1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/Diagnostic.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Basic/ConvertUTF.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Module.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Target/TargetData.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 38 llvm::Module &M, const llvm::TargetData &TD, 39 Diagnostic &diags) 40 : BlockModule(C, M, TD, Types, *this), Context(C), 41 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 42 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 43 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 44 VMContext(M.getContext()) { 45 46 if (!Features.ObjC1) 47 Runtime = 0; 48 else if (!Features.NeXTRuntime) 49 Runtime = CreateGNUObjCRuntime(*this); 50 else if (Features.ObjCNonFragileABI) 51 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 52 else 53 Runtime = CreateMacObjCRuntime(*this); 54 55 // If debug info generation is enabled, create the CGDebugInfo object. 56 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 57 } 58 59 CodeGenModule::~CodeGenModule() { 60 delete Runtime; 61 delete DebugInfo; 62 } 63 64 void CodeGenModule::Release() { 65 // We need to call this first because it can add deferred declarations. 66 EmitCXXGlobalInitFunc(); 67 68 EmitDeferred(); 69 if (Runtime) 70 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 71 AddGlobalCtor(ObjCInitFunction); 72 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 73 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 74 EmitAnnotations(); 75 EmitLLVMUsed(); 76 } 77 78 /// ErrorUnsupported - Print out an error that codegen doesn't support the 79 /// specified stmt yet. 80 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 81 bool OmitOnError) { 82 if (OmitOnError && getDiags().hasErrorOccurred()) 83 return; 84 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 85 "cannot compile this %0 yet"); 86 std::string Msg = Type; 87 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 88 << Msg << S->getSourceRange(); 89 } 90 91 /// ErrorUnsupported - Print out an error that codegen doesn't support the 92 /// specified decl yet. 93 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 94 bool OmitOnError) { 95 if (OmitOnError && getDiags().hasErrorOccurred()) 96 return; 97 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 98 "cannot compile this %0 yet"); 99 std::string Msg = Type; 100 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 101 } 102 103 LangOptions::VisibilityMode 104 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 105 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 106 if (VD->getStorageClass() == VarDecl::PrivateExtern) 107 return LangOptions::Hidden; 108 109 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 110 switch (attr->getVisibility()) { 111 default: assert(0 && "Unknown visibility!"); 112 case VisibilityAttr::DefaultVisibility: 113 return LangOptions::Default; 114 case VisibilityAttr::HiddenVisibility: 115 return LangOptions::Hidden; 116 case VisibilityAttr::ProtectedVisibility: 117 return LangOptions::Protected; 118 } 119 } 120 121 return getLangOptions().getVisibilityMode(); 122 } 123 124 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 125 const Decl *D) const { 126 // Internal definitions always have default visibility. 127 if (GV->hasLocalLinkage()) { 128 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 129 return; 130 } 131 132 switch (getDeclVisibilityMode(D)) { 133 default: assert(0 && "Unknown visibility!"); 134 case LangOptions::Default: 135 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 136 case LangOptions::Hidden: 137 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 138 case LangOptions::Protected: 139 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 140 } 141 } 142 143 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 144 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 145 146 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 147 return getMangledCXXCtorName(D, GD.getCtorType()); 148 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 149 return getMangledCXXDtorName(D, GD.getDtorType()); 150 151 return getMangledName(ND); 152 } 153 154 /// \brief Retrieves the mangled name for the given declaration. 155 /// 156 /// If the given declaration requires a mangled name, returns an 157 /// const char* containing the mangled name. Otherwise, returns 158 /// the unmangled name. 159 /// 160 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 161 // In C, functions with no attributes never need to be mangled. Fastpath them. 162 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 163 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 164 return ND->getNameAsCString(); 165 } 166 167 llvm::SmallString<256> Name; 168 llvm::raw_svector_ostream Out(Name); 169 if (!mangleName(ND, Context, Out)) { 170 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 171 return ND->getNameAsCString(); 172 } 173 174 Name += '\0'; 175 return UniqueMangledName(Name.begin(), Name.end()); 176 } 177 178 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 179 const char *NameEnd) { 180 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 181 182 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 183 } 184 185 /// AddGlobalCtor - Add a function to the list that will be called before 186 /// main() runs. 187 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 188 // FIXME: Type coercion of void()* types. 189 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 190 } 191 192 /// AddGlobalDtor - Add a function to the list that will be called 193 /// when the module is unloaded. 194 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 195 // FIXME: Type coercion of void()* types. 196 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 197 } 198 199 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 200 // Ctor function type is void()*. 201 llvm::FunctionType* CtorFTy = 202 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 203 std::vector<const llvm::Type*>(), 204 false); 205 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 206 207 // Get the type of a ctor entry, { i32, void ()* }. 208 llvm::StructType* CtorStructTy = 209 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 210 llvm::PointerType::getUnqual(CtorFTy), NULL); 211 212 // Construct the constructor and destructor arrays. 213 std::vector<llvm::Constant*> Ctors; 214 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 215 std::vector<llvm::Constant*> S; 216 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 217 I->second, false)); 218 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 219 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 220 } 221 222 if (!Ctors.empty()) { 223 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 224 new llvm::GlobalVariable(TheModule, AT, false, 225 llvm::GlobalValue::AppendingLinkage, 226 llvm::ConstantArray::get(AT, Ctors), 227 GlobalName); 228 } 229 } 230 231 void CodeGenModule::EmitAnnotations() { 232 if (Annotations.empty()) 233 return; 234 235 // Create a new global variable for the ConstantStruct in the Module. 236 llvm::Constant *Array = 237 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 238 Annotations.size()), 239 Annotations); 240 llvm::GlobalValue *gv = 241 new llvm::GlobalVariable(TheModule, Array->getType(), false, 242 llvm::GlobalValue::AppendingLinkage, Array, 243 "llvm.global.annotations"); 244 gv->setSection("llvm.metadata"); 245 } 246 247 static CodeGenModule::GVALinkage 248 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 249 const LangOptions &Features) { 250 // Everything located semantically within an anonymous namespace is 251 // always internal. 252 if (FD->isInAnonymousNamespace()) 253 return CodeGenModule::GVA_Internal; 254 255 // The kind of external linkage this function will have, if it is not 256 // inline or static. 257 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 258 if (Context.getLangOptions().CPlusPlus && 259 FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 260 External = CodeGenModule::GVA_TemplateInstantiation; 261 262 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 263 // C++ member functions defined inside the class are always inline. 264 if (MD->isInline() || !MD->isOutOfLine()) 265 return CodeGenModule::GVA_CXXInline; 266 267 return External; 268 } 269 270 // "static" functions get internal linkage. 271 if (FD->getStorageClass() == FunctionDecl::Static) 272 return CodeGenModule::GVA_Internal; 273 274 if (!FD->isInline()) 275 return External; 276 277 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 278 // GNU or C99 inline semantics. Determine whether this symbol should be 279 // externally visible. 280 if (FD->isInlineDefinitionExternallyVisible()) 281 return External; 282 283 // C99 inline semantics, where the symbol is not externally visible. 284 return CodeGenModule::GVA_C99Inline; 285 } 286 287 // C++ inline semantics 288 assert(Features.CPlusPlus && "Must be in C++ mode"); 289 return CodeGenModule::GVA_CXXInline; 290 } 291 292 /// SetFunctionDefinitionAttributes - Set attributes for a global. 293 /// 294 /// FIXME: This is currently only done for aliases and functions, but not for 295 /// variables (these details are set in EmitGlobalVarDefinition for variables). 296 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 297 llvm::GlobalValue *GV) { 298 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 299 300 if (Linkage == GVA_Internal) { 301 GV->setLinkage(llvm::Function::InternalLinkage); 302 } else if (D->hasAttr<DLLExportAttr>()) { 303 GV->setLinkage(llvm::Function::DLLExportLinkage); 304 } else if (D->hasAttr<WeakAttr>()) { 305 GV->setLinkage(llvm::Function::WeakAnyLinkage); 306 } else if (Linkage == GVA_C99Inline) { 307 // In C99 mode, 'inline' functions are guaranteed to have a strong 308 // definition somewhere else, so we can use available_externally linkage. 309 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 310 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 311 // In C++, the compiler has to emit a definition in every translation unit 312 // that references the function. We should use linkonce_odr because 313 // a) if all references in this translation unit are optimized away, we 314 // don't need to codegen it. b) if the function persists, it needs to be 315 // merged with other definitions. c) C++ has the ODR, so we know the 316 // definition is dependable. 317 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 318 } else { 319 assert(Linkage == GVA_StrongExternal); 320 // Otherwise, we have strong external linkage. 321 GV->setLinkage(llvm::Function::ExternalLinkage); 322 } 323 324 SetCommonAttributes(D, GV); 325 } 326 327 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 328 const CGFunctionInfo &Info, 329 llvm::Function *F) { 330 unsigned CallingConv; 331 AttributeListType AttributeList; 332 ConstructAttributeList(Info, D, AttributeList, CallingConv); 333 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 334 AttributeList.size())); 335 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 336 } 337 338 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 339 llvm::Function *F) { 340 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 341 F->addFnAttr(llvm::Attribute::NoUnwind); 342 343 if (D->hasAttr<AlwaysInlineAttr>()) 344 F->addFnAttr(llvm::Attribute::AlwaysInline); 345 346 if (D->hasAttr<NoInlineAttr>()) 347 F->addFnAttr(llvm::Attribute::NoInline); 348 } 349 350 void CodeGenModule::SetCommonAttributes(const Decl *D, 351 llvm::GlobalValue *GV) { 352 setGlobalVisibility(GV, D); 353 354 if (D->hasAttr<UsedAttr>()) 355 AddUsedGlobal(GV); 356 357 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 358 GV->setSection(SA->getName()); 359 } 360 361 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 362 llvm::Function *F, 363 const CGFunctionInfo &FI) { 364 SetLLVMFunctionAttributes(D, FI, F); 365 SetLLVMFunctionAttributesForDefinition(D, F); 366 367 F->setLinkage(llvm::Function::InternalLinkage); 368 369 SetCommonAttributes(D, F); 370 } 371 372 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 373 llvm::Function *F, 374 bool IsIncompleteFunction) { 375 if (!IsIncompleteFunction) 376 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 377 378 // Only a few attributes are set on declarations; these may later be 379 // overridden by a definition. 380 381 if (FD->hasAttr<DLLImportAttr>()) { 382 F->setLinkage(llvm::Function::DLLImportLinkage); 383 } else if (FD->hasAttr<WeakAttr>() || 384 FD->hasAttr<WeakImportAttr>()) { 385 // "extern_weak" is overloaded in LLVM; we probably should have 386 // separate linkage types for this. 387 F->setLinkage(llvm::Function::ExternalWeakLinkage); 388 } else { 389 F->setLinkage(llvm::Function::ExternalLinkage); 390 } 391 392 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 393 F->setSection(SA->getName()); 394 } 395 396 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 397 assert(!GV->isDeclaration() && 398 "Only globals with definition can force usage."); 399 LLVMUsed.push_back(GV); 400 } 401 402 void CodeGenModule::EmitLLVMUsed() { 403 // Don't create llvm.used if there is no need. 404 if (LLVMUsed.empty()) 405 return; 406 407 llvm::Type *i8PTy = 408 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext)); 409 410 // Convert LLVMUsed to what ConstantArray needs. 411 std::vector<llvm::Constant*> UsedArray; 412 UsedArray.resize(LLVMUsed.size()); 413 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 414 UsedArray[i] = 415 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 416 i8PTy); 417 } 418 419 if (UsedArray.empty()) 420 return; 421 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 422 423 llvm::GlobalVariable *GV = 424 new llvm::GlobalVariable(getModule(), ATy, false, 425 llvm::GlobalValue::AppendingLinkage, 426 llvm::ConstantArray::get(ATy, UsedArray), 427 "llvm.used"); 428 429 GV->setSection("llvm.metadata"); 430 } 431 432 void CodeGenModule::EmitDeferred() { 433 // Emit code for any potentially referenced deferred decls. Since a 434 // previously unused static decl may become used during the generation of code 435 // for a static function, iterate until no changes are made. 436 while (!DeferredDeclsToEmit.empty()) { 437 GlobalDecl D = DeferredDeclsToEmit.back(); 438 DeferredDeclsToEmit.pop_back(); 439 440 // The mangled name for the decl must have been emitted in GlobalDeclMap. 441 // Look it up to see if it was defined with a stronger definition (e.g. an 442 // extern inline function with a strong function redefinition). If so, 443 // just ignore the deferred decl. 444 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 445 assert(CGRef && "Deferred decl wasn't referenced?"); 446 447 if (!CGRef->isDeclaration()) 448 continue; 449 450 // Otherwise, emit the definition and move on to the next one. 451 EmitGlobalDefinition(D); 452 } 453 } 454 455 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 456 /// annotation information for a given GlobalValue. The annotation struct is 457 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 458 /// GlobalValue being annotated. The second field is the constant string 459 /// created from the AnnotateAttr's annotation. The third field is a constant 460 /// string containing the name of the translation unit. The fourth field is 461 /// the line number in the file of the annotated value declaration. 462 /// 463 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 464 /// appears to. 465 /// 466 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 467 const AnnotateAttr *AA, 468 unsigned LineNo) { 469 llvm::Module *M = &getModule(); 470 471 // get [N x i8] constants for the annotation string, and the filename string 472 // which are the 2nd and 3rd elements of the global annotation structure. 473 const llvm::Type *SBP = 474 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext)); 475 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 476 AA->getAnnotation(), true); 477 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 478 M->getModuleIdentifier(), 479 true); 480 481 // Get the two global values corresponding to the ConstantArrays we just 482 // created to hold the bytes of the strings. 483 llvm::GlobalValue *annoGV = 484 new llvm::GlobalVariable(*M, anno->getType(), false, 485 llvm::GlobalValue::PrivateLinkage, anno, 486 GV->getName()); 487 // translation unit name string, emitted into the llvm.metadata section. 488 llvm::GlobalValue *unitGV = 489 new llvm::GlobalVariable(*M, unit->getType(), false, 490 llvm::GlobalValue::PrivateLinkage, unit, 491 ".str"); 492 493 // Create the ConstantStruct for the global annotation. 494 llvm::Constant *Fields[4] = { 495 llvm::ConstantExpr::getBitCast(GV, SBP), 496 llvm::ConstantExpr::getBitCast(annoGV, SBP), 497 llvm::ConstantExpr::getBitCast(unitGV, SBP), 498 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 499 }; 500 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 501 } 502 503 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 504 // Never defer when EmitAllDecls is specified or the decl has 505 // attribute used. 506 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 507 return false; 508 509 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 510 // Constructors and destructors should never be deferred. 511 if (FD->hasAttr<ConstructorAttr>() || 512 FD->hasAttr<DestructorAttr>()) 513 return false; 514 515 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 516 517 // static, static inline, always_inline, and extern inline functions can 518 // always be deferred. Normal inline functions can be deferred in C99/C++. 519 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 520 Linkage == GVA_CXXInline) 521 return true; 522 return false; 523 } 524 525 const VarDecl *VD = cast<VarDecl>(Global); 526 assert(VD->isFileVarDecl() && "Invalid decl"); 527 528 return VD->getStorageClass() == VarDecl::Static; 529 } 530 531 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 532 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 533 534 // If this is an alias definition (which otherwise looks like a declaration) 535 // emit it now. 536 if (Global->hasAttr<AliasAttr>()) 537 return EmitAliasDefinition(Global); 538 539 // Ignore declarations, they will be emitted on their first use. 540 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 541 // Forward declarations are emitted lazily on first use. 542 if (!FD->isThisDeclarationADefinition()) 543 return; 544 } else { 545 const VarDecl *VD = cast<VarDecl>(Global); 546 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 547 548 // In C++, if this is marked "extern", defer code generation. 549 if (getLangOptions().CPlusPlus && !VD->getInit() && 550 (VD->getStorageClass() == VarDecl::Extern || 551 VD->isExternC())) 552 return; 553 554 // In C, if this isn't a definition, defer code generation. 555 if (!getLangOptions().CPlusPlus && !VD->getInit()) 556 return; 557 } 558 559 // Defer code generation when possible if this is a static definition, inline 560 // function etc. These we only want to emit if they are used. 561 if (MayDeferGeneration(Global)) { 562 // If the value has already been used, add it directly to the 563 // DeferredDeclsToEmit list. 564 const char *MangledName = getMangledName(GD); 565 if (GlobalDeclMap.count(MangledName)) 566 DeferredDeclsToEmit.push_back(GD); 567 else { 568 // Otherwise, remember that we saw a deferred decl with this name. The 569 // first use of the mangled name will cause it to move into 570 // DeferredDeclsToEmit. 571 DeferredDecls[MangledName] = GD; 572 } 573 return; 574 } 575 576 // Otherwise emit the definition. 577 EmitGlobalDefinition(GD); 578 } 579 580 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 581 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 582 583 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 584 EmitCXXConstructor(CD, GD.getCtorType()); 585 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 586 EmitCXXDestructor(DD, GD.getDtorType()); 587 else if (isa<FunctionDecl>(D)) 588 EmitGlobalFunctionDefinition(GD); 589 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 590 EmitGlobalVarDefinition(VD); 591 else { 592 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 593 } 594 } 595 596 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 597 /// module, create and return an llvm Function with the specified type. If there 598 /// is something in the module with the specified name, return it potentially 599 /// bitcasted to the right type. 600 /// 601 /// If D is non-null, it specifies a decl that correspond to this. This is used 602 /// to set the attributes on the function when it is first created. 603 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 604 const llvm::Type *Ty, 605 GlobalDecl D) { 606 // Lookup the entry, lazily creating it if necessary. 607 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 608 if (Entry) { 609 if (Entry->getType()->getElementType() == Ty) 610 return Entry; 611 612 // Make sure the result is of the correct type. 613 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 614 return llvm::ConstantExpr::getBitCast(Entry, PTy); 615 } 616 617 // This is the first use or definition of a mangled name. If there is a 618 // deferred decl with this name, remember that we need to emit it at the end 619 // of the file. 620 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 621 DeferredDecls.find(MangledName); 622 if (DDI != DeferredDecls.end()) { 623 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 624 // list, and remove it from DeferredDecls (since we don't need it anymore). 625 DeferredDeclsToEmit.push_back(DDI->second); 626 DeferredDecls.erase(DDI); 627 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 628 // If this the first reference to a C++ inline function in a class, queue up 629 // the deferred function body for emission. These are not seen as 630 // top-level declarations. 631 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 632 DeferredDeclsToEmit.push_back(D); 633 // A called constructor which has no definition or declaration need be 634 // synthesized. 635 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 636 const CXXRecordDecl *ClassDecl = 637 cast<CXXRecordDecl>(CD->getDeclContext()); 638 if (CD->isCopyConstructor(getContext())) 639 DeferredCopyConstructorToEmit(D); 640 else if (!ClassDecl->hasUserDeclaredConstructor()) 641 DeferredDeclsToEmit.push_back(D); 642 } 643 else if (isa<CXXDestructorDecl>(FD)) 644 DeferredDestructorToEmit(D); 645 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 646 if (MD->isCopyAssignment()) 647 DeferredCopyAssignmentToEmit(D); 648 } 649 650 // This function doesn't have a complete type (for example, the return 651 // type is an incomplete struct). Use a fake type instead, and make 652 // sure not to try to set attributes. 653 bool IsIncompleteFunction = false; 654 if (!isa<llvm::FunctionType>(Ty)) { 655 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 656 std::vector<const llvm::Type*>(), false); 657 IsIncompleteFunction = true; 658 } 659 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 660 llvm::Function::ExternalLinkage, 661 "", &getModule()); 662 F->setName(MangledName); 663 if (D.getDecl()) 664 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 665 IsIncompleteFunction); 666 Entry = F; 667 return F; 668 } 669 670 /// Defer definition of copy constructor(s) which need be implicitly defined. 671 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) { 672 const CXXConstructorDecl *CD = 673 cast<CXXConstructorDecl>(CopyCtorDecl.getDecl()); 674 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 675 if (ClassDecl->hasTrivialCopyConstructor() || 676 ClassDecl->hasUserDeclaredCopyConstructor()) 677 return; 678 679 // First make sure all direct base classes and virtual bases and non-static 680 // data mebers which need to have their copy constructors implicitly defined 681 // are defined. 12.8.p7 682 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 683 Base != ClassDecl->bases_end(); ++Base) { 684 CXXRecordDecl *BaseClassDecl 685 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 686 if (CXXConstructorDecl *BaseCopyCtor = 687 BaseClassDecl->getCopyConstructor(Context, 0)) 688 GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete); 689 } 690 691 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 692 FieldEnd = ClassDecl->field_end(); 693 Field != FieldEnd; ++Field) { 694 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 695 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 696 FieldType = Array->getElementType(); 697 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 698 if ((*Field)->isAnonymousStructOrUnion()) 699 continue; 700 CXXRecordDecl *FieldClassDecl 701 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 702 if (CXXConstructorDecl *FieldCopyCtor = 703 FieldClassDecl->getCopyConstructor(Context, 0)) 704 GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete); 705 } 706 } 707 DeferredDeclsToEmit.push_back(CopyCtorDecl); 708 } 709 710 /// Defer definition of copy assignments which need be implicitly defined. 711 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) { 712 const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl()); 713 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 714 715 if (ClassDecl->hasTrivialCopyAssignment() || 716 ClassDecl->hasUserDeclaredCopyAssignment()) 717 return; 718 719 // First make sure all direct base classes and virtual bases and non-static 720 // data mebers which need to have their copy assignments implicitly defined 721 // are defined. 12.8.p12 722 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 723 Base != ClassDecl->bases_end(); ++Base) { 724 CXXRecordDecl *BaseClassDecl 725 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 726 const CXXMethodDecl *MD = 0; 727 if (!BaseClassDecl->hasTrivialCopyAssignment() && 728 !BaseClassDecl->hasUserDeclaredCopyAssignment() && 729 BaseClassDecl->hasConstCopyAssignment(getContext(), MD)) 730 GetAddrOfFunction(MD, 0); 731 } 732 733 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 734 FieldEnd = ClassDecl->field_end(); 735 Field != FieldEnd; ++Field) { 736 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 737 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 738 FieldType = Array->getElementType(); 739 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 740 if ((*Field)->isAnonymousStructOrUnion()) 741 continue; 742 CXXRecordDecl *FieldClassDecl 743 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 744 const CXXMethodDecl *MD = 0; 745 if (!FieldClassDecl->hasTrivialCopyAssignment() && 746 !FieldClassDecl->hasUserDeclaredCopyAssignment() && 747 FieldClassDecl->hasConstCopyAssignment(getContext(), MD)) 748 GetAddrOfFunction(MD, 0); 749 } 750 } 751 DeferredDeclsToEmit.push_back(CopyAssignDecl); 752 } 753 754 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) { 755 const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl()); 756 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext()); 757 if (ClassDecl->hasTrivialDestructor() || 758 ClassDecl->hasUserDeclaredDestructor()) 759 return; 760 761 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 762 Base != ClassDecl->bases_end(); ++Base) { 763 CXXRecordDecl *BaseClassDecl 764 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 765 if (const CXXDestructorDecl *BaseDtor = 766 BaseClassDecl->getDestructor(Context)) 767 GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete); 768 } 769 770 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 771 FieldEnd = ClassDecl->field_end(); 772 Field != FieldEnd; ++Field) { 773 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 774 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 775 FieldType = Array->getElementType(); 776 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 777 if ((*Field)->isAnonymousStructOrUnion()) 778 continue; 779 CXXRecordDecl *FieldClassDecl 780 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 781 if (const CXXDestructorDecl *FieldDtor = 782 FieldClassDecl->getDestructor(Context)) 783 GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete); 784 } 785 } 786 DeferredDeclsToEmit.push_back(DtorDecl); 787 } 788 789 790 /// GetAddrOfFunction - Return the address of the given function. If Ty is 791 /// non-null, then this function will use the specified type if it has to 792 /// create it (this occurs when we see a definition of the function). 793 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 794 const llvm::Type *Ty) { 795 // If there was no specific requested type, just convert it now. 796 if (!Ty) 797 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 798 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 799 } 800 801 /// CreateRuntimeFunction - Create a new runtime function with the specified 802 /// type and name. 803 llvm::Constant * 804 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 805 const char *Name) { 806 // Convert Name to be a uniqued string from the IdentifierInfo table. 807 Name = getContext().Idents.get(Name).getName(); 808 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 809 } 810 811 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 812 /// create and return an llvm GlobalVariable with the specified type. If there 813 /// is something in the module with the specified name, return it potentially 814 /// bitcasted to the right type. 815 /// 816 /// If D is non-null, it specifies a decl that correspond to this. This is used 817 /// to set the attributes on the global when it is first created. 818 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 819 const llvm::PointerType*Ty, 820 const VarDecl *D) { 821 // Lookup the entry, lazily creating it if necessary. 822 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 823 if (Entry) { 824 if (Entry->getType() == Ty) 825 return Entry; 826 827 // Make sure the result is of the correct type. 828 return llvm::ConstantExpr::getBitCast(Entry, Ty); 829 } 830 831 // This is the first use or definition of a mangled name. If there is a 832 // deferred decl with this name, remember that we need to emit it at the end 833 // of the file. 834 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 835 DeferredDecls.find(MangledName); 836 if (DDI != DeferredDecls.end()) { 837 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 838 // list, and remove it from DeferredDecls (since we don't need it anymore). 839 DeferredDeclsToEmit.push_back(DDI->second); 840 DeferredDecls.erase(DDI); 841 } 842 843 llvm::GlobalVariable *GV = 844 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 845 llvm::GlobalValue::ExternalLinkage, 846 0, "", 0, 847 false, Ty->getAddressSpace()); 848 GV->setName(MangledName); 849 850 // Handle things which are present even on external declarations. 851 if (D) { 852 // FIXME: This code is overly simple and should be merged with other global 853 // handling. 854 GV->setConstant(D->getType().isConstant(Context)); 855 856 // FIXME: Merge with other attribute handling code. 857 if (D->getStorageClass() == VarDecl::PrivateExtern) 858 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 859 860 if (D->hasAttr<WeakAttr>() || 861 D->hasAttr<WeakImportAttr>()) 862 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 863 864 GV->setThreadLocal(D->isThreadSpecified()); 865 } 866 867 return Entry = GV; 868 } 869 870 871 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 872 /// given global variable. If Ty is non-null and if the global doesn't exist, 873 /// then it will be greated with the specified type instead of whatever the 874 /// normal requested type would be. 875 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 876 const llvm::Type *Ty) { 877 assert(D->hasGlobalStorage() && "Not a global variable"); 878 QualType ASTTy = D->getType(); 879 if (Ty == 0) 880 Ty = getTypes().ConvertTypeForMem(ASTTy); 881 882 const llvm::PointerType *PTy = 883 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 884 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 885 } 886 887 /// CreateRuntimeVariable - Create a new runtime global variable with the 888 /// specified type and name. 889 llvm::Constant * 890 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 891 const char *Name) { 892 // Convert Name to be a uniqued string from the IdentifierInfo table. 893 Name = getContext().Idents.get(Name).getName(); 894 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 895 } 896 897 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 898 assert(!D->getInit() && "Cannot emit definite definitions here!"); 899 900 if (MayDeferGeneration(D)) { 901 // If we have not seen a reference to this variable yet, place it 902 // into the deferred declarations table to be emitted if needed 903 // later. 904 const char *MangledName = getMangledName(D); 905 if (GlobalDeclMap.count(MangledName) == 0) { 906 DeferredDecls[MangledName] = D; 907 return; 908 } 909 } 910 911 // The tentative definition is the only definition. 912 EmitGlobalVarDefinition(D); 913 } 914 915 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 916 llvm::Constant *Init = 0; 917 QualType ASTTy = D->getType(); 918 919 if (D->getInit() == 0) { 920 // This is a tentative definition; tentative definitions are 921 // implicitly initialized with { 0 }. 922 // 923 // Note that tentative definitions are only emitted at the end of 924 // a translation unit, so they should never have incomplete 925 // type. In addition, EmitTentativeDefinition makes sure that we 926 // never attempt to emit a tentative definition if a real one 927 // exists. A use may still exists, however, so we still may need 928 // to do a RAUW. 929 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 930 Init = EmitNullConstant(D->getType()); 931 } else { 932 Init = EmitConstantExpr(D->getInit(), D->getType()); 933 934 if (!Init) { 935 QualType T = D->getInit()->getType(); 936 if (getLangOptions().CPlusPlus) { 937 CXXGlobalInits.push_back(D); 938 Init = EmitNullConstant(T); 939 } else { 940 ErrorUnsupported(D, "static initializer"); 941 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 942 } 943 } 944 } 945 946 const llvm::Type* InitType = Init->getType(); 947 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 948 949 // Strip off a bitcast if we got one back. 950 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 951 assert(CE->getOpcode() == llvm::Instruction::BitCast || 952 // all zero index gep. 953 CE->getOpcode() == llvm::Instruction::GetElementPtr); 954 Entry = CE->getOperand(0); 955 } 956 957 // Entry is now either a Function or GlobalVariable. 958 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 959 960 // We have a definition after a declaration with the wrong type. 961 // We must make a new GlobalVariable* and update everything that used OldGV 962 // (a declaration or tentative definition) with the new GlobalVariable* 963 // (which will be a definition). 964 // 965 // This happens if there is a prototype for a global (e.g. 966 // "extern int x[];") and then a definition of a different type (e.g. 967 // "int x[10];"). This also happens when an initializer has a different type 968 // from the type of the global (this happens with unions). 969 if (GV == 0 || 970 GV->getType()->getElementType() != InitType || 971 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 972 973 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 974 GlobalDeclMap.erase(getMangledName(D)); 975 976 // Make a new global with the correct type, this is now guaranteed to work. 977 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 978 GV->takeName(cast<llvm::GlobalValue>(Entry)); 979 980 // Replace all uses of the old global with the new global 981 llvm::Constant *NewPtrForOldDecl = 982 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 983 Entry->replaceAllUsesWith(NewPtrForOldDecl); 984 985 // Erase the old global, since it is no longer used. 986 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 987 } 988 989 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 990 SourceManager &SM = Context.getSourceManager(); 991 AddAnnotation(EmitAnnotateAttr(GV, AA, 992 SM.getInstantiationLineNumber(D->getLocation()))); 993 } 994 995 GV->setInitializer(Init); 996 997 // If it is safe to mark the global 'constant', do so now. 998 GV->setConstant(false); 999 if (D->getType().isConstant(Context)) { 1000 // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable 1001 // members, it cannot be declared "LLVM const". 1002 GV->setConstant(true); 1003 } 1004 1005 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 1006 1007 // Set the llvm linkage type as appropriate. 1008 if (D->isInAnonymousNamespace()) 1009 GV->setLinkage(llvm::Function::InternalLinkage); 1010 else if (D->getStorageClass() == VarDecl::Static) 1011 GV->setLinkage(llvm::Function::InternalLinkage); 1012 else if (D->hasAttr<DLLImportAttr>()) 1013 GV->setLinkage(llvm::Function::DLLImportLinkage); 1014 else if (D->hasAttr<DLLExportAttr>()) 1015 GV->setLinkage(llvm::Function::DLLExportLinkage); 1016 else if (D->hasAttr<WeakAttr>()) { 1017 if (GV->isConstant()) 1018 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1019 else 1020 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1021 } else if (!CompileOpts.NoCommon && 1022 !D->hasExternalStorage() && !D->getInit() && 1023 !D->getAttr<SectionAttr>()) { 1024 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1025 // common vars aren't constant even if declared const. 1026 GV->setConstant(false); 1027 } else 1028 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1029 1030 SetCommonAttributes(D, GV); 1031 1032 // Emit global variable debug information. 1033 if (CGDebugInfo *DI = getDebugInfo()) { 1034 DI->setLocation(D->getLocation()); 1035 DI->EmitGlobalVariable(GV, D); 1036 } 1037 } 1038 1039 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1040 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1041 /// existing call uses of the old function in the module, this adjusts them to 1042 /// call the new function directly. 1043 /// 1044 /// This is not just a cleanup: the always_inline pass requires direct calls to 1045 /// functions to be able to inline them. If there is a bitcast in the way, it 1046 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1047 /// run at -O0. 1048 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1049 llvm::Function *NewFn) { 1050 // If we're redefining a global as a function, don't transform it. 1051 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1052 if (OldFn == 0) return; 1053 1054 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1055 llvm::SmallVector<llvm::Value*, 4> ArgList; 1056 1057 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1058 UI != E; ) { 1059 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1060 unsigned OpNo = UI.getOperandNo(); 1061 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1062 if (!CI || OpNo != 0) continue; 1063 1064 // If the return types don't match exactly, and if the call isn't dead, then 1065 // we can't transform this call. 1066 if (CI->getType() != NewRetTy && !CI->use_empty()) 1067 continue; 1068 1069 // If the function was passed too few arguments, don't transform. If extra 1070 // arguments were passed, we silently drop them. If any of the types 1071 // mismatch, we don't transform. 1072 unsigned ArgNo = 0; 1073 bool DontTransform = false; 1074 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1075 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1076 if (CI->getNumOperands()-1 == ArgNo || 1077 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1078 DontTransform = true; 1079 break; 1080 } 1081 } 1082 if (DontTransform) 1083 continue; 1084 1085 // Okay, we can transform this. Create the new call instruction and copy 1086 // over the required information. 1087 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1088 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1089 ArgList.end(), "", CI); 1090 ArgList.clear(); 1091 if (!NewCall->getType()->isVoidTy()) 1092 NewCall->takeName(CI); 1093 NewCall->setAttributes(CI->getAttributes()); 1094 NewCall->setCallingConv(CI->getCallingConv()); 1095 1096 // Finally, remove the old call, replacing any uses with the new one. 1097 if (!CI->use_empty()) 1098 CI->replaceAllUsesWith(NewCall); 1099 CI->eraseFromParent(); 1100 } 1101 } 1102 1103 1104 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1105 const llvm::FunctionType *Ty; 1106 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1107 1108 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1109 bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic(); 1110 1111 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1112 } else { 1113 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1114 1115 // As a special case, make sure that definitions of K&R function 1116 // "type foo()" aren't declared as varargs (which forces the backend 1117 // to do unnecessary work). 1118 if (D->getType()->isFunctionNoProtoType()) { 1119 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1120 // Due to stret, the lowered function could have arguments. 1121 // Just create the same type as was lowered by ConvertType 1122 // but strip off the varargs bit. 1123 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1124 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1125 } 1126 } 1127 1128 // Get or create the prototype for the function. 1129 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1130 1131 // Strip off a bitcast if we got one back. 1132 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1133 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1134 Entry = CE->getOperand(0); 1135 } 1136 1137 1138 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1139 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1140 1141 // If the types mismatch then we have to rewrite the definition. 1142 assert(OldFn->isDeclaration() && 1143 "Shouldn't replace non-declaration"); 1144 1145 // F is the Function* for the one with the wrong type, we must make a new 1146 // Function* and update everything that used F (a declaration) with the new 1147 // Function* (which will be a definition). 1148 // 1149 // This happens if there is a prototype for a function 1150 // (e.g. "int f()") and then a definition of a different type 1151 // (e.g. "int f(int x)"). Start by making a new function of the 1152 // correct type, RAUW, then steal the name. 1153 GlobalDeclMap.erase(getMangledName(D)); 1154 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1155 NewFn->takeName(OldFn); 1156 1157 // If this is an implementation of a function without a prototype, try to 1158 // replace any existing uses of the function (which may be calls) with uses 1159 // of the new function 1160 if (D->getType()->isFunctionNoProtoType()) { 1161 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1162 OldFn->removeDeadConstantUsers(); 1163 } 1164 1165 // Replace uses of F with the Function we will endow with a body. 1166 if (!Entry->use_empty()) { 1167 llvm::Constant *NewPtrForOldDecl = 1168 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1169 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1170 } 1171 1172 // Ok, delete the old function now, which is dead. 1173 OldFn->eraseFromParent(); 1174 1175 Entry = NewFn; 1176 } 1177 1178 llvm::Function *Fn = cast<llvm::Function>(Entry); 1179 1180 CodeGenFunction(*this).GenerateCode(D, Fn); 1181 1182 SetFunctionDefinitionAttributes(D, Fn); 1183 SetLLVMFunctionAttributesForDefinition(D, Fn); 1184 1185 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1186 AddGlobalCtor(Fn, CA->getPriority()); 1187 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1188 AddGlobalDtor(Fn, DA->getPriority()); 1189 } 1190 1191 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1192 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1193 assert(AA && "Not an alias?"); 1194 1195 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1196 1197 // Unique the name through the identifier table. 1198 const char *AliaseeName = AA->getAliasee().c_str(); 1199 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 1200 1201 // Create a reference to the named value. This ensures that it is emitted 1202 // if a deferred decl. 1203 llvm::Constant *Aliasee; 1204 if (isa<llvm::FunctionType>(DeclTy)) 1205 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1206 else 1207 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1208 llvm::PointerType::getUnqual(DeclTy), 0); 1209 1210 // Create the new alias itself, but don't set a name yet. 1211 llvm::GlobalValue *GA = 1212 new llvm::GlobalAlias(Aliasee->getType(), 1213 llvm::Function::ExternalLinkage, 1214 "", Aliasee, &getModule()); 1215 1216 // See if there is already something with the alias' name in the module. 1217 const char *MangledName = getMangledName(D); 1218 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1219 1220 if (Entry && !Entry->isDeclaration()) { 1221 // If there is a definition in the module, then it wins over the alias. 1222 // This is dubious, but allow it to be safe. Just ignore the alias. 1223 GA->eraseFromParent(); 1224 return; 1225 } 1226 1227 if (Entry) { 1228 // If there is a declaration in the module, then we had an extern followed 1229 // by the alias, as in: 1230 // extern int test6(); 1231 // ... 1232 // int test6() __attribute__((alias("test7"))); 1233 // 1234 // Remove it and replace uses of it with the alias. 1235 1236 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1237 Entry->getType())); 1238 Entry->eraseFromParent(); 1239 } 1240 1241 // Now we know that there is no conflict, set the name. 1242 Entry = GA; 1243 GA->setName(MangledName); 1244 1245 // Set attributes which are particular to an alias; this is a 1246 // specialization of the attributes which may be set on a global 1247 // variable/function. 1248 if (D->hasAttr<DLLExportAttr>()) { 1249 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1250 // The dllexport attribute is ignored for undefined symbols. 1251 if (FD->getBody()) 1252 GA->setLinkage(llvm::Function::DLLExportLinkage); 1253 } else { 1254 GA->setLinkage(llvm::Function::DLLExportLinkage); 1255 } 1256 } else if (D->hasAttr<WeakAttr>() || 1257 D->hasAttr<WeakImportAttr>()) { 1258 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1259 } 1260 1261 SetCommonAttributes(D, GA); 1262 } 1263 1264 /// getBuiltinLibFunction - Given a builtin id for a function like 1265 /// "__builtin_fabsf", return a Function* for "fabsf". 1266 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1267 unsigned BuiltinID) { 1268 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1269 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1270 "isn't a lib fn"); 1271 1272 // Get the name, skip over the __builtin_ prefix (if necessary). 1273 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1274 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1275 Name += 10; 1276 1277 // Get the type for the builtin. 1278 ASTContext::GetBuiltinTypeError Error; 1279 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1280 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1281 1282 const llvm::FunctionType *Ty = 1283 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1284 1285 // Unique the name through the identifier table. 1286 Name = getContext().Idents.get(Name).getName(); 1287 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1288 } 1289 1290 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1291 unsigned NumTys) { 1292 return llvm::Intrinsic::getDeclaration(&getModule(), 1293 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1294 } 1295 1296 llvm::Function *CodeGenModule::getMemCpyFn() { 1297 if (MemCpyFn) return MemCpyFn; 1298 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1299 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1300 } 1301 1302 llvm::Function *CodeGenModule::getMemMoveFn() { 1303 if (MemMoveFn) return MemMoveFn; 1304 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1305 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1306 } 1307 1308 llvm::Function *CodeGenModule::getMemSetFn() { 1309 if (MemSetFn) return MemSetFn; 1310 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1311 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1312 } 1313 1314 static llvm::StringMapEntry<llvm::Constant*> & 1315 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1316 const StringLiteral *Literal, 1317 bool TargetIsLSB, 1318 bool &IsUTF16, 1319 unsigned &StringLength) { 1320 unsigned NumBytes = Literal->getByteLength(); 1321 1322 // Check for simple case. 1323 if (!Literal->containsNonAsciiOrNull()) { 1324 StringLength = NumBytes; 1325 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1326 StringLength)); 1327 } 1328 1329 // Otherwise, convert the UTF8 literals into a byte string. 1330 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1331 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1332 UTF16 *ToPtr = &ToBuf[0]; 1333 1334 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1335 &ToPtr, ToPtr + NumBytes, 1336 strictConversion); 1337 1338 // Check for conversion failure. 1339 if (Result != conversionOK) { 1340 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1341 // this duplicate code. 1342 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1343 StringLength = NumBytes; 1344 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1345 StringLength)); 1346 } 1347 1348 // ConvertUTF8toUTF16 returns the length in ToPtr. 1349 StringLength = ToPtr - &ToBuf[0]; 1350 1351 // Render the UTF-16 string into a byte array and convert to the target byte 1352 // order. 1353 // 1354 // FIXME: This isn't something we should need to do here. 1355 llvm::SmallString<128> AsBytes; 1356 AsBytes.reserve(StringLength * 2); 1357 for (unsigned i = 0; i != StringLength; ++i) { 1358 unsigned short Val = ToBuf[i]; 1359 if (TargetIsLSB) { 1360 AsBytes.push_back(Val & 0xFF); 1361 AsBytes.push_back(Val >> 8); 1362 } else { 1363 AsBytes.push_back(Val >> 8); 1364 AsBytes.push_back(Val & 0xFF); 1365 } 1366 } 1367 // Append one extra null character, the second is automatically added by our 1368 // caller. 1369 AsBytes.push_back(0); 1370 1371 IsUTF16 = true; 1372 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1373 } 1374 1375 llvm::Constant * 1376 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1377 unsigned StringLength = 0; 1378 bool isUTF16 = false; 1379 llvm::StringMapEntry<llvm::Constant*> &Entry = 1380 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1381 getTargetData().isLittleEndian(), 1382 isUTF16, StringLength); 1383 1384 if (llvm::Constant *C = Entry.getValue()) 1385 return C; 1386 1387 llvm::Constant *Zero = 1388 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1389 llvm::Constant *Zeros[] = { Zero, Zero }; 1390 1391 // If we don't already have it, get __CFConstantStringClassReference. 1392 if (!CFConstantStringClassRef) { 1393 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1394 Ty = llvm::ArrayType::get(Ty, 0); 1395 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1396 "__CFConstantStringClassReference"); 1397 // Decay array -> ptr 1398 CFConstantStringClassRef = 1399 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1400 } 1401 1402 QualType CFTy = getContext().getCFConstantStringType(); 1403 1404 const llvm::StructType *STy = 1405 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1406 1407 std::vector<llvm::Constant*> Fields(4); 1408 1409 // Class pointer. 1410 Fields[0] = CFConstantStringClassRef; 1411 1412 // Flags. 1413 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1414 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1415 llvm::ConstantInt::get(Ty, 0x07C8); 1416 1417 // String pointer. 1418 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1419 1420 const char *Sect, *Prefix; 1421 bool isConstant; 1422 llvm::GlobalValue::LinkageTypes Linkage; 1423 if (isUTF16) { 1424 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1425 Sect = getContext().Target.getUnicodeStringSection(); 1426 // FIXME: why do utf strings get "l" labels instead of "L" labels? 1427 Linkage = llvm::GlobalValue::InternalLinkage; 1428 // FIXME: Why does GCC not set constant here? 1429 isConstant = false; 1430 } else { 1431 Prefix = ".str"; 1432 Sect = getContext().Target.getCFStringDataSection(); 1433 Linkage = llvm::GlobalValue::PrivateLinkage; 1434 // FIXME: -fwritable-strings should probably affect this, but we 1435 // are following gcc here. 1436 isConstant = true; 1437 } 1438 llvm::GlobalVariable *GV = 1439 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 1440 Linkage, C, Prefix); 1441 if (Sect) 1442 GV->setSection(Sect); 1443 if (isUTF16) { 1444 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1445 GV->setAlignment(Align); 1446 } 1447 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1448 1449 // String length. 1450 Ty = getTypes().ConvertType(getContext().LongTy); 1451 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1452 1453 // The struct. 1454 C = llvm::ConstantStruct::get(STy, Fields); 1455 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1456 llvm::GlobalVariable::PrivateLinkage, C, 1457 "_unnamed_cfstring_"); 1458 if (const char *Sect = getContext().Target.getCFStringSection()) 1459 GV->setSection(Sect); 1460 Entry.setValue(GV); 1461 1462 return GV; 1463 } 1464 1465 /// GetStringForStringLiteral - Return the appropriate bytes for a 1466 /// string literal, properly padded to match the literal type. 1467 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1468 const char *StrData = E->getStrData(); 1469 unsigned Len = E->getByteLength(); 1470 1471 const ConstantArrayType *CAT = 1472 getContext().getAsConstantArrayType(E->getType()); 1473 assert(CAT && "String isn't pointer or array!"); 1474 1475 // Resize the string to the right size. 1476 std::string Str(StrData, StrData+Len); 1477 uint64_t RealLen = CAT->getSize().getZExtValue(); 1478 1479 if (E->isWide()) 1480 RealLen *= getContext().Target.getWCharWidth()/8; 1481 1482 Str.resize(RealLen, '\0'); 1483 1484 return Str; 1485 } 1486 1487 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1488 /// constant array for the given string literal. 1489 llvm::Constant * 1490 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1491 // FIXME: This can be more efficient. 1492 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1493 } 1494 1495 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1496 /// array for the given ObjCEncodeExpr node. 1497 llvm::Constant * 1498 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1499 std::string Str; 1500 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1501 1502 return GetAddrOfConstantCString(Str); 1503 } 1504 1505 1506 /// GenerateWritableString -- Creates storage for a string literal. 1507 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1508 bool constant, 1509 CodeGenModule &CGM, 1510 const char *GlobalName) { 1511 // Create Constant for this string literal. Don't add a '\0'. 1512 llvm::Constant *C = 1513 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1514 1515 // Create a global variable for this string 1516 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1517 llvm::GlobalValue::PrivateLinkage, 1518 C, GlobalName); 1519 } 1520 1521 /// GetAddrOfConstantString - Returns a pointer to a character array 1522 /// containing the literal. This contents are exactly that of the 1523 /// given string, i.e. it will not be null terminated automatically; 1524 /// see GetAddrOfConstantCString. Note that whether the result is 1525 /// actually a pointer to an LLVM constant depends on 1526 /// Feature.WriteableStrings. 1527 /// 1528 /// The result has pointer to array type. 1529 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1530 const char *GlobalName) { 1531 bool IsConstant = !Features.WritableStrings; 1532 1533 // Get the default prefix if a name wasn't specified. 1534 if (!GlobalName) 1535 GlobalName = ".str"; 1536 1537 // Don't share any string literals if strings aren't constant. 1538 if (!IsConstant) 1539 return GenerateStringLiteral(str, false, *this, GlobalName); 1540 1541 llvm::StringMapEntry<llvm::Constant *> &Entry = 1542 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1543 1544 if (Entry.getValue()) 1545 return Entry.getValue(); 1546 1547 // Create a global variable for this. 1548 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1549 Entry.setValue(C); 1550 return C; 1551 } 1552 1553 /// GetAddrOfConstantCString - Returns a pointer to a character 1554 /// array containing the literal and a terminating '\-' 1555 /// character. The result has pointer to array type. 1556 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1557 const char *GlobalName){ 1558 return GetAddrOfConstantString(str + '\0', GlobalName); 1559 } 1560 1561 /// EmitObjCPropertyImplementations - Emit information for synthesized 1562 /// properties for an implementation. 1563 void CodeGenModule::EmitObjCPropertyImplementations(const 1564 ObjCImplementationDecl *D) { 1565 for (ObjCImplementationDecl::propimpl_iterator 1566 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1567 ObjCPropertyImplDecl *PID = *i; 1568 1569 // Dynamic is just for type-checking. 1570 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1571 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1572 1573 // Determine which methods need to be implemented, some may have 1574 // been overridden. Note that ::isSynthesized is not the method 1575 // we want, that just indicates if the decl came from a 1576 // property. What we want to know is if the method is defined in 1577 // this implementation. 1578 if (!D->getInstanceMethod(PD->getGetterName())) 1579 CodeGenFunction(*this).GenerateObjCGetter( 1580 const_cast<ObjCImplementationDecl *>(D), PID); 1581 if (!PD->isReadOnly() && 1582 !D->getInstanceMethod(PD->getSetterName())) 1583 CodeGenFunction(*this).GenerateObjCSetter( 1584 const_cast<ObjCImplementationDecl *>(D), PID); 1585 } 1586 } 1587 } 1588 1589 /// EmitNamespace - Emit all declarations in a namespace. 1590 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1591 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1592 I != E; ++I) 1593 EmitTopLevelDecl(*I); 1594 } 1595 1596 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1597 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1598 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1599 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1600 ErrorUnsupported(LSD, "linkage spec"); 1601 return; 1602 } 1603 1604 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1605 I != E; ++I) 1606 EmitTopLevelDecl(*I); 1607 } 1608 1609 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1610 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1611 // If an error has occurred, stop code generation, but continue 1612 // parsing and semantic analysis (to ensure all warnings and errors 1613 // are emitted). 1614 if (Diags.hasErrorOccurred()) 1615 return; 1616 1617 // Ignore dependent declarations. 1618 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1619 return; 1620 1621 switch (D->getKind()) { 1622 case Decl::CXXConversion: 1623 case Decl::CXXMethod: 1624 case Decl::Function: 1625 // Skip function templates 1626 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1627 return; 1628 1629 EmitGlobal(cast<FunctionDecl>(D)); 1630 break; 1631 1632 case Decl::Var: 1633 EmitGlobal(cast<VarDecl>(D)); 1634 break; 1635 1636 // C++ Decls 1637 case Decl::Namespace: 1638 EmitNamespace(cast<NamespaceDecl>(D)); 1639 break; 1640 // No code generation needed. 1641 case Decl::Using: 1642 case Decl::UsingDirective: 1643 case Decl::ClassTemplate: 1644 case Decl::FunctionTemplate: 1645 case Decl::NamespaceAlias: 1646 break; 1647 case Decl::CXXConstructor: 1648 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1649 break; 1650 case Decl::CXXDestructor: 1651 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1652 break; 1653 1654 case Decl::StaticAssert: 1655 // Nothing to do. 1656 break; 1657 1658 // Objective-C Decls 1659 1660 // Forward declarations, no (immediate) code generation. 1661 case Decl::ObjCClass: 1662 case Decl::ObjCForwardProtocol: 1663 case Decl::ObjCCategory: 1664 case Decl::ObjCInterface: 1665 break; 1666 1667 case Decl::ObjCProtocol: 1668 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1669 break; 1670 1671 case Decl::ObjCCategoryImpl: 1672 // Categories have properties but don't support synthesize so we 1673 // can ignore them here. 1674 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1675 break; 1676 1677 case Decl::ObjCImplementation: { 1678 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1679 EmitObjCPropertyImplementations(OMD); 1680 Runtime->GenerateClass(OMD); 1681 break; 1682 } 1683 case Decl::ObjCMethod: { 1684 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1685 // If this is not a prototype, emit the body. 1686 if (OMD->getBody()) 1687 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1688 break; 1689 } 1690 case Decl::ObjCCompatibleAlias: 1691 // compatibility-alias is a directive and has no code gen. 1692 break; 1693 1694 case Decl::LinkageSpec: 1695 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1696 break; 1697 1698 case Decl::FileScopeAsm: { 1699 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1700 std::string AsmString(AD->getAsmString()->getStrData(), 1701 AD->getAsmString()->getByteLength()); 1702 1703 const std::string &S = getModule().getModuleInlineAsm(); 1704 if (S.empty()) 1705 getModule().setModuleInlineAsm(AsmString); 1706 else 1707 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1708 break; 1709 } 1710 1711 default: 1712 // Make sure we handled everything we should, every other kind is a 1713 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1714 // function. Need to recode Decl::Kind to do that easily. 1715 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1716 } 1717 } 1718