1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/Frontend/CodeGenOptions.h"
45 #include "clang/Sema/SemaDiagnostic.h"
46 #include "llvm/ADT/APSInt.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/IR/CallSite.h"
49 #include "llvm/IR/CallingConv.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/ProfileData/InstrProfReader.h"
55 #include "llvm/Support/ConvertUTF.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MD5.h"
58 
59 using namespace clang;
60 using namespace CodeGen;
61 
62 static const char AnnotationSection[] = "llvm.metadata";
63 
64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
65   switch (CGM.getTarget().getCXXABI().getKind()) {
66   case TargetCXXABI::GenericAArch64:
67   case TargetCXXABI::GenericARM:
68   case TargetCXXABI::iOS:
69   case TargetCXXABI::iOS64:
70   case TargetCXXABI::WatchOS:
71   case TargetCXXABI::GenericMIPS:
72   case TargetCXXABI::GenericItanium:
73   case TargetCXXABI::WebAssembly:
74     return CreateItaniumCXXABI(CGM);
75   case TargetCXXABI::Microsoft:
76     return CreateMicrosoftCXXABI(CGM);
77   }
78 
79   llvm_unreachable("invalid C++ ABI kind");
80 }
81 
82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
83                              const PreprocessorOptions &PPO,
84                              const CodeGenOptions &CGO, llvm::Module &M,
85                              DiagnosticsEngine &diags,
86                              CoverageSourceInfo *CoverageInfo)
87     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
88       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
89       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
90       VMContext(M.getContext()), Types(*this), VTables(*this),
91       SanitizerMD(new SanitizerMetadata(*this)) {
92 
93   // Initialize the type cache.
94   llvm::LLVMContext &LLVMContext = M.getContext();
95   VoidTy = llvm::Type::getVoidTy(LLVMContext);
96   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
97   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
98   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
99   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
100   FloatTy = llvm::Type::getFloatTy(LLVMContext);
101   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
102   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
103   PointerAlignInBytes =
104     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
105   IntAlignInBytes =
106     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
107   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
108   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
109   Int8PtrTy = Int8Ty->getPointerTo(0);
110   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
111 
112   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
113   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
114 
115   if (LangOpts.ObjC1)
116     createObjCRuntime();
117   if (LangOpts.OpenCL)
118     createOpenCLRuntime();
119   if (LangOpts.OpenMP)
120     createOpenMPRuntime();
121   if (LangOpts.CUDA)
122     createCUDARuntime();
123 
124   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
125   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
126       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
127     TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
128                                getCXXABI().getMangleContext()));
129 
130   // If debug info or coverage generation is enabled, create the CGDebugInfo
131   // object.
132   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
133       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
134     DebugInfo.reset(new CGDebugInfo(*this));
135 
136   Block.GlobalUniqueCount = 0;
137 
138   if (C.getLangOpts().ObjC1)
139     ObjCData.reset(new ObjCEntrypoints());
140 
141   if (CodeGenOpts.hasProfileClangUse()) {
142     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
143         CodeGenOpts.ProfileInstrumentUsePath);
144     if (auto E = ReaderOrErr.takeError()) {
145       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
146                                               "Could not read profile %0: %1");
147       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
148         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
149                                   << EI.message();
150       });
151     } else
152       PGOReader = std::move(ReaderOrErr.get());
153   }
154 
155   // If coverage mapping generation is enabled, create the
156   // CoverageMappingModuleGen object.
157   if (CodeGenOpts.CoverageMapping)
158     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
159 }
160 
161 CodeGenModule::~CodeGenModule() {}
162 
163 void CodeGenModule::createObjCRuntime() {
164   // This is just isGNUFamily(), but we want to force implementors of
165   // new ABIs to decide how best to do this.
166   switch (LangOpts.ObjCRuntime.getKind()) {
167   case ObjCRuntime::GNUstep:
168   case ObjCRuntime::GCC:
169   case ObjCRuntime::ObjFW:
170     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
171     return;
172 
173   case ObjCRuntime::FragileMacOSX:
174   case ObjCRuntime::MacOSX:
175   case ObjCRuntime::iOS:
176   case ObjCRuntime::WatchOS:
177     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
178     return;
179   }
180   llvm_unreachable("bad runtime kind");
181 }
182 
183 void CodeGenModule::createOpenCLRuntime() {
184   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
185 }
186 
187 void CodeGenModule::createOpenMPRuntime() {
188   // Select a specialized code generation class based on the target, if any.
189   // If it does not exist use the default implementation.
190   switch (getTarget().getTriple().getArch()) {
191 
192   case llvm::Triple::nvptx:
193   case llvm::Triple::nvptx64:
194     assert(getLangOpts().OpenMPIsDevice &&
195            "OpenMP NVPTX is only prepared to deal with device code.");
196     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
197     break;
198   default:
199     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
200     break;
201   }
202 }
203 
204 void CodeGenModule::createCUDARuntime() {
205   CUDARuntime.reset(CreateNVCUDARuntime(*this));
206 }
207 
208 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
209   Replacements[Name] = C;
210 }
211 
212 void CodeGenModule::applyReplacements() {
213   for (auto &I : Replacements) {
214     StringRef MangledName = I.first();
215     llvm::Constant *Replacement = I.second;
216     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
217     if (!Entry)
218       continue;
219     auto *OldF = cast<llvm::Function>(Entry);
220     auto *NewF = dyn_cast<llvm::Function>(Replacement);
221     if (!NewF) {
222       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
223         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
224       } else {
225         auto *CE = cast<llvm::ConstantExpr>(Replacement);
226         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
227                CE->getOpcode() == llvm::Instruction::GetElementPtr);
228         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
229       }
230     }
231 
232     // Replace old with new, but keep the old order.
233     OldF->replaceAllUsesWith(Replacement);
234     if (NewF) {
235       NewF->removeFromParent();
236       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
237                                                        NewF);
238     }
239     OldF->eraseFromParent();
240   }
241 }
242 
243 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
244   GlobalValReplacements.push_back(std::make_pair(GV, C));
245 }
246 
247 void CodeGenModule::applyGlobalValReplacements() {
248   for (auto &I : GlobalValReplacements) {
249     llvm::GlobalValue *GV = I.first;
250     llvm::Constant *C = I.second;
251 
252     GV->replaceAllUsesWith(C);
253     GV->eraseFromParent();
254   }
255 }
256 
257 // This is only used in aliases that we created and we know they have a
258 // linear structure.
259 static const llvm::GlobalObject *getAliasedGlobal(
260     const llvm::GlobalIndirectSymbol &GIS) {
261   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
262   const llvm::Constant *C = &GIS;
263   for (;;) {
264     C = C->stripPointerCasts();
265     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
266       return GO;
267     // stripPointerCasts will not walk over weak aliases.
268     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
269     if (!GIS2)
270       return nullptr;
271     if (!Visited.insert(GIS2).second)
272       return nullptr;
273     C = GIS2->getIndirectSymbol();
274   }
275 }
276 
277 void CodeGenModule::checkAliases() {
278   // Check if the constructed aliases are well formed. It is really unfortunate
279   // that we have to do this in CodeGen, but we only construct mangled names
280   // and aliases during codegen.
281   bool Error = false;
282   DiagnosticsEngine &Diags = getDiags();
283   for (const GlobalDecl &GD : Aliases) {
284     const auto *D = cast<ValueDecl>(GD.getDecl());
285     SourceLocation Location;
286     bool IsIFunc = D->hasAttr<IFuncAttr>();
287     if (const Attr *A = D->getDefiningAttr())
288       Location = A->getLocation();
289     else
290       llvm_unreachable("Not an alias or ifunc?");
291     StringRef MangledName = getMangledName(GD);
292     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
293     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
294     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
295     if (!GV) {
296       Error = true;
297       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
298     } else if (GV->isDeclaration()) {
299       Error = true;
300       Diags.Report(Location, diag::err_alias_to_undefined)
301           << IsIFunc << IsIFunc;
302     } else if (IsIFunc) {
303       // Check resolver function type.
304       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
305           GV->getType()->getPointerElementType());
306       assert(FTy);
307       if (!FTy->getReturnType()->isPointerTy())
308         Diags.Report(Location, diag::err_ifunc_resolver_return);
309       if (FTy->getNumParams())
310         Diags.Report(Location, diag::err_ifunc_resolver_params);
311     }
312 
313     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
314     llvm::GlobalValue *AliaseeGV;
315     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
316       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
317     else
318       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
319 
320     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
321       StringRef AliasSection = SA->getName();
322       if (AliasSection != AliaseeGV->getSection())
323         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
324             << AliasSection << IsIFunc << IsIFunc;
325     }
326 
327     // We have to handle alias to weak aliases in here. LLVM itself disallows
328     // this since the object semantics would not match the IL one. For
329     // compatibility with gcc we implement it by just pointing the alias
330     // to its aliasee's aliasee. We also warn, since the user is probably
331     // expecting the link to be weak.
332     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
333       if (GA->isInterposable()) {
334         Diags.Report(Location, diag::warn_alias_to_weak_alias)
335             << GV->getName() << GA->getName() << IsIFunc;
336         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
337             GA->getIndirectSymbol(), Alias->getType());
338         Alias->setIndirectSymbol(Aliasee);
339       }
340     }
341   }
342   if (!Error)
343     return;
344 
345   for (const GlobalDecl &GD : Aliases) {
346     StringRef MangledName = getMangledName(GD);
347     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
348     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
349     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
350     Alias->eraseFromParent();
351   }
352 }
353 
354 void CodeGenModule::clear() {
355   DeferredDeclsToEmit.clear();
356   if (OpenMPRuntime)
357     OpenMPRuntime->clear();
358 }
359 
360 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
361                                        StringRef MainFile) {
362   if (!hasDiagnostics())
363     return;
364   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
365     if (MainFile.empty())
366       MainFile = "<stdin>";
367     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
368   } else
369     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
370                                                       << Mismatched;
371 }
372 
373 void CodeGenModule::Release() {
374   EmitDeferred();
375   applyGlobalValReplacements();
376   applyReplacements();
377   checkAliases();
378   EmitCXXGlobalInitFunc();
379   EmitCXXGlobalDtorFunc();
380   EmitCXXThreadLocalInitFunc();
381   if (ObjCRuntime)
382     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
383       AddGlobalCtor(ObjCInitFunction);
384   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
385       CUDARuntime) {
386     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
387       AddGlobalCtor(CudaCtorFunction);
388     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
389       AddGlobalDtor(CudaDtorFunction);
390   }
391   if (OpenMPRuntime)
392     if (llvm::Function *OpenMPRegistrationFunction =
393             OpenMPRuntime->emitRegistrationFunction())
394       AddGlobalCtor(OpenMPRegistrationFunction, 0);
395   if (PGOReader) {
396     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
397     if (PGOStats.hasDiagnostics())
398       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
399   }
400   EmitCtorList(GlobalCtors, "llvm.global_ctors");
401   EmitCtorList(GlobalDtors, "llvm.global_dtors");
402   EmitGlobalAnnotations();
403   EmitStaticExternCAliases();
404   EmitDeferredUnusedCoverageMappings();
405   if (CoverageMapping)
406     CoverageMapping->emit();
407   if (CodeGenOpts.SanitizeCfiCrossDso)
408     CodeGenFunction(*this).EmitCfiCheckFail();
409   emitLLVMUsed();
410   if (SanStats)
411     SanStats->finish();
412 
413   if (CodeGenOpts.Autolink &&
414       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
415     EmitModuleLinkOptions();
416   }
417   if (CodeGenOpts.DwarfVersion) {
418     // We actually want the latest version when there are conflicts.
419     // We can change from Warning to Latest if such mode is supported.
420     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
421                               CodeGenOpts.DwarfVersion);
422   }
423   if (CodeGenOpts.EmitCodeView) {
424     // Indicate that we want CodeView in the metadata.
425     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
426   }
427   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
428     // We don't support LTO with 2 with different StrictVTablePointers
429     // FIXME: we could support it by stripping all the information introduced
430     // by StrictVTablePointers.
431 
432     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
433 
434     llvm::Metadata *Ops[2] = {
435               llvm::MDString::get(VMContext, "StrictVTablePointers"),
436               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
437                   llvm::Type::getInt32Ty(VMContext), 1))};
438 
439     getModule().addModuleFlag(llvm::Module::Require,
440                               "StrictVTablePointersRequirement",
441                               llvm::MDNode::get(VMContext, Ops));
442   }
443   if (DebugInfo)
444     // We support a single version in the linked module. The LLVM
445     // parser will drop debug info with a different version number
446     // (and warn about it, too).
447     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
448                               llvm::DEBUG_METADATA_VERSION);
449 
450   // We need to record the widths of enums and wchar_t, so that we can generate
451   // the correct build attributes in the ARM backend.
452   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
453   if (   Arch == llvm::Triple::arm
454       || Arch == llvm::Triple::armeb
455       || Arch == llvm::Triple::thumb
456       || Arch == llvm::Triple::thumbeb) {
457     // Width of wchar_t in bytes
458     uint64_t WCharWidth =
459         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
460     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
461 
462     // The minimum width of an enum in bytes
463     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
464     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
465   }
466 
467   if (CodeGenOpts.SanitizeCfiCrossDso) {
468     // Indicate that we want cross-DSO control flow integrity checks.
469     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
470   }
471 
472   if (LangOpts.CUDAIsDevice && getTarget().getTriple().isNVPTX()) {
473     // Indicate whether __nvvm_reflect should be configured to flush denormal
474     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
475     // property.)
476     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
477                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
478   }
479 
480   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
481     assert(PLevel < 3 && "Invalid PIC Level");
482     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
483     if (Context.getLangOpts().PIE)
484       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
485   }
486 
487   SimplifyPersonality();
488 
489   if (getCodeGenOpts().EmitDeclMetadata)
490     EmitDeclMetadata();
491 
492   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
493     EmitCoverageFile();
494 
495   if (DebugInfo)
496     DebugInfo->finalize();
497 
498   EmitVersionIdentMetadata();
499 
500   EmitTargetMetadata();
501 }
502 
503 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
504   // Make sure that this type is translated.
505   Types.UpdateCompletedType(TD);
506 }
507 
508 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
509   // Make sure that this type is translated.
510   Types.RefreshTypeCacheForClass(RD);
511 }
512 
513 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
514   if (!TBAA)
515     return nullptr;
516   return TBAA->getTBAAInfo(QTy);
517 }
518 
519 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
520   if (!TBAA)
521     return nullptr;
522   return TBAA->getTBAAInfoForVTablePtr();
523 }
524 
525 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
526   if (!TBAA)
527     return nullptr;
528   return TBAA->getTBAAStructInfo(QTy);
529 }
530 
531 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
532                                                   llvm::MDNode *AccessN,
533                                                   uint64_t O) {
534   if (!TBAA)
535     return nullptr;
536   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
537 }
538 
539 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
540 /// and struct-path aware TBAA, the tag has the same format:
541 /// base type, access type and offset.
542 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
543 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
544                                                 llvm::MDNode *TBAAInfo,
545                                                 bool ConvertTypeToTag) {
546   if (ConvertTypeToTag && TBAA)
547     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
548                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
549   else
550     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
551 }
552 
553 void CodeGenModule::DecorateInstructionWithInvariantGroup(
554     llvm::Instruction *I, const CXXRecordDecl *RD) {
555   llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
556   auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD);
557   // Check if we have to wrap MDString in MDNode.
558   if (!MetaDataNode)
559     MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD);
560   I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode);
561 }
562 
563 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
564   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
565   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
566 }
567 
568 /// ErrorUnsupported - Print out an error that codegen doesn't support the
569 /// specified stmt yet.
570 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
571   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
572                                                "cannot compile this %0 yet");
573   std::string Msg = Type;
574   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
575     << Msg << S->getSourceRange();
576 }
577 
578 /// ErrorUnsupported - Print out an error that codegen doesn't support the
579 /// specified decl yet.
580 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
581   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
582                                                "cannot compile this %0 yet");
583   std::string Msg = Type;
584   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
585 }
586 
587 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
588   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
589 }
590 
591 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
592                                         const NamedDecl *D) const {
593   // Internal definitions always have default visibility.
594   if (GV->hasLocalLinkage()) {
595     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
596     return;
597   }
598 
599   // Set visibility for definitions.
600   LinkageInfo LV = D->getLinkageAndVisibility();
601   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
602     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
603 }
604 
605 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
606   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
607       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
608       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
609       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
610       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
611 }
612 
613 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
614     CodeGenOptions::TLSModel M) {
615   switch (M) {
616   case CodeGenOptions::GeneralDynamicTLSModel:
617     return llvm::GlobalVariable::GeneralDynamicTLSModel;
618   case CodeGenOptions::LocalDynamicTLSModel:
619     return llvm::GlobalVariable::LocalDynamicTLSModel;
620   case CodeGenOptions::InitialExecTLSModel:
621     return llvm::GlobalVariable::InitialExecTLSModel;
622   case CodeGenOptions::LocalExecTLSModel:
623     return llvm::GlobalVariable::LocalExecTLSModel;
624   }
625   llvm_unreachable("Invalid TLS model!");
626 }
627 
628 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
629   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
630 
631   llvm::GlobalValue::ThreadLocalMode TLM;
632   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
633 
634   // Override the TLS model if it is explicitly specified.
635   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
636     TLM = GetLLVMTLSModel(Attr->getModel());
637   }
638 
639   GV->setThreadLocalMode(TLM);
640 }
641 
642 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
643   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
644 
645   // Some ABIs don't have constructor variants.  Make sure that base and
646   // complete constructors get mangled the same.
647   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
648     if (!getTarget().getCXXABI().hasConstructorVariants()) {
649       CXXCtorType OrigCtorType = GD.getCtorType();
650       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
651       if (OrigCtorType == Ctor_Base)
652         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
653     }
654   }
655 
656   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
657   if (!FoundStr.empty())
658     return FoundStr;
659 
660   const auto *ND = cast<NamedDecl>(GD.getDecl());
661   SmallString<256> Buffer;
662   StringRef Str;
663   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
664     llvm::raw_svector_ostream Out(Buffer);
665     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
666       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
667     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
668       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
669     else
670       getCXXABI().getMangleContext().mangleName(ND, Out);
671     Str = Out.str();
672   } else {
673     IdentifierInfo *II = ND->getIdentifier();
674     assert(II && "Attempt to mangle unnamed decl.");
675     Str = II->getName();
676   }
677 
678   // Keep the first result in the case of a mangling collision.
679   auto Result = Manglings.insert(std::make_pair(Str, GD));
680   return FoundStr = Result.first->first();
681 }
682 
683 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
684                                              const BlockDecl *BD) {
685   MangleContext &MangleCtx = getCXXABI().getMangleContext();
686   const Decl *D = GD.getDecl();
687 
688   SmallString<256> Buffer;
689   llvm::raw_svector_ostream Out(Buffer);
690   if (!D)
691     MangleCtx.mangleGlobalBlock(BD,
692       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
693   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
694     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
695   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
696     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
697   else
698     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
699 
700   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
701   return Result.first->first();
702 }
703 
704 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
705   return getModule().getNamedValue(Name);
706 }
707 
708 /// AddGlobalCtor - Add a function to the list that will be called before
709 /// main() runs.
710 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
711                                   llvm::Constant *AssociatedData) {
712   // FIXME: Type coercion of void()* types.
713   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
714 }
715 
716 /// AddGlobalDtor - Add a function to the list that will be called
717 /// when the module is unloaded.
718 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
719   // FIXME: Type coercion of void()* types.
720   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
721 }
722 
723 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
724   // Ctor function type is void()*.
725   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
726   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
727 
728   // Get the type of a ctor entry, { i32, void ()*, i8* }.
729   llvm::StructType *CtorStructTy = llvm::StructType::get(
730       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
731 
732   // Construct the constructor and destructor arrays.
733   SmallVector<llvm::Constant *, 8> Ctors;
734   for (const auto &I : Fns) {
735     llvm::Constant *S[] = {
736         llvm::ConstantInt::get(Int32Ty, I.Priority, false),
737         llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy),
738         (I.AssociatedData
739              ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)
740              : llvm::Constant::getNullValue(VoidPtrTy))};
741     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
742   }
743 
744   if (!Ctors.empty()) {
745     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
746     new llvm::GlobalVariable(TheModule, AT, false,
747                              llvm::GlobalValue::AppendingLinkage,
748                              llvm::ConstantArray::get(AT, Ctors),
749                              GlobalName);
750   }
751 }
752 
753 llvm::GlobalValue::LinkageTypes
754 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
755   const auto *D = cast<FunctionDecl>(GD.getDecl());
756 
757   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
758 
759   if (isa<CXXDestructorDecl>(D) &&
760       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
761                                          GD.getDtorType())) {
762     // Destructor variants in the Microsoft C++ ABI are always internal or
763     // linkonce_odr thunks emitted on an as-needed basis.
764     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
765                                    : llvm::GlobalValue::LinkOnceODRLinkage;
766   }
767 
768   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
769 }
770 
771 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
772   const auto *FD = cast<FunctionDecl>(GD.getDecl());
773 
774   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
775     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
776       // Don't dllexport/import destructor thunks.
777       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
778       return;
779     }
780   }
781 
782   if (FD->hasAttr<DLLImportAttr>())
783     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
784   else if (FD->hasAttr<DLLExportAttr>())
785     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
786   else
787     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
788 }
789 
790 llvm::ConstantInt *
791 CodeGenModule::CreateCfiIdForTypeMetadata(llvm::Metadata *MD) {
792   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
793   if (!MDS) return nullptr;
794 
795   llvm::MD5 md5;
796   llvm::MD5::MD5Result result;
797   md5.update(MDS->getString());
798   md5.final(result);
799   uint64_t id = 0;
800   for (int i = 0; i < 8; ++i)
801     id |= static_cast<uint64_t>(result[i]) << (i * 8);
802   return llvm::ConstantInt::get(Int64Ty, id);
803 }
804 
805 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
806                                                     llvm::Function *F) {
807   setNonAliasAttributes(D, F);
808 }
809 
810 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
811                                               const CGFunctionInfo &Info,
812                                               llvm::Function *F) {
813   unsigned CallingConv;
814   AttributeListType AttributeList;
815   ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv,
816                          false);
817   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
818   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
819 }
820 
821 /// Determines whether the language options require us to model
822 /// unwind exceptions.  We treat -fexceptions as mandating this
823 /// except under the fragile ObjC ABI with only ObjC exceptions
824 /// enabled.  This means, for example, that C with -fexceptions
825 /// enables this.
826 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
827   // If exceptions are completely disabled, obviously this is false.
828   if (!LangOpts.Exceptions) return false;
829 
830   // If C++ exceptions are enabled, this is true.
831   if (LangOpts.CXXExceptions) return true;
832 
833   // If ObjC exceptions are enabled, this depends on the ABI.
834   if (LangOpts.ObjCExceptions) {
835     return LangOpts.ObjCRuntime.hasUnwindExceptions();
836   }
837 
838   return true;
839 }
840 
841 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
842                                                            llvm::Function *F) {
843   llvm::AttrBuilder B;
844 
845   if (CodeGenOpts.UnwindTables)
846     B.addAttribute(llvm::Attribute::UWTable);
847 
848   if (!hasUnwindExceptions(LangOpts))
849     B.addAttribute(llvm::Attribute::NoUnwind);
850 
851   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
852     B.addAttribute(llvm::Attribute::StackProtect);
853   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
854     B.addAttribute(llvm::Attribute::StackProtectStrong);
855   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
856     B.addAttribute(llvm::Attribute::StackProtectReq);
857 
858   if (!D) {
859     F->addAttributes(llvm::AttributeSet::FunctionIndex,
860                      llvm::AttributeSet::get(
861                          F->getContext(),
862                          llvm::AttributeSet::FunctionIndex, B));
863     return;
864   }
865 
866   if (D->hasAttr<NakedAttr>()) {
867     // Naked implies noinline: we should not be inlining such functions.
868     B.addAttribute(llvm::Attribute::Naked);
869     B.addAttribute(llvm::Attribute::NoInline);
870   } else if (D->hasAttr<NoDuplicateAttr>()) {
871     B.addAttribute(llvm::Attribute::NoDuplicate);
872   } else if (D->hasAttr<NoInlineAttr>()) {
873     B.addAttribute(llvm::Attribute::NoInline);
874   } else if (D->hasAttr<AlwaysInlineAttr>() &&
875              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
876                                               llvm::Attribute::NoInline)) {
877     // (noinline wins over always_inline, and we can't specify both in IR)
878     B.addAttribute(llvm::Attribute::AlwaysInline);
879   }
880 
881   if (D->hasAttr<ColdAttr>()) {
882     if (!D->hasAttr<OptimizeNoneAttr>())
883       B.addAttribute(llvm::Attribute::OptimizeForSize);
884     B.addAttribute(llvm::Attribute::Cold);
885   }
886 
887   if (D->hasAttr<MinSizeAttr>())
888     B.addAttribute(llvm::Attribute::MinSize);
889 
890   F->addAttributes(llvm::AttributeSet::FunctionIndex,
891                    llvm::AttributeSet::get(
892                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
893 
894   if (D->hasAttr<OptimizeNoneAttr>()) {
895     // OptimizeNone implies noinline; we should not be inlining such functions.
896     F->addFnAttr(llvm::Attribute::OptimizeNone);
897     F->addFnAttr(llvm::Attribute::NoInline);
898 
899     // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
900     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
901     F->removeFnAttr(llvm::Attribute::MinSize);
902     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
903            "OptimizeNone and AlwaysInline on same function!");
904 
905     // Attribute 'inlinehint' has no effect on 'optnone' functions.
906     // Explicitly remove it from the set of function attributes.
907     F->removeFnAttr(llvm::Attribute::InlineHint);
908   }
909 
910   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
911   if (alignment)
912     F->setAlignment(alignment);
913 
914   // Some C++ ABIs require 2-byte alignment for member functions, in order to
915   // reserve a bit for differentiating between virtual and non-virtual member
916   // functions. If the current target's C++ ABI requires this and this is a
917   // member function, set its alignment accordingly.
918   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
919     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
920       F->setAlignment(2);
921   }
922 }
923 
924 void CodeGenModule::SetCommonAttributes(const Decl *D,
925                                         llvm::GlobalValue *GV) {
926   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
927     setGlobalVisibility(GV, ND);
928   else
929     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
930 
931   if (D && D->hasAttr<UsedAttr>())
932     addUsedGlobal(GV);
933 }
934 
935 void CodeGenModule::setAliasAttributes(const Decl *D,
936                                        llvm::GlobalValue *GV) {
937   SetCommonAttributes(D, GV);
938 
939   // Process the dllexport attribute based on whether the original definition
940   // (not necessarily the aliasee) was exported.
941   if (D->hasAttr<DLLExportAttr>())
942     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
943 }
944 
945 void CodeGenModule::setNonAliasAttributes(const Decl *D,
946                                           llvm::GlobalObject *GO) {
947   SetCommonAttributes(D, GO);
948 
949   if (D)
950     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
951       GO->setSection(SA->getName());
952 
953   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
954 }
955 
956 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
957                                                   llvm::Function *F,
958                                                   const CGFunctionInfo &FI) {
959   SetLLVMFunctionAttributes(D, FI, F);
960   SetLLVMFunctionAttributesForDefinition(D, F);
961 
962   F->setLinkage(llvm::Function::InternalLinkage);
963 
964   setNonAliasAttributes(D, F);
965 }
966 
967 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
968                                          const NamedDecl *ND) {
969   // Set linkage and visibility in case we never see a definition.
970   LinkageInfo LV = ND->getLinkageAndVisibility();
971   if (LV.getLinkage() != ExternalLinkage) {
972     // Don't set internal linkage on declarations.
973   } else {
974     if (ND->hasAttr<DLLImportAttr>()) {
975       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
976       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
977     } else if (ND->hasAttr<DLLExportAttr>()) {
978       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
979       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
980     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
981       // "extern_weak" is overloaded in LLVM; we probably should have
982       // separate linkage types for this.
983       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
984     }
985 
986     // Set visibility on a declaration only if it's explicit.
987     if (LV.isVisibilityExplicit())
988       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
989   }
990 }
991 
992 void CodeGenModule::CreateFunctionBitSetEntry(const FunctionDecl *FD,
993                                               llvm::Function *F) {
994   // Only if we are checking indirect calls.
995   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
996     return;
997 
998   // Non-static class methods are handled via vtable pointer checks elsewhere.
999   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1000     return;
1001 
1002   // Additionally, if building with cross-DSO support...
1003   if (CodeGenOpts.SanitizeCfiCrossDso) {
1004     // Don't emit entries for function declarations. In cross-DSO mode these are
1005     // handled with better precision at run time.
1006     if (!FD->hasBody())
1007       return;
1008     // Skip available_externally functions. They won't be codegen'ed in the
1009     // current module anyway.
1010     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1011       return;
1012   }
1013 
1014   llvm::NamedMDNode *BitsetsMD =
1015       getModule().getOrInsertNamedMetadata("llvm.bitsets");
1016 
1017   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1018   llvm::Metadata *BitsetOps[] = {
1019       MD, llvm::ConstantAsMetadata::get(F),
1020       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))};
1021   BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
1022 
1023   // Emit a hash-based bit set entry for cross-DSO calls.
1024   if (CodeGenOpts.SanitizeCfiCrossDso) {
1025     if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) {
1026       llvm::Metadata *BitsetOps2[] = {
1027           llvm::ConstantAsMetadata::get(TypeId),
1028           llvm::ConstantAsMetadata::get(F),
1029           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))};
1030       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2));
1031     }
1032   }
1033 }
1034 
1035 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1036                                           bool IsIncompleteFunction,
1037                                           bool IsThunk) {
1038   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1039     // If this is an intrinsic function, set the function's attributes
1040     // to the intrinsic's attributes.
1041     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1042     return;
1043   }
1044 
1045   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1046 
1047   if (!IsIncompleteFunction)
1048     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1049 
1050   // Add the Returned attribute for "this", except for iOS 5 and earlier
1051   // where substantial code, including the libstdc++ dylib, was compiled with
1052   // GCC and does not actually return "this".
1053   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1054       !(getTarget().getTriple().isiOS() &&
1055         getTarget().getTriple().isOSVersionLT(6))) {
1056     assert(!F->arg_empty() &&
1057            F->arg_begin()->getType()
1058              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1059            "unexpected this return");
1060     F->addAttribute(1, llvm::Attribute::Returned);
1061   }
1062 
1063   // Only a few attributes are set on declarations; these may later be
1064   // overridden by a definition.
1065 
1066   setLinkageAndVisibilityForGV(F, FD);
1067 
1068   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1069     F->setSection(SA->getName());
1070 
1071   if (FD->isReplaceableGlobalAllocationFunction()) {
1072     // A replaceable global allocation function does not act like a builtin by
1073     // default, only if it is invoked by a new-expression or delete-expression.
1074     F->addAttribute(llvm::AttributeSet::FunctionIndex,
1075                     llvm::Attribute::NoBuiltin);
1076 
1077     // A sane operator new returns a non-aliasing pointer.
1078     // FIXME: Also add NonNull attribute to the return value
1079     // for the non-nothrow forms?
1080     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1081     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1082         (Kind == OO_New || Kind == OO_Array_New))
1083       F->addAttribute(llvm::AttributeSet::ReturnIndex,
1084                       llvm::Attribute::NoAlias);
1085   }
1086 
1087   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1088     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1089   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1090     if (MD->isVirtual())
1091       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1092 
1093   CreateFunctionBitSetEntry(FD, F);
1094 }
1095 
1096 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1097   assert(!GV->isDeclaration() &&
1098          "Only globals with definition can force usage.");
1099   LLVMUsed.emplace_back(GV);
1100 }
1101 
1102 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1103   assert(!GV->isDeclaration() &&
1104          "Only globals with definition can force usage.");
1105   LLVMCompilerUsed.emplace_back(GV);
1106 }
1107 
1108 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1109                      std::vector<llvm::WeakVH> &List) {
1110   // Don't create llvm.used if there is no need.
1111   if (List.empty())
1112     return;
1113 
1114   // Convert List to what ConstantArray needs.
1115   SmallVector<llvm::Constant*, 8> UsedArray;
1116   UsedArray.resize(List.size());
1117   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1118     UsedArray[i] =
1119         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1120             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1121   }
1122 
1123   if (UsedArray.empty())
1124     return;
1125   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1126 
1127   auto *GV = new llvm::GlobalVariable(
1128       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1129       llvm::ConstantArray::get(ATy, UsedArray), Name);
1130 
1131   GV->setSection("llvm.metadata");
1132 }
1133 
1134 void CodeGenModule::emitLLVMUsed() {
1135   emitUsed(*this, "llvm.used", LLVMUsed);
1136   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1137 }
1138 
1139 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1140   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1141   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1142 }
1143 
1144 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1145   llvm::SmallString<32> Opt;
1146   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1147   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1148   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1149 }
1150 
1151 void CodeGenModule::AddDependentLib(StringRef Lib) {
1152   llvm::SmallString<24> Opt;
1153   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1154   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1155   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1156 }
1157 
1158 /// \brief Add link options implied by the given module, including modules
1159 /// it depends on, using a postorder walk.
1160 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1161                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1162                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1163   // Import this module's parent.
1164   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1165     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1166   }
1167 
1168   // Import this module's dependencies.
1169   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1170     if (Visited.insert(Mod->Imports[I - 1]).second)
1171       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1172   }
1173 
1174   // Add linker options to link against the libraries/frameworks
1175   // described by this module.
1176   llvm::LLVMContext &Context = CGM.getLLVMContext();
1177   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1178     // Link against a framework.  Frameworks are currently Darwin only, so we
1179     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1180     if (Mod->LinkLibraries[I-1].IsFramework) {
1181       llvm::Metadata *Args[2] = {
1182           llvm::MDString::get(Context, "-framework"),
1183           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1184 
1185       Metadata.push_back(llvm::MDNode::get(Context, Args));
1186       continue;
1187     }
1188 
1189     // Link against a library.
1190     llvm::SmallString<24> Opt;
1191     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1192       Mod->LinkLibraries[I-1].Library, Opt);
1193     auto *OptString = llvm::MDString::get(Context, Opt);
1194     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1195   }
1196 }
1197 
1198 void CodeGenModule::EmitModuleLinkOptions() {
1199   // Collect the set of all of the modules we want to visit to emit link
1200   // options, which is essentially the imported modules and all of their
1201   // non-explicit child modules.
1202   llvm::SetVector<clang::Module *> LinkModules;
1203   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1204   SmallVector<clang::Module *, 16> Stack;
1205 
1206   // Seed the stack with imported modules.
1207   for (Module *M : ImportedModules)
1208     if (Visited.insert(M).second)
1209       Stack.push_back(M);
1210 
1211   // Find all of the modules to import, making a little effort to prune
1212   // non-leaf modules.
1213   while (!Stack.empty()) {
1214     clang::Module *Mod = Stack.pop_back_val();
1215 
1216     bool AnyChildren = false;
1217 
1218     // Visit the submodules of this module.
1219     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1220                                         SubEnd = Mod->submodule_end();
1221          Sub != SubEnd; ++Sub) {
1222       // Skip explicit children; they need to be explicitly imported to be
1223       // linked against.
1224       if ((*Sub)->IsExplicit)
1225         continue;
1226 
1227       if (Visited.insert(*Sub).second) {
1228         Stack.push_back(*Sub);
1229         AnyChildren = true;
1230       }
1231     }
1232 
1233     // We didn't find any children, so add this module to the list of
1234     // modules to link against.
1235     if (!AnyChildren) {
1236       LinkModules.insert(Mod);
1237     }
1238   }
1239 
1240   // Add link options for all of the imported modules in reverse topological
1241   // order.  We don't do anything to try to order import link flags with respect
1242   // to linker options inserted by things like #pragma comment().
1243   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1244   Visited.clear();
1245   for (Module *M : LinkModules)
1246     if (Visited.insert(M).second)
1247       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1248   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1249   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1250 
1251   // Add the linker options metadata flag.
1252   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1253                             llvm::MDNode::get(getLLVMContext(),
1254                                               LinkerOptionsMetadata));
1255 }
1256 
1257 void CodeGenModule::EmitDeferred() {
1258   // Emit code for any potentially referenced deferred decls.  Since a
1259   // previously unused static decl may become used during the generation of code
1260   // for a static function, iterate until no changes are made.
1261 
1262   if (!DeferredVTables.empty()) {
1263     EmitDeferredVTables();
1264 
1265     // Emitting a vtable doesn't directly cause more vtables to
1266     // become deferred, although it can cause functions to be
1267     // emitted that then need those vtables.
1268     assert(DeferredVTables.empty());
1269   }
1270 
1271   // Stop if we're out of both deferred vtables and deferred declarations.
1272   if (DeferredDeclsToEmit.empty())
1273     return;
1274 
1275   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1276   // work, it will not interfere with this.
1277   std::vector<DeferredGlobal> CurDeclsToEmit;
1278   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1279 
1280   for (DeferredGlobal &G : CurDeclsToEmit) {
1281     GlobalDecl D = G.GD;
1282     G.GV = nullptr;
1283 
1284     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1285     // to get GlobalValue with exactly the type we need, not something that
1286     // might had been created for another decl with the same mangled name but
1287     // different type.
1288     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1289         GetAddrOfGlobal(D, /*IsForDefinition=*/true));
1290 
1291     // In case of different address spaces, we may still get a cast, even with
1292     // IsForDefinition equal to true. Query mangled names table to get
1293     // GlobalValue.
1294     if (!GV)
1295       GV = GetGlobalValue(getMangledName(D));
1296 
1297     // Make sure GetGlobalValue returned non-null.
1298     assert(GV);
1299 
1300     // Check to see if we've already emitted this.  This is necessary
1301     // for a couple of reasons: first, decls can end up in the
1302     // deferred-decls queue multiple times, and second, decls can end
1303     // up with definitions in unusual ways (e.g. by an extern inline
1304     // function acquiring a strong function redefinition).  Just
1305     // ignore these cases.
1306     if (!GV->isDeclaration())
1307       continue;
1308 
1309     // Otherwise, emit the definition and move on to the next one.
1310     EmitGlobalDefinition(D, GV);
1311 
1312     // If we found out that we need to emit more decls, do that recursively.
1313     // This has the advantage that the decls are emitted in a DFS and related
1314     // ones are close together, which is convenient for testing.
1315     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1316       EmitDeferred();
1317       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1318     }
1319   }
1320 }
1321 
1322 void CodeGenModule::EmitGlobalAnnotations() {
1323   if (Annotations.empty())
1324     return;
1325 
1326   // Create a new global variable for the ConstantStruct in the Module.
1327   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1328     Annotations[0]->getType(), Annotations.size()), Annotations);
1329   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1330                                       llvm::GlobalValue::AppendingLinkage,
1331                                       Array, "llvm.global.annotations");
1332   gv->setSection(AnnotationSection);
1333 }
1334 
1335 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1336   llvm::Constant *&AStr = AnnotationStrings[Str];
1337   if (AStr)
1338     return AStr;
1339 
1340   // Not found yet, create a new global.
1341   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1342   auto *gv =
1343       new llvm::GlobalVariable(getModule(), s->getType(), true,
1344                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1345   gv->setSection(AnnotationSection);
1346   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1347   AStr = gv;
1348   return gv;
1349 }
1350 
1351 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1352   SourceManager &SM = getContext().getSourceManager();
1353   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1354   if (PLoc.isValid())
1355     return EmitAnnotationString(PLoc.getFilename());
1356   return EmitAnnotationString(SM.getBufferName(Loc));
1357 }
1358 
1359 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1360   SourceManager &SM = getContext().getSourceManager();
1361   PresumedLoc PLoc = SM.getPresumedLoc(L);
1362   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1363     SM.getExpansionLineNumber(L);
1364   return llvm::ConstantInt::get(Int32Ty, LineNo);
1365 }
1366 
1367 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1368                                                 const AnnotateAttr *AA,
1369                                                 SourceLocation L) {
1370   // Get the globals for file name, annotation, and the line number.
1371   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1372                  *UnitGV = EmitAnnotationUnit(L),
1373                  *LineNoCst = EmitAnnotationLineNo(L);
1374 
1375   // Create the ConstantStruct for the global annotation.
1376   llvm::Constant *Fields[4] = {
1377     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1378     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1379     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1380     LineNoCst
1381   };
1382   return llvm::ConstantStruct::getAnon(Fields);
1383 }
1384 
1385 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1386                                          llvm::GlobalValue *GV) {
1387   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1388   // Get the struct elements for these annotations.
1389   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1390     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1391 }
1392 
1393 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1394                                            SourceLocation Loc) const {
1395   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1396   // Blacklist by function name.
1397   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1398     return true;
1399   // Blacklist by location.
1400   if (Loc.isValid())
1401     return SanitizerBL.isBlacklistedLocation(Loc);
1402   // If location is unknown, this may be a compiler-generated function. Assume
1403   // it's located in the main file.
1404   auto &SM = Context.getSourceManager();
1405   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1406     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1407   }
1408   return false;
1409 }
1410 
1411 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1412                                            SourceLocation Loc, QualType Ty,
1413                                            StringRef Category) const {
1414   // For now globals can be blacklisted only in ASan and KASan.
1415   if (!LangOpts.Sanitize.hasOneOf(
1416           SanitizerKind::Address | SanitizerKind::KernelAddress))
1417     return false;
1418   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1419   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1420     return true;
1421   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1422     return true;
1423   // Check global type.
1424   if (!Ty.isNull()) {
1425     // Drill down the array types: if global variable of a fixed type is
1426     // blacklisted, we also don't instrument arrays of them.
1427     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1428       Ty = AT->getElementType();
1429     Ty = Ty.getCanonicalType().getUnqualifiedType();
1430     // We allow to blacklist only record types (classes, structs etc.)
1431     if (Ty->isRecordType()) {
1432       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1433       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1434         return true;
1435     }
1436   }
1437   return false;
1438 }
1439 
1440 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1441   // Never defer when EmitAllDecls is specified.
1442   if (LangOpts.EmitAllDecls)
1443     return true;
1444 
1445   return getContext().DeclMustBeEmitted(Global);
1446 }
1447 
1448 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1449   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1450     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1451       // Implicit template instantiations may change linkage if they are later
1452       // explicitly instantiated, so they should not be emitted eagerly.
1453       return false;
1454   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1455   // codegen for global variables, because they may be marked as threadprivate.
1456   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1457       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1458     return false;
1459 
1460   return true;
1461 }
1462 
1463 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1464     const CXXUuidofExpr* E) {
1465   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1466   // well-formed.
1467   StringRef Uuid = E->getUuidStr();
1468   std::string Name = "_GUID_" + Uuid.lower();
1469   std::replace(Name.begin(), Name.end(), '-', '_');
1470 
1471   // The UUID descriptor should be pointer aligned.
1472   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1473 
1474   // Look for an existing global.
1475   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1476     return ConstantAddress(GV, Alignment);
1477 
1478   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1479   assert(Init && "failed to initialize as constant");
1480 
1481   auto *GV = new llvm::GlobalVariable(
1482       getModule(), Init->getType(),
1483       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1484   if (supportsCOMDAT())
1485     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1486   return ConstantAddress(GV, Alignment);
1487 }
1488 
1489 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1490   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1491   assert(AA && "No alias?");
1492 
1493   CharUnits Alignment = getContext().getDeclAlign(VD);
1494   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1495 
1496   // See if there is already something with the target's name in the module.
1497   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1498   if (Entry) {
1499     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1500     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1501     return ConstantAddress(Ptr, Alignment);
1502   }
1503 
1504   llvm::Constant *Aliasee;
1505   if (isa<llvm::FunctionType>(DeclTy))
1506     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1507                                       GlobalDecl(cast<FunctionDecl>(VD)),
1508                                       /*ForVTable=*/false);
1509   else
1510     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1511                                     llvm::PointerType::getUnqual(DeclTy),
1512                                     nullptr);
1513 
1514   auto *F = cast<llvm::GlobalValue>(Aliasee);
1515   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1516   WeakRefReferences.insert(F);
1517 
1518   return ConstantAddress(Aliasee, Alignment);
1519 }
1520 
1521 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1522   const auto *Global = cast<ValueDecl>(GD.getDecl());
1523 
1524   // Weak references don't produce any output by themselves.
1525   if (Global->hasAttr<WeakRefAttr>())
1526     return;
1527 
1528   // If this is an alias definition (which otherwise looks like a declaration)
1529   // emit it now.
1530   if (Global->hasAttr<AliasAttr>())
1531     return EmitAliasDefinition(GD);
1532 
1533   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1534   if (Global->hasAttr<IFuncAttr>())
1535     return emitIFuncDefinition(GD);
1536 
1537   // If this is CUDA, be selective about which declarations we emit.
1538   if (LangOpts.CUDA) {
1539     if (LangOpts.CUDAIsDevice) {
1540       if (!Global->hasAttr<CUDADeviceAttr>() &&
1541           !Global->hasAttr<CUDAGlobalAttr>() &&
1542           !Global->hasAttr<CUDAConstantAttr>() &&
1543           !Global->hasAttr<CUDASharedAttr>())
1544         return;
1545     } else {
1546       // We need to emit host-side 'shadows' for all global
1547       // device-side variables because the CUDA runtime needs their
1548       // size and host-side address in order to provide access to
1549       // their device-side incarnations.
1550 
1551       // So device-only functions are the only things we skip.
1552       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1553           Global->hasAttr<CUDADeviceAttr>())
1554         return;
1555 
1556       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1557              "Expected Variable or Function");
1558     }
1559   }
1560 
1561   if (LangOpts.OpenMP) {
1562     // If this is OpenMP device, check if it is legal to emit this global
1563     // normally.
1564     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1565       return;
1566     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1567       if (MustBeEmitted(Global))
1568         EmitOMPDeclareReduction(DRD);
1569       return;
1570     }
1571   }
1572 
1573   // Ignore declarations, they will be emitted on their first use.
1574   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1575     // Forward declarations are emitted lazily on first use.
1576     if (!FD->doesThisDeclarationHaveABody()) {
1577       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1578         return;
1579 
1580       StringRef MangledName = getMangledName(GD);
1581 
1582       // Compute the function info and LLVM type.
1583       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1584       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1585 
1586       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1587                               /*DontDefer=*/false);
1588       return;
1589     }
1590   } else {
1591     const auto *VD = cast<VarDecl>(Global);
1592     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1593     // We need to emit device-side global CUDA variables even if a
1594     // variable does not have a definition -- we still need to define
1595     // host-side shadow for it.
1596     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1597                            !VD->hasDefinition() &&
1598                            (VD->hasAttr<CUDAConstantAttr>() ||
1599                             VD->hasAttr<CUDADeviceAttr>());
1600     if (!MustEmitForCuda &&
1601         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1602         !Context.isMSStaticDataMemberInlineDefinition(VD))
1603       return;
1604   }
1605 
1606   // Defer code generation to first use when possible, e.g. if this is an inline
1607   // function. If the global must always be emitted, do it eagerly if possible
1608   // to benefit from cache locality.
1609   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1610     // Emit the definition if it can't be deferred.
1611     EmitGlobalDefinition(GD);
1612     return;
1613   }
1614 
1615   // If we're deferring emission of a C++ variable with an
1616   // initializer, remember the order in which it appeared in the file.
1617   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1618       cast<VarDecl>(Global)->hasInit()) {
1619     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1620     CXXGlobalInits.push_back(nullptr);
1621   }
1622 
1623   StringRef MangledName = getMangledName(GD);
1624   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1625     // The value has already been used and should therefore be emitted.
1626     addDeferredDeclToEmit(GV, GD);
1627   } else if (MustBeEmitted(Global)) {
1628     // The value must be emitted, but cannot be emitted eagerly.
1629     assert(!MayBeEmittedEagerly(Global));
1630     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1631   } else {
1632     // Otherwise, remember that we saw a deferred decl with this name.  The
1633     // first use of the mangled name will cause it to move into
1634     // DeferredDeclsToEmit.
1635     DeferredDecls[MangledName] = GD;
1636   }
1637 }
1638 
1639 namespace {
1640   struct FunctionIsDirectlyRecursive :
1641     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1642     const StringRef Name;
1643     const Builtin::Context &BI;
1644     bool Result;
1645     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1646       Name(N), BI(C), Result(false) {
1647     }
1648     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1649 
1650     bool TraverseCallExpr(CallExpr *E) {
1651       const FunctionDecl *FD = E->getDirectCallee();
1652       if (!FD)
1653         return true;
1654       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1655       if (Attr && Name == Attr->getLabel()) {
1656         Result = true;
1657         return false;
1658       }
1659       unsigned BuiltinID = FD->getBuiltinID();
1660       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1661         return true;
1662       StringRef BuiltinName = BI.getName(BuiltinID);
1663       if (BuiltinName.startswith("__builtin_") &&
1664           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1665         Result = true;
1666         return false;
1667       }
1668       return true;
1669     }
1670   };
1671 
1672   struct DLLImportFunctionVisitor
1673       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1674     bool SafeToInline = true;
1675 
1676     bool VisitVarDecl(VarDecl *VD) {
1677       // A thread-local variable cannot be imported.
1678       SafeToInline = !VD->getTLSKind();
1679       return SafeToInline;
1680     }
1681 
1682     // Make sure we're not referencing non-imported vars or functions.
1683     bool VisitDeclRefExpr(DeclRefExpr *E) {
1684       ValueDecl *VD = E->getDecl();
1685       if (isa<FunctionDecl>(VD))
1686         SafeToInline = VD->hasAttr<DLLImportAttr>();
1687       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1688         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1689       return SafeToInline;
1690     }
1691     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1692       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1693       return SafeToInline;
1694     }
1695     bool VisitCXXNewExpr(CXXNewExpr *E) {
1696       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1697       return SafeToInline;
1698     }
1699   };
1700 }
1701 
1702 // isTriviallyRecursive - Check if this function calls another
1703 // decl that, because of the asm attribute or the other decl being a builtin,
1704 // ends up pointing to itself.
1705 bool
1706 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1707   StringRef Name;
1708   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1709     // asm labels are a special kind of mangling we have to support.
1710     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1711     if (!Attr)
1712       return false;
1713     Name = Attr->getLabel();
1714   } else {
1715     Name = FD->getName();
1716   }
1717 
1718   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1719   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1720   return Walker.Result;
1721 }
1722 
1723 bool
1724 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1725   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1726     return true;
1727   const auto *F = cast<FunctionDecl>(GD.getDecl());
1728   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1729     return false;
1730 
1731   if (F->hasAttr<DLLImportAttr>()) {
1732     // Check whether it would be safe to inline this dllimport function.
1733     DLLImportFunctionVisitor Visitor;
1734     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1735     if (!Visitor.SafeToInline)
1736       return false;
1737   }
1738 
1739   // PR9614. Avoid cases where the source code is lying to us. An available
1740   // externally function should have an equivalent function somewhere else,
1741   // but a function that calls itself is clearly not equivalent to the real
1742   // implementation.
1743   // This happens in glibc's btowc and in some configure checks.
1744   return !isTriviallyRecursive(F);
1745 }
1746 
1747 /// If the type for the method's class was generated by
1748 /// CGDebugInfo::createContextChain(), the cache contains only a
1749 /// limited DIType without any declarations. Since EmitFunctionStart()
1750 /// needs to find the canonical declaration for each method, we need
1751 /// to construct the complete type prior to emitting the method.
1752 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1753   if (!D->isInstance())
1754     return;
1755 
1756   if (CGDebugInfo *DI = getModuleDebugInfo())
1757     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
1758       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1759       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1760     }
1761 }
1762 
1763 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1764   const auto *D = cast<ValueDecl>(GD.getDecl());
1765 
1766   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1767                                  Context.getSourceManager(),
1768                                  "Generating code for declaration");
1769 
1770   if (isa<FunctionDecl>(D)) {
1771     // At -O0, don't generate IR for functions with available_externally
1772     // linkage.
1773     if (!shouldEmitFunction(GD))
1774       return;
1775 
1776     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1777       CompleteDIClassType(Method);
1778       // Make sure to emit the definition(s) before we emit the thunks.
1779       // This is necessary for the generation of certain thunks.
1780       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1781         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1782       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1783         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1784       else
1785         EmitGlobalFunctionDefinition(GD, GV);
1786 
1787       if (Method->isVirtual())
1788         getVTables().EmitThunks(GD);
1789 
1790       return;
1791     }
1792 
1793     return EmitGlobalFunctionDefinition(GD, GV);
1794   }
1795 
1796   if (const auto *VD = dyn_cast<VarDecl>(D))
1797     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
1798 
1799   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1800 }
1801 
1802 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1803                                                       llvm::Function *NewFn);
1804 
1805 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1806 /// module, create and return an llvm Function with the specified type. If there
1807 /// is something in the module with the specified name, return it potentially
1808 /// bitcasted to the right type.
1809 ///
1810 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1811 /// to set the attributes on the function when it is first created.
1812 llvm::Constant *
1813 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1814                                        llvm::Type *Ty,
1815                                        GlobalDecl GD, bool ForVTable,
1816                                        bool DontDefer, bool IsThunk,
1817                                        llvm::AttributeSet ExtraAttrs,
1818                                        bool IsForDefinition) {
1819   const Decl *D = GD.getDecl();
1820 
1821   // Lookup the entry, lazily creating it if necessary.
1822   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1823   if (Entry) {
1824     if (WeakRefReferences.erase(Entry)) {
1825       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1826       if (FD && !FD->hasAttr<WeakAttr>())
1827         Entry->setLinkage(llvm::Function::ExternalLinkage);
1828     }
1829 
1830     // Handle dropped DLL attributes.
1831     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1832       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1833 
1834     // If there are two attempts to define the same mangled name, issue an
1835     // error.
1836     if (IsForDefinition && !Entry->isDeclaration()) {
1837       GlobalDecl OtherGD;
1838       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
1839       // to make sure that we issue an error only once.
1840       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1841           (GD.getCanonicalDecl().getDecl() !=
1842            OtherGD.getCanonicalDecl().getDecl()) &&
1843           DiagnosedConflictingDefinitions.insert(GD).second) {
1844         getDiags().Report(D->getLocation(),
1845                           diag::err_duplicate_mangled_name);
1846         getDiags().Report(OtherGD.getDecl()->getLocation(),
1847                           diag::note_previous_definition);
1848       }
1849     }
1850 
1851     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1852         (Entry->getType()->getElementType() == Ty)) {
1853       return Entry;
1854     }
1855 
1856     // Make sure the result is of the correct type.
1857     // (If function is requested for a definition, we always need to create a new
1858     // function, not just return a bitcast.)
1859     if (!IsForDefinition)
1860       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1861   }
1862 
1863   // This function doesn't have a complete type (for example, the return
1864   // type is an incomplete struct). Use a fake type instead, and make
1865   // sure not to try to set attributes.
1866   bool IsIncompleteFunction = false;
1867 
1868   llvm::FunctionType *FTy;
1869   if (isa<llvm::FunctionType>(Ty)) {
1870     FTy = cast<llvm::FunctionType>(Ty);
1871   } else {
1872     FTy = llvm::FunctionType::get(VoidTy, false);
1873     IsIncompleteFunction = true;
1874   }
1875 
1876   llvm::Function *F =
1877       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
1878                              Entry ? StringRef() : MangledName, &getModule());
1879 
1880   // If we already created a function with the same mangled name (but different
1881   // type) before, take its name and add it to the list of functions to be
1882   // replaced with F at the end of CodeGen.
1883   //
1884   // This happens if there is a prototype for a function (e.g. "int f()") and
1885   // then a definition of a different type (e.g. "int f(int x)").
1886   if (Entry) {
1887     F->takeName(Entry);
1888 
1889     // This might be an implementation of a function without a prototype, in
1890     // which case, try to do special replacement of calls which match the new
1891     // prototype.  The really key thing here is that we also potentially drop
1892     // arguments from the call site so as to make a direct call, which makes the
1893     // inliner happier and suppresses a number of optimizer warnings (!) about
1894     // dropping arguments.
1895     if (!Entry->use_empty()) {
1896       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
1897       Entry->removeDeadConstantUsers();
1898     }
1899 
1900     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
1901         F, Entry->getType()->getElementType()->getPointerTo());
1902     addGlobalValReplacement(Entry, BC);
1903   }
1904 
1905   assert(F->getName() == MangledName && "name was uniqued!");
1906   if (D)
1907     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1908   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1909     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1910     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1911                      llvm::AttributeSet::get(VMContext,
1912                                              llvm::AttributeSet::FunctionIndex,
1913                                              B));
1914   }
1915 
1916   if (!DontDefer) {
1917     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1918     // each other bottoming out with the base dtor.  Therefore we emit non-base
1919     // dtors on usage, even if there is no dtor definition in the TU.
1920     if (D && isa<CXXDestructorDecl>(D) &&
1921         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1922                                            GD.getDtorType()))
1923       addDeferredDeclToEmit(F, GD);
1924 
1925     // This is the first use or definition of a mangled name.  If there is a
1926     // deferred decl with this name, remember that we need to emit it at the end
1927     // of the file.
1928     auto DDI = DeferredDecls.find(MangledName);
1929     if (DDI != DeferredDecls.end()) {
1930       // Move the potentially referenced deferred decl to the
1931       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1932       // don't need it anymore).
1933       addDeferredDeclToEmit(F, DDI->second);
1934       DeferredDecls.erase(DDI);
1935 
1936       // Otherwise, there are cases we have to worry about where we're
1937       // using a declaration for which we must emit a definition but where
1938       // we might not find a top-level definition:
1939       //   - member functions defined inline in their classes
1940       //   - friend functions defined inline in some class
1941       //   - special member functions with implicit definitions
1942       // If we ever change our AST traversal to walk into class methods,
1943       // this will be unnecessary.
1944       //
1945       // We also don't emit a definition for a function if it's going to be an
1946       // entry in a vtable, unless it's already marked as used.
1947     } else if (getLangOpts().CPlusPlus && D) {
1948       // Look for a declaration that's lexically in a record.
1949       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1950            FD = FD->getPreviousDecl()) {
1951         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1952           if (FD->doesThisDeclarationHaveABody()) {
1953             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1954             break;
1955           }
1956         }
1957       }
1958     }
1959   }
1960 
1961   // Make sure the result is of the requested type.
1962   if (!IsIncompleteFunction) {
1963     assert(F->getType()->getElementType() == Ty);
1964     return F;
1965   }
1966 
1967   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1968   return llvm::ConstantExpr::getBitCast(F, PTy);
1969 }
1970 
1971 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1972 /// non-null, then this function will use the specified type if it has to
1973 /// create it (this occurs when we see a definition of the function).
1974 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1975                                                  llvm::Type *Ty,
1976                                                  bool ForVTable,
1977                                                  bool DontDefer,
1978                                                  bool IsForDefinition) {
1979   // If there was no specific requested type, just convert it now.
1980   if (!Ty) {
1981     const auto *FD = cast<FunctionDecl>(GD.getDecl());
1982     auto CanonTy = Context.getCanonicalType(FD->getType());
1983     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
1984   }
1985 
1986   StringRef MangledName = getMangledName(GD);
1987   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
1988                                  /*IsThunk=*/false, llvm::AttributeSet(),
1989                                  IsForDefinition);
1990 }
1991 
1992 /// CreateRuntimeFunction - Create a new runtime function with the specified
1993 /// type and name.
1994 llvm::Constant *
1995 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1996                                      StringRef Name,
1997                                      llvm::AttributeSet ExtraAttrs) {
1998   llvm::Constant *C =
1999       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2000                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2001   if (auto *F = dyn_cast<llvm::Function>(C))
2002     if (F->empty())
2003       F->setCallingConv(getRuntimeCC());
2004   return C;
2005 }
2006 
2007 /// CreateBuiltinFunction - Create a new builtin function with the specified
2008 /// type and name.
2009 llvm::Constant *
2010 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
2011                                      StringRef Name,
2012                                      llvm::AttributeSet ExtraAttrs) {
2013   llvm::Constant *C =
2014       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2015                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2016   if (auto *F = dyn_cast<llvm::Function>(C))
2017     if (F->empty())
2018       F->setCallingConv(getBuiltinCC());
2019   return C;
2020 }
2021 
2022 /// isTypeConstant - Determine whether an object of this type can be emitted
2023 /// as a constant.
2024 ///
2025 /// If ExcludeCtor is true, the duration when the object's constructor runs
2026 /// will not be considered. The caller will need to verify that the object is
2027 /// not written to during its construction.
2028 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2029   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2030     return false;
2031 
2032   if (Context.getLangOpts().CPlusPlus) {
2033     if (const CXXRecordDecl *Record
2034           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2035       return ExcludeCtor && !Record->hasMutableFields() &&
2036              Record->hasTrivialDestructor();
2037   }
2038 
2039   return true;
2040 }
2041 
2042 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2043 /// create and return an llvm GlobalVariable with the specified type.  If there
2044 /// is something in the module with the specified name, return it potentially
2045 /// bitcasted to the right type.
2046 ///
2047 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2048 /// to set the attributes on the global when it is first created.
2049 ///
2050 /// If IsForDefinition is true, it is guranteed that an actual global with
2051 /// type Ty will be returned, not conversion of a variable with the same
2052 /// mangled name but some other type.
2053 llvm::Constant *
2054 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2055                                      llvm::PointerType *Ty,
2056                                      const VarDecl *D,
2057                                      bool IsForDefinition) {
2058   // Lookup the entry, lazily creating it if necessary.
2059   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2060   if (Entry) {
2061     if (WeakRefReferences.erase(Entry)) {
2062       if (D && !D->hasAttr<WeakAttr>())
2063         Entry->setLinkage(llvm::Function::ExternalLinkage);
2064     }
2065 
2066     // Handle dropped DLL attributes.
2067     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2068       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2069 
2070     if (Entry->getType() == Ty)
2071       return Entry;
2072 
2073     // If there are two attempts to define the same mangled name, issue an
2074     // error.
2075     if (IsForDefinition && !Entry->isDeclaration()) {
2076       GlobalDecl OtherGD;
2077       const VarDecl *OtherD;
2078 
2079       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2080       // to make sure that we issue an error only once.
2081       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2082           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2083           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2084           OtherD->hasInit() &&
2085           DiagnosedConflictingDefinitions.insert(D).second) {
2086         getDiags().Report(D->getLocation(),
2087                           diag::err_duplicate_mangled_name);
2088         getDiags().Report(OtherGD.getDecl()->getLocation(),
2089                           diag::note_previous_definition);
2090       }
2091     }
2092 
2093     // Make sure the result is of the correct type.
2094     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2095       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2096 
2097     // (If global is requested for a definition, we always need to create a new
2098     // global, not just return a bitcast.)
2099     if (!IsForDefinition)
2100       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2101   }
2102 
2103   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2104   auto *GV = new llvm::GlobalVariable(
2105       getModule(), Ty->getElementType(), false,
2106       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2107       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2108 
2109   // If we already created a global with the same mangled name (but different
2110   // type) before, take its name and remove it from its parent.
2111   if (Entry) {
2112     GV->takeName(Entry);
2113 
2114     if (!Entry->use_empty()) {
2115       llvm::Constant *NewPtrForOldDecl =
2116           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2117       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2118     }
2119 
2120     Entry->eraseFromParent();
2121   }
2122 
2123   // This is the first use or definition of a mangled name.  If there is a
2124   // deferred decl with this name, remember that we need to emit it at the end
2125   // of the file.
2126   auto DDI = DeferredDecls.find(MangledName);
2127   if (DDI != DeferredDecls.end()) {
2128     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2129     // list, and remove it from DeferredDecls (since we don't need it anymore).
2130     addDeferredDeclToEmit(GV, DDI->second);
2131     DeferredDecls.erase(DDI);
2132   }
2133 
2134   // Handle things which are present even on external declarations.
2135   if (D) {
2136     // FIXME: This code is overly simple and should be merged with other global
2137     // handling.
2138     GV->setConstant(isTypeConstant(D->getType(), false));
2139 
2140     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2141 
2142     setLinkageAndVisibilityForGV(GV, D);
2143 
2144     if (D->getTLSKind()) {
2145       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2146         CXXThreadLocals.push_back(D);
2147       setTLSMode(GV, *D);
2148     }
2149 
2150     // If required by the ABI, treat declarations of static data members with
2151     // inline initializers as definitions.
2152     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2153       EmitGlobalVarDefinition(D);
2154     }
2155 
2156     // Handle XCore specific ABI requirements.
2157     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
2158         D->getLanguageLinkage() == CLanguageLinkage &&
2159         D->getType().isConstant(Context) &&
2160         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2161       GV->setSection(".cp.rodata");
2162   }
2163 
2164   if (AddrSpace != Ty->getAddressSpace())
2165     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2166 
2167   return GV;
2168 }
2169 
2170 llvm::Constant *
2171 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2172                                bool IsForDefinition) {
2173   if (isa<CXXConstructorDecl>(GD.getDecl()))
2174     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()),
2175                                 getFromCtorType(GD.getCtorType()),
2176                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2177                                 /*DontDefer=*/false, IsForDefinition);
2178   else if (isa<CXXDestructorDecl>(GD.getDecl()))
2179     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()),
2180                                 getFromDtorType(GD.getDtorType()),
2181                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2182                                 /*DontDefer=*/false, IsForDefinition);
2183   else if (isa<CXXMethodDecl>(GD.getDecl())) {
2184     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2185         cast<CXXMethodDecl>(GD.getDecl()));
2186     auto Ty = getTypes().GetFunctionType(*FInfo);
2187     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2188                              IsForDefinition);
2189   } else if (isa<FunctionDecl>(GD.getDecl())) {
2190     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2191     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2192     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2193                              IsForDefinition);
2194   } else
2195     return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr,
2196                               IsForDefinition);
2197 }
2198 
2199 llvm::GlobalVariable *
2200 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2201                                       llvm::Type *Ty,
2202                                       llvm::GlobalValue::LinkageTypes Linkage) {
2203   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2204   llvm::GlobalVariable *OldGV = nullptr;
2205 
2206   if (GV) {
2207     // Check if the variable has the right type.
2208     if (GV->getType()->getElementType() == Ty)
2209       return GV;
2210 
2211     // Because C++ name mangling, the only way we can end up with an already
2212     // existing global with the same name is if it has been declared extern "C".
2213     assert(GV->isDeclaration() && "Declaration has wrong type!");
2214     OldGV = GV;
2215   }
2216 
2217   // Create a new variable.
2218   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2219                                 Linkage, nullptr, Name);
2220 
2221   if (OldGV) {
2222     // Replace occurrences of the old variable if needed.
2223     GV->takeName(OldGV);
2224 
2225     if (!OldGV->use_empty()) {
2226       llvm::Constant *NewPtrForOldDecl =
2227       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2228       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2229     }
2230 
2231     OldGV->eraseFromParent();
2232   }
2233 
2234   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2235       !GV->hasAvailableExternallyLinkage())
2236     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2237 
2238   return GV;
2239 }
2240 
2241 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2242 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2243 /// then it will be created with the specified type instead of whatever the
2244 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2245 /// that an actual global with type Ty will be returned, not conversion of a
2246 /// variable with the same mangled name but some other type.
2247 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2248                                                   llvm::Type *Ty,
2249                                                   bool IsForDefinition) {
2250   assert(D->hasGlobalStorage() && "Not a global variable");
2251   QualType ASTTy = D->getType();
2252   if (!Ty)
2253     Ty = getTypes().ConvertTypeForMem(ASTTy);
2254 
2255   llvm::PointerType *PTy =
2256     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2257 
2258   StringRef MangledName = getMangledName(D);
2259   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2260 }
2261 
2262 /// CreateRuntimeVariable - Create a new runtime global variable with the
2263 /// specified type and name.
2264 llvm::Constant *
2265 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2266                                      StringRef Name) {
2267   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2268 }
2269 
2270 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2271   assert(!D->getInit() && "Cannot emit definite definitions here!");
2272 
2273   StringRef MangledName = getMangledName(D);
2274   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2275 
2276   // We already have a definition, not declaration, with the same mangled name.
2277   // Emitting of declaration is not required (and actually overwrites emitted
2278   // definition).
2279   if (GV && !GV->isDeclaration())
2280     return;
2281 
2282   // If we have not seen a reference to this variable yet, place it into the
2283   // deferred declarations table to be emitted if needed later.
2284   if (!MustBeEmitted(D) && !GV) {
2285       DeferredDecls[MangledName] = D;
2286       return;
2287   }
2288 
2289   // The tentative definition is the only definition.
2290   EmitGlobalVarDefinition(D);
2291 }
2292 
2293 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2294   return Context.toCharUnitsFromBits(
2295       getDataLayout().getTypeStoreSizeInBits(Ty));
2296 }
2297 
2298 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2299                                                  unsigned AddrSpace) {
2300   if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2301     if (D->hasAttr<CUDAConstantAttr>())
2302       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2303     else if (D->hasAttr<CUDASharedAttr>())
2304       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2305     else
2306       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2307   }
2308 
2309   return AddrSpace;
2310 }
2311 
2312 template<typename SomeDecl>
2313 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2314                                                llvm::GlobalValue *GV) {
2315   if (!getLangOpts().CPlusPlus)
2316     return;
2317 
2318   // Must have 'used' attribute, or else inline assembly can't rely on
2319   // the name existing.
2320   if (!D->template hasAttr<UsedAttr>())
2321     return;
2322 
2323   // Must have internal linkage and an ordinary name.
2324   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2325     return;
2326 
2327   // Must be in an extern "C" context. Entities declared directly within
2328   // a record are not extern "C" even if the record is in such a context.
2329   const SomeDecl *First = D->getFirstDecl();
2330   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2331     return;
2332 
2333   // OK, this is an internal linkage entity inside an extern "C" linkage
2334   // specification. Make a note of that so we can give it the "expected"
2335   // mangled name if nothing else is using that name.
2336   std::pair<StaticExternCMap::iterator, bool> R =
2337       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2338 
2339   // If we have multiple internal linkage entities with the same name
2340   // in extern "C" regions, none of them gets that name.
2341   if (!R.second)
2342     R.first->second = nullptr;
2343 }
2344 
2345 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2346   if (!CGM.supportsCOMDAT())
2347     return false;
2348 
2349   if (D.hasAttr<SelectAnyAttr>())
2350     return true;
2351 
2352   GVALinkage Linkage;
2353   if (auto *VD = dyn_cast<VarDecl>(&D))
2354     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2355   else
2356     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2357 
2358   switch (Linkage) {
2359   case GVA_Internal:
2360   case GVA_AvailableExternally:
2361   case GVA_StrongExternal:
2362     return false;
2363   case GVA_DiscardableODR:
2364   case GVA_StrongODR:
2365     return true;
2366   }
2367   llvm_unreachable("No such linkage");
2368 }
2369 
2370 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2371                                           llvm::GlobalObject &GO) {
2372   if (!shouldBeInCOMDAT(*this, D))
2373     return;
2374   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2375 }
2376 
2377 /// Pass IsTentative as true if you want to create a tentative definition.
2378 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2379                                             bool IsTentative) {
2380   llvm::Constant *Init = nullptr;
2381   QualType ASTTy = D->getType();
2382   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2383   bool NeedsGlobalCtor = false;
2384   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2385 
2386   const VarDecl *InitDecl;
2387   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2388 
2389   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2390   // as part of their declaration."  Sema has already checked for
2391   // error cases, so we just need to set Init to UndefValue.
2392   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2393       D->hasAttr<CUDASharedAttr>())
2394     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2395   else if (!InitExpr) {
2396     // This is a tentative definition; tentative definitions are
2397     // implicitly initialized with { 0 }.
2398     //
2399     // Note that tentative definitions are only emitted at the end of
2400     // a translation unit, so they should never have incomplete
2401     // type. In addition, EmitTentativeDefinition makes sure that we
2402     // never attempt to emit a tentative definition if a real one
2403     // exists. A use may still exists, however, so we still may need
2404     // to do a RAUW.
2405     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2406     Init = EmitNullConstant(D->getType());
2407   } else {
2408     initializedGlobalDecl = GlobalDecl(D);
2409     Init = EmitConstantInit(*InitDecl);
2410 
2411     if (!Init) {
2412       QualType T = InitExpr->getType();
2413       if (D->getType()->isReferenceType())
2414         T = D->getType();
2415 
2416       if (getLangOpts().CPlusPlus) {
2417         Init = EmitNullConstant(T);
2418         NeedsGlobalCtor = true;
2419       } else {
2420         ErrorUnsupported(D, "static initializer");
2421         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2422       }
2423     } else {
2424       // We don't need an initializer, so remove the entry for the delayed
2425       // initializer position (just in case this entry was delayed) if we
2426       // also don't need to register a destructor.
2427       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2428         DelayedCXXInitPosition.erase(D);
2429     }
2430   }
2431 
2432   llvm::Type* InitType = Init->getType();
2433   llvm::Constant *Entry =
2434       GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative);
2435 
2436   // Strip off a bitcast if we got one back.
2437   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2438     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2439            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2440            // All zero index gep.
2441            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2442     Entry = CE->getOperand(0);
2443   }
2444 
2445   // Entry is now either a Function or GlobalVariable.
2446   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2447 
2448   // We have a definition after a declaration with the wrong type.
2449   // We must make a new GlobalVariable* and update everything that used OldGV
2450   // (a declaration or tentative definition) with the new GlobalVariable*
2451   // (which will be a definition).
2452   //
2453   // This happens if there is a prototype for a global (e.g.
2454   // "extern int x[];") and then a definition of a different type (e.g.
2455   // "int x[10];"). This also happens when an initializer has a different type
2456   // from the type of the global (this happens with unions).
2457   if (!GV ||
2458       GV->getType()->getElementType() != InitType ||
2459       GV->getType()->getAddressSpace() !=
2460        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2461 
2462     // Move the old entry aside so that we'll create a new one.
2463     Entry->setName(StringRef());
2464 
2465     // Make a new global with the correct type, this is now guaranteed to work.
2466     GV = cast<llvm::GlobalVariable>(
2467         GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative));
2468 
2469     // Replace all uses of the old global with the new global
2470     llvm::Constant *NewPtrForOldDecl =
2471         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2472     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2473 
2474     // Erase the old global, since it is no longer used.
2475     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2476   }
2477 
2478   MaybeHandleStaticInExternC(D, GV);
2479 
2480   if (D->hasAttr<AnnotateAttr>())
2481     AddGlobalAnnotations(D, GV);
2482 
2483   // Set the llvm linkage type as appropriate.
2484   llvm::GlobalValue::LinkageTypes Linkage =
2485       getLLVMLinkageVarDefinition(D, GV->isConstant());
2486 
2487   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2488   // the device. [...]"
2489   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2490   // __device__, declares a variable that: [...]
2491   // Is accessible from all the threads within the grid and from the host
2492   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2493   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2494   if (GV && LangOpts.CUDA) {
2495     if (LangOpts.CUDAIsDevice) {
2496       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2497         GV->setExternallyInitialized(true);
2498     } else {
2499       // Host-side shadows of external declarations of device-side
2500       // global variables become internal definitions. These have to
2501       // be internal in order to prevent name conflicts with global
2502       // host variables with the same name in a different TUs.
2503       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2504         Linkage = llvm::GlobalValue::InternalLinkage;
2505 
2506         // Shadow variables and their properties must be registered
2507         // with CUDA runtime.
2508         unsigned Flags = 0;
2509         if (!D->hasDefinition())
2510           Flags |= CGCUDARuntime::ExternDeviceVar;
2511         if (D->hasAttr<CUDAConstantAttr>())
2512           Flags |= CGCUDARuntime::ConstantDeviceVar;
2513         getCUDARuntime().registerDeviceVar(*GV, Flags);
2514       } else if (D->hasAttr<CUDASharedAttr>())
2515         // __shared__ variables are odd. Shadows do get created, but
2516         // they are not registered with the CUDA runtime, so they
2517         // can't really be used to access their device-side
2518         // counterparts. It's not clear yet whether it's nvcc's bug or
2519         // a feature, but we've got to do the same for compatibility.
2520         Linkage = llvm::GlobalValue::InternalLinkage;
2521     }
2522   }
2523   GV->setInitializer(Init);
2524 
2525   // If it is safe to mark the global 'constant', do so now.
2526   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2527                   isTypeConstant(D->getType(), true));
2528 
2529   // If it is in a read-only section, mark it 'constant'.
2530   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2531     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2532     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2533       GV->setConstant(true);
2534   }
2535 
2536   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2537 
2538 
2539   // On Darwin, if the normal linkage of a C++ thread_local variable is
2540   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2541   // copies within a linkage unit; otherwise, the backing variable has
2542   // internal linkage and all accesses should just be calls to the
2543   // Itanium-specified entry point, which has the normal linkage of the
2544   // variable. This is to preserve the ability to change the implementation
2545   // behind the scenes.
2546   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2547       Context.getTargetInfo().getTriple().isOSDarwin() &&
2548       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2549       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2550     Linkage = llvm::GlobalValue::InternalLinkage;
2551 
2552   GV->setLinkage(Linkage);
2553   if (D->hasAttr<DLLImportAttr>())
2554     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2555   else if (D->hasAttr<DLLExportAttr>())
2556     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2557   else
2558     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2559 
2560   if (Linkage == llvm::GlobalVariable::CommonLinkage)
2561     // common vars aren't constant even if declared const.
2562     GV->setConstant(false);
2563 
2564   setNonAliasAttributes(D, GV);
2565 
2566   if (D->getTLSKind() && !GV->isThreadLocal()) {
2567     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2568       CXXThreadLocals.push_back(D);
2569     setTLSMode(GV, *D);
2570   }
2571 
2572   maybeSetTrivialComdat(*D, *GV);
2573 
2574   // Emit the initializer function if necessary.
2575   if (NeedsGlobalCtor || NeedsGlobalDtor)
2576     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2577 
2578   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2579 
2580   // Emit global variable debug information.
2581   if (CGDebugInfo *DI = getModuleDebugInfo())
2582     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2583       DI->EmitGlobalVariable(GV, D);
2584 }
2585 
2586 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2587                                       CodeGenModule &CGM, const VarDecl *D,
2588                                       bool NoCommon) {
2589   // Don't give variables common linkage if -fno-common was specified unless it
2590   // was overridden by a NoCommon attribute.
2591   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2592     return true;
2593 
2594   // C11 6.9.2/2:
2595   //   A declaration of an identifier for an object that has file scope without
2596   //   an initializer, and without a storage-class specifier or with the
2597   //   storage-class specifier static, constitutes a tentative definition.
2598   if (D->getInit() || D->hasExternalStorage())
2599     return true;
2600 
2601   // A variable cannot be both common and exist in a section.
2602   if (D->hasAttr<SectionAttr>())
2603     return true;
2604 
2605   // Thread local vars aren't considered common linkage.
2606   if (D->getTLSKind())
2607     return true;
2608 
2609   // Tentative definitions marked with WeakImportAttr are true definitions.
2610   if (D->hasAttr<WeakImportAttr>())
2611     return true;
2612 
2613   // A variable cannot be both common and exist in a comdat.
2614   if (shouldBeInCOMDAT(CGM, *D))
2615     return true;
2616 
2617   // Declarations with a required alignment do not have common linakge in MSVC
2618   // mode.
2619   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2620     if (D->hasAttr<AlignedAttr>())
2621       return true;
2622     QualType VarType = D->getType();
2623     if (Context.isAlignmentRequired(VarType))
2624       return true;
2625 
2626     if (const auto *RT = VarType->getAs<RecordType>()) {
2627       const RecordDecl *RD = RT->getDecl();
2628       for (const FieldDecl *FD : RD->fields()) {
2629         if (FD->isBitField())
2630           continue;
2631         if (FD->hasAttr<AlignedAttr>())
2632           return true;
2633         if (Context.isAlignmentRequired(FD->getType()))
2634           return true;
2635       }
2636     }
2637   }
2638 
2639   return false;
2640 }
2641 
2642 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2643     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2644   if (Linkage == GVA_Internal)
2645     return llvm::Function::InternalLinkage;
2646 
2647   if (D->hasAttr<WeakAttr>()) {
2648     if (IsConstantVariable)
2649       return llvm::GlobalVariable::WeakODRLinkage;
2650     else
2651       return llvm::GlobalVariable::WeakAnyLinkage;
2652   }
2653 
2654   // We are guaranteed to have a strong definition somewhere else,
2655   // so we can use available_externally linkage.
2656   if (Linkage == GVA_AvailableExternally)
2657     return llvm::Function::AvailableExternallyLinkage;
2658 
2659   // Note that Apple's kernel linker doesn't support symbol
2660   // coalescing, so we need to avoid linkonce and weak linkages there.
2661   // Normally, this means we just map to internal, but for explicit
2662   // instantiations we'll map to external.
2663 
2664   // In C++, the compiler has to emit a definition in every translation unit
2665   // that references the function.  We should use linkonce_odr because
2666   // a) if all references in this translation unit are optimized away, we
2667   // don't need to codegen it.  b) if the function persists, it needs to be
2668   // merged with other definitions. c) C++ has the ODR, so we know the
2669   // definition is dependable.
2670   if (Linkage == GVA_DiscardableODR)
2671     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2672                                             : llvm::Function::InternalLinkage;
2673 
2674   // An explicit instantiation of a template has weak linkage, since
2675   // explicit instantiations can occur in multiple translation units
2676   // and must all be equivalent. However, we are not allowed to
2677   // throw away these explicit instantiations.
2678   if (Linkage == GVA_StrongODR)
2679     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2680                                             : llvm::Function::ExternalLinkage;
2681 
2682   // C++ doesn't have tentative definitions and thus cannot have common
2683   // linkage.
2684   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2685       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2686                                  CodeGenOpts.NoCommon))
2687     return llvm::GlobalVariable::CommonLinkage;
2688 
2689   // selectany symbols are externally visible, so use weak instead of
2690   // linkonce.  MSVC optimizes away references to const selectany globals, so
2691   // all definitions should be the same and ODR linkage should be used.
2692   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2693   if (D->hasAttr<SelectAnyAttr>())
2694     return llvm::GlobalVariable::WeakODRLinkage;
2695 
2696   // Otherwise, we have strong external linkage.
2697   assert(Linkage == GVA_StrongExternal);
2698   return llvm::GlobalVariable::ExternalLinkage;
2699 }
2700 
2701 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2702     const VarDecl *VD, bool IsConstant) {
2703   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2704   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2705 }
2706 
2707 /// Replace the uses of a function that was declared with a non-proto type.
2708 /// We want to silently drop extra arguments from call sites
2709 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2710                                           llvm::Function *newFn) {
2711   // Fast path.
2712   if (old->use_empty()) return;
2713 
2714   llvm::Type *newRetTy = newFn->getReturnType();
2715   SmallVector<llvm::Value*, 4> newArgs;
2716   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2717 
2718   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2719          ui != ue; ) {
2720     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2721     llvm::User *user = use->getUser();
2722 
2723     // Recognize and replace uses of bitcasts.  Most calls to
2724     // unprototyped functions will use bitcasts.
2725     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2726       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2727         replaceUsesOfNonProtoConstant(bitcast, newFn);
2728       continue;
2729     }
2730 
2731     // Recognize calls to the function.
2732     llvm::CallSite callSite(user);
2733     if (!callSite) continue;
2734     if (!callSite.isCallee(&*use)) continue;
2735 
2736     // If the return types don't match exactly, then we can't
2737     // transform this call unless it's dead.
2738     if (callSite->getType() != newRetTy && !callSite->use_empty())
2739       continue;
2740 
2741     // Get the call site's attribute list.
2742     SmallVector<llvm::AttributeSet, 8> newAttrs;
2743     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2744 
2745     // Collect any return attributes from the call.
2746     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2747       newAttrs.push_back(
2748         llvm::AttributeSet::get(newFn->getContext(),
2749                                 oldAttrs.getRetAttributes()));
2750 
2751     // If the function was passed too few arguments, don't transform.
2752     unsigned newNumArgs = newFn->arg_size();
2753     if (callSite.arg_size() < newNumArgs) continue;
2754 
2755     // If extra arguments were passed, we silently drop them.
2756     // If any of the types mismatch, we don't transform.
2757     unsigned argNo = 0;
2758     bool dontTransform = false;
2759     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2760            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2761       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2762         dontTransform = true;
2763         break;
2764       }
2765 
2766       // Add any parameter attributes.
2767       if (oldAttrs.hasAttributes(argNo + 1))
2768         newAttrs.
2769           push_back(llvm::
2770                     AttributeSet::get(newFn->getContext(),
2771                                       oldAttrs.getParamAttributes(argNo + 1)));
2772     }
2773     if (dontTransform)
2774       continue;
2775 
2776     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2777       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2778                                                  oldAttrs.getFnAttributes()));
2779 
2780     // Okay, we can transform this.  Create the new call instruction and copy
2781     // over the required information.
2782     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2783 
2784     // Copy over any operand bundles.
2785     callSite.getOperandBundlesAsDefs(newBundles);
2786 
2787     llvm::CallSite newCall;
2788     if (callSite.isCall()) {
2789       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2790                                        callSite.getInstruction());
2791     } else {
2792       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2793       newCall = llvm::InvokeInst::Create(newFn,
2794                                          oldInvoke->getNormalDest(),
2795                                          oldInvoke->getUnwindDest(),
2796                                          newArgs, newBundles, "",
2797                                          callSite.getInstruction());
2798     }
2799     newArgs.clear(); // for the next iteration
2800 
2801     if (!newCall->getType()->isVoidTy())
2802       newCall->takeName(callSite.getInstruction());
2803     newCall.setAttributes(
2804                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2805     newCall.setCallingConv(callSite.getCallingConv());
2806 
2807     // Finally, remove the old call, replacing any uses with the new one.
2808     if (!callSite->use_empty())
2809       callSite->replaceAllUsesWith(newCall.getInstruction());
2810 
2811     // Copy debug location attached to CI.
2812     if (callSite->getDebugLoc())
2813       newCall->setDebugLoc(callSite->getDebugLoc());
2814 
2815     callSite->eraseFromParent();
2816   }
2817 }
2818 
2819 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2820 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2821 /// existing call uses of the old function in the module, this adjusts them to
2822 /// call the new function directly.
2823 ///
2824 /// This is not just a cleanup: the always_inline pass requires direct calls to
2825 /// functions to be able to inline them.  If there is a bitcast in the way, it
2826 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2827 /// run at -O0.
2828 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2829                                                       llvm::Function *NewFn) {
2830   // If we're redefining a global as a function, don't transform it.
2831   if (!isa<llvm::Function>(Old)) return;
2832 
2833   replaceUsesOfNonProtoConstant(Old, NewFn);
2834 }
2835 
2836 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2837   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2838   // If we have a definition, this might be a deferred decl. If the
2839   // instantiation is explicit, make sure we emit it at the end.
2840   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2841     GetAddrOfGlobalVar(VD);
2842 
2843   EmitTopLevelDecl(VD);
2844 }
2845 
2846 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2847                                                  llvm::GlobalValue *GV) {
2848   const auto *D = cast<FunctionDecl>(GD.getDecl());
2849 
2850   // Compute the function info and LLVM type.
2851   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2852   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2853 
2854   // Get or create the prototype for the function.
2855   if (!GV || (GV->getType()->getElementType() != Ty))
2856     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
2857                                                    /*DontDefer=*/true,
2858                                                    /*IsForDefinition=*/true));
2859 
2860   // Already emitted.
2861   if (!GV->isDeclaration())
2862     return;
2863 
2864   // We need to set linkage and visibility on the function before
2865   // generating code for it because various parts of IR generation
2866   // want to propagate this information down (e.g. to local static
2867   // declarations).
2868   auto *Fn = cast<llvm::Function>(GV);
2869   setFunctionLinkage(GD, Fn);
2870   setFunctionDLLStorageClass(GD, Fn);
2871 
2872   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2873   setGlobalVisibility(Fn, D);
2874 
2875   MaybeHandleStaticInExternC(D, Fn);
2876 
2877   maybeSetTrivialComdat(*D, *Fn);
2878 
2879   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2880 
2881   setFunctionDefinitionAttributes(D, Fn);
2882   SetLLVMFunctionAttributesForDefinition(D, Fn);
2883 
2884   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2885     AddGlobalCtor(Fn, CA->getPriority());
2886   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2887     AddGlobalDtor(Fn, DA->getPriority());
2888   if (D->hasAttr<AnnotateAttr>())
2889     AddGlobalAnnotations(D, Fn);
2890 }
2891 
2892 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2893   const auto *D = cast<ValueDecl>(GD.getDecl());
2894   const AliasAttr *AA = D->getAttr<AliasAttr>();
2895   assert(AA && "Not an alias?");
2896 
2897   StringRef MangledName = getMangledName(GD);
2898 
2899   if (AA->getAliasee() == MangledName) {
2900     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
2901     return;
2902   }
2903 
2904   // If there is a definition in the module, then it wins over the alias.
2905   // This is dubious, but allow it to be safe.  Just ignore the alias.
2906   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2907   if (Entry && !Entry->isDeclaration())
2908     return;
2909 
2910   Aliases.push_back(GD);
2911 
2912   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2913 
2914   // Create a reference to the named value.  This ensures that it is emitted
2915   // if a deferred decl.
2916   llvm::Constant *Aliasee;
2917   if (isa<llvm::FunctionType>(DeclTy))
2918     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2919                                       /*ForVTable=*/false);
2920   else
2921     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2922                                     llvm::PointerType::getUnqual(DeclTy),
2923                                     /*D=*/nullptr);
2924 
2925   // Create the new alias itself, but don't set a name yet.
2926   auto *GA = llvm::GlobalAlias::create(
2927       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2928 
2929   if (Entry) {
2930     if (GA->getAliasee() == Entry) {
2931       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
2932       return;
2933     }
2934 
2935     assert(Entry->isDeclaration());
2936 
2937     // If there is a declaration in the module, then we had an extern followed
2938     // by the alias, as in:
2939     //   extern int test6();
2940     //   ...
2941     //   int test6() __attribute__((alias("test7")));
2942     //
2943     // Remove it and replace uses of it with the alias.
2944     GA->takeName(Entry);
2945 
2946     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2947                                                           Entry->getType()));
2948     Entry->eraseFromParent();
2949   } else {
2950     GA->setName(MangledName);
2951   }
2952 
2953   // Set attributes which are particular to an alias; this is a
2954   // specialization of the attributes which may be set on a global
2955   // variable/function.
2956   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2957       D->isWeakImported()) {
2958     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2959   }
2960 
2961   if (const auto *VD = dyn_cast<VarDecl>(D))
2962     if (VD->getTLSKind())
2963       setTLSMode(GA, *VD);
2964 
2965   setAliasAttributes(D, GA);
2966 }
2967 
2968 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
2969   const auto *D = cast<ValueDecl>(GD.getDecl());
2970   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
2971   assert(IFA && "Not an ifunc?");
2972 
2973   StringRef MangledName = getMangledName(GD);
2974 
2975   if (IFA->getResolver() == MangledName) {
2976     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
2977     return;
2978   }
2979 
2980   // Report an error if some definition overrides ifunc.
2981   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2982   if (Entry && !Entry->isDeclaration()) {
2983     GlobalDecl OtherGD;
2984     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2985         DiagnosedConflictingDefinitions.insert(GD).second) {
2986       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
2987       Diags.Report(OtherGD.getDecl()->getLocation(),
2988                    diag::note_previous_definition);
2989     }
2990     return;
2991   }
2992 
2993   Aliases.push_back(GD);
2994 
2995   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2996   llvm::Constant *Resolver =
2997       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
2998                               /*ForVTable=*/false);
2999   llvm::GlobalIFunc *GIF =
3000       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3001                                 "", Resolver, &getModule());
3002   if (Entry) {
3003     if (GIF->getResolver() == Entry) {
3004       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3005       return;
3006     }
3007     assert(Entry->isDeclaration());
3008 
3009     // If there is a declaration in the module, then we had an extern followed
3010     // by the ifunc, as in:
3011     //   extern int test();
3012     //   ...
3013     //   int test() __attribute__((ifunc("resolver")));
3014     //
3015     // Remove it and replace uses of it with the ifunc.
3016     GIF->takeName(Entry);
3017 
3018     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3019                                                           Entry->getType()));
3020     Entry->eraseFromParent();
3021   } else
3022     GIF->setName(MangledName);
3023 
3024   SetCommonAttributes(D, GIF);
3025 }
3026 
3027 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3028                                             ArrayRef<llvm::Type*> Tys) {
3029   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3030                                          Tys);
3031 }
3032 
3033 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3034 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3035                          const StringLiteral *Literal, bool TargetIsLSB,
3036                          bool &IsUTF16, unsigned &StringLength) {
3037   StringRef String = Literal->getString();
3038   unsigned NumBytes = String.size();
3039 
3040   // Check for simple case.
3041   if (!Literal->containsNonAsciiOrNull()) {
3042     StringLength = NumBytes;
3043     return *Map.insert(std::make_pair(String, nullptr)).first;
3044   }
3045 
3046   // Otherwise, convert the UTF8 literals into a string of shorts.
3047   IsUTF16 = true;
3048 
3049   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3050   const UTF8 *FromPtr = (const UTF8 *)String.data();
3051   UTF16 *ToPtr = &ToBuf[0];
3052 
3053   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
3054                            &ToPtr, ToPtr + NumBytes,
3055                            strictConversion);
3056 
3057   // ConvertUTF8toUTF16 returns the length in ToPtr.
3058   StringLength = ToPtr - &ToBuf[0];
3059 
3060   // Add an explicit null.
3061   *ToPtr = 0;
3062   return *Map.insert(std::make_pair(
3063                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3064                                    (StringLength + 1) * 2),
3065                          nullptr)).first;
3066 }
3067 
3068 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3069 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3070                        const StringLiteral *Literal, unsigned &StringLength) {
3071   StringRef String = Literal->getString();
3072   StringLength = String.size();
3073   return *Map.insert(std::make_pair(String, nullptr)).first;
3074 }
3075 
3076 ConstantAddress
3077 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3078   unsigned StringLength = 0;
3079   bool isUTF16 = false;
3080   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3081       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3082                                getDataLayout().isLittleEndian(), isUTF16,
3083                                StringLength);
3084 
3085   if (auto *C = Entry.second)
3086     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3087 
3088   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3089   llvm::Constant *Zeros[] = { Zero, Zero };
3090   llvm::Value *V;
3091 
3092   // If we don't already have it, get __CFConstantStringClassReference.
3093   if (!CFConstantStringClassRef) {
3094     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3095     Ty = llvm::ArrayType::get(Ty, 0);
3096     llvm::Constant *GV =
3097         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3098 
3099     if (getTarget().getTriple().isOSBinFormatCOFF()) {
3100       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3101       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3102       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3103       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3104 
3105       const VarDecl *VD = nullptr;
3106       for (const auto &Result : DC->lookup(&II))
3107         if ((VD = dyn_cast<VarDecl>(Result)))
3108           break;
3109 
3110       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3111         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3112         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3113       } else {
3114         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3115         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3116       }
3117     }
3118 
3119     // Decay array -> ptr
3120     V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3121     CFConstantStringClassRef = V;
3122   } else {
3123     V = CFConstantStringClassRef;
3124   }
3125 
3126   QualType CFTy = getContext().getCFConstantStringType();
3127 
3128   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3129 
3130   llvm::Constant *Fields[4];
3131 
3132   // Class pointer.
3133   Fields[0] = cast<llvm::ConstantExpr>(V);
3134 
3135   // Flags.
3136   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3137   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
3138                       : llvm::ConstantInt::get(Ty, 0x07C8);
3139 
3140   // String pointer.
3141   llvm::Constant *C = nullptr;
3142   if (isUTF16) {
3143     auto Arr = llvm::makeArrayRef(
3144         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3145         Entry.first().size() / 2);
3146     C = llvm::ConstantDataArray::get(VMContext, Arr);
3147   } else {
3148     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3149   }
3150 
3151   // Note: -fwritable-strings doesn't make the backing store strings of
3152   // CFStrings writable. (See <rdar://problem/10657500>)
3153   auto *GV =
3154       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3155                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3156   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3157   // Don't enforce the target's minimum global alignment, since the only use
3158   // of the string is via this class initializer.
3159   CharUnits Align = isUTF16
3160                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3161                         : getContext().getTypeAlignInChars(getContext().CharTy);
3162   GV->setAlignment(Align.getQuantity());
3163 
3164   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3165   // Without it LLVM can merge the string with a non unnamed_addr one during
3166   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3167   if (getTarget().getTriple().isOSBinFormatMachO())
3168     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3169                            : "__TEXT,__cstring,cstring_literals");
3170 
3171   // String.
3172   Fields[2] =
3173       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3174 
3175   if (isUTF16)
3176     // Cast the UTF16 string to the correct type.
3177     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
3178 
3179   // String length.
3180   Ty = getTypes().ConvertType(getContext().LongTy);
3181   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
3182 
3183   CharUnits Alignment = getPointerAlign();
3184 
3185   // The struct.
3186   C = llvm::ConstantStruct::get(STy, Fields);
3187   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3188                                 llvm::GlobalVariable::PrivateLinkage, C,
3189                                 "_unnamed_cfstring_");
3190   GV->setAlignment(Alignment.getQuantity());
3191   switch (getTarget().getTriple().getObjectFormat()) {
3192   case llvm::Triple::UnknownObjectFormat:
3193     llvm_unreachable("unknown file format");
3194   case llvm::Triple::COFF:
3195     GV->setSection(".rdata.cfstring");
3196     break;
3197   case llvm::Triple::ELF:
3198     GV->setSection(".rodata.cfstring");
3199     break;
3200   case llvm::Triple::MachO:
3201     GV->setSection("__DATA,__cfstring");
3202     break;
3203   }
3204   Entry.second = GV;
3205 
3206   return ConstantAddress(GV, Alignment);
3207 }
3208 
3209 ConstantAddress
3210 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
3211   unsigned StringLength = 0;
3212   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3213       GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
3214 
3215   if (auto *C = Entry.second)
3216     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3217 
3218   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3219   llvm::Constant *Zeros[] = { Zero, Zero };
3220   llvm::Value *V;
3221   // If we don't already have it, get _NSConstantStringClassReference.
3222   if (!ConstantStringClassRef) {
3223     std::string StringClass(getLangOpts().ObjCConstantStringClass);
3224     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3225     llvm::Constant *GV;
3226     if (LangOpts.ObjCRuntime.isNonFragile()) {
3227       std::string str =
3228         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
3229                             : "OBJC_CLASS_$_" + StringClass;
3230       GV = getObjCRuntime().GetClassGlobal(str);
3231       // Make sure the result is of the correct type.
3232       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3233       V = llvm::ConstantExpr::getBitCast(GV, PTy);
3234       ConstantStringClassRef = V;
3235     } else {
3236       std::string str =
3237         StringClass.empty() ? "_NSConstantStringClassReference"
3238                             : "_" + StringClass + "ClassReference";
3239       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
3240       GV = CreateRuntimeVariable(PTy, str);
3241       // Decay array -> ptr
3242       V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros);
3243       ConstantStringClassRef = V;
3244     }
3245   } else
3246     V = ConstantStringClassRef;
3247 
3248   if (!NSConstantStringType) {
3249     // Construct the type for a constant NSString.
3250     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
3251     D->startDefinition();
3252 
3253     QualType FieldTypes[3];
3254 
3255     // const int *isa;
3256     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
3257     // const char *str;
3258     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
3259     // unsigned int length;
3260     FieldTypes[2] = Context.UnsignedIntTy;
3261 
3262     // Create fields
3263     for (unsigned i = 0; i < 3; ++i) {
3264       FieldDecl *Field = FieldDecl::Create(Context, D,
3265                                            SourceLocation(),
3266                                            SourceLocation(), nullptr,
3267                                            FieldTypes[i], /*TInfo=*/nullptr,
3268                                            /*BitWidth=*/nullptr,
3269                                            /*Mutable=*/false,
3270                                            ICIS_NoInit);
3271       Field->setAccess(AS_public);
3272       D->addDecl(Field);
3273     }
3274 
3275     D->completeDefinition();
3276     QualType NSTy = Context.getTagDeclType(D);
3277     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
3278   }
3279 
3280   llvm::Constant *Fields[3];
3281 
3282   // Class pointer.
3283   Fields[0] = cast<llvm::ConstantExpr>(V);
3284 
3285   // String pointer.
3286   llvm::Constant *C =
3287       llvm::ConstantDataArray::getString(VMContext, Entry.first());
3288 
3289   llvm::GlobalValue::LinkageTypes Linkage;
3290   bool isConstant;
3291   Linkage = llvm::GlobalValue::PrivateLinkage;
3292   isConstant = !LangOpts.WritableStrings;
3293 
3294   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
3295                                       Linkage, C, ".str");
3296   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3297   // Don't enforce the target's minimum global alignment, since the only use
3298   // of the string is via this class initializer.
3299   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
3300   GV->setAlignment(Align.getQuantity());
3301   Fields[1] =
3302       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3303 
3304   // String length.
3305   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3306   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
3307 
3308   // The struct.
3309   CharUnits Alignment = getPointerAlign();
3310   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
3311   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3312                                 llvm::GlobalVariable::PrivateLinkage, C,
3313                                 "_unnamed_nsstring_");
3314   GV->setAlignment(Alignment.getQuantity());
3315   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
3316   const char *NSStringNonFragileABISection =
3317       "__DATA,__objc_stringobj,regular,no_dead_strip";
3318   // FIXME. Fix section.
3319   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
3320                      ? NSStringNonFragileABISection
3321                      : NSStringSection);
3322   Entry.second = GV;
3323 
3324   return ConstantAddress(GV, Alignment);
3325 }
3326 
3327 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3328   if (ObjCFastEnumerationStateType.isNull()) {
3329     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3330     D->startDefinition();
3331 
3332     QualType FieldTypes[] = {
3333       Context.UnsignedLongTy,
3334       Context.getPointerType(Context.getObjCIdType()),
3335       Context.getPointerType(Context.UnsignedLongTy),
3336       Context.getConstantArrayType(Context.UnsignedLongTy,
3337                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3338     };
3339 
3340     for (size_t i = 0; i < 4; ++i) {
3341       FieldDecl *Field = FieldDecl::Create(Context,
3342                                            D,
3343                                            SourceLocation(),
3344                                            SourceLocation(), nullptr,
3345                                            FieldTypes[i], /*TInfo=*/nullptr,
3346                                            /*BitWidth=*/nullptr,
3347                                            /*Mutable=*/false,
3348                                            ICIS_NoInit);
3349       Field->setAccess(AS_public);
3350       D->addDecl(Field);
3351     }
3352 
3353     D->completeDefinition();
3354     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3355   }
3356 
3357   return ObjCFastEnumerationStateType;
3358 }
3359 
3360 llvm::Constant *
3361 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3362   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3363 
3364   // Don't emit it as the address of the string, emit the string data itself
3365   // as an inline array.
3366   if (E->getCharByteWidth() == 1) {
3367     SmallString<64> Str(E->getString());
3368 
3369     // Resize the string to the right size, which is indicated by its type.
3370     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3371     Str.resize(CAT->getSize().getZExtValue());
3372     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3373   }
3374 
3375   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3376   llvm::Type *ElemTy = AType->getElementType();
3377   unsigned NumElements = AType->getNumElements();
3378 
3379   // Wide strings have either 2-byte or 4-byte elements.
3380   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3381     SmallVector<uint16_t, 32> Elements;
3382     Elements.reserve(NumElements);
3383 
3384     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3385       Elements.push_back(E->getCodeUnit(i));
3386     Elements.resize(NumElements);
3387     return llvm::ConstantDataArray::get(VMContext, Elements);
3388   }
3389 
3390   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3391   SmallVector<uint32_t, 32> Elements;
3392   Elements.reserve(NumElements);
3393 
3394   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3395     Elements.push_back(E->getCodeUnit(i));
3396   Elements.resize(NumElements);
3397   return llvm::ConstantDataArray::get(VMContext, Elements);
3398 }
3399 
3400 static llvm::GlobalVariable *
3401 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3402                       CodeGenModule &CGM, StringRef GlobalName,
3403                       CharUnits Alignment) {
3404   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3405   unsigned AddrSpace = 0;
3406   if (CGM.getLangOpts().OpenCL)
3407     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3408 
3409   llvm::Module &M = CGM.getModule();
3410   // Create a global variable for this string
3411   auto *GV = new llvm::GlobalVariable(
3412       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3413       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3414   GV->setAlignment(Alignment.getQuantity());
3415   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3416   if (GV->isWeakForLinker()) {
3417     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3418     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3419   }
3420 
3421   return GV;
3422 }
3423 
3424 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3425 /// constant array for the given string literal.
3426 ConstantAddress
3427 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3428                                                   StringRef Name) {
3429   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3430 
3431   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3432   llvm::GlobalVariable **Entry = nullptr;
3433   if (!LangOpts.WritableStrings) {
3434     Entry = &ConstantStringMap[C];
3435     if (auto GV = *Entry) {
3436       if (Alignment.getQuantity() > GV->getAlignment())
3437         GV->setAlignment(Alignment.getQuantity());
3438       return ConstantAddress(GV, Alignment);
3439     }
3440   }
3441 
3442   SmallString<256> MangledNameBuffer;
3443   StringRef GlobalVariableName;
3444   llvm::GlobalValue::LinkageTypes LT;
3445 
3446   // Mangle the string literal if the ABI allows for it.  However, we cannot
3447   // do this if  we are compiling with ASan or -fwritable-strings because they
3448   // rely on strings having normal linkage.
3449   if (!LangOpts.WritableStrings &&
3450       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3451       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3452     llvm::raw_svector_ostream Out(MangledNameBuffer);
3453     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3454 
3455     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3456     GlobalVariableName = MangledNameBuffer;
3457   } else {
3458     LT = llvm::GlobalValue::PrivateLinkage;
3459     GlobalVariableName = Name;
3460   }
3461 
3462   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3463   if (Entry)
3464     *Entry = GV;
3465 
3466   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3467                                   QualType());
3468   return ConstantAddress(GV, Alignment);
3469 }
3470 
3471 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3472 /// array for the given ObjCEncodeExpr node.
3473 ConstantAddress
3474 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3475   std::string Str;
3476   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3477 
3478   return GetAddrOfConstantCString(Str);
3479 }
3480 
3481 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3482 /// the literal and a terminating '\0' character.
3483 /// The result has pointer to array type.
3484 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3485     const std::string &Str, const char *GlobalName) {
3486   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3487   CharUnits Alignment =
3488     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3489 
3490   llvm::Constant *C =
3491       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3492 
3493   // Don't share any string literals if strings aren't constant.
3494   llvm::GlobalVariable **Entry = nullptr;
3495   if (!LangOpts.WritableStrings) {
3496     Entry = &ConstantStringMap[C];
3497     if (auto GV = *Entry) {
3498       if (Alignment.getQuantity() > GV->getAlignment())
3499         GV->setAlignment(Alignment.getQuantity());
3500       return ConstantAddress(GV, Alignment);
3501     }
3502   }
3503 
3504   // Get the default prefix if a name wasn't specified.
3505   if (!GlobalName)
3506     GlobalName = ".str";
3507   // Create a global variable for this.
3508   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3509                                   GlobalName, Alignment);
3510   if (Entry)
3511     *Entry = GV;
3512   return ConstantAddress(GV, Alignment);
3513 }
3514 
3515 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3516     const MaterializeTemporaryExpr *E, const Expr *Init) {
3517   assert((E->getStorageDuration() == SD_Static ||
3518           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3519   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3520 
3521   // If we're not materializing a subobject of the temporary, keep the
3522   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3523   QualType MaterializedType = Init->getType();
3524   if (Init == E->GetTemporaryExpr())
3525     MaterializedType = E->getType();
3526 
3527   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3528 
3529   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3530     return ConstantAddress(Slot, Align);
3531 
3532   // FIXME: If an externally-visible declaration extends multiple temporaries,
3533   // we need to give each temporary the same name in every translation unit (and
3534   // we also need to make the temporaries externally-visible).
3535   SmallString<256> Name;
3536   llvm::raw_svector_ostream Out(Name);
3537   getCXXABI().getMangleContext().mangleReferenceTemporary(
3538       VD, E->getManglingNumber(), Out);
3539 
3540   APValue *Value = nullptr;
3541   if (E->getStorageDuration() == SD_Static) {
3542     // We might have a cached constant initializer for this temporary. Note
3543     // that this might have a different value from the value computed by
3544     // evaluating the initializer if the surrounding constant expression
3545     // modifies the temporary.
3546     Value = getContext().getMaterializedTemporaryValue(E, false);
3547     if (Value && Value->isUninit())
3548       Value = nullptr;
3549   }
3550 
3551   // Try evaluating it now, it might have a constant initializer.
3552   Expr::EvalResult EvalResult;
3553   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3554       !EvalResult.hasSideEffects())
3555     Value = &EvalResult.Val;
3556 
3557   llvm::Constant *InitialValue = nullptr;
3558   bool Constant = false;
3559   llvm::Type *Type;
3560   if (Value) {
3561     // The temporary has a constant initializer, use it.
3562     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3563     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3564     Type = InitialValue->getType();
3565   } else {
3566     // No initializer, the initialization will be provided when we
3567     // initialize the declaration which performed lifetime extension.
3568     Type = getTypes().ConvertTypeForMem(MaterializedType);
3569   }
3570 
3571   // Create a global variable for this lifetime-extended temporary.
3572   llvm::GlobalValue::LinkageTypes Linkage =
3573       getLLVMLinkageVarDefinition(VD, Constant);
3574   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3575     const VarDecl *InitVD;
3576     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3577         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3578       // Temporaries defined inside a class get linkonce_odr linkage because the
3579       // class can be defined in multipe translation units.
3580       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3581     } else {
3582       // There is no need for this temporary to have external linkage if the
3583       // VarDecl has external linkage.
3584       Linkage = llvm::GlobalVariable::InternalLinkage;
3585     }
3586   }
3587   unsigned AddrSpace = GetGlobalVarAddressSpace(
3588       VD, getContext().getTargetAddressSpace(MaterializedType));
3589   auto *GV = new llvm::GlobalVariable(
3590       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3591       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3592       AddrSpace);
3593   setGlobalVisibility(GV, VD);
3594   GV->setAlignment(Align.getQuantity());
3595   if (supportsCOMDAT() && GV->isWeakForLinker())
3596     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3597   if (VD->getTLSKind())
3598     setTLSMode(GV, *VD);
3599   MaterializedGlobalTemporaryMap[E] = GV;
3600   return ConstantAddress(GV, Align);
3601 }
3602 
3603 /// EmitObjCPropertyImplementations - Emit information for synthesized
3604 /// properties for an implementation.
3605 void CodeGenModule::EmitObjCPropertyImplementations(const
3606                                                     ObjCImplementationDecl *D) {
3607   for (const auto *PID : D->property_impls()) {
3608     // Dynamic is just for type-checking.
3609     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3610       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3611 
3612       // Determine which methods need to be implemented, some may have
3613       // been overridden. Note that ::isPropertyAccessor is not the method
3614       // we want, that just indicates if the decl came from a
3615       // property. What we want to know is if the method is defined in
3616       // this implementation.
3617       if (!D->getInstanceMethod(PD->getGetterName()))
3618         CodeGenFunction(*this).GenerateObjCGetter(
3619                                  const_cast<ObjCImplementationDecl *>(D), PID);
3620       if (!PD->isReadOnly() &&
3621           !D->getInstanceMethod(PD->getSetterName()))
3622         CodeGenFunction(*this).GenerateObjCSetter(
3623                                  const_cast<ObjCImplementationDecl *>(D), PID);
3624     }
3625   }
3626 }
3627 
3628 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3629   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3630   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3631        ivar; ivar = ivar->getNextIvar())
3632     if (ivar->getType().isDestructedType())
3633       return true;
3634 
3635   return false;
3636 }
3637 
3638 static bool AllTrivialInitializers(CodeGenModule &CGM,
3639                                    ObjCImplementationDecl *D) {
3640   CodeGenFunction CGF(CGM);
3641   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3642        E = D->init_end(); B != E; ++B) {
3643     CXXCtorInitializer *CtorInitExp = *B;
3644     Expr *Init = CtorInitExp->getInit();
3645     if (!CGF.isTrivialInitializer(Init))
3646       return false;
3647   }
3648   return true;
3649 }
3650 
3651 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3652 /// for an implementation.
3653 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3654   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3655   if (needsDestructMethod(D)) {
3656     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3657     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3658     ObjCMethodDecl *DTORMethod =
3659       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3660                              cxxSelector, getContext().VoidTy, nullptr, D,
3661                              /*isInstance=*/true, /*isVariadic=*/false,
3662                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3663                              /*isDefined=*/false, ObjCMethodDecl::Required);
3664     D->addInstanceMethod(DTORMethod);
3665     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3666     D->setHasDestructors(true);
3667   }
3668 
3669   // If the implementation doesn't have any ivar initializers, we don't need
3670   // a .cxx_construct.
3671   if (D->getNumIvarInitializers() == 0 ||
3672       AllTrivialInitializers(*this, D))
3673     return;
3674 
3675   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3676   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3677   // The constructor returns 'self'.
3678   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3679                                                 D->getLocation(),
3680                                                 D->getLocation(),
3681                                                 cxxSelector,
3682                                                 getContext().getObjCIdType(),
3683                                                 nullptr, D, /*isInstance=*/true,
3684                                                 /*isVariadic=*/false,
3685                                                 /*isPropertyAccessor=*/true,
3686                                                 /*isImplicitlyDeclared=*/true,
3687                                                 /*isDefined=*/false,
3688                                                 ObjCMethodDecl::Required);
3689   D->addInstanceMethod(CTORMethod);
3690   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3691   D->setHasNonZeroConstructors(true);
3692 }
3693 
3694 /// EmitNamespace - Emit all declarations in a namespace.
3695 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
3696   for (auto *I : ND->decls()) {
3697     if (const auto *VD = dyn_cast<VarDecl>(I))
3698       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3699           VD->getTemplateSpecializationKind() != TSK_Undeclared)
3700         continue;
3701     EmitTopLevelDecl(I);
3702   }
3703 }
3704 
3705 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3706 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3707   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3708       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3709     ErrorUnsupported(LSD, "linkage spec");
3710     return;
3711   }
3712 
3713   for (auto *I : LSD->decls()) {
3714     // Meta-data for ObjC class includes references to implemented methods.
3715     // Generate class's method definitions first.
3716     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3717       for (auto *M : OID->methods())
3718         EmitTopLevelDecl(M);
3719     }
3720     EmitTopLevelDecl(I);
3721   }
3722 }
3723 
3724 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3725 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3726   // Ignore dependent declarations.
3727   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3728     return;
3729 
3730   switch (D->getKind()) {
3731   case Decl::CXXConversion:
3732   case Decl::CXXMethod:
3733   case Decl::Function:
3734     // Skip function templates
3735     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3736         cast<FunctionDecl>(D)->isLateTemplateParsed())
3737       return;
3738 
3739     EmitGlobal(cast<FunctionDecl>(D));
3740     // Always provide some coverage mapping
3741     // even for the functions that aren't emitted.
3742     AddDeferredUnusedCoverageMapping(D);
3743     break;
3744 
3745   case Decl::Var:
3746     // Skip variable templates
3747     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3748       return;
3749   case Decl::VarTemplateSpecialization:
3750     EmitGlobal(cast<VarDecl>(D));
3751     break;
3752 
3753   // Indirect fields from global anonymous structs and unions can be
3754   // ignored; only the actual variable requires IR gen support.
3755   case Decl::IndirectField:
3756     break;
3757 
3758   // C++ Decls
3759   case Decl::Namespace:
3760     EmitNamespace(cast<NamespaceDecl>(D));
3761     break;
3762     // No code generation needed.
3763   case Decl::UsingShadow:
3764   case Decl::ClassTemplate:
3765   case Decl::VarTemplate:
3766   case Decl::VarTemplatePartialSpecialization:
3767   case Decl::FunctionTemplate:
3768   case Decl::TypeAliasTemplate:
3769   case Decl::Block:
3770   case Decl::Empty:
3771     break;
3772   case Decl::Using:          // using X; [C++]
3773     if (CGDebugInfo *DI = getModuleDebugInfo())
3774         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3775     return;
3776   case Decl::NamespaceAlias:
3777     if (CGDebugInfo *DI = getModuleDebugInfo())
3778         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3779     return;
3780   case Decl::UsingDirective: // using namespace X; [C++]
3781     if (CGDebugInfo *DI = getModuleDebugInfo())
3782       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3783     return;
3784   case Decl::CXXConstructor:
3785     // Skip function templates
3786     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3787         cast<FunctionDecl>(D)->isLateTemplateParsed())
3788       return;
3789 
3790     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3791     break;
3792   case Decl::CXXDestructor:
3793     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3794       return;
3795     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3796     break;
3797 
3798   case Decl::StaticAssert:
3799     // Nothing to do.
3800     break;
3801 
3802   // Objective-C Decls
3803 
3804   // Forward declarations, no (immediate) code generation.
3805   case Decl::ObjCInterface:
3806   case Decl::ObjCCategory:
3807     break;
3808 
3809   case Decl::ObjCProtocol: {
3810     auto *Proto = cast<ObjCProtocolDecl>(D);
3811     if (Proto->isThisDeclarationADefinition())
3812       ObjCRuntime->GenerateProtocol(Proto);
3813     break;
3814   }
3815 
3816   case Decl::ObjCCategoryImpl:
3817     // Categories have properties but don't support synthesize so we
3818     // can ignore them here.
3819     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3820     break;
3821 
3822   case Decl::ObjCImplementation: {
3823     auto *OMD = cast<ObjCImplementationDecl>(D);
3824     EmitObjCPropertyImplementations(OMD);
3825     EmitObjCIvarInitializations(OMD);
3826     ObjCRuntime->GenerateClass(OMD);
3827     // Emit global variable debug information.
3828     if (CGDebugInfo *DI = getModuleDebugInfo())
3829       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3830         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3831             OMD->getClassInterface()), OMD->getLocation());
3832     break;
3833   }
3834   case Decl::ObjCMethod: {
3835     auto *OMD = cast<ObjCMethodDecl>(D);
3836     // If this is not a prototype, emit the body.
3837     if (OMD->getBody())
3838       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3839     break;
3840   }
3841   case Decl::ObjCCompatibleAlias:
3842     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3843     break;
3844 
3845   case Decl::PragmaComment: {
3846     const auto *PCD = cast<PragmaCommentDecl>(D);
3847     switch (PCD->getCommentKind()) {
3848     case PCK_Unknown:
3849       llvm_unreachable("unexpected pragma comment kind");
3850     case PCK_Linker:
3851       AppendLinkerOptions(PCD->getArg());
3852       break;
3853     case PCK_Lib:
3854       AddDependentLib(PCD->getArg());
3855       break;
3856     case PCK_Compiler:
3857     case PCK_ExeStr:
3858     case PCK_User:
3859       break; // We ignore all of these.
3860     }
3861     break;
3862   }
3863 
3864   case Decl::PragmaDetectMismatch: {
3865     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
3866     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
3867     break;
3868   }
3869 
3870   case Decl::LinkageSpec:
3871     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3872     break;
3873 
3874   case Decl::FileScopeAsm: {
3875     // File-scope asm is ignored during device-side CUDA compilation.
3876     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3877       break;
3878     // File-scope asm is ignored during device-side OpenMP compilation.
3879     if (LangOpts.OpenMPIsDevice)
3880       break;
3881     auto *AD = cast<FileScopeAsmDecl>(D);
3882     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3883     break;
3884   }
3885 
3886   case Decl::Import: {
3887     auto *Import = cast<ImportDecl>(D);
3888 
3889     // Ignore import declarations that come from imported modules.
3890     if (Import->getImportedOwningModule())
3891       break;
3892     if (CGDebugInfo *DI = getModuleDebugInfo())
3893       DI->EmitImportDecl(*Import);
3894 
3895     ImportedModules.insert(Import->getImportedModule());
3896     break;
3897   }
3898 
3899   case Decl::OMPThreadPrivate:
3900     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3901     break;
3902 
3903   case Decl::ClassTemplateSpecialization: {
3904     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3905     if (DebugInfo &&
3906         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3907         Spec->hasDefinition())
3908       DebugInfo->completeTemplateDefinition(*Spec);
3909     break;
3910   }
3911 
3912   case Decl::OMPDeclareReduction:
3913     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
3914     break;
3915 
3916   default:
3917     // Make sure we handled everything we should, every other kind is a
3918     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3919     // function. Need to recode Decl::Kind to do that easily.
3920     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3921     break;
3922   }
3923 }
3924 
3925 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3926   // Do we need to generate coverage mapping?
3927   if (!CodeGenOpts.CoverageMapping)
3928     return;
3929   switch (D->getKind()) {
3930   case Decl::CXXConversion:
3931   case Decl::CXXMethod:
3932   case Decl::Function:
3933   case Decl::ObjCMethod:
3934   case Decl::CXXConstructor:
3935   case Decl::CXXDestructor: {
3936     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
3937       return;
3938     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3939     if (I == DeferredEmptyCoverageMappingDecls.end())
3940       DeferredEmptyCoverageMappingDecls[D] = true;
3941     break;
3942   }
3943   default:
3944     break;
3945   };
3946 }
3947 
3948 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3949   // Do we need to generate coverage mapping?
3950   if (!CodeGenOpts.CoverageMapping)
3951     return;
3952   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3953     if (Fn->isTemplateInstantiation())
3954       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3955   }
3956   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3957   if (I == DeferredEmptyCoverageMappingDecls.end())
3958     DeferredEmptyCoverageMappingDecls[D] = false;
3959   else
3960     I->second = false;
3961 }
3962 
3963 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3964   std::vector<const Decl *> DeferredDecls;
3965   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
3966     if (!I.second)
3967       continue;
3968     DeferredDecls.push_back(I.first);
3969   }
3970   // Sort the declarations by their location to make sure that the tests get a
3971   // predictable order for the coverage mapping for the unused declarations.
3972   if (CodeGenOpts.DumpCoverageMapping)
3973     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3974               [] (const Decl *LHS, const Decl *RHS) {
3975       return LHS->getLocStart() < RHS->getLocStart();
3976     });
3977   for (const auto *D : DeferredDecls) {
3978     switch (D->getKind()) {
3979     case Decl::CXXConversion:
3980     case Decl::CXXMethod:
3981     case Decl::Function:
3982     case Decl::ObjCMethod: {
3983       CodeGenPGO PGO(*this);
3984       GlobalDecl GD(cast<FunctionDecl>(D));
3985       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3986                                   getFunctionLinkage(GD));
3987       break;
3988     }
3989     case Decl::CXXConstructor: {
3990       CodeGenPGO PGO(*this);
3991       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3992       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3993                                   getFunctionLinkage(GD));
3994       break;
3995     }
3996     case Decl::CXXDestructor: {
3997       CodeGenPGO PGO(*this);
3998       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
3999       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4000                                   getFunctionLinkage(GD));
4001       break;
4002     }
4003     default:
4004       break;
4005     };
4006   }
4007 }
4008 
4009 /// Turns the given pointer into a constant.
4010 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4011                                           const void *Ptr) {
4012   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4013   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4014   return llvm::ConstantInt::get(i64, PtrInt);
4015 }
4016 
4017 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4018                                    llvm::NamedMDNode *&GlobalMetadata,
4019                                    GlobalDecl D,
4020                                    llvm::GlobalValue *Addr) {
4021   if (!GlobalMetadata)
4022     GlobalMetadata =
4023       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4024 
4025   // TODO: should we report variant information for ctors/dtors?
4026   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4027                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4028                                CGM.getLLVMContext(), D.getDecl()))};
4029   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4030 }
4031 
4032 /// For each function which is declared within an extern "C" region and marked
4033 /// as 'used', but has internal linkage, create an alias from the unmangled
4034 /// name to the mangled name if possible. People expect to be able to refer
4035 /// to such functions with an unmangled name from inline assembly within the
4036 /// same translation unit.
4037 void CodeGenModule::EmitStaticExternCAliases() {
4038   // Don't do anything if we're generating CUDA device code -- the NVPTX
4039   // assembly target doesn't support aliases.
4040   if (Context.getTargetInfo().getTriple().isNVPTX())
4041     return;
4042   for (auto &I : StaticExternCValues) {
4043     IdentifierInfo *Name = I.first;
4044     llvm::GlobalValue *Val = I.second;
4045     if (Val && !getModule().getNamedValue(Name->getName()))
4046       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4047   }
4048 }
4049 
4050 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4051                                              GlobalDecl &Result) const {
4052   auto Res = Manglings.find(MangledName);
4053   if (Res == Manglings.end())
4054     return false;
4055   Result = Res->getValue();
4056   return true;
4057 }
4058 
4059 /// Emits metadata nodes associating all the global values in the
4060 /// current module with the Decls they came from.  This is useful for
4061 /// projects using IR gen as a subroutine.
4062 ///
4063 /// Since there's currently no way to associate an MDNode directly
4064 /// with an llvm::GlobalValue, we create a global named metadata
4065 /// with the name 'clang.global.decl.ptrs'.
4066 void CodeGenModule::EmitDeclMetadata() {
4067   llvm::NamedMDNode *GlobalMetadata = nullptr;
4068 
4069   for (auto &I : MangledDeclNames) {
4070     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4071     // Some mangled names don't necessarily have an associated GlobalValue
4072     // in this module, e.g. if we mangled it for DebugInfo.
4073     if (Addr)
4074       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4075   }
4076 }
4077 
4078 /// Emits metadata nodes for all the local variables in the current
4079 /// function.
4080 void CodeGenFunction::EmitDeclMetadata() {
4081   if (LocalDeclMap.empty()) return;
4082 
4083   llvm::LLVMContext &Context = getLLVMContext();
4084 
4085   // Find the unique metadata ID for this name.
4086   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4087 
4088   llvm::NamedMDNode *GlobalMetadata = nullptr;
4089 
4090   for (auto &I : LocalDeclMap) {
4091     const Decl *D = I.first;
4092     llvm::Value *Addr = I.second.getPointer();
4093     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4094       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4095       Alloca->setMetadata(
4096           DeclPtrKind, llvm::MDNode::get(
4097                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4098     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4099       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4100       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4101     }
4102   }
4103 }
4104 
4105 void CodeGenModule::EmitVersionIdentMetadata() {
4106   llvm::NamedMDNode *IdentMetadata =
4107     TheModule.getOrInsertNamedMetadata("llvm.ident");
4108   std::string Version = getClangFullVersion();
4109   llvm::LLVMContext &Ctx = TheModule.getContext();
4110 
4111   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4112   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4113 }
4114 
4115 void CodeGenModule::EmitTargetMetadata() {
4116   // Warning, new MangledDeclNames may be appended within this loop.
4117   // We rely on MapVector insertions adding new elements to the end
4118   // of the container.
4119   // FIXME: Move this loop into the one target that needs it, and only
4120   // loop over those declarations for which we couldn't emit the target
4121   // metadata when we emitted the declaration.
4122   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4123     auto Val = *(MangledDeclNames.begin() + I);
4124     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4125     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4126     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4127   }
4128 }
4129 
4130 void CodeGenModule::EmitCoverageFile() {
4131   if (!getCodeGenOpts().CoverageFile.empty()) {
4132     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
4133       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4134       llvm::LLVMContext &Ctx = TheModule.getContext();
4135       llvm::MDString *CoverageFile =
4136           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
4137       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4138         llvm::MDNode *CU = CUNode->getOperand(i);
4139         llvm::Metadata *Elts[] = {CoverageFile, CU};
4140         GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4141       }
4142     }
4143   }
4144 }
4145 
4146 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4147   // Sema has checked that all uuid strings are of the form
4148   // "12345678-1234-1234-1234-1234567890ab".
4149   assert(Uuid.size() == 36);
4150   for (unsigned i = 0; i < 36; ++i) {
4151     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4152     else                                         assert(isHexDigit(Uuid[i]));
4153   }
4154 
4155   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4156   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4157 
4158   llvm::Constant *Field3[8];
4159   for (unsigned Idx = 0; Idx < 8; ++Idx)
4160     Field3[Idx] = llvm::ConstantInt::get(
4161         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4162 
4163   llvm::Constant *Fields[4] = {
4164     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4165     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4166     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4167     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4168   };
4169 
4170   return llvm::ConstantStruct::getAnon(Fields);
4171 }
4172 
4173 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4174                                                        bool ForEH) {
4175   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4176   // FIXME: should we even be calling this method if RTTI is disabled
4177   // and it's not for EH?
4178   if (!ForEH && !getLangOpts().RTTI)
4179     return llvm::Constant::getNullValue(Int8PtrTy);
4180 
4181   if (ForEH && Ty->isObjCObjectPointerType() &&
4182       LangOpts.ObjCRuntime.isGNUFamily())
4183     return ObjCRuntime->GetEHType(Ty);
4184 
4185   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4186 }
4187 
4188 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4189   for (auto RefExpr : D->varlists()) {
4190     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4191     bool PerformInit =
4192         VD->getAnyInitializer() &&
4193         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4194                                                         /*ForRef=*/false);
4195 
4196     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4197     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4198             VD, Addr, RefExpr->getLocStart(), PerformInit))
4199       CXXGlobalInits.push_back(InitFunction);
4200   }
4201 }
4202 
4203 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4204   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4205   if (InternalId)
4206     return InternalId;
4207 
4208   if (isExternallyVisible(T->getLinkage())) {
4209     std::string OutName;
4210     llvm::raw_string_ostream Out(OutName);
4211     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4212 
4213     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4214   } else {
4215     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4216                                            llvm::ArrayRef<llvm::Metadata *>());
4217   }
4218 
4219   return InternalId;
4220 }
4221 
4222 /// Returns whether this module needs the "all-vtables" bitset.
4223 bool CodeGenModule::NeedAllVtablesBitSet() const {
4224   // Returns true if at least one of vtable-based CFI checkers is enabled and
4225   // is not in the trapping mode.
4226   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4227            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4228           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4229            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4230           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4231            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4232           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4233            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4234 }
4235 
4236 void CodeGenModule::CreateVTableBitSetEntry(llvm::NamedMDNode *BitsetsMD,
4237                                             llvm::GlobalVariable *VTable,
4238                                             CharUnits Offset,
4239                                             const CXXRecordDecl *RD) {
4240   llvm::Metadata *MD =
4241       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4242   llvm::Metadata *BitsetOps[] = {
4243       MD, llvm::ConstantAsMetadata::get(VTable),
4244       llvm::ConstantAsMetadata::get(
4245           llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
4246   BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
4247 
4248   if (CodeGenOpts.SanitizeCfiCrossDso) {
4249     if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) {
4250       llvm::Metadata *BitsetOps2[] = {
4251           llvm::ConstantAsMetadata::get(TypeId),
4252           llvm::ConstantAsMetadata::get(VTable),
4253           llvm::ConstantAsMetadata::get(
4254               llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
4255       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2));
4256     }
4257   }
4258 
4259   if (NeedAllVtablesBitSet()) {
4260     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4261     llvm::Metadata *BitsetOps[] = {
4262         MD, llvm::ConstantAsMetadata::get(VTable),
4263         llvm::ConstantAsMetadata::get(
4264             llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
4265     // Avoid adding a node to BitsetsMD twice.
4266     if (!llvm::MDTuple::getIfExists(getLLVMContext(), BitsetOps))
4267       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
4268   }
4269 }
4270 
4271 // Fills in the supplied string map with the set of target features for the
4272 // passed in function.
4273 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4274                                           const FunctionDecl *FD) {
4275   StringRef TargetCPU = Target.getTargetOpts().CPU;
4276   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4277     // If we have a TargetAttr build up the feature map based on that.
4278     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4279 
4280     // Make a copy of the features as passed on the command line into the
4281     // beginning of the additional features from the function to override.
4282     ParsedAttr.first.insert(ParsedAttr.first.begin(),
4283                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4284                             Target.getTargetOpts().FeaturesAsWritten.end());
4285 
4286     if (ParsedAttr.second != "")
4287       TargetCPU = ParsedAttr.second;
4288 
4289     // Now populate the feature map, first with the TargetCPU which is either
4290     // the default or a new one from the target attribute string. Then we'll use
4291     // the passed in features (FeaturesAsWritten) along with the new ones from
4292     // the attribute.
4293     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4294   } else {
4295     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4296                           Target.getTargetOpts().Features);
4297   }
4298 }
4299 
4300 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4301   if (!SanStats)
4302     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4303 
4304   return *SanStats;
4305 }
4306