1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Diagnostic.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Basic/ConvertUTF.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Module.h"
30 #include "llvm/Intrinsics.h"
31 #include "llvm/Target/TargetData.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 
36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
37                              llvm::Module &M, const llvm::TargetData &TD,
38                              Diagnostic &diags)
39   : BlockModule(C, M, TD, Types, *this), Context(C),
40     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
41     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
42     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
43 
44   if (!Features.ObjC1)
45     Runtime = 0;
46   else if (!Features.NeXTRuntime)
47     Runtime = CreateGNUObjCRuntime(*this);
48   else if (Features.ObjCNonFragileABI)
49     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
50   else
51     Runtime = CreateMacObjCRuntime(*this);
52 
53   // If debug info generation is enabled, create the CGDebugInfo object.
54   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
55 }
56 
57 CodeGenModule::~CodeGenModule() {
58   delete Runtime;
59   delete DebugInfo;
60 }
61 
62 void CodeGenModule::Release() {
63   EmitDeferred();
64   if (Runtime)
65     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
66       AddGlobalCtor(ObjCInitFunction);
67   EmitCtorList(GlobalCtors, "llvm.global_ctors");
68   EmitCtorList(GlobalDtors, "llvm.global_dtors");
69   EmitAnnotations();
70   EmitLLVMUsed();
71 }
72 
73 /// ErrorUnsupported - Print out an error that codegen doesn't support the
74 /// specified stmt yet.
75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
76                                      bool OmitOnError) {
77   if (OmitOnError && getDiags().hasErrorOccurred())
78     return;
79   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
80                                                "cannot compile this %0 yet");
81   std::string Msg = Type;
82   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
83     << Msg << S->getSourceRange();
84 }
85 
86 /// ErrorUnsupported - Print out an error that codegen doesn't support the
87 /// specified decl yet.
88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
89                                      bool OmitOnError) {
90   if (OmitOnError && getDiags().hasErrorOccurred())
91     return;
92   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
93                                                "cannot compile this %0 yet");
94   std::string Msg = Type;
95   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
96 }
97 
98 LangOptions::VisibilityMode
99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
100   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
101     if (VD->getStorageClass() == VarDecl::PrivateExtern)
102       return LangOptions::Hidden;
103 
104   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
105     switch (attr->getVisibility()) {
106     default: assert(0 && "Unknown visibility!");
107     case VisibilityAttr::DefaultVisibility:
108       return LangOptions::Default;
109     case VisibilityAttr::HiddenVisibility:
110       return LangOptions::Hidden;
111     case VisibilityAttr::ProtectedVisibility:
112       return LangOptions::Protected;
113     }
114   }
115 
116   return getLangOptions().getVisibilityMode();
117 }
118 
119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
120                                         const Decl *D) const {
121   // Internal definitions always have default visibility.
122   if (GV->hasLocalLinkage()) {
123     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
124     return;
125   }
126 
127   switch (getDeclVisibilityMode(D)) {
128   default: assert(0 && "Unknown visibility!");
129   case LangOptions::Default:
130     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131   case LangOptions::Hidden:
132     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
133   case LangOptions::Protected:
134     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
135   }
136 }
137 
138 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
139   const NamedDecl *ND = GD.getDecl();
140 
141   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
142     return getMangledCXXCtorName(D, GD.getCtorType());
143   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
144     return getMangledCXXDtorName(D, GD.getDtorType());
145 
146   return getMangledName(ND);
147 }
148 
149 /// \brief Retrieves the mangled name for the given declaration.
150 ///
151 /// If the given declaration requires a mangled name, returns an
152 /// const char* containing the mangled name.  Otherwise, returns
153 /// the unmangled name.
154 ///
155 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
156   // In C, functions with no attributes never need to be mangled. Fastpath them.
157   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
158     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
159     return ND->getNameAsCString();
160   }
161 
162   llvm::SmallString<256> Name;
163   llvm::raw_svector_ostream Out(Name);
164   if (!mangleName(ND, Context, Out)) {
165     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
166     return ND->getNameAsCString();
167   }
168 
169   Name += '\0';
170   return UniqueMangledName(Name.begin(), Name.end());
171 }
172 
173 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
174                                              const char *NameEnd) {
175   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
176 
177   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
178 }
179 
180 /// AddGlobalCtor - Add a function to the list that will be called before
181 /// main() runs.
182 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
183   // FIXME: Type coercion of void()* types.
184   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
185 }
186 
187 /// AddGlobalDtor - Add a function to the list that will be called
188 /// when the module is unloaded.
189 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
190   // FIXME: Type coercion of void()* types.
191   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
192 }
193 
194 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
195   // Ctor function type is void()*.
196   llvm::FunctionType* CtorFTy =
197     llvm::FunctionType::get(llvm::Type::VoidTy,
198                             std::vector<const llvm::Type*>(),
199                             false);
200   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
201 
202   // Get the type of a ctor entry, { i32, void ()* }.
203   llvm::StructType* CtorStructTy =
204     llvm::StructType::get(llvm::Type::Int32Ty,
205                           llvm::PointerType::getUnqual(CtorFTy), NULL);
206 
207   // Construct the constructor and destructor arrays.
208   std::vector<llvm::Constant*> Ctors;
209   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
210     std::vector<llvm::Constant*> S;
211     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
212     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
213     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
214   }
215 
216   if (!Ctors.empty()) {
217     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
218     new llvm::GlobalVariable(AT, false,
219                              llvm::GlobalValue::AppendingLinkage,
220                              llvm::ConstantArray::get(AT, Ctors),
221                              GlobalName,
222                              &TheModule);
223   }
224 }
225 
226 void CodeGenModule::EmitAnnotations() {
227   if (Annotations.empty())
228     return;
229 
230   // Create a new global variable for the ConstantStruct in the Module.
231   llvm::Constant *Array =
232   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
233                                                 Annotations.size()),
234                            Annotations);
235   llvm::GlobalValue *gv =
236   new llvm::GlobalVariable(Array->getType(), false,
237                            llvm::GlobalValue::AppendingLinkage, Array,
238                            "llvm.global.annotations", &TheModule);
239   gv->setSection("llvm.metadata");
240 }
241 
242 static CodeGenModule::GVALinkage
243 GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) {
244   // "static" functions get internal linkage.
245   if (FD->getStorageClass() == FunctionDecl::Static)
246     return CodeGenModule::GVA_Internal;
247 
248   if (!FD->isInline() && !isa<CXXMethodDecl>(FD))
249     return CodeGenModule::GVA_StrongExternal;
250 
251   // If the inline function explicitly has the GNU inline attribute on it, or if
252   // this is C89 mode, we use to GNU semantics.
253   if (!Features.C99 && !Features.CPlusPlus) {
254     // extern inline in GNU mode is like C99 inline.
255     if (FD->getStorageClass() == FunctionDecl::Extern)
256       return CodeGenModule::GVA_C99Inline;
257     // Normal inline is a strong symbol.
258     return CodeGenModule::GVA_StrongExternal;
259   } else if (FD->hasActiveGNUInlineAttribute()) {
260     // GCC in C99 mode seems to use a different decision-making
261     // process for extern inline, which factors in previous
262     // declarations.
263     if (FD->isExternGNUInline())
264       return CodeGenModule::GVA_C99Inline;
265     // Normal inline is a strong symbol.
266     return CodeGenModule::GVA_StrongExternal;
267   }
268 
269   // The definition of inline changes based on the language.  Note that we
270   // have already handled "static inline" above, with the GVA_Internal case.
271   if (Features.CPlusPlus)  // inline and extern inline.
272     return CodeGenModule::GVA_CXXInline;
273 
274   assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
275   if (FD->isC99InlineDefinition())
276     return CodeGenModule::GVA_C99Inline;
277 
278   return CodeGenModule::GVA_StrongExternal;
279 }
280 
281 /// SetFunctionDefinitionAttributes - Set attributes for a global.
282 ///
283 /// FIXME: This is currently only done for aliases and functions, but
284 /// not for variables (these details are set in
285 /// EmitGlobalVarDefinition for variables).
286 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
287                                                     llvm::GlobalValue *GV) {
288   GVALinkage Linkage = GetLinkageForFunction(D, Features);
289 
290   if (Linkage == GVA_Internal) {
291     GV->setLinkage(llvm::Function::InternalLinkage);
292   } else if (D->hasAttr<DLLExportAttr>()) {
293     GV->setLinkage(llvm::Function::DLLExportLinkage);
294   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
295     GV->setLinkage(llvm::Function::WeakAnyLinkage);
296   } else if (Linkage == GVA_C99Inline) {
297     // In C99 mode, 'inline' functions are guaranteed to have a strong
298     // definition somewhere else, so we can use available_externally linkage.
299     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
300   } else if (Linkage == GVA_CXXInline) {
301     // In C++, the compiler has to emit a definition in every translation unit
302     // that references the function.  We should use linkonce_odr because
303     // a) if all references in this translation unit are optimized away, we
304     // don't need to codegen it.  b) if the function persists, it needs to be
305     // merged with other definitions. c) C++ has the ODR, so we know the
306     // definition is dependable.
307     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
308   } else {
309     assert(Linkage == GVA_StrongExternal);
310     // Otherwise, we have strong external linkage.
311     GV->setLinkage(llvm::Function::ExternalLinkage);
312   }
313 
314   SetCommonAttributes(D, GV);
315 }
316 
317 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
318                                               const CGFunctionInfo &Info,
319                                               llvm::Function *F) {
320   AttributeListType AttributeList;
321   ConstructAttributeList(Info, D, AttributeList);
322 
323   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
324                                         AttributeList.size()));
325 
326   // Set the appropriate calling convention for the Function.
327   if (D->hasAttr<FastCallAttr>())
328     F->setCallingConv(llvm::CallingConv::X86_FastCall);
329 
330   if (D->hasAttr<StdCallAttr>())
331     F->setCallingConv(llvm::CallingConv::X86_StdCall);
332 }
333 
334 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
335                                                            llvm::Function *F) {
336   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
337     F->addFnAttr(llvm::Attribute::NoUnwind);
338 
339   if (D->hasAttr<AlwaysInlineAttr>())
340     F->addFnAttr(llvm::Attribute::AlwaysInline);
341 
342   if (D->hasAttr<NoinlineAttr>())
343     F->addFnAttr(llvm::Attribute::NoInline);
344 }
345 
346 void CodeGenModule::SetCommonAttributes(const Decl *D,
347                                         llvm::GlobalValue *GV) {
348   setGlobalVisibility(GV, D);
349 
350   if (D->hasAttr<UsedAttr>())
351     AddUsedGlobal(GV);
352 
353   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
354     GV->setSection(SA->getName());
355 }
356 
357 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
358                                                   llvm::Function *F,
359                                                   const CGFunctionInfo &FI) {
360   SetLLVMFunctionAttributes(D, FI, F);
361   SetLLVMFunctionAttributesForDefinition(D, F);
362 
363   F->setLinkage(llvm::Function::InternalLinkage);
364 
365   SetCommonAttributes(D, F);
366 }
367 
368 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
369                                           llvm::Function *F) {
370   SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
371 
372   // Only a few attributes are set on declarations; these may later be
373   // overridden by a definition.
374 
375   if (FD->hasAttr<DLLImportAttr>()) {
376     F->setLinkage(llvm::Function::DLLImportLinkage);
377   } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) {
378     // "extern_weak" is overloaded in LLVM; we probably should have
379     // separate linkage types for this.
380     F->setLinkage(llvm::Function::ExternalWeakLinkage);
381   } else {
382     F->setLinkage(llvm::Function::ExternalLinkage);
383   }
384 
385   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
386     F->setSection(SA->getName());
387 }
388 
389 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
390   assert(!GV->isDeclaration() &&
391          "Only globals with definition can force usage.");
392   LLVMUsed.push_back(GV);
393 }
394 
395 void CodeGenModule::EmitLLVMUsed() {
396   // Don't create llvm.used if there is no need.
397   if (LLVMUsed.empty())
398     return;
399 
400   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
401   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size());
402 
403   // Convert LLVMUsed to what ConstantArray needs.
404   std::vector<llvm::Constant*> UsedArray;
405   UsedArray.resize(LLVMUsed.size());
406   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
407     UsedArray[i] =
408      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
409   }
410 
411   llvm::GlobalVariable *GV =
412     new llvm::GlobalVariable(ATy, false,
413                              llvm::GlobalValue::AppendingLinkage,
414                              llvm::ConstantArray::get(ATy, UsedArray),
415                              "llvm.used", &getModule());
416 
417   GV->setSection("llvm.metadata");
418 }
419 
420 void CodeGenModule::EmitDeferred() {
421   // Emit code for any potentially referenced deferred decls.  Since a
422   // previously unused static decl may become used during the generation of code
423   // for a static function, iterate until no  changes are made.
424   while (!DeferredDeclsToEmit.empty()) {
425     GlobalDecl D = DeferredDeclsToEmit.back();
426     DeferredDeclsToEmit.pop_back();
427 
428     // The mangled name for the decl must have been emitted in GlobalDeclMap.
429     // Look it up to see if it was defined with a stronger definition (e.g. an
430     // extern inline function with a strong function redefinition).  If so,
431     // just ignore the deferred decl.
432     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
433     assert(CGRef && "Deferred decl wasn't referenced?");
434 
435     if (!CGRef->isDeclaration())
436       continue;
437 
438     // Otherwise, emit the definition and move on to the next one.
439     EmitGlobalDefinition(D);
440   }
441 }
442 
443 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
444 /// annotation information for a given GlobalValue.  The annotation struct is
445 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
446 /// GlobalValue being annotated.  The second field is the constant string
447 /// created from the AnnotateAttr's annotation.  The third field is a constant
448 /// string containing the name of the translation unit.  The fourth field is
449 /// the line number in the file of the annotated value declaration.
450 ///
451 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
452 ///        appears to.
453 ///
454 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
455                                                 const AnnotateAttr *AA,
456                                                 unsigned LineNo) {
457   llvm::Module *M = &getModule();
458 
459   // get [N x i8] constants for the annotation string, and the filename string
460   // which are the 2nd and 3rd elements of the global annotation structure.
461   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
462   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
463   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
464                                                   true);
465 
466   // Get the two global values corresponding to the ConstantArrays we just
467   // created to hold the bytes of the strings.
468   const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
469   llvm::GlobalValue *annoGV =
470   new llvm::GlobalVariable(anno->getType(), false,
471                            llvm::GlobalValue::InternalLinkage, anno,
472                            GV->getName() + StringPrefix, M);
473   // translation unit name string, emitted into the llvm.metadata section.
474   llvm::GlobalValue *unitGV =
475   new llvm::GlobalVariable(unit->getType(), false,
476                            llvm::GlobalValue::InternalLinkage, unit,
477                            StringPrefix, M);
478 
479   // Create the ConstantStruct for the global annotation.
480   llvm::Constant *Fields[4] = {
481     llvm::ConstantExpr::getBitCast(GV, SBP),
482     llvm::ConstantExpr::getBitCast(annoGV, SBP),
483     llvm::ConstantExpr::getBitCast(unitGV, SBP),
484     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
485   };
486   return llvm::ConstantStruct::get(Fields, 4, false);
487 }
488 
489 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
490   // Never defer when EmitAllDecls is specified or the decl has
491   // attribute used.
492   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
493     return false;
494 
495   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
496     // Constructors and destructors should never be deferred.
497     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
498       return false;
499 
500     GVALinkage Linkage = GetLinkageForFunction(FD, Features);
501 
502     // static, static inline, always_inline, and extern inline functions can
503     // always be deferred.  Normal inline functions can be deferred in C99/C++.
504     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
505         Linkage == GVA_CXXInline)
506       return true;
507     return false;
508   }
509 
510   const VarDecl *VD = cast<VarDecl>(Global);
511   assert(VD->isFileVarDecl() && "Invalid decl");
512 
513   return VD->getStorageClass() == VarDecl::Static;
514 }
515 
516 void CodeGenModule::EmitGlobal(const GlobalDecl &GD) {
517   const ValueDecl *Global = GD.getDecl();
518 
519   // If this is an alias definition (which otherwise looks like a declaration)
520   // emit it now.
521   if (Global->hasAttr<AliasAttr>())
522     return EmitAliasDefinition(Global);
523 
524   // Ignore declarations, they will be emitted on their first use.
525   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
526     // Forward declarations are emitted lazily on first use.
527     if (!FD->isThisDeclarationADefinition())
528       return;
529   } else {
530     const VarDecl *VD = cast<VarDecl>(Global);
531     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
532 
533     // In C++, if this is marked "extern", defer code generation.
534     if (getLangOptions().CPlusPlus &&
535         VD->getStorageClass() == VarDecl::Extern && !VD->getInit())
536       return;
537 
538     // In C, if this isn't a definition, defer code generation.
539     if (!getLangOptions().CPlusPlus && !VD->getInit())
540       return;
541   }
542 
543   // Defer code generation when possible if this is a static definition, inline
544   // function etc.  These we only want to emit if they are used.
545   if (MayDeferGeneration(Global)) {
546     // If the value has already been used, add it directly to the
547     // DeferredDeclsToEmit list.
548     const char *MangledName = getMangledName(GD);
549     if (GlobalDeclMap.count(MangledName))
550       DeferredDeclsToEmit.push_back(GD);
551     else {
552       // Otherwise, remember that we saw a deferred decl with this name.  The
553       // first use of the mangled name will cause it to move into
554       // DeferredDeclsToEmit.
555       DeferredDecls[MangledName] = GD;
556     }
557     return;
558   }
559 
560   // Otherwise emit the definition.
561   EmitGlobalDefinition(GD);
562 }
563 
564 void CodeGenModule::EmitGlobalDefinition(const GlobalDecl &GD) {
565   const ValueDecl *D = GD.getDecl();
566 
567   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
568     EmitCXXConstructor(CD, GD.getCtorType());
569   else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
570     EmitGlobalFunctionDefinition(FD);
571   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
572     EmitGlobalVarDefinition(VD);
573   else {
574     assert(0 && "Invalid argument to EmitGlobalDefinition()");
575   }
576 }
577 
578 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
579 /// module, create and return an llvm Function with the specified type. If there
580 /// is something in the module with the specified name, return it potentially
581 /// bitcasted to the right type.
582 ///
583 /// If D is non-null, it specifies a decl that correspond to this.  This is used
584 /// to set the attributes on the function when it is first created.
585 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
586                                                        const llvm::Type *Ty,
587                                                        const FunctionDecl *D) {
588   // Lookup the entry, lazily creating it if necessary.
589   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
590   if (Entry) {
591     if (Entry->getType()->getElementType() == Ty)
592       return Entry;
593 
594     // Make sure the result is of the correct type.
595     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
596     return llvm::ConstantExpr::getBitCast(Entry, PTy);
597   }
598 
599   // This is the first use or definition of a mangled name.  If there is a
600   // deferred decl with this name, remember that we need to emit it at the end
601   // of the file.
602   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
603     DeferredDecls.find(MangledName);
604   if (DDI != DeferredDecls.end()) {
605     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
606     // list, and remove it from DeferredDecls (since we don't need it anymore).
607     DeferredDeclsToEmit.push_back(DDI->second);
608     DeferredDecls.erase(DDI);
609   } else
610     if (MayDeferGeneration(D)) {
611     // If this the first reference to a C++ inline function in a class, queue up
612     // the deferred function body for emission.  These are not seen as
613     // top-level declarations.
614     if (!isa<CXXConstructorDecl>(D) &&
615         !isa<CXXDestructorDecl>(D))
616     DeferredDeclsToEmit.push_back(GlobalDecl(D));
617   }
618 
619   // This function doesn't have a complete type (for example, the return
620   // type is an incomplete struct). Use a fake type instead, and make
621   // sure not to try to set attributes.
622   bool ShouldSetAttributes = true;
623   if (!isa<llvm::FunctionType>(Ty)) {
624     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
625                                  std::vector<const llvm::Type*>(), false);
626     ShouldSetAttributes = false;
627   }
628   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
629                                              llvm::Function::ExternalLinkage,
630                                              "", &getModule());
631   F->setName(MangledName);
632   if (D && ShouldSetAttributes)
633     SetFunctionAttributes(D, F);
634   Entry = F;
635   return F;
636 }
637 
638 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
639 /// non-null, then this function will use the specified type if it has to
640 /// create it (this occurs when we see a definition of the function).
641 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D,
642                                                  const llvm::Type *Ty) {
643   // If there was no specific requested type, just convert it now.
644   if (!Ty)
645     Ty = getTypes().ConvertType(D->getType());
646   return GetOrCreateLLVMFunction(getMangledName(D), Ty, D);
647 }
648 
649 /// CreateRuntimeFunction - Create a new runtime function with the specified
650 /// type and name.
651 llvm::Constant *
652 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
653                                      const char *Name) {
654   // Convert Name to be a uniqued string from the IdentifierInfo table.
655   Name = getContext().Idents.get(Name).getName();
656   return GetOrCreateLLVMFunction(Name, FTy, 0);
657 }
658 
659 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
660 /// create and return an llvm GlobalVariable with the specified type.  If there
661 /// is something in the module with the specified name, return it potentially
662 /// bitcasted to the right type.
663 ///
664 /// If D is non-null, it specifies a decl that correspond to this.  This is used
665 /// to set the attributes on the global when it is first created.
666 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
667                                                      const llvm::PointerType*Ty,
668                                                      const VarDecl *D) {
669   // Lookup the entry, lazily creating it if necessary.
670   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
671   if (Entry) {
672     if (Entry->getType() == Ty)
673       return Entry;
674 
675     // Make sure the result is of the correct type.
676     return llvm::ConstantExpr::getBitCast(Entry, Ty);
677   }
678 
679   // This is the first use or definition of a mangled name.  If there is a
680   // deferred decl with this name, remember that we need to emit it at the end
681   // of the file.
682   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
683     DeferredDecls.find(MangledName);
684   if (DDI != DeferredDecls.end()) {
685     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
686     // list, and remove it from DeferredDecls (since we don't need it anymore).
687     DeferredDeclsToEmit.push_back(DDI->second);
688     DeferredDecls.erase(DDI);
689   }
690 
691   llvm::GlobalVariable *GV =
692     new llvm::GlobalVariable(Ty->getElementType(), false,
693                              llvm::GlobalValue::ExternalLinkage,
694                              0, "", &getModule(),
695                              false, Ty->getAddressSpace());
696   GV->setName(MangledName);
697 
698   // Handle things which are present even on external declarations.
699   if (D) {
700     // FIXME: This code is overly simple and should be merged with
701     // other global handling.
702     GV->setConstant(D->getType().isConstant(Context));
703 
704     // FIXME: Merge with other attribute handling code.
705     if (D->getStorageClass() == VarDecl::PrivateExtern)
706       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
707 
708     if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
709       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
710 
711     GV->setThreadLocal(D->isThreadSpecified());
712   }
713 
714   return Entry = GV;
715 }
716 
717 
718 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
719 /// given global variable.  If Ty is non-null and if the global doesn't exist,
720 /// then it will be greated with the specified type instead of whatever the
721 /// normal requested type would be.
722 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
723                                                   const llvm::Type *Ty) {
724   assert(D->hasGlobalStorage() && "Not a global variable");
725   QualType ASTTy = D->getType();
726   if (Ty == 0)
727     Ty = getTypes().ConvertTypeForMem(ASTTy);
728 
729   const llvm::PointerType *PTy =
730     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
731   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
732 }
733 
734 /// CreateRuntimeVariable - Create a new runtime global variable with the
735 /// specified type and name.
736 llvm::Constant *
737 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
738                                      const char *Name) {
739   // Convert Name to be a uniqued string from the IdentifierInfo table.
740   Name = getContext().Idents.get(Name).getName();
741   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
742 }
743 
744 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
745   assert(!D->getInit() && "Cannot emit definite definitions here!");
746 
747   if (MayDeferGeneration(D)) {
748     // If we have not seen a reference to this variable yet, place it
749     // into the deferred declarations table to be emitted if needed
750     // later.
751     const char *MangledName = getMangledName(D);
752     if (GlobalDeclMap.count(MangledName) == 0) {
753       DeferredDecls[MangledName] = GlobalDecl(D);
754       return;
755     }
756   }
757 
758   // The tentative definition is the only definition.
759   EmitGlobalVarDefinition(D);
760 }
761 
762 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
763   llvm::Constant *Init = 0;
764   QualType ASTTy = D->getType();
765 
766   if (D->getInit() == 0) {
767     // This is a tentative definition; tentative definitions are
768     // implicitly initialized with { 0 }.
769     //
770     // Note that tentative definitions are only emitted at the end of
771     // a translation unit, so they should never have incomplete
772     // type. In addition, EmitTentativeDefinition makes sure that we
773     // never attempt to emit a tentative definition if a real one
774     // exists. A use may still exists, however, so we still may need
775     // to do a RAUW.
776     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
777     Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy));
778   } else {
779     Init = EmitConstantExpr(D->getInit(), D->getType());
780     if (!Init) {
781       ErrorUnsupported(D, "static initializer");
782       QualType T = D->getInit()->getType();
783       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
784     }
785   }
786 
787   const llvm::Type* InitType = Init->getType();
788   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
789 
790   // Strip off a bitcast if we got one back.
791   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
792     assert(CE->getOpcode() == llvm::Instruction::BitCast);
793     Entry = CE->getOperand(0);
794   }
795 
796   // Entry is now either a Function or GlobalVariable.
797   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
798 
799   // We have a definition after a declaration with the wrong type.
800   // We must make a new GlobalVariable* and update everything that used OldGV
801   // (a declaration or tentative definition) with the new GlobalVariable*
802   // (which will be a definition).
803   //
804   // This happens if there is a prototype for a global (e.g.
805   // "extern int x[];") and then a definition of a different type (e.g.
806   // "int x[10];"). This also happens when an initializer has a different type
807   // from the type of the global (this happens with unions).
808   if (GV == 0 ||
809       GV->getType()->getElementType() != InitType ||
810       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
811 
812     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
813     GlobalDeclMap.erase(getMangledName(D));
814 
815     // Make a new global with the correct type, this is now guaranteed to work.
816     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
817     GV->takeName(cast<llvm::GlobalValue>(Entry));
818 
819     // Replace all uses of the old global with the new global
820     llvm::Constant *NewPtrForOldDecl =
821         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
822     Entry->replaceAllUsesWith(NewPtrForOldDecl);
823 
824     // Erase the old global, since it is no longer used.
825     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
826   }
827 
828   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
829     SourceManager &SM = Context.getSourceManager();
830     AddAnnotation(EmitAnnotateAttr(GV, AA,
831                               SM.getInstantiationLineNumber(D->getLocation())));
832   }
833 
834   GV->setInitializer(Init);
835   GV->setConstant(D->getType().isConstant(Context));
836   GV->setAlignment(getContext().getDeclAlignInBytes(D));
837 
838   // Set the llvm linkage type as appropriate.
839   if (D->getStorageClass() == VarDecl::Static)
840     GV->setLinkage(llvm::Function::InternalLinkage);
841   else if (D->hasAttr<DLLImportAttr>())
842     GV->setLinkage(llvm::Function::DLLImportLinkage);
843   else if (D->hasAttr<DLLExportAttr>())
844     GV->setLinkage(llvm::Function::DLLExportLinkage);
845   else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
846     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
847   else if (!CompileOpts.NoCommon &&
848            (!D->hasExternalStorage() && !D->getInit()))
849     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
850   else
851     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
852 
853   SetCommonAttributes(D, GV);
854 
855   // Emit global variable debug information.
856   if (CGDebugInfo *DI = getDebugInfo()) {
857     DI->setLocation(D->getLocation());
858     DI->EmitGlobalVariable(GV, D);
859   }
860 }
861 
862 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
863 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
864 /// existing call uses of the old function in the module, this adjusts them to
865 /// call the new function directly.
866 ///
867 /// This is not just a cleanup: the always_inline pass requires direct calls to
868 /// functions to be able to inline them.  If there is a bitcast in the way, it
869 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
870 /// run at -O0.
871 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
872                                                       llvm::Function *NewFn) {
873   // If we're redefining a global as a function, don't transform it.
874   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
875   if (OldFn == 0) return;
876 
877   const llvm::Type *NewRetTy = NewFn->getReturnType();
878   llvm::SmallVector<llvm::Value*, 4> ArgList;
879 
880   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
881        UI != E; ) {
882     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
883     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
884     if (!CI) continue;
885 
886     // If the return types don't match exactly, and if the call isn't dead, then
887     // we can't transform this call.
888     if (CI->getType() != NewRetTy && !CI->use_empty())
889       continue;
890 
891     // If the function was passed too few arguments, don't transform.  If extra
892     // arguments were passed, we silently drop them.  If any of the types
893     // mismatch, we don't transform.
894     unsigned ArgNo = 0;
895     bool DontTransform = false;
896     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
897          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
898       if (CI->getNumOperands()-1 == ArgNo ||
899           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
900         DontTransform = true;
901         break;
902       }
903     }
904     if (DontTransform)
905       continue;
906 
907     // Okay, we can transform this.  Create the new call instruction and copy
908     // over the required information.
909     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
910     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
911                                                      ArgList.end(), "", CI);
912     ArgList.clear();
913     if (NewCall->getType() != llvm::Type::VoidTy)
914       NewCall->takeName(CI);
915     NewCall->setCallingConv(CI->getCallingConv());
916     NewCall->setAttributes(CI->getAttributes());
917 
918     // Finally, remove the old call, replacing any uses with the new one.
919     if (!CI->use_empty())
920       CI->replaceAllUsesWith(NewCall);
921     CI->eraseFromParent();
922   }
923 }
924 
925 
926 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) {
927   const llvm::FunctionType *Ty;
928 
929   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
930     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
931 
932     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
933   } else {
934     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
935 
936     // As a special case, make sure that definitions of K&R function
937     // "type foo()" aren't declared as varargs (which forces the backend
938     // to do unnecessary work).
939     if (D->getType()->isFunctionNoProtoType()) {
940       assert(Ty->isVarArg() && "Didn't lower type as expected");
941       // Due to stret, the lowered function could have arguments.
942       // Just create the same type as was lowered by ConvertType
943       // but strip off the varargs bit.
944       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
945       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
946     }
947   }
948 
949   // Get or create the prototype for teh function.
950   llvm::Constant *Entry = GetAddrOfFunction(D, Ty);
951 
952   // Strip off a bitcast if we got one back.
953   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
954     assert(CE->getOpcode() == llvm::Instruction::BitCast);
955     Entry = CE->getOperand(0);
956   }
957 
958 
959   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
960     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
961 
962     // If the types mismatch then we have to rewrite the definition.
963     assert(OldFn->isDeclaration() &&
964            "Shouldn't replace non-declaration");
965 
966     // F is the Function* for the one with the wrong type, we must make a new
967     // Function* and update everything that used F (a declaration) with the new
968     // Function* (which will be a definition).
969     //
970     // This happens if there is a prototype for a function
971     // (e.g. "int f()") and then a definition of a different type
972     // (e.g. "int f(int x)").  Start by making a new function of the
973     // correct type, RAUW, then steal the name.
974     GlobalDeclMap.erase(getMangledName(D));
975     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty));
976     NewFn->takeName(OldFn);
977 
978     // If this is an implementation of a function without a prototype, try to
979     // replace any existing uses of the function (which may be calls) with uses
980     // of the new function
981     if (D->getType()->isFunctionNoProtoType())
982       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
983 
984     // Replace uses of F with the Function we will endow with a body.
985     if (!Entry->use_empty()) {
986       llvm::Constant *NewPtrForOldDecl =
987         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
988       Entry->replaceAllUsesWith(NewPtrForOldDecl);
989     }
990 
991     // Ok, delete the old function now, which is dead.
992     OldFn->eraseFromParent();
993 
994     Entry = NewFn;
995   }
996 
997   llvm::Function *Fn = cast<llvm::Function>(Entry);
998 
999   CodeGenFunction(*this).GenerateCode(D, Fn);
1000 
1001   SetFunctionDefinitionAttributes(D, Fn);
1002   SetLLVMFunctionAttributesForDefinition(D, Fn);
1003 
1004   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1005     AddGlobalCtor(Fn, CA->getPriority());
1006   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1007     AddGlobalDtor(Fn, DA->getPriority());
1008 }
1009 
1010 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1011   const AliasAttr *AA = D->getAttr<AliasAttr>();
1012   assert(AA && "Not an alias?");
1013 
1014   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1015 
1016   // Unique the name through the identifier table.
1017   const char *AliaseeName = AA->getAliasee().c_str();
1018   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1019 
1020   // Create a reference to the named value.  This ensures that it is emitted
1021   // if a deferred decl.
1022   llvm::Constant *Aliasee;
1023   if (isa<llvm::FunctionType>(DeclTy))
1024     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0);
1025   else
1026     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1027                                     llvm::PointerType::getUnqual(DeclTy), 0);
1028 
1029   // Create the new alias itself, but don't set a name yet.
1030   llvm::GlobalValue *GA =
1031     new llvm::GlobalAlias(Aliasee->getType(),
1032                           llvm::Function::ExternalLinkage,
1033                           "", Aliasee, &getModule());
1034 
1035   // See if there is already something with the alias' name in the module.
1036   const char *MangledName = getMangledName(D);
1037   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1038 
1039   if (Entry && !Entry->isDeclaration()) {
1040     // If there is a definition in the module, then it wins over the alias.
1041     // This is dubious, but allow it to be safe.  Just ignore the alias.
1042     GA->eraseFromParent();
1043     return;
1044   }
1045 
1046   if (Entry) {
1047     // If there is a declaration in the module, then we had an extern followed
1048     // by the alias, as in:
1049     //   extern int test6();
1050     //   ...
1051     //   int test6() __attribute__((alias("test7")));
1052     //
1053     // Remove it and replace uses of it with the alias.
1054 
1055     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1056                                                           Entry->getType()));
1057     Entry->eraseFromParent();
1058   }
1059 
1060   // Now we know that there is no conflict, set the name.
1061   Entry = GA;
1062   GA->setName(MangledName);
1063 
1064   // Set attributes which are particular to an alias; this is a
1065   // specialization of the attributes which may be set on a global
1066   // variable/function.
1067   if (D->hasAttr<DLLExportAttr>()) {
1068     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1069       // The dllexport attribute is ignored for undefined symbols.
1070       if (FD->getBody(getContext()))
1071         GA->setLinkage(llvm::Function::DLLExportLinkage);
1072     } else {
1073       GA->setLinkage(llvm::Function::DLLExportLinkage);
1074     }
1075   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
1076     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1077   }
1078 
1079   SetCommonAttributes(D, GA);
1080 }
1081 
1082 /// getBuiltinLibFunction - Given a builtin id for a function like
1083 /// "__builtin_fabsf", return a Function* for "fabsf".
1084 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1085   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1086           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1087          "isn't a lib fn");
1088 
1089   // Get the name, skip over the __builtin_ prefix (if necessary).
1090   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1091   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1092     Name += 10;
1093 
1094   // Get the type for the builtin.
1095   Builtin::Context::GetBuiltinTypeError Error;
1096   QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error);
1097   assert(Error == Builtin::Context::GE_None && "Can't get builtin type");
1098 
1099   const llvm::FunctionType *Ty =
1100     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1101 
1102   // Unique the name through the identifier table.
1103   Name = getContext().Idents.get(Name).getName();
1104   // FIXME: param attributes for sext/zext etc.
1105   return GetOrCreateLLVMFunction(Name, Ty, 0);
1106 }
1107 
1108 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1109                                             unsigned NumTys) {
1110   return llvm::Intrinsic::getDeclaration(&getModule(),
1111                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1112 }
1113 
1114 llvm::Function *CodeGenModule::getMemCpyFn() {
1115   if (MemCpyFn) return MemCpyFn;
1116   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1117   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1118 }
1119 
1120 llvm::Function *CodeGenModule::getMemMoveFn() {
1121   if (MemMoveFn) return MemMoveFn;
1122   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1123   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1124 }
1125 
1126 llvm::Function *CodeGenModule::getMemSetFn() {
1127   if (MemSetFn) return MemSetFn;
1128   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1129   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1130 }
1131 
1132 static void appendFieldAndPadding(CodeGenModule &CGM,
1133                                   std::vector<llvm::Constant*>& Fields,
1134                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1135                                   llvm::Constant* Field,
1136                                   RecordDecl* RD, const llvm::StructType *STy) {
1137   // Append the field.
1138   Fields.push_back(Field);
1139 
1140   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1141 
1142   int NextStructFieldNo;
1143   if (!NextFieldD) {
1144     NextStructFieldNo = STy->getNumElements();
1145   } else {
1146     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1147   }
1148 
1149   // Append padding
1150   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1151     llvm::Constant *C =
1152       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1153 
1154     Fields.push_back(C);
1155   }
1156 }
1157 
1158 llvm::Constant *CodeGenModule::
1159 GetAddrOfConstantCFString(const StringLiteral *Literal) {
1160   std::string str;
1161   unsigned StringLength = 0;
1162 
1163   bool isUTF16 = false;
1164   if (Literal->containsNonAsciiOrNull()) {
1165     // Convert from UTF-8 to UTF-16.
1166     llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1167     const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1168     UTF16 *ToPtr = &ToBuf[0];
1169 
1170     ConversionResult Result;
1171     Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1172                                 &ToPtr, ToPtr+Literal->getByteLength(),
1173                                 strictConversion);
1174     if (Result == conversionOK) {
1175       // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1176       // without doing more surgery to this routine. Since we aren't explicitly
1177       // checking for endianness here, it's also a bug (when generating code for
1178       // a target that doesn't match the host endianness). Modeling this as an
1179       // i16 array is likely the cleanest solution.
1180       StringLength = ToPtr-&ToBuf[0];
1181       str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1182       isUTF16 = true;
1183     } else if (Result == sourceIllegal) {
1184       // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1185       str.assign(Literal->getStrData(), Literal->getByteLength());
1186       StringLength = str.length();
1187     } else
1188       assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1189 
1190   } else {
1191     str.assign(Literal->getStrData(), Literal->getByteLength());
1192     StringLength = str.length();
1193   }
1194   llvm::StringMapEntry<llvm::Constant *> &Entry =
1195     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1196 
1197   if (llvm::Constant *C = Entry.getValue())
1198     return C;
1199 
1200   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1201   llvm::Constant *Zeros[] = { Zero, Zero };
1202 
1203   if (!CFConstantStringClassRef) {
1204     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1205     Ty = llvm::ArrayType::get(Ty, 0);
1206 
1207     // FIXME: This is fairly broken if
1208     // __CFConstantStringClassReference is already defined, in that it
1209     // will get renamed and the user will most likely see an opaque
1210     // error message. This is a general issue with relying on
1211     // particular names.
1212     llvm::GlobalVariable *GV =
1213       new llvm::GlobalVariable(Ty, false,
1214                                llvm::GlobalVariable::ExternalLinkage, 0,
1215                                "__CFConstantStringClassReference",
1216                                &getModule());
1217 
1218     // Decay array -> ptr
1219     CFConstantStringClassRef =
1220       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1221   }
1222 
1223   QualType CFTy = getContext().getCFConstantStringType();
1224   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1225 
1226   const llvm::StructType *STy =
1227     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1228 
1229   std::vector<llvm::Constant*> Fields;
1230   RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
1231 
1232   // Class pointer.
1233   FieldDecl *CurField = *Field++;
1234   FieldDecl *NextField = *Field++;
1235   appendFieldAndPadding(*this, Fields, CurField, NextField,
1236                         CFConstantStringClassRef, CFRD, STy);
1237 
1238   // Flags.
1239   CurField = NextField;
1240   NextField = *Field++;
1241   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1242   appendFieldAndPadding(*this, Fields, CurField, NextField,
1243                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1244                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1245                         CFRD, STy);
1246 
1247   // String pointer.
1248   CurField = NextField;
1249   NextField = *Field++;
1250   llvm::Constant *C = llvm::ConstantArray::get(str);
1251 
1252   const char *Sect, *Prefix;
1253   bool isConstant;
1254   if (isUTF16) {
1255     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1256     Sect = getContext().Target.getUnicodeStringSection();
1257     // FIXME: Why does GCC not set constant here?
1258     isConstant = false;
1259   } else {
1260     Prefix = getContext().Target.getStringSymbolPrefix(true);
1261     Sect = getContext().Target.getCFStringDataSection();
1262     // FIXME: -fwritable-strings should probably affect this, but we
1263     // are following gcc here.
1264     isConstant = true;
1265   }
1266   llvm::GlobalVariable *GV =
1267     new llvm::GlobalVariable(C->getType(), isConstant,
1268                              llvm::GlobalValue::InternalLinkage,
1269                              C, Prefix, &getModule());
1270   if (Sect)
1271     GV->setSection(Sect);
1272   if (isUTF16) {
1273     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1274     GV->setAlignment(Align);
1275   }
1276   appendFieldAndPadding(*this, Fields, CurField, NextField,
1277                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1278                         CFRD, STy);
1279 
1280   // String length.
1281   CurField = NextField;
1282   NextField = 0;
1283   Ty = getTypes().ConvertType(getContext().LongTy);
1284   appendFieldAndPadding(*this, Fields, CurField, NextField,
1285                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1286 
1287   // The struct.
1288   C = llvm::ConstantStruct::get(STy, Fields);
1289   GV = new llvm::GlobalVariable(C->getType(), true,
1290                                 llvm::GlobalVariable::InternalLinkage, C,
1291                                 getContext().Target.getCFStringSymbolPrefix(),
1292                                 &getModule());
1293   if (const char *Sect = getContext().Target.getCFStringSection())
1294     GV->setSection(Sect);
1295   Entry.setValue(GV);
1296 
1297   return GV;
1298 }
1299 
1300 /// GetStringForStringLiteral - Return the appropriate bytes for a
1301 /// string literal, properly padded to match the literal type.
1302 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1303   const char *StrData = E->getStrData();
1304   unsigned Len = E->getByteLength();
1305 
1306   const ConstantArrayType *CAT =
1307     getContext().getAsConstantArrayType(E->getType());
1308   assert(CAT && "String isn't pointer or array!");
1309 
1310   // Resize the string to the right size.
1311   std::string Str(StrData, StrData+Len);
1312   uint64_t RealLen = CAT->getSize().getZExtValue();
1313 
1314   if (E->isWide())
1315     RealLen *= getContext().Target.getWCharWidth()/8;
1316 
1317   Str.resize(RealLen, '\0');
1318 
1319   return Str;
1320 }
1321 
1322 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1323 /// constant array for the given string literal.
1324 llvm::Constant *
1325 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1326   // FIXME: This can be more efficient.
1327   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1328 }
1329 
1330 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1331 /// array for the given ObjCEncodeExpr node.
1332 llvm::Constant *
1333 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1334   std::string Str;
1335   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1336 
1337   return GetAddrOfConstantCString(Str);
1338 }
1339 
1340 
1341 /// GenerateWritableString -- Creates storage for a string literal.
1342 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1343                                              bool constant,
1344                                              CodeGenModule &CGM,
1345                                              const char *GlobalName) {
1346   // Create Constant for this string literal. Don't add a '\0'.
1347   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1348 
1349   // Create a global variable for this string
1350   return new llvm::GlobalVariable(C->getType(), constant,
1351                                   llvm::GlobalValue::InternalLinkage,
1352                                   C, GlobalName, &CGM.getModule());
1353 }
1354 
1355 /// GetAddrOfConstantString - Returns a pointer to a character array
1356 /// containing the literal. This contents are exactly that of the
1357 /// given string, i.e. it will not be null terminated automatically;
1358 /// see GetAddrOfConstantCString. Note that whether the result is
1359 /// actually a pointer to an LLVM constant depends on
1360 /// Feature.WriteableStrings.
1361 ///
1362 /// The result has pointer to array type.
1363 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1364                                                        const char *GlobalName) {
1365   bool IsConstant = !Features.WritableStrings;
1366 
1367   // Get the default prefix if a name wasn't specified.
1368   if (!GlobalName)
1369     GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1370 
1371   // Don't share any string literals if strings aren't constant.
1372   if (!IsConstant)
1373     return GenerateStringLiteral(str, false, *this, GlobalName);
1374 
1375   llvm::StringMapEntry<llvm::Constant *> &Entry =
1376   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1377 
1378   if (Entry.getValue())
1379     return Entry.getValue();
1380 
1381   // Create a global variable for this.
1382   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1383   Entry.setValue(C);
1384   return C;
1385 }
1386 
1387 /// GetAddrOfConstantCString - Returns a pointer to a character
1388 /// array containing the literal and a terminating '\-'
1389 /// character. The result has pointer to array type.
1390 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1391                                                         const char *GlobalName){
1392   return GetAddrOfConstantString(str + '\0', GlobalName);
1393 }
1394 
1395 /// EmitObjCPropertyImplementations - Emit information for synthesized
1396 /// properties for an implementation.
1397 void CodeGenModule::EmitObjCPropertyImplementations(const
1398                                                     ObjCImplementationDecl *D) {
1399   for (ObjCImplementationDecl::propimpl_iterator
1400          i = D->propimpl_begin(getContext()),
1401          e = D->propimpl_end(getContext()); i != e; ++i) {
1402     ObjCPropertyImplDecl *PID = *i;
1403 
1404     // Dynamic is just for type-checking.
1405     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1406       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1407 
1408       // Determine which methods need to be implemented, some may have
1409       // been overridden. Note that ::isSynthesized is not the method
1410       // we want, that just indicates if the decl came from a
1411       // property. What we want to know is if the method is defined in
1412       // this implementation.
1413       if (!D->getInstanceMethod(getContext(), PD->getGetterName()))
1414         CodeGenFunction(*this).GenerateObjCGetter(
1415                                  const_cast<ObjCImplementationDecl *>(D), PID);
1416       if (!PD->isReadOnly() &&
1417           !D->getInstanceMethod(getContext(), PD->getSetterName()))
1418         CodeGenFunction(*this).GenerateObjCSetter(
1419                                  const_cast<ObjCImplementationDecl *>(D), PID);
1420     }
1421   }
1422 }
1423 
1424 /// EmitNamespace - Emit all declarations in a namespace.
1425 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1426   for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
1427          E = ND->decls_end(getContext());
1428        I != E; ++I)
1429     EmitTopLevelDecl(*I);
1430 }
1431 
1432 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1433 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1434   if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1435     ErrorUnsupported(LSD, "linkage spec");
1436     return;
1437   }
1438 
1439   for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
1440          E = LSD->decls_end(getContext());
1441        I != E; ++I)
1442     EmitTopLevelDecl(*I);
1443 }
1444 
1445 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1446 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1447   // If an error has occurred, stop code generation, but continue
1448   // parsing and semantic analysis (to ensure all warnings and errors
1449   // are emitted).
1450   if (Diags.hasErrorOccurred())
1451     return;
1452 
1453   switch (D->getKind()) {
1454   case Decl::CXXMethod:
1455   case Decl::Function:
1456   case Decl::Var:
1457     EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
1458     break;
1459 
1460   // C++ Decls
1461   case Decl::Namespace:
1462     EmitNamespace(cast<NamespaceDecl>(D));
1463     break;
1464   case Decl::CXXConstructor:
1465     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1466     break;
1467   case Decl::CXXDestructor:
1468     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1469     break;
1470 
1471   // Objective-C Decls
1472 
1473   // Forward declarations, no (immediate) code generation.
1474   case Decl::ObjCClass:
1475   case Decl::ObjCForwardProtocol:
1476   case Decl::ObjCCategory:
1477   case Decl::ObjCInterface:
1478     break;
1479 
1480   case Decl::ObjCProtocol:
1481     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1482     break;
1483 
1484   case Decl::ObjCCategoryImpl:
1485     // Categories have properties but don't support synthesize so we
1486     // can ignore them here.
1487     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1488     break;
1489 
1490   case Decl::ObjCImplementation: {
1491     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1492     EmitObjCPropertyImplementations(OMD);
1493     Runtime->GenerateClass(OMD);
1494     break;
1495   }
1496   case Decl::ObjCMethod: {
1497     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1498     // If this is not a prototype, emit the body.
1499     if (OMD->getBody(getContext()))
1500       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1501     break;
1502   }
1503   case Decl::ObjCCompatibleAlias:
1504     // compatibility-alias is a directive and has no code gen.
1505     break;
1506 
1507   case Decl::LinkageSpec:
1508     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1509     break;
1510 
1511   case Decl::FileScopeAsm: {
1512     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1513     std::string AsmString(AD->getAsmString()->getStrData(),
1514                           AD->getAsmString()->getByteLength());
1515 
1516     const std::string &S = getModule().getModuleInlineAsm();
1517     if (S.empty())
1518       getModule().setModuleInlineAsm(AsmString);
1519     else
1520       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1521     break;
1522   }
1523 
1524   default:
1525     // Make sure we handled everything we should, every other kind is
1526     // a non-top-level decl.  FIXME: Would be nice to have an
1527     // isTopLevelDeclKind function. Need to recode Decl::Kind to do
1528     // that easily.
1529     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1530   }
1531 }
1532