1405 // appended. This is to keep the name and module hash suffix of the 1406 // internal linkage function together. The unique suffix should only be 1407 // added when name mangling is done to make sure that the final name can 1408 // be properly demangled. For example, for C functions without prototypes, 1409 // name mangling is not done and the unique suffix should not be appeneded 1410 // then. 1411 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1412 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1413 "Hash computed when not explicitly requested"); 1414 Out << CGM.getModuleNameHash(); 1415 } 1416 1417 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1418 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1419 switch (FD->getMultiVersionKind()) { 1420 case MultiVersionKind::CPUDispatch: 1421 case MultiVersionKind::CPUSpecific: 1422 AppendCPUSpecificCPUDispatchMangling(CGM, 1423 FD->getAttr<CPUSpecificAttr>(), 1424 GD.getMultiVersionIndex(), Out); 1425 break; 1426 case MultiVersionKind::Target: 1427 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1428 break; 1429 case MultiVersionKind::TargetClones: 1430 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1431 GD.getMultiVersionIndex(), Out); 1432 break; 1433 case MultiVersionKind::None: 1434 llvm_unreachable("None multiversion type isn't valid here"); 1435 } 1436 } 1437 1438 // Make unique name for device side static file-scope variable for HIP. 1439 if (CGM.getContext().shouldExternalize(ND) && 1440 CGM.getLangOpts().GPURelocatableDeviceCode && 1441 CGM.getLangOpts().CUDAIsDevice) 1442 CGM.printPostfixForExternalizedDecl(Out, ND); 1443 1444 return std::string(Out.str()); 1445 } 1446 1447 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1448 const FunctionDecl *FD, 1449 StringRef &CurName) { 1450 if (!FD->isMultiVersion()) 1451 return; 1452 1453 // Get the name of what this would be without the 'target' attribute. This 1454 // allows us to lookup the version that was emitted when this wasn't a 1455 // multiversion function. 1456 std::string NonTargetName = 1457 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1458 GlobalDecl OtherGD; 1459 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1460 assert(OtherGD.getCanonicalDecl() 1461 .getDecl() 1462 ->getAsFunction() 1463 ->isMultiVersion() && 1464 "Other GD should now be a multiversioned function"); 1465 // OtherFD is the version of this function that was mangled BEFORE 1466 // becoming a MultiVersion function. It potentially needs to be updated. 1467 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1468 .getDecl() 1469 ->getAsFunction() 1470 ->getMostRecentDecl(); 1471 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1472 // This is so that if the initial version was already the 'default' 1473 // version, we don't try to update it. 1474 if (OtherName != NonTargetName) { 1475 // Remove instead of erase, since others may have stored the StringRef 1476 // to this. 1477 const auto ExistingRecord = Manglings.find(NonTargetName); 1478 if (ExistingRecord != std::end(Manglings)) 1479 Manglings.remove(&(*ExistingRecord)); 1480 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1481 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1482 Result.first->first(); 1483 // If this is the current decl is being created, make sure we update the name. 1484 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1485 CurName = OtherNameRef; 1486 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1487 Entry->setName(OtherName); 1488 } 1489 } 1490 } 1491 1492 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1493 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1494 1495 // Some ABIs don't have constructor variants. Make sure that base and 1496 // complete constructors get mangled the same. 1497 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1498 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1499 CXXCtorType OrigCtorType = GD.getCtorType(); 1500 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1501 if (OrigCtorType == Ctor_Base) 1502 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1503 } 1504 } 1505 1506 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1507 // static device variable depends on whether the variable is referenced by 1508 // a host or device host function. Therefore the mangled name cannot be 1509 // cached. 1510 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1511 auto FoundName = MangledDeclNames.find(CanonicalGD); 1512 if (FoundName != MangledDeclNames.end()) 1513 return FoundName->second; 1514 } 1515 1516 // Keep the first result in the case of a mangling collision. 1517 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1518 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1519 1520 // Ensure either we have different ABIs between host and device compilations, 1521 // says host compilation following MSVC ABI but device compilation follows 1522 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1523 // mangling should be the same after name stubbing. The later checking is 1524 // very important as the device kernel name being mangled in host-compilation 1525 // is used to resolve the device binaries to be executed. Inconsistent naming 1526 // result in undefined behavior. Even though we cannot check that naming 1527 // directly between host- and device-compilations, the host- and 1528 // device-mangling in host compilation could help catching certain ones. 1529 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1530 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1531 (getContext().getAuxTargetInfo() && 1532 (getContext().getAuxTargetInfo()->getCXXABI() != 1533 getContext().getTargetInfo().getCXXABI())) || 1534 getCUDARuntime().getDeviceSideName(ND) == 1535 getMangledNameImpl( 1536 *this, 1537 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1538 ND)); 1539 1540 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1541 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1542 } 1543 1544 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1545 const BlockDecl *BD) { 1546 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1547 const Decl *D = GD.getDecl(); 1548 1549 SmallString<256> Buffer; 1550 llvm::raw_svector_ostream Out(Buffer); 1551 if (!D) 1552 MangleCtx.mangleGlobalBlock(BD, 1553 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1554 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1555 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1556 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1557 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1558 else 1559 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1560 1561 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1562 return Result.first->first(); 1563 } 1564 1565 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1566 auto it = MangledDeclNames.begin(); 1567 while (it != MangledDeclNames.end()) { 1568 if (it->second == Name) 1569 return it->first; 1570 it++; 1571 } 1572 return GlobalDecl(); 1573 } 1574 1575 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1576 return getModule().getNamedValue(Name); 1577 } 1578 1579 /// AddGlobalCtor - Add a function to the list that will be called before 1580 /// main() runs. 1581 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1582 llvm::Constant *AssociatedData) { 1583 // FIXME: Type coercion of void()* types. 1584 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1585 } 1586 1587 /// AddGlobalDtor - Add a function to the list that will be called 1588 /// when the module is unloaded. 1589 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1590 bool IsDtorAttrFunc) { 1591 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1592 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1593 DtorsUsingAtExit[Priority].push_back(Dtor); 1594 return; 1595 } 1596 1597 // FIXME: Type coercion of void()* types. 1598 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1599 } 1600 1601 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1602 if (Fns.empty()) return; 1603 1604 // Ctor function type is void()*. 1605 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1606 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1607 TheModule.getDataLayout().getProgramAddressSpace()); 1608 1609 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1610 llvm::StructType *CtorStructTy = llvm::StructType::get( 1611 Int32Ty, CtorPFTy, VoidPtrTy); 1612 1613 // Construct the constructor and destructor arrays. 1614 ConstantInitBuilder builder(*this); 1615 auto ctors = builder.beginArray(CtorStructTy); 1616 for (const auto &I : Fns) { 1617 auto ctor = ctors.beginStruct(CtorStructTy); 1618 ctor.addInt(Int32Ty, I.Priority); 1619 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1620 if (I.AssociatedData) 1621 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1622 else 1623 ctor.addNullPointer(VoidPtrTy); 1624 ctor.finishAndAddTo(ctors); 1625 } 1626 1627 auto list = 1628 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1629 /*constant*/ false, 1630 llvm::GlobalValue::AppendingLinkage); 1631 1632 // The LTO linker doesn't seem to like it when we set an alignment 1633 // on appending variables. Take it off as a workaround. 1634 list->setAlignment(llvm::None); 1635 1636 Fns.clear(); 1637 } 1638 1639 llvm::GlobalValue::LinkageTypes 1640 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1641 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1642 1643 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1644 1645 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1646 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1647 1648 if (isa<CXXConstructorDecl>(D) && 1649 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1650 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1651 // Our approach to inheriting constructors is fundamentally different from 1652 // that used by the MS ABI, so keep our inheriting constructor thunks 1653 // internal rather than trying to pick an unambiguous mangling for them. 1654 return llvm::GlobalValue::InternalLinkage; 1655 } 1656 1657 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1658 } 1659 1660 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1661 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1662 if (!MDS) return nullptr; 1663 1664 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1665 } 1666 1667 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1668 const CGFunctionInfo &Info, 1669 llvm::Function *F, bool IsThunk) { 1670 unsigned CallingConv; 1671 llvm::AttributeList PAL; 1672 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1673 /*AttrOnCallSite=*/false, IsThunk); 1674 F->setAttributes(PAL); 1675 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1676 } 1677 1678 static void removeImageAccessQualifier(std::string& TyName) { 1679 std::string ReadOnlyQual("__read_only"); 1680 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1681 if (ReadOnlyPos != std::string::npos) 1682 // "+ 1" for the space after access qualifier. 1683 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1684 else { 1685 std::string WriteOnlyQual("__write_only"); 1686 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1687 if (WriteOnlyPos != std::string::npos) 1688 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1689 else { 1690 std::string ReadWriteQual("__read_write"); 1691 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1692 if (ReadWritePos != std::string::npos) 1693 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1694 } 1695 } 1696 } 1697 1698 // Returns the address space id that should be produced to the 1699 // kernel_arg_addr_space metadata. This is always fixed to the ids 1700 // as specified in the SPIR 2.0 specification in order to differentiate 1701 // for example in clGetKernelArgInfo() implementation between the address 1702 // spaces with targets without unique mapping to the OpenCL address spaces 1703 // (basically all single AS CPUs). 1704 static unsigned ArgInfoAddressSpace(LangAS AS) { 1705 switch (AS) { 1706 case LangAS::opencl_global: 1707 return 1; 1708 case LangAS::opencl_constant: 1709 return 2; 1710 case LangAS::opencl_local: 1711 return 3; 1712 case LangAS::opencl_generic: 1713 return 4; // Not in SPIR 2.0 specs. 1714 case LangAS::opencl_global_device: 1715 return 5; 1716 case LangAS::opencl_global_host: 1717 return 6; 1718 default: 1719 return 0; // Assume private. 1720 } 1721 } 1722 1723 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 1724 const FunctionDecl *FD, 1725 CodeGenFunction *CGF) { 1726 assert(((FD && CGF) || (!FD && !CGF)) && 1727 "Incorrect use - FD and CGF should either be both null or not!"); 1728 // Create MDNodes that represent the kernel arg metadata. 1729 // Each MDNode is a list in the form of "key", N number of values which is 1730 // the same number of values as their are kernel arguments. 1731 1732 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1733 1734 // MDNode for the kernel argument address space qualifiers. 1735 SmallVector<llvm::Metadata *, 8> addressQuals; 1736 1737 // MDNode for the kernel argument access qualifiers (images only). 1738 SmallVector<llvm::Metadata *, 8> accessQuals; 1739 1740 // MDNode for the kernel argument type names. 1741 SmallVector<llvm::Metadata *, 8> argTypeNames; 1742 1743 // MDNode for the kernel argument base type names. 1744 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1745 1746 // MDNode for the kernel argument type qualifiers. 1747 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1748 1749 // MDNode for the kernel argument names. 1750 SmallVector<llvm::Metadata *, 8> argNames; 1751 1752 if (FD && CGF) 1753 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1754 const ParmVarDecl *parm = FD->getParamDecl(i); 1755 // Get argument name. 1756 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1757 1758 if (!getLangOpts().OpenCL) 1759 continue; 1760 QualType ty = parm->getType(); 1761 std::string typeQuals; 1762 1763 // Get image and pipe access qualifier: 1764 if (ty->isImageType() || ty->isPipeType()) { 1765 const Decl *PDecl = parm; 1766 if (auto *TD = dyn_cast<TypedefType>(ty)) 1767 PDecl = TD->getDecl(); 1768 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1769 if (A && A->isWriteOnly()) 1770 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1771 else if (A && A->isReadWrite()) 1772 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1773 else 1774 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1775 } else 1776 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1777 1778 auto getTypeSpelling = [&](QualType Ty) { 1779 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1780 1781 if (Ty.isCanonical()) { 1782 StringRef typeNameRef = typeName; 1783 // Turn "unsigned type" to "utype" 1784 if (typeNameRef.consume_front("unsigned ")) 1785 return std::string("u") + typeNameRef.str(); 1786 if (typeNameRef.consume_front("signed ")) 1787 return typeNameRef.str(); 1788 } 1789 1790 return typeName; 1791 }; 1792 1793 if (ty->isPointerType()) { 1794 QualType pointeeTy = ty->getPointeeType(); 1795 1796 // Get address qualifier. 1797 addressQuals.push_back( 1798 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1799 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1800 1801 // Get argument type name. 1802 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1803 std::string baseTypeName = 1804 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1805 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1806 argBaseTypeNames.push_back( 1807 llvm::MDString::get(VMContext, baseTypeName)); 1808 1809 // Get argument type qualifiers: 1810 if (ty.isRestrictQualified()) 1811 typeQuals = "restrict"; 1812 if (pointeeTy.isConstQualified() || 1813 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1814 typeQuals += typeQuals.empty() ? "const" : " const"; 1815 if (pointeeTy.isVolatileQualified()) 1816 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1817 } else { 1818 uint32_t AddrSpc = 0; 1819 bool isPipe = ty->isPipeType(); 1820 if (ty->isImageType() || isPipe) 1821 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1822 1823 addressQuals.push_back( 1824 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1825 1826 // Get argument type name. 1827 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1828 std::string typeName = getTypeSpelling(ty); 1829 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1830 1831 // Remove access qualifiers on images 1832 // (as they are inseparable from type in clang implementation, 1833 // but OpenCL spec provides a special query to get access qualifier 1834 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1835 if (ty->isImageType()) { 1836 removeImageAccessQualifier(typeName); 1837 removeImageAccessQualifier(baseTypeName); 1838 } 1839 1840 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1841 argBaseTypeNames.push_back( 1842 llvm::MDString::get(VMContext, baseTypeName)); 1843 1844 if (isPipe) 1845 typeQuals = "pipe"; 1846 } 1847 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1848 } 1849 1850 if (getLangOpts().OpenCL) { 1851 Fn->setMetadata("kernel_arg_addr_space", 1852 llvm::MDNode::get(VMContext, addressQuals)); 1853 Fn->setMetadata("kernel_arg_access_qual", 1854 llvm::MDNode::get(VMContext, accessQuals)); 1855 Fn->setMetadata("kernel_arg_type", 1856 llvm::MDNode::get(VMContext, argTypeNames)); 1857 Fn->setMetadata("kernel_arg_base_type", 1858 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1859 Fn->setMetadata("kernel_arg_type_qual", 1860 llvm::MDNode::get(VMContext, argTypeQuals)); 1861 } 1862 if (getCodeGenOpts().EmitOpenCLArgMetadata || 1863 getCodeGenOpts().HIPSaveKernelArgName) 1864 Fn->setMetadata("kernel_arg_name", 1865 llvm::MDNode::get(VMContext, argNames)); 1866 } 1867 1868 /// Determines whether the language options require us to model 1869 /// unwind exceptions. We treat -fexceptions as mandating this 1870 /// except under the fragile ObjC ABI with only ObjC exceptions 1871 /// enabled. This means, for example, that C with -fexceptions 1872 /// enables this. 1873 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1874 // If exceptions are completely disabled, obviously this is false. 1875 if (!LangOpts.Exceptions) return false; 1876 1877 // If C++ exceptions are enabled, this is true. 1878 if (LangOpts.CXXExceptions) return true; 1879 1880 // If ObjC exceptions are enabled, this depends on the ABI. 1881 if (LangOpts.ObjCExceptions) { 1882 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1883 } 1884 1885 return true; 1886 } 1887 1888 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1889 const CXXMethodDecl *MD) { 1890 // Check that the type metadata can ever actually be used by a call. 1891 if (!CGM.getCodeGenOpts().LTOUnit || 1892 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1893 return false; 1894 1895 // Only functions whose address can be taken with a member function pointer 1896 // need this sort of type metadata. 1897 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1898 !isa<CXXDestructorDecl>(MD); 1899 } 1900 1901 std::vector<const CXXRecordDecl *> 1902 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1903 llvm::SetVector<const CXXRecordDecl *> MostBases; 1904 1905 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1906 CollectMostBases = [&](const CXXRecordDecl *RD) { 1907 if (RD->getNumBases() == 0) 1908 MostBases.insert(RD); 1909 for (const CXXBaseSpecifier &B : RD->bases()) 1910 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1911 }; 1912 CollectMostBases(RD); 1913 return MostBases.takeVector(); 1914 } 1915 1916 llvm::GlobalVariable * 1917 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) { 1918 auto It = RTTIProxyMap.find(Addr); 1919 if (It != RTTIProxyMap.end()) 1920 return It->second; 1921 1922 auto *FTRTTIProxy = new llvm::GlobalVariable( 1923 TheModule, Addr->getType(), 1924 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr, 1925 "__llvm_rtti_proxy"); 1926 FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1927 1928 RTTIProxyMap[Addr] = FTRTTIProxy; 1929 return FTRTTIProxy; 1930 } 1931 1932 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1933 llvm::Function *F) { 1934 llvm::AttrBuilder B(F->getContext()); 1935 1936 if (CodeGenOpts.UnwindTables) 1937 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1938 1939 if (CodeGenOpts.StackClashProtector) 1940 B.addAttribute("probe-stack", "inline-asm"); 1941 1942 if (!hasUnwindExceptions(LangOpts)) 1943 B.addAttribute(llvm::Attribute::NoUnwind); 1944 1945 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1946 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1947 B.addAttribute(llvm::Attribute::StackProtect); 1948 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1949 B.addAttribute(llvm::Attribute::StackProtectStrong); 1950 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1951 B.addAttribute(llvm::Attribute::StackProtectReq); 1952 } 1953 1954 if (!D) { 1955 // If we don't have a declaration to control inlining, the function isn't 1956 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1957 // disabled, mark the function as noinline. 1958 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1959 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1960 B.addAttribute(llvm::Attribute::NoInline); 1961 1962 F->addFnAttrs(B); 1963 return; 1964 } 1965 1966 // Track whether we need to add the optnone LLVM attribute, 1967 // starting with the default for this optimization level. 1968 bool ShouldAddOptNone = 1969 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1970 // We can't add optnone in the following cases, it won't pass the verifier. 1971 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1972 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1973 1974 // Add optnone, but do so only if the function isn't always_inline. 1975 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1976 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1977 B.addAttribute(llvm::Attribute::OptimizeNone); 1978 1979 // OptimizeNone implies noinline; we should not be inlining such functions. 1980 B.addAttribute(llvm::Attribute::NoInline); 1981 1982 // We still need to handle naked functions even though optnone subsumes 1983 // much of their semantics. 1984 if (D->hasAttr<NakedAttr>()) 1985 B.addAttribute(llvm::Attribute::Naked); 1986 1987 // OptimizeNone wins over OptimizeForSize and MinSize. 1988 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1989 F->removeFnAttr(llvm::Attribute::MinSize); 1990 } else if (D->hasAttr<NakedAttr>()) { 1991 // Naked implies noinline: we should not be inlining such functions. 1992 B.addAttribute(llvm::Attribute::Naked); 1993 B.addAttribute(llvm::Attribute::NoInline); 1994 } else if (D->hasAttr<NoDuplicateAttr>()) { 1995 B.addAttribute(llvm::Attribute::NoDuplicate); 1996 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1997 // Add noinline if the function isn't always_inline. 1998 B.addAttribute(llvm::Attribute::NoInline); 1999 } else if (D->hasAttr<AlwaysInlineAttr>() && 2000 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2001 // (noinline wins over always_inline, and we can't specify both in IR) 2002 B.addAttribute(llvm::Attribute::AlwaysInline); 2003 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2004 // If we're not inlining, then force everything that isn't always_inline to 2005 // carry an explicit noinline attribute. 2006 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2007 B.addAttribute(llvm::Attribute::NoInline); 2008 } else { 2009 // Otherwise, propagate the inline hint attribute and potentially use its 2010 // absence to mark things as noinline. 2011 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2012 // Search function and template pattern redeclarations for inline. 2013 auto CheckForInline = [](const FunctionDecl *FD) { 2014 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2015 return Redecl->isInlineSpecified(); 2016 }; 2017 if (any_of(FD->redecls(), CheckRedeclForInline)) 2018 return true; 2019 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2020 if (!Pattern) 2021 return false; 2022 return any_of(Pattern->redecls(), CheckRedeclForInline); 2023 }; 2024 if (CheckForInline(FD)) { 2025 B.addAttribute(llvm::Attribute::InlineHint); 2026 } else if (CodeGenOpts.getInlining() == 2027 CodeGenOptions::OnlyHintInlining && 2028 !FD->isInlined() && 2029 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2030 B.addAttribute(llvm::Attribute::NoInline); 2031 } 2032 } 2033 } 2034 2035 // Add other optimization related attributes if we are optimizing this 2036 // function. 2037 if (!D->hasAttr<OptimizeNoneAttr>()) { 2038 if (D->hasAttr<ColdAttr>()) { 2039 if (!ShouldAddOptNone) 2040 B.addAttribute(llvm::Attribute::OptimizeForSize); 2041 B.addAttribute(llvm::Attribute::Cold); 2042 } 2043 if (D->hasAttr<HotAttr>()) 2044 B.addAttribute(llvm::Attribute::Hot); 2045 if (D->hasAttr<MinSizeAttr>()) 2046 B.addAttribute(llvm::Attribute::MinSize); 2047 } 2048 2049 F->addFnAttrs(B); 2050 2051 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2052 if (alignment) 2053 F->setAlignment(llvm::Align(alignment)); 2054 2055 if (!D->hasAttr<AlignedAttr>()) 2056 if (LangOpts.FunctionAlignment) 2057 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2058 2059 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2060 // reserve a bit for differentiating between virtual and non-virtual member 2061 // functions. If the current target's C++ ABI requires this and this is a 2062 // member function, set its alignment accordingly. 2063 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2064 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 2065 F->setAlignment(llvm::Align(2)); 2066 } 2067 2068 // In the cross-dso CFI mode with canonical jump tables, we want !type 2069 // attributes on definitions only. 2070 if (CodeGenOpts.SanitizeCfiCrossDso && 2071 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2072 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2073 // Skip available_externally functions. They won't be codegen'ed in the 2074 // current module anyway. 2075 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2076 CreateFunctionTypeMetadataForIcall(FD, F); 2077 } 2078 } 2079 2080 // Emit type metadata on member functions for member function pointer checks. 2081 // These are only ever necessary on definitions; we're guaranteed that the 2082 // definition will be present in the LTO unit as a result of LTO visibility. 2083 auto *MD = dyn_cast<CXXMethodDecl>(D); 2084 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2085 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2086 llvm::Metadata *Id = 2087 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2088 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2089 F->addTypeMetadata(0, Id); 2090 } 2091 } 2092 } 2093 2094 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 2095 llvm::Function *F) { 2096 if (D->hasAttr<StrictFPAttr>()) { 2097 llvm::AttrBuilder FuncAttrs(F->getContext()); 2098 FuncAttrs.addAttribute("strictfp"); 2099 F->addFnAttrs(FuncAttrs); 2100 } 2101 } 2102 2103 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2104 const Decl *D = GD.getDecl(); 2105 if (isa_and_nonnull<NamedDecl>(D)) 2106 setGVProperties(GV, GD); 2107 else 2108 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2109 2110 if (D && D->hasAttr<UsedAttr>()) 2111 addUsedOrCompilerUsedGlobal(GV); 2112 2113 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2114 const auto *VD = cast<VarDecl>(D); 2115 if (VD->getType().isConstQualified() && 2116 VD->getStorageDuration() == SD_Static) 2117 addUsedOrCompilerUsedGlobal(GV); 2118 } 2119 } 2120 2121 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2122 llvm::AttrBuilder &Attrs) { 2123 // Add target-cpu and target-features attributes to functions. If 2124 // we have a decl for the function and it has a target attribute then 2125 // parse that and add it to the feature set. 2126 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2127 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2128 std::vector<std::string> Features; 2129 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2130 FD = FD ? FD->getMostRecentDecl() : FD; 2131 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2132 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2133 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2134 bool AddedAttr = false; 2135 if (TD || SD || TC) { 2136 llvm::StringMap<bool> FeatureMap; 2137 getContext().getFunctionFeatureMap(FeatureMap, GD); 2138 2139 // Produce the canonical string for this set of features. 2140 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2141 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2142 2143 // Now add the target-cpu and target-features to the function. 2144 // While we populated the feature map above, we still need to 2145 // get and parse the target attribute so we can get the cpu for 2146 // the function. 2147 if (TD) { 2148 ParsedTargetAttr ParsedAttr = TD->parse(); 2149 if (!ParsedAttr.Architecture.empty() && 2150 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 2151 TargetCPU = ParsedAttr.Architecture; 2152 TuneCPU = ""; // Clear the tune CPU. 2153 } 2154 if (!ParsedAttr.Tune.empty() && 2155 getTarget().isValidCPUName(ParsedAttr.Tune)) 2156 TuneCPU = ParsedAttr.Tune; 2157 } 2158 2159 if (SD) { 2160 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2161 // favor this processor. 2162 TuneCPU = getTarget().getCPUSpecificTuneName( 2163 SD->getCPUName(GD.getMultiVersionIndex())->getName()); 2164 } 2165 } else { 2166 // Otherwise just add the existing target cpu and target features to the 2167 // function. 2168 Features = getTarget().getTargetOpts().Features; 2169 } 2170 2171 if (!TargetCPU.empty()) { 2172 Attrs.addAttribute("target-cpu", TargetCPU); 2173 AddedAttr = true; 2174 } 2175 if (!TuneCPU.empty()) { 2176 Attrs.addAttribute("tune-cpu", TuneCPU); 2177 AddedAttr = true; 2178 } 2179 if (!Features.empty()) { 2180 llvm::sort(Features); 2181 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2182 AddedAttr = true; 2183 } 2184 2185 return AddedAttr; 2186 } 2187 2188 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2189 llvm::GlobalObject *GO) { 2190 const Decl *D = GD.getDecl(); 2191 SetCommonAttributes(GD, GO); 2192 2193 if (D) { 2194 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2195 if (D->hasAttr<RetainAttr>()) 2196 addUsedGlobal(GV); 2197 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2198 GV->addAttribute("bss-section", SA->getName()); 2199 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2200 GV->addAttribute("data-section", SA->getName()); 2201 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2202 GV->addAttribute("rodata-section", SA->getName()); 2203 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2204 GV->addAttribute("relro-section", SA->getName()); 2205 } 2206 2207 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2208 if (D->hasAttr<RetainAttr>()) 2209 addUsedGlobal(F); 2210 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2211 if (!D->getAttr<SectionAttr>()) 2212 F->addFnAttr("implicit-section-name", SA->getName()); 2213 2214 llvm::AttrBuilder Attrs(F->getContext()); 2215 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2216 // We know that GetCPUAndFeaturesAttributes will always have the 2217 // newest set, since it has the newest possible FunctionDecl, so the 2218 // new ones should replace the old. 2219 llvm::AttributeMask RemoveAttrs; 2220 RemoveAttrs.addAttribute("target-cpu"); 2221 RemoveAttrs.addAttribute("target-features"); 2222 RemoveAttrs.addAttribute("tune-cpu"); 2223 F->removeFnAttrs(RemoveAttrs); 2224 F->addFnAttrs(Attrs); 2225 } 2226 } 2227 2228 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2229 GO->setSection(CSA->getName()); 2230 else if (const auto *SA = D->getAttr<SectionAttr>()) 2231 GO->setSection(SA->getName()); 2232 } 2233 2234 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2235 } 2236 2237 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2238 llvm::Function *F, 2239 const CGFunctionInfo &FI) { 2240 const Decl *D = GD.getDecl(); 2241 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2242 SetLLVMFunctionAttributesForDefinition(D, F); 2243 2244 F->setLinkage(llvm::Function::InternalLinkage); 2245 2246 setNonAliasAttributes(GD, F); 2247 } 2248 2249 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2250 // Set linkage and visibility in case we never see a definition. 2251 LinkageInfo LV = ND->getLinkageAndVisibility(); 2252 // Don't set internal linkage on declarations. 2253 // "extern_weak" is overloaded in LLVM; we probably should have 2254 // separate linkage types for this. 2255 if (isExternallyVisible(LV.getLinkage()) && 2256 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2257 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2258 } 2259 2260 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2261 llvm::Function *F) { 2262 // Only if we are checking indirect calls. 2263 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2264 return; 2265 2266 // Non-static class methods are handled via vtable or member function pointer 2267 // checks elsewhere. 2268 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2269 return; 2270 2271 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2272 F->addTypeMetadata(0, MD); 2273 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2274 2275 // Emit a hash-based bit set entry for cross-DSO calls. 2276 if (CodeGenOpts.SanitizeCfiCrossDso) 2277 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2278 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2279 } 2280 2281 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2282 bool IsIncompleteFunction, 2283 bool IsThunk) { 2284 2285 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2286 // If this is an intrinsic function, set the function's attributes 2287 // to the intrinsic's attributes. 2288 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2289 return; 2290 } 2291 2292 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2293 2294 if (!IsIncompleteFunction) 2295 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2296 IsThunk); 2297 2298 // Add the Returned attribute for "this", except for iOS 5 and earlier 2299 // where substantial code, including the libstdc++ dylib, was compiled with 2300 // GCC and does not actually return "this". 2301 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2302 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2303 assert(!F->arg_empty() && 2304 F->arg_begin()->getType() 2305 ->canLosslesslyBitCastTo(F->getReturnType()) && 2306 "unexpected this return"); 2307 F->addParamAttr(0, llvm::Attribute::Returned); 2308 } 2309 2310 // Only a few attributes are set on declarations; these may later be 2311 // overridden by a definition. 2312 2313 setLinkageForGV(F, FD); 2314 setGVProperties(F, FD); 2315 2316 // Setup target-specific attributes. 2317 if (!IsIncompleteFunction && F->isDeclaration()) 2318 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2319 2320 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2321 F->setSection(CSA->getName()); 2322 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2323 F->setSection(SA->getName()); 2324 2325 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2326 if (EA->isError()) 2327 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2328 else if (EA->isWarning()) 2329 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2330 } 2331 2332 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2333 if (FD->isInlineBuiltinDeclaration()) { 2334 const FunctionDecl *FDBody; 2335 bool HasBody = FD->hasBody(FDBody); 2336 (void)HasBody; 2337 assert(HasBody && "Inline builtin declarations should always have an " 2338 "available body!"); 2339 if (shouldEmitFunction(FDBody)) 2340 F->addFnAttr(llvm::Attribute::NoBuiltin); 2341 } 2342 2343 if (FD->isReplaceableGlobalAllocationFunction()) { 2344 // A replaceable global allocation function does not act like a builtin by 2345 // default, only if it is invoked by a new-expression or delete-expression. 2346 F->addFnAttr(llvm::Attribute::NoBuiltin); 2347 } 2348 2349 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2350 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2351 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2352 if (MD->isVirtual()) 2353 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2354 2355 // Don't emit entries for function declarations in the cross-DSO mode. This 2356 // is handled with better precision by the receiving DSO. But if jump tables 2357 // are non-canonical then we need type metadata in order to produce the local 2358 // jump table. 2359 if (!CodeGenOpts.SanitizeCfiCrossDso || 2360 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2361 CreateFunctionTypeMetadataForIcall(FD, F); 2362 2363 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2364 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2365 2366 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2367 // Annotate the callback behavior as metadata: 2368 // - The callback callee (as argument number). 2369 // - The callback payloads (as argument numbers). 2370 llvm::LLVMContext &Ctx = F->getContext(); 2371 llvm::MDBuilder MDB(Ctx); 2372 2373 // The payload indices are all but the first one in the encoding. The first 2374 // identifies the callback callee. 2375 int CalleeIdx = *CB->encoding_begin(); 2376 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2377 F->addMetadata(llvm::LLVMContext::MD_callback, 2378 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2379 CalleeIdx, PayloadIndices, 2380 /* VarArgsArePassed */ false)})); 2381 } 2382 } 2383 2384 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2385 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2386 "Only globals with definition can force usage."); 2387 LLVMUsed.emplace_back(GV); 2388 } 2389 2390 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2391 assert(!GV->isDeclaration() && 2392 "Only globals with definition can force usage."); 2393 LLVMCompilerUsed.emplace_back(GV); 2394 } 2395 2396 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2397 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2398 "Only globals with definition can force usage."); 2399 if (getTriple().isOSBinFormatELF()) 2400 LLVMCompilerUsed.emplace_back(GV); 2401 else 2402 LLVMUsed.emplace_back(GV); 2403 } 2404 2405 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2406 std::vector<llvm::WeakTrackingVH> &List) { 2407 // Don't create llvm.used if there is no need. 2408 if (List.empty()) 2409 return; 2410 2411 // Convert List to what ConstantArray needs. 2412 SmallVector<llvm::Constant*, 8> UsedArray; 2413 UsedArray.resize(List.size()); 2414 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2415 UsedArray[i] = 2416 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2417 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2418 } 2419 2420 if (UsedArray.empty()) 2421 return; 2422 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2423 2424 auto *GV = new llvm::GlobalVariable( 2425 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2426 llvm::ConstantArray::get(ATy, UsedArray), Name); 2427 2428 GV->setSection("llvm.metadata"); 2429 } 2430 2431 void CodeGenModule::emitLLVMUsed() { 2432 emitUsed(*this, "llvm.used", LLVMUsed); 2433 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2434 } 2435 2436 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2437 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2438 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2439 } 2440 2441 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2442 llvm::SmallString<32> Opt; 2443 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2444 if (Opt.empty()) 2445 return; 2446 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2447 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2448 } 2449 2450 void CodeGenModule::AddDependentLib(StringRef Lib) { 2451 auto &C = getLLVMContext(); 2452 if (getTarget().getTriple().isOSBinFormatELF()) { 2453 ELFDependentLibraries.push_back( 2454 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2455 return; 2456 } 2457 2458 llvm::SmallString<24> Opt; 2459 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2460 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2461 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2462 } 2463 2464 /// Add link options implied by the given module, including modules 2465 /// it depends on, using a postorder walk. 2466 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2467 SmallVectorImpl<llvm::MDNode *> &Metadata, 2468 llvm::SmallPtrSet<Module *, 16> &Visited) { 2469 // Import this module's parent. 2470 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2471 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2472 } 2473 2474 // Import this module's dependencies. 2475 for (Module *Import : llvm::reverse(Mod->Imports)) { 2476 if (Visited.insert(Import).second) 2477 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2478 } 2479 2480 // Add linker options to link against the libraries/frameworks 2481 // described by this module. 2482 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2483 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2484 2485 // For modules that use export_as for linking, use that module 2486 // name instead. 2487 if (Mod->UseExportAsModuleLinkName) 2488 return; 2489 2490 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2491 // Link against a framework. Frameworks are currently Darwin only, so we 2492 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2493 if (LL.IsFramework) { 2494 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2495 llvm::MDString::get(Context, LL.Library)}; 2496 2497 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2498 continue; 2499 } 2500 2501 // Link against a library. 2502 if (IsELF) { 2503 llvm::Metadata *Args[2] = { 2504 llvm::MDString::get(Context, "lib"), 2505 llvm::MDString::get(Context, LL.Library), 2506 }; 2507 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2508 } else { 2509 llvm::SmallString<24> Opt; 2510 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2511 auto *OptString = llvm::MDString::get(Context, Opt); 2512 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2513 } 2514 } 2515 } 2516 2517 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 2518 // Emit the initializers in the order that sub-modules appear in the 2519 // source, first Global Module Fragments, if present. 2520 if (auto GMF = Primary->getGlobalModuleFragment()) { 2521 for (Decl *D : getContext().getModuleInitializers(GMF)) { 2522 assert(D->getKind() == Decl::Var && "GMF initializer decl is not a var?"); 2523 EmitTopLevelDecl(D); 2524 } 2525 } 2526 // Second any associated with the module, itself. 2527 for (Decl *D : getContext().getModuleInitializers(Primary)) { 2528 // Skip import decls, the inits for those are called explicitly. 2529 if (D->getKind() == Decl::Import) 2530 continue; 2531 EmitTopLevelDecl(D); 2532 } 2533 // Third any associated with the Privat eMOdule Fragment, if present. 2534 if (auto PMF = Primary->getPrivateModuleFragment()) { 2535 for (Decl *D : getContext().getModuleInitializers(PMF)) { 2536 assert(D->getKind() == Decl::Var && "PMF initializer decl is not a var?"); 2537 EmitTopLevelDecl(D); 2538 } 2539 } 2540 } 2541 2542 void CodeGenModule::EmitModuleLinkOptions() { 2543 // Collect the set of all of the modules we want to visit to emit link 2544 // options, which is essentially the imported modules and all of their 2545 // non-explicit child modules. 2546 llvm::SetVector<clang::Module *> LinkModules; 2547 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2548 SmallVector<clang::Module *, 16> Stack; 2549 2550 // Seed the stack with imported modules. 2551 for (Module *M : ImportedModules) { 2552 // Do not add any link flags when an implementation TU of a module imports 2553 // a header of that same module. 2554 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2555 !getLangOpts().isCompilingModule()) 2556 continue; 2557 if (Visited.insert(M).second) 2558 Stack.push_back(M); 2559 } 2560 2561 // Find all of the modules to import, making a little effort to prune 2562 // non-leaf modules. 2563 while (!Stack.empty()) { 2564 clang::Module *Mod = Stack.pop_back_val(); 2565 2566 bool AnyChildren = false; 2567 2568 // Visit the submodules of this module. 2569 for (const auto &SM : Mod->submodules()) { 2570 // Skip explicit children; they need to be explicitly imported to be 2571 // linked against. 2572 if (SM->IsExplicit) 2573 continue; 2574 2575 if (Visited.insert(SM).second) { 2576 Stack.push_back(SM); 2577 AnyChildren = true; 2578 } 2579 } 2580 2581 // We didn't find any children, so add this module to the list of 2582 // modules to link against. 2583 if (!AnyChildren) { 2584 LinkModules.insert(Mod); 2585 } 2586 } 2587 2588 // Add link options for all of the imported modules in reverse topological 2589 // order. We don't do anything to try to order import link flags with respect 2590 // to linker options inserted by things like #pragma comment(). 2591 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2592 Visited.clear(); 2593 for (Module *M : LinkModules) 2594 if (Visited.insert(M).second) 2595 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2596 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2597 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2598 2599 // Add the linker options metadata flag. 2600 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2601 for (auto *MD : LinkerOptionsMetadata) 2602 NMD->addOperand(MD); 2603 } 2604 2605 void CodeGenModule::EmitDeferred() { 2606 // Emit deferred declare target declarations. 2607 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2608 getOpenMPRuntime().emitDeferredTargetDecls(); 2609 2610 // Emit code for any potentially referenced deferred decls. Since a 2611 // previously unused static decl may become used during the generation of code 2612 // for a static function, iterate until no changes are made. 2613 2614 if (!DeferredVTables.empty()) { 2615 EmitDeferredVTables(); 2616 2617 // Emitting a vtable doesn't directly cause more vtables to 2618 // become deferred, although it can cause functions to be 2619 // emitted that then need those vtables. 2620 assert(DeferredVTables.empty()); 2621 } 2622 2623 // Emit CUDA/HIP static device variables referenced by host code only. 2624 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2625 // needed for further handling. 2626 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2627 llvm::append_range(DeferredDeclsToEmit, 2628 getContext().CUDADeviceVarODRUsedByHost); 2629 2630 // Stop if we're out of both deferred vtables and deferred declarations. 2631 if (DeferredDeclsToEmit.empty()) 2632 return; 2633 2634 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2635 // work, it will not interfere with this. 2636 std::vector<GlobalDecl> CurDeclsToEmit; 2637 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2638 2639 for (GlobalDecl &D : CurDeclsToEmit) { 2640 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2641 // to get GlobalValue with exactly the type we need, not something that 2642 // might had been created for another decl with the same mangled name but 2643 // different type. 2644 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2645 GetAddrOfGlobal(D, ForDefinition)); 2646 2647 // In case of different address spaces, we may still get a cast, even with 2648 // IsForDefinition equal to true. Query mangled names table to get 2649 // GlobalValue. 2650 if (!GV) 2651 GV = GetGlobalValue(getMangledName(D)); 2652 2653 // Make sure GetGlobalValue returned non-null. 2654 assert(GV); 2655 2656 // Check to see if we've already emitted this. This is necessary 2657 // for a couple of reasons: first, decls can end up in the 2658 // deferred-decls queue multiple times, and second, decls can end 2659 // up with definitions in unusual ways (e.g. by an extern inline 2660 // function acquiring a strong function redefinition). Just 2661 // ignore these cases. 2662 if (!GV->isDeclaration()) 2663 continue; 2664 2665 // If this is OpenMP, check if it is legal to emit this global normally. 2666 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2667 continue; 2668 2669 // Otherwise, emit the definition and move on to the next one. 2670 EmitGlobalDefinition(D, GV); 2671 2672 // If we found out that we need to emit more decls, do that recursively. 2673 // This has the advantage that the decls are emitted in a DFS and related 2674 // ones are close together, which is convenient for testing. 2675 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2676 EmitDeferred(); 2677 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2678 } 2679 } 2680 } 2681 2682 void CodeGenModule::EmitVTablesOpportunistically() { 2683 // Try to emit external vtables as available_externally if they have emitted 2684 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2685 // is not allowed to create new references to things that need to be emitted 2686 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2687 2688 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2689 && "Only emit opportunistic vtables with optimizations"); 2690 2691 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2692 assert(getVTables().isVTableExternal(RD) && 2693 "This queue should only contain external vtables"); 2694 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2695 VTables.GenerateClassData(RD); 2696 } 2697 OpportunisticVTables.clear(); 2698 } 2699 2700 void CodeGenModule::EmitGlobalAnnotations() { 2701 if (Annotations.empty()) 2702 return; 2703 2704 // Create a new global variable for the ConstantStruct in the Module. 2705 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2706 Annotations[0]->getType(), Annotations.size()), Annotations); 2707 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2708 llvm::GlobalValue::AppendingLinkage, 2709 Array, "llvm.global.annotations"); 2710 gv->setSection(AnnotationSection); 2711 } 2712 2713 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2714 llvm::Constant *&AStr = AnnotationStrings[Str]; 2715 if (AStr) 2716 return AStr; 2717 2718 // Not found yet, create a new global. 2719 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2720 auto *gv = 2721 new llvm::GlobalVariable(getModule(), s->getType(), true, 2722 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2723 gv->setSection(AnnotationSection); 2724 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2725 AStr = gv; 2726 return gv; 2727 } 2728 2729 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2730 SourceManager &SM = getContext().getSourceManager(); 2731 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2732 if (PLoc.isValid()) 2733 return EmitAnnotationString(PLoc.getFilename()); 2734 return EmitAnnotationString(SM.getBufferName(Loc)); 2735 } 2736 2737 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2738 SourceManager &SM = getContext().getSourceManager(); 2739 PresumedLoc PLoc = SM.getPresumedLoc(L); 2740 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2741 SM.getExpansionLineNumber(L); 2742 return llvm::ConstantInt::get(Int32Ty, LineNo); 2743 } 2744 2745 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2746 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2747 if (Exprs.empty()) 2748 return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy); 2749 2750 llvm::FoldingSetNodeID ID; 2751 for (Expr *E : Exprs) { 2752 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2753 } 2754 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2755 if (Lookup) 2756 return Lookup; 2757 2758 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2759 LLVMArgs.reserve(Exprs.size()); 2760 ConstantEmitter ConstEmiter(*this); 2761 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2762 const auto *CE = cast<clang::ConstantExpr>(E); 2763 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2764 CE->getType()); 2765 }); 2766 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2767 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2768 llvm::GlobalValue::PrivateLinkage, Struct, 2769 ".args"); 2770 GV->setSection(AnnotationSection); 2771 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2772 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2773 2774 Lookup = Bitcasted; 2775 return Bitcasted; 2776 } 2777 2778 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2779 const AnnotateAttr *AA, 2780 SourceLocation L) { 2781 // Get the globals for file name, annotation, and the line number. 2782 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2783 *UnitGV = EmitAnnotationUnit(L), 2784 *LineNoCst = EmitAnnotationLineNo(L), 2785 *Args = EmitAnnotationArgs(AA); 2786 2787 llvm::Constant *GVInGlobalsAS = GV; 2788 if (GV->getAddressSpace() != 2789 getDataLayout().getDefaultGlobalsAddressSpace()) { 2790 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2791 GV, GV->getValueType()->getPointerTo( 2792 getDataLayout().getDefaultGlobalsAddressSpace())); 2793 } 2794 2795 // Create the ConstantStruct for the global annotation. 2796 llvm::Constant *Fields[] = { 2797 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2798 llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy), 2799 llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy), 2800 LineNoCst, 2801 Args, 2802 }; 2803 return llvm::ConstantStruct::getAnon(Fields); 2804 } 2805 2806 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2807 llvm::GlobalValue *GV) { 2808 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2809 // Get the struct elements for these annotations. 2810 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2811 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2812 } 2813 2814 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2815 SourceLocation Loc) const { 2816 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2817 // NoSanitize by function name. 2818 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2819 return true; 2820 // NoSanitize by location. Check "mainfile" prefix. 2821 auto &SM = Context.getSourceManager(); 2822 const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID()); 2823 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 2824 return true; 2825 2826 // Check "src" prefix. 2827 if (Loc.isValid()) 2828 return NoSanitizeL.containsLocation(Kind, Loc); 2829 // If location is unknown, this may be a compiler-generated function. Assume 2830 // it's located in the main file. 2831 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 2832 } 2833 2834 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 2835 llvm::GlobalVariable *GV, 2836 SourceLocation Loc, QualType Ty, 2837 StringRef Category) const { 2838 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2839 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 2840 return true; 2841 auto &SM = Context.getSourceManager(); 2842 if (NoSanitizeL.containsMainFile( 2843 Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category)) 2844 return true; 2845 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 2846 return true; 2847 2848 // Check global type. 2849 if (!Ty.isNull()) { 2850 // Drill down the array types: if global variable of a fixed type is 2851 // not sanitized, we also don't instrument arrays of them. 2852 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2853 Ty = AT->getElementType(); 2854 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2855 // Only record types (classes, structs etc.) are ignored. 2856 if (Ty->isRecordType()) { 2857 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2858 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 2859 return true; 2860 } 2861 } 2862 return false; 2863 } 2864 2865 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2866 StringRef Category) const { 2867 const auto &XRayFilter = getContext().getXRayFilter(); 2868 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2869 auto Attr = ImbueAttr::NONE; 2870 if (Loc.isValid()) 2871 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2872 if (Attr == ImbueAttr::NONE) 2873 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2874 switch (Attr) { 2875 case ImbueAttr::NONE: 2876 return false; 2877 case ImbueAttr::ALWAYS: 2878 Fn->addFnAttr("function-instrument", "xray-always"); 2879 break; 2880 case ImbueAttr::ALWAYS_ARG1: 2881 Fn->addFnAttr("function-instrument", "xray-always"); 2882 Fn->addFnAttr("xray-log-args", "1"); 2883 break; 2884 case ImbueAttr::NEVER: 2885 Fn->addFnAttr("function-instrument", "xray-never"); 2886 break; 2887 } 2888 return true; 2889 } 2890 2891 bool CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 2892 SourceLocation Loc) const { 2893 const auto &ProfileList = getContext().getProfileList(); 2894 // If the profile list is empty, then instrument everything. 2895 if (ProfileList.isEmpty()) 2896 return false; 2897 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2898 // First, check the function name. 2899 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2900 if (V) 2901 return *V; 2902 // Next, check the source location. 2903 if (Loc.isValid()) { 2904 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2905 if (V) 2906 return *V; 2907 } 2908 // If location is unknown, this may be a compiler-generated function. Assume 2909 // it's located in the main file. 2910 auto &SM = Context.getSourceManager(); 2911 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2912 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2913 if (V) 2914 return *V; 2915 } 2916 return ProfileList.getDefault(); 2917 } 2918 2919 bool CodeGenModule::isFunctionBlockedFromProfileInstr( 2920 llvm::Function *Fn, SourceLocation Loc) const { 2921 if (isFunctionBlockedByProfileList(Fn, Loc)) 2922 return true; 2923 2924 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 2925 if (NumGroups > 1) { 2926 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 2927 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 2928 return true; 2929 } 2930 return false; 2931 } 2932 2933 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2934 // Never defer when EmitAllDecls is specified. 2935 if (LangOpts.EmitAllDecls) 2936 return true; 2937 2938 if (CodeGenOpts.KeepStaticConsts) { 2939 const auto *VD = dyn_cast<VarDecl>(Global); 2940 if (VD && VD->getType().isConstQualified() && 2941 VD->getStorageDuration() == SD_Static) 2942 return true; 2943 } 2944 2945 return getContext().DeclMustBeEmitted(Global); 2946 } 2947 2948 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2949 // In OpenMP 5.0 variables and function may be marked as 2950 // device_type(host/nohost) and we should not emit them eagerly unless we sure 2951 // that they must be emitted on the host/device. To be sure we need to have 2952 // seen a declare target with an explicit mentioning of the function, we know 2953 // we have if the level of the declare target attribute is -1. Note that we 2954 // check somewhere else if we should emit this at all. 2955 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 2956 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 2957 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 2958 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 2959 return false; 2960 } 2961 2962 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2963 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2964 // Implicit template instantiations may change linkage if they are later 2965 // explicitly instantiated, so they should not be emitted eagerly. 2966 return false; 2967 } 2968 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 2969 if (Context.getInlineVariableDefinitionKind(VD) == 2970 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2971 // A definition of an inline constexpr static data member may change 2972 // linkage later if it's redeclared outside the class. 2973 return false; 2974 if (CXX20ModuleInits && VD->getOwningModule() && 2975 !VD->getOwningModule()->isModuleMapModule()) { 2976 // For CXX20, module-owned initializers need to be deferred, since it is 2977 // not known at this point if they will be run for the current module or 2978 // as part of the initializer for an imported one. 2979 return false; 2980 } 2981 } 2982 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2983 // codegen for global variables, because they may be marked as threadprivate. 2984 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2985 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2986 !isTypeConstant(Global->getType(), false) && 2987 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2988 return false; 2989 2990 return true; 2991 } 2992 2993 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2994 StringRef Name = getMangledName(GD); 2995 2996 // The UUID descriptor should be pointer aligned. 2997 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2998 2999 // Look for an existing global. 3000 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3001 return ConstantAddress(GV, GV->getValueType(), Alignment); 3002 3003 ConstantEmitter Emitter(*this); 3004 llvm::Constant *Init; 3005 3006 APValue &V = GD->getAsAPValue(); 3007 if (!V.isAbsent()) { 3008 // If possible, emit the APValue version of the initializer. In particular, 3009 // this gets the type of the constant right. 3010 Init = Emitter.emitForInitializer( 3011 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3012 } else { 3013 // As a fallback, directly construct the constant. 3014 // FIXME: This may get padding wrong under esoteric struct layout rules. 3015 // MSVC appears to create a complete type 'struct __s_GUID' that it 3016 // presumably uses to represent these constants. 3017 MSGuidDecl::Parts Parts = GD->getParts(); 3018 llvm::Constant *Fields[4] = { 3019 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3020 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3021 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3022 llvm::ConstantDataArray::getRaw( 3023 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3024 Int8Ty)}; 3025 Init = llvm::ConstantStruct::getAnon(Fields); 3026 } 3027 3028 auto *GV = new llvm::GlobalVariable( 3029 getModule(), Init->getType(), 3030 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3031 if (supportsCOMDAT()) 3032 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3033 setDSOLocal(GV); 3034 3035 if (!V.isAbsent()) { 3036 Emitter.finalize(GV); 3037 return ConstantAddress(GV, GV->getValueType(), Alignment); 3038 } 3039 3040 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3041 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 3042 GV, Ty->getPointerTo(GV->getAddressSpace())); 3043 return ConstantAddress(Addr, Ty, Alignment); 3044 } 3045 3046 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3047 const UnnamedGlobalConstantDecl *GCD) { 3048 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3049 3050 llvm::GlobalVariable **Entry = nullptr; 3051 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3052 if (*Entry) 3053 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3054 3055 ConstantEmitter Emitter(*this); 3056 llvm::Constant *Init; 3057 3058 const APValue &V = GCD->getValue(); 3059 3060 assert(!V.isAbsent()); 3061 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3062 GCD->getType()); 3063 3064 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3065 /*isConstant=*/true, 3066 llvm::GlobalValue::PrivateLinkage, Init, 3067 ".constant"); 3068 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3069 GV->setAlignment(Alignment.getAsAlign()); 3070 3071 Emitter.finalize(GV); 3072 3073 *Entry = GV; 3074 return ConstantAddress(GV, GV->getValueType(), Alignment); 3075 } 3076 3077 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3078 const TemplateParamObjectDecl *TPO) { 3079 StringRef Name = getMangledName(TPO); 3080 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3081 3082 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3083 return ConstantAddress(GV, GV->getValueType(), Alignment); 3084 3085 ConstantEmitter Emitter(*this); 3086 llvm::Constant *Init = Emitter.emitForInitializer( 3087 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3088 3089 if (!Init) { 3090 ErrorUnsupported(TPO, "template parameter object"); 3091 return ConstantAddress::invalid(); 3092 } 3093 3094 auto *GV = new llvm::GlobalVariable( 3095 getModule(), Init->getType(), 3096 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3097 if (supportsCOMDAT()) 3098 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3099 Emitter.finalize(GV); 3100 3101 return ConstantAddress(GV, GV->getValueType(), Alignment); 3102 } 3103 3104 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3105 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3106 assert(AA && "No alias?"); 3107 3108 CharUnits Alignment = getContext().getDeclAlign(VD); 3109 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3110 3111 // See if there is already something with the target's name in the module. 3112 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3113 if (Entry) { 3114 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 3115 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 3116 return ConstantAddress(Ptr, DeclTy, Alignment); 3117 } 3118 3119 llvm::Constant *Aliasee; 3120 if (isa<llvm::FunctionType>(DeclTy)) 3121 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3122 GlobalDecl(cast<FunctionDecl>(VD)), 3123 /*ForVTable=*/false); 3124 else 3125 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3126 nullptr); 3127 3128 auto *F = cast<llvm::GlobalValue>(Aliasee); 3129 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3130 WeakRefReferences.insert(F); 3131 3132 return ConstantAddress(Aliasee, DeclTy, Alignment); 3133 } 3134 3135 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3136 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3137 3138 // Weak references don't produce any output by themselves. 3139 if (Global->hasAttr<WeakRefAttr>()) 3140 return; 3141 3142 // If this is an alias definition (which otherwise looks like a declaration) 3143 // emit it now. 3144 if (Global->hasAttr<AliasAttr>()) 3145 return EmitAliasDefinition(GD); 3146 3147 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3148 if (Global->hasAttr<IFuncAttr>()) 3149 return emitIFuncDefinition(GD); 3150 3151 // If this is a cpu_dispatch multiversion function, emit the resolver. 3152 if (Global->hasAttr<CPUDispatchAttr>()) 3153 return emitCPUDispatchDefinition(GD); 3154 3155 // If this is CUDA, be selective about which declarations we emit. 3156 if (LangOpts.CUDA) { 3157 if (LangOpts.CUDAIsDevice) { 3158 if (!Global->hasAttr<CUDADeviceAttr>() && 3159 !Global->hasAttr<CUDAGlobalAttr>() && 3160 !Global->hasAttr<CUDAConstantAttr>() && 3161 !Global->hasAttr<CUDASharedAttr>() && 3162 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3163 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3164 return; 3165 } else { 3166 // We need to emit host-side 'shadows' for all global 3167 // device-side variables because the CUDA runtime needs their 3168 // size and host-side address in order to provide access to 3169 // their device-side incarnations. 3170 3171 // So device-only functions are the only things we skip. 3172 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3173 Global->hasAttr<CUDADeviceAttr>()) 3174 return; 3175 3176 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3177 "Expected Variable or Function"); 3178 } 3179 } 3180 3181 if (LangOpts.OpenMP) { 3182 // If this is OpenMP, check if it is legal to emit this global normally. 3183 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3184 return; 3185 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3186 if (MustBeEmitted(Global)) 3187 EmitOMPDeclareReduction(DRD); 3188 return; 3189 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3190 if (MustBeEmitted(Global)) 3191 EmitOMPDeclareMapper(DMD); 3192 return; 3193 } 3194 } 3195 3196 // Ignore declarations, they will be emitted on their first use. 3197 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3198 // Forward declarations are emitted lazily on first use. 3199 if (!FD->doesThisDeclarationHaveABody()) { 3200 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3201 return; 3202 3203 StringRef MangledName = getMangledName(GD); 3204 3205 // Compute the function info and LLVM type. 3206 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3207 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3208 3209 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3210 /*DontDefer=*/false); 3211 return; 3212 } 3213 } else { 3214 const auto *VD = cast<VarDecl>(Global); 3215 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3216 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3217 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3218 if (LangOpts.OpenMP) { 3219 // Emit declaration of the must-be-emitted declare target variable. 3220 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3221 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3222 bool UnifiedMemoryEnabled = 3223 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3224 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 3225 !UnifiedMemoryEnabled) { 3226 (void)GetAddrOfGlobalVar(VD); 3227 } else { 3228 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3229 (*Res == OMPDeclareTargetDeclAttr::MT_To && 3230 UnifiedMemoryEnabled)) && 3231 "Link clause or to clause with unified memory expected."); 3232 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3233 } 3234 3235 return; 3236 } 3237 } 3238 // If this declaration may have caused an inline variable definition to 3239 // change linkage, make sure that it's emitted. 3240 if (Context.getInlineVariableDefinitionKind(VD) == 3241 ASTContext::InlineVariableDefinitionKind::Strong) 3242 GetAddrOfGlobalVar(VD); 3243 return; 3244 } 3245 } 3246 3247 // Defer code generation to first use when possible, e.g. if this is an inline 3248 // function. If the global must always be emitted, do it eagerly if possible 3249 // to benefit from cache locality. 3250 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3251 // Emit the definition if it can't be deferred. 3252 EmitGlobalDefinition(GD); 3253 return; 3254 } 3255 3256 // If we're deferring emission of a C++ variable with an 3257 // initializer, remember the order in which it appeared in the file. 3258 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3259 cast<VarDecl>(Global)->hasInit()) { 3260 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3261 CXXGlobalInits.push_back(nullptr); 3262 } 3263 3264 StringRef MangledName = getMangledName(GD); 3265 if (GetGlobalValue(MangledName) != nullptr) { 3266 // The value has already been used and should therefore be emitted. 3267 addDeferredDeclToEmit(GD); 3268 } else if (MustBeEmitted(Global)) { 3269 // The value must be emitted, but cannot be emitted eagerly. 3270 assert(!MayBeEmittedEagerly(Global)); 3271 addDeferredDeclToEmit(GD); 3272 } else { 3273 // Otherwise, remember that we saw a deferred decl with this name. The 3274 // first use of the mangled name will cause it to move into 3275 // DeferredDeclsToEmit. 3276 DeferredDecls[MangledName] = GD; 3277 } 3278 } 3279 3280 // Check if T is a class type with a destructor that's not dllimport. 3281 static bool HasNonDllImportDtor(QualType T) { 3282 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3283 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3284 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3285 return true; 3286 3287 return false; 3288 } 3289 3290 namespace { 3291 struct FunctionIsDirectlyRecursive 3292 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3293 const StringRef Name; 3294 const Builtin::Context &BI; 3295 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3296 : Name(N), BI(C) {} 3297 3298 bool VisitCallExpr(const CallExpr *E) { 3299 const FunctionDecl *FD = E->getDirectCallee(); 3300 if (!FD) 3301 return false; 3302 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3303 if (Attr && Name == Attr->getLabel()) 3304 return true; 3305 unsigned BuiltinID = FD->getBuiltinID(); 3306 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3307 return false; 3308 StringRef BuiltinName = BI.getName(BuiltinID); 3309 if (BuiltinName.startswith("__builtin_") && 3310 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3311 return true; 3312 } 3313 return false; 3314 } 3315 3316 bool VisitStmt(const Stmt *S) { 3317 for (const Stmt *Child : S->children()) 3318 if (Child && this->Visit(Child)) 3319 return true; 3320 return false; 3321 } 3322 }; 3323 3324 // Make sure we're not referencing non-imported vars or functions. 3325 struct DLLImportFunctionVisitor 3326 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3327 bool SafeToInline = true; 3328 3329 bool shouldVisitImplicitCode() const { return true; } 3330 3331 bool VisitVarDecl(VarDecl *VD) { 3332 if (VD->getTLSKind()) { 3333 // A thread-local variable cannot be imported. 3334 SafeToInline = false; 3335 return SafeToInline; 3336 } 3337 3338 // A variable definition might imply a destructor call. 3339 if (VD->isThisDeclarationADefinition()) 3340 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3341 3342 return SafeToInline; 3343 } 3344 3345 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3346 if (const auto *D = E->getTemporary()->getDestructor()) 3347 SafeToInline = D->hasAttr<DLLImportAttr>(); 3348 return SafeToInline; 3349 } 3350 3351 bool VisitDeclRefExpr(DeclRefExpr *E) { 3352 ValueDecl *VD = E->getDecl(); 3353 if (isa<FunctionDecl>(VD)) 3354 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3355 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3356 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3357 return SafeToInline; 3358 } 3359 3360 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3361 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3362 return SafeToInline; 3363 } 3364 3365 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3366 CXXMethodDecl *M = E->getMethodDecl(); 3367 if (!M) { 3368 // Call through a pointer to member function. This is safe to inline. 3369 SafeToInline = true; 3370 } else { 3371 SafeToInline = M->hasAttr<DLLImportAttr>(); 3372 } 3373 return SafeToInline; 3374 } 3375 3376 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3377 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3378 return SafeToInline; 3379 } 3380 3381 bool VisitCXXNewExpr(CXXNewExpr *E) { 3382 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3383 return SafeToInline; 3384 } 3385 }; 3386 } 3387 3388 // isTriviallyRecursive - Check if this function calls another 3389 // decl that, because of the asm attribute or the other decl being a builtin, 3390 // ends up pointing to itself. 3391 bool 3392 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3393 StringRef Name; 3394 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3395 // asm labels are a special kind of mangling we have to support. 3396 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3397 if (!Attr) 3398 return false; 3399 Name = Attr->getLabel(); 3400 } else { 3401 Name = FD->getName(); 3402 } 3403 3404 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3405 const Stmt *Body = FD->getBody(); 3406 return Body ? Walker.Visit(Body) : false; 3407 } 3408 3409 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3410 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3411 return true; 3412 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3413 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3414 return false; 3415 3416 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3417 // Check whether it would be safe to inline this dllimport function. 3418 DLLImportFunctionVisitor Visitor; 3419 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3420 if (!Visitor.SafeToInline) 3421 return false; 3422 3423 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3424 // Implicit destructor invocations aren't captured in the AST, so the 3425 // check above can't see them. Check for them manually here. 3426 for (const Decl *Member : Dtor->getParent()->decls()) 3427 if (isa<FieldDecl>(Member)) 3428 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3429 return false; 3430 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3431 if (HasNonDllImportDtor(B.getType())) 3432 return false; 3433 } 3434 } 3435 3436 // Inline builtins declaration must be emitted. They often are fortified 3437 // functions. 3438 if (F->isInlineBuiltinDeclaration()) 3439 return true; 3440 3441 // PR9614. Avoid cases where the source code is lying to us. An available 3442 // externally function should have an equivalent function somewhere else, 3443 // but a function that calls itself through asm label/`__builtin_` trickery is 3444 // clearly not equivalent to the real implementation. 3445 // This happens in glibc's btowc and in some configure checks. 3446 return !isTriviallyRecursive(F); 3447 } 3448 3449 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3450 return CodeGenOpts.OptimizationLevel > 0; 3451 } 3452 3453 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3454 llvm::GlobalValue *GV) { 3455 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3456 3457 if (FD->isCPUSpecificMultiVersion()) { 3458 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3459 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3460 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3461 } else if (FD->isTargetClonesMultiVersion()) { 3462 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3463 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3464 if (Clone->isFirstOfVersion(I)) 3465 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3466 // Ensure that the resolver function is also emitted. 3467 GetOrCreateMultiVersionResolver(GD); 3468 } else 3469 EmitGlobalFunctionDefinition(GD, GV); 3470 } 3471 3472 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3473 const auto *D = cast<ValueDecl>(GD.getDecl()); 3474 3475 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3476 Context.getSourceManager(), 3477 "Generating code for declaration"); 3478 3479 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3480 // At -O0, don't generate IR for functions with available_externally 3481 // linkage. 3482 if (!shouldEmitFunction(GD)) 3483 return; 3484 3485 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3486 std::string Name; 3487 llvm::raw_string_ostream OS(Name); 3488 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3489 /*Qualified=*/true); 3490 return Name; 3491 }); 3492 3493 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3494 // Make sure to emit the definition(s) before we emit the thunks. 3495 // This is necessary for the generation of certain thunks. 3496 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3497 ABI->emitCXXStructor(GD); 3498 else if (FD->isMultiVersion()) 3499 EmitMultiVersionFunctionDefinition(GD, GV); 3500 else 3501 EmitGlobalFunctionDefinition(GD, GV); 3502 3503 if (Method->isVirtual()) 3504 getVTables().EmitThunks(GD); 3505 3506 return; 3507 } 3508 3509 if (FD->isMultiVersion()) 3510 return EmitMultiVersionFunctionDefinition(GD, GV); 3511 return EmitGlobalFunctionDefinition(GD, GV); 3512 } 3513 3514 if (const auto *VD = dyn_cast<VarDecl>(D)) 3515 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3516 3517 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3518 } 3519 3520 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3521 llvm::Function *NewFn); 3522 3523 static unsigned 3524 TargetMVPriority(const TargetInfo &TI, 3525 const CodeGenFunction::MultiVersionResolverOption &RO) { 3526 unsigned Priority = 0; 3527 for (StringRef Feat : RO.Conditions.Features) 3528 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3529 3530 if (!RO.Conditions.Architecture.empty()) 3531 Priority = std::max( 3532 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3533 return Priority; 3534 } 3535 3536 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3537 // TU can forward declare the function without causing problems. Particularly 3538 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3539 // work with internal linkage functions, so that the same function name can be 3540 // used with internal linkage in multiple TUs. 3541 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3542 GlobalDecl GD) { 3543 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3544 if (FD->getFormalLinkage() == InternalLinkage) 3545 return llvm::GlobalValue::InternalLinkage; 3546 return llvm::GlobalValue::WeakODRLinkage; 3547 } 3548 3549 void CodeGenModule::emitMultiVersionFunctions() { 3550 std::vector<GlobalDecl> MVFuncsToEmit; 3551 MultiVersionFuncs.swap(MVFuncsToEmit); 3552 for (GlobalDecl GD : MVFuncsToEmit) { 3553 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3554 assert(FD && "Expected a FunctionDecl"); 3555 3556 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3557 if (FD->isTargetMultiVersion()) { 3558 getContext().forEachMultiversionedFunctionVersion( 3559 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3560 GlobalDecl CurGD{ 3561 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3562 StringRef MangledName = getMangledName(CurGD); 3563 llvm::Constant *Func = GetGlobalValue(MangledName); 3564 if (!Func) { 3565 if (CurFD->isDefined()) { 3566 EmitGlobalFunctionDefinition(CurGD, nullptr); 3567 Func = GetGlobalValue(MangledName); 3568 } else { 3569 const CGFunctionInfo &FI = 3570 getTypes().arrangeGlobalDeclaration(GD); 3571 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3572 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3573 /*DontDefer=*/false, ForDefinition); 3574 } 3575 assert(Func && "This should have just been created"); 3576 } 3577 3578 const auto *TA = CurFD->getAttr<TargetAttr>(); 3579 llvm::SmallVector<StringRef, 8> Feats; 3580 TA->getAddedFeatures(Feats); 3581 3582 Options.emplace_back(cast<llvm::Function>(Func), 3583 TA->getArchitecture(), Feats); 3584 }); 3585 } else if (FD->isTargetClonesMultiVersion()) { 3586 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3587 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3588 ++VersionIndex) { 3589 if (!TC->isFirstOfVersion(VersionIndex)) 3590 continue; 3591 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 3592 VersionIndex}; 3593 StringRef Version = TC->getFeatureStr(VersionIndex); 3594 StringRef MangledName = getMangledName(CurGD); 3595 llvm::Constant *Func = GetGlobalValue(MangledName); 3596 if (!Func) { 3597 if (FD->isDefined()) { 3598 EmitGlobalFunctionDefinition(CurGD, nullptr); 3599 Func = GetGlobalValue(MangledName); 3600 } else { 3601 const CGFunctionInfo &FI = 3602 getTypes().arrangeGlobalDeclaration(CurGD); 3603 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3604 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3605 /*DontDefer=*/false, ForDefinition); 3606 } 3607 assert(Func && "This should have just been created"); 3608 } 3609 3610 StringRef Architecture; 3611 llvm::SmallVector<StringRef, 1> Feature; 3612 3613 if (Version.startswith("arch=")) 3614 Architecture = Version.drop_front(sizeof("arch=") - 1); 3615 else if (Version != "default") 3616 Feature.push_back(Version); 3617 3618 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3619 } 3620 } else { 3621 assert(0 && "Expected a target or target_clones multiversion function"); 3622 continue; 3623 } 3624 3625 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 3626 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 3627 ResolverConstant = IFunc->getResolver(); 3628 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 3629 3630 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3631 3632 if (supportsCOMDAT()) 3633 ResolverFunc->setComdat( 3634 getModule().getOrInsertComdat(ResolverFunc->getName())); 3635 3636 const TargetInfo &TI = getTarget(); 3637 llvm::stable_sort( 3638 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3639 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3640 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3641 }); 3642 CodeGenFunction CGF(*this); 3643 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3644 } 3645 3646 // Ensure that any additions to the deferred decls list caused by emitting a 3647 // variant are emitted. This can happen when the variant itself is inline and 3648 // calls a function without linkage. 3649 if (!MVFuncsToEmit.empty()) 3650 EmitDeferred(); 3651 3652 // Ensure that any additions to the multiversion funcs list from either the 3653 // deferred decls or the multiversion functions themselves are emitted. 3654 if (!MultiVersionFuncs.empty()) 3655 emitMultiVersionFunctions(); 3656 } 3657 3658 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3659 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3660 assert(FD && "Not a FunctionDecl?"); 3661 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3662 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3663 assert(DD && "Not a cpu_dispatch Function?"); 3664 3665 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3666 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3667 3668 StringRef ResolverName = getMangledName(GD); 3669 UpdateMultiVersionNames(GD, FD, ResolverName); 3670 3671 llvm::Type *ResolverType; 3672 GlobalDecl ResolverGD; 3673 if (getTarget().supportsIFunc()) { 3674 ResolverType = llvm::FunctionType::get( 3675 llvm::PointerType::get(DeclTy, 3676 Context.getTargetAddressSpace(FD->getType())), 3677 false); 3678 } 3679 else { 3680 ResolverType = DeclTy; 3681 ResolverGD = GD; 3682 } 3683 3684 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3685 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3686 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3687 if (supportsCOMDAT()) 3688 ResolverFunc->setComdat( 3689 getModule().getOrInsertComdat(ResolverFunc->getName())); 3690 3691 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3692 const TargetInfo &Target = getTarget(); 3693 unsigned Index = 0; 3694 for (const IdentifierInfo *II : DD->cpus()) { 3695 // Get the name of the target function so we can look it up/create it. 3696 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3697 getCPUSpecificMangling(*this, II->getName()); 3698 3699 llvm::Constant *Func = GetGlobalValue(MangledName); 3700 3701 if (!Func) { 3702 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3703 if (ExistingDecl.getDecl() && 3704 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3705 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3706 Func = GetGlobalValue(MangledName); 3707 } else { 3708 if (!ExistingDecl.getDecl()) 3709 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3710 3711 Func = GetOrCreateLLVMFunction( 3712 MangledName, DeclTy, ExistingDecl, 3713 /*ForVTable=*/false, /*DontDefer=*/true, 3714 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3715 } 3716 } 3717 3718 llvm::SmallVector<StringRef, 32> Features; 3719 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3720 llvm::transform(Features, Features.begin(), 3721 [](StringRef Str) { return Str.substr(1); }); 3722 llvm::erase_if(Features, [&Target](StringRef Feat) { 3723 return !Target.validateCpuSupports(Feat); 3724 }); 3725 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3726 ++Index; 3727 } 3728 3729 llvm::stable_sort( 3730 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3731 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3732 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3733 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3734 }); 3735 3736 // If the list contains multiple 'default' versions, such as when it contains 3737 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3738 // always run on at least a 'pentium'). We do this by deleting the 'least 3739 // advanced' (read, lowest mangling letter). 3740 while (Options.size() > 1 && 3741 llvm::X86::getCpuSupportsMask( 3742 (Options.end() - 2)->Conditions.Features) == 0) { 3743 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3744 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3745 if (LHSName.compare(RHSName) < 0) 3746 Options.erase(Options.end() - 2); 3747 else 3748 Options.erase(Options.end() - 1); 3749 } 3750 3751 CodeGenFunction CGF(*this); 3752 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3753 3754 if (getTarget().supportsIFunc()) { 3755 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 3756 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 3757 3758 // Fix up function declarations that were created for cpu_specific before 3759 // cpu_dispatch was known 3760 if (!isa<llvm::GlobalIFunc>(IFunc)) { 3761 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 3762 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 3763 &getModule()); 3764 GI->takeName(IFunc); 3765 IFunc->replaceAllUsesWith(GI); 3766 IFunc->eraseFromParent(); 3767 IFunc = GI; 3768 } 3769 3770 std::string AliasName = getMangledNameImpl( 3771 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3772 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3773 if (!AliasFunc) { 3774 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 3775 &getModule()); 3776 SetCommonAttributes(GD, GA); 3777 } 3778 } 3779 } 3780 3781 /// If a dispatcher for the specified mangled name is not in the module, create 3782 /// and return an llvm Function with the specified type. 3783 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 3784 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3785 assert(FD && "Not a FunctionDecl?"); 3786 3787 std::string MangledName = 3788 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3789 3790 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3791 // a separate resolver). 3792 std::string ResolverName = MangledName; 3793 if (getTarget().supportsIFunc()) 3794 ResolverName += ".ifunc"; 3795 else if (FD->isTargetMultiVersion()) 3796 ResolverName += ".resolver"; 3797 3798 // If the resolver has already been created, just return it. 3799 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3800 return ResolverGV; 3801 3802 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3803 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3804 3805 // The resolver needs to be created. For target and target_clones, defer 3806 // creation until the end of the TU. 3807 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 3808 MultiVersionFuncs.push_back(GD); 3809 3810 // For cpu_specific, don't create an ifunc yet because we don't know if the 3811 // cpu_dispatch will be emitted in this translation unit. 3812 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 3813 llvm::Type *ResolverType = llvm::FunctionType::get( 3814 llvm::PointerType::get( 3815 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3816 false); 3817 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3818 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3819 /*ForVTable=*/false); 3820 llvm::GlobalIFunc *GIF = 3821 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3822 "", Resolver, &getModule()); 3823 GIF->setName(ResolverName); 3824 SetCommonAttributes(FD, GIF); 3825 3826 return GIF; 3827 } 3828 3829 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3830 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3831 assert(isa<llvm::GlobalValue>(Resolver) && 3832 "Resolver should be created for the first time"); 3833 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3834 return Resolver; 3835 } 3836 3837 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3838 /// module, create and return an llvm Function with the specified type. If there 3839 /// is something in the module with the specified name, return it potentially 3840 /// bitcasted to the right type. 3841 /// 3842 /// If D is non-null, it specifies a decl that correspond to this. This is used 3843 /// to set the attributes on the function when it is first created. 3844 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3845 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3846 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3847 ForDefinition_t IsForDefinition) { 3848 const Decl *D = GD.getDecl(); 3849 3850 // Any attempts to use a MultiVersion function should result in retrieving 3851 // the iFunc instead. Name Mangling will handle the rest of the changes. 3852 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3853 // For the device mark the function as one that should be emitted. 3854 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3855 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3856 !DontDefer && !IsForDefinition) { 3857 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3858 GlobalDecl GDDef; 3859 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3860 GDDef = GlobalDecl(CD, GD.getCtorType()); 3861 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3862 GDDef = GlobalDecl(DD, GD.getDtorType()); 3863 else 3864 GDDef = GlobalDecl(FDDef); 3865 EmitGlobal(GDDef); 3866 } 3867 } 3868 3869 if (FD->isMultiVersion()) { 3870 UpdateMultiVersionNames(GD, FD, MangledName); 3871 if (!IsForDefinition) 3872 return GetOrCreateMultiVersionResolver(GD); 3873 } 3874 } 3875 3876 // Lookup the entry, lazily creating it if necessary. 3877 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3878 if (Entry) { 3879 if (WeakRefReferences.erase(Entry)) { 3880 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3881 if (FD && !FD->hasAttr<WeakAttr>()) 3882 Entry->setLinkage(llvm::Function::ExternalLinkage); 3883 } 3884 3885 // Handle dropped DLL attributes. 3886 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 3887 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 3888 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3889 setDSOLocal(Entry); 3890 } 3891 3892 // If there are two attempts to define the same mangled name, issue an 3893 // error. 3894 if (IsForDefinition && !Entry->isDeclaration()) { 3895 GlobalDecl OtherGD; 3896 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3897 // to make sure that we issue an error only once. 3898 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3899 (GD.getCanonicalDecl().getDecl() != 3900 OtherGD.getCanonicalDecl().getDecl()) && 3901 DiagnosedConflictingDefinitions.insert(GD).second) { 3902 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3903 << MangledName; 3904 getDiags().Report(OtherGD.getDecl()->getLocation(), 3905 diag::note_previous_definition); 3906 } 3907 } 3908 3909 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3910 (Entry->getValueType() == Ty)) { 3911 return Entry; 3912 } 3913 3914 // Make sure the result is of the correct type. 3915 // (If function is requested for a definition, we always need to create a new 3916 // function, not just return a bitcast.) 3917 if (!IsForDefinition) 3918 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3919 } 3920 3921 // This function doesn't have a complete type (for example, the return 3922 // type is an incomplete struct). Use a fake type instead, and make 3923 // sure not to try to set attributes. 3924 bool IsIncompleteFunction = false; 3925 3926 llvm::FunctionType *FTy; 3927 if (isa<llvm::FunctionType>(Ty)) { 3928 FTy = cast<llvm::FunctionType>(Ty); 3929 } else { 3930 FTy = llvm::FunctionType::get(VoidTy, false); 3931 IsIncompleteFunction = true; 3932 } 3933 3934 llvm::Function *F = 3935 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3936 Entry ? StringRef() : MangledName, &getModule()); 3937 3938 // If we already created a function with the same mangled name (but different 3939 // type) before, take its name and add it to the list of functions to be 3940 // replaced with F at the end of CodeGen. 3941 // 3942 // This happens if there is a prototype for a function (e.g. "int f()") and 3943 // then a definition of a different type (e.g. "int f(int x)"). 3944 if (Entry) { 3945 F->takeName(Entry); 3946 3947 // This might be an implementation of a function without a prototype, in 3948 // which case, try to do special replacement of calls which match the new 3949 // prototype. The really key thing here is that we also potentially drop 3950 // arguments from the call site so as to make a direct call, which makes the 3951 // inliner happier and suppresses a number of optimizer warnings (!) about 3952 // dropping arguments. 3953 if (!Entry->use_empty()) { 3954 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3955 Entry->removeDeadConstantUsers(); 3956 } 3957 3958 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3959 F, Entry->getValueType()->getPointerTo()); 3960 addGlobalValReplacement(Entry, BC); 3961 } 3962 3963 assert(F->getName() == MangledName && "name was uniqued!"); 3964 if (D) 3965 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3966 if (ExtraAttrs.hasFnAttrs()) { 3967 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 3968 F->addFnAttrs(B); 3969 } 3970 3971 if (!DontDefer) { 3972 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3973 // each other bottoming out with the base dtor. Therefore we emit non-base 3974 // dtors on usage, even if there is no dtor definition in the TU. 3975 if (D && isa<CXXDestructorDecl>(D) && 3976 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3977 GD.getDtorType())) 3978 addDeferredDeclToEmit(GD); 3979 3980 // This is the first use or definition of a mangled name. If there is a 3981 // deferred decl with this name, remember that we need to emit it at the end 3982 // of the file. 3983 auto DDI = DeferredDecls.find(MangledName); 3984 if (DDI != DeferredDecls.end()) { 3985 // Move the potentially referenced deferred decl to the 3986 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3987 // don't need it anymore). 3988 addDeferredDeclToEmit(DDI->second); 3989 DeferredDecls.erase(DDI); 3990 3991 // Otherwise, there are cases we have to worry about where we're 3992 // using a declaration for which we must emit a definition but where 3993 // we might not find a top-level definition: 3994 // - member functions defined inline in their classes 3995 // - friend functions defined inline in some class 3996 // - special member functions with implicit definitions 3997 // If we ever change our AST traversal to walk into class methods, 3998 // this will be unnecessary. 3999 // 4000 // We also don't emit a definition for a function if it's going to be an 4001 // entry in a vtable, unless it's already marked as used. 4002 } else if (getLangOpts().CPlusPlus && D) { 4003 // Look for a declaration that's lexically in a record. 4004 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4005 FD = FD->getPreviousDecl()) { 4006 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4007 if (FD->doesThisDeclarationHaveABody()) { 4008 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4009 break; 4010 } 4011 } 4012 } 4013 } 4014 } 4015 4016 // Make sure the result is of the requested type. 4017 if (!IsIncompleteFunction) { 4018 assert(F->getFunctionType() == Ty); 4019 return F; 4020 } 4021 4022 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 4023 return llvm::ConstantExpr::getBitCast(F, PTy); 4024 } 4025 4026 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4027 /// non-null, then this function will use the specified type if it has to 4028 /// create it (this occurs when we see a definition of the function). 4029 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 4030 llvm::Type *Ty, 4031 bool ForVTable, 4032 bool DontDefer, 4033 ForDefinition_t IsForDefinition) { 4034 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 4035 "consteval function should never be emitted"); 4036 // If there was no specific requested type, just convert it now. 4037 if (!Ty) { 4038 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4039 Ty = getTypes().ConvertType(FD->getType()); 4040 } 4041 4042 // Devirtualized destructor calls may come through here instead of via 4043 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4044 // of the complete destructor when necessary. 4045 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4046 if (getTarget().getCXXABI().isMicrosoft() && 4047 GD.getDtorType() == Dtor_Complete && 4048 DD->getParent()->getNumVBases() == 0) 4049 GD = GlobalDecl(DD, Dtor_Base); 4050 } 4051 4052 StringRef MangledName = getMangledName(GD); 4053 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4054 /*IsThunk=*/false, llvm::AttributeList(), 4055 IsForDefinition); 4056 // Returns kernel handle for HIP kernel stub function. 4057 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4058 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4059 auto *Handle = getCUDARuntime().getKernelHandle( 4060 cast<llvm::Function>(F->stripPointerCasts()), GD); 4061 if (IsForDefinition) 4062 return F; 4063 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 4064 } 4065 return F; 4066 } 4067 4068 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4069 llvm::GlobalValue *F = 4070 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4071 4072 return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F), 4073 llvm::Type::getInt8PtrTy(VMContext)); 4074 } 4075 4076 static const FunctionDecl * 4077 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4078 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4079 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4080 4081 IdentifierInfo &CII = C.Idents.get(Name); 4082 for (const auto *Result : DC->lookup(&CII)) 4083 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4084 return FD; 4085 4086 if (!C.getLangOpts().CPlusPlus) 4087 return nullptr; 4088 4089 // Demangle the premangled name from getTerminateFn() 4090 IdentifierInfo &CXXII = 4091 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4092 ? C.Idents.get("terminate") 4093 : C.Idents.get(Name); 4094 4095 for (const auto &N : {"__cxxabiv1", "std"}) { 4096 IdentifierInfo &NS = C.Idents.get(N); 4097 for (const auto *Result : DC->lookup(&NS)) { 4098 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4099 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4100 for (const auto *Result : LSD->lookup(&NS)) 4101 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4102 break; 4103 4104 if (ND) 4105 for (const auto *Result : ND->lookup(&CXXII)) 4106 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4107 return FD; 4108 } 4109 } 4110 4111 return nullptr; 4112 } 4113 4114 /// CreateRuntimeFunction - Create a new runtime function with the specified 4115 /// type and name. 4116 llvm::FunctionCallee 4117 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4118 llvm::AttributeList ExtraAttrs, bool Local, 4119 bool AssumeConvergent) { 4120 if (AssumeConvergent) { 4121 ExtraAttrs = 4122 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4123 } 4124 4125 llvm::Constant *C = 4126 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4127 /*DontDefer=*/false, /*IsThunk=*/false, 4128 ExtraAttrs); 4129 4130 if (auto *F = dyn_cast<llvm::Function>(C)) { 4131 if (F->empty()) { 4132 F->setCallingConv(getRuntimeCC()); 4133 4134 // In Windows Itanium environments, try to mark runtime functions 4135 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4136 // will link their standard library statically or dynamically. Marking 4137 // functions imported when they are not imported can cause linker errors 4138 // and warnings. 4139 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4140 !getCodeGenOpts().LTOVisibilityPublicStd) { 4141 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4142 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4143 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4144 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4145 } 4146 } 4147 setDSOLocal(F); 4148 } 4149 } 4150 4151 return {FTy, C}; 4152 } 4153 4154 /// isTypeConstant - Determine whether an object of this type can be emitted 4155 /// as a constant. 4156 /// 4157 /// If ExcludeCtor is true, the duration when the object's constructor runs 4158 /// will not be considered. The caller will need to verify that the object is 4159 /// not written to during its construction. 4160 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 4161 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 4162 return false; 4163 4164 if (Context.getLangOpts().CPlusPlus) { 4165 if (const CXXRecordDecl *Record 4166 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4167 return ExcludeCtor && !Record->hasMutableFields() && 4168 Record->hasTrivialDestructor(); 4169 } 4170 4171 return true; 4172 } 4173 4174 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4175 /// create and return an llvm GlobalVariable with the specified type and address 4176 /// space. If there is something in the module with the specified name, return 4177 /// it potentially bitcasted to the right type. 4178 /// 4179 /// If D is non-null, it specifies a decl that correspond to this. This is used 4180 /// to set the attributes on the global when it is first created. 4181 /// 4182 /// If IsForDefinition is true, it is guaranteed that an actual global with 4183 /// type Ty will be returned, not conversion of a variable with the same 4184 /// mangled name but some other type. 4185 llvm::Constant * 4186 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4187 LangAS AddrSpace, const VarDecl *D, 4188 ForDefinition_t IsForDefinition) { 4189 // Lookup the entry, lazily creating it if necessary. 4190 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4191 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4192 if (Entry) { 4193 if (WeakRefReferences.erase(Entry)) { 4194 if (D && !D->hasAttr<WeakAttr>()) 4195 Entry->setLinkage(llvm::Function::ExternalLinkage); 4196 } 4197 4198 // Handle dropped DLL attributes. 4199 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4200 !shouldMapVisibilityToDLLExport(D)) 4201 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4202 4203 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4204 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4205 4206 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4207 return Entry; 4208 4209 // If there are two attempts to define the same mangled name, issue an 4210 // error. 4211 if (IsForDefinition && !Entry->isDeclaration()) { 4212 GlobalDecl OtherGD; 4213 const VarDecl *OtherD; 4214 4215 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4216 // to make sure that we issue an error only once. 4217 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4218 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4219 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4220 OtherD->hasInit() && 4221 DiagnosedConflictingDefinitions.insert(D).second) { 4222 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4223 << MangledName; 4224 getDiags().Report(OtherGD.getDecl()->getLocation(), 4225 diag::note_previous_definition); 4226 } 4227 } 4228 4229 // Make sure the result is of the correct type. 4230 if (Entry->getType()->getAddressSpace() != TargetAS) { 4231 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4232 Ty->getPointerTo(TargetAS)); 4233 } 4234 4235 // (If global is requested for a definition, we always need to create a new 4236 // global, not just return a bitcast.) 4237 if (!IsForDefinition) 4238 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4239 } 4240 4241 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4242 4243 auto *GV = new llvm::GlobalVariable( 4244 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4245 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4246 getContext().getTargetAddressSpace(DAddrSpace)); 4247 4248 // If we already created a global with the same mangled name (but different 4249 // type) before, take its name and remove it from its parent. 4250 if (Entry) { 4251 GV->takeName(Entry); 4252 4253 if (!Entry->use_empty()) { 4254 llvm::Constant *NewPtrForOldDecl = 4255 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4256 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4257 } 4258 4259 Entry->eraseFromParent(); 4260 } 4261 4262 // This is the first use or definition of a mangled name. If there is a 4263 // deferred decl with this name, remember that we need to emit it at the end 4264 // of the file. 4265 auto DDI = DeferredDecls.find(MangledName); 4266 if (DDI != DeferredDecls.end()) { 4267 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4268 // list, and remove it from DeferredDecls (since we don't need it anymore). 4269 addDeferredDeclToEmit(DDI->second); 4270 DeferredDecls.erase(DDI); 4271 } 4272 4273 // Handle things which are present even on external declarations. 4274 if (D) { 4275 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4276 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4277 4278 // FIXME: This code is overly simple and should be merged with other global 4279 // handling. 4280 GV->setConstant(isTypeConstant(D->getType(), false)); 4281 4282 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4283 4284 setLinkageForGV(GV, D); 4285 4286 if (D->getTLSKind()) { 4287 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4288 CXXThreadLocals.push_back(D); 4289 setTLSMode(GV, *D); 4290 } 4291 4292 setGVProperties(GV, D); 4293 4294 // If required by the ABI, treat declarations of static data members with 4295 // inline initializers as definitions. 4296 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4297 EmitGlobalVarDefinition(D); 4298 } 4299 4300 // Emit section information for extern variables. 4301 if (D->hasExternalStorage()) { 4302 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4303 GV->setSection(SA->getName()); 4304 } 4305 4306 // Handle XCore specific ABI requirements. 4307 if (getTriple().getArch() == llvm::Triple::xcore && 4308 D->getLanguageLinkage() == CLanguageLinkage && 4309 D->getType().isConstant(Context) && 4310 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4311 GV->setSection(".cp.rodata"); 4312 4313 // Check if we a have a const declaration with an initializer, we may be 4314 // able to emit it as available_externally to expose it's value to the 4315 // optimizer. 4316 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4317 D->getType().isConstQualified() && !GV->hasInitializer() && 4318 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4319 const auto *Record = 4320 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4321 bool HasMutableFields = Record && Record->hasMutableFields(); 4322 if (!HasMutableFields) { 4323 const VarDecl *InitDecl; 4324 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4325 if (InitExpr) { 4326 ConstantEmitter emitter(*this); 4327 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4328 if (Init) { 4329 auto *InitType = Init->getType(); 4330 if (GV->getValueType() != InitType) { 4331 // The type of the initializer does not match the definition. 4332 // This happens when an initializer has a different type from 4333 // the type of the global (because of padding at the end of a 4334 // structure for instance). 4335 GV->setName(StringRef()); 4336 // Make a new global with the correct type, this is now guaranteed 4337 // to work. 4338 auto *NewGV = cast<llvm::GlobalVariable>( 4339 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4340 ->stripPointerCasts()); 4341 4342 // Erase the old global, since it is no longer used. 4343 GV->eraseFromParent(); 4344 GV = NewGV; 4345 } else { 4346 GV->setInitializer(Init); 4347 GV->setConstant(true); 4348 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4349 } 4350 emitter.finalize(GV); 4351 } 4352 } 4353 } 4354 } 4355 } 4356 4357 if (GV->isDeclaration()) { 4358 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4359 // External HIP managed variables needed to be recorded for transformation 4360 // in both device and host compilations. 4361 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4362 D->hasExternalStorage()) 4363 getCUDARuntime().handleVarRegistration(D, *GV); 4364 } 4365 4366 if (D) 4367 SanitizerMD->reportGlobal(GV, *D); 4368 4369 LangAS ExpectedAS = 4370 D ? D->getType().getAddressSpace() 4371 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4372 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4373 if (DAddrSpace != ExpectedAS) { 4374 return getTargetCodeGenInfo().performAddrSpaceCast( 4375 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4376 } 4377 4378 return GV; 4379 } 4380 4381 llvm::Constant * 4382 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4383 const Decl *D = GD.getDecl(); 4384 4385 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4386 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4387 /*DontDefer=*/false, IsForDefinition); 4388 4389 if (isa<CXXMethodDecl>(D)) { 4390 auto FInfo = 4391 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4392 auto Ty = getTypes().GetFunctionType(*FInfo); 4393 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4394 IsForDefinition); 4395 } 4396 4397 if (isa<FunctionDecl>(D)) { 4398 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4399 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4400 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4401 IsForDefinition); 4402 } 4403 4404 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4405 } 4406 4407 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4408 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4409 unsigned Alignment) { 4410 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4411 llvm::GlobalVariable *OldGV = nullptr; 4412 4413 if (GV) { 4414 // Check if the variable has the right type. 4415 if (GV->getValueType() == Ty) 4416 return GV; 4417 4418 // Because C++ name mangling, the only way we can end up with an already 4419 // existing global with the same name is if it has been declared extern "C". 4420 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4421 OldGV = GV; 4422 } 4423 4424 // Create a new variable. 4425 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4426 Linkage, nullptr, Name); 4427 4428 if (OldGV) { 4429 // Replace occurrences of the old variable if needed. 4430 GV->takeName(OldGV); 4431 4432 if (!OldGV->use_empty()) { 4433 llvm::Constant *NewPtrForOldDecl = 4434 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4435 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4436 } 4437 4438 OldGV->eraseFromParent(); 4439 } 4440 4441 if (supportsCOMDAT() && GV->isWeakForLinker() && 4442 !GV->hasAvailableExternallyLinkage()) 4443 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4444 4445 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4446 4447 return GV; 4448 } 4449 4450 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4451 /// given global variable. If Ty is non-null and if the global doesn't exist, 4452 /// then it will be created with the specified type instead of whatever the 4453 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4454 /// that an actual global with type Ty will be returned, not conversion of a 4455 /// variable with the same mangled name but some other type. 4456 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4457 llvm::Type *Ty, 4458 ForDefinition_t IsForDefinition) { 4459 assert(D->hasGlobalStorage() && "Not a global variable"); 4460 QualType ASTTy = D->getType(); 4461 if (!Ty) 4462 Ty = getTypes().ConvertTypeForMem(ASTTy); 4463 4464 StringRef MangledName = getMangledName(D); 4465 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4466 IsForDefinition); 4467 } 4468 4469 /// CreateRuntimeVariable - Create a new runtime global variable with the 4470 /// specified type and name. 4471 llvm::Constant * 4472 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4473 StringRef Name) { 4474 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4475 : LangAS::Default; 4476 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4477 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4478 return Ret; 4479 } 4480 4481 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4482 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4483 4484 StringRef MangledName = getMangledName(D); 4485 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4486 4487 // We already have a definition, not declaration, with the same mangled name. 4488 // Emitting of declaration is not required (and actually overwrites emitted 4489 // definition). 4490 if (GV && !GV->isDeclaration()) 4491 return; 4492 4493 // If we have not seen a reference to this variable yet, place it into the 4494 // deferred declarations table to be emitted if needed later. 4495 if (!MustBeEmitted(D) && !GV) { 4496 DeferredDecls[MangledName] = D; 4497 return; 4498 } 4499 4500 // The tentative definition is the only definition. 4501 EmitGlobalVarDefinition(D); 4502 } 4503 4504 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4505 EmitExternalVarDeclaration(D); 4506 } 4507 4508 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4509 return Context.toCharUnitsFromBits( 4510 getDataLayout().getTypeStoreSizeInBits(Ty)); 4511 } 4512 4513 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4514 if (LangOpts.OpenCL) { 4515 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4516 assert(AS == LangAS::opencl_global || 4517 AS == LangAS::opencl_global_device || 4518 AS == LangAS::opencl_global_host || 4519 AS == LangAS::opencl_constant || 4520 AS == LangAS::opencl_local || 4521 AS >= LangAS::FirstTargetAddressSpace); 4522 return AS; 4523 } 4524 4525 if (LangOpts.SYCLIsDevice && 4526 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4527 return LangAS::sycl_global; 4528 4529 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4530 if (D && D->hasAttr<CUDAConstantAttr>()) 4531 return LangAS::cuda_constant; 4532 else if (D && D->hasAttr<CUDASharedAttr>()) 4533 return LangAS::cuda_shared; 4534 else if (D && D->hasAttr<CUDADeviceAttr>()) 4535 return LangAS::cuda_device; 4536 else if (D && D->getType().isConstQualified()) 4537 return LangAS::cuda_constant; 4538 else 4539 return LangAS::cuda_device; 4540 } 4541 4542 if (LangOpts.OpenMP) { 4543 LangAS AS; 4544 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4545 return AS; 4546 } 4547 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4548 } 4549 4550 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4551 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4552 if (LangOpts.OpenCL) 4553 return LangAS::opencl_constant; 4554 if (LangOpts.SYCLIsDevice) 4555 return LangAS::sycl_global; 4556 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4557 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4558 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4559 // with OpVariable instructions with Generic storage class which is not 4560 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4561 // UniformConstant storage class is not viable as pointers to it may not be 4562 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4563 return LangAS::cuda_device; 4564 if (auto AS = getTarget().getConstantAddressSpace()) 4565 return *AS; 4566 return LangAS::Default; 4567 } 4568 4569 // In address space agnostic languages, string literals are in default address 4570 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4571 // emitted in constant address space in LLVM IR. To be consistent with other 4572 // parts of AST, string literal global variables in constant address space 4573 // need to be casted to default address space before being put into address 4574 // map and referenced by other part of CodeGen. 4575 // In OpenCL, string literals are in constant address space in AST, therefore 4576 // they should not be casted to default address space. 4577 static llvm::Constant * 4578 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4579 llvm::GlobalVariable *GV) { 4580 llvm::Constant *Cast = GV; 4581 if (!CGM.getLangOpts().OpenCL) { 4582 auto AS = CGM.GetGlobalConstantAddressSpace(); 4583 if (AS != LangAS::Default) 4584 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4585 CGM, GV, AS, LangAS::Default, 4586 GV->getValueType()->getPointerTo( 4587 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4588 } 4589 return Cast; 4590 } 4591 4592 template<typename SomeDecl> 4593 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4594 llvm::GlobalValue *GV) { 4595 if (!getLangOpts().CPlusPlus) 4596 return; 4597 4598 // Must have 'used' attribute, or else inline assembly can't rely on 4599 // the name existing. 4600 if (!D->template hasAttr<UsedAttr>()) 4601 return; 4602 4603 // Must have internal linkage and an ordinary name. 4604 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4605 return; 4606 4607 // Must be in an extern "C" context. Entities declared directly within 4608 // a record are not extern "C" even if the record is in such a context. 4609 const SomeDecl *First = D->getFirstDecl(); 4610 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4611 return; 4612 4613 // OK, this is an internal linkage entity inside an extern "C" linkage 4614 // specification. Make a note of that so we can give it the "expected" 4615 // mangled name if nothing else is using that name. 4616 std::pair<StaticExternCMap::iterator, bool> R = 4617 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4618 4619 // If we have multiple internal linkage entities with the same name 4620 // in extern "C" regions, none of them gets that name. 4621 if (!R.second) 4622 R.first->second = nullptr; 4623 } 4624 4625 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4626 if (!CGM.supportsCOMDAT()) 4627 return false; 4628 4629 if (D.hasAttr<SelectAnyAttr>()) 4630 return true; 4631 4632 GVALinkage Linkage; 4633 if (auto *VD = dyn_cast<VarDecl>(&D)) 4634 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4635 else 4636 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4637 4638 switch (Linkage) { 4639 case GVA_Internal: 4640 case GVA_AvailableExternally: 4641 case GVA_StrongExternal: 4642 return false; 4643 case GVA_DiscardableODR: 4644 case GVA_StrongODR: 4645 return true; 4646 } 4647 llvm_unreachable("No such linkage"); 4648 } 4649 4650 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4651 llvm::GlobalObject &GO) { 4652 if (!shouldBeInCOMDAT(*this, D)) 4653 return; 4654 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4655 } 4656 4657 /// Pass IsTentative as true if you want to create a tentative definition. 4658 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4659 bool IsTentative) { 4660 // OpenCL global variables of sampler type are translated to function calls, 4661 // therefore no need to be translated. 4662 QualType ASTTy = D->getType(); 4663 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4664 return; 4665 4666 // If this is OpenMP device, check if it is legal to emit this global 4667 // normally. 4668 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4669 OpenMPRuntime->emitTargetGlobalVariable(D)) 4670 return; 4671 4672 llvm::TrackingVH<llvm::Constant> Init; 4673 bool NeedsGlobalCtor = false; 4674 bool NeedsGlobalDtor = 4675 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4676 4677 const VarDecl *InitDecl; 4678 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4679 4680 Optional<ConstantEmitter> emitter; 4681 4682 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4683 // as part of their declaration." Sema has already checked for 4684 // error cases, so we just need to set Init to UndefValue. 4685 bool IsCUDASharedVar = 4686 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4687 // Shadows of initialized device-side global variables are also left 4688 // undefined. 4689 // Managed Variables should be initialized on both host side and device side. 4690 bool IsCUDAShadowVar = 4691 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4692 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4693 D->hasAttr<CUDASharedAttr>()); 4694 bool IsCUDADeviceShadowVar = 4695 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4696 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4697 D->getType()->isCUDADeviceBuiltinTextureType()); 4698 if (getLangOpts().CUDA && 4699 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4700 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4701 else if (D->hasAttr<LoaderUninitializedAttr>()) 4702 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4703 else if (!InitExpr) { 4704 // This is a tentative definition; tentative definitions are 4705 // implicitly initialized with { 0 }. 4706 // 4707 // Note that tentative definitions are only emitted at the end of 4708 // a translation unit, so they should never have incomplete 4709 // type. In addition, EmitTentativeDefinition makes sure that we 4710 // never attempt to emit a tentative definition if a real one 4711 // exists. A use may still exists, however, so we still may need 4712 // to do a RAUW. 4713 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4714 Init = EmitNullConstant(D->getType()); 4715 } else { 4716 initializedGlobalDecl = GlobalDecl(D); 4717 emitter.emplace(*this); 4718 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4719 if (!Initializer) { 4720 QualType T = InitExpr->getType(); 4721 if (D->getType()->isReferenceType()) 4722 T = D->getType(); 4723 4724 if (getLangOpts().CPlusPlus) { 4725 if (InitDecl->hasFlexibleArrayInit(getContext())) 4726 ErrorUnsupported(D, "flexible array initializer"); 4727 Init = EmitNullConstant(T); 4728 NeedsGlobalCtor = true; 4729 } else { 4730 ErrorUnsupported(D, "static initializer"); 4731 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4732 } 4733 } else { 4734 Init = Initializer; 4735 // We don't need an initializer, so remove the entry for the delayed 4736 // initializer position (just in case this entry was delayed) if we 4737 // also don't need to register a destructor. 4738 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4739 DelayedCXXInitPosition.erase(D); 4740 4741 #ifndef NDEBUG 4742 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 4743 InitDecl->getFlexibleArrayInitChars(getContext()); 4744 CharUnits CstSize = CharUnits::fromQuantity( 4745 getDataLayout().getTypeAllocSize(Init->getType())); 4746 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 4747 #endif 4748 } 4749 } 4750 4751 llvm::Type* InitType = Init->getType(); 4752 llvm::Constant *Entry = 4753 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4754 4755 // Strip off pointer casts if we got them. 4756 Entry = Entry->stripPointerCasts(); 4757 4758 // Entry is now either a Function or GlobalVariable. 4759 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4760 4761 // We have a definition after a declaration with the wrong type. 4762 // We must make a new GlobalVariable* and update everything that used OldGV 4763 // (a declaration or tentative definition) with the new GlobalVariable* 4764 // (which will be a definition). 4765 // 4766 // This happens if there is a prototype for a global (e.g. 4767 // "extern int x[];") and then a definition of a different type (e.g. 4768 // "int x[10];"). This also happens when an initializer has a different type 4769 // from the type of the global (this happens with unions). 4770 if (!GV || GV->getValueType() != InitType || 4771 GV->getType()->getAddressSpace() != 4772 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4773 4774 // Move the old entry aside so that we'll create a new one. 4775 Entry->setName(StringRef()); 4776 4777 // Make a new global with the correct type, this is now guaranteed to work. 4778 GV = cast<llvm::GlobalVariable>( 4779 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4780 ->stripPointerCasts()); 4781 4782 // Replace all uses of the old global with the new global 4783 llvm::Constant *NewPtrForOldDecl = 4784 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4785 Entry->getType()); 4786 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4787 4788 // Erase the old global, since it is no longer used. 4789 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4790 } 4791 4792 MaybeHandleStaticInExternC(D, GV); 4793 4794 if (D->hasAttr<AnnotateAttr>()) 4795 AddGlobalAnnotations(D, GV); 4796 4797 // Set the llvm linkage type as appropriate. 4798 llvm::GlobalValue::LinkageTypes Linkage = 4799 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4800 4801 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4802 // the device. [...]" 4803 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4804 // __device__, declares a variable that: [...] 4805 // Is accessible from all the threads within the grid and from the host 4806 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4807 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4808 if (GV && LangOpts.CUDA) { 4809 if (LangOpts.CUDAIsDevice) { 4810 if (Linkage != llvm::GlobalValue::InternalLinkage && 4811 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4812 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4813 D->getType()->isCUDADeviceBuiltinTextureType())) 4814 GV->setExternallyInitialized(true); 4815 } else { 4816 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4817 } 4818 getCUDARuntime().handleVarRegistration(D, *GV); 4819 } 4820 4821 GV->setInitializer(Init); 4822 if (emitter) 4823 emitter->finalize(GV); 4824 4825 // If it is safe to mark the global 'constant', do so now. 4826 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4827 isTypeConstant(D->getType(), true)); 4828 4829 // If it is in a read-only section, mark it 'constant'. 4830 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4831 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4832 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4833 GV->setConstant(true); 4834 } 4835 4836 CharUnits AlignVal = getContext().getDeclAlign(D); 4837 // Check for alignment specifed in an 'omp allocate' directive. 4838 if (llvm::Optional<CharUnits> AlignValFromAllocate = 4839 getOMPAllocateAlignment(D)) 4840 AlignVal = *AlignValFromAllocate; 4841 GV->setAlignment(AlignVal.getAsAlign()); 4842 4843 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4844 // function is only defined alongside the variable, not also alongside 4845 // callers. Normally, all accesses to a thread_local go through the 4846 // thread-wrapper in order to ensure initialization has occurred, underlying 4847 // variable will never be used other than the thread-wrapper, so it can be 4848 // converted to internal linkage. 4849 // 4850 // However, if the variable has the 'constinit' attribute, it _can_ be 4851 // referenced directly, without calling the thread-wrapper, so the linkage 4852 // must not be changed. 4853 // 4854 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4855 // weak or linkonce, the de-duplication semantics are important to preserve, 4856 // so we don't change the linkage. 4857 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4858 Linkage == llvm::GlobalValue::ExternalLinkage && 4859 Context.getTargetInfo().getTriple().isOSDarwin() && 4860 !D->hasAttr<ConstInitAttr>()) 4861 Linkage = llvm::GlobalValue::InternalLinkage; 4862 4863 GV->setLinkage(Linkage); 4864 if (D->hasAttr<DLLImportAttr>()) 4865 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4866 else if (D->hasAttr<DLLExportAttr>()) 4867 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4868 else 4869 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4870 4871 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4872 // common vars aren't constant even if declared const. 4873 GV->setConstant(false); 4874 // Tentative definition of global variables may be initialized with 4875 // non-zero null pointers. In this case they should have weak linkage 4876 // since common linkage must have zero initializer and must not have 4877 // explicit section therefore cannot have non-zero initial value. 4878 if (!GV->getInitializer()->isNullValue()) 4879 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4880 } 4881 4882 setNonAliasAttributes(D, GV); 4883 4884 if (D->getTLSKind() && !GV->isThreadLocal()) { 4885 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4886 CXXThreadLocals.push_back(D); 4887 setTLSMode(GV, *D); 4888 } 4889 4890 maybeSetTrivialComdat(*D, *GV); 4891 4892 // Emit the initializer function if necessary. 4893 if (NeedsGlobalCtor || NeedsGlobalDtor) 4894 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4895 4896 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 4897 4898 // Emit global variable debug information. 4899 if (CGDebugInfo *DI = getModuleDebugInfo()) 4900 if (getCodeGenOpts().hasReducedDebugInfo()) 4901 DI->EmitGlobalVariable(GV, D); 4902 } 4903 4904 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4905 if (CGDebugInfo *DI = getModuleDebugInfo()) 4906 if (getCodeGenOpts().hasReducedDebugInfo()) { 4907 QualType ASTTy = D->getType(); 4908 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4909 llvm::Constant *GV = 4910 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 4911 DI->EmitExternalVariable( 4912 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4913 } 4914 } 4915 4916 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4917 CodeGenModule &CGM, const VarDecl *D, 4918 bool NoCommon) { 4919 // Don't give variables common linkage if -fno-common was specified unless it 4920 // was overridden by a NoCommon attribute. 4921 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4922 return true; 4923 4924 // C11 6.9.2/2: 4925 // A declaration of an identifier for an object that has file scope without 4926 // an initializer, and without a storage-class specifier or with the 4927 // storage-class specifier static, constitutes a tentative definition. 4928 if (D->getInit() || D->hasExternalStorage()) 4929 return true; 4930 4931 // A variable cannot be both common and exist in a section. 4932 if (D->hasAttr<SectionAttr>()) 4933 return true; 4934 4935 // A variable cannot be both common and exist in a section. 4936 // We don't try to determine which is the right section in the front-end. 4937 // If no specialized section name is applicable, it will resort to default. 4938 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4939 D->hasAttr<PragmaClangDataSectionAttr>() || 4940 D->hasAttr<PragmaClangRelroSectionAttr>() || 4941 D->hasAttr<PragmaClangRodataSectionAttr>()) 4942 return true; 4943 4944 // Thread local vars aren't considered common linkage. 4945 if (D->getTLSKind()) 4946 return true; 4947 4948 // Tentative definitions marked with WeakImportAttr are true definitions. 4949 if (D->hasAttr<WeakImportAttr>()) 4950 return true; 4951 4952 // A variable cannot be both common and exist in a comdat. 4953 if (shouldBeInCOMDAT(CGM, *D)) 4954 return true; 4955 4956 // Declarations with a required alignment do not have common linkage in MSVC 4957 // mode. 4958 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4959 if (D->hasAttr<AlignedAttr>()) 4960 return true; 4961 QualType VarType = D->getType(); 4962 if (Context.isAlignmentRequired(VarType)) 4963 return true; 4964 4965 if (const auto *RT = VarType->getAs<RecordType>()) { 4966 const RecordDecl *RD = RT->getDecl(); 4967 for (const FieldDecl *FD : RD->fields()) { 4968 if (FD->isBitField()) 4969 continue; 4970 if (FD->hasAttr<AlignedAttr>()) 4971 return true; 4972 if (Context.isAlignmentRequired(FD->getType())) 4973 return true; 4974 } 4975 } 4976 } 4977 4978 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4979 // common symbols, so symbols with greater alignment requirements cannot be 4980 // common. 4981 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4982 // alignments for common symbols via the aligncomm directive, so this 4983 // restriction only applies to MSVC environments. 4984 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4985 Context.getTypeAlignIfKnown(D->getType()) > 4986 Context.toBits(CharUnits::fromQuantity(32))) 4987 return true; 4988 4989 return false; 4990 } 4991 4992 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4993 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4994 if (Linkage == GVA_Internal) 4995 return llvm::Function::InternalLinkage; 4996 4997 if (D->hasAttr<WeakAttr>()) 4998 return llvm::GlobalVariable::WeakAnyLinkage; 4999 5000 if (const auto *FD = D->getAsFunction()) 5001 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5002 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5003 5004 // We are guaranteed to have a strong definition somewhere else, 5005 // so we can use available_externally linkage. 5006 if (Linkage == GVA_AvailableExternally) 5007 return llvm::GlobalValue::AvailableExternallyLinkage; 5008 5009 // Note that Apple's kernel linker doesn't support symbol 5010 // coalescing, so we need to avoid linkonce and weak linkages there. 5011 // Normally, this means we just map to internal, but for explicit 5012 // instantiations we'll map to external. 5013 5014 // In C++, the compiler has to emit a definition in every translation unit 5015 // that references the function. We should use linkonce_odr because 5016 // a) if all references in this translation unit are optimized away, we 5017 // don't need to codegen it. b) if the function persists, it needs to be 5018 // merged with other definitions. c) C++ has the ODR, so we know the 5019 // definition is dependable. 5020 if (Linkage == GVA_DiscardableODR) 5021 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5022 : llvm::Function::InternalLinkage; 5023 5024 // An explicit instantiation of a template has weak linkage, since 5025 // explicit instantiations can occur in multiple translation units 5026 // and must all be equivalent. However, we are not allowed to 5027 // throw away these explicit instantiations. 5028 // 5029 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5030 // so say that CUDA templates are either external (for kernels) or internal. 5031 // This lets llvm perform aggressive inter-procedural optimizations. For 5032 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5033 // therefore we need to follow the normal linkage paradigm. 5034 if (Linkage == GVA_StrongODR) { 5035 if (getLangOpts().AppleKext) 5036 return llvm::Function::ExternalLinkage; 5037 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5038 !getLangOpts().GPURelocatableDeviceCode) 5039 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5040 : llvm::Function::InternalLinkage; 5041 return llvm::Function::WeakODRLinkage; 5042 } 5043 5044 // C++ doesn't have tentative definitions and thus cannot have common 5045 // linkage. 5046 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5047 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5048 CodeGenOpts.NoCommon)) 5049 return llvm::GlobalVariable::CommonLinkage; 5050 5051 // selectany symbols are externally visible, so use weak instead of 5052 // linkonce. MSVC optimizes away references to const selectany globals, so 5053 // all definitions should be the same and ODR linkage should be used. 5054 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5055 if (D->hasAttr<SelectAnyAttr>()) 5056 return llvm::GlobalVariable::WeakODRLinkage; 5057 5058 // Otherwise, we have strong external linkage. 5059 assert(Linkage == GVA_StrongExternal); 5060 return llvm::GlobalVariable::ExternalLinkage; 5061 } 5062 5063 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 5064 const VarDecl *VD, bool IsConstant) { 5065 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5066 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 5067 } 5068 5069 /// Replace the uses of a function that was declared with a non-proto type. 5070 /// We want to silently drop extra arguments from call sites 5071 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5072 llvm::Function *newFn) { 5073 // Fast path. 5074 if (old->use_empty()) return; 5075 5076 llvm::Type *newRetTy = newFn->getReturnType(); 5077 SmallVector<llvm::Value*, 4> newArgs; 5078 5079 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5080 ui != ue; ) { 5081 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5082 llvm::User *user = use->getUser(); 5083 5084 // Recognize and replace uses of bitcasts. Most calls to 5085 // unprototyped functions will use bitcasts. 5086 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5087 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5088 replaceUsesOfNonProtoConstant(bitcast, newFn); 5089 continue; 5090 } 5091 5092 // Recognize calls to the function. 5093 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5094 if (!callSite) continue; 5095 if (!callSite->isCallee(&*use)) 5096 continue; 5097 5098 // If the return types don't match exactly, then we can't 5099 // transform this call unless it's dead. 5100 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5101 continue; 5102 5103 // Get the call site's attribute list. 5104 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5105 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5106 5107 // If the function was passed too few arguments, don't transform. 5108 unsigned newNumArgs = newFn->arg_size(); 5109 if (callSite->arg_size() < newNumArgs) 5110 continue; 5111 5112 // If extra arguments were passed, we silently drop them. 5113 // If any of the types mismatch, we don't transform. 5114 unsigned argNo = 0; 5115 bool dontTransform = false; 5116 for (llvm::Argument &A : newFn->args()) { 5117 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5118 dontTransform = true; 5119 break; 5120 } 5121 5122 // Add any parameter attributes. 5123 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5124 argNo++; 5125 } 5126 if (dontTransform) 5127 continue; 5128 5129 // Okay, we can transform this. Create the new call instruction and copy 5130 // over the required information. 5131 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5132 5133 // Copy over any operand bundles. 5134 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5135 callSite->getOperandBundlesAsDefs(newBundles); 5136 5137 llvm::CallBase *newCall; 5138 if (isa<llvm::CallInst>(callSite)) { 5139 newCall = 5140 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5141 } else { 5142 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5143 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5144 oldInvoke->getUnwindDest(), newArgs, 5145 newBundles, "", callSite); 5146 } 5147 newArgs.clear(); // for the next iteration 5148 5149 if (!newCall->getType()->isVoidTy()) 5150 newCall->takeName(callSite); 5151 newCall->setAttributes( 5152 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5153 oldAttrs.getRetAttrs(), newArgAttrs)); 5154 newCall->setCallingConv(callSite->getCallingConv()); 5155 5156 // Finally, remove the old call, replacing any uses with the new one. 5157 if (!callSite->use_empty()) 5158 callSite->replaceAllUsesWith(newCall); 5159 5160 // Copy debug location attached to CI. 5161 if (callSite->getDebugLoc()) 5162 newCall->setDebugLoc(callSite->getDebugLoc()); 5163 5164 callSite->eraseFromParent(); 5165 } 5166 } 5167 5168 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5169 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5170 /// existing call uses of the old function in the module, this adjusts them to 5171 /// call the new function directly. 5172 /// 5173 /// This is not just a cleanup: the always_inline pass requires direct calls to 5174 /// functions to be able to inline them. If there is a bitcast in the way, it 5175 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5176 /// run at -O0. 5177 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5178 llvm::Function *NewFn) { 5179 // If we're redefining a global as a function, don't transform it. 5180 if (!isa<llvm::Function>(Old)) return; 5181 5182 replaceUsesOfNonProtoConstant(Old, NewFn); 5183 } 5184 5185 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5186 auto DK = VD->isThisDeclarationADefinition(); 5187 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5188 return; 5189 5190 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5191 // If we have a definition, this might be a deferred decl. If the 5192 // instantiation is explicit, make sure we emit it at the end. 5193 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5194 GetAddrOfGlobalVar(VD); 5195 5196 EmitTopLevelDecl(VD); 5197 } 5198 5199 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5200 llvm::GlobalValue *GV) { 5201 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5202 5203 // Compute the function info and LLVM type. 5204 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5205 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5206 5207 // Get or create the prototype for the function. 5208 if (!GV || (GV->getValueType() != Ty)) 5209 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5210 /*DontDefer=*/true, 5211 ForDefinition)); 5212 5213 // Already emitted. 5214 if (!GV->isDeclaration()) 5215 return; 5216 5217 // We need to set linkage and visibility on the function before 5218 // generating code for it because various parts of IR generation 5219 // want to propagate this information down (e.g. to local static 5220 // declarations). 5221 auto *Fn = cast<llvm::Function>(GV); 5222 setFunctionLinkage(GD, Fn); 5223 5224 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5225 setGVProperties(Fn, GD); 5226 5227 MaybeHandleStaticInExternC(D, Fn); 5228 5229 maybeSetTrivialComdat(*D, *Fn); 5230 5231 // Set CodeGen attributes that represent floating point environment. 5232 setLLVMFunctionFEnvAttributes(D, Fn); 5233 5234 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5235 5236 setNonAliasAttributes(GD, Fn); 5237 SetLLVMFunctionAttributesForDefinition(D, Fn); 5238 5239 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5240 AddGlobalCtor(Fn, CA->getPriority()); 5241 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5242 AddGlobalDtor(Fn, DA->getPriority(), true); 5243 if (D->hasAttr<AnnotateAttr>()) 5244 AddGlobalAnnotations(D, Fn); 5245 } 5246 5247 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5248 const auto *D = cast<ValueDecl>(GD.getDecl()); 5249 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5250 assert(AA && "Not an alias?"); 5251 5252 StringRef MangledName = getMangledName(GD); 5253 5254 if (AA->getAliasee() == MangledName) { 5255 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5256 return; 5257 } 5258 5259 // If there is a definition in the module, then it wins over the alias. 5260 // This is dubious, but allow it to be safe. Just ignore the alias. 5261 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5262 if (Entry && !Entry->isDeclaration()) 5263 return; 5264 5265 Aliases.push_back(GD); 5266 5267 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5268 5269 // Create a reference to the named value. This ensures that it is emitted 5270 // if a deferred decl. 5271 llvm::Constant *Aliasee; 5272 llvm::GlobalValue::LinkageTypes LT; 5273 if (isa<llvm::FunctionType>(DeclTy)) { 5274 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5275 /*ForVTable=*/false); 5276 LT = getFunctionLinkage(GD); 5277 } else { 5278 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5279 /*D=*/nullptr); 5280 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5281 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5282 else 5283 LT = getFunctionLinkage(GD); 5284 } 5285 5286 // Create the new alias itself, but don't set a name yet. 5287 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5288 auto *GA = 5289 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5290 5291 if (Entry) { 5292 if (GA->getAliasee() == Entry) { 5293 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5294 return; 5295 } 5296 5297 assert(Entry->isDeclaration()); 5298 5299 // If there is a declaration in the module, then we had an extern followed 5300 // by the alias, as in: 5301 // extern int test6(); 5302 // ... 5303 // int test6() __attribute__((alias("test7"))); 5304 // 5305 // Remove it and replace uses of it with the alias. 5306 GA->takeName(Entry); 5307 5308 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5309 Entry->getType())); 5310 Entry->eraseFromParent(); 5311 } else { 5312 GA->setName(MangledName); 5313 } 5314 5315 // Set attributes which are particular to an alias; this is a 5316 // specialization of the attributes which may be set on a global 5317 // variable/function. 5318 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5319 D->isWeakImported()) { 5320 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5321 } 5322 5323 if (const auto *VD = dyn_cast<VarDecl>(D)) 5324 if (VD->getTLSKind()) 5325 setTLSMode(GA, *VD); 5326 5327 SetCommonAttributes(GD, GA); 5328 5329 // Emit global alias debug information. 5330 if (isa<VarDecl>(D)) 5331 if (CGDebugInfo *DI = getModuleDebugInfo()) 5332 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()), GD); 5333 } 5334 5335 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5336 const auto *D = cast<ValueDecl>(GD.getDecl()); 5337 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5338 assert(IFA && "Not an ifunc?"); 5339 5340 StringRef MangledName = getMangledName(GD); 5341 5342 if (IFA->getResolver() == MangledName) { 5343 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5344 return; 5345 } 5346 5347 // Report an error if some definition overrides ifunc. 5348 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5349 if (Entry && !Entry->isDeclaration()) { 5350 GlobalDecl OtherGD; 5351 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5352 DiagnosedConflictingDefinitions.insert(GD).second) { 5353 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5354 << MangledName; 5355 Diags.Report(OtherGD.getDecl()->getLocation(), 5356 diag::note_previous_definition); 5357 } 5358 return; 5359 } 5360 5361 Aliases.push_back(GD); 5362 5363 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5364 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5365 llvm::Constant *Resolver = 5366 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5367 /*ForVTable=*/false); 5368 llvm::GlobalIFunc *GIF = 5369 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5370 "", Resolver, &getModule()); 5371 if (Entry) { 5372 if (GIF->getResolver() == Entry) { 5373 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5374 return; 5375 } 5376 assert(Entry->isDeclaration()); 5377 5378 // If there is a declaration in the module, then we had an extern followed 5379 // by the ifunc, as in: 5380 // extern int test(); 5381 // ... 5382 // int test() __attribute__((ifunc("resolver"))); 5383 // 5384 // Remove it and replace uses of it with the ifunc. 5385 GIF->takeName(Entry); 5386 5387 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5388 Entry->getType())); 5389 Entry->eraseFromParent(); 5390 } else 5391 GIF->setName(MangledName); 5392 5393 SetCommonAttributes(GD, GIF); 5394 } 5395 5396 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5397 ArrayRef<llvm::Type*> Tys) { 5398 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5399 Tys); 5400 } 5401 5402 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5403 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5404 const StringLiteral *Literal, bool TargetIsLSB, 5405 bool &IsUTF16, unsigned &StringLength) { 5406 StringRef String = Literal->getString(); 5407 unsigned NumBytes = String.size(); 5408 5409 // Check for simple case. 5410 if (!Literal->containsNonAsciiOrNull()) { 5411 StringLength = NumBytes; 5412 return *Map.insert(std::make_pair(String, nullptr)).first; 5413 } 5414 5415 // Otherwise, convert the UTF8 literals into a string of shorts. 5416 IsUTF16 = true; 5417 5418 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5419 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5420 llvm::UTF16 *ToPtr = &ToBuf[0]; 5421 5422 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5423 ToPtr + NumBytes, llvm::strictConversion); 5424 5425 // ConvertUTF8toUTF16 returns the length in ToPtr. 5426 StringLength = ToPtr - &ToBuf[0]; 5427 5428 // Add an explicit null. 5429 *ToPtr = 0; 5430 return *Map.insert(std::make_pair( 5431 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5432 (StringLength + 1) * 2), 5433 nullptr)).first; 5434 } 5435 5436 ConstantAddress 5437 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5438 unsigned StringLength = 0; 5439 bool isUTF16 = false; 5440 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5441 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5442 getDataLayout().isLittleEndian(), isUTF16, 5443 StringLength); 5444 5445 if (auto *C = Entry.second) 5446 return ConstantAddress( 5447 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5448 5449 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5450 llvm::Constant *Zeros[] = { Zero, Zero }; 5451 5452 const ASTContext &Context = getContext(); 5453 const llvm::Triple &Triple = getTriple(); 5454 5455 const auto CFRuntime = getLangOpts().CFRuntime; 5456 const bool IsSwiftABI = 5457 static_cast<unsigned>(CFRuntime) >= 5458 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5459 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5460 5461 // If we don't already have it, get __CFConstantStringClassReference. 5462 if (!CFConstantStringClassRef) { 5463 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5464 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5465 Ty = llvm::ArrayType::get(Ty, 0); 5466 5467 switch (CFRuntime) { 5468 default: break; 5469 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 5470 case LangOptions::CoreFoundationABI::Swift5_0: 5471 CFConstantStringClassName = 5472 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5473 : "$s10Foundation19_NSCFConstantStringCN"; 5474 Ty = IntPtrTy; 5475 break; 5476 case LangOptions::CoreFoundationABI::Swift4_2: 5477 CFConstantStringClassName = 5478 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5479 : "$S10Foundation19_NSCFConstantStringCN"; 5480 Ty = IntPtrTy; 5481 break; 5482 case LangOptions::CoreFoundationABI::Swift4_1: 5483 CFConstantStringClassName = 5484 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5485 : "__T010Foundation19_NSCFConstantStringCN"; 5486 Ty = IntPtrTy; 5487 break; 5488 } 5489 5490 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5491 5492 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5493 llvm::GlobalValue *GV = nullptr; 5494 5495 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5496 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5497 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5498 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5499 5500 const VarDecl *VD = nullptr; 5501 for (const auto *Result : DC->lookup(&II)) 5502 if ((VD = dyn_cast<VarDecl>(Result))) 5503 break; 5504 5505 if (Triple.isOSBinFormatELF()) { 5506 if (!VD) 5507 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5508 } else { 5509 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5510 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5511 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5512 else 5513 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5514 } 5515 5516 setDSOLocal(GV); 5517 } 5518 } 5519 5520 // Decay array -> ptr 5521 CFConstantStringClassRef = 5522 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5523 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5524 } 5525 5526 QualType CFTy = Context.getCFConstantStringType(); 5527 5528 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5529 5530 ConstantInitBuilder Builder(*this); 5531 auto Fields = Builder.beginStruct(STy); 5532 5533 // Class pointer. 5534 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5535 5536 // Flags. 5537 if (IsSwiftABI) { 5538 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5539 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5540 } else { 5541 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5542 } 5543 5544 // String pointer. 5545 llvm::Constant *C = nullptr; 5546 if (isUTF16) { 5547 auto Arr = llvm::makeArrayRef( 5548 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5549 Entry.first().size() / 2); 5550 C = llvm::ConstantDataArray::get(VMContext, Arr); 5551 } else { 5552 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5553 } 5554 5555 // Note: -fwritable-strings doesn't make the backing store strings of 5556 // CFStrings writable. (See <rdar://problem/10657500>) 5557 auto *GV = 5558 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5559 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5560 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5561 // Don't enforce the target's minimum global alignment, since the only use 5562 // of the string is via this class initializer. 5563 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5564 : Context.getTypeAlignInChars(Context.CharTy); 5565 GV->setAlignment(Align.getAsAlign()); 5566 5567 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5568 // Without it LLVM can merge the string with a non unnamed_addr one during 5569 // LTO. Doing that changes the section it ends in, which surprises ld64. 5570 if (Triple.isOSBinFormatMachO()) 5571 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5572 : "__TEXT,__cstring,cstring_literals"); 5573 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5574 // the static linker to adjust permissions to read-only later on. 5575 else if (Triple.isOSBinFormatELF()) 5576 GV->setSection(".rodata"); 5577 5578 // String. 5579 llvm::Constant *Str = 5580 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5581 5582 if (isUTF16) 5583 // Cast the UTF16 string to the correct type. 5584 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5585 Fields.add(Str); 5586 5587 // String length. 5588 llvm::IntegerType *LengthTy = 5589 llvm::IntegerType::get(getModule().getContext(), 5590 Context.getTargetInfo().getLongWidth()); 5591 if (IsSwiftABI) { 5592 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5593 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5594 LengthTy = Int32Ty; 5595 else 5596 LengthTy = IntPtrTy; 5597 } 5598 Fields.addInt(LengthTy, StringLength); 5599 5600 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5601 // properly aligned on 32-bit platforms. 5602 CharUnits Alignment = 5603 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5604 5605 // The struct. 5606 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5607 /*isConstant=*/false, 5608 llvm::GlobalVariable::PrivateLinkage); 5609 GV->addAttribute("objc_arc_inert"); 5610 switch (Triple.getObjectFormat()) { 5611 case llvm::Triple::UnknownObjectFormat: 5612 llvm_unreachable("unknown file format"); 5613 case llvm::Triple::DXContainer: 5614 case llvm::Triple::GOFF: 5615 case llvm::Triple::SPIRV: 5616 case llvm::Triple::XCOFF: 5617 llvm_unreachable("unimplemented"); 5618 case llvm::Triple::COFF: 5619 case llvm::Triple::ELF: 5620 case llvm::Triple::Wasm: 5621 GV->setSection("cfstring"); 5622 break; 5623 case llvm::Triple::MachO: 5624 GV->setSection("__DATA,__cfstring"); 5625 break; 5626 } 5627 Entry.second = GV; 5628 5629 return ConstantAddress(GV, GV->getValueType(), Alignment); 5630 } 5631 5632 bool CodeGenModule::getExpressionLocationsEnabled() const { 5633 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5634 } 5635 5636 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5637 if (ObjCFastEnumerationStateType.isNull()) { 5638 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5639 D->startDefinition(); 5640 5641 QualType FieldTypes[] = { 5642 Context.UnsignedLongTy, 5643 Context.getPointerType(Context.getObjCIdType()), 5644 Context.getPointerType(Context.UnsignedLongTy), 5645 Context.getConstantArrayType(Context.UnsignedLongTy, 5646 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5647 }; 5648 5649 for (size_t i = 0; i < 4; ++i) { 5650 FieldDecl *Field = FieldDecl::Create(Context, 5651 D, 5652 SourceLocation(), 5653 SourceLocation(), nullptr, 5654 FieldTypes[i], /*TInfo=*/nullptr, 5655 /*BitWidth=*/nullptr, 5656 /*Mutable=*/false, 5657 ICIS_NoInit); 5658 Field->setAccess(AS_public); 5659 D->addDecl(Field); 5660 } 5661 5662 D->completeDefinition(); 5663 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5664 } 5665 5666 return ObjCFastEnumerationStateType; 5667 } 5668 5669 llvm::Constant * 5670 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5671 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5672 5673 // Don't emit it as the address of the string, emit the string data itself 5674 // as an inline array. 5675 if (E->getCharByteWidth() == 1) { 5676 SmallString<64> Str(E->getString()); 5677 5678 // Resize the string to the right size, which is indicated by its type. 5679 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5680 Str.resize(CAT->getSize().getZExtValue()); 5681 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5682 } 5683 5684 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5685 llvm::Type *ElemTy = AType->getElementType(); 5686 unsigned NumElements = AType->getNumElements(); 5687 5688 // Wide strings have either 2-byte or 4-byte elements. 5689 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5690 SmallVector<uint16_t, 32> Elements; 5691 Elements.reserve(NumElements); 5692 5693 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5694 Elements.push_back(E->getCodeUnit(i)); 5695 Elements.resize(NumElements); 5696 return llvm::ConstantDataArray::get(VMContext, Elements); 5697 } 5698 5699 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5700 SmallVector<uint32_t, 32> Elements; 5701 Elements.reserve(NumElements); 5702 5703 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5704 Elements.push_back(E->getCodeUnit(i)); 5705 Elements.resize(NumElements); 5706 return llvm::ConstantDataArray::get(VMContext, Elements); 5707 } 5708 5709 static llvm::GlobalVariable * 5710 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5711 CodeGenModule &CGM, StringRef GlobalName, 5712 CharUnits Alignment) { 5713 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5714 CGM.GetGlobalConstantAddressSpace()); 5715 5716 llvm::Module &M = CGM.getModule(); 5717 // Create a global variable for this string 5718 auto *GV = new llvm::GlobalVariable( 5719 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5720 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5721 GV->setAlignment(Alignment.getAsAlign()); 5722 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5723 if (GV->isWeakForLinker()) { 5724 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5725 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5726 } 5727 CGM.setDSOLocal(GV); 5728 5729 return GV; 5730 } 5731 5732 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5733 /// constant array for the given string literal. 5734 ConstantAddress 5735 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5736 StringRef Name) { 5737 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5738 5739 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5740 llvm::GlobalVariable **Entry = nullptr; 5741 if (!LangOpts.WritableStrings) { 5742 Entry = &ConstantStringMap[C]; 5743 if (auto GV = *Entry) { 5744 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5745 GV->setAlignment(Alignment.getAsAlign()); 5746 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5747 GV->getValueType(), Alignment); 5748 } 5749 } 5750 5751 SmallString<256> MangledNameBuffer; 5752 StringRef GlobalVariableName; 5753 llvm::GlobalValue::LinkageTypes LT; 5754 5755 // Mangle the string literal if that's how the ABI merges duplicate strings. 5756 // Don't do it if they are writable, since we don't want writes in one TU to 5757 // affect strings in another. 5758 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5759 !LangOpts.WritableStrings) { 5760 llvm::raw_svector_ostream Out(MangledNameBuffer); 5761 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5762 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5763 GlobalVariableName = MangledNameBuffer; 5764 } else { 5765 LT = llvm::GlobalValue::PrivateLinkage; 5766 GlobalVariableName = Name; 5767 } 5768 5769 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5770 5771 CGDebugInfo *DI = getModuleDebugInfo(); 5772 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 5773 DI->AddStringLiteralDebugInfo(GV, S); 5774 5775 if (Entry) 5776 *Entry = GV; 5777 5778 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 5779 5780 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5781 GV->getValueType(), Alignment); 5782 } 5783 5784 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5785 /// array for the given ObjCEncodeExpr node. 5786 ConstantAddress 5787 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5788 std::string Str; 5789 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5790 5791 return GetAddrOfConstantCString(Str); 5792 } 5793 5794 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5795 /// the literal and a terminating '\0' character. 5796 /// The result has pointer to array type. 5797 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5798 const std::string &Str, const char *GlobalName) { 5799 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5800 CharUnits Alignment = 5801 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5802 5803 llvm::Constant *C = 5804 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5805 5806 // Don't share any string literals if strings aren't constant. 5807 llvm::GlobalVariable **Entry = nullptr; 5808 if (!LangOpts.WritableStrings) { 5809 Entry = &ConstantStringMap[C]; 5810 if (auto GV = *Entry) { 5811 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5812 GV->setAlignment(Alignment.getAsAlign()); 5813 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5814 GV->getValueType(), Alignment); 5815 } 5816 } 5817 5818 // Get the default prefix if a name wasn't specified. 5819 if (!GlobalName) 5820 GlobalName = ".str"; 5821 // Create a global variable for this. 5822 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5823 GlobalName, Alignment); 5824 if (Entry) 5825 *Entry = GV; 5826 5827 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5828 GV->getValueType(), Alignment); 5829 } 5830 5831 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5832 const MaterializeTemporaryExpr *E, const Expr *Init) { 5833 assert((E->getStorageDuration() == SD_Static || 5834 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5835 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5836 5837 // If we're not materializing a subobject of the temporary, keep the 5838 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5839 QualType MaterializedType = Init->getType(); 5840 if (Init == E->getSubExpr()) 5841 MaterializedType = E->getType(); 5842 5843 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5844 5845 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5846 if (!InsertResult.second) { 5847 // We've seen this before: either we already created it or we're in the 5848 // process of doing so. 5849 if (!InsertResult.first->second) { 5850 // We recursively re-entered this function, probably during emission of 5851 // the initializer. Create a placeholder. We'll clean this up in the 5852 // outer call, at the end of this function. 5853 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5854 InsertResult.first->second = new llvm::GlobalVariable( 5855 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5856 nullptr); 5857 } 5858 return ConstantAddress(InsertResult.first->second, 5859 llvm::cast<llvm::GlobalVariable>( 5860 InsertResult.first->second->stripPointerCasts()) 5861 ->getValueType(), 5862 Align); 5863 } 5864 5865 // FIXME: If an externally-visible declaration extends multiple temporaries, 5866 // we need to give each temporary the same name in every translation unit (and 5867 // we also need to make the temporaries externally-visible). 5868 SmallString<256> Name; 5869 llvm::raw_svector_ostream Out(Name); 5870 getCXXABI().getMangleContext().mangleReferenceTemporary( 5871 VD, E->getManglingNumber(), Out); 5872 5873 APValue *Value = nullptr; 5874 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5875 // If the initializer of the extending declaration is a constant 5876 // initializer, we should have a cached constant initializer for this 5877 // temporary. Note that this might have a different value from the value 5878 // computed by evaluating the initializer if the surrounding constant 5879 // expression modifies the temporary. 5880 Value = E->getOrCreateValue(false); 5881 } 5882 5883 // Try evaluating it now, it might have a constant initializer. 5884 Expr::EvalResult EvalResult; 5885 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5886 !EvalResult.hasSideEffects()) 5887 Value = &EvalResult.Val; 5888 5889 LangAS AddrSpace = 5890 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5891 5892 Optional<ConstantEmitter> emitter; 5893 llvm::Constant *InitialValue = nullptr; 5894 bool Constant = false; 5895 llvm::Type *Type; 5896 if (Value) { 5897 // The temporary has a constant initializer, use it. 5898 emitter.emplace(*this); 5899 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5900 MaterializedType); 5901 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5902 Type = InitialValue->getType(); 5903 } else { 5904 // No initializer, the initialization will be provided when we 5905 // initialize the declaration which performed lifetime extension. 5906 Type = getTypes().ConvertTypeForMem(MaterializedType); 5907 } 5908 5909 // Create a global variable for this lifetime-extended temporary. 5910 llvm::GlobalValue::LinkageTypes Linkage = 5911 getLLVMLinkageVarDefinition(VD, Constant); 5912 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5913 const VarDecl *InitVD; 5914 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5915 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5916 // Temporaries defined inside a class get linkonce_odr linkage because the 5917 // class can be defined in multiple translation units. 5918 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5919 } else { 5920 // There is no need for this temporary to have external linkage if the 5921 // VarDecl has external linkage. 5922 Linkage = llvm::GlobalVariable::InternalLinkage; 5923 } 5924 } 5925 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5926 auto *GV = new llvm::GlobalVariable( 5927 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5928 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5929 if (emitter) emitter->finalize(GV); 5930 setGVProperties(GV, VD); 5931 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 5932 // The reference temporary should never be dllexport. 5933 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5934 GV->setAlignment(Align.getAsAlign()); 5935 if (supportsCOMDAT() && GV->isWeakForLinker()) 5936 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5937 if (VD->getTLSKind()) 5938 setTLSMode(GV, *VD); 5939 llvm::Constant *CV = GV; 5940 if (AddrSpace != LangAS::Default) 5941 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5942 *this, GV, AddrSpace, LangAS::Default, 5943 Type->getPointerTo( 5944 getContext().getTargetAddressSpace(LangAS::Default))); 5945 5946 // Update the map with the new temporary. If we created a placeholder above, 5947 // replace it with the new global now. 5948 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 5949 if (Entry) { 5950 Entry->replaceAllUsesWith( 5951 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 5952 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 5953 } 5954 Entry = CV; 5955 5956 return ConstantAddress(CV, Type, Align); 5957 } 5958 5959 /// EmitObjCPropertyImplementations - Emit information for synthesized 5960 /// properties for an implementation. 5961 void CodeGenModule::EmitObjCPropertyImplementations(const 5962 ObjCImplementationDecl *D) { 5963 for (const auto *PID : D->property_impls()) { 5964 // Dynamic is just for type-checking. 5965 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5966 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5967 5968 // Determine which methods need to be implemented, some may have 5969 // been overridden. Note that ::isPropertyAccessor is not the method 5970 // we want, that just indicates if the decl came from a 5971 // property. What we want to know is if the method is defined in 5972 // this implementation. 5973 auto *Getter = PID->getGetterMethodDecl(); 5974 if (!Getter || Getter->isSynthesizedAccessorStub()) 5975 CodeGenFunction(*this).GenerateObjCGetter( 5976 const_cast<ObjCImplementationDecl *>(D), PID); 5977 auto *Setter = PID->getSetterMethodDecl(); 5978 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5979 CodeGenFunction(*this).GenerateObjCSetter( 5980 const_cast<ObjCImplementationDecl *>(D), PID); 5981 } 5982 } 5983 } 5984 5985 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5986 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5987 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5988 ivar; ivar = ivar->getNextIvar()) 5989 if (ivar->getType().isDestructedType()) 5990 return true; 5991 5992 return false; 5993 } 5994 5995 static bool AllTrivialInitializers(CodeGenModule &CGM, 5996 ObjCImplementationDecl *D) { 5997 CodeGenFunction CGF(CGM); 5998 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5999 E = D->init_end(); B != E; ++B) { 6000 CXXCtorInitializer *CtorInitExp = *B; 6001 Expr *Init = CtorInitExp->getInit(); 6002 if (!CGF.isTrivialInitializer(Init)) 6003 return false; 6004 } 6005 return true; 6006 } 6007 6008 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6009 /// for an implementation. 6010 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6011 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6012 if (needsDestructMethod(D)) { 6013 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6014 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6015 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6016 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6017 getContext().VoidTy, nullptr, D, 6018 /*isInstance=*/true, /*isVariadic=*/false, 6019 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6020 /*isImplicitlyDeclared=*/true, 6021 /*isDefined=*/false, ObjCMethodDecl::Required); 6022 D->addInstanceMethod(DTORMethod); 6023 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6024 D->setHasDestructors(true); 6025 } 6026 6027 // If the implementation doesn't have any ivar initializers, we don't need 6028 // a .cxx_construct. 6029 if (D->getNumIvarInitializers() == 0 || 6030 AllTrivialInitializers(*this, D)) 6031 return; 6032 6033 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6034 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6035 // The constructor returns 'self'. 6036 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6037 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6038 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6039 /*isVariadic=*/false, 6040 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6041 /*isImplicitlyDeclared=*/true, 6042 /*isDefined=*/false, ObjCMethodDecl::Required); 6043 D->addInstanceMethod(CTORMethod); 6044 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6045 D->setHasNonZeroConstructors(true); 6046 } 6047 6048 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6049 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6050 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 6051 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 6052 ErrorUnsupported(LSD, "linkage spec"); 6053 return; 6054 } 6055 6056 EmitDeclContext(LSD); 6057 } 6058 6059 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6060 for (auto *I : DC->decls()) { 6061 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6062 // are themselves considered "top-level", so EmitTopLevelDecl on an 6063 // ObjCImplDecl does not recursively visit them. We need to do that in 6064 // case they're nested inside another construct (LinkageSpecDecl / 6065 // ExportDecl) that does stop them from being considered "top-level". 6066 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6067 for (auto *M : OID->methods()) 6068 EmitTopLevelDecl(M); 6069 } 6070 6071 EmitTopLevelDecl(I); 6072 } 6073 } 6074 6075 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6076 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6077 // Ignore dependent declarations. 6078 if (D->isTemplated()) 6079 return; 6080 6081 // Consteval function shouldn't be emitted. 6082 if (auto *FD = dyn_cast<FunctionDecl>(D)) 6083 if (FD->isConsteval()) 6084 return; 6085 6086 switch (D->getKind()) { 6087 case Decl::CXXConversion: 6088 case Decl::CXXMethod: 6089 case Decl::Function: 6090 EmitGlobal(cast<FunctionDecl>(D)); 6091 // Always provide some coverage mapping 6092 // even for the functions that aren't emitted. 6093 AddDeferredUnusedCoverageMapping(D); 6094 break; 6095 6096 case Decl::CXXDeductionGuide: 6097 // Function-like, but does not result in code emission. 6098 break; 6099 6100 case Decl::Var: 6101 case Decl::Decomposition: 6102 case Decl::VarTemplateSpecialization: 6103 EmitGlobal(cast<VarDecl>(D)); 6104 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6105 for (auto *B : DD->bindings()) 6106 if (auto *HD = B->getHoldingVar()) 6107 EmitGlobal(HD); 6108 break; 6109 6110 // Indirect fields from global anonymous structs and unions can be 6111 // ignored; only the actual variable requires IR gen support. 6112 case Decl::IndirectField: 6113 break; 6114 6115 // C++ Decls 6116 case Decl::Namespace: 6117 EmitDeclContext(cast<NamespaceDecl>(D)); 6118 break; 6119 case Decl::ClassTemplateSpecialization: { 6120 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6121 if (CGDebugInfo *DI = getModuleDebugInfo()) 6122 if (Spec->getSpecializationKind() == 6123 TSK_ExplicitInstantiationDefinition && 6124 Spec->hasDefinition()) 6125 DI->completeTemplateDefinition(*Spec); 6126 } LLVM_FALLTHROUGH; 6127 case Decl::CXXRecord: { 6128 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6129 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6130 if (CRD->hasDefinition()) 6131 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6132 if (auto *ES = D->getASTContext().getExternalSource()) 6133 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6134 DI->completeUnusedClass(*CRD); 6135 } 6136 // Emit any static data members, they may be definitions. 6137 for (auto *I : CRD->decls()) 6138 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6139 EmitTopLevelDecl(I); 6140 break; 6141 } 6142 // No code generation needed. 6143 case Decl::UsingShadow: 6144 case Decl::ClassTemplate: 6145 case Decl::VarTemplate: 6146 case Decl::Concept: 6147 case Decl::VarTemplatePartialSpecialization: 6148 case Decl::FunctionTemplate: 6149 case Decl::TypeAliasTemplate: 6150 case Decl::Block: 6151 case Decl::Empty: 6152 case Decl::Binding: 6153 break; 6154 case Decl::Using: // using X; [C++] 6155 if (CGDebugInfo *DI = getModuleDebugInfo()) 6156 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6157 break; 6158 case Decl::UsingEnum: // using enum X; [C++] 6159 if (CGDebugInfo *DI = getModuleDebugInfo()) 6160 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6161 break; 6162 case Decl::NamespaceAlias: 6163 if (CGDebugInfo *DI = getModuleDebugInfo()) 6164 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6165 break; 6166 case Decl::UsingDirective: // using namespace X; [C++] 6167 if (CGDebugInfo *DI = getModuleDebugInfo()) 6168 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6169 break; 6170 case Decl::CXXConstructor: 6171 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6172 break; 6173 case Decl::CXXDestructor: 6174 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6175 break; 6176 6177 case Decl::StaticAssert: 6178 // Nothing to do. 6179 break; 6180 6181 // Objective-C Decls 6182 6183 // Forward declarations, no (immediate) code generation. 6184 case Decl::ObjCInterface: 6185 case Decl::ObjCCategory: 6186 break; 6187 6188 case Decl::ObjCProtocol: { 6189 auto *Proto = cast<ObjCProtocolDecl>(D); 6190 if (Proto->isThisDeclarationADefinition()) 6191 ObjCRuntime->GenerateProtocol(Proto); 6192 break; 6193 } 6194 6195 case Decl::ObjCCategoryImpl: 6196 // Categories have properties but don't support synthesize so we 6197 // can ignore them here. 6198 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6199 break; 6200 6201 case Decl::ObjCImplementation: { 6202 auto *OMD = cast<ObjCImplementationDecl>(D); 6203 EmitObjCPropertyImplementations(OMD); 6204 EmitObjCIvarInitializations(OMD); 6205 ObjCRuntime->GenerateClass(OMD); 6206 // Emit global variable debug information. 6207 if (CGDebugInfo *DI = getModuleDebugInfo()) 6208 if (getCodeGenOpts().hasReducedDebugInfo()) 6209 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6210 OMD->getClassInterface()), OMD->getLocation()); 6211 break; 6212 } 6213 case Decl::ObjCMethod: { 6214 auto *OMD = cast<ObjCMethodDecl>(D); 6215 // If this is not a prototype, emit the body. 6216 if (OMD->getBody()) 6217 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6218 break; 6219 } 6220 case Decl::ObjCCompatibleAlias: 6221 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6222 break; 6223 6224 case Decl::PragmaComment: { 6225 const auto *PCD = cast<PragmaCommentDecl>(D); 6226 switch (PCD->getCommentKind()) { 6227 case PCK_Unknown: 6228 llvm_unreachable("unexpected pragma comment kind"); 6229 case PCK_Linker: 6230 AppendLinkerOptions(PCD->getArg()); 6231 break; 6232 case PCK_Lib: 6233 AddDependentLib(PCD->getArg()); 6234 break; 6235 case PCK_Compiler: 6236 case PCK_ExeStr: 6237 case PCK_User: 6238 break; // We ignore all of these. 6239 } 6240 break; 6241 } 6242 6243 case Decl::PragmaDetectMismatch: { 6244 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6245 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6246 break; 6247 } 6248 6249 case Decl::LinkageSpec: 6250 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6251 break; 6252 6253 case Decl::FileScopeAsm: { 6254 // File-scope asm is ignored during device-side CUDA compilation. 6255 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6256 break; 6257 // File-scope asm is ignored during device-side OpenMP compilation. 6258 if (LangOpts.OpenMPIsDevice) 6259 break; 6260 // File-scope asm is ignored during device-side SYCL compilation. 6261 if (LangOpts.SYCLIsDevice) 6262 break; 6263 auto *AD = cast<FileScopeAsmDecl>(D); 6264 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6265 break; 6266 } 6267 6268 case Decl::Import: { 6269 auto *Import = cast<ImportDecl>(D); 6270 6271 // If we've already imported this module, we're done. 6272 if (!ImportedModules.insert(Import->getImportedModule())) 6273 break; 6274 6275 // Emit debug information for direct imports. 6276 if (!Import->getImportedOwningModule()) { 6277 if (CGDebugInfo *DI = getModuleDebugInfo()) 6278 DI->EmitImportDecl(*Import); 6279 } 6280 6281 // For C++ standard modules we are done - we will call the module 6282 // initializer for imported modules, and that will likewise call those for 6283 // any imports it has. 6284 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6285 !Import->getImportedOwningModule()->isModuleMapModule()) 6286 break; 6287 6288 // For clang C++ module map modules the initializers for sub-modules are 6289 // emitted here. 6290 6291 // Find all of the submodules and emit the module initializers. 6292 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6293 SmallVector<clang::Module *, 16> Stack; 6294 Visited.insert(Import->getImportedModule()); 6295 Stack.push_back(Import->getImportedModule()); 6296 6297 while (!Stack.empty()) { 6298 clang::Module *Mod = Stack.pop_back_val(); 6299 if (!EmittedModuleInitializers.insert(Mod).second) 6300 continue; 6301 6302 for (auto *D : Context.getModuleInitializers(Mod)) 6303 EmitTopLevelDecl(D); 6304 6305 // Visit the submodules of this module. 6306 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 6307 SubEnd = Mod->submodule_end(); 6308 Sub != SubEnd; ++Sub) { 6309 // Skip explicit children; they need to be explicitly imported to emit 6310 // the initializers. 6311 if ((*Sub)->IsExplicit) 6312 continue; 6313 6314 if (Visited.insert(*Sub).second) 6315 Stack.push_back(*Sub); 6316 } 6317 } 6318 break; 6319 } 6320 6321 case Decl::Export: 6322 EmitDeclContext(cast<ExportDecl>(D)); 6323 break; 6324 6325 case Decl::OMPThreadPrivate: 6326 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6327 break; 6328 6329 case Decl::OMPAllocate: 6330 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6331 break; 6332 6333 case Decl::OMPDeclareReduction: 6334 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6335 break; 6336 6337 case Decl::OMPDeclareMapper: 6338 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6339 break; 6340 6341 case Decl::OMPRequires: 6342 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6343 break; 6344 6345 case Decl::Typedef: 6346 case Decl::TypeAlias: // using foo = bar; [C++11] 6347 if (CGDebugInfo *DI = getModuleDebugInfo()) 6348 DI->EmitAndRetainType( 6349 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6350 break; 6351 6352 case Decl::Record: 6353 if (CGDebugInfo *DI = getModuleDebugInfo()) 6354 if (cast<RecordDecl>(D)->getDefinition()) 6355 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6356 break; 6357 6358 case Decl::Enum: 6359 if (CGDebugInfo *DI = getModuleDebugInfo()) 6360 if (cast<EnumDecl>(D)->getDefinition()) 6361 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6362 break; 6363 6364 default: 6365 // Make sure we handled everything we should, every other kind is a 6366 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6367 // function. Need to recode Decl::Kind to do that easily. 6368 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6369 break; 6370 } 6371 } 6372 6373 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6374 // Do we need to generate coverage mapping? 6375 if (!CodeGenOpts.CoverageMapping) 6376 return; 6377 switch (D->getKind()) { 6378 case Decl::CXXConversion: 6379 case Decl::CXXMethod: 6380 case Decl::Function: 6381 case Decl::ObjCMethod: 6382 case Decl::CXXConstructor: 6383 case Decl::CXXDestructor: { 6384 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6385 break; 6386 SourceManager &SM = getContext().getSourceManager(); 6387 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6388 break; 6389 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6390 if (I == DeferredEmptyCoverageMappingDecls.end()) 6391 DeferredEmptyCoverageMappingDecls[D] = true; 6392 break; 6393 } 6394 default: 6395 break; 6396 }; 6397 } 6398 6399 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6400 // Do we need to generate coverage mapping? 6401 if (!CodeGenOpts.CoverageMapping) 6402 return; 6403 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6404 if (Fn->isTemplateInstantiation()) 6405 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6406 } 6407 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6408 if (I == DeferredEmptyCoverageMappingDecls.end()) 6409 DeferredEmptyCoverageMappingDecls[D] = false; 6410 else 6411 I->second = false; 6412 } 6413 6414 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6415 // We call takeVector() here to avoid use-after-free. 6416 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6417 // we deserialize function bodies to emit coverage info for them, and that 6418 // deserializes more declarations. How should we handle that case? 6419 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6420 if (!Entry.second) 6421 continue; 6422 const Decl *D = Entry.first; 6423 switch (D->getKind()) { 6424 case Decl::CXXConversion: 6425 case Decl::CXXMethod: 6426 case Decl::Function: 6427 case Decl::ObjCMethod: { 6428 CodeGenPGO PGO(*this); 6429 GlobalDecl GD(cast<FunctionDecl>(D)); 6430 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6431 getFunctionLinkage(GD)); 6432 break; 6433 } 6434 case Decl::CXXConstructor: { 6435 CodeGenPGO PGO(*this); 6436 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6437 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6438 getFunctionLinkage(GD)); 6439 break; 6440 } 6441 case Decl::CXXDestructor: { 6442 CodeGenPGO PGO(*this); 6443 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6444 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6445 getFunctionLinkage(GD)); 6446 break; 6447 } 6448 default: 6449 break; 6450 }; 6451 } 6452 } 6453 6454 void CodeGenModule::EmitMainVoidAlias() { 6455 // In order to transition away from "__original_main" gracefully, emit an 6456 // alias for "main" in the no-argument case so that libc can detect when 6457 // new-style no-argument main is in used. 6458 if (llvm::Function *F = getModule().getFunction("main")) { 6459 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6460 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 6461 auto *GA = llvm::GlobalAlias::create("__main_void", F); 6462 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 6463 } 6464 } 6465 } 6466 6467 /// Turns the given pointer into a constant. 6468 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6469 const void *Ptr) { 6470 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6471 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6472 return llvm::ConstantInt::get(i64, PtrInt); 6473 } 6474 6475 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6476 llvm::NamedMDNode *&GlobalMetadata, 6477 GlobalDecl D, 6478 llvm::GlobalValue *Addr) { 6479 if (!GlobalMetadata) 6480 GlobalMetadata = 6481 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6482 6483 // TODO: should we report variant information for ctors/dtors? 6484 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6485 llvm::ConstantAsMetadata::get(GetPointerConstant( 6486 CGM.getLLVMContext(), D.getDecl()))}; 6487 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6488 } 6489 6490 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6491 llvm::GlobalValue *CppFunc) { 6492 // Store the list of ifuncs we need to replace uses in. 6493 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6494 // List of ConstantExprs that we should be able to delete when we're done 6495 // here. 6496 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6497 6498 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 6499 if (Elem == CppFunc) 6500 return false; 6501 6502 // First make sure that all users of this are ifuncs (or ifuncs via a 6503 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6504 // later. 6505 for (llvm::User *User : Elem->users()) { 6506 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6507 // ifunc directly. In any other case, just give up, as we don't know what we 6508 // could break by changing those. 6509 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6510 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6511 return false; 6512 6513 for (llvm::User *CEUser : ConstExpr->users()) { 6514 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6515 IFuncs.push_back(IFunc); 6516 } else { 6517 return false; 6518 } 6519 } 6520 CEs.push_back(ConstExpr); 6521 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 6522 IFuncs.push_back(IFunc); 6523 } else { 6524 // This user is one we don't know how to handle, so fail redirection. This 6525 // will result in an ifunc retaining a resolver name that will ultimately 6526 // fail to be resolved to a defined function. 6527 return false; 6528 } 6529 } 6530 6531 // Now we know this is a valid case where we can do this alias replacement, we 6532 // need to remove all of the references to Elem (and the bitcasts!) so we can 6533 // delete it. 6534 for (llvm::GlobalIFunc *IFunc : IFuncs) 6535 IFunc->setResolver(nullptr); 6536 for (llvm::ConstantExpr *ConstExpr : CEs) 6537 ConstExpr->destroyConstant(); 6538 6539 // We should now be out of uses for the 'old' version of this function, so we 6540 // can erase it as well. 6541 Elem->eraseFromParent(); 6542 6543 for (llvm::GlobalIFunc *IFunc : IFuncs) { 6544 // The type of the resolver is always just a function-type that returns the 6545 // type of the IFunc, so create that here. If the type of the actual 6546 // resolver doesn't match, it just gets bitcast to the right thing. 6547 auto *ResolverTy = 6548 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 6549 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 6550 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 6551 IFunc->setResolver(Resolver); 6552 } 6553 return true; 6554 } 6555 6556 /// For each function which is declared within an extern "C" region and marked 6557 /// as 'used', but has internal linkage, create an alias from the unmangled 6558 /// name to the mangled name if possible. People expect to be able to refer 6559 /// to such functions with an unmangled name from inline assembly within the 6560 /// same translation unit. 6561 void CodeGenModule::EmitStaticExternCAliases() { 6562 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6563 return; 6564 for (auto &I : StaticExternCValues) { 6565 IdentifierInfo *Name = I.first; 6566 llvm::GlobalValue *Val = I.second; 6567 6568 // If Val is null, that implies there were multiple declarations that each 6569 // had a claim to the unmangled name. In this case, generation of the alias 6570 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 6571 if (!Val) 6572 break; 6573 6574 llvm::GlobalValue *ExistingElem = 6575 getModule().getNamedValue(Name->getName()); 6576 6577 // If there is either not something already by this name, or we were able to 6578 // replace all uses from IFuncs, create the alias. 6579 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 6580 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6581 } 6582 } 6583 6584 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6585 GlobalDecl &Result) const { 6586 auto Res = Manglings.find(MangledName); 6587 if (Res == Manglings.end()) 6588 return false; 6589 Result = Res->getValue(); 6590 return true; 6591 } 6592 6593 /// Emits metadata nodes associating all the global values in the 6594 /// current module with the Decls they came from. This is useful for 6595 /// projects using IR gen as a subroutine. 6596 /// 6597 /// Since there's currently no way to associate an MDNode directly 6598 /// with an llvm::GlobalValue, we create a global named metadata 6599 /// with the name 'clang.global.decl.ptrs'. 6600 void CodeGenModule::EmitDeclMetadata() { 6601 llvm::NamedMDNode *GlobalMetadata = nullptr; 6602 6603 for (auto &I : MangledDeclNames) { 6604 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6605 // Some mangled names don't necessarily have an associated GlobalValue 6606 // in this module, e.g. if we mangled it for DebugInfo. 6607 if (Addr) 6608 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6609 } 6610 } 6611 6612 /// Emits metadata nodes for all the local variables in the current 6613 /// function. 6614 void CodeGenFunction::EmitDeclMetadata() { 6615 if (LocalDeclMap.empty()) return; 6616 6617 llvm::LLVMContext &Context = getLLVMContext(); 6618 6619 // Find the unique metadata ID for this name. 6620 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6621 6622 llvm::NamedMDNode *GlobalMetadata = nullptr; 6623 6624 for (auto &I : LocalDeclMap) { 6625 const Decl *D = I.first; 6626 llvm::Value *Addr = I.second.getPointer(); 6627 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6628 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6629 Alloca->setMetadata( 6630 DeclPtrKind, llvm::MDNode::get( 6631 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6632 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6633 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6634 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6635 } 6636 } 6637 } 6638 6639 void CodeGenModule::EmitVersionIdentMetadata() { 6640 llvm::NamedMDNode *IdentMetadata = 6641 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6642 std::string Version = getClangFullVersion(); 6643 llvm::LLVMContext &Ctx = TheModule.getContext(); 6644 6645 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6646 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6647 } 6648 6649 void CodeGenModule::EmitCommandLineMetadata() { 6650 llvm::NamedMDNode *CommandLineMetadata = 6651 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6652 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6653 llvm::LLVMContext &Ctx = TheModule.getContext(); 6654 6655 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6656 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6657 } 6658 6659 void CodeGenModule::EmitCoverageFile() { 6660 if (getCodeGenOpts().CoverageDataFile.empty() && 6661 getCodeGenOpts().CoverageNotesFile.empty()) 6662 return; 6663 6664 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6665 if (!CUNode) 6666 return; 6667 6668 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6669 llvm::LLVMContext &Ctx = TheModule.getContext(); 6670 auto *CoverageDataFile = 6671 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6672 auto *CoverageNotesFile = 6673 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6674 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6675 llvm::MDNode *CU = CUNode->getOperand(i); 6676 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6677 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6678 } 6679 } 6680 6681 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6682 bool ForEH) { 6683 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6684 // FIXME: should we even be calling this method if RTTI is disabled 6685 // and it's not for EH? 6686 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6687 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6688 getTriple().isNVPTX())) 6689 return llvm::Constant::getNullValue(Int8PtrTy); 6690 6691 if (ForEH && Ty->isObjCObjectPointerType() && 6692 LangOpts.ObjCRuntime.isGNUFamily()) 6693 return ObjCRuntime->GetEHType(Ty); 6694 6695 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6696 } 6697 6698 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6699 // Do not emit threadprivates in simd-only mode. 6700 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6701 return; 6702 for (auto RefExpr : D->varlists()) { 6703 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6704 bool PerformInit = 6705 VD->getAnyInitializer() && 6706 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6707 /*ForRef=*/false); 6708 6709 Address Addr(GetAddrOfGlobalVar(VD), 6710 getTypes().ConvertTypeForMem(VD->getType()), 6711 getContext().getDeclAlign(VD)); 6712 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6713 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6714 CXXGlobalInits.push_back(InitFunction); 6715 } 6716 } 6717 6718 llvm::Metadata * 6719 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6720 StringRef Suffix) { 6721 if (auto *FnType = T->getAs<FunctionProtoType>()) 6722 T = getContext().getFunctionType( 6723 FnType->getReturnType(), FnType->getParamTypes(), 6724 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6725 6726 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6727 if (InternalId) 6728 return InternalId; 6729 6730 if (isExternallyVisible(T->getLinkage())) { 6731 std::string OutName; 6732 llvm::raw_string_ostream Out(OutName); 6733 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6734 Out << Suffix; 6735 6736 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6737 } else { 6738 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6739 llvm::ArrayRef<llvm::Metadata *>()); 6740 } 6741 6742 return InternalId; 6743 } 6744 6745 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6746 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6747 } 6748 6749 llvm::Metadata * 6750 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6751 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6752 } 6753 6754 // Generalize pointer types to a void pointer with the qualifiers of the 6755 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6756 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6757 // 'void *'. 6758 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6759 if (!Ty->isPointerType()) 6760 return Ty; 6761 6762 return Ctx.getPointerType( 6763 QualType(Ctx.VoidTy).withCVRQualifiers( 6764 Ty->getPointeeType().getCVRQualifiers())); 6765 } 6766 6767 // Apply type generalization to a FunctionType's return and argument types 6768 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6769 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6770 SmallVector<QualType, 8> GeneralizedParams; 6771 for (auto &Param : FnType->param_types()) 6772 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6773 6774 return Ctx.getFunctionType( 6775 GeneralizeType(Ctx, FnType->getReturnType()), 6776 GeneralizedParams, FnType->getExtProtoInfo()); 6777 } 6778 6779 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6780 return Ctx.getFunctionNoProtoType( 6781 GeneralizeType(Ctx, FnType->getReturnType())); 6782 6783 llvm_unreachable("Encountered unknown FunctionType"); 6784 } 6785 6786 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6787 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6788 GeneralizedMetadataIdMap, ".generalized"); 6789 } 6790 6791 /// Returns whether this module needs the "all-vtables" type identifier. 6792 bool CodeGenModule::NeedAllVtablesTypeId() const { 6793 // Returns true if at least one of vtable-based CFI checkers is enabled and 6794 // is not in the trapping mode. 6795 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6796 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6797 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6798 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6799 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6800 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6801 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6802 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6803 } 6804 6805 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6806 CharUnits Offset, 6807 const CXXRecordDecl *RD) { 6808 llvm::Metadata *MD = 6809 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6810 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6811 6812 if (CodeGenOpts.SanitizeCfiCrossDso) 6813 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6814 VTable->addTypeMetadata(Offset.getQuantity(), 6815 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6816 6817 if (NeedAllVtablesTypeId()) { 6818 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6819 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6820 } 6821 } 6822 6823 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6824 if (!SanStats) 6825 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6826 6827 return *SanStats; 6828 } 6829 6830 llvm::Value * 6831 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6832 CodeGenFunction &CGF) { 6833 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6834 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6835 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6836 auto *Call = CGF.EmitRuntimeCall( 6837 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6838 return Call; 6839 } 6840 6841 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6842 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6843 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6844 /* forPointeeType= */ true); 6845 } 6846 6847 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6848 LValueBaseInfo *BaseInfo, 6849 TBAAAccessInfo *TBAAInfo, 6850 bool forPointeeType) { 6851 if (TBAAInfo) 6852 *TBAAInfo = getTBAAAccessInfo(T); 6853 6854 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6855 // that doesn't return the information we need to compute BaseInfo. 6856 6857 // Honor alignment typedef attributes even on incomplete types. 6858 // We also honor them straight for C++ class types, even as pointees; 6859 // there's an expressivity gap here. 6860 if (auto TT = T->getAs<TypedefType>()) { 6861 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6862 if (BaseInfo) 6863 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6864 return getContext().toCharUnitsFromBits(Align); 6865 } 6866 } 6867 6868 bool AlignForArray = T->isArrayType(); 6869 6870 // Analyze the base element type, so we don't get confused by incomplete 6871 // array types. 6872 T = getContext().getBaseElementType(T); 6873 6874 if (T->isIncompleteType()) { 6875 // We could try to replicate the logic from 6876 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6877 // type is incomplete, so it's impossible to test. We could try to reuse 6878 // getTypeAlignIfKnown, but that doesn't return the information we need 6879 // to set BaseInfo. So just ignore the possibility that the alignment is 6880 // greater than one. 6881 if (BaseInfo) 6882 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6883 return CharUnits::One(); 6884 } 6885 6886 if (BaseInfo) 6887 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6888 6889 CharUnits Alignment; 6890 const CXXRecordDecl *RD; 6891 if (T.getQualifiers().hasUnaligned()) { 6892 Alignment = CharUnits::One(); 6893 } else if (forPointeeType && !AlignForArray && 6894 (RD = T->getAsCXXRecordDecl())) { 6895 // For C++ class pointees, we don't know whether we're pointing at a 6896 // base or a complete object, so we generally need to use the 6897 // non-virtual alignment. 6898 Alignment = getClassPointerAlignment(RD); 6899 } else { 6900 Alignment = getContext().getTypeAlignInChars(T); 6901 } 6902 6903 // Cap to the global maximum type alignment unless the alignment 6904 // was somehow explicit on the type. 6905 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6906 if (Alignment.getQuantity() > MaxAlign && 6907 !getContext().isAlignmentRequired(T)) 6908 Alignment = CharUnits::fromQuantity(MaxAlign); 6909 } 6910 return Alignment; 6911 } 6912 6913 bool CodeGenModule::stopAutoInit() { 6914 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6915 if (StopAfter) { 6916 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6917 // used 6918 if (NumAutoVarInit >= StopAfter) { 6919 return true; 6920 } 6921 if (!NumAutoVarInit) { 6922 unsigned DiagID = getDiags().getCustomDiagID( 6923 DiagnosticsEngine::Warning, 6924 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6925 "number of times ftrivial-auto-var-init=%1 gets applied."); 6926 getDiags().Report(DiagID) 6927 << StopAfter 6928 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6929 LangOptions::TrivialAutoVarInitKind::Zero 6930 ? "zero" 6931 : "pattern"); 6932 } 6933 ++NumAutoVarInit; 6934 } 6935 return false; 6936 } 6937 6938 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 6939 const Decl *D) const { 6940 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 6941 // postfix beginning with '.' since the symbol name can be demangled. 6942 if (LangOpts.HIP) 6943 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 6944 else 6945 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 6946 6947 // If the CUID is not specified we try to generate a unique postfix. 6948 if (getLangOpts().CUID.empty()) { 6949 SourceManager &SM = getContext().getSourceManager(); 6950 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 6951 assert(PLoc.isValid() && "Source location is expected to be valid."); 6952 6953 // Get the hash of the user defined macros. 6954 llvm::MD5 Hash; 6955 llvm::MD5::MD5Result Result; 6956 for (const auto &Arg : PreprocessorOpts.Macros) 6957 Hash.update(Arg.first); 6958 Hash.final(Result); 6959 6960 // Get the UniqueID for the file containing the decl. 6961 llvm::sys::fs::UniqueID ID; 6962 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 6963 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 6964 assert(PLoc.isValid() && "Source location is expected to be valid."); 6965 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 6966 SM.getDiagnostics().Report(diag::err_cannot_open_file) 6967 << PLoc.getFilename() << EC.message(); 6968 } 6969 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 6970 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 6971 } else { 6972 OS << getContext().getCUIDHash(); 6973 } 6974 } 6975 6976 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 6977 assert(DeferredDeclsToEmit.empty() && 6978 "Should have emitted all decls deferred to emit."); 6979 assert(NewBuilder->DeferredDecls.empty() && 6980 "Newly created module should not have deferred decls"); 6981 NewBuilder->DeferredDecls = std::move(DeferredDecls); 6982 6983 assert(NewBuilder->DeferredVTables.empty() && 6984 "Newly created module should not have deferred vtables"); 6985 NewBuilder->DeferredVTables = std::move(DeferredVTables); 6986 6987 assert(NewBuilder->MangledDeclNames.empty() && 6988 "Newly created module should not have mangled decl names"); 6989 assert(NewBuilder->Manglings.empty() && 6990 "Newly created module should not have manglings"); 6991 NewBuilder->Manglings = std::move(Manglings); 6992 6993 assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied"); 6994 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 6995 6996 NewBuilder->TBAA = std::move(TBAA); 6997 6998 assert(NewBuilder->EmittedDeferredDecls.empty() && 6999 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7000 7001 NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls); 7002 7003 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7004 } 7005