1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/Diagnostic.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Basic/ConvertUTF.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Module.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Target/TargetData.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 38 llvm::Module &M, const llvm::TargetData &TD, 39 Diagnostic &diags) 40 : BlockModule(C, M, TD, Types, *this), Context(C), 41 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 42 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 43 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 44 45 if (!Features.ObjC1) 46 Runtime = 0; 47 else if (!Features.NeXTRuntime) 48 Runtime = CreateGNUObjCRuntime(*this); 49 else if (Features.ObjCNonFragileABI) 50 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 51 else 52 Runtime = CreateMacObjCRuntime(*this); 53 54 // If debug info generation is enabled, create the CGDebugInfo object. 55 DebugInfo = 0; 56 if (CompileOpts.DebugInfo) 57 DebugInfo = new CGDebugInfo(this, &Context.Target); 58 } 59 60 CodeGenModule::~CodeGenModule() { 61 delete Runtime; 62 delete DebugInfo; 63 } 64 65 void CodeGenModule::Release() { 66 EmitDeferred(); 67 if (Runtime) 68 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 69 AddGlobalCtor(ObjCInitFunction); 70 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 71 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 72 EmitAnnotations(); 73 EmitLLVMUsed(); 74 } 75 76 /// ErrorUnsupported - Print out an error that codegen doesn't support the 77 /// specified stmt yet. 78 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 79 bool OmitOnError) { 80 if (OmitOnError && getDiags().hasErrorOccurred()) 81 return; 82 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 83 "cannot compile this %0 yet"); 84 std::string Msg = Type; 85 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 86 << Msg << S->getSourceRange(); 87 } 88 89 /// ErrorUnsupported - Print out an error that codegen doesn't support the 90 /// specified decl yet. 91 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 92 bool OmitOnError) { 93 if (OmitOnError && getDiags().hasErrorOccurred()) 94 return; 95 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 96 "cannot compile this %0 yet"); 97 std::string Msg = Type; 98 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 99 } 100 101 LangOptions::VisibilityMode 102 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 103 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 104 if (VD->getStorageClass() == VarDecl::PrivateExtern) 105 return LangOptions::Hidden; 106 107 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 108 switch (attr->getVisibility()) { 109 default: assert(0 && "Unknown visibility!"); 110 case VisibilityAttr::DefaultVisibility: 111 return LangOptions::Default; 112 case VisibilityAttr::HiddenVisibility: 113 return LangOptions::Hidden; 114 case VisibilityAttr::ProtectedVisibility: 115 return LangOptions::Protected; 116 } 117 } 118 119 return getLangOptions().getVisibilityMode(); 120 } 121 122 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 123 const Decl *D) const { 124 // Internal definitions always have default visibility. 125 if (GV->hasLocalLinkage()) { 126 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 127 return; 128 } 129 130 switch (getDeclVisibilityMode(D)) { 131 default: assert(0 && "Unknown visibility!"); 132 case LangOptions::Default: 133 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 134 case LangOptions::Hidden: 135 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 136 case LangOptions::Protected: 137 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 138 } 139 } 140 141 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 142 const NamedDecl *ND = GD.getDecl(); 143 144 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 145 return getMangledCXXCtorName(D, GD.getCtorType()); 146 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 147 return getMangledCXXDtorName(D, GD.getDtorType()); 148 149 return getMangledName(ND); 150 } 151 152 /// \brief Retrieves the mangled name for the given declaration. 153 /// 154 /// If the given declaration requires a mangled name, returns an 155 /// const char* containing the mangled name. Otherwise, returns 156 /// the unmangled name. 157 /// 158 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 159 // In C, functions with no attributes never need to be mangled. Fastpath them. 160 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 161 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 162 return ND->getNameAsCString(); 163 } 164 165 llvm::SmallString<256> Name; 166 llvm::raw_svector_ostream Out(Name); 167 if (!mangleName(ND, Context, Out)) { 168 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 169 return ND->getNameAsCString(); 170 } 171 172 Name += '\0'; 173 return UniqueMangledName(Name.begin(), Name.end()); 174 } 175 176 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 177 const char *NameEnd) { 178 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 179 180 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 181 } 182 183 /// AddGlobalCtor - Add a function to the list that will be called before 184 /// main() runs. 185 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 186 // FIXME: Type coercion of void()* types. 187 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 188 } 189 190 /// AddGlobalDtor - Add a function to the list that will be called 191 /// when the module is unloaded. 192 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 193 // FIXME: Type coercion of void()* types. 194 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 195 } 196 197 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 198 // Ctor function type is void()*. 199 llvm::FunctionType* CtorFTy = 200 llvm::FunctionType::get(llvm::Type::VoidTy, 201 std::vector<const llvm::Type*>(), 202 false); 203 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 204 205 // Get the type of a ctor entry, { i32, void ()* }. 206 llvm::StructType* CtorStructTy = 207 llvm::StructType::get(llvm::Type::Int32Ty, 208 llvm::PointerType::getUnqual(CtorFTy), NULL); 209 210 // Construct the constructor and destructor arrays. 211 std::vector<llvm::Constant*> Ctors; 212 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 213 std::vector<llvm::Constant*> S; 214 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 215 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 216 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 217 } 218 219 if (!Ctors.empty()) { 220 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 221 new llvm::GlobalVariable(TheModule, AT, false, 222 llvm::GlobalValue::AppendingLinkage, 223 llvm::ConstantArray::get(AT, Ctors), 224 GlobalName); 225 } 226 } 227 228 void CodeGenModule::EmitAnnotations() { 229 if (Annotations.empty()) 230 return; 231 232 // Create a new global variable for the ConstantStruct in the Module. 233 llvm::Constant *Array = 234 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 235 Annotations.size()), 236 Annotations); 237 llvm::GlobalValue *gv = 238 new llvm::GlobalVariable(TheModule, Array->getType(), false, 239 llvm::GlobalValue::AppendingLinkage, Array, 240 "llvm.global.annotations"); 241 gv->setSection("llvm.metadata"); 242 } 243 244 static CodeGenModule::GVALinkage 245 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 246 const LangOptions &Features) { 247 // The kind of external linkage this function will have, if it is not 248 // inline or static. 249 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 250 if (Context.getLangOptions().CPlusPlus && 251 (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) && 252 !FD->isExplicitSpecialization()) 253 External = CodeGenModule::GVA_TemplateInstantiation; 254 255 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 256 // C++ member functions defined inside the class are always inline. 257 if (MD->isInline() || !MD->isOutOfLine()) 258 return CodeGenModule::GVA_CXXInline; 259 260 return External; 261 } 262 263 // "static" functions get internal linkage. 264 if (FD->getStorageClass() == FunctionDecl::Static) 265 return CodeGenModule::GVA_Internal; 266 267 if (!FD->isInline()) 268 return External; 269 270 // If the inline function explicitly has the GNU inline attribute on it, or if 271 // this is C89 mode, we use to GNU semantics. 272 if (!Features.C99 && !Features.CPlusPlus) { 273 // extern inline in GNU mode is like C99 inline. 274 if (FD->getStorageClass() == FunctionDecl::Extern) 275 return CodeGenModule::GVA_C99Inline; 276 // Normal inline is a strong symbol. 277 return CodeGenModule::GVA_StrongExternal; 278 } else if (FD->hasActiveGNUInlineAttribute(Context)) { 279 // GCC in C99 mode seems to use a different decision-making 280 // process for extern inline, which factors in previous 281 // declarations. 282 if (FD->isExternGNUInline(Context)) 283 return CodeGenModule::GVA_C99Inline; 284 // Normal inline is a strong symbol. 285 return External; 286 } 287 288 // The definition of inline changes based on the language. Note that we 289 // have already handled "static inline" above, with the GVA_Internal case. 290 if (Features.CPlusPlus) // inline and extern inline. 291 return CodeGenModule::GVA_CXXInline; 292 293 assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode"); 294 if (FD->isC99InlineDefinition()) 295 return CodeGenModule::GVA_C99Inline; 296 297 return CodeGenModule::GVA_StrongExternal; 298 } 299 300 /// SetFunctionDefinitionAttributes - Set attributes for a global. 301 /// 302 /// FIXME: This is currently only done for aliases and functions, but not for 303 /// variables (these details are set in EmitGlobalVarDefinition for variables). 304 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 305 llvm::GlobalValue *GV) { 306 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 307 308 if (Linkage == GVA_Internal) { 309 GV->setLinkage(llvm::Function::InternalLinkage); 310 } else if (D->hasAttr<DLLExportAttr>()) { 311 GV->setLinkage(llvm::Function::DLLExportLinkage); 312 } else if (D->hasAttr<WeakAttr>()) { 313 GV->setLinkage(llvm::Function::WeakAnyLinkage); 314 } else if (Linkage == GVA_C99Inline) { 315 // In C99 mode, 'inline' functions are guaranteed to have a strong 316 // definition somewhere else, so we can use available_externally linkage. 317 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 318 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 319 // In C++, the compiler has to emit a definition in every translation unit 320 // that references the function. We should use linkonce_odr because 321 // a) if all references in this translation unit are optimized away, we 322 // don't need to codegen it. b) if the function persists, it needs to be 323 // merged with other definitions. c) C++ has the ODR, so we know the 324 // definition is dependable. 325 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 326 } else { 327 assert(Linkage == GVA_StrongExternal); 328 // Otherwise, we have strong external linkage. 329 GV->setLinkage(llvm::Function::ExternalLinkage); 330 } 331 332 SetCommonAttributes(D, GV); 333 } 334 335 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 336 const CGFunctionInfo &Info, 337 llvm::Function *F) { 338 AttributeListType AttributeList; 339 ConstructAttributeList(Info, D, AttributeList); 340 341 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 342 AttributeList.size())); 343 344 // Set the appropriate calling convention for the Function. 345 if (D->hasAttr<FastCallAttr>()) 346 F->setCallingConv(llvm::CallingConv::X86_FastCall); 347 348 if (D->hasAttr<StdCallAttr>()) 349 F->setCallingConv(llvm::CallingConv::X86_StdCall); 350 } 351 352 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 353 llvm::Function *F) { 354 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 355 F->addFnAttr(llvm::Attribute::NoUnwind); 356 357 if (D->hasAttr<AlwaysInlineAttr>()) 358 F->addFnAttr(llvm::Attribute::AlwaysInline); 359 360 if (D->hasAttr<NoinlineAttr>()) 361 F->addFnAttr(llvm::Attribute::NoInline); 362 } 363 364 void CodeGenModule::SetCommonAttributes(const Decl *D, 365 llvm::GlobalValue *GV) { 366 setGlobalVisibility(GV, D); 367 368 if (D->hasAttr<UsedAttr>()) 369 AddUsedGlobal(GV); 370 371 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 372 GV->setSection(SA->getName()); 373 } 374 375 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 376 llvm::Function *F, 377 const CGFunctionInfo &FI) { 378 SetLLVMFunctionAttributes(D, FI, F); 379 SetLLVMFunctionAttributesForDefinition(D, F); 380 381 F->setLinkage(llvm::Function::InternalLinkage); 382 383 SetCommonAttributes(D, F); 384 } 385 386 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 387 llvm::Function *F, 388 bool IsIncompleteFunction) { 389 if (!IsIncompleteFunction) 390 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 391 392 // Only a few attributes are set on declarations; these may later be 393 // overridden by a definition. 394 395 if (FD->hasAttr<DLLImportAttr>()) { 396 F->setLinkage(llvm::Function::DLLImportLinkage); 397 } else if (FD->hasAttr<WeakAttr>() || 398 FD->hasAttr<WeakImportAttr>()) { 399 // "extern_weak" is overloaded in LLVM; we probably should have 400 // separate linkage types for this. 401 F->setLinkage(llvm::Function::ExternalWeakLinkage); 402 } else { 403 F->setLinkage(llvm::Function::ExternalLinkage); 404 } 405 406 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 407 F->setSection(SA->getName()); 408 } 409 410 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 411 assert(!GV->isDeclaration() && 412 "Only globals with definition can force usage."); 413 LLVMUsed.push_back(GV); 414 } 415 416 void CodeGenModule::EmitLLVMUsed() { 417 // Don't create llvm.used if there is no need. 418 // FIXME. Runtime indicates that there might be more 'used' symbols; but not 419 // necessariy. So, this test is not accurate for emptiness. 420 if (LLVMUsed.empty() && !Runtime) 421 return; 422 423 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 424 425 // Convert LLVMUsed to what ConstantArray needs. 426 std::vector<llvm::Constant*> UsedArray; 427 UsedArray.resize(LLVMUsed.size()); 428 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 429 UsedArray[i] = 430 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 431 } 432 433 if (Runtime) 434 Runtime->MergeMetadataGlobals(UsedArray); 435 if (UsedArray.empty()) 436 return; 437 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 438 439 llvm::GlobalVariable *GV = 440 new llvm::GlobalVariable(getModule(), ATy, false, 441 llvm::GlobalValue::AppendingLinkage, 442 llvm::ConstantArray::get(ATy, UsedArray), 443 "llvm.used"); 444 445 GV->setSection("llvm.metadata"); 446 } 447 448 void CodeGenModule::EmitDeferred() { 449 // Emit code for any potentially referenced deferred decls. Since a 450 // previously unused static decl may become used during the generation of code 451 // for a static function, iterate until no changes are made. 452 while (!DeferredDeclsToEmit.empty()) { 453 GlobalDecl D = DeferredDeclsToEmit.back(); 454 DeferredDeclsToEmit.pop_back(); 455 456 // The mangled name for the decl must have been emitted in GlobalDeclMap. 457 // Look it up to see if it was defined with a stronger definition (e.g. an 458 // extern inline function with a strong function redefinition). If so, 459 // just ignore the deferred decl. 460 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 461 assert(CGRef && "Deferred decl wasn't referenced?"); 462 463 if (!CGRef->isDeclaration()) 464 continue; 465 466 // Otherwise, emit the definition and move on to the next one. 467 EmitGlobalDefinition(D); 468 } 469 } 470 471 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 472 /// annotation information for a given GlobalValue. The annotation struct is 473 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 474 /// GlobalValue being annotated. The second field is the constant string 475 /// created from the AnnotateAttr's annotation. The third field is a constant 476 /// string containing the name of the translation unit. The fourth field is 477 /// the line number in the file of the annotated value declaration. 478 /// 479 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 480 /// appears to. 481 /// 482 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 483 const AnnotateAttr *AA, 484 unsigned LineNo) { 485 llvm::Module *M = &getModule(); 486 487 // get [N x i8] constants for the annotation string, and the filename string 488 // which are the 2nd and 3rd elements of the global annotation structure. 489 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 490 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 491 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 492 true); 493 494 // Get the two global values corresponding to the ConstantArrays we just 495 // created to hold the bytes of the strings. 496 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 497 llvm::GlobalValue *annoGV = 498 new llvm::GlobalVariable(*M, anno->getType(), false, 499 llvm::GlobalValue::InternalLinkage, anno, 500 GV->getName() + StringPrefix); 501 // translation unit name string, emitted into the llvm.metadata section. 502 llvm::GlobalValue *unitGV = 503 new llvm::GlobalVariable(*M, unit->getType(), false, 504 llvm::GlobalValue::InternalLinkage, unit, 505 StringPrefix); 506 507 // Create the ConstantStruct for the global annotation. 508 llvm::Constant *Fields[4] = { 509 llvm::ConstantExpr::getBitCast(GV, SBP), 510 llvm::ConstantExpr::getBitCast(annoGV, SBP), 511 llvm::ConstantExpr::getBitCast(unitGV, SBP), 512 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 513 }; 514 return llvm::ConstantStruct::get(Fields, 4, false); 515 } 516 517 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 518 // Never defer when EmitAllDecls is specified or the decl has 519 // attribute used. 520 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 521 return false; 522 523 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 524 // Constructors and destructors should never be deferred. 525 if (FD->hasAttr<ConstructorAttr>() || 526 FD->hasAttr<DestructorAttr>()) 527 return false; 528 529 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 530 531 // static, static inline, always_inline, and extern inline functions can 532 // always be deferred. Normal inline functions can be deferred in C99/C++. 533 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 534 Linkage == GVA_CXXInline) 535 return true; 536 return false; 537 } 538 539 const VarDecl *VD = cast<VarDecl>(Global); 540 assert(VD->isFileVarDecl() && "Invalid decl"); 541 542 return VD->getStorageClass() == VarDecl::Static; 543 } 544 545 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 546 const ValueDecl *Global = GD.getDecl(); 547 548 // If this is an alias definition (which otherwise looks like a declaration) 549 // emit it now. 550 if (Global->hasAttr<AliasAttr>()) 551 return EmitAliasDefinition(Global); 552 553 // Ignore declarations, they will be emitted on their first use. 554 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 555 // Forward declarations are emitted lazily on first use. 556 if (!FD->isThisDeclarationADefinition()) 557 return; 558 } else { 559 const VarDecl *VD = cast<VarDecl>(Global); 560 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 561 562 // In C++, if this is marked "extern", defer code generation. 563 if (getLangOptions().CPlusPlus && !VD->getInit() && 564 (VD->getStorageClass() == VarDecl::Extern || 565 VD->isExternC(getContext()))) 566 return; 567 568 // In C, if this isn't a definition, defer code generation. 569 if (!getLangOptions().CPlusPlus && !VD->getInit()) 570 return; 571 } 572 573 // Defer code generation when possible if this is a static definition, inline 574 // function etc. These we only want to emit if they are used. 575 if (MayDeferGeneration(Global)) { 576 // If the value has already been used, add it directly to the 577 // DeferredDeclsToEmit list. 578 const char *MangledName = getMangledName(GD); 579 if (GlobalDeclMap.count(MangledName)) 580 DeferredDeclsToEmit.push_back(GD); 581 else { 582 // Otherwise, remember that we saw a deferred decl with this name. The 583 // first use of the mangled name will cause it to move into 584 // DeferredDeclsToEmit. 585 DeferredDecls[MangledName] = GD; 586 } 587 return; 588 } 589 590 // Otherwise emit the definition. 591 EmitGlobalDefinition(GD); 592 } 593 594 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 595 const ValueDecl *D = GD.getDecl(); 596 597 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 598 EmitCXXConstructor(CD, GD.getCtorType()); 599 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 600 EmitCXXDestructor(DD, GD.getDtorType()); 601 else if (isa<FunctionDecl>(D)) 602 EmitGlobalFunctionDefinition(GD); 603 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 604 EmitGlobalVarDefinition(VD); 605 else { 606 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 607 } 608 } 609 610 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 611 /// module, create and return an llvm Function with the specified type. If there 612 /// is something in the module with the specified name, return it potentially 613 /// bitcasted to the right type. 614 /// 615 /// If D is non-null, it specifies a decl that correspond to this. This is used 616 /// to set the attributes on the function when it is first created. 617 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 618 const llvm::Type *Ty, 619 GlobalDecl D) { 620 // Lookup the entry, lazily creating it if necessary. 621 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 622 if (Entry) { 623 if (Entry->getType()->getElementType() == Ty) 624 return Entry; 625 626 // Make sure the result is of the correct type. 627 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 628 return llvm::ConstantExpr::getBitCast(Entry, PTy); 629 } 630 631 // This is the first use or definition of a mangled name. If there is a 632 // deferred decl with this name, remember that we need to emit it at the end 633 // of the file. 634 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 635 DeferredDecls.find(MangledName); 636 if (DDI != DeferredDecls.end()) { 637 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 638 // list, and remove it from DeferredDecls (since we don't need it anymore). 639 DeferredDeclsToEmit.push_back(DDI->second); 640 DeferredDecls.erase(DDI); 641 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 642 // If this the first reference to a C++ inline function in a class, queue up 643 // the deferred function body for emission. These are not seen as 644 // top-level declarations. 645 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 646 DeferredDeclsToEmit.push_back(D); 647 } 648 649 // This function doesn't have a complete type (for example, the return 650 // type is an incomplete struct). Use a fake type instead, and make 651 // sure not to try to set attributes. 652 bool IsIncompleteFunction = false; 653 if (!isa<llvm::FunctionType>(Ty)) { 654 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 655 std::vector<const llvm::Type*>(), false); 656 IsIncompleteFunction = true; 657 } 658 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 659 llvm::Function::ExternalLinkage, 660 "", &getModule()); 661 F->setName(MangledName); 662 if (D.getDecl()) 663 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 664 IsIncompleteFunction); 665 Entry = F; 666 return F; 667 } 668 669 /// GetAddrOfFunction - Return the address of the given function. If Ty is 670 /// non-null, then this function will use the specified type if it has to 671 /// create it (this occurs when we see a definition of the function). 672 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 673 const llvm::Type *Ty) { 674 // If there was no specific requested type, just convert it now. 675 if (!Ty) 676 Ty = getTypes().ConvertType(GD.getDecl()->getType()); 677 return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD); 678 } 679 680 /// CreateRuntimeFunction - Create a new runtime function with the specified 681 /// type and name. 682 llvm::Constant * 683 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 684 const char *Name) { 685 // Convert Name to be a uniqued string from the IdentifierInfo table. 686 Name = getContext().Idents.get(Name).getName(); 687 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 688 } 689 690 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 691 /// create and return an llvm GlobalVariable with the specified type. If there 692 /// is something in the module with the specified name, return it potentially 693 /// bitcasted to the right type. 694 /// 695 /// If D is non-null, it specifies a decl that correspond to this. This is used 696 /// to set the attributes on the global when it is first created. 697 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 698 const llvm::PointerType*Ty, 699 const VarDecl *D) { 700 // Lookup the entry, lazily creating it if necessary. 701 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 702 if (Entry) { 703 if (Entry->getType() == Ty) 704 return Entry; 705 706 // Make sure the result is of the correct type. 707 return llvm::ConstantExpr::getBitCast(Entry, Ty); 708 } 709 710 // This is the first use or definition of a mangled name. If there is a 711 // deferred decl with this name, remember that we need to emit it at the end 712 // of the file. 713 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 714 DeferredDecls.find(MangledName); 715 if (DDI != DeferredDecls.end()) { 716 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 717 // list, and remove it from DeferredDecls (since we don't need it anymore). 718 DeferredDeclsToEmit.push_back(DDI->second); 719 DeferredDecls.erase(DDI); 720 } 721 722 llvm::GlobalVariable *GV = 723 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 724 llvm::GlobalValue::ExternalLinkage, 725 0, "", 0, 726 false, Ty->getAddressSpace()); 727 GV->setName(MangledName); 728 729 // Handle things which are present even on external declarations. 730 if (D) { 731 // FIXME: This code is overly simple and should be merged with other global 732 // handling. 733 GV->setConstant(D->getType().isConstant(Context)); 734 735 // FIXME: Merge with other attribute handling code. 736 if (D->getStorageClass() == VarDecl::PrivateExtern) 737 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 738 739 if (D->hasAttr<WeakAttr>() || 740 D->hasAttr<WeakImportAttr>()) 741 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 742 743 GV->setThreadLocal(D->isThreadSpecified()); 744 } 745 746 return Entry = GV; 747 } 748 749 750 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 751 /// given global variable. If Ty is non-null and if the global doesn't exist, 752 /// then it will be greated with the specified type instead of whatever the 753 /// normal requested type would be. 754 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 755 const llvm::Type *Ty) { 756 assert(D->hasGlobalStorage() && "Not a global variable"); 757 QualType ASTTy = D->getType(); 758 if (Ty == 0) 759 Ty = getTypes().ConvertTypeForMem(ASTTy); 760 761 const llvm::PointerType *PTy = 762 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 763 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 764 } 765 766 /// CreateRuntimeVariable - Create a new runtime global variable with the 767 /// specified type and name. 768 llvm::Constant * 769 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 770 const char *Name) { 771 // Convert Name to be a uniqued string from the IdentifierInfo table. 772 Name = getContext().Idents.get(Name).getName(); 773 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 774 } 775 776 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 777 assert(!D->getInit() && "Cannot emit definite definitions here!"); 778 779 if (MayDeferGeneration(D)) { 780 // If we have not seen a reference to this variable yet, place it 781 // into the deferred declarations table to be emitted if needed 782 // later. 783 const char *MangledName = getMangledName(D); 784 if (GlobalDeclMap.count(MangledName) == 0) { 785 DeferredDecls[MangledName] = GlobalDecl(D); 786 return; 787 } 788 } 789 790 // The tentative definition is the only definition. 791 EmitGlobalVarDefinition(D); 792 } 793 794 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 795 llvm::Constant *Init = 0; 796 QualType ASTTy = D->getType(); 797 798 if (D->getInit() == 0) { 799 // This is a tentative definition; tentative definitions are 800 // implicitly initialized with { 0 }. 801 // 802 // Note that tentative definitions are only emitted at the end of 803 // a translation unit, so they should never have incomplete 804 // type. In addition, EmitTentativeDefinition makes sure that we 805 // never attempt to emit a tentative definition if a real one 806 // exists. A use may still exists, however, so we still may need 807 // to do a RAUW. 808 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 809 Init = getLLVMContext().getNullValue(getTypes().ConvertTypeForMem(ASTTy)); 810 } else { 811 Init = EmitConstantExpr(D->getInit(), D->getType()); 812 if (!Init) { 813 ErrorUnsupported(D, "static initializer"); 814 QualType T = D->getInit()->getType(); 815 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 816 } 817 } 818 819 const llvm::Type* InitType = Init->getType(); 820 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 821 822 // Strip off a bitcast if we got one back. 823 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 824 assert(CE->getOpcode() == llvm::Instruction::BitCast); 825 Entry = CE->getOperand(0); 826 } 827 828 // Entry is now either a Function or GlobalVariable. 829 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 830 831 // We have a definition after a declaration with the wrong type. 832 // We must make a new GlobalVariable* and update everything that used OldGV 833 // (a declaration or tentative definition) with the new GlobalVariable* 834 // (which will be a definition). 835 // 836 // This happens if there is a prototype for a global (e.g. 837 // "extern int x[];") and then a definition of a different type (e.g. 838 // "int x[10];"). This also happens when an initializer has a different type 839 // from the type of the global (this happens with unions). 840 if (GV == 0 || 841 GV->getType()->getElementType() != InitType || 842 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 843 844 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 845 GlobalDeclMap.erase(getMangledName(D)); 846 847 // Make a new global with the correct type, this is now guaranteed to work. 848 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 849 GV->takeName(cast<llvm::GlobalValue>(Entry)); 850 851 // Replace all uses of the old global with the new global 852 llvm::Constant *NewPtrForOldDecl = 853 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 854 Entry->replaceAllUsesWith(NewPtrForOldDecl); 855 856 // Erase the old global, since it is no longer used. 857 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 858 } 859 860 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 861 SourceManager &SM = Context.getSourceManager(); 862 AddAnnotation(EmitAnnotateAttr(GV, AA, 863 SM.getInstantiationLineNumber(D->getLocation()))); 864 } 865 866 GV->setInitializer(Init); 867 GV->setConstant(D->getType().isConstant(Context)); 868 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 869 870 // Set the llvm linkage type as appropriate. 871 if (D->getStorageClass() == VarDecl::Static) 872 GV->setLinkage(llvm::Function::InternalLinkage); 873 else if (D->hasAttr<DLLImportAttr>()) 874 GV->setLinkage(llvm::Function::DLLImportLinkage); 875 else if (D->hasAttr<DLLExportAttr>()) 876 GV->setLinkage(llvm::Function::DLLExportLinkage); 877 else if (D->hasAttr<WeakAttr>()) 878 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 879 else if (!CompileOpts.NoCommon && 880 (!D->hasExternalStorage() && !D->getInit())) 881 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 882 else 883 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 884 885 SetCommonAttributes(D, GV); 886 887 // Emit global variable debug information. 888 if (CGDebugInfo *DI = getDebugInfo()) { 889 DI->setLocation(D->getLocation()); 890 DI->EmitGlobalVariable(GV, D); 891 } 892 } 893 894 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 895 /// implement a function with no prototype, e.g. "int foo() {}". If there are 896 /// existing call uses of the old function in the module, this adjusts them to 897 /// call the new function directly. 898 /// 899 /// This is not just a cleanup: the always_inline pass requires direct calls to 900 /// functions to be able to inline them. If there is a bitcast in the way, it 901 /// won't inline them. Instcombine normally deletes these calls, but it isn't 902 /// run at -O0. 903 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 904 llvm::Function *NewFn) { 905 // If we're redefining a global as a function, don't transform it. 906 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 907 if (OldFn == 0) return; 908 909 const llvm::Type *NewRetTy = NewFn->getReturnType(); 910 llvm::SmallVector<llvm::Value*, 4> ArgList; 911 912 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 913 UI != E; ) { 914 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 915 unsigned OpNo = UI.getOperandNo(); 916 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 917 if (!CI || OpNo != 0) continue; 918 919 // If the return types don't match exactly, and if the call isn't dead, then 920 // we can't transform this call. 921 if (CI->getType() != NewRetTy && !CI->use_empty()) 922 continue; 923 924 // If the function was passed too few arguments, don't transform. If extra 925 // arguments were passed, we silently drop them. If any of the types 926 // mismatch, we don't transform. 927 unsigned ArgNo = 0; 928 bool DontTransform = false; 929 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 930 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 931 if (CI->getNumOperands()-1 == ArgNo || 932 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 933 DontTransform = true; 934 break; 935 } 936 } 937 if (DontTransform) 938 continue; 939 940 // Okay, we can transform this. Create the new call instruction and copy 941 // over the required information. 942 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 943 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 944 ArgList.end(), "", CI); 945 ArgList.clear(); 946 if (NewCall->getType() != llvm::Type::VoidTy) 947 NewCall->takeName(CI); 948 NewCall->setCallingConv(CI->getCallingConv()); 949 NewCall->setAttributes(CI->getAttributes()); 950 951 // Finally, remove the old call, replacing any uses with the new one. 952 if (!CI->use_empty()) 953 CI->replaceAllUsesWith(NewCall); 954 CI->eraseFromParent(); 955 } 956 } 957 958 959 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 960 const llvm::FunctionType *Ty; 961 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 962 963 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 964 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 965 966 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 967 } else { 968 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 969 970 // As a special case, make sure that definitions of K&R function 971 // "type foo()" aren't declared as varargs (which forces the backend 972 // to do unnecessary work). 973 if (D->getType()->isFunctionNoProtoType()) { 974 assert(Ty->isVarArg() && "Didn't lower type as expected"); 975 // Due to stret, the lowered function could have arguments. 976 // Just create the same type as was lowered by ConvertType 977 // but strip off the varargs bit. 978 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 979 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 980 } 981 } 982 983 // Get or create the prototype for the function. 984 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 985 986 // Strip off a bitcast if we got one back. 987 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 988 assert(CE->getOpcode() == llvm::Instruction::BitCast); 989 Entry = CE->getOperand(0); 990 } 991 992 993 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 994 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 995 996 // If the types mismatch then we have to rewrite the definition. 997 assert(OldFn->isDeclaration() && 998 "Shouldn't replace non-declaration"); 999 1000 // F is the Function* for the one with the wrong type, we must make a new 1001 // Function* and update everything that used F (a declaration) with the new 1002 // Function* (which will be a definition). 1003 // 1004 // This happens if there is a prototype for a function 1005 // (e.g. "int f()") and then a definition of a different type 1006 // (e.g. "int f(int x)"). Start by making a new function of the 1007 // correct type, RAUW, then steal the name. 1008 GlobalDeclMap.erase(getMangledName(D)); 1009 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1010 NewFn->takeName(OldFn); 1011 1012 // If this is an implementation of a function without a prototype, try to 1013 // replace any existing uses of the function (which may be calls) with uses 1014 // of the new function 1015 if (D->getType()->isFunctionNoProtoType()) { 1016 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1017 OldFn->removeDeadConstantUsers(); 1018 } 1019 1020 // Replace uses of F with the Function we will endow with a body. 1021 if (!Entry->use_empty()) { 1022 llvm::Constant *NewPtrForOldDecl = 1023 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1024 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1025 } 1026 1027 // Ok, delete the old function now, which is dead. 1028 OldFn->eraseFromParent(); 1029 1030 Entry = NewFn; 1031 } 1032 1033 llvm::Function *Fn = cast<llvm::Function>(Entry); 1034 1035 CodeGenFunction(*this).GenerateCode(D, Fn); 1036 1037 SetFunctionDefinitionAttributes(D, Fn); 1038 SetLLVMFunctionAttributesForDefinition(D, Fn); 1039 1040 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1041 AddGlobalCtor(Fn, CA->getPriority()); 1042 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1043 AddGlobalDtor(Fn, DA->getPriority()); 1044 } 1045 1046 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1047 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1048 assert(AA && "Not an alias?"); 1049 1050 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1051 1052 // Unique the name through the identifier table. 1053 const char *AliaseeName = AA->getAliasee().c_str(); 1054 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 1055 1056 // Create a reference to the named value. This ensures that it is emitted 1057 // if a deferred decl. 1058 llvm::Constant *Aliasee; 1059 if (isa<llvm::FunctionType>(DeclTy)) 1060 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1061 else 1062 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1063 llvm::PointerType::getUnqual(DeclTy), 0); 1064 1065 // Create the new alias itself, but don't set a name yet. 1066 llvm::GlobalValue *GA = 1067 new llvm::GlobalAlias(Aliasee->getType(), 1068 llvm::Function::ExternalLinkage, 1069 "", Aliasee, &getModule()); 1070 1071 // See if there is already something with the alias' name in the module. 1072 const char *MangledName = getMangledName(D); 1073 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1074 1075 if (Entry && !Entry->isDeclaration()) { 1076 // If there is a definition in the module, then it wins over the alias. 1077 // This is dubious, but allow it to be safe. Just ignore the alias. 1078 GA->eraseFromParent(); 1079 return; 1080 } 1081 1082 if (Entry) { 1083 // If there is a declaration in the module, then we had an extern followed 1084 // by the alias, as in: 1085 // extern int test6(); 1086 // ... 1087 // int test6() __attribute__((alias("test7"))); 1088 // 1089 // Remove it and replace uses of it with the alias. 1090 1091 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1092 Entry->getType())); 1093 Entry->eraseFromParent(); 1094 } 1095 1096 // Now we know that there is no conflict, set the name. 1097 Entry = GA; 1098 GA->setName(MangledName); 1099 1100 // Set attributes which are particular to an alias; this is a 1101 // specialization of the attributes which may be set on a global 1102 // variable/function. 1103 if (D->hasAttr<DLLExportAttr>()) { 1104 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1105 // The dllexport attribute is ignored for undefined symbols. 1106 if (FD->getBody()) 1107 GA->setLinkage(llvm::Function::DLLExportLinkage); 1108 } else { 1109 GA->setLinkage(llvm::Function::DLLExportLinkage); 1110 } 1111 } else if (D->hasAttr<WeakAttr>() || 1112 D->hasAttr<WeakImportAttr>()) { 1113 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1114 } 1115 1116 SetCommonAttributes(D, GA); 1117 } 1118 1119 /// getBuiltinLibFunction - Given a builtin id for a function like 1120 /// "__builtin_fabsf", return a Function* for "fabsf". 1121 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 1122 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1123 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1124 "isn't a lib fn"); 1125 1126 // Get the name, skip over the __builtin_ prefix (if necessary). 1127 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1128 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1129 Name += 10; 1130 1131 // Get the type for the builtin. 1132 ASTContext::GetBuiltinTypeError Error; 1133 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1134 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1135 1136 const llvm::FunctionType *Ty = 1137 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1138 1139 // Unique the name through the identifier table. 1140 Name = getContext().Idents.get(Name).getName(); 1141 // FIXME: param attributes for sext/zext etc. 1142 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl()); 1143 } 1144 1145 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1146 unsigned NumTys) { 1147 return llvm::Intrinsic::getDeclaration(&getModule(), 1148 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1149 } 1150 1151 llvm::Function *CodeGenModule::getMemCpyFn() { 1152 if (MemCpyFn) return MemCpyFn; 1153 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1154 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1155 } 1156 1157 llvm::Function *CodeGenModule::getMemMoveFn() { 1158 if (MemMoveFn) return MemMoveFn; 1159 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1160 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1161 } 1162 1163 llvm::Function *CodeGenModule::getMemSetFn() { 1164 if (MemSetFn) return MemSetFn; 1165 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1166 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1167 } 1168 1169 static void appendFieldAndPadding(CodeGenModule &CGM, 1170 std::vector<llvm::Constant*>& Fields, 1171 FieldDecl *FieldD, FieldDecl *NextFieldD, 1172 llvm::Constant* Field, 1173 RecordDecl* RD, const llvm::StructType *STy) { 1174 // Append the field. 1175 Fields.push_back(Field); 1176 1177 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1178 1179 int NextStructFieldNo; 1180 if (!NextFieldD) { 1181 NextStructFieldNo = STy->getNumElements(); 1182 } else { 1183 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1184 } 1185 1186 // Append padding 1187 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1188 llvm::Constant *C = 1189 CGM.getLLVMContext().getNullValue(STy->getElementType(StructFieldNo + 1)); 1190 1191 Fields.push_back(C); 1192 } 1193 } 1194 1195 llvm::Constant *CodeGenModule:: 1196 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1197 std::string str; 1198 unsigned StringLength = 0; 1199 1200 bool isUTF16 = false; 1201 if (Literal->containsNonAsciiOrNull()) { 1202 // Convert from UTF-8 to UTF-16. 1203 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1204 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1205 UTF16 *ToPtr = &ToBuf[0]; 1206 1207 ConversionResult Result; 1208 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1209 &ToPtr, ToPtr+Literal->getByteLength(), 1210 strictConversion); 1211 if (Result == conversionOK) { 1212 // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings 1213 // without doing more surgery to this routine. Since we aren't explicitly 1214 // checking for endianness here, it's also a bug (when generating code for 1215 // a target that doesn't match the host endianness). Modeling this as an 1216 // i16 array is likely the cleanest solution. 1217 StringLength = ToPtr-&ToBuf[0]; 1218 str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars. 1219 isUTF16 = true; 1220 } else if (Result == sourceIllegal) { 1221 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string. 1222 str.assign(Literal->getStrData(), Literal->getByteLength()); 1223 StringLength = str.length(); 1224 } else 1225 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1226 1227 } else { 1228 str.assign(Literal->getStrData(), Literal->getByteLength()); 1229 StringLength = str.length(); 1230 } 1231 llvm::StringMapEntry<llvm::Constant *> &Entry = 1232 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1233 1234 if (llvm::Constant *C = Entry.getValue()) 1235 return C; 1236 1237 llvm::Constant *Zero = getLLVMContext().getNullValue(llvm::Type::Int32Ty); 1238 llvm::Constant *Zeros[] = { Zero, Zero }; 1239 1240 if (!CFConstantStringClassRef) { 1241 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1242 Ty = llvm::ArrayType::get(Ty, 0); 1243 1244 // FIXME: This is fairly broken if __CFConstantStringClassReference is 1245 // already defined, in that it will get renamed and the user will most 1246 // likely see an opaque error message. This is a general issue with relying 1247 // on particular names. 1248 llvm::GlobalVariable *GV = 1249 new llvm::GlobalVariable(getModule(), Ty, false, 1250 llvm::GlobalVariable::ExternalLinkage, 0, 1251 "__CFConstantStringClassReference"); 1252 1253 // Decay array -> ptr 1254 CFConstantStringClassRef = 1255 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1256 } 1257 1258 QualType CFTy = getContext().getCFConstantStringType(); 1259 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1260 1261 const llvm::StructType *STy = 1262 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1263 1264 std::vector<llvm::Constant*> Fields; 1265 RecordDecl::field_iterator Field = CFRD->field_begin(); 1266 1267 // Class pointer. 1268 FieldDecl *CurField = *Field++; 1269 FieldDecl *NextField = *Field++; 1270 appendFieldAndPadding(*this, Fields, CurField, NextField, 1271 CFConstantStringClassRef, CFRD, STy); 1272 1273 // Flags. 1274 CurField = NextField; 1275 NextField = *Field++; 1276 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1277 appendFieldAndPadding(*this, Fields, CurField, NextField, 1278 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1279 : llvm::ConstantInt::get(Ty, 0x07C8), 1280 CFRD, STy); 1281 1282 // String pointer. 1283 CurField = NextField; 1284 NextField = *Field++; 1285 llvm::Constant *C = llvm::ConstantArray::get(str); 1286 1287 const char *Sect, *Prefix; 1288 bool isConstant; 1289 if (isUTF16) { 1290 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1291 Sect = getContext().Target.getUnicodeStringSection(); 1292 // FIXME: Why does GCC not set constant here? 1293 isConstant = false; 1294 } else { 1295 Prefix = getContext().Target.getStringSymbolPrefix(true); 1296 Sect = getContext().Target.getCFStringDataSection(); 1297 // FIXME: -fwritable-strings should probably affect this, but we 1298 // are following gcc here. 1299 isConstant = true; 1300 } 1301 llvm::GlobalVariable *GV = 1302 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 1303 llvm::GlobalValue::InternalLinkage, 1304 C, Prefix); 1305 if (Sect) 1306 GV->setSection(Sect); 1307 if (isUTF16) { 1308 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1309 GV->setAlignment(Align); 1310 } 1311 appendFieldAndPadding(*this, Fields, CurField, NextField, 1312 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1313 CFRD, STy); 1314 1315 // String length. 1316 CurField = NextField; 1317 NextField = 0; 1318 Ty = getTypes().ConvertType(getContext().LongTy); 1319 appendFieldAndPadding(*this, Fields, CurField, NextField, 1320 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1321 1322 // The struct. 1323 C = llvm::ConstantStruct::get(STy, Fields); 1324 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1325 llvm::GlobalVariable::InternalLinkage, C, 1326 getContext().Target.getCFStringSymbolPrefix()); 1327 if (const char *Sect = getContext().Target.getCFStringSection()) 1328 GV->setSection(Sect); 1329 Entry.setValue(GV); 1330 1331 return GV; 1332 } 1333 1334 /// GetStringForStringLiteral - Return the appropriate bytes for a 1335 /// string literal, properly padded to match the literal type. 1336 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1337 const char *StrData = E->getStrData(); 1338 unsigned Len = E->getByteLength(); 1339 1340 const ConstantArrayType *CAT = 1341 getContext().getAsConstantArrayType(E->getType()); 1342 assert(CAT && "String isn't pointer or array!"); 1343 1344 // Resize the string to the right size. 1345 std::string Str(StrData, StrData+Len); 1346 uint64_t RealLen = CAT->getSize().getZExtValue(); 1347 1348 if (E->isWide()) 1349 RealLen *= getContext().Target.getWCharWidth()/8; 1350 1351 Str.resize(RealLen, '\0'); 1352 1353 return Str; 1354 } 1355 1356 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1357 /// constant array for the given string literal. 1358 llvm::Constant * 1359 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1360 // FIXME: This can be more efficient. 1361 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1362 } 1363 1364 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1365 /// array for the given ObjCEncodeExpr node. 1366 llvm::Constant * 1367 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1368 std::string Str; 1369 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1370 1371 return GetAddrOfConstantCString(Str); 1372 } 1373 1374 1375 /// GenerateWritableString -- Creates storage for a string literal. 1376 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1377 bool constant, 1378 CodeGenModule &CGM, 1379 const char *GlobalName) { 1380 // Create Constant for this string literal. Don't add a '\0'. 1381 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1382 1383 // Create a global variable for this string 1384 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1385 llvm::GlobalValue::InternalLinkage, 1386 C, GlobalName); 1387 } 1388 1389 /// GetAddrOfConstantString - Returns a pointer to a character array 1390 /// containing the literal. This contents are exactly that of the 1391 /// given string, i.e. it will not be null terminated automatically; 1392 /// see GetAddrOfConstantCString. Note that whether the result is 1393 /// actually a pointer to an LLVM constant depends on 1394 /// Feature.WriteableStrings. 1395 /// 1396 /// The result has pointer to array type. 1397 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1398 const char *GlobalName) { 1399 bool IsConstant = !Features.WritableStrings; 1400 1401 // Get the default prefix if a name wasn't specified. 1402 if (!GlobalName) 1403 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1404 1405 // Don't share any string literals if strings aren't constant. 1406 if (!IsConstant) 1407 return GenerateStringLiteral(str, false, *this, GlobalName); 1408 1409 llvm::StringMapEntry<llvm::Constant *> &Entry = 1410 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1411 1412 if (Entry.getValue()) 1413 return Entry.getValue(); 1414 1415 // Create a global variable for this. 1416 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1417 Entry.setValue(C); 1418 return C; 1419 } 1420 1421 /// GetAddrOfConstantCString - Returns a pointer to a character 1422 /// array containing the literal and a terminating '\-' 1423 /// character. The result has pointer to array type. 1424 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1425 const char *GlobalName){ 1426 return GetAddrOfConstantString(str + '\0', GlobalName); 1427 } 1428 1429 /// EmitObjCPropertyImplementations - Emit information for synthesized 1430 /// properties for an implementation. 1431 void CodeGenModule::EmitObjCPropertyImplementations(const 1432 ObjCImplementationDecl *D) { 1433 for (ObjCImplementationDecl::propimpl_iterator 1434 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1435 ObjCPropertyImplDecl *PID = *i; 1436 1437 // Dynamic is just for type-checking. 1438 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1439 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1440 1441 // Determine which methods need to be implemented, some may have 1442 // been overridden. Note that ::isSynthesized is not the method 1443 // we want, that just indicates if the decl came from a 1444 // property. What we want to know is if the method is defined in 1445 // this implementation. 1446 if (!D->getInstanceMethod(PD->getGetterName())) 1447 CodeGenFunction(*this).GenerateObjCGetter( 1448 const_cast<ObjCImplementationDecl *>(D), PID); 1449 if (!PD->isReadOnly() && 1450 !D->getInstanceMethod(PD->getSetterName())) 1451 CodeGenFunction(*this).GenerateObjCSetter( 1452 const_cast<ObjCImplementationDecl *>(D), PID); 1453 } 1454 } 1455 } 1456 1457 /// EmitNamespace - Emit all declarations in a namespace. 1458 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1459 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1460 I != E; ++I) 1461 EmitTopLevelDecl(*I); 1462 } 1463 1464 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1465 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1466 if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { 1467 ErrorUnsupported(LSD, "linkage spec"); 1468 return; 1469 } 1470 1471 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1472 I != E; ++I) 1473 EmitTopLevelDecl(*I); 1474 } 1475 1476 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1477 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1478 // If an error has occurred, stop code generation, but continue 1479 // parsing and semantic analysis (to ensure all warnings and errors 1480 // are emitted). 1481 if (Diags.hasErrorOccurred()) 1482 return; 1483 1484 // Ignore dependent declarations. 1485 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1486 return; 1487 1488 switch (D->getKind()) { 1489 case Decl::CXXMethod: 1490 case Decl::Function: 1491 // Skip function templates 1492 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1493 return; 1494 1495 // Fall through 1496 1497 case Decl::Var: 1498 EmitGlobal(GlobalDecl(cast<ValueDecl>(D))); 1499 break; 1500 1501 // C++ Decls 1502 case Decl::Namespace: 1503 EmitNamespace(cast<NamespaceDecl>(D)); 1504 break; 1505 // No code generation needed. 1506 case Decl::Using: 1507 case Decl::ClassTemplate: 1508 case Decl::FunctionTemplate: 1509 break; 1510 case Decl::CXXConstructor: 1511 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1512 break; 1513 case Decl::CXXDestructor: 1514 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1515 break; 1516 1517 case Decl::StaticAssert: 1518 // Nothing to do. 1519 break; 1520 1521 // Objective-C Decls 1522 1523 // Forward declarations, no (immediate) code generation. 1524 case Decl::ObjCClass: 1525 case Decl::ObjCForwardProtocol: 1526 case Decl::ObjCCategory: 1527 case Decl::ObjCInterface: 1528 break; 1529 1530 case Decl::ObjCProtocol: 1531 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1532 break; 1533 1534 case Decl::ObjCCategoryImpl: 1535 // Categories have properties but don't support synthesize so we 1536 // can ignore them here. 1537 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1538 break; 1539 1540 case Decl::ObjCImplementation: { 1541 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1542 EmitObjCPropertyImplementations(OMD); 1543 Runtime->GenerateClass(OMD); 1544 break; 1545 } 1546 case Decl::ObjCMethod: { 1547 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1548 // If this is not a prototype, emit the body. 1549 if (OMD->getBody()) 1550 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1551 break; 1552 } 1553 case Decl::ObjCCompatibleAlias: 1554 // compatibility-alias is a directive and has no code gen. 1555 break; 1556 1557 case Decl::LinkageSpec: 1558 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1559 break; 1560 1561 case Decl::FileScopeAsm: { 1562 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1563 std::string AsmString(AD->getAsmString()->getStrData(), 1564 AD->getAsmString()->getByteLength()); 1565 1566 const std::string &S = getModule().getModuleInlineAsm(); 1567 if (S.empty()) 1568 getModule().setModuleInlineAsm(AsmString); 1569 else 1570 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1571 break; 1572 } 1573 1574 default: 1575 // Make sure we handled everything we should, every other kind is a 1576 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1577 // function. Need to recode Decl::Kind to do that easily. 1578 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1579 } 1580 } 1581