1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Diagnostic.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Basic/ConvertUTF.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Module.h"
30 #include "llvm/Intrinsics.h"
31 #include "llvm/Target/TargetData.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 
36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
37                              llvm::Module &M, const llvm::TargetData &TD,
38                              Diagnostic &diags)
39   : BlockModule(C, M, TD, Types, *this), Context(C),
40     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
41     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
42     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
43 
44   if (!Features.ObjC1)
45     Runtime = 0;
46   else if (!Features.NeXTRuntime)
47     Runtime = CreateGNUObjCRuntime(*this);
48   else if (Features.ObjCNonFragileABI)
49     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
50   else
51     Runtime = CreateMacObjCRuntime(*this);
52 
53   // If debug info generation is enabled, create the CGDebugInfo object.
54   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
55 }
56 
57 CodeGenModule::~CodeGenModule() {
58   delete Runtime;
59   delete DebugInfo;
60 }
61 
62 void CodeGenModule::Release() {
63   EmitDeferred();
64   if (Runtime)
65     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
66       AddGlobalCtor(ObjCInitFunction);
67   EmitCtorList(GlobalCtors, "llvm.global_ctors");
68   EmitCtorList(GlobalDtors, "llvm.global_dtors");
69   EmitAnnotations();
70   EmitLLVMUsed();
71 }
72 
73 /// ErrorUnsupported - Print out an error that codegen doesn't support the
74 /// specified stmt yet.
75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
76                                      bool OmitOnError) {
77   if (OmitOnError && getDiags().hasErrorOccurred())
78     return;
79   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
80                                                "cannot compile this %0 yet");
81   std::string Msg = Type;
82   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
83     << Msg << S->getSourceRange();
84 }
85 
86 /// ErrorUnsupported - Print out an error that codegen doesn't support the
87 /// specified decl yet.
88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
89                                      bool OmitOnError) {
90   if (OmitOnError && getDiags().hasErrorOccurred())
91     return;
92   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
93                                                "cannot compile this %0 yet");
94   std::string Msg = Type;
95   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
96 }
97 
98 /// setGlobalVisibility - Set the visibility for the given LLVM
99 /// GlobalValue according to the given clang AST visibility value.
100 static void setGlobalVisibility(llvm::GlobalValue *GV,
101                                 VisibilityAttr::VisibilityTypes Vis) {
102   switch (Vis) {
103   default: assert(0 && "Unknown visibility!");
104   case VisibilityAttr::DefaultVisibility:
105     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
106     break;
107   case VisibilityAttr::HiddenVisibility:
108     GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
109     break;
110   case VisibilityAttr::ProtectedVisibility:
111     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
112     break;
113   }
114 }
115 
116 static void setGlobalOptionVisibility(llvm::GlobalValue *GV,
117                                       LangOptions::VisibilityMode Vis) {
118   switch (Vis) {
119   default: assert(0 && "Unknown visibility!");
120   case LangOptions::NonVisibility:
121     break;
122   case LangOptions::DefaultVisibility:
123     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
124     break;
125   case LangOptions::HiddenVisibility:
126     GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
127     break;
128   case LangOptions::ProtectedVisibility:
129     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
130     break;
131   }
132 }
133 
134 
135 /// \brief Retrieves the mangled name for the given declaration.
136 ///
137 /// If the given declaration requires a mangled name, returns an
138 /// const char* containing the mangled name.  Otherwise, returns
139 /// the unmangled name.
140 ///
141 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
142   // In C, functions with no attributes never need to be mangled. Fastpath them.
143   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
144     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
145     return ND->getNameAsCString();
146   }
147 
148   llvm::SmallString<256> Name;
149   llvm::raw_svector_ostream Out(Name);
150   if (!mangleName(ND, Context, Out)) {
151     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
152     return ND->getNameAsCString();
153   }
154 
155   Name += '\0';
156   return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData();
157 }
158 
159 /// AddGlobalCtor - Add a function to the list that will be called before
160 /// main() runs.
161 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
162   // FIXME: Type coercion of void()* types.
163   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
164 }
165 
166 /// AddGlobalDtor - Add a function to the list that will be called
167 /// when the module is unloaded.
168 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
169   // FIXME: Type coercion of void()* types.
170   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
171 }
172 
173 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
174   // Ctor function type is void()*.
175   llvm::FunctionType* CtorFTy =
176     llvm::FunctionType::get(llvm::Type::VoidTy,
177                             std::vector<const llvm::Type*>(),
178                             false);
179   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
180 
181   // Get the type of a ctor entry, { i32, void ()* }.
182   llvm::StructType* CtorStructTy =
183     llvm::StructType::get(llvm::Type::Int32Ty,
184                           llvm::PointerType::getUnqual(CtorFTy), NULL);
185 
186   // Construct the constructor and destructor arrays.
187   std::vector<llvm::Constant*> Ctors;
188   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
189     std::vector<llvm::Constant*> S;
190     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
191     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
192     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
193   }
194 
195   if (!Ctors.empty()) {
196     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
197     new llvm::GlobalVariable(AT, false,
198                              llvm::GlobalValue::AppendingLinkage,
199                              llvm::ConstantArray::get(AT, Ctors),
200                              GlobalName,
201                              &TheModule);
202   }
203 }
204 
205 void CodeGenModule::EmitAnnotations() {
206   if (Annotations.empty())
207     return;
208 
209   // Create a new global variable for the ConstantStruct in the Module.
210   llvm::Constant *Array =
211   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
212                                                 Annotations.size()),
213                            Annotations);
214   llvm::GlobalValue *gv =
215   new llvm::GlobalVariable(Array->getType(), false,
216                            llvm::GlobalValue::AppendingLinkage, Array,
217                            "llvm.global.annotations", &TheModule);
218   gv->setSection("llvm.metadata");
219 }
220 
221 void CodeGenModule::SetGlobalValueAttributes(const Decl *D,
222                                              bool IsInternal,
223                                              bool IsInline,
224                                              llvm::GlobalValue *GV,
225                                              bool ForDefinition) {
226   // FIXME: Set up linkage and many other things.  Note, this is a simple
227   // approximation of what we really want.
228   if (!ForDefinition) {
229     // Only a few attributes are set on declarations.
230     if (D->getAttr<DLLImportAttr>()) {
231       // The dllimport attribute is overridden by a subsequent declaration as
232       // dllexport.
233       if (!D->getAttr<DLLExportAttr>()) {
234         // dllimport attribute can be applied only to function decls, not to
235         // definitions.
236         if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
237           if (!FD->getBody())
238             GV->setLinkage(llvm::Function::DLLImportLinkage);
239         } else
240           GV->setLinkage(llvm::Function::DLLImportLinkage);
241       }
242     } else if (D->getAttr<WeakAttr>() ||
243                D->getAttr<WeakImportAttr>()) {
244       // "extern_weak" is overloaded in LLVM; we probably should have
245       // separate linkage types for this.
246       GV->setLinkage(llvm::Function::ExternalWeakLinkage);
247    }
248   } else {
249     if (IsInternal) {
250       GV->setLinkage(llvm::Function::InternalLinkage);
251     } else {
252       if (D->getAttr<DLLExportAttr>()) {
253         if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
254           // The dllexport attribute is ignored for undefined symbols.
255           if (FD->getBody())
256             GV->setLinkage(llvm::Function::DLLExportLinkage);
257         } else
258           GV->setLinkage(llvm::Function::DLLExportLinkage);
259       } else if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>() ||
260                  IsInline)
261         GV->setLinkage(llvm::Function::WeakAnyLinkage);
262     }
263   }
264 
265   // FIXME: Figure out the relative priority of the attribute,
266   // -fvisibility, and private_extern.
267   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>())
268     setGlobalVisibility(GV, attr->getVisibility());
269   else
270     setGlobalOptionVisibility(GV, getLangOptions().getVisibilityMode());
271 
272   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
273     GV->setSection(SA->getName());
274 
275   // Only add to llvm.used when we see a definition, otherwise we
276   // might add multiple times or risk the value being replaced by a
277   // subsequent RAUW.
278   if (ForDefinition) {
279     if (D->getAttr<UsedAttr>())
280       AddUsedGlobal(GV);
281   }
282 }
283 
284 void CodeGenModule::SetFunctionAttributes(const Decl *D,
285                                           const CGFunctionInfo &Info,
286                                           llvm::Function *F) {
287   AttributeListType AttributeList;
288   ConstructAttributeList(Info, D, AttributeList);
289 
290   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
291                                         AttributeList.size()));
292 
293   // Set the appropriate calling convention for the Function.
294   if (D->getAttr<FastCallAttr>())
295     F->setCallingConv(llvm::CallingConv::X86_FastCall);
296 
297   if (D->getAttr<StdCallAttr>())
298     F->setCallingConv(llvm::CallingConv::X86_StdCall);
299 }
300 
301 /// SetFunctionAttributesForDefinition - Set function attributes
302 /// specific to a function definition.
303 void CodeGenModule::SetFunctionAttributesForDefinition(const Decl *D,
304                                                        llvm::Function *F) {
305   if (isa<ObjCMethodDecl>(D)) {
306     SetGlobalValueAttributes(D, true, false, F, true);
307   } else {
308     const FunctionDecl *FD = cast<FunctionDecl>(D);
309     SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static,
310                              FD->isInline(), F, true);
311   }
312 
313   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
314     F->addFnAttr(llvm::Attribute::NoUnwind);
315 
316   if (D->getAttr<AlwaysInlineAttr>())
317     F->addFnAttr(llvm::Attribute::AlwaysInline);
318 
319   if (D->getAttr<NoinlineAttr>())
320     F->addFnAttr(llvm::Attribute::NoInline);
321 }
322 
323 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD,
324                                         llvm::Function *F) {
325   SetFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F);
326 
327   SetFunctionAttributesForDefinition(MD, F);
328 }
329 
330 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
331                                           llvm::Function *F) {
332   SetFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
333 
334   SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static,
335                            FD->isInline(), F, false);
336 }
337 
338 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
339   assert(!GV->isDeclaration() &&
340          "Only globals with definition can force usage.");
341   LLVMUsed.push_back(GV);
342 }
343 
344 void CodeGenModule::EmitLLVMUsed() {
345   // Don't create llvm.used if there is no need.
346   if (LLVMUsed.empty())
347     return;
348 
349   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
350   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size());
351 
352   // Convert LLVMUsed to what ConstantArray needs.
353   std::vector<llvm::Constant*> UsedArray;
354   UsedArray.resize(LLVMUsed.size());
355   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
356     UsedArray[i] =
357      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
358   }
359 
360   llvm::GlobalVariable *GV =
361     new llvm::GlobalVariable(ATy, false,
362                              llvm::GlobalValue::AppendingLinkage,
363                              llvm::ConstantArray::get(ATy, UsedArray),
364                              "llvm.used", &getModule());
365 
366   GV->setSection("llvm.metadata");
367 }
368 
369 void CodeGenModule::EmitDeferred() {
370   // Emit code for any potentially referenced deferred decls.  Since a
371   // previously unused static decl may become used during the generation of code
372   // for a static function, iterate until no  changes are made.
373   while (!DeferredDeclsToEmit.empty()) {
374     const ValueDecl *D = DeferredDeclsToEmit.back();
375     DeferredDeclsToEmit.pop_back();
376 
377     // The mangled name for the decl must have been emitted in GlobalDeclMap.
378     // Look it up to see if it was defined with a stronger definition (e.g. an
379     // extern inline function with a strong function redefinition).  If so,
380     // just ignore the deferred decl.
381     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
382     assert(CGRef && "Deferred decl wasn't referenced?");
383 
384     if (!CGRef->isDeclaration())
385       continue;
386 
387     // Otherwise, emit the definition and move on to the next one.
388     EmitGlobalDefinition(D);
389   }
390 }
391 
392 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
393 /// annotation information for a given GlobalValue.  The annotation struct is
394 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
395 /// GlobalValue being annotated.  The second field is the constant string
396 /// created from the AnnotateAttr's annotation.  The third field is a constant
397 /// string containing the name of the translation unit.  The fourth field is
398 /// the line number in the file of the annotated value declaration.
399 ///
400 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
401 ///        appears to.
402 ///
403 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
404                                                 const AnnotateAttr *AA,
405                                                 unsigned LineNo) {
406   llvm::Module *M = &getModule();
407 
408   // get [N x i8] constants for the annotation string, and the filename string
409   // which are the 2nd and 3rd elements of the global annotation structure.
410   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
411   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
412   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
413                                                   true);
414 
415   // Get the two global values corresponding to the ConstantArrays we just
416   // created to hold the bytes of the strings.
417   const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
418   llvm::GlobalValue *annoGV =
419   new llvm::GlobalVariable(anno->getType(), false,
420                            llvm::GlobalValue::InternalLinkage, anno,
421                            GV->getName() + StringPrefix, M);
422   // translation unit name string, emitted into the llvm.metadata section.
423   llvm::GlobalValue *unitGV =
424   new llvm::GlobalVariable(unit->getType(), false,
425                            llvm::GlobalValue::InternalLinkage, unit,
426                            StringPrefix, M);
427 
428   // Create the ConstantStruct that is the global annotion.
429   llvm::Constant *Fields[4] = {
430     llvm::ConstantExpr::getBitCast(GV, SBP),
431     llvm::ConstantExpr::getBitCast(annoGV, SBP),
432     llvm::ConstantExpr::getBitCast(unitGV, SBP),
433     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
434   };
435   return llvm::ConstantStruct::get(Fields, 4, false);
436 }
437 
438 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
439   // Never defer when EmitAllDecls is specified or the decl has
440   // attribute used.
441   if (Features.EmitAllDecls || Global->getAttr<UsedAttr>())
442     return false;
443 
444   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
445     // Constructors and destructors should never be deferred.
446     if (FD->getAttr<ConstructorAttr>() || FD->getAttr<DestructorAttr>())
447       return false;
448 
449     // FIXME: What about inline, and/or extern inline?
450     if (FD->getStorageClass() != FunctionDecl::Static)
451       return false;
452   } else {
453     const VarDecl *VD = cast<VarDecl>(Global);
454     assert(VD->isFileVarDecl() && "Invalid decl");
455 
456     if (VD->getStorageClass() != VarDecl::Static)
457       return false;
458   }
459 
460   return true;
461 }
462 
463 void CodeGenModule::EmitGlobal(const ValueDecl *Global) {
464   // If this is an alias definition (which otherwise looks like a declaration)
465   // emit it now.
466   if (Global->getAttr<AliasAttr>())
467     return EmitAliasDefinition(Global);
468 
469   // Ignore declarations, they will be emitted on their first use.
470   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
471     // Forward declarations are emitted lazily on first use.
472     if (!FD->isThisDeclarationADefinition())
473       return;
474   } else {
475     const VarDecl *VD = cast<VarDecl>(Global);
476     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
477 
478     // Forward declarations are emitted lazily on first use.
479     if (!VD->getInit() && VD->hasExternalStorage())
480       return;
481   }
482 
483   // Defer code generation when possible if this is a static definition, inline
484   // function etc.  These we only want to emit if they are used.
485   if (MayDeferGeneration(Global)) {
486     // If the value has already been used, add it directly to the
487     // DeferredDeclsToEmit list.
488     const char *MangledName = getMangledName(Global);
489     if (GlobalDeclMap.count(MangledName))
490       DeferredDeclsToEmit.push_back(Global);
491     else {
492       // Otherwise, remember that we saw a deferred decl with this name.  The
493       // first use of the mangled name will cause it to move into
494       // DeferredDeclsToEmit.
495       DeferredDecls[MangledName] = Global;
496     }
497     return;
498   }
499 
500   // Otherwise emit the definition.
501   EmitGlobalDefinition(Global);
502 }
503 
504 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) {
505   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
506     EmitGlobalFunctionDefinition(FD);
507   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
508     EmitGlobalVarDefinition(VD);
509   } else {
510     assert(0 && "Invalid argument to EmitGlobalDefinition()");
511   }
512 }
513 
514 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
515 /// module, create and return an llvm Function with the specified type. If there
516 /// is something in the module with the specified name, return it potentially
517 /// bitcasted to the right type.
518 ///
519 /// If D is non-null, it specifies a decl that correspond to this.  This is used
520 /// to set the attributes on the function when it is first created.
521 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
522                                                        const llvm::Type *Ty,
523                                                        const FunctionDecl *D) {
524   // Lookup the entry, lazily creating it if necessary.
525   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
526   if (Entry) {
527     if (Entry->getType()->getElementType() == Ty)
528       return Entry;
529 
530     // Make sure the result is of the correct type.
531     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
532     return llvm::ConstantExpr::getBitCast(Entry, PTy);
533   }
534 
535   // This is the first use or definition of a mangled name.  If there is a
536   // deferred decl with this name, remember that we need to emit it at the end
537   // of the file.
538   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
539   DeferredDecls.find(MangledName);
540   if (DDI != DeferredDecls.end()) {
541     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
542     // list, and remove it from DeferredDecls (since we don't need it anymore).
543     DeferredDeclsToEmit.push_back(DDI->second);
544     DeferredDecls.erase(DDI);
545   }
546 
547   // This function doesn't have a complete type (for example, the return
548   // type is an incomplete struct). Use a fake type instead, and make
549   // sure not to try to set attributes.
550   bool ShouldSetAttributes = true;
551   if (!isa<llvm::FunctionType>(Ty)) {
552     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
553                                  std::vector<const llvm::Type*>(), false);
554     ShouldSetAttributes = false;
555   }
556   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
557                                              llvm::Function::ExternalLinkage,
558                                              "", &getModule());
559   F->setName(MangledName);
560   if (D && ShouldSetAttributes)
561     SetFunctionAttributes(D, F);
562   Entry = F;
563   return F;
564 }
565 
566 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
567 /// non-null, then this function will use the specified type if it has to
568 /// create it (this occurs when we see a definition of the function).
569 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D,
570                                                  const llvm::Type *Ty) {
571   // If there was no specific requested type, just convert it now.
572   if (!Ty)
573     Ty = getTypes().ConvertType(D->getType());
574   return GetOrCreateLLVMFunction(getMangledName(D), Ty, D);
575 }
576 
577 /// CreateRuntimeFunction - Create a new runtime function with the specified
578 /// type and name.
579 llvm::Constant *
580 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
581                                      const char *Name) {
582   // Convert Name to be a uniqued string from the IdentifierInfo table.
583   Name = getContext().Idents.get(Name).getName();
584   return GetOrCreateLLVMFunction(Name, FTy, 0);
585 }
586 
587 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
588 /// create and return an llvm GlobalVariable with the specified type.  If there
589 /// is something in the module with the specified name, return it potentially
590 /// bitcasted to the right type.
591 ///
592 /// If D is non-null, it specifies a decl that correspond to this.  This is used
593 /// to set the attributes on the global when it is first created.
594 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
595                                                      const llvm::PointerType*Ty,
596                                                      const VarDecl *D) {
597   // Lookup the entry, lazily creating it if necessary.
598   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
599   if (Entry) {
600     if (Entry->getType() == Ty)
601       return Entry;
602 
603     // Make sure the result is of the correct type.
604     return llvm::ConstantExpr::getBitCast(Entry, Ty);
605   }
606 
607   // This is the first use or definition of a mangled name.  If there is a
608   // deferred decl with this name, remember that we need to emit it at the end
609   // of the file.
610   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
611     DeferredDecls.find(MangledName);
612   if (DDI != DeferredDecls.end()) {
613     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
614     // list, and remove it from DeferredDecls (since we don't need it anymore).
615     DeferredDeclsToEmit.push_back(DDI->second);
616     DeferredDecls.erase(DDI);
617   }
618 
619   llvm::GlobalVariable *GV =
620     new llvm::GlobalVariable(Ty->getElementType(), false,
621                              llvm::GlobalValue::ExternalLinkage,
622                              0, "", &getModule(),
623                              0, Ty->getAddressSpace());
624   GV->setName(MangledName);
625 
626   // Handle things which are present even on external declarations.
627   if (D) {
628     // FIXME: This code is overly simple and should be merged with
629     // other global handling.
630     GV->setConstant(D->getType().isConstant(Context));
631 
632     // FIXME: Merge with other attribute handling code.
633     if (D->getStorageClass() == VarDecl::PrivateExtern)
634       setGlobalVisibility(GV, VisibilityAttr::HiddenVisibility);
635 
636     if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>())
637       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
638   }
639 
640   return Entry = GV;
641 }
642 
643 
644 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
645 /// given global variable.  If Ty is non-null and if the global doesn't exist,
646 /// then it will be greated with the specified type instead of whatever the
647 /// normal requested type would be.
648 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
649                                                   const llvm::Type *Ty) {
650   assert(D->hasGlobalStorage() && "Not a global variable");
651   QualType ASTTy = D->getType();
652   if (Ty == 0)
653     Ty = getTypes().ConvertTypeForMem(ASTTy);
654 
655   const llvm::PointerType *PTy =
656     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
657   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
658 }
659 
660 /// CreateRuntimeVariable - Create a new runtime global variable with the
661 /// specified type and name.
662 llvm::Constant *
663 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
664                                      const char *Name) {
665   // Convert Name to be a uniqued string from the IdentifierInfo table.
666   Name = getContext().Idents.get(Name).getName();
667   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
668 }
669 
670 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
671   llvm::Constant *Init = 0;
672   QualType ASTTy = D->getType();
673 
674   if (D->getInit() == 0) {
675     // This is a tentative definition; tentative definitions are
676     // implicitly initialized with { 0 }
677     const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy);
678     if (ASTTy->isIncompleteArrayType()) {
679       // An incomplete array is normally [ TYPE x 0 ], but we need
680       // to fix it to [ TYPE x 1 ].
681       const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy);
682       InitTy = llvm::ArrayType::get(ATy->getElementType(), 1);
683     }
684     Init = llvm::Constant::getNullValue(InitTy);
685   } else {
686     Init = EmitConstantExpr(D->getInit());
687     if (!Init) {
688       ErrorUnsupported(D, "static initializer");
689       QualType T = D->getInit()->getType();
690       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
691     }
692   }
693 
694   const llvm::Type* InitType = Init->getType();
695   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
696 
697   // Strip off a bitcast if we got one back.
698   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
699     assert(CE->getOpcode() == llvm::Instruction::BitCast);
700     Entry = CE->getOperand(0);
701   }
702 
703   // Entry is now either a Function or GlobalVariable.
704   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
705 
706   // If we already have this global and it has an initializer, then
707   // we are in the rare situation where we emitted the defining
708   // declaration of the global and are now being asked to emit a
709   // definition which would be common. This occurs, for example, in
710   // the following situation because statics can be emitted out of
711   // order:
712   //
713   //  static int x;
714   //  static int *y = &x;
715   //  static int x = 10;
716   //  int **z = &y;
717   //
718   // Bail here so we don't blow away the definition. Note that if we
719   // can't distinguish here if we emitted a definition with a null
720   // initializer, but this case is safe.
721   if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) {
722     assert(!D->getInit() && "Emitting multiple definitions of a decl!");
723     return;
724   }
725 
726   // We have a definition after a declaration with the wrong type.
727   // We must make a new GlobalVariable* and update everything that used OldGV
728   // (a declaration or tentative definition) with the new GlobalVariable*
729   // (which will be a definition).
730   //
731   // This happens if there is a prototype for a global (e.g.
732   // "extern int x[];") and then a definition of a different type (e.g.
733   // "int x[10];"). This also happens when an initializer has a different type
734   // from the type of the global (this happens with unions).
735   //
736   // FIXME: This also ends up happening if there's a definition followed by
737   // a tentative definition!  (Although Sema rejects that construct
738   // at the moment.)
739   if (GV == 0 ||
740       GV->getType()->getElementType() != InitType ||
741       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
742 
743     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
744     GlobalDeclMap.erase(getMangledName(D));
745 
746     // Make a new global with the correct type, this is now guaranteed to work.
747     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
748     GV->takeName(cast<llvm::GlobalValue>(Entry));
749 
750     // Replace all uses of the old global with the new global
751     llvm::Constant *NewPtrForOldDecl =
752         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
753     Entry->replaceAllUsesWith(NewPtrForOldDecl);
754 
755     // Erase the old global, since it is no longer used.
756     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
757   }
758 
759   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
760     SourceManager &SM = Context.getSourceManager();
761     AddAnnotation(EmitAnnotateAttr(GV, AA,
762                               SM.getInstantiationLineNumber(D->getLocation())));
763   }
764 
765   GV->setInitializer(Init);
766   GV->setConstant(D->getType().isConstant(Context));
767   GV->setAlignment(getContext().getDeclAlignInBytes(D));
768 
769   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>())
770     setGlobalVisibility(GV, attr->getVisibility());
771   else
772     setGlobalOptionVisibility(GV, getLangOptions().getVisibilityMode());
773 
774   // Set the llvm linkage type as appropriate.
775   if (D->getStorageClass() == VarDecl::Static)
776     GV->setLinkage(llvm::Function::InternalLinkage);
777   else if (D->getAttr<DLLImportAttr>())
778     GV->setLinkage(llvm::Function::DLLImportLinkage);
779   else if (D->getAttr<DLLExportAttr>())
780     GV->setLinkage(llvm::Function::DLLExportLinkage);
781   else if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>())
782     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
783   else {
784     // FIXME: This isn't right.  This should handle common linkage and other
785     // stuff.
786     switch (D->getStorageClass()) {
787     case VarDecl::Static: assert(0 && "This case handled above");
788     case VarDecl::Auto:
789     case VarDecl::Register:
790       assert(0 && "Can't have auto or register globals");
791     case VarDecl::None:
792       if (!D->getInit() && !CompileOpts.NoCommon)
793         GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
794       else
795         GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
796       break;
797     case VarDecl::Extern:
798       // FIXME: common
799       break;
800 
801     case VarDecl::PrivateExtern:
802       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
803       // FIXME: common
804       break;
805     }
806   }
807 
808   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
809     GV->setSection(SA->getName());
810 
811   if (D->getAttr<UsedAttr>())
812     AddUsedGlobal(GV);
813 
814   // Emit global variable debug information.
815   if (CGDebugInfo *DI = getDebugInfo()) {
816     DI->setLocation(D->getLocation());
817     DI->EmitGlobalVariable(GV, D);
818   }
819 }
820 
821 
822 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) {
823   const llvm::FunctionType *Ty =
824     cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
825 
826   // As a special case, make sure that definitions of K&R function
827   // "type foo()" aren't declared as varargs (which forces the backend
828   // to do unnecessary work).
829   if (D->getType()->isFunctionNoProtoType()) {
830     assert(Ty->isVarArg() && "Didn't lower type as expected");
831     // Due to stret, the lowered function could have arguments.  Just create the
832     // same type as was lowered by ConvertType but strip off the varargs bit.
833     std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
834     Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
835   }
836 
837   // Get or create the prototype for teh function.
838   llvm::Constant *Entry = GetAddrOfFunction(D, Ty);
839 
840   // Strip off a bitcast if we got one back.
841   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
842     assert(CE->getOpcode() == llvm::Instruction::BitCast);
843     Entry = CE->getOperand(0);
844   }
845 
846 
847   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
848     // If the types mismatch then we have to rewrite the definition.
849     assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() &&
850            "Shouldn't replace non-declaration");
851 
852     // F is the Function* for the one with the wrong type, we must make a new
853     // Function* and update everything that used F (a declaration) with the new
854     // Function* (which will be a definition).
855     //
856     // This happens if there is a prototype for a function
857     // (e.g. "int f()") and then a definition of a different type
858     // (e.g. "int f(int x)").  Start by making a new function of the
859     // correct type, RAUW, then steal the name.
860     GlobalDeclMap.erase(getMangledName(D));
861     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty));
862     NewFn->takeName(cast<llvm::GlobalValue>(Entry));
863 
864     // Replace uses of F with the Function we will endow with a body.
865     llvm::Constant *NewPtrForOldDecl =
866       llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
867     Entry->replaceAllUsesWith(NewPtrForOldDecl);
868 
869     // Ok, delete the old function now, which is dead.
870     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
871 
872     Entry = NewFn;
873   }
874 
875   llvm::Function *Fn = cast<llvm::Function>(Entry);
876 
877   CodeGenFunction(*this).GenerateCode(D, Fn);
878 
879   SetFunctionAttributesForDefinition(D, Fn);
880 
881   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
882     AddGlobalCtor(Fn, CA->getPriority());
883   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
884     AddGlobalDtor(Fn, DA->getPriority());
885 }
886 
887 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
888   const AliasAttr *AA = D->getAttr<AliasAttr>();
889   assert(AA && "Not an alias?");
890 
891   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
892 
893   // Unique the name through the identifier table.
894   const char *AliaseeName = AA->getAliasee().c_str();
895   AliaseeName = getContext().Idents.get(AliaseeName).getName();
896 
897   // Create a reference to the named value.  This ensures that it is emitted
898   // if a deferred decl.
899   llvm::Constant *Aliasee;
900   if (isa<llvm::FunctionType>(DeclTy))
901     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0);
902   else
903     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
904                                     llvm::PointerType::getUnqual(DeclTy), 0);
905 
906   // Create the new alias itself, but don't set a name yet.
907   llvm::GlobalValue *GA =
908     new llvm::GlobalAlias(Aliasee->getType(),
909                           llvm::Function::ExternalLinkage,
910                           "", Aliasee, &getModule());
911 
912   // See if there is already something with the alias' name in the module.
913   const char *MangledName = getMangledName(D);
914   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
915 
916   if (Entry && !Entry->isDeclaration()) {
917     // If there is a definition in the module, then it wins over the alias.
918     // This is dubious, but allow it to be safe.  Just ignore the alias.
919     GA->eraseFromParent();
920     return;
921   }
922 
923   if (Entry) {
924     // If there is a declaration in the module, then we had an extern followed
925     // by the alias, as in:
926     //   extern int test6();
927     //   ...
928     //   int test6() __attribute__((alias("test7")));
929     //
930     // Remove it and replace uses of it with the alias.
931 
932     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
933                                                           Entry->getType()));
934     Entry->eraseFromParent();
935   }
936 
937   // Now we know that there is no conflict, set the name.
938   Entry = GA;
939   GA->setName(MangledName);
940 
941   // Alias should never be internal or inline.
942   SetGlobalValueAttributes(D, false, false, GA, true);
943 }
944 
945 /// getBuiltinLibFunction - Given a builtin id for a function like
946 /// "__builtin_fabsf", return a Function* for "fabsf".
947 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
948   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
949           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
950          "isn't a lib fn");
951 
952   // Get the name, skip over the __builtin_ prefix (if necessary).
953   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
954   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
955     Name += 10;
956 
957   // Get the type for the builtin.
958   Builtin::Context::GetBuiltinTypeError Error;
959   QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error);
960   assert(Error == Builtin::Context::GE_None && "Can't get builtin type");
961 
962   const llvm::FunctionType *Ty =
963     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
964 
965   // Unique the name through the identifier table.
966   Name = getContext().Idents.get(Name).getName();
967   // FIXME: param attributes for sext/zext etc.
968   return GetOrCreateLLVMFunction(Name, Ty, 0);
969 }
970 
971 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
972                                             unsigned NumTys) {
973   return llvm::Intrinsic::getDeclaration(&getModule(),
974                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
975 }
976 
977 llvm::Function *CodeGenModule::getMemCpyFn() {
978   if (MemCpyFn) return MemCpyFn;
979   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
980   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
981 }
982 
983 llvm::Function *CodeGenModule::getMemMoveFn() {
984   if (MemMoveFn) return MemMoveFn;
985   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
986   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
987 }
988 
989 llvm::Function *CodeGenModule::getMemSetFn() {
990   if (MemSetFn) return MemSetFn;
991   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
992   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
993 }
994 
995 static void appendFieldAndPadding(CodeGenModule &CGM,
996                                   std::vector<llvm::Constant*>& Fields,
997                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
998                                   llvm::Constant* Field,
999                                   RecordDecl* RD, const llvm::StructType *STy) {
1000   // Append the field.
1001   Fields.push_back(Field);
1002 
1003   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1004 
1005   int NextStructFieldNo;
1006   if (!NextFieldD) {
1007     NextStructFieldNo = STy->getNumElements();
1008   } else {
1009     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1010   }
1011 
1012   // Append padding
1013   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1014     llvm::Constant *C =
1015       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1016 
1017     Fields.push_back(C);
1018   }
1019 }
1020 
1021 llvm::Constant *CodeGenModule::
1022 GetAddrOfConstantCFString(const StringLiteral *Literal) {
1023   std::string str;
1024   unsigned StringLength;
1025 
1026   bool isUTF16 = false;
1027   if (Literal->containsNonAsciiOrNull()) {
1028     // Convert from UTF-8 to UTF-16.
1029     llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1030     const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1031     UTF16 *ToPtr = &ToBuf[0];
1032 
1033     ConversionResult Result;
1034     Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1035                                 &ToPtr, ToPtr+Literal->getByteLength(),
1036                                 strictConversion);
1037     assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1038 
1039     // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1040     // without doing more surgery to this routine. Since we aren't explicitly
1041     // checking for endianness here, it's also a bug (when generating code for
1042     // a target that doesn't match the host endianness). Modeling this as an i16
1043     // array is likely the cleanest solution.
1044     StringLength = ToPtr-&ToBuf[0];
1045     str.assign((char *)&ToBuf[0], StringLength*2); // Twice as many UTF8 chars.
1046     isUTF16 = true;
1047   } else {
1048     str.assign(Literal->getStrData(), Literal->getByteLength());
1049     StringLength = str.length();
1050   }
1051   llvm::StringMapEntry<llvm::Constant *> &Entry =
1052     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1053 
1054   if (llvm::Constant *C = Entry.getValue())
1055     return C;
1056 
1057   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1058   llvm::Constant *Zeros[] = { Zero, Zero };
1059 
1060   if (!CFConstantStringClassRef) {
1061     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1062     Ty = llvm::ArrayType::get(Ty, 0);
1063 
1064     // FIXME: This is fairly broken if
1065     // __CFConstantStringClassReference is already defined, in that it
1066     // will get renamed and the user will most likely see an opaque
1067     // error message. This is a general issue with relying on
1068     // particular names.
1069     llvm::GlobalVariable *GV =
1070       new llvm::GlobalVariable(Ty, false,
1071                                llvm::GlobalVariable::ExternalLinkage, 0,
1072                                "__CFConstantStringClassReference",
1073                                &getModule());
1074 
1075     // Decay array -> ptr
1076     CFConstantStringClassRef =
1077       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1078   }
1079 
1080   QualType CFTy = getContext().getCFConstantStringType();
1081   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1082 
1083   const llvm::StructType *STy =
1084     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1085 
1086   std::vector<llvm::Constant*> Fields;
1087   RecordDecl::field_iterator Field = CFRD->field_begin();
1088 
1089   // Class pointer.
1090   FieldDecl *CurField = *Field++;
1091   FieldDecl *NextField = *Field++;
1092   appendFieldAndPadding(*this, Fields, CurField, NextField,
1093                         CFConstantStringClassRef, CFRD, STy);
1094 
1095   // Flags.
1096   CurField = NextField;
1097   NextField = *Field++;
1098   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1099   appendFieldAndPadding(*this, Fields, CurField, NextField,
1100                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1101                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1102                         CFRD, STy);
1103 
1104   // String pointer.
1105   CurField = NextField;
1106   NextField = *Field++;
1107   llvm::Constant *C = llvm::ConstantArray::get(str);
1108 
1109   const char *Sect, *Prefix;
1110   bool isConstant;
1111   if (isUTF16) {
1112     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1113     Sect = getContext().Target.getUnicodeStringSection();
1114     // FIXME: Why does GCC not set constant here?
1115     isConstant = false;
1116   } else {
1117     Prefix = getContext().Target.getStringSymbolPrefix(true);
1118     Sect = getContext().Target.getCFStringDataSection();
1119     // FIXME: -fwritable-strings should probably affect this, but we
1120     // are following gcc here.
1121     isConstant = true;
1122   }
1123   llvm::GlobalVariable *GV =
1124     new llvm::GlobalVariable(C->getType(), isConstant,
1125                              llvm::GlobalValue::InternalLinkage,
1126                              C, Prefix, &getModule());
1127   if (Sect)
1128     GV->setSection(Sect);
1129   if (isUTF16) {
1130     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1131     GV->setAlignment(Align);
1132   }
1133   appendFieldAndPadding(*this, Fields, CurField, NextField,
1134                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1135                         CFRD, STy);
1136 
1137   // String length.
1138   CurField = NextField;
1139   NextField = 0;
1140   Ty = getTypes().ConvertType(getContext().LongTy);
1141   appendFieldAndPadding(*this, Fields, CurField, NextField,
1142                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1143 
1144   // The struct.
1145   C = llvm::ConstantStruct::get(STy, Fields);
1146   GV = new llvm::GlobalVariable(C->getType(), true,
1147                                 llvm::GlobalVariable::InternalLinkage, C,
1148                                 getContext().Target.getCFStringSymbolPrefix(),
1149                                 &getModule());
1150   if (const char *Sect = getContext().Target.getCFStringSection())
1151     GV->setSection(Sect);
1152   Entry.setValue(GV);
1153 
1154   return GV;
1155 }
1156 
1157 /// GetStringForStringLiteral - Return the appropriate bytes for a
1158 /// string literal, properly padded to match the literal type.
1159 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1160   const char *StrData = E->getStrData();
1161   unsigned Len = E->getByteLength();
1162 
1163   const ConstantArrayType *CAT =
1164     getContext().getAsConstantArrayType(E->getType());
1165   assert(CAT && "String isn't pointer or array!");
1166 
1167   // Resize the string to the right size.
1168   std::string Str(StrData, StrData+Len);
1169   uint64_t RealLen = CAT->getSize().getZExtValue();
1170 
1171   if (E->isWide())
1172     RealLen *= getContext().Target.getWCharWidth()/8;
1173 
1174   Str.resize(RealLen, '\0');
1175 
1176   return Str;
1177 }
1178 
1179 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1180 /// constant array for the given string literal.
1181 llvm::Constant *
1182 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1183   // FIXME: This can be more efficient.
1184   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1185 }
1186 
1187 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1188 /// array for the given ObjCEncodeExpr node.
1189 llvm::Constant *
1190 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1191   std::string Str;
1192   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1193 
1194   return GetAddrOfConstantCString(Str);
1195 }
1196 
1197 
1198 /// GenerateWritableString -- Creates storage for a string literal.
1199 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1200                                              bool constant,
1201                                              CodeGenModule &CGM,
1202                                              const char *GlobalName) {
1203   // Create Constant for this string literal. Don't add a '\0'.
1204   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1205 
1206   // Create a global variable for this string
1207   return new llvm::GlobalVariable(C->getType(), constant,
1208                                   llvm::GlobalValue::InternalLinkage,
1209                                   C, GlobalName, &CGM.getModule());
1210 }
1211 
1212 /// GetAddrOfConstantString - Returns a pointer to a character array
1213 /// containing the literal. This contents are exactly that of the
1214 /// given string, i.e. it will not be null terminated automatically;
1215 /// see GetAddrOfConstantCString. Note that whether the result is
1216 /// actually a pointer to an LLVM constant depends on
1217 /// Feature.WriteableStrings.
1218 ///
1219 /// The result has pointer to array type.
1220 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1221                                                        const char *GlobalName) {
1222   bool IsConstant = !Features.WritableStrings;
1223 
1224   // Get the default prefix if a name wasn't specified.
1225   if (!GlobalName)
1226     GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1227 
1228   // Don't share any string literals if strings aren't constant.
1229   if (!IsConstant)
1230     return GenerateStringLiteral(str, false, *this, GlobalName);
1231 
1232   llvm::StringMapEntry<llvm::Constant *> &Entry =
1233   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1234 
1235   if (Entry.getValue())
1236     return Entry.getValue();
1237 
1238   // Create a global variable for this.
1239   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1240   Entry.setValue(C);
1241   return C;
1242 }
1243 
1244 /// GetAddrOfConstantCString - Returns a pointer to a character
1245 /// array containing the literal and a terminating '\-'
1246 /// character. The result has pointer to array type.
1247 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1248                                                         const char *GlobalName){
1249   return GetAddrOfConstantString(str + '\0', GlobalName);
1250 }
1251 
1252 /// EmitObjCPropertyImplementations - Emit information for synthesized
1253 /// properties for an implementation.
1254 void CodeGenModule::EmitObjCPropertyImplementations(const
1255                                                     ObjCImplementationDecl *D) {
1256   for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(),
1257          e = D->propimpl_end(); i != e; ++i) {
1258     ObjCPropertyImplDecl *PID = *i;
1259 
1260     // Dynamic is just for type-checking.
1261     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1262       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1263 
1264       // Determine which methods need to be implemented, some may have
1265       // been overridden. Note that ::isSynthesized is not the method
1266       // we want, that just indicates if the decl came from a
1267       // property. What we want to know is if the method is defined in
1268       // this implementation.
1269       if (!D->getInstanceMethod(PD->getGetterName()))
1270         CodeGenFunction(*this).GenerateObjCGetter(
1271                                  const_cast<ObjCImplementationDecl *>(D), PID);
1272       if (!PD->isReadOnly() &&
1273           !D->getInstanceMethod(PD->getSetterName()))
1274         CodeGenFunction(*this).GenerateObjCSetter(
1275                                  const_cast<ObjCImplementationDecl *>(D), PID);
1276     }
1277   }
1278 }
1279 
1280 /// EmitNamespace - Emit all declarations in a namespace.
1281 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1282   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1283        I != E; ++I)
1284     EmitTopLevelDecl(*I);
1285 }
1286 
1287 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1288 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1289   if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1290     ErrorUnsupported(LSD, "linkage spec");
1291     return;
1292   }
1293 
1294   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1295        I != E; ++I)
1296     EmitTopLevelDecl(*I);
1297 }
1298 
1299 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1300 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1301   // If an error has occurred, stop code generation, but continue
1302   // parsing and semantic analysis (to ensure all warnings and errors
1303   // are emitted).
1304   if (Diags.hasErrorOccurred())
1305     return;
1306 
1307   switch (D->getKind()) {
1308   case Decl::Function:
1309   case Decl::Var:
1310     EmitGlobal(cast<ValueDecl>(D));
1311     break;
1312 
1313   case Decl::Namespace:
1314     EmitNamespace(cast<NamespaceDecl>(D));
1315     break;
1316 
1317     // Objective-C Decls
1318 
1319   // Forward declarations, no (immediate) code generation.
1320   case Decl::ObjCClass:
1321   case Decl::ObjCForwardProtocol:
1322   case Decl::ObjCCategory:
1323     break;
1324   case Decl::ObjCInterface:
1325     // If we already laid out this interface due to an @class, and if we
1326     // codegen'd a reference it, update the 'opaque' type to be a real type now.
1327     Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D));
1328     break;
1329 
1330   case Decl::ObjCProtocol:
1331     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1332     break;
1333 
1334   case Decl::ObjCCategoryImpl:
1335     // Categories have properties but don't support synthesize so we
1336     // can ignore them here.
1337     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1338     break;
1339 
1340   case Decl::ObjCImplementation: {
1341     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1342     EmitObjCPropertyImplementations(OMD);
1343     Runtime->GenerateClass(OMD);
1344     break;
1345   }
1346   case Decl::ObjCMethod: {
1347     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1348     // If this is not a prototype, emit the body.
1349     if (OMD->getBody())
1350       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1351     break;
1352   }
1353   case Decl::ObjCCompatibleAlias:
1354     // compatibility-alias is a directive and has no code gen.
1355     break;
1356 
1357   case Decl::LinkageSpec:
1358     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1359     break;
1360 
1361   case Decl::FileScopeAsm: {
1362     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1363     std::string AsmString(AD->getAsmString()->getStrData(),
1364                           AD->getAsmString()->getByteLength());
1365 
1366     const std::string &S = getModule().getModuleInlineAsm();
1367     if (S.empty())
1368       getModule().setModuleInlineAsm(AsmString);
1369     else
1370       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1371     break;
1372   }
1373 
1374   default:
1375     // Make sure we handled everything we should, every other kind is
1376     // a non-top-level decl.  FIXME: Would be nice to have an
1377     // isTopLevelDeclKind function. Need to recode Decl::Kind to do
1378     // that easily.
1379     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1380   }
1381 }
1382