1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Diagnostic.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Basic/ConvertUTF.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Module.h"
30 #include "llvm/Intrinsics.h"
31 #include "llvm/Target/TargetData.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 
36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
37                              llvm::Module &M, const llvm::TargetData &TD,
38                              Diagnostic &diags)
39   : BlockModule(C, M, TD, Types, *this), Context(C),
40     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
41     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
42     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
43 
44   if (!Features.ObjC1)
45     Runtime = 0;
46   else if (!Features.NeXTRuntime)
47     Runtime = CreateGNUObjCRuntime(*this);
48   else if (Features.ObjCNonFragileABI)
49     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
50   else
51     Runtime = CreateMacObjCRuntime(*this);
52 
53   // If debug info generation is enabled, create the CGDebugInfo object.
54   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
55 }
56 
57 CodeGenModule::~CodeGenModule() {
58   delete Runtime;
59   delete DebugInfo;
60 }
61 
62 void CodeGenModule::Release() {
63   EmitDeferred();
64   if (Runtime)
65     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
66       AddGlobalCtor(ObjCInitFunction);
67   EmitCtorList(GlobalCtors, "llvm.global_ctors");
68   EmitCtorList(GlobalDtors, "llvm.global_dtors");
69   EmitAnnotations();
70   EmitLLVMUsed();
71 }
72 
73 /// ErrorUnsupported - Print out an error that codegen doesn't support the
74 /// specified stmt yet.
75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
76                                      bool OmitOnError) {
77   if (OmitOnError && getDiags().hasErrorOccurred())
78     return;
79   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
80                                                "cannot compile this %0 yet");
81   std::string Msg = Type;
82   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
83     << Msg << S->getSourceRange();
84 }
85 
86 /// ErrorUnsupported - Print out an error that codegen doesn't support the
87 /// specified decl yet.
88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
89                                      bool OmitOnError) {
90   if (OmitOnError && getDiags().hasErrorOccurred())
91     return;
92   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
93                                                "cannot compile this %0 yet");
94   std::string Msg = Type;
95   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
96 }
97 
98 LangOptions::VisibilityMode
99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
100   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
101     if (VD->getStorageClass() == VarDecl::PrivateExtern)
102       return LangOptions::Hidden;
103 
104   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
105     switch (attr->getVisibility()) {
106     default: assert(0 && "Unknown visibility!");
107     case VisibilityAttr::DefaultVisibility:
108       return LangOptions::Default;
109     case VisibilityAttr::HiddenVisibility:
110       return LangOptions::Hidden;
111     case VisibilityAttr::ProtectedVisibility:
112       return LangOptions::Protected;
113     }
114   }
115 
116   return getLangOptions().getVisibilityMode();
117 }
118 
119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
120                                         const Decl *D) const {
121   // Internal definitions always have default visibility.
122   if (GV->hasLocalLinkage()) {
123     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
124     return;
125   }
126 
127   switch (getDeclVisibilityMode(D)) {
128   default: assert(0 && "Unknown visibility!");
129   case LangOptions::Default:
130     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131   case LangOptions::Hidden:
132     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
133   case LangOptions::Protected:
134     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
135   }
136 }
137 
138 /// \brief Retrieves the mangled name for the given declaration.
139 ///
140 /// If the given declaration requires a mangled name, returns an
141 /// const char* containing the mangled name.  Otherwise, returns
142 /// the unmangled name.
143 ///
144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
145   // In C, functions with no attributes never need to be mangled. Fastpath them.
146   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
147     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
148     return ND->getNameAsCString();
149   }
150 
151   llvm::SmallString<256> Name;
152   llvm::raw_svector_ostream Out(Name);
153   if (!mangleName(ND, Context, Out)) {
154     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
155     return ND->getNameAsCString();
156   }
157 
158   Name += '\0';
159   return UniqueMangledName(Name.begin(), Name.end());
160 }
161 
162 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
163                                              const char *NameEnd) {
164   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
165 
166   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
167 }
168 
169 /// AddGlobalCtor - Add a function to the list that will be called before
170 /// main() runs.
171 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
172   // FIXME: Type coercion of void()* types.
173   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
174 }
175 
176 /// AddGlobalDtor - Add a function to the list that will be called
177 /// when the module is unloaded.
178 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
179   // FIXME: Type coercion of void()* types.
180   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
181 }
182 
183 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
184   // Ctor function type is void()*.
185   llvm::FunctionType* CtorFTy =
186     llvm::FunctionType::get(llvm::Type::VoidTy,
187                             std::vector<const llvm::Type*>(),
188                             false);
189   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
190 
191   // Get the type of a ctor entry, { i32, void ()* }.
192   llvm::StructType* CtorStructTy =
193     llvm::StructType::get(llvm::Type::Int32Ty,
194                           llvm::PointerType::getUnqual(CtorFTy), NULL);
195 
196   // Construct the constructor and destructor arrays.
197   std::vector<llvm::Constant*> Ctors;
198   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
199     std::vector<llvm::Constant*> S;
200     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
201     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
202     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
203   }
204 
205   if (!Ctors.empty()) {
206     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
207     new llvm::GlobalVariable(AT, false,
208                              llvm::GlobalValue::AppendingLinkage,
209                              llvm::ConstantArray::get(AT, Ctors),
210                              GlobalName,
211                              &TheModule);
212   }
213 }
214 
215 void CodeGenModule::EmitAnnotations() {
216   if (Annotations.empty())
217     return;
218 
219   // Create a new global variable for the ConstantStruct in the Module.
220   llvm::Constant *Array =
221   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
222                                                 Annotations.size()),
223                            Annotations);
224   llvm::GlobalValue *gv =
225   new llvm::GlobalVariable(Array->getType(), false,
226                            llvm::GlobalValue::AppendingLinkage, Array,
227                            "llvm.global.annotations", &TheModule);
228   gv->setSection("llvm.metadata");
229 }
230 
231 static CodeGenModule::GVALinkage
232 GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) {
233   // "static" and attr(always_inline) functions get internal linkage.
234   if (FD->getStorageClass() == FunctionDecl::Static ||
235       FD->hasAttr<AlwaysInlineAttr>())
236     return CodeGenModule::GVA_Internal;
237 
238   if (!FD->isInline())
239     return CodeGenModule::GVA_StrongExternal;
240 
241   // If the inline function explicitly has the GNU inline attribute on it, then
242   // force to GNUC semantics (which is strong external), regardless of language.
243   if (FD->hasAttr<GNUInlineAttr>())
244     return CodeGenModule::GVA_StrongExternal;
245 
246   // The definition of inline changes based on the language.  Note that we
247   // have already handled "static inline" above, with the GVA_Internal case.
248   if (Features.CPlusPlus)  // inline and extern inline.
249     return CodeGenModule::GVA_CXXInline;
250 
251   if (FD->getStorageClass() == FunctionDecl::Extern) {
252     // extern inline in C99 is a strong definition. In C89, it is extern inline.
253     if (Features.C99)
254       return CodeGenModule::GVA_StrongExternal;
255 
256     // In C89 mode, an 'extern inline' works like a C99 inline function.
257     return CodeGenModule::GVA_C99Inline;
258   }
259 
260   if (Features.C99)
261     return CodeGenModule::GVA_C99Inline;
262 
263   // Otherwise, this is the GNU inline extension in K&R and GNU C89 mode.
264   return CodeGenModule::GVA_StrongExternal;
265 }
266 
267 /// SetFunctionDefinitionAttributes - Set attributes for a global.
268 ///
269 /// FIXME: This is currently only done for aliases and functions, but
270 /// not for variables (these details are set in
271 /// EmitGlobalVarDefinition for variables).
272 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
273                                                     llvm::GlobalValue *GV) {
274   GVALinkage Linkage = GetLinkageForFunction(D, Features);
275 
276   if (Linkage == GVA_Internal) {
277     GV->setLinkage(llvm::Function::InternalLinkage);
278   } else if (D->hasAttr<DLLExportAttr>()) {
279     GV->setLinkage(llvm::Function::DLLExportLinkage);
280   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
281     GV->setLinkage(llvm::Function::WeakAnyLinkage);
282   } else if (Linkage == GVA_C99Inline) {
283     // In C99 mode, 'inline' functions are guaranteed to have a strong
284     // definition somewhere else, so we can use available_externally linkage.
285     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
286   } else if (Linkage == GVA_CXXInline) {
287     // In C++, the compiler has to emit a definition in every translation unit
288     // that references the function.  We should use linkonce_odr because
289     // a) if all references in this translation unit are optimized away, we
290     // don't need to codegen it.  b) if the function persists, it needs to be
291     // merged with other definitions. c) C++ has the ODR, so we know the
292     // definition is dependable.
293     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
294   } else {
295     assert(Linkage == GVA_StrongExternal);
296     // Otherwise, we have strong external linkage.
297     GV->setLinkage(llvm::Function::ExternalLinkage);
298   }
299 
300   SetCommonAttributes(D, GV);
301 }
302 
303 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
304                                               const CGFunctionInfo &Info,
305                                               llvm::Function *F) {
306   AttributeListType AttributeList;
307   ConstructAttributeList(Info, D, AttributeList);
308 
309   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
310                                         AttributeList.size()));
311 
312   // Set the appropriate calling convention for the Function.
313   if (D->hasAttr<FastCallAttr>())
314     F->setCallingConv(llvm::CallingConv::X86_FastCall);
315 
316   if (D->hasAttr<StdCallAttr>())
317     F->setCallingConv(llvm::CallingConv::X86_StdCall);
318 }
319 
320 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
321                                                            llvm::Function *F) {
322   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
323     F->addFnAttr(llvm::Attribute::NoUnwind);
324 
325   if (D->hasAttr<AlwaysInlineAttr>())
326     F->addFnAttr(llvm::Attribute::AlwaysInline);
327 
328   if (D->hasAttr<NoinlineAttr>())
329     F->addFnAttr(llvm::Attribute::NoInline);
330 }
331 
332 void CodeGenModule::SetCommonAttributes(const Decl *D,
333                                         llvm::GlobalValue *GV) {
334   setGlobalVisibility(GV, D);
335 
336   if (D->hasAttr<UsedAttr>())
337     AddUsedGlobal(GV);
338 
339   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
340     GV->setSection(SA->getName());
341 }
342 
343 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
344                                                   llvm::Function *F,
345                                                   const CGFunctionInfo &FI) {
346   SetLLVMFunctionAttributes(D, FI, F);
347   SetLLVMFunctionAttributesForDefinition(D, F);
348 
349   F->setLinkage(llvm::Function::InternalLinkage);
350 
351   SetCommonAttributes(D, F);
352 }
353 
354 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
355                                           llvm::Function *F) {
356   SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
357 
358   // Only a few attributes are set on declarations; these may later be
359   // overridden by a definition.
360 
361   if (FD->hasAttr<DLLImportAttr>()) {
362     F->setLinkage(llvm::Function::DLLImportLinkage);
363   } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) {
364     // "extern_weak" is overloaded in LLVM; we probably should have
365     // separate linkage types for this.
366     F->setLinkage(llvm::Function::ExternalWeakLinkage);
367   } else {
368     F->setLinkage(llvm::Function::ExternalLinkage);
369   }
370 
371   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
372     F->setSection(SA->getName());
373 }
374 
375 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
376   assert(!GV->isDeclaration() &&
377          "Only globals with definition can force usage.");
378   LLVMUsed.push_back(GV);
379 }
380 
381 void CodeGenModule::EmitLLVMUsed() {
382   // Don't create llvm.used if there is no need.
383   if (LLVMUsed.empty())
384     return;
385 
386   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
387   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size());
388 
389   // Convert LLVMUsed to what ConstantArray needs.
390   std::vector<llvm::Constant*> UsedArray;
391   UsedArray.resize(LLVMUsed.size());
392   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
393     UsedArray[i] =
394      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
395   }
396 
397   llvm::GlobalVariable *GV =
398     new llvm::GlobalVariable(ATy, false,
399                              llvm::GlobalValue::AppendingLinkage,
400                              llvm::ConstantArray::get(ATy, UsedArray),
401                              "llvm.used", &getModule());
402 
403   GV->setSection("llvm.metadata");
404 }
405 
406 void CodeGenModule::EmitDeferred() {
407   // Emit code for any potentially referenced deferred decls.  Since a
408   // previously unused static decl may become used during the generation of code
409   // for a static function, iterate until no  changes are made.
410   while (!DeferredDeclsToEmit.empty()) {
411     const ValueDecl *D = DeferredDeclsToEmit.back();
412     DeferredDeclsToEmit.pop_back();
413 
414     // The mangled name for the decl must have been emitted in GlobalDeclMap.
415     // Look it up to see if it was defined with a stronger definition (e.g. an
416     // extern inline function with a strong function redefinition).  If so,
417     // just ignore the deferred decl.
418     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
419     assert(CGRef && "Deferred decl wasn't referenced?");
420 
421     if (!CGRef->isDeclaration())
422       continue;
423 
424     // Otherwise, emit the definition and move on to the next one.
425     EmitGlobalDefinition(D);
426   }
427 
428   // Emit any tentative definitions, in reverse order so the most
429   // important (merged) decl will be seen and emitted first.
430   for (std::vector<const VarDecl*>::reverse_iterator
431          it = TentativeDefinitions.rbegin(), ie = TentativeDefinitions.rend();
432        it != ie; ++it)
433     EmitTentativeDefinition(*it);
434 }
435 
436 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
437 /// annotation information for a given GlobalValue.  The annotation struct is
438 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
439 /// GlobalValue being annotated.  The second field is the constant string
440 /// created from the AnnotateAttr's annotation.  The third field is a constant
441 /// string containing the name of the translation unit.  The fourth field is
442 /// the line number in the file of the annotated value declaration.
443 ///
444 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
445 ///        appears to.
446 ///
447 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
448                                                 const AnnotateAttr *AA,
449                                                 unsigned LineNo) {
450   llvm::Module *M = &getModule();
451 
452   // get [N x i8] constants for the annotation string, and the filename string
453   // which are the 2nd and 3rd elements of the global annotation structure.
454   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
455   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
456   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
457                                                   true);
458 
459   // Get the two global values corresponding to the ConstantArrays we just
460   // created to hold the bytes of the strings.
461   const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
462   llvm::GlobalValue *annoGV =
463   new llvm::GlobalVariable(anno->getType(), false,
464                            llvm::GlobalValue::InternalLinkage, anno,
465                            GV->getName() + StringPrefix, M);
466   // translation unit name string, emitted into the llvm.metadata section.
467   llvm::GlobalValue *unitGV =
468   new llvm::GlobalVariable(unit->getType(), false,
469                            llvm::GlobalValue::InternalLinkage, unit,
470                            StringPrefix, M);
471 
472   // Create the ConstantStruct for the global annotation.
473   llvm::Constant *Fields[4] = {
474     llvm::ConstantExpr::getBitCast(GV, SBP),
475     llvm::ConstantExpr::getBitCast(annoGV, SBP),
476     llvm::ConstantExpr::getBitCast(unitGV, SBP),
477     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
478   };
479   return llvm::ConstantStruct::get(Fields, 4, false);
480 }
481 
482 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
483   // Never defer when EmitAllDecls is specified or the decl has
484   // attribute used.
485   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
486     return false;
487 
488   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
489     // Constructors and destructors should never be deferred.
490     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
491       return false;
492 
493     GVALinkage Linkage = GetLinkageForFunction(FD, Features);
494 
495     // static, static inline, always_inline, and extern inline functions can
496     // always be deferred.  Normal inline functions can be deferred in C99/C++.
497     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
498         Linkage == GVA_CXXInline)
499       return true;
500     return false;
501   }
502 
503   const VarDecl *VD = cast<VarDecl>(Global);
504   assert(VD->isFileVarDecl() && "Invalid decl");
505   return VD->getStorageClass() == VarDecl::Static;
506 }
507 
508 void CodeGenModule::EmitGlobal(const ValueDecl *Global) {
509   // If this is an alias definition (which otherwise looks like a declaration)
510   // emit it now.
511   if (Global->hasAttr<AliasAttr>())
512     return EmitAliasDefinition(Global);
513 
514   // Ignore declarations, they will be emitted on their first use.
515   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
516     // Forward declarations are emitted lazily on first use.
517     if (!FD->isThisDeclarationADefinition())
518       return;
519   } else {
520     const VarDecl *VD = cast<VarDecl>(Global);
521     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
522 
523     // If this isn't a definition, defer code generation.
524     if (!VD->getInit()) {
525       // If this is a tentative definition, remember it so that we can
526       // emit the common definition if needed. It is important to
527       // defer tentative definitions, since they may have incomplete
528       // type.
529       if (!VD->hasExternalStorage())
530         TentativeDefinitions.push_back(VD);
531       return;
532     }
533   }
534 
535   // Defer code generation when possible if this is a static definition, inline
536   // function etc.  These we only want to emit if they are used.
537   if (MayDeferGeneration(Global)) {
538     // If the value has already been used, add it directly to the
539     // DeferredDeclsToEmit list.
540     const char *MangledName = getMangledName(Global);
541     if (GlobalDeclMap.count(MangledName))
542       DeferredDeclsToEmit.push_back(Global);
543     else {
544       // Otherwise, remember that we saw a deferred decl with this name.  The
545       // first use of the mangled name will cause it to move into
546       // DeferredDeclsToEmit.
547       DeferredDecls[MangledName] = Global;
548     }
549     return;
550   }
551 
552   // Otherwise emit the definition.
553   EmitGlobalDefinition(Global);
554 }
555 
556 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) {
557   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
558     EmitGlobalFunctionDefinition(FD);
559   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
560     EmitGlobalVarDefinition(VD);
561   } else {
562     assert(0 && "Invalid argument to EmitGlobalDefinition()");
563   }
564 }
565 
566 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
567 /// module, create and return an llvm Function with the specified type. If there
568 /// is something in the module with the specified name, return it potentially
569 /// bitcasted to the right type.
570 ///
571 /// If D is non-null, it specifies a decl that correspond to this.  This is used
572 /// to set the attributes on the function when it is first created.
573 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
574                                                        const llvm::Type *Ty,
575                                                        const FunctionDecl *D) {
576   // Lookup the entry, lazily creating it if necessary.
577   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
578   if (Entry) {
579     if (Entry->getType()->getElementType() == Ty)
580       return Entry;
581 
582     // Make sure the result is of the correct type.
583     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
584     return llvm::ConstantExpr::getBitCast(Entry, PTy);
585   }
586 
587   // This is the first use or definition of a mangled name.  If there is a
588   // deferred decl with this name, remember that we need to emit it at the end
589   // of the file.
590   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
591   DeferredDecls.find(MangledName);
592   if (DDI != DeferredDecls.end()) {
593     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
594     // list, and remove it from DeferredDecls (since we don't need it anymore).
595     DeferredDeclsToEmit.push_back(DDI->second);
596     DeferredDecls.erase(DDI);
597   }
598 
599   // This function doesn't have a complete type (for example, the return
600   // type is an incomplete struct). Use a fake type instead, and make
601   // sure not to try to set attributes.
602   bool ShouldSetAttributes = true;
603   if (!isa<llvm::FunctionType>(Ty)) {
604     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
605                                  std::vector<const llvm::Type*>(), false);
606     ShouldSetAttributes = false;
607   }
608   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
609                                              llvm::Function::ExternalLinkage,
610                                              "", &getModule());
611   F->setName(MangledName);
612   if (D && ShouldSetAttributes)
613     SetFunctionAttributes(D, F);
614   Entry = F;
615   return F;
616 }
617 
618 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
619 /// non-null, then this function will use the specified type if it has to
620 /// create it (this occurs when we see a definition of the function).
621 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D,
622                                                  const llvm::Type *Ty) {
623   // If there was no specific requested type, just convert it now.
624   if (!Ty)
625     Ty = getTypes().ConvertType(D->getType());
626   return GetOrCreateLLVMFunction(getMangledName(D), Ty, D);
627 }
628 
629 /// CreateRuntimeFunction - Create a new runtime function with the specified
630 /// type and name.
631 llvm::Constant *
632 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
633                                      const char *Name) {
634   // Convert Name to be a uniqued string from the IdentifierInfo table.
635   Name = getContext().Idents.get(Name).getName();
636   return GetOrCreateLLVMFunction(Name, FTy, 0);
637 }
638 
639 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
640 /// create and return an llvm GlobalVariable with the specified type.  If there
641 /// is something in the module with the specified name, return it potentially
642 /// bitcasted to the right type.
643 ///
644 /// If D is non-null, it specifies a decl that correspond to this.  This is used
645 /// to set the attributes on the global when it is first created.
646 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
647                                                      const llvm::PointerType*Ty,
648                                                      const VarDecl *D) {
649   // Lookup the entry, lazily creating it if necessary.
650   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
651   if (Entry) {
652     if (Entry->getType() == Ty)
653       return Entry;
654 
655     // Make sure the result is of the correct type.
656     return llvm::ConstantExpr::getBitCast(Entry, Ty);
657   }
658 
659   // This is the first use or definition of a mangled name.  If there is a
660   // deferred decl with this name, remember that we need to emit it at the end
661   // of the file.
662   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
663     DeferredDecls.find(MangledName);
664   if (DDI != DeferredDecls.end()) {
665     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
666     // list, and remove it from DeferredDecls (since we don't need it anymore).
667     DeferredDeclsToEmit.push_back(DDI->second);
668     DeferredDecls.erase(DDI);
669   }
670 
671   llvm::GlobalVariable *GV =
672     new llvm::GlobalVariable(Ty->getElementType(), false,
673                              llvm::GlobalValue::ExternalLinkage,
674                              0, "", &getModule(),
675                              false, Ty->getAddressSpace());
676   GV->setName(MangledName);
677 
678   // Handle things which are present even on external declarations.
679   if (D) {
680     // FIXME: This code is overly simple and should be merged with
681     // other global handling.
682     GV->setConstant(D->getType().isConstant(Context));
683 
684     // FIXME: Merge with other attribute handling code.
685     if (D->getStorageClass() == VarDecl::PrivateExtern)
686       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
687 
688     if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
689       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
690 
691     GV->setThreadLocal(D->isThreadSpecified());
692   }
693 
694   return Entry = GV;
695 }
696 
697 
698 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
699 /// given global variable.  If Ty is non-null and if the global doesn't exist,
700 /// then it will be greated with the specified type instead of whatever the
701 /// normal requested type would be.
702 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
703                                                   const llvm::Type *Ty) {
704   assert(D->hasGlobalStorage() && "Not a global variable");
705   QualType ASTTy = D->getType();
706   if (Ty == 0)
707     Ty = getTypes().ConvertTypeForMem(ASTTy);
708 
709   const llvm::PointerType *PTy =
710     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
711   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
712 }
713 
714 /// CreateRuntimeVariable - Create a new runtime global variable with the
715 /// specified type and name.
716 llvm::Constant *
717 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
718                                      const char *Name) {
719   // Convert Name to be a uniqued string from the IdentifierInfo table.
720   Name = getContext().Idents.get(Name).getName();
721   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
722 }
723 
724 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
725   assert(!D->getInit() && "Cannot emit definite definitions here!");
726 
727   // See if we have already defined this (as a variable), if so we do
728   // not need to do anything.
729   llvm::GlobalValue *GV = GlobalDeclMap[getMangledName(D)];
730   if (llvm::GlobalVariable *Var = dyn_cast_or_null<llvm::GlobalVariable>(GV))
731     if (Var->hasInitializer())
732       return;
733 
734   EmitGlobalVarDefinition(D);
735 }
736 
737 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
738   llvm::Constant *Init = 0;
739   QualType ASTTy = D->getType();
740 
741   if (D->getInit() == 0) {
742     // This is a tentative definition; tentative definitions are
743     // implicitly initialized with { 0 }.
744     //
745     // Note that tentative definitions are only emitted at the end of
746     // a translation unit, so they should never have incomplete
747     // type. In addition, EmitTentativeDefinition makes sure that we
748     // never attempt to emit a tentative definition if a real one
749     // exists. A use may still exists, however, so we still may need
750     // to do a RAUW.
751     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
752     Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy));
753   } else {
754     Init = EmitConstantExpr(D->getInit(), D->getType());
755     if (!Init) {
756       ErrorUnsupported(D, "static initializer");
757       QualType T = D->getInit()->getType();
758       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
759     }
760   }
761 
762   const llvm::Type* InitType = Init->getType();
763   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
764 
765   // Strip off a bitcast if we got one back.
766   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
767     assert(CE->getOpcode() == llvm::Instruction::BitCast);
768     Entry = CE->getOperand(0);
769   }
770 
771   // Entry is now either a Function or GlobalVariable.
772   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
773 
774   // We have a definition after a declaration with the wrong type.
775   // We must make a new GlobalVariable* and update everything that used OldGV
776   // (a declaration or tentative definition) with the new GlobalVariable*
777   // (which will be a definition).
778   //
779   // This happens if there is a prototype for a global (e.g.
780   // "extern int x[];") and then a definition of a different type (e.g.
781   // "int x[10];"). This also happens when an initializer has a different type
782   // from the type of the global (this happens with unions).
783   if (GV == 0 ||
784       GV->getType()->getElementType() != InitType ||
785       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
786 
787     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
788     GlobalDeclMap.erase(getMangledName(D));
789 
790     // Make a new global with the correct type, this is now guaranteed to work.
791     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
792     GV->takeName(cast<llvm::GlobalValue>(Entry));
793 
794     // Replace all uses of the old global with the new global
795     llvm::Constant *NewPtrForOldDecl =
796         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
797     Entry->replaceAllUsesWith(NewPtrForOldDecl);
798 
799     // Erase the old global, since it is no longer used.
800     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
801   }
802 
803   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
804     SourceManager &SM = Context.getSourceManager();
805     AddAnnotation(EmitAnnotateAttr(GV, AA,
806                               SM.getInstantiationLineNumber(D->getLocation())));
807   }
808 
809   GV->setInitializer(Init);
810   GV->setConstant(D->getType().isConstant(Context));
811   GV->setAlignment(getContext().getDeclAlignInBytes(D));
812 
813   // Set the llvm linkage type as appropriate.
814   if (D->getStorageClass() == VarDecl::Static)
815     GV->setLinkage(llvm::Function::InternalLinkage);
816   else if (D->hasAttr<DLLImportAttr>())
817     GV->setLinkage(llvm::Function::DLLImportLinkage);
818   else if (D->hasAttr<DLLExportAttr>())
819     GV->setLinkage(llvm::Function::DLLExportLinkage);
820   else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
821     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
822   else if (!CompileOpts.NoCommon &&
823            (!D->hasExternalStorage() && !D->getInit()))
824     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
825   else
826     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
827 
828   SetCommonAttributes(D, GV);
829 
830   // Emit global variable debug information.
831   if (CGDebugInfo *DI = getDebugInfo()) {
832     DI->setLocation(D->getLocation());
833     DI->EmitGlobalVariable(GV, D);
834   }
835 }
836 
837 
838 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) {
839   const llvm::FunctionType *Ty;
840 
841   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
842     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
843 
844     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
845   } else {
846     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
847 
848     // As a special case, make sure that definitions of K&R function
849     // "type foo()" aren't declared as varargs (which forces the backend
850     // to do unnecessary work).
851     if (D->getType()->isFunctionNoProtoType()) {
852       assert(Ty->isVarArg() && "Didn't lower type as expected");
853       // Due to stret, the lowered function could have arguments.
854       // Just create the same type as was lowered by ConvertType
855       // but strip off the varargs bit.
856       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
857       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
858     }
859   }
860 
861   // Get or create the prototype for teh function.
862   llvm::Constant *Entry = GetAddrOfFunction(D, Ty);
863 
864   // Strip off a bitcast if we got one back.
865   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
866     assert(CE->getOpcode() == llvm::Instruction::BitCast);
867     Entry = CE->getOperand(0);
868   }
869 
870 
871   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
872     // If the types mismatch then we have to rewrite the definition.
873     assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() &&
874            "Shouldn't replace non-declaration");
875 
876     // F is the Function* for the one with the wrong type, we must make a new
877     // Function* and update everything that used F (a declaration) with the new
878     // Function* (which will be a definition).
879     //
880     // This happens if there is a prototype for a function
881     // (e.g. "int f()") and then a definition of a different type
882     // (e.g. "int f(int x)").  Start by making a new function of the
883     // correct type, RAUW, then steal the name.
884     GlobalDeclMap.erase(getMangledName(D));
885     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty));
886     NewFn->takeName(cast<llvm::GlobalValue>(Entry));
887 
888     // Replace uses of F with the Function we will endow with a body.
889     llvm::Constant *NewPtrForOldDecl =
890       llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
891     Entry->replaceAllUsesWith(NewPtrForOldDecl);
892 
893     // Ok, delete the old function now, which is dead.
894     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
895 
896     Entry = NewFn;
897   }
898 
899   llvm::Function *Fn = cast<llvm::Function>(Entry);
900 
901   CodeGenFunction(*this).GenerateCode(D, Fn);
902 
903   SetFunctionDefinitionAttributes(D, Fn);
904   SetLLVMFunctionAttributesForDefinition(D, Fn);
905 
906   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
907     AddGlobalCtor(Fn, CA->getPriority());
908   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
909     AddGlobalDtor(Fn, DA->getPriority());
910 }
911 
912 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
913   const AliasAttr *AA = D->getAttr<AliasAttr>();
914   assert(AA && "Not an alias?");
915 
916   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
917 
918   // Unique the name through the identifier table.
919   const char *AliaseeName = AA->getAliasee().c_str();
920   AliaseeName = getContext().Idents.get(AliaseeName).getName();
921 
922   // Create a reference to the named value.  This ensures that it is emitted
923   // if a deferred decl.
924   llvm::Constant *Aliasee;
925   if (isa<llvm::FunctionType>(DeclTy))
926     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0);
927   else
928     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
929                                     llvm::PointerType::getUnqual(DeclTy), 0);
930 
931   // Create the new alias itself, but don't set a name yet.
932   llvm::GlobalValue *GA =
933     new llvm::GlobalAlias(Aliasee->getType(),
934                           llvm::Function::ExternalLinkage,
935                           "", Aliasee, &getModule());
936 
937   // See if there is already something with the alias' name in the module.
938   const char *MangledName = getMangledName(D);
939   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
940 
941   if (Entry && !Entry->isDeclaration()) {
942     // If there is a definition in the module, then it wins over the alias.
943     // This is dubious, but allow it to be safe.  Just ignore the alias.
944     GA->eraseFromParent();
945     return;
946   }
947 
948   if (Entry) {
949     // If there is a declaration in the module, then we had an extern followed
950     // by the alias, as in:
951     //   extern int test6();
952     //   ...
953     //   int test6() __attribute__((alias("test7")));
954     //
955     // Remove it and replace uses of it with the alias.
956 
957     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
958                                                           Entry->getType()));
959     Entry->eraseFromParent();
960   }
961 
962   // Now we know that there is no conflict, set the name.
963   Entry = GA;
964   GA->setName(MangledName);
965 
966   // Set attributes which are particular to an alias; this is a
967   // specialization of the attributes which may be set on a global
968   // variable/function.
969   if (D->hasAttr<DLLExportAttr>()) {
970     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
971       // The dllexport attribute is ignored for undefined symbols.
972       if (FD->getBody(getContext()))
973         GA->setLinkage(llvm::Function::DLLExportLinkage);
974     } else {
975       GA->setLinkage(llvm::Function::DLLExportLinkage);
976     }
977   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
978     GA->setLinkage(llvm::Function::WeakAnyLinkage);
979   }
980 
981   SetCommonAttributes(D, GA);
982 }
983 
984 /// getBuiltinLibFunction - Given a builtin id for a function like
985 /// "__builtin_fabsf", return a Function* for "fabsf".
986 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
987   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
988           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
989          "isn't a lib fn");
990 
991   // Get the name, skip over the __builtin_ prefix (if necessary).
992   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
993   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
994     Name += 10;
995 
996   // Get the type for the builtin.
997   Builtin::Context::GetBuiltinTypeError Error;
998   QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error);
999   assert(Error == Builtin::Context::GE_None && "Can't get builtin type");
1000 
1001   const llvm::FunctionType *Ty =
1002     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1003 
1004   // Unique the name through the identifier table.
1005   Name = getContext().Idents.get(Name).getName();
1006   // FIXME: param attributes for sext/zext etc.
1007   return GetOrCreateLLVMFunction(Name, Ty, 0);
1008 }
1009 
1010 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1011                                             unsigned NumTys) {
1012   return llvm::Intrinsic::getDeclaration(&getModule(),
1013                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1014 }
1015 
1016 llvm::Function *CodeGenModule::getMemCpyFn() {
1017   if (MemCpyFn) return MemCpyFn;
1018   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1019   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1020 }
1021 
1022 llvm::Function *CodeGenModule::getMemMoveFn() {
1023   if (MemMoveFn) return MemMoveFn;
1024   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1025   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1026 }
1027 
1028 llvm::Function *CodeGenModule::getMemSetFn() {
1029   if (MemSetFn) return MemSetFn;
1030   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1031   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1032 }
1033 
1034 static void appendFieldAndPadding(CodeGenModule &CGM,
1035                                   std::vector<llvm::Constant*>& Fields,
1036                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1037                                   llvm::Constant* Field,
1038                                   RecordDecl* RD, const llvm::StructType *STy) {
1039   // Append the field.
1040   Fields.push_back(Field);
1041 
1042   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1043 
1044   int NextStructFieldNo;
1045   if (!NextFieldD) {
1046     NextStructFieldNo = STy->getNumElements();
1047   } else {
1048     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1049   }
1050 
1051   // Append padding
1052   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1053     llvm::Constant *C =
1054       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1055 
1056     Fields.push_back(C);
1057   }
1058 }
1059 
1060 llvm::Constant *CodeGenModule::
1061 GetAddrOfConstantCFString(const StringLiteral *Literal) {
1062   std::string str;
1063   unsigned StringLength = 0;
1064 
1065   bool isUTF16 = false;
1066   if (Literal->containsNonAsciiOrNull()) {
1067     // Convert from UTF-8 to UTF-16.
1068     llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1069     const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1070     UTF16 *ToPtr = &ToBuf[0];
1071 
1072     ConversionResult Result;
1073     Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1074                                 &ToPtr, ToPtr+Literal->getByteLength(),
1075                                 strictConversion);
1076     if (Result == conversionOK) {
1077       // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1078       // without doing more surgery to this routine. Since we aren't explicitly
1079       // checking for endianness here, it's also a bug (when generating code for
1080       // a target that doesn't match the host endianness). Modeling this as an
1081       // i16 array is likely the cleanest solution.
1082       StringLength = ToPtr-&ToBuf[0];
1083       str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1084       isUTF16 = true;
1085     } else if (Result == sourceIllegal) {
1086       // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1087       str.assign(Literal->getStrData(), Literal->getByteLength());
1088       StringLength = str.length();
1089     } else
1090       assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1091 
1092   } else {
1093     str.assign(Literal->getStrData(), Literal->getByteLength());
1094     StringLength = str.length();
1095   }
1096   llvm::StringMapEntry<llvm::Constant *> &Entry =
1097     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1098 
1099   if (llvm::Constant *C = Entry.getValue())
1100     return C;
1101 
1102   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1103   llvm::Constant *Zeros[] = { Zero, Zero };
1104 
1105   if (!CFConstantStringClassRef) {
1106     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1107     Ty = llvm::ArrayType::get(Ty, 0);
1108 
1109     // FIXME: This is fairly broken if
1110     // __CFConstantStringClassReference is already defined, in that it
1111     // will get renamed and the user will most likely see an opaque
1112     // error message. This is a general issue with relying on
1113     // particular names.
1114     llvm::GlobalVariable *GV =
1115       new llvm::GlobalVariable(Ty, false,
1116                                llvm::GlobalVariable::ExternalLinkage, 0,
1117                                "__CFConstantStringClassReference",
1118                                &getModule());
1119 
1120     // Decay array -> ptr
1121     CFConstantStringClassRef =
1122       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1123   }
1124 
1125   QualType CFTy = getContext().getCFConstantStringType();
1126   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1127 
1128   const llvm::StructType *STy =
1129     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1130 
1131   std::vector<llvm::Constant*> Fields;
1132   RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
1133 
1134   // Class pointer.
1135   FieldDecl *CurField = *Field++;
1136   FieldDecl *NextField = *Field++;
1137   appendFieldAndPadding(*this, Fields, CurField, NextField,
1138                         CFConstantStringClassRef, CFRD, STy);
1139 
1140   // Flags.
1141   CurField = NextField;
1142   NextField = *Field++;
1143   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1144   appendFieldAndPadding(*this, Fields, CurField, NextField,
1145                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1146                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1147                         CFRD, STy);
1148 
1149   // String pointer.
1150   CurField = NextField;
1151   NextField = *Field++;
1152   llvm::Constant *C = llvm::ConstantArray::get(str);
1153 
1154   const char *Sect, *Prefix;
1155   bool isConstant;
1156   if (isUTF16) {
1157     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1158     Sect = getContext().Target.getUnicodeStringSection();
1159     // FIXME: Why does GCC not set constant here?
1160     isConstant = false;
1161   } else {
1162     Prefix = getContext().Target.getStringSymbolPrefix(true);
1163     Sect = getContext().Target.getCFStringDataSection();
1164     // FIXME: -fwritable-strings should probably affect this, but we
1165     // are following gcc here.
1166     isConstant = true;
1167   }
1168   llvm::GlobalVariable *GV =
1169     new llvm::GlobalVariable(C->getType(), isConstant,
1170                              llvm::GlobalValue::InternalLinkage,
1171                              C, Prefix, &getModule());
1172   if (Sect)
1173     GV->setSection(Sect);
1174   if (isUTF16) {
1175     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1176     GV->setAlignment(Align);
1177   }
1178   appendFieldAndPadding(*this, Fields, CurField, NextField,
1179                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1180                         CFRD, STy);
1181 
1182   // String length.
1183   CurField = NextField;
1184   NextField = 0;
1185   Ty = getTypes().ConvertType(getContext().LongTy);
1186   appendFieldAndPadding(*this, Fields, CurField, NextField,
1187                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1188 
1189   // The struct.
1190   C = llvm::ConstantStruct::get(STy, Fields);
1191   GV = new llvm::GlobalVariable(C->getType(), true,
1192                                 llvm::GlobalVariable::InternalLinkage, C,
1193                                 getContext().Target.getCFStringSymbolPrefix(),
1194                                 &getModule());
1195   if (const char *Sect = getContext().Target.getCFStringSection())
1196     GV->setSection(Sect);
1197   Entry.setValue(GV);
1198 
1199   return GV;
1200 }
1201 
1202 /// GetStringForStringLiteral - Return the appropriate bytes for a
1203 /// string literal, properly padded to match the literal type.
1204 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1205   const char *StrData = E->getStrData();
1206   unsigned Len = E->getByteLength();
1207 
1208   const ConstantArrayType *CAT =
1209     getContext().getAsConstantArrayType(E->getType());
1210   assert(CAT && "String isn't pointer or array!");
1211 
1212   // Resize the string to the right size.
1213   std::string Str(StrData, StrData+Len);
1214   uint64_t RealLen = CAT->getSize().getZExtValue();
1215 
1216   if (E->isWide())
1217     RealLen *= getContext().Target.getWCharWidth()/8;
1218 
1219   Str.resize(RealLen, '\0');
1220 
1221   return Str;
1222 }
1223 
1224 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1225 /// constant array for the given string literal.
1226 llvm::Constant *
1227 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1228   // FIXME: This can be more efficient.
1229   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1230 }
1231 
1232 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1233 /// array for the given ObjCEncodeExpr node.
1234 llvm::Constant *
1235 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1236   std::string Str;
1237   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1238 
1239   return GetAddrOfConstantCString(Str);
1240 }
1241 
1242 
1243 /// GenerateWritableString -- Creates storage for a string literal.
1244 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1245                                              bool constant,
1246                                              CodeGenModule &CGM,
1247                                              const char *GlobalName) {
1248   // Create Constant for this string literal. Don't add a '\0'.
1249   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1250 
1251   // Create a global variable for this string
1252   return new llvm::GlobalVariable(C->getType(), constant,
1253                                   llvm::GlobalValue::InternalLinkage,
1254                                   C, GlobalName, &CGM.getModule());
1255 }
1256 
1257 /// GetAddrOfConstantString - Returns a pointer to a character array
1258 /// containing the literal. This contents are exactly that of the
1259 /// given string, i.e. it will not be null terminated automatically;
1260 /// see GetAddrOfConstantCString. Note that whether the result is
1261 /// actually a pointer to an LLVM constant depends on
1262 /// Feature.WriteableStrings.
1263 ///
1264 /// The result has pointer to array type.
1265 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1266                                                        const char *GlobalName) {
1267   bool IsConstant = !Features.WritableStrings;
1268 
1269   // Get the default prefix if a name wasn't specified.
1270   if (!GlobalName)
1271     GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1272 
1273   // Don't share any string literals if strings aren't constant.
1274   if (!IsConstant)
1275     return GenerateStringLiteral(str, false, *this, GlobalName);
1276 
1277   llvm::StringMapEntry<llvm::Constant *> &Entry =
1278   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1279 
1280   if (Entry.getValue())
1281     return Entry.getValue();
1282 
1283   // Create a global variable for this.
1284   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1285   Entry.setValue(C);
1286   return C;
1287 }
1288 
1289 /// GetAddrOfConstantCString - Returns a pointer to a character
1290 /// array containing the literal and a terminating '\-'
1291 /// character. The result has pointer to array type.
1292 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1293                                                         const char *GlobalName){
1294   return GetAddrOfConstantString(str + '\0', GlobalName);
1295 }
1296 
1297 /// EmitObjCPropertyImplementations - Emit information for synthesized
1298 /// properties for an implementation.
1299 void CodeGenModule::EmitObjCPropertyImplementations(const
1300                                                     ObjCImplementationDecl *D) {
1301   for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(),
1302          e = D->propimpl_end(); i != e; ++i) {
1303     ObjCPropertyImplDecl *PID = *i;
1304 
1305     // Dynamic is just for type-checking.
1306     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1307       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1308 
1309       // Determine which methods need to be implemented, some may have
1310       // been overridden. Note that ::isSynthesized is not the method
1311       // we want, that just indicates if the decl came from a
1312       // property. What we want to know is if the method is defined in
1313       // this implementation.
1314       if (!D->getInstanceMethod(PD->getGetterName()))
1315         CodeGenFunction(*this).GenerateObjCGetter(
1316                                  const_cast<ObjCImplementationDecl *>(D), PID);
1317       if (!PD->isReadOnly() &&
1318           !D->getInstanceMethod(PD->getSetterName()))
1319         CodeGenFunction(*this).GenerateObjCSetter(
1320                                  const_cast<ObjCImplementationDecl *>(D), PID);
1321     }
1322   }
1323 }
1324 
1325 /// EmitNamespace - Emit all declarations in a namespace.
1326 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1327   for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
1328          E = ND->decls_end(getContext());
1329        I != E; ++I)
1330     EmitTopLevelDecl(*I);
1331 }
1332 
1333 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1334 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1335   if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1336     ErrorUnsupported(LSD, "linkage spec");
1337     return;
1338   }
1339 
1340   for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
1341          E = LSD->decls_end(getContext());
1342        I != E; ++I)
1343     EmitTopLevelDecl(*I);
1344 }
1345 
1346 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1347 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1348   // If an error has occurred, stop code generation, but continue
1349   // parsing and semantic analysis (to ensure all warnings and errors
1350   // are emitted).
1351   if (Diags.hasErrorOccurred())
1352     return;
1353 
1354   switch (D->getKind()) {
1355   case Decl::CXXMethod:
1356   case Decl::Function:
1357   case Decl::Var:
1358     EmitGlobal(cast<ValueDecl>(D));
1359     break;
1360 
1361   // C++ Decls
1362   case Decl::Namespace:
1363     EmitNamespace(cast<NamespaceDecl>(D));
1364     break;
1365   case Decl::CXXConstructor:
1366     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1367     break;
1368   case Decl::CXXDestructor:
1369     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1370     break;
1371 
1372   // Objective-C Decls
1373 
1374   // Forward declarations, no (immediate) code generation.
1375   case Decl::ObjCClass:
1376   case Decl::ObjCForwardProtocol:
1377   case Decl::ObjCCategory:
1378     break;
1379   case Decl::ObjCInterface:
1380     // If we already laid out this interface due to an @class, and if we
1381     // codegen'd a reference it, update the 'opaque' type to be a real type now.
1382     Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D));
1383     break;
1384 
1385   case Decl::ObjCProtocol:
1386     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1387     break;
1388 
1389   case Decl::ObjCCategoryImpl:
1390     // Categories have properties but don't support synthesize so we
1391     // can ignore them here.
1392     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1393     break;
1394 
1395   case Decl::ObjCImplementation: {
1396     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1397     EmitObjCPropertyImplementations(OMD);
1398     Runtime->GenerateClass(OMD);
1399     break;
1400   }
1401   case Decl::ObjCMethod: {
1402     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1403     // If this is not a prototype, emit the body.
1404     if (OMD->getBody(getContext()))
1405       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1406     break;
1407   }
1408   case Decl::ObjCCompatibleAlias:
1409     // compatibility-alias is a directive and has no code gen.
1410     break;
1411 
1412   case Decl::LinkageSpec:
1413     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1414     break;
1415 
1416   case Decl::FileScopeAsm: {
1417     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1418     std::string AsmString(AD->getAsmString()->getStrData(),
1419                           AD->getAsmString()->getByteLength());
1420 
1421     const std::string &S = getModule().getModuleInlineAsm();
1422     if (S.empty())
1423       getModule().setModuleInlineAsm(AsmString);
1424     else
1425       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1426     break;
1427   }
1428 
1429   default:
1430     // Make sure we handled everything we should, every other kind is
1431     // a non-top-level decl.  FIXME: Would be nice to have an
1432     // isTopLevelDeclKind function. Need to recode Decl::Kind to do
1433     // that easily.
1434     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1435   }
1436 }
1437