1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
44 
45   if (!Features.ObjC1)
46     Runtime = 0;
47   else if (!Features.NeXTRuntime)
48     Runtime = CreateGNUObjCRuntime(*this);
49   else if (Features.ObjCNonFragileABI)
50     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
51   else
52     Runtime = CreateMacObjCRuntime(*this);
53 
54   // If debug info generation is enabled, create the CGDebugInfo object.
55   DebugInfo = 0;
56   if (CompileOpts.DebugInfo)
57     DebugInfo = new CGDebugInfo(this, &Context.Target);
58 }
59 
60 CodeGenModule::~CodeGenModule() {
61   delete Runtime;
62   delete DebugInfo;
63 }
64 
65 void CodeGenModule::Release() {
66   EmitDeferred();
67   if (Runtime)
68     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
69       AddGlobalCtor(ObjCInitFunction);
70   EmitCtorList(GlobalCtors, "llvm.global_ctors");
71   EmitCtorList(GlobalDtors, "llvm.global_dtors");
72   EmitAnnotations();
73   EmitLLVMUsed();
74 }
75 
76 /// ErrorUnsupported - Print out an error that codegen doesn't support the
77 /// specified stmt yet.
78 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
79                                      bool OmitOnError) {
80   if (OmitOnError && getDiags().hasErrorOccurred())
81     return;
82   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
83                                                "cannot compile this %0 yet");
84   std::string Msg = Type;
85   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
86     << Msg << S->getSourceRange();
87 }
88 
89 /// ErrorUnsupported - Print out an error that codegen doesn't support the
90 /// specified decl yet.
91 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
92                                      bool OmitOnError) {
93   if (OmitOnError && getDiags().hasErrorOccurred())
94     return;
95   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
96                                                "cannot compile this %0 yet");
97   std::string Msg = Type;
98   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
99 }
100 
101 LangOptions::VisibilityMode
102 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
103   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
104     if (VD->getStorageClass() == VarDecl::PrivateExtern)
105       return LangOptions::Hidden;
106 
107   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
108     switch (attr->getVisibility()) {
109     default: assert(0 && "Unknown visibility!");
110     case VisibilityAttr::DefaultVisibility:
111       return LangOptions::Default;
112     case VisibilityAttr::HiddenVisibility:
113       return LangOptions::Hidden;
114     case VisibilityAttr::ProtectedVisibility:
115       return LangOptions::Protected;
116     }
117   }
118 
119   return getLangOptions().getVisibilityMode();
120 }
121 
122 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
123                                         const Decl *D) const {
124   // Internal definitions always have default visibility.
125   if (GV->hasLocalLinkage()) {
126     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
127     return;
128   }
129 
130   switch (getDeclVisibilityMode(D)) {
131   default: assert(0 && "Unknown visibility!");
132   case LangOptions::Default:
133     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
134   case LangOptions::Hidden:
135     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
136   case LangOptions::Protected:
137     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
138   }
139 }
140 
141 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
142   const NamedDecl *ND = GD.getDecl();
143 
144   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
145     return getMangledCXXCtorName(D, GD.getCtorType());
146   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
147     return getMangledCXXDtorName(D, GD.getDtorType());
148 
149   return getMangledName(ND);
150 }
151 
152 /// \brief Retrieves the mangled name for the given declaration.
153 ///
154 /// If the given declaration requires a mangled name, returns an
155 /// const char* containing the mangled name.  Otherwise, returns
156 /// the unmangled name.
157 ///
158 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
159   // In C, functions with no attributes never need to be mangled. Fastpath them.
160   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
161     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
162     return ND->getNameAsCString();
163   }
164 
165   llvm::SmallString<256> Name;
166   llvm::raw_svector_ostream Out(Name);
167   if (!mangleName(ND, Context, Out)) {
168     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
169     return ND->getNameAsCString();
170   }
171 
172   Name += '\0';
173   return UniqueMangledName(Name.begin(), Name.end());
174 }
175 
176 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
177                                              const char *NameEnd) {
178   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
179 
180   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
181 }
182 
183 /// AddGlobalCtor - Add a function to the list that will be called before
184 /// main() runs.
185 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
186   // FIXME: Type coercion of void()* types.
187   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
188 }
189 
190 /// AddGlobalDtor - Add a function to the list that will be called
191 /// when the module is unloaded.
192 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
193   // FIXME: Type coercion of void()* types.
194   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
195 }
196 
197 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
198   // Ctor function type is void()*.
199   llvm::FunctionType* CtorFTy =
200     llvm::FunctionType::get(llvm::Type::VoidTy,
201                             std::vector<const llvm::Type*>(),
202                             false);
203   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
204 
205   // Get the type of a ctor entry, { i32, void ()* }.
206   llvm::StructType* CtorStructTy =
207     llvm::StructType::get(llvm::Type::Int32Ty,
208                           llvm::PointerType::getUnqual(CtorFTy), NULL);
209 
210   // Construct the constructor and destructor arrays.
211   std::vector<llvm::Constant*> Ctors;
212   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
213     std::vector<llvm::Constant*> S;
214     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
215     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
216     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
217   }
218 
219   if (!Ctors.empty()) {
220     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
221     new llvm::GlobalVariable(TheModule, AT, false,
222                              llvm::GlobalValue::AppendingLinkage,
223                              llvm::ConstantArray::get(AT, Ctors),
224                              GlobalName);
225   }
226 }
227 
228 void CodeGenModule::EmitAnnotations() {
229   if (Annotations.empty())
230     return;
231 
232   // Create a new global variable for the ConstantStruct in the Module.
233   llvm::Constant *Array =
234   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
235                                                 Annotations.size()),
236                            Annotations);
237   llvm::GlobalValue *gv =
238   new llvm::GlobalVariable(TheModule, Array->getType(), false,
239                            llvm::GlobalValue::AppendingLinkage, Array,
240                            "llvm.global.annotations");
241   gv->setSection("llvm.metadata");
242 }
243 
244 static CodeGenModule::GVALinkage
245 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
246                       const LangOptions &Features) {
247   // The kind of external linkage this function will have, if it is not
248   // inline or static.
249   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
250   if (Context.getLangOptions().CPlusPlus &&
251       (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) &&
252       !FD->isExplicitSpecialization())
253     External = CodeGenModule::GVA_TemplateInstantiation;
254 
255   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
256     // C++ member functions defined inside the class are always inline.
257     if (MD->isInline() || !MD->isOutOfLine())
258       return CodeGenModule::GVA_CXXInline;
259 
260     return External;
261   }
262 
263   // "static" functions get internal linkage.
264   if (FD->getStorageClass() == FunctionDecl::Static)
265     return CodeGenModule::GVA_Internal;
266 
267   if (!FD->isInline())
268     return External;
269 
270   // If the inline function explicitly has the GNU inline attribute on it, or if
271   // this is C89 mode, we use to GNU semantics.
272   if (!Features.C99 && !Features.CPlusPlus) {
273     // extern inline in GNU mode is like C99 inline.
274     if (FD->getStorageClass() == FunctionDecl::Extern)
275       return CodeGenModule::GVA_C99Inline;
276     // Normal inline is a strong symbol.
277     return CodeGenModule::GVA_StrongExternal;
278   } else if (FD->hasActiveGNUInlineAttribute(Context)) {
279     // GCC in C99 mode seems to use a different decision-making
280     // process for extern inline, which factors in previous
281     // declarations.
282     if (FD->isExternGNUInline(Context))
283       return CodeGenModule::GVA_C99Inline;
284     // Normal inline is a strong symbol.
285     return External;
286   }
287 
288   // The definition of inline changes based on the language.  Note that we
289   // have already handled "static inline" above, with the GVA_Internal case.
290   if (Features.CPlusPlus)  // inline and extern inline.
291     return CodeGenModule::GVA_CXXInline;
292 
293   assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
294   if (FD->isC99InlineDefinition())
295     return CodeGenModule::GVA_C99Inline;
296 
297   return CodeGenModule::GVA_StrongExternal;
298 }
299 
300 /// SetFunctionDefinitionAttributes - Set attributes for a global.
301 ///
302 /// FIXME: This is currently only done for aliases and functions, but not for
303 /// variables (these details are set in EmitGlobalVarDefinition for variables).
304 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
305                                                     llvm::GlobalValue *GV) {
306   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
307 
308   if (Linkage == GVA_Internal) {
309     GV->setLinkage(llvm::Function::InternalLinkage);
310   } else if (D->hasAttr<DLLExportAttr>()) {
311     GV->setLinkage(llvm::Function::DLLExportLinkage);
312   } else if (D->hasAttr<WeakAttr>()) {
313     GV->setLinkage(llvm::Function::WeakAnyLinkage);
314   } else if (Linkage == GVA_C99Inline) {
315     // In C99 mode, 'inline' functions are guaranteed to have a strong
316     // definition somewhere else, so we can use available_externally linkage.
317     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
318   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
319     // In C++, the compiler has to emit a definition in every translation unit
320     // that references the function.  We should use linkonce_odr because
321     // a) if all references in this translation unit are optimized away, we
322     // don't need to codegen it.  b) if the function persists, it needs to be
323     // merged with other definitions. c) C++ has the ODR, so we know the
324     // definition is dependable.
325     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
326   } else {
327     assert(Linkage == GVA_StrongExternal);
328     // Otherwise, we have strong external linkage.
329     GV->setLinkage(llvm::Function::ExternalLinkage);
330   }
331 
332   SetCommonAttributes(D, GV);
333 }
334 
335 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
336                                               const CGFunctionInfo &Info,
337                                               llvm::Function *F) {
338   AttributeListType AttributeList;
339   ConstructAttributeList(Info, D, AttributeList);
340 
341   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
342                                         AttributeList.size()));
343 
344   // Set the appropriate calling convention for the Function.
345   if (D->hasAttr<FastCallAttr>())
346     F->setCallingConv(llvm::CallingConv::X86_FastCall);
347 
348   if (D->hasAttr<StdCallAttr>())
349     F->setCallingConv(llvm::CallingConv::X86_StdCall);
350 }
351 
352 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
353                                                            llvm::Function *F) {
354   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
355     F->addFnAttr(llvm::Attribute::NoUnwind);
356 
357   if (D->hasAttr<AlwaysInlineAttr>())
358     F->addFnAttr(llvm::Attribute::AlwaysInline);
359 
360   if (D->hasAttr<NoinlineAttr>())
361     F->addFnAttr(llvm::Attribute::NoInline);
362 }
363 
364 void CodeGenModule::SetCommonAttributes(const Decl *D,
365                                         llvm::GlobalValue *GV) {
366   setGlobalVisibility(GV, D);
367 
368   if (D->hasAttr<UsedAttr>())
369     AddUsedGlobal(GV);
370 
371   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
372     GV->setSection(SA->getName());
373 }
374 
375 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
376                                                   llvm::Function *F,
377                                                   const CGFunctionInfo &FI) {
378   SetLLVMFunctionAttributes(D, FI, F);
379   SetLLVMFunctionAttributesForDefinition(D, F);
380 
381   F->setLinkage(llvm::Function::InternalLinkage);
382 
383   SetCommonAttributes(D, F);
384 }
385 
386 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
387                                           llvm::Function *F,
388                                           bool IsIncompleteFunction) {
389   if (!IsIncompleteFunction)
390     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
391 
392   // Only a few attributes are set on declarations; these may later be
393   // overridden by a definition.
394 
395   if (FD->hasAttr<DLLImportAttr>()) {
396     F->setLinkage(llvm::Function::DLLImportLinkage);
397   } else if (FD->hasAttr<WeakAttr>() ||
398              FD->hasAttr<WeakImportAttr>()) {
399     // "extern_weak" is overloaded in LLVM; we probably should have
400     // separate linkage types for this.
401     F->setLinkage(llvm::Function::ExternalWeakLinkage);
402   } else {
403     F->setLinkage(llvm::Function::ExternalLinkage);
404   }
405 
406   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
407     F->setSection(SA->getName());
408 }
409 
410 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
411   assert(!GV->isDeclaration() &&
412          "Only globals with definition can force usage.");
413   LLVMUsed.push_back(GV);
414 }
415 
416 void CodeGenModule::EmitLLVMUsed() {
417   // Don't create llvm.used if there is no need.
418   // FIXME. Runtime indicates that there might be more 'used' symbols; but not
419   // necessariy. So, this test is not accurate for emptiness.
420   if (LLVMUsed.empty() && !Runtime)
421     return;
422 
423   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
424 
425   // Convert LLVMUsed to what ConstantArray needs.
426   std::vector<llvm::Constant*> UsedArray;
427   UsedArray.resize(LLVMUsed.size());
428   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
429     UsedArray[i] =
430      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
431   }
432 
433   if (Runtime)
434     Runtime->MergeMetadataGlobals(UsedArray);
435   if (UsedArray.empty())
436     return;
437   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
438 
439   llvm::GlobalVariable *GV =
440     new llvm::GlobalVariable(getModule(), ATy, false,
441                              llvm::GlobalValue::AppendingLinkage,
442                              llvm::ConstantArray::get(ATy, UsedArray),
443                              "llvm.used");
444 
445   GV->setSection("llvm.metadata");
446 }
447 
448 void CodeGenModule::EmitDeferred() {
449   // Emit code for any potentially referenced deferred decls.  Since a
450   // previously unused static decl may become used during the generation of code
451   // for a static function, iterate until no  changes are made.
452   while (!DeferredDeclsToEmit.empty()) {
453     GlobalDecl D = DeferredDeclsToEmit.back();
454     DeferredDeclsToEmit.pop_back();
455 
456     // The mangled name for the decl must have been emitted in GlobalDeclMap.
457     // Look it up to see if it was defined with a stronger definition (e.g. an
458     // extern inline function with a strong function redefinition).  If so,
459     // just ignore the deferred decl.
460     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
461     assert(CGRef && "Deferred decl wasn't referenced?");
462 
463     if (!CGRef->isDeclaration())
464       continue;
465 
466     // Otherwise, emit the definition and move on to the next one.
467     EmitGlobalDefinition(D);
468   }
469 }
470 
471 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
472 /// annotation information for a given GlobalValue.  The annotation struct is
473 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
474 /// GlobalValue being annotated.  The second field is the constant string
475 /// created from the AnnotateAttr's annotation.  The third field is a constant
476 /// string containing the name of the translation unit.  The fourth field is
477 /// the line number in the file of the annotated value declaration.
478 ///
479 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
480 ///        appears to.
481 ///
482 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
483                                                 const AnnotateAttr *AA,
484                                                 unsigned LineNo) {
485   llvm::Module *M = &getModule();
486 
487   // get [N x i8] constants for the annotation string, and the filename string
488   // which are the 2nd and 3rd elements of the global annotation structure.
489   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
490   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
491   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
492                                                   true);
493 
494   // Get the two global values corresponding to the ConstantArrays we just
495   // created to hold the bytes of the strings.
496   const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
497   llvm::GlobalValue *annoGV =
498   new llvm::GlobalVariable(*M, anno->getType(), false,
499                            llvm::GlobalValue::InternalLinkage, anno,
500                            GV->getName() + StringPrefix);
501   // translation unit name string, emitted into the llvm.metadata section.
502   llvm::GlobalValue *unitGV =
503   new llvm::GlobalVariable(*M, unit->getType(), false,
504                            llvm::GlobalValue::InternalLinkage, unit,
505                            StringPrefix);
506 
507   // Create the ConstantStruct for the global annotation.
508   llvm::Constant *Fields[4] = {
509     llvm::ConstantExpr::getBitCast(GV, SBP),
510     llvm::ConstantExpr::getBitCast(annoGV, SBP),
511     llvm::ConstantExpr::getBitCast(unitGV, SBP),
512     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
513   };
514   return llvm::ConstantStruct::get(Fields, 4, false);
515 }
516 
517 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
518   // Never defer when EmitAllDecls is specified or the decl has
519   // attribute used.
520   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
521     return false;
522 
523   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
524     // Constructors and destructors should never be deferred.
525     if (FD->hasAttr<ConstructorAttr>() ||
526         FD->hasAttr<DestructorAttr>())
527       return false;
528 
529     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
530 
531     // static, static inline, always_inline, and extern inline functions can
532     // always be deferred.  Normal inline functions can be deferred in C99/C++.
533     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
534         Linkage == GVA_CXXInline)
535       return true;
536     return false;
537   }
538 
539   const VarDecl *VD = cast<VarDecl>(Global);
540   assert(VD->isFileVarDecl() && "Invalid decl");
541 
542   return VD->getStorageClass() == VarDecl::Static;
543 }
544 
545 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
546   const ValueDecl *Global = GD.getDecl();
547 
548   // If this is an alias definition (which otherwise looks like a declaration)
549   // emit it now.
550   if (Global->hasAttr<AliasAttr>())
551     return EmitAliasDefinition(Global);
552 
553   // Ignore declarations, they will be emitted on their first use.
554   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
555     // Forward declarations are emitted lazily on first use.
556     if (!FD->isThisDeclarationADefinition())
557       return;
558   } else {
559     const VarDecl *VD = cast<VarDecl>(Global);
560     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
561 
562     // In C++, if this is marked "extern", defer code generation.
563     if (getLangOptions().CPlusPlus && !VD->getInit() &&
564         (VD->getStorageClass() == VarDecl::Extern ||
565          VD->isExternC(getContext())))
566       return;
567 
568     // In C, if this isn't a definition, defer code generation.
569     if (!getLangOptions().CPlusPlus && !VD->getInit())
570       return;
571   }
572 
573   // Defer code generation when possible if this is a static definition, inline
574   // function etc.  These we only want to emit if they are used.
575   if (MayDeferGeneration(Global)) {
576     // If the value has already been used, add it directly to the
577     // DeferredDeclsToEmit list.
578     const char *MangledName = getMangledName(GD);
579     if (GlobalDeclMap.count(MangledName))
580       DeferredDeclsToEmit.push_back(GD);
581     else {
582       // Otherwise, remember that we saw a deferred decl with this name.  The
583       // first use of the mangled name will cause it to move into
584       // DeferredDeclsToEmit.
585       DeferredDecls[MangledName] = GD;
586     }
587     return;
588   }
589 
590   // Otherwise emit the definition.
591   EmitGlobalDefinition(GD);
592 }
593 
594 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
595   const ValueDecl *D = GD.getDecl();
596 
597   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
598     EmitCXXConstructor(CD, GD.getCtorType());
599   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
600     EmitCXXDestructor(DD, GD.getDtorType());
601   else if (isa<FunctionDecl>(D))
602     EmitGlobalFunctionDefinition(GD);
603   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
604     EmitGlobalVarDefinition(VD);
605   else {
606     assert(0 && "Invalid argument to EmitGlobalDefinition()");
607   }
608 }
609 
610 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
611 /// module, create and return an llvm Function with the specified type. If there
612 /// is something in the module with the specified name, return it potentially
613 /// bitcasted to the right type.
614 ///
615 /// If D is non-null, it specifies a decl that correspond to this.  This is used
616 /// to set the attributes on the function when it is first created.
617 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
618                                                        const llvm::Type *Ty,
619                                                        GlobalDecl D) {
620   // Lookup the entry, lazily creating it if necessary.
621   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
622   if (Entry) {
623     if (Entry->getType()->getElementType() == Ty)
624       return Entry;
625 
626     // Make sure the result is of the correct type.
627     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
628     return llvm::ConstantExpr::getBitCast(Entry, PTy);
629   }
630 
631   // This is the first use or definition of a mangled name.  If there is a
632   // deferred decl with this name, remember that we need to emit it at the end
633   // of the file.
634   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
635     DeferredDecls.find(MangledName);
636   if (DDI != DeferredDecls.end()) {
637     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
638     // list, and remove it from DeferredDecls (since we don't need it anymore).
639     DeferredDeclsToEmit.push_back(DDI->second);
640     DeferredDecls.erase(DDI);
641   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
642     // If this the first reference to a C++ inline function in a class, queue up
643     // the deferred function body for emission.  These are not seen as
644     // top-level declarations.
645     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
646       DeferredDeclsToEmit.push_back(D);
647   }
648 
649   // This function doesn't have a complete type (for example, the return
650   // type is an incomplete struct). Use a fake type instead, and make
651   // sure not to try to set attributes.
652   bool IsIncompleteFunction = false;
653   if (!isa<llvm::FunctionType>(Ty)) {
654     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
655                                  std::vector<const llvm::Type*>(), false);
656     IsIncompleteFunction = true;
657   }
658   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
659                                              llvm::Function::ExternalLinkage,
660                                              "", &getModule());
661   F->setName(MangledName);
662   if (D.getDecl())
663     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
664                           IsIncompleteFunction);
665   Entry = F;
666   return F;
667 }
668 
669 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
670 /// non-null, then this function will use the specified type if it has to
671 /// create it (this occurs when we see a definition of the function).
672 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
673                                                  const llvm::Type *Ty) {
674   // If there was no specific requested type, just convert it now.
675   if (!Ty)
676     Ty = getTypes().ConvertType(GD.getDecl()->getType());
677   return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD);
678 }
679 
680 /// CreateRuntimeFunction - Create a new runtime function with the specified
681 /// type and name.
682 llvm::Constant *
683 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
684                                      const char *Name) {
685   // Convert Name to be a uniqued string from the IdentifierInfo table.
686   Name = getContext().Idents.get(Name).getName();
687   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
688 }
689 
690 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
691 /// create and return an llvm GlobalVariable with the specified type.  If there
692 /// is something in the module with the specified name, return it potentially
693 /// bitcasted to the right type.
694 ///
695 /// If D is non-null, it specifies a decl that correspond to this.  This is used
696 /// to set the attributes on the global when it is first created.
697 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
698                                                      const llvm::PointerType*Ty,
699                                                      const VarDecl *D) {
700   // Lookup the entry, lazily creating it if necessary.
701   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
702   if (Entry) {
703     if (Entry->getType() == Ty)
704       return Entry;
705 
706     // Make sure the result is of the correct type.
707     return llvm::ConstantExpr::getBitCast(Entry, Ty);
708   }
709 
710   // This is the first use or definition of a mangled name.  If there is a
711   // deferred decl with this name, remember that we need to emit it at the end
712   // of the file.
713   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
714     DeferredDecls.find(MangledName);
715   if (DDI != DeferredDecls.end()) {
716     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
717     // list, and remove it from DeferredDecls (since we don't need it anymore).
718     DeferredDeclsToEmit.push_back(DDI->second);
719     DeferredDecls.erase(DDI);
720   }
721 
722   llvm::GlobalVariable *GV =
723     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
724                              llvm::GlobalValue::ExternalLinkage,
725                              0, "", 0,
726                              false, Ty->getAddressSpace());
727   GV->setName(MangledName);
728 
729   // Handle things which are present even on external declarations.
730   if (D) {
731     // FIXME: This code is overly simple and should be merged with other global
732     // handling.
733     GV->setConstant(D->getType().isConstant(Context));
734 
735     // FIXME: Merge with other attribute handling code.
736     if (D->getStorageClass() == VarDecl::PrivateExtern)
737       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
738 
739     if (D->hasAttr<WeakAttr>() ||
740         D->hasAttr<WeakImportAttr>())
741       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
742 
743     GV->setThreadLocal(D->isThreadSpecified());
744   }
745 
746   return Entry = GV;
747 }
748 
749 
750 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
751 /// given global variable.  If Ty is non-null and if the global doesn't exist,
752 /// then it will be greated with the specified type instead of whatever the
753 /// normal requested type would be.
754 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
755                                                   const llvm::Type *Ty) {
756   assert(D->hasGlobalStorage() && "Not a global variable");
757   QualType ASTTy = D->getType();
758   if (Ty == 0)
759     Ty = getTypes().ConvertTypeForMem(ASTTy);
760 
761   const llvm::PointerType *PTy =
762     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
763   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
764 }
765 
766 /// CreateRuntimeVariable - Create a new runtime global variable with the
767 /// specified type and name.
768 llvm::Constant *
769 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
770                                      const char *Name) {
771   // Convert Name to be a uniqued string from the IdentifierInfo table.
772   Name = getContext().Idents.get(Name).getName();
773   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
774 }
775 
776 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
777   assert(!D->getInit() && "Cannot emit definite definitions here!");
778 
779   if (MayDeferGeneration(D)) {
780     // If we have not seen a reference to this variable yet, place it
781     // into the deferred declarations table to be emitted if needed
782     // later.
783     const char *MangledName = getMangledName(D);
784     if (GlobalDeclMap.count(MangledName) == 0) {
785       DeferredDecls[MangledName] = GlobalDecl(D);
786       return;
787     }
788   }
789 
790   // The tentative definition is the only definition.
791   EmitGlobalVarDefinition(D);
792 }
793 
794 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
795   llvm::Constant *Init = 0;
796   QualType ASTTy = D->getType();
797 
798   if (D->getInit() == 0) {
799     // This is a tentative definition; tentative definitions are
800     // implicitly initialized with { 0 }.
801     //
802     // Note that tentative definitions are only emitted at the end of
803     // a translation unit, so they should never have incomplete
804     // type. In addition, EmitTentativeDefinition makes sure that we
805     // never attempt to emit a tentative definition if a real one
806     // exists. A use may still exists, however, so we still may need
807     // to do a RAUW.
808     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
809     Init = getLLVMContext().getNullValue(getTypes().ConvertTypeForMem(ASTTy));
810   } else {
811     Init = EmitConstantExpr(D->getInit(), D->getType());
812     if (!Init) {
813       ErrorUnsupported(D, "static initializer");
814       QualType T = D->getInit()->getType();
815       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
816     }
817   }
818 
819   const llvm::Type* InitType = Init->getType();
820   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
821 
822   // Strip off a bitcast if we got one back.
823   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
824     assert(CE->getOpcode() == llvm::Instruction::BitCast);
825     Entry = CE->getOperand(0);
826   }
827 
828   // Entry is now either a Function or GlobalVariable.
829   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
830 
831   // We have a definition after a declaration with the wrong type.
832   // We must make a new GlobalVariable* and update everything that used OldGV
833   // (a declaration or tentative definition) with the new GlobalVariable*
834   // (which will be a definition).
835   //
836   // This happens if there is a prototype for a global (e.g.
837   // "extern int x[];") and then a definition of a different type (e.g.
838   // "int x[10];"). This also happens when an initializer has a different type
839   // from the type of the global (this happens with unions).
840   if (GV == 0 ||
841       GV->getType()->getElementType() != InitType ||
842       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
843 
844     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
845     GlobalDeclMap.erase(getMangledName(D));
846 
847     // Make a new global with the correct type, this is now guaranteed to work.
848     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
849     GV->takeName(cast<llvm::GlobalValue>(Entry));
850 
851     // Replace all uses of the old global with the new global
852     llvm::Constant *NewPtrForOldDecl =
853         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
854     Entry->replaceAllUsesWith(NewPtrForOldDecl);
855 
856     // Erase the old global, since it is no longer used.
857     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
858   }
859 
860   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
861     SourceManager &SM = Context.getSourceManager();
862     AddAnnotation(EmitAnnotateAttr(GV, AA,
863                               SM.getInstantiationLineNumber(D->getLocation())));
864   }
865 
866   GV->setInitializer(Init);
867   GV->setConstant(D->getType().isConstant(Context));
868   GV->setAlignment(getContext().getDeclAlignInBytes(D));
869 
870   // Set the llvm linkage type as appropriate.
871   if (D->getStorageClass() == VarDecl::Static)
872     GV->setLinkage(llvm::Function::InternalLinkage);
873   else if (D->hasAttr<DLLImportAttr>())
874     GV->setLinkage(llvm::Function::DLLImportLinkage);
875   else if (D->hasAttr<DLLExportAttr>())
876     GV->setLinkage(llvm::Function::DLLExportLinkage);
877   else if (D->hasAttr<WeakAttr>())
878     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
879   else if (!CompileOpts.NoCommon &&
880            (!D->hasExternalStorage() && !D->getInit()))
881     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
882   else
883     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
884 
885   SetCommonAttributes(D, GV);
886 
887   // Emit global variable debug information.
888   if (CGDebugInfo *DI = getDebugInfo()) {
889     DI->setLocation(D->getLocation());
890     DI->EmitGlobalVariable(GV, D);
891   }
892 }
893 
894 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
895 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
896 /// existing call uses of the old function in the module, this adjusts them to
897 /// call the new function directly.
898 ///
899 /// This is not just a cleanup: the always_inline pass requires direct calls to
900 /// functions to be able to inline them.  If there is a bitcast in the way, it
901 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
902 /// run at -O0.
903 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
904                                                       llvm::Function *NewFn) {
905   // If we're redefining a global as a function, don't transform it.
906   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
907   if (OldFn == 0) return;
908 
909   const llvm::Type *NewRetTy = NewFn->getReturnType();
910   llvm::SmallVector<llvm::Value*, 4> ArgList;
911 
912   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
913        UI != E; ) {
914     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
915     unsigned OpNo = UI.getOperandNo();
916     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
917     if (!CI || OpNo != 0) continue;
918 
919     // If the return types don't match exactly, and if the call isn't dead, then
920     // we can't transform this call.
921     if (CI->getType() != NewRetTy && !CI->use_empty())
922       continue;
923 
924     // If the function was passed too few arguments, don't transform.  If extra
925     // arguments were passed, we silently drop them.  If any of the types
926     // mismatch, we don't transform.
927     unsigned ArgNo = 0;
928     bool DontTransform = false;
929     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
930          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
931       if (CI->getNumOperands()-1 == ArgNo ||
932           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
933         DontTransform = true;
934         break;
935       }
936     }
937     if (DontTransform)
938       continue;
939 
940     // Okay, we can transform this.  Create the new call instruction and copy
941     // over the required information.
942     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
943     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
944                                                      ArgList.end(), "", CI);
945     ArgList.clear();
946     if (NewCall->getType() != llvm::Type::VoidTy)
947       NewCall->takeName(CI);
948     NewCall->setCallingConv(CI->getCallingConv());
949     NewCall->setAttributes(CI->getAttributes());
950 
951     // Finally, remove the old call, replacing any uses with the new one.
952     if (!CI->use_empty())
953       CI->replaceAllUsesWith(NewCall);
954     CI->eraseFromParent();
955   }
956 }
957 
958 
959 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
960   const llvm::FunctionType *Ty;
961   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
962 
963   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
964     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
965 
966     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
967   } else {
968     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
969 
970     // As a special case, make sure that definitions of K&R function
971     // "type foo()" aren't declared as varargs (which forces the backend
972     // to do unnecessary work).
973     if (D->getType()->isFunctionNoProtoType()) {
974       assert(Ty->isVarArg() && "Didn't lower type as expected");
975       // Due to stret, the lowered function could have arguments.
976       // Just create the same type as was lowered by ConvertType
977       // but strip off the varargs bit.
978       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
979       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
980     }
981   }
982 
983   // Get or create the prototype for the function.
984   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
985 
986   // Strip off a bitcast if we got one back.
987   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
988     assert(CE->getOpcode() == llvm::Instruction::BitCast);
989     Entry = CE->getOperand(0);
990   }
991 
992 
993   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
994     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
995 
996     // If the types mismatch then we have to rewrite the definition.
997     assert(OldFn->isDeclaration() &&
998            "Shouldn't replace non-declaration");
999 
1000     // F is the Function* for the one with the wrong type, we must make a new
1001     // Function* and update everything that used F (a declaration) with the new
1002     // Function* (which will be a definition).
1003     //
1004     // This happens if there is a prototype for a function
1005     // (e.g. "int f()") and then a definition of a different type
1006     // (e.g. "int f(int x)").  Start by making a new function of the
1007     // correct type, RAUW, then steal the name.
1008     GlobalDeclMap.erase(getMangledName(D));
1009     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1010     NewFn->takeName(OldFn);
1011 
1012     // If this is an implementation of a function without a prototype, try to
1013     // replace any existing uses of the function (which may be calls) with uses
1014     // of the new function
1015     if (D->getType()->isFunctionNoProtoType()) {
1016       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1017       OldFn->removeDeadConstantUsers();
1018     }
1019 
1020     // Replace uses of F with the Function we will endow with a body.
1021     if (!Entry->use_empty()) {
1022       llvm::Constant *NewPtrForOldDecl =
1023         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1024       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1025     }
1026 
1027     // Ok, delete the old function now, which is dead.
1028     OldFn->eraseFromParent();
1029 
1030     Entry = NewFn;
1031   }
1032 
1033   llvm::Function *Fn = cast<llvm::Function>(Entry);
1034 
1035   CodeGenFunction(*this).GenerateCode(D, Fn);
1036 
1037   SetFunctionDefinitionAttributes(D, Fn);
1038   SetLLVMFunctionAttributesForDefinition(D, Fn);
1039 
1040   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1041     AddGlobalCtor(Fn, CA->getPriority());
1042   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1043     AddGlobalDtor(Fn, DA->getPriority());
1044 }
1045 
1046 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1047   const AliasAttr *AA = D->getAttr<AliasAttr>();
1048   assert(AA && "Not an alias?");
1049 
1050   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1051 
1052   // Unique the name through the identifier table.
1053   const char *AliaseeName = AA->getAliasee().c_str();
1054   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1055 
1056   // Create a reference to the named value.  This ensures that it is emitted
1057   // if a deferred decl.
1058   llvm::Constant *Aliasee;
1059   if (isa<llvm::FunctionType>(DeclTy))
1060     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1061   else
1062     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1063                                     llvm::PointerType::getUnqual(DeclTy), 0);
1064 
1065   // Create the new alias itself, but don't set a name yet.
1066   llvm::GlobalValue *GA =
1067     new llvm::GlobalAlias(Aliasee->getType(),
1068                           llvm::Function::ExternalLinkage,
1069                           "", Aliasee, &getModule());
1070 
1071   // See if there is already something with the alias' name in the module.
1072   const char *MangledName = getMangledName(D);
1073   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1074 
1075   if (Entry && !Entry->isDeclaration()) {
1076     // If there is a definition in the module, then it wins over the alias.
1077     // This is dubious, but allow it to be safe.  Just ignore the alias.
1078     GA->eraseFromParent();
1079     return;
1080   }
1081 
1082   if (Entry) {
1083     // If there is a declaration in the module, then we had an extern followed
1084     // by the alias, as in:
1085     //   extern int test6();
1086     //   ...
1087     //   int test6() __attribute__((alias("test7")));
1088     //
1089     // Remove it and replace uses of it with the alias.
1090 
1091     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1092                                                           Entry->getType()));
1093     Entry->eraseFromParent();
1094   }
1095 
1096   // Now we know that there is no conflict, set the name.
1097   Entry = GA;
1098   GA->setName(MangledName);
1099 
1100   // Set attributes which are particular to an alias; this is a
1101   // specialization of the attributes which may be set on a global
1102   // variable/function.
1103   if (D->hasAttr<DLLExportAttr>()) {
1104     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1105       // The dllexport attribute is ignored for undefined symbols.
1106       if (FD->getBody())
1107         GA->setLinkage(llvm::Function::DLLExportLinkage);
1108     } else {
1109       GA->setLinkage(llvm::Function::DLLExportLinkage);
1110     }
1111   } else if (D->hasAttr<WeakAttr>() ||
1112              D->hasAttr<WeakImportAttr>()) {
1113     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1114   }
1115 
1116   SetCommonAttributes(D, GA);
1117 }
1118 
1119 /// getBuiltinLibFunction - Given a builtin id for a function like
1120 /// "__builtin_fabsf", return a Function* for "fabsf".
1121 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1122   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1123           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1124          "isn't a lib fn");
1125 
1126   // Get the name, skip over the __builtin_ prefix (if necessary).
1127   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1128   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1129     Name += 10;
1130 
1131   // Get the type for the builtin.
1132   ASTContext::GetBuiltinTypeError Error;
1133   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1134   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1135 
1136   const llvm::FunctionType *Ty =
1137     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1138 
1139   // Unique the name through the identifier table.
1140   Name = getContext().Idents.get(Name).getName();
1141   // FIXME: param attributes for sext/zext etc.
1142   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1143 }
1144 
1145 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1146                                             unsigned NumTys) {
1147   return llvm::Intrinsic::getDeclaration(&getModule(),
1148                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1149 }
1150 
1151 llvm::Function *CodeGenModule::getMemCpyFn() {
1152   if (MemCpyFn) return MemCpyFn;
1153   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1154   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1155 }
1156 
1157 llvm::Function *CodeGenModule::getMemMoveFn() {
1158   if (MemMoveFn) return MemMoveFn;
1159   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1160   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1161 }
1162 
1163 llvm::Function *CodeGenModule::getMemSetFn() {
1164   if (MemSetFn) return MemSetFn;
1165   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1166   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1167 }
1168 
1169 static void appendFieldAndPadding(CodeGenModule &CGM,
1170                                   std::vector<llvm::Constant*>& Fields,
1171                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1172                                   llvm::Constant* Field,
1173                                   RecordDecl* RD, const llvm::StructType *STy) {
1174   // Append the field.
1175   Fields.push_back(Field);
1176 
1177   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1178 
1179   int NextStructFieldNo;
1180   if (!NextFieldD) {
1181     NextStructFieldNo = STy->getNumElements();
1182   } else {
1183     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1184   }
1185 
1186   // Append padding
1187   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1188     llvm::Constant *C =
1189       CGM.getLLVMContext().getNullValue(STy->getElementType(StructFieldNo + 1));
1190 
1191     Fields.push_back(C);
1192   }
1193 }
1194 
1195 llvm::Constant *CodeGenModule::
1196 GetAddrOfConstantCFString(const StringLiteral *Literal) {
1197   std::string str;
1198   unsigned StringLength = 0;
1199 
1200   bool isUTF16 = false;
1201   if (Literal->containsNonAsciiOrNull()) {
1202     // Convert from UTF-8 to UTF-16.
1203     llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1204     const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1205     UTF16 *ToPtr = &ToBuf[0];
1206 
1207     ConversionResult Result;
1208     Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1209                                 &ToPtr, ToPtr+Literal->getByteLength(),
1210                                 strictConversion);
1211     if (Result == conversionOK) {
1212       // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1213       // without doing more surgery to this routine. Since we aren't explicitly
1214       // checking for endianness here, it's also a bug (when generating code for
1215       // a target that doesn't match the host endianness). Modeling this as an
1216       // i16 array is likely the cleanest solution.
1217       StringLength = ToPtr-&ToBuf[0];
1218       str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1219       isUTF16 = true;
1220     } else if (Result == sourceIllegal) {
1221       // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1222       str.assign(Literal->getStrData(), Literal->getByteLength());
1223       StringLength = str.length();
1224     } else
1225       assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1226 
1227   } else {
1228     str.assign(Literal->getStrData(), Literal->getByteLength());
1229     StringLength = str.length();
1230   }
1231   llvm::StringMapEntry<llvm::Constant *> &Entry =
1232     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1233 
1234   if (llvm::Constant *C = Entry.getValue())
1235     return C;
1236 
1237   llvm::Constant *Zero = getLLVMContext().getNullValue(llvm::Type::Int32Ty);
1238   llvm::Constant *Zeros[] = { Zero, Zero };
1239 
1240   if (!CFConstantStringClassRef) {
1241     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1242     Ty = llvm::ArrayType::get(Ty, 0);
1243 
1244     // FIXME: This is fairly broken if __CFConstantStringClassReference is
1245     // already defined, in that it will get renamed and the user will most
1246     // likely see an opaque error message. This is a general issue with relying
1247     // on particular names.
1248     llvm::GlobalVariable *GV =
1249       new llvm::GlobalVariable(getModule(), Ty, false,
1250                                llvm::GlobalVariable::ExternalLinkage, 0,
1251                                "__CFConstantStringClassReference");
1252 
1253     // Decay array -> ptr
1254     CFConstantStringClassRef =
1255       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1256   }
1257 
1258   QualType CFTy = getContext().getCFConstantStringType();
1259   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1260 
1261   const llvm::StructType *STy =
1262     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1263 
1264   std::vector<llvm::Constant*> Fields;
1265   RecordDecl::field_iterator Field = CFRD->field_begin();
1266 
1267   // Class pointer.
1268   FieldDecl *CurField = *Field++;
1269   FieldDecl *NextField = *Field++;
1270   appendFieldAndPadding(*this, Fields, CurField, NextField,
1271                         CFConstantStringClassRef, CFRD, STy);
1272 
1273   // Flags.
1274   CurField = NextField;
1275   NextField = *Field++;
1276   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1277   appendFieldAndPadding(*this, Fields, CurField, NextField,
1278                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1279                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1280                         CFRD, STy);
1281 
1282   // String pointer.
1283   CurField = NextField;
1284   NextField = *Field++;
1285   llvm::Constant *C = llvm::ConstantArray::get(str);
1286 
1287   const char *Sect, *Prefix;
1288   bool isConstant;
1289   if (isUTF16) {
1290     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1291     Sect = getContext().Target.getUnicodeStringSection();
1292     // FIXME: Why does GCC not set constant here?
1293     isConstant = false;
1294   } else {
1295     Prefix = getContext().Target.getStringSymbolPrefix(true);
1296     Sect = getContext().Target.getCFStringDataSection();
1297     // FIXME: -fwritable-strings should probably affect this, but we
1298     // are following gcc here.
1299     isConstant = true;
1300   }
1301   llvm::GlobalVariable *GV =
1302     new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
1303                              llvm::GlobalValue::InternalLinkage,
1304                              C, Prefix);
1305   if (Sect)
1306     GV->setSection(Sect);
1307   if (isUTF16) {
1308     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1309     GV->setAlignment(Align);
1310   }
1311   appendFieldAndPadding(*this, Fields, CurField, NextField,
1312                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1313                         CFRD, STy);
1314 
1315   // String length.
1316   CurField = NextField;
1317   NextField = 0;
1318   Ty = getTypes().ConvertType(getContext().LongTy);
1319   appendFieldAndPadding(*this, Fields, CurField, NextField,
1320                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1321 
1322   // The struct.
1323   C = llvm::ConstantStruct::get(STy, Fields);
1324   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1325                                 llvm::GlobalVariable::InternalLinkage, C,
1326                                 getContext().Target.getCFStringSymbolPrefix());
1327   if (const char *Sect = getContext().Target.getCFStringSection())
1328     GV->setSection(Sect);
1329   Entry.setValue(GV);
1330 
1331   return GV;
1332 }
1333 
1334 /// GetStringForStringLiteral - Return the appropriate bytes for a
1335 /// string literal, properly padded to match the literal type.
1336 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1337   const char *StrData = E->getStrData();
1338   unsigned Len = E->getByteLength();
1339 
1340   const ConstantArrayType *CAT =
1341     getContext().getAsConstantArrayType(E->getType());
1342   assert(CAT && "String isn't pointer or array!");
1343 
1344   // Resize the string to the right size.
1345   std::string Str(StrData, StrData+Len);
1346   uint64_t RealLen = CAT->getSize().getZExtValue();
1347 
1348   if (E->isWide())
1349     RealLen *= getContext().Target.getWCharWidth()/8;
1350 
1351   Str.resize(RealLen, '\0');
1352 
1353   return Str;
1354 }
1355 
1356 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1357 /// constant array for the given string literal.
1358 llvm::Constant *
1359 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1360   // FIXME: This can be more efficient.
1361   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1362 }
1363 
1364 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1365 /// array for the given ObjCEncodeExpr node.
1366 llvm::Constant *
1367 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1368   std::string Str;
1369   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1370 
1371   return GetAddrOfConstantCString(Str);
1372 }
1373 
1374 
1375 /// GenerateWritableString -- Creates storage for a string literal.
1376 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1377                                              bool constant,
1378                                              CodeGenModule &CGM,
1379                                              const char *GlobalName) {
1380   // Create Constant for this string literal. Don't add a '\0'.
1381   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1382 
1383   // Create a global variable for this string
1384   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1385                                   llvm::GlobalValue::InternalLinkage,
1386                                   C, GlobalName);
1387 }
1388 
1389 /// GetAddrOfConstantString - Returns a pointer to a character array
1390 /// containing the literal. This contents are exactly that of the
1391 /// given string, i.e. it will not be null terminated automatically;
1392 /// see GetAddrOfConstantCString. Note that whether the result is
1393 /// actually a pointer to an LLVM constant depends on
1394 /// Feature.WriteableStrings.
1395 ///
1396 /// The result has pointer to array type.
1397 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1398                                                        const char *GlobalName) {
1399   bool IsConstant = !Features.WritableStrings;
1400 
1401   // Get the default prefix if a name wasn't specified.
1402   if (!GlobalName)
1403     GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1404 
1405   // Don't share any string literals if strings aren't constant.
1406   if (!IsConstant)
1407     return GenerateStringLiteral(str, false, *this, GlobalName);
1408 
1409   llvm::StringMapEntry<llvm::Constant *> &Entry =
1410   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1411 
1412   if (Entry.getValue())
1413     return Entry.getValue();
1414 
1415   // Create a global variable for this.
1416   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1417   Entry.setValue(C);
1418   return C;
1419 }
1420 
1421 /// GetAddrOfConstantCString - Returns a pointer to a character
1422 /// array containing the literal and a terminating '\-'
1423 /// character. The result has pointer to array type.
1424 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1425                                                         const char *GlobalName){
1426   return GetAddrOfConstantString(str + '\0', GlobalName);
1427 }
1428 
1429 /// EmitObjCPropertyImplementations - Emit information for synthesized
1430 /// properties for an implementation.
1431 void CodeGenModule::EmitObjCPropertyImplementations(const
1432                                                     ObjCImplementationDecl *D) {
1433   for (ObjCImplementationDecl::propimpl_iterator
1434          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1435     ObjCPropertyImplDecl *PID = *i;
1436 
1437     // Dynamic is just for type-checking.
1438     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1439       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1440 
1441       // Determine which methods need to be implemented, some may have
1442       // been overridden. Note that ::isSynthesized is not the method
1443       // we want, that just indicates if the decl came from a
1444       // property. What we want to know is if the method is defined in
1445       // this implementation.
1446       if (!D->getInstanceMethod(PD->getGetterName()))
1447         CodeGenFunction(*this).GenerateObjCGetter(
1448                                  const_cast<ObjCImplementationDecl *>(D), PID);
1449       if (!PD->isReadOnly() &&
1450           !D->getInstanceMethod(PD->getSetterName()))
1451         CodeGenFunction(*this).GenerateObjCSetter(
1452                                  const_cast<ObjCImplementationDecl *>(D), PID);
1453     }
1454   }
1455 }
1456 
1457 /// EmitNamespace - Emit all declarations in a namespace.
1458 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1459   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1460        I != E; ++I)
1461     EmitTopLevelDecl(*I);
1462 }
1463 
1464 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1465 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1466   if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1467     ErrorUnsupported(LSD, "linkage spec");
1468     return;
1469   }
1470 
1471   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1472        I != E; ++I)
1473     EmitTopLevelDecl(*I);
1474 }
1475 
1476 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1477 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1478   // If an error has occurred, stop code generation, but continue
1479   // parsing and semantic analysis (to ensure all warnings and errors
1480   // are emitted).
1481   if (Diags.hasErrorOccurred())
1482     return;
1483 
1484   // Ignore dependent declarations.
1485   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1486     return;
1487 
1488   switch (D->getKind()) {
1489   case Decl::CXXMethod:
1490   case Decl::Function:
1491     // Skip function templates
1492     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1493       return;
1494 
1495     // Fall through
1496 
1497   case Decl::Var:
1498     EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
1499     break;
1500 
1501   // C++ Decls
1502   case Decl::Namespace:
1503     EmitNamespace(cast<NamespaceDecl>(D));
1504     break;
1505     // No code generation needed.
1506   case Decl::Using:
1507   case Decl::ClassTemplate:
1508   case Decl::FunctionTemplate:
1509     break;
1510   case Decl::CXXConstructor:
1511     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1512     break;
1513   case Decl::CXXDestructor:
1514     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1515     break;
1516 
1517   case Decl::StaticAssert:
1518     // Nothing to do.
1519     break;
1520 
1521   // Objective-C Decls
1522 
1523   // Forward declarations, no (immediate) code generation.
1524   case Decl::ObjCClass:
1525   case Decl::ObjCForwardProtocol:
1526   case Decl::ObjCCategory:
1527   case Decl::ObjCInterface:
1528     break;
1529 
1530   case Decl::ObjCProtocol:
1531     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1532     break;
1533 
1534   case Decl::ObjCCategoryImpl:
1535     // Categories have properties but don't support synthesize so we
1536     // can ignore them here.
1537     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1538     break;
1539 
1540   case Decl::ObjCImplementation: {
1541     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1542     EmitObjCPropertyImplementations(OMD);
1543     Runtime->GenerateClass(OMD);
1544     break;
1545   }
1546   case Decl::ObjCMethod: {
1547     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1548     // If this is not a prototype, emit the body.
1549     if (OMD->getBody())
1550       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1551     break;
1552   }
1553   case Decl::ObjCCompatibleAlias:
1554     // compatibility-alias is a directive and has no code gen.
1555     break;
1556 
1557   case Decl::LinkageSpec:
1558     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1559     break;
1560 
1561   case Decl::FileScopeAsm: {
1562     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1563     std::string AsmString(AD->getAsmString()->getStrData(),
1564                           AD->getAsmString()->getByteLength());
1565 
1566     const std::string &S = getModule().getModuleInlineAsm();
1567     if (S.empty())
1568       getModule().setModuleInlineAsm(AsmString);
1569     else
1570       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1571     break;
1572   }
1573 
1574   default:
1575     // Make sure we handled everything we should, every other kind is a
1576     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1577     // function. Need to recode Decl::Kind to do that easily.
1578     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1579   }
1580 }
1581