1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
44     VMContext(M.getContext()) {
45 
46   if (!Features.ObjC1)
47     Runtime = 0;
48   else if (!Features.NeXTRuntime)
49     Runtime = CreateGNUObjCRuntime(*this);
50   else if (Features.ObjCNonFragileABI)
51     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
52   else
53     Runtime = CreateMacObjCRuntime(*this);
54 
55   // If debug info generation is enabled, create the CGDebugInfo object.
56   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
57 }
58 
59 CodeGenModule::~CodeGenModule() {
60   delete Runtime;
61   delete DebugInfo;
62 }
63 
64 void CodeGenModule::Release() {
65   // We need to call this first because it can add deferred declarations.
66   EmitCXXGlobalInitFunc();
67 
68   EmitDeferred();
69   if (Runtime)
70     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
71       AddGlobalCtor(ObjCInitFunction);
72   EmitCtorList(GlobalCtors, "llvm.global_ctors");
73   EmitCtorList(GlobalDtors, "llvm.global_dtors");
74   EmitAnnotations();
75   EmitLLVMUsed();
76 }
77 
78 /// ErrorUnsupported - Print out an error that codegen doesn't support the
79 /// specified stmt yet.
80 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
81                                      bool OmitOnError) {
82   if (OmitOnError && getDiags().hasErrorOccurred())
83     return;
84   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
85                                                "cannot compile this %0 yet");
86   std::string Msg = Type;
87   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
88     << Msg << S->getSourceRange();
89 }
90 
91 /// ErrorUnsupported - Print out an error that codegen doesn't support the
92 /// specified decl yet.
93 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
94                                      bool OmitOnError) {
95   if (OmitOnError && getDiags().hasErrorOccurred())
96     return;
97   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
98                                                "cannot compile this %0 yet");
99   std::string Msg = Type;
100   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
101 }
102 
103 LangOptions::VisibilityMode
104 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
105   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
106     if (VD->getStorageClass() == VarDecl::PrivateExtern)
107       return LangOptions::Hidden;
108 
109   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
110     switch (attr->getVisibility()) {
111     default: assert(0 && "Unknown visibility!");
112     case VisibilityAttr::DefaultVisibility:
113       return LangOptions::Default;
114     case VisibilityAttr::HiddenVisibility:
115       return LangOptions::Hidden;
116     case VisibilityAttr::ProtectedVisibility:
117       return LangOptions::Protected;
118     }
119   }
120 
121   return getLangOptions().getVisibilityMode();
122 }
123 
124 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
125                                         const Decl *D) const {
126   // Internal definitions always have default visibility.
127   if (GV->hasLocalLinkage()) {
128     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
129     return;
130   }
131 
132   switch (getDeclVisibilityMode(D)) {
133   default: assert(0 && "Unknown visibility!");
134   case LangOptions::Default:
135     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
136   case LangOptions::Hidden:
137     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
138   case LangOptions::Protected:
139     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
140   }
141 }
142 
143 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
144   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
145 
146   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
147     return getMangledCXXCtorName(D, GD.getCtorType());
148   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
149     return getMangledCXXDtorName(D, GD.getDtorType());
150 
151   return getMangledName(ND);
152 }
153 
154 /// \brief Retrieves the mangled name for the given declaration.
155 ///
156 /// If the given declaration requires a mangled name, returns an
157 /// const char* containing the mangled name.  Otherwise, returns
158 /// the unmangled name.
159 ///
160 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
161   // In C, functions with no attributes never need to be mangled. Fastpath them.
162   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
163     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
164     return ND->getNameAsCString();
165   }
166 
167   llvm::SmallString<256> Name;
168   llvm::raw_svector_ostream Out(Name);
169   if (!mangleName(ND, Context, Out)) {
170     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
171     return ND->getNameAsCString();
172   }
173 
174   Name += '\0';
175   return UniqueMangledName(Name.begin(), Name.end());
176 }
177 
178 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
179                                              const char *NameEnd) {
180   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
181 
182   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
183 }
184 
185 /// AddGlobalCtor - Add a function to the list that will be called before
186 /// main() runs.
187 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
188   // FIXME: Type coercion of void()* types.
189   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
190 }
191 
192 /// AddGlobalDtor - Add a function to the list that will be called
193 /// when the module is unloaded.
194 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
195   // FIXME: Type coercion of void()* types.
196   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
197 }
198 
199 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
200   // Ctor function type is void()*.
201   llvm::FunctionType* CtorFTy =
202     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
203                             std::vector<const llvm::Type*>(),
204                             false);
205   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
206 
207   // Get the type of a ctor entry, { i32, void ()* }.
208   llvm::StructType* CtorStructTy =
209     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
210                           llvm::PointerType::getUnqual(CtorFTy), NULL);
211 
212   // Construct the constructor and destructor arrays.
213   std::vector<llvm::Constant*> Ctors;
214   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
215     std::vector<llvm::Constant*> S;
216     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
217                 I->second, false));
218     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
219     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
220   }
221 
222   if (!Ctors.empty()) {
223     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
224     new llvm::GlobalVariable(TheModule, AT, false,
225                              llvm::GlobalValue::AppendingLinkage,
226                              llvm::ConstantArray::get(AT, Ctors),
227                              GlobalName);
228   }
229 }
230 
231 void CodeGenModule::EmitAnnotations() {
232   if (Annotations.empty())
233     return;
234 
235   // Create a new global variable for the ConstantStruct in the Module.
236   llvm::Constant *Array =
237   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
238                                                 Annotations.size()),
239                            Annotations);
240   llvm::GlobalValue *gv =
241   new llvm::GlobalVariable(TheModule, Array->getType(), false,
242                            llvm::GlobalValue::AppendingLinkage, Array,
243                            "llvm.global.annotations");
244   gv->setSection("llvm.metadata");
245 }
246 
247 static CodeGenModule::GVALinkage
248 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
249                       const LangOptions &Features) {
250   // Everything located semantically within an anonymous namespace is
251   // always internal.
252   if (FD->isInAnonymousNamespace())
253     return CodeGenModule::GVA_Internal;
254 
255   // The kind of external linkage this function will have, if it is not
256   // inline or static.
257   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
258   if (Context.getLangOptions().CPlusPlus &&
259       FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
260     External = CodeGenModule::GVA_TemplateInstantiation;
261 
262   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
263     // C++ member functions defined inside the class are always inline.
264     if (MD->isInline() || !MD->isOutOfLine())
265       return CodeGenModule::GVA_CXXInline;
266 
267     return External;
268   }
269 
270   // "static" functions get internal linkage.
271   if (FD->getStorageClass() == FunctionDecl::Static)
272     return CodeGenModule::GVA_Internal;
273 
274   if (!FD->isInline())
275     return External;
276 
277   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
278     // GNU or C99 inline semantics. Determine whether this symbol should be
279     // externally visible.
280     if (FD->isInlineDefinitionExternallyVisible())
281       return External;
282 
283     // C99 inline semantics, where the symbol is not externally visible.
284     return CodeGenModule::GVA_C99Inline;
285   }
286 
287   // C++ inline semantics
288   assert(Features.CPlusPlus && "Must be in C++ mode");
289   return CodeGenModule::GVA_CXXInline;
290 }
291 
292 /// SetFunctionDefinitionAttributes - Set attributes for a global.
293 ///
294 /// FIXME: This is currently only done for aliases and functions, but not for
295 /// variables (these details are set in EmitGlobalVarDefinition for variables).
296 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
297                                                     llvm::GlobalValue *GV) {
298   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
299 
300   if (Linkage == GVA_Internal) {
301     GV->setLinkage(llvm::Function::InternalLinkage);
302   } else if (D->hasAttr<DLLExportAttr>()) {
303     GV->setLinkage(llvm::Function::DLLExportLinkage);
304   } else if (D->hasAttr<WeakAttr>()) {
305     GV->setLinkage(llvm::Function::WeakAnyLinkage);
306   } else if (Linkage == GVA_C99Inline) {
307     // In C99 mode, 'inline' functions are guaranteed to have a strong
308     // definition somewhere else, so we can use available_externally linkage.
309     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
310   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
311     // In C++, the compiler has to emit a definition in every translation unit
312     // that references the function.  We should use linkonce_odr because
313     // a) if all references in this translation unit are optimized away, we
314     // don't need to codegen it.  b) if the function persists, it needs to be
315     // merged with other definitions. c) C++ has the ODR, so we know the
316     // definition is dependable.
317     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
318   } else {
319     assert(Linkage == GVA_StrongExternal);
320     // Otherwise, we have strong external linkage.
321     GV->setLinkage(llvm::Function::ExternalLinkage);
322   }
323 
324   SetCommonAttributes(D, GV);
325 }
326 
327 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
328                                               const CGFunctionInfo &Info,
329                                               llvm::Function *F) {
330   unsigned CallingConv;
331   AttributeListType AttributeList;
332   ConstructAttributeList(Info, D, AttributeList, CallingConv);
333   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
334                                           AttributeList.size()));
335   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
336 }
337 
338 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
339                                                            llvm::Function *F) {
340   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
341     F->addFnAttr(llvm::Attribute::NoUnwind);
342 
343   if (D->hasAttr<AlwaysInlineAttr>())
344     F->addFnAttr(llvm::Attribute::AlwaysInline);
345 
346   if (D->hasAttr<NoInlineAttr>())
347     F->addFnAttr(llvm::Attribute::NoInline);
348 
349   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
350     F->setAlignment(AA->getAlignment()/8);
351 }
352 
353 void CodeGenModule::SetCommonAttributes(const Decl *D,
354                                         llvm::GlobalValue *GV) {
355   setGlobalVisibility(GV, D);
356 
357   if (D->hasAttr<UsedAttr>())
358     AddUsedGlobal(GV);
359 
360   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
361     GV->setSection(SA->getName());
362 }
363 
364 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
365                                                   llvm::Function *F,
366                                                   const CGFunctionInfo &FI) {
367   SetLLVMFunctionAttributes(D, FI, F);
368   SetLLVMFunctionAttributesForDefinition(D, F);
369 
370   F->setLinkage(llvm::Function::InternalLinkage);
371 
372   SetCommonAttributes(D, F);
373 }
374 
375 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
376                                           llvm::Function *F,
377                                           bool IsIncompleteFunction) {
378   if (!IsIncompleteFunction)
379     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
380 
381   // Only a few attributes are set on declarations; these may later be
382   // overridden by a definition.
383 
384   if (FD->hasAttr<DLLImportAttr>()) {
385     F->setLinkage(llvm::Function::DLLImportLinkage);
386   } else if (FD->hasAttr<WeakAttr>() ||
387              FD->hasAttr<WeakImportAttr>()) {
388     // "extern_weak" is overloaded in LLVM; we probably should have
389     // separate linkage types for this.
390     F->setLinkage(llvm::Function::ExternalWeakLinkage);
391   } else {
392     F->setLinkage(llvm::Function::ExternalLinkage);
393   }
394 
395   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
396     F->setSection(SA->getName());
397 }
398 
399 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
400   assert(!GV->isDeclaration() &&
401          "Only globals with definition can force usage.");
402   LLVMUsed.push_back(GV);
403 }
404 
405 void CodeGenModule::EmitLLVMUsed() {
406   // Don't create llvm.used if there is no need.
407   if (LLVMUsed.empty())
408     return;
409 
410   llvm::Type *i8PTy =
411       llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
412 
413   // Convert LLVMUsed to what ConstantArray needs.
414   std::vector<llvm::Constant*> UsedArray;
415   UsedArray.resize(LLVMUsed.size());
416   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
417     UsedArray[i] =
418      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
419                                       i8PTy);
420   }
421 
422   if (UsedArray.empty())
423     return;
424   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
425 
426   llvm::GlobalVariable *GV =
427     new llvm::GlobalVariable(getModule(), ATy, false,
428                              llvm::GlobalValue::AppendingLinkage,
429                              llvm::ConstantArray::get(ATy, UsedArray),
430                              "llvm.used");
431 
432   GV->setSection("llvm.metadata");
433 }
434 
435 void CodeGenModule::EmitDeferred() {
436   // Emit code for any potentially referenced deferred decls.  Since a
437   // previously unused static decl may become used during the generation of code
438   // for a static function, iterate until no  changes are made.
439   while (!DeferredDeclsToEmit.empty()) {
440     GlobalDecl D = DeferredDeclsToEmit.back();
441     DeferredDeclsToEmit.pop_back();
442 
443     // The mangled name for the decl must have been emitted in GlobalDeclMap.
444     // Look it up to see if it was defined with a stronger definition (e.g. an
445     // extern inline function with a strong function redefinition).  If so,
446     // just ignore the deferred decl.
447     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
448     assert(CGRef && "Deferred decl wasn't referenced?");
449 
450     if (!CGRef->isDeclaration())
451       continue;
452 
453     // Otherwise, emit the definition and move on to the next one.
454     EmitGlobalDefinition(D);
455   }
456 }
457 
458 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
459 /// annotation information for a given GlobalValue.  The annotation struct is
460 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
461 /// GlobalValue being annotated.  The second field is the constant string
462 /// created from the AnnotateAttr's annotation.  The third field is a constant
463 /// string containing the name of the translation unit.  The fourth field is
464 /// the line number in the file of the annotated value declaration.
465 ///
466 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
467 ///        appears to.
468 ///
469 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
470                                                 const AnnotateAttr *AA,
471                                                 unsigned LineNo) {
472   llvm::Module *M = &getModule();
473 
474   // get [N x i8] constants for the annotation string, and the filename string
475   // which are the 2nd and 3rd elements of the global annotation structure.
476   const llvm::Type *SBP =
477       llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
478   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
479                                                   AA->getAnnotation(), true);
480   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
481                                                   M->getModuleIdentifier(),
482                                                   true);
483 
484   // Get the two global values corresponding to the ConstantArrays we just
485   // created to hold the bytes of the strings.
486   llvm::GlobalValue *annoGV =
487     new llvm::GlobalVariable(*M, anno->getType(), false,
488                              llvm::GlobalValue::PrivateLinkage, anno,
489                              GV->getName());
490   // translation unit name string, emitted into the llvm.metadata section.
491   llvm::GlobalValue *unitGV =
492     new llvm::GlobalVariable(*M, unit->getType(), false,
493                              llvm::GlobalValue::PrivateLinkage, unit,
494                              ".str");
495 
496   // Create the ConstantStruct for the global annotation.
497   llvm::Constant *Fields[4] = {
498     llvm::ConstantExpr::getBitCast(GV, SBP),
499     llvm::ConstantExpr::getBitCast(annoGV, SBP),
500     llvm::ConstantExpr::getBitCast(unitGV, SBP),
501     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
502   };
503   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
504 }
505 
506 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
507   // Never defer when EmitAllDecls is specified or the decl has
508   // attribute used.
509   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
510     return false;
511 
512   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
513     // Constructors and destructors should never be deferred.
514     if (FD->hasAttr<ConstructorAttr>() ||
515         FD->hasAttr<DestructorAttr>())
516       return false;
517 
518     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
519 
520     // static, static inline, always_inline, and extern inline functions can
521     // always be deferred.  Normal inline functions can be deferred in C99/C++.
522     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
523         Linkage == GVA_CXXInline)
524       return true;
525     return false;
526   }
527 
528   const VarDecl *VD = cast<VarDecl>(Global);
529   assert(VD->isFileVarDecl() && "Invalid decl");
530 
531   return VD->getStorageClass() == VarDecl::Static;
532 }
533 
534 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
535   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
536 
537   // If this is an alias definition (which otherwise looks like a declaration)
538   // emit it now.
539   if (Global->hasAttr<AliasAttr>())
540     return EmitAliasDefinition(Global);
541 
542   // Ignore declarations, they will be emitted on their first use.
543   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
544     // Forward declarations are emitted lazily on first use.
545     if (!FD->isThisDeclarationADefinition())
546       return;
547   } else {
548     const VarDecl *VD = cast<VarDecl>(Global);
549     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
550 
551     // In C++, if this is marked "extern", defer code generation.
552     if (getLangOptions().CPlusPlus && !VD->getInit() &&
553         (VD->getStorageClass() == VarDecl::Extern ||
554          VD->isExternC()))
555       return;
556 
557     // In C, if this isn't a definition, defer code generation.
558     if (!getLangOptions().CPlusPlus && !VD->getInit())
559       return;
560   }
561 
562   // Defer code generation when possible if this is a static definition, inline
563   // function etc.  These we only want to emit if they are used.
564   if (MayDeferGeneration(Global)) {
565     // If the value has already been used, add it directly to the
566     // DeferredDeclsToEmit list.
567     const char *MangledName = getMangledName(GD);
568     if (GlobalDeclMap.count(MangledName))
569       DeferredDeclsToEmit.push_back(GD);
570     else {
571       // Otherwise, remember that we saw a deferred decl with this name.  The
572       // first use of the mangled name will cause it to move into
573       // DeferredDeclsToEmit.
574       DeferredDecls[MangledName] = GD;
575     }
576     return;
577   }
578 
579   // Otherwise emit the definition.
580   EmitGlobalDefinition(GD);
581 }
582 
583 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
584   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
585 
586   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
587     EmitCXXConstructor(CD, GD.getCtorType());
588   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
589     EmitCXXDestructor(DD, GD.getDtorType());
590   else if (isa<FunctionDecl>(D))
591     EmitGlobalFunctionDefinition(GD);
592   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
593     EmitGlobalVarDefinition(VD);
594   else {
595     assert(0 && "Invalid argument to EmitGlobalDefinition()");
596   }
597 }
598 
599 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
600 /// module, create and return an llvm Function with the specified type. If there
601 /// is something in the module with the specified name, return it potentially
602 /// bitcasted to the right type.
603 ///
604 /// If D is non-null, it specifies a decl that correspond to this.  This is used
605 /// to set the attributes on the function when it is first created.
606 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
607                                                        const llvm::Type *Ty,
608                                                        GlobalDecl D) {
609   // Lookup the entry, lazily creating it if necessary.
610   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
611   if (Entry) {
612     if (Entry->getType()->getElementType() == Ty)
613       return Entry;
614 
615     // Make sure the result is of the correct type.
616     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
617     return llvm::ConstantExpr::getBitCast(Entry, PTy);
618   }
619 
620   // This is the first use or definition of a mangled name.  If there is a
621   // deferred decl with this name, remember that we need to emit it at the end
622   // of the file.
623   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
624     DeferredDecls.find(MangledName);
625   if (DDI != DeferredDecls.end()) {
626     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
627     // list, and remove it from DeferredDecls (since we don't need it anymore).
628     DeferredDeclsToEmit.push_back(DDI->second);
629     DeferredDecls.erase(DDI);
630   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
631     // If this the first reference to a C++ inline function in a class, queue up
632     // the deferred function body for emission.  These are not seen as
633     // top-level declarations.
634     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
635       DeferredDeclsToEmit.push_back(D);
636     // A called constructor which has no definition or declaration need be
637     // synthesized.
638     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
639       const CXXRecordDecl *ClassDecl =
640         cast<CXXRecordDecl>(CD->getDeclContext());
641       if (CD->isCopyConstructor(getContext()))
642         DeferredCopyConstructorToEmit(D);
643       else if (!ClassDecl->hasUserDeclaredConstructor())
644         DeferredDeclsToEmit.push_back(D);
645     }
646     else if (isa<CXXDestructorDecl>(FD))
647        DeferredDestructorToEmit(D);
648     else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
649            if (MD->isCopyAssignment())
650              DeferredCopyAssignmentToEmit(D);
651   }
652 
653   // This function doesn't have a complete type (for example, the return
654   // type is an incomplete struct). Use a fake type instead, and make
655   // sure not to try to set attributes.
656   bool IsIncompleteFunction = false;
657   if (!isa<llvm::FunctionType>(Ty)) {
658     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
659                                  std::vector<const llvm::Type*>(), false);
660     IsIncompleteFunction = true;
661   }
662   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
663                                              llvm::Function::ExternalLinkage,
664                                              "", &getModule());
665   F->setName(MangledName);
666   if (D.getDecl())
667     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
668                           IsIncompleteFunction);
669   Entry = F;
670   return F;
671 }
672 
673 /// Defer definition of copy constructor(s) which need be implicitly defined.
674 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
675   const CXXConstructorDecl *CD =
676     cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
677   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
678   if (ClassDecl->hasTrivialCopyConstructor() ||
679       ClassDecl->hasUserDeclaredCopyConstructor())
680     return;
681 
682   // First make sure all direct base classes and virtual bases and non-static
683   // data mebers which need to have their copy constructors implicitly defined
684   // are defined. 12.8.p7
685   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
686        Base != ClassDecl->bases_end(); ++Base) {
687     CXXRecordDecl *BaseClassDecl
688       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
689     if (CXXConstructorDecl *BaseCopyCtor =
690         BaseClassDecl->getCopyConstructor(Context, 0))
691       GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
692   }
693 
694   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
695        FieldEnd = ClassDecl->field_end();
696        Field != FieldEnd; ++Field) {
697     QualType FieldType = Context.getCanonicalType((*Field)->getType());
698     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
699       FieldType = Array->getElementType();
700     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
701       if ((*Field)->isAnonymousStructOrUnion())
702         continue;
703       CXXRecordDecl *FieldClassDecl
704         = cast<CXXRecordDecl>(FieldClassType->getDecl());
705       if (CXXConstructorDecl *FieldCopyCtor =
706           FieldClassDecl->getCopyConstructor(Context, 0))
707         GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
708     }
709   }
710   DeferredDeclsToEmit.push_back(CopyCtorDecl);
711 }
712 
713 /// Defer definition of copy assignments which need be implicitly defined.
714 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) {
715   const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl());
716   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
717 
718   if (ClassDecl->hasTrivialCopyAssignment() ||
719       ClassDecl->hasUserDeclaredCopyAssignment())
720     return;
721 
722   // First make sure all direct base classes and virtual bases and non-static
723   // data mebers which need to have their copy assignments implicitly defined
724   // are defined. 12.8.p12
725   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
726        Base != ClassDecl->bases_end(); ++Base) {
727     CXXRecordDecl *BaseClassDecl
728       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
729     const CXXMethodDecl *MD = 0;
730     if (!BaseClassDecl->hasTrivialCopyAssignment() &&
731         !BaseClassDecl->hasUserDeclaredCopyAssignment() &&
732         BaseClassDecl->hasConstCopyAssignment(getContext(), MD))
733       GetAddrOfFunction(MD, 0);
734   }
735 
736   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
737        FieldEnd = ClassDecl->field_end();
738        Field != FieldEnd; ++Field) {
739     QualType FieldType = Context.getCanonicalType((*Field)->getType());
740     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
741       FieldType = Array->getElementType();
742     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
743       if ((*Field)->isAnonymousStructOrUnion())
744         continue;
745       CXXRecordDecl *FieldClassDecl
746         = cast<CXXRecordDecl>(FieldClassType->getDecl());
747       const CXXMethodDecl *MD = 0;
748       if (!FieldClassDecl->hasTrivialCopyAssignment() &&
749           !FieldClassDecl->hasUserDeclaredCopyAssignment() &&
750           FieldClassDecl->hasConstCopyAssignment(getContext(), MD))
751           GetAddrOfFunction(MD, 0);
752     }
753   }
754   DeferredDeclsToEmit.push_back(CopyAssignDecl);
755 }
756 
757 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) {
758   const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl());
759   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext());
760   if (ClassDecl->hasTrivialDestructor() ||
761       ClassDecl->hasUserDeclaredDestructor())
762     return;
763 
764   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
765        Base != ClassDecl->bases_end(); ++Base) {
766     CXXRecordDecl *BaseClassDecl
767       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
768     if (const CXXDestructorDecl *BaseDtor =
769           BaseClassDecl->getDestructor(Context))
770       GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete);
771   }
772 
773   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
774        FieldEnd = ClassDecl->field_end();
775        Field != FieldEnd; ++Field) {
776     QualType FieldType = Context.getCanonicalType((*Field)->getType());
777     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
778       FieldType = Array->getElementType();
779     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
780       if ((*Field)->isAnonymousStructOrUnion())
781         continue;
782       CXXRecordDecl *FieldClassDecl
783         = cast<CXXRecordDecl>(FieldClassType->getDecl());
784       if (const CXXDestructorDecl *FieldDtor =
785             FieldClassDecl->getDestructor(Context))
786         GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete);
787     }
788   }
789   DeferredDeclsToEmit.push_back(DtorDecl);
790 }
791 
792 
793 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
794 /// non-null, then this function will use the specified type if it has to
795 /// create it (this occurs when we see a definition of the function).
796 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
797                                                  const llvm::Type *Ty) {
798   // If there was no specific requested type, just convert it now.
799   if (!Ty)
800     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
801   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
802 }
803 
804 /// CreateRuntimeFunction - Create a new runtime function with the specified
805 /// type and name.
806 llvm::Constant *
807 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
808                                      const char *Name) {
809   // Convert Name to be a uniqued string from the IdentifierInfo table.
810   Name = getContext().Idents.get(Name).getName();
811   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
812 }
813 
814 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
815 /// create and return an llvm GlobalVariable with the specified type.  If there
816 /// is something in the module with the specified name, return it potentially
817 /// bitcasted to the right type.
818 ///
819 /// If D is non-null, it specifies a decl that correspond to this.  This is used
820 /// to set the attributes on the global when it is first created.
821 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
822                                                      const llvm::PointerType*Ty,
823                                                      const VarDecl *D) {
824   // Lookup the entry, lazily creating it if necessary.
825   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
826   if (Entry) {
827     if (Entry->getType() == Ty)
828       return Entry;
829 
830     // Make sure the result is of the correct type.
831     return llvm::ConstantExpr::getBitCast(Entry, Ty);
832   }
833 
834   // This is the first use or definition of a mangled name.  If there is a
835   // deferred decl with this name, remember that we need to emit it at the end
836   // of the file.
837   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
838     DeferredDecls.find(MangledName);
839   if (DDI != DeferredDecls.end()) {
840     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
841     // list, and remove it from DeferredDecls (since we don't need it anymore).
842     DeferredDeclsToEmit.push_back(DDI->second);
843     DeferredDecls.erase(DDI);
844   }
845 
846   llvm::GlobalVariable *GV =
847     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
848                              llvm::GlobalValue::ExternalLinkage,
849                              0, "", 0,
850                              false, Ty->getAddressSpace());
851   GV->setName(MangledName);
852 
853   // Handle things which are present even on external declarations.
854   if (D) {
855     // FIXME: This code is overly simple and should be merged with other global
856     // handling.
857     GV->setConstant(D->getType().isConstant(Context));
858 
859     // FIXME: Merge with other attribute handling code.
860     if (D->getStorageClass() == VarDecl::PrivateExtern)
861       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
862 
863     if (D->hasAttr<WeakAttr>() ||
864         D->hasAttr<WeakImportAttr>())
865       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
866 
867     GV->setThreadLocal(D->isThreadSpecified());
868   }
869 
870   return Entry = GV;
871 }
872 
873 
874 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
875 /// given global variable.  If Ty is non-null and if the global doesn't exist,
876 /// then it will be greated with the specified type instead of whatever the
877 /// normal requested type would be.
878 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
879                                                   const llvm::Type *Ty) {
880   assert(D->hasGlobalStorage() && "Not a global variable");
881   QualType ASTTy = D->getType();
882   if (Ty == 0)
883     Ty = getTypes().ConvertTypeForMem(ASTTy);
884 
885   const llvm::PointerType *PTy =
886     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
887   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
888 }
889 
890 /// CreateRuntimeVariable - Create a new runtime global variable with the
891 /// specified type and name.
892 llvm::Constant *
893 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
894                                      const char *Name) {
895   // Convert Name to be a uniqued string from the IdentifierInfo table.
896   Name = getContext().Idents.get(Name).getName();
897   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
898 }
899 
900 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
901   assert(!D->getInit() && "Cannot emit definite definitions here!");
902 
903   if (MayDeferGeneration(D)) {
904     // If we have not seen a reference to this variable yet, place it
905     // into the deferred declarations table to be emitted if needed
906     // later.
907     const char *MangledName = getMangledName(D);
908     if (GlobalDeclMap.count(MangledName) == 0) {
909       DeferredDecls[MangledName] = D;
910       return;
911     }
912   }
913 
914   // The tentative definition is the only definition.
915   EmitGlobalVarDefinition(D);
916 }
917 
918 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
919   llvm::Constant *Init = 0;
920   QualType ASTTy = D->getType();
921 
922   if (D->getInit() == 0) {
923     // This is a tentative definition; tentative definitions are
924     // implicitly initialized with { 0 }.
925     //
926     // Note that tentative definitions are only emitted at the end of
927     // a translation unit, so they should never have incomplete
928     // type. In addition, EmitTentativeDefinition makes sure that we
929     // never attempt to emit a tentative definition if a real one
930     // exists. A use may still exists, however, so we still may need
931     // to do a RAUW.
932     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
933     Init = EmitNullConstant(D->getType());
934   } else {
935     Init = EmitConstantExpr(D->getInit(), D->getType());
936 
937     if (!Init) {
938       QualType T = D->getInit()->getType();
939       if (getLangOptions().CPlusPlus) {
940         CXXGlobalInits.push_back(D);
941         Init = EmitNullConstant(T);
942       } else {
943         ErrorUnsupported(D, "static initializer");
944         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
945       }
946     }
947   }
948 
949   const llvm::Type* InitType = Init->getType();
950   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
951 
952   // Strip off a bitcast if we got one back.
953   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
954     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
955            // all zero index gep.
956            CE->getOpcode() == llvm::Instruction::GetElementPtr);
957     Entry = CE->getOperand(0);
958   }
959 
960   // Entry is now either a Function or GlobalVariable.
961   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
962 
963   // We have a definition after a declaration with the wrong type.
964   // We must make a new GlobalVariable* and update everything that used OldGV
965   // (a declaration or tentative definition) with the new GlobalVariable*
966   // (which will be a definition).
967   //
968   // This happens if there is a prototype for a global (e.g.
969   // "extern int x[];") and then a definition of a different type (e.g.
970   // "int x[10];"). This also happens when an initializer has a different type
971   // from the type of the global (this happens with unions).
972   if (GV == 0 ||
973       GV->getType()->getElementType() != InitType ||
974       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
975 
976     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
977     GlobalDeclMap.erase(getMangledName(D));
978 
979     // Make a new global with the correct type, this is now guaranteed to work.
980     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
981     GV->takeName(cast<llvm::GlobalValue>(Entry));
982 
983     // Replace all uses of the old global with the new global
984     llvm::Constant *NewPtrForOldDecl =
985         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
986     Entry->replaceAllUsesWith(NewPtrForOldDecl);
987 
988     // Erase the old global, since it is no longer used.
989     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
990   }
991 
992   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
993     SourceManager &SM = Context.getSourceManager();
994     AddAnnotation(EmitAnnotateAttr(GV, AA,
995                               SM.getInstantiationLineNumber(D->getLocation())));
996   }
997 
998   GV->setInitializer(Init);
999 
1000   // If it is safe to mark the global 'constant', do so now.
1001   GV->setConstant(false);
1002   if (D->getType().isConstant(Context)) {
1003     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
1004     // members, it cannot be declared "LLVM const".
1005     GV->setConstant(true);
1006   }
1007 
1008   GV->setAlignment(getContext().getDeclAlignInBytes(D));
1009 
1010   // Set the llvm linkage type as appropriate.
1011   if (D->isInAnonymousNamespace())
1012     GV->setLinkage(llvm::Function::InternalLinkage);
1013   else if (D->getStorageClass() == VarDecl::Static)
1014     GV->setLinkage(llvm::Function::InternalLinkage);
1015   else if (D->hasAttr<DLLImportAttr>())
1016     GV->setLinkage(llvm::Function::DLLImportLinkage);
1017   else if (D->hasAttr<DLLExportAttr>())
1018     GV->setLinkage(llvm::Function::DLLExportLinkage);
1019   else if (D->hasAttr<WeakAttr>()) {
1020     if (GV->isConstant())
1021       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1022     else
1023       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1024   } else if (!CompileOpts.NoCommon &&
1025            !D->hasExternalStorage() && !D->getInit() &&
1026            !D->getAttr<SectionAttr>()) {
1027     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1028     // common vars aren't constant even if declared const.
1029     GV->setConstant(false);
1030   } else
1031     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1032 
1033   SetCommonAttributes(D, GV);
1034 
1035   // Emit global variable debug information.
1036   if (CGDebugInfo *DI = getDebugInfo()) {
1037     DI->setLocation(D->getLocation());
1038     DI->EmitGlobalVariable(GV, D);
1039   }
1040 }
1041 
1042 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1043 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1044 /// existing call uses of the old function in the module, this adjusts them to
1045 /// call the new function directly.
1046 ///
1047 /// This is not just a cleanup: the always_inline pass requires direct calls to
1048 /// functions to be able to inline them.  If there is a bitcast in the way, it
1049 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1050 /// run at -O0.
1051 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1052                                                       llvm::Function *NewFn) {
1053   // If we're redefining a global as a function, don't transform it.
1054   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1055   if (OldFn == 0) return;
1056 
1057   const llvm::Type *NewRetTy = NewFn->getReturnType();
1058   llvm::SmallVector<llvm::Value*, 4> ArgList;
1059 
1060   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1061        UI != E; ) {
1062     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1063     unsigned OpNo = UI.getOperandNo();
1064     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1065     if (!CI || OpNo != 0) continue;
1066 
1067     // If the return types don't match exactly, and if the call isn't dead, then
1068     // we can't transform this call.
1069     if (CI->getType() != NewRetTy && !CI->use_empty())
1070       continue;
1071 
1072     // If the function was passed too few arguments, don't transform.  If extra
1073     // arguments were passed, we silently drop them.  If any of the types
1074     // mismatch, we don't transform.
1075     unsigned ArgNo = 0;
1076     bool DontTransform = false;
1077     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1078          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1079       if (CI->getNumOperands()-1 == ArgNo ||
1080           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1081         DontTransform = true;
1082         break;
1083       }
1084     }
1085     if (DontTransform)
1086       continue;
1087 
1088     // Okay, we can transform this.  Create the new call instruction and copy
1089     // over the required information.
1090     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1091     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1092                                                      ArgList.end(), "", CI);
1093     ArgList.clear();
1094     if (!NewCall->getType()->isVoidTy())
1095       NewCall->takeName(CI);
1096     NewCall->setAttributes(CI->getAttributes());
1097     NewCall->setCallingConv(CI->getCallingConv());
1098 
1099     // Finally, remove the old call, replacing any uses with the new one.
1100     if (!CI->use_empty())
1101       CI->replaceAllUsesWith(NewCall);
1102     CI->eraseFromParent();
1103   }
1104 }
1105 
1106 
1107 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1108   const llvm::FunctionType *Ty;
1109   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1110 
1111   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1112     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1113 
1114     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1115   } else {
1116     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1117 
1118     // As a special case, make sure that definitions of K&R function
1119     // "type foo()" aren't declared as varargs (which forces the backend
1120     // to do unnecessary work).
1121     if (D->getType()->isFunctionNoProtoType()) {
1122       assert(Ty->isVarArg() && "Didn't lower type as expected");
1123       // Due to stret, the lowered function could have arguments.
1124       // Just create the same type as was lowered by ConvertType
1125       // but strip off the varargs bit.
1126       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1127       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1128     }
1129   }
1130 
1131   // Get or create the prototype for the function.
1132   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1133 
1134   // Strip off a bitcast if we got one back.
1135   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1136     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1137     Entry = CE->getOperand(0);
1138   }
1139 
1140 
1141   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1142     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1143 
1144     // If the types mismatch then we have to rewrite the definition.
1145     assert(OldFn->isDeclaration() &&
1146            "Shouldn't replace non-declaration");
1147 
1148     // F is the Function* for the one with the wrong type, we must make a new
1149     // Function* and update everything that used F (a declaration) with the new
1150     // Function* (which will be a definition).
1151     //
1152     // This happens if there is a prototype for a function
1153     // (e.g. "int f()") and then a definition of a different type
1154     // (e.g. "int f(int x)").  Start by making a new function of the
1155     // correct type, RAUW, then steal the name.
1156     GlobalDeclMap.erase(getMangledName(D));
1157     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1158     NewFn->takeName(OldFn);
1159 
1160     // If this is an implementation of a function without a prototype, try to
1161     // replace any existing uses of the function (which may be calls) with uses
1162     // of the new function
1163     if (D->getType()->isFunctionNoProtoType()) {
1164       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1165       OldFn->removeDeadConstantUsers();
1166     }
1167 
1168     // Replace uses of F with the Function we will endow with a body.
1169     if (!Entry->use_empty()) {
1170       llvm::Constant *NewPtrForOldDecl =
1171         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1172       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1173     }
1174 
1175     // Ok, delete the old function now, which is dead.
1176     OldFn->eraseFromParent();
1177 
1178     Entry = NewFn;
1179   }
1180 
1181   llvm::Function *Fn = cast<llvm::Function>(Entry);
1182 
1183   CodeGenFunction(*this).GenerateCode(D, Fn);
1184 
1185   SetFunctionDefinitionAttributes(D, Fn);
1186   SetLLVMFunctionAttributesForDefinition(D, Fn);
1187 
1188   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1189     AddGlobalCtor(Fn, CA->getPriority());
1190   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1191     AddGlobalDtor(Fn, DA->getPriority());
1192 }
1193 
1194 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1195   const AliasAttr *AA = D->getAttr<AliasAttr>();
1196   assert(AA && "Not an alias?");
1197 
1198   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1199 
1200   // Unique the name through the identifier table.
1201   const char *AliaseeName = AA->getAliasee().c_str();
1202   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1203 
1204   // Create a reference to the named value.  This ensures that it is emitted
1205   // if a deferred decl.
1206   llvm::Constant *Aliasee;
1207   if (isa<llvm::FunctionType>(DeclTy))
1208     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1209   else
1210     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1211                                     llvm::PointerType::getUnqual(DeclTy), 0);
1212 
1213   // Create the new alias itself, but don't set a name yet.
1214   llvm::GlobalValue *GA =
1215     new llvm::GlobalAlias(Aliasee->getType(),
1216                           llvm::Function::ExternalLinkage,
1217                           "", Aliasee, &getModule());
1218 
1219   // See if there is already something with the alias' name in the module.
1220   const char *MangledName = getMangledName(D);
1221   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1222 
1223   if (Entry && !Entry->isDeclaration()) {
1224     // If there is a definition in the module, then it wins over the alias.
1225     // This is dubious, but allow it to be safe.  Just ignore the alias.
1226     GA->eraseFromParent();
1227     return;
1228   }
1229 
1230   if (Entry) {
1231     // If there is a declaration in the module, then we had an extern followed
1232     // by the alias, as in:
1233     //   extern int test6();
1234     //   ...
1235     //   int test6() __attribute__((alias("test7")));
1236     //
1237     // Remove it and replace uses of it with the alias.
1238 
1239     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1240                                                           Entry->getType()));
1241     Entry->eraseFromParent();
1242   }
1243 
1244   // Now we know that there is no conflict, set the name.
1245   Entry = GA;
1246   GA->setName(MangledName);
1247 
1248   // Set attributes which are particular to an alias; this is a
1249   // specialization of the attributes which may be set on a global
1250   // variable/function.
1251   if (D->hasAttr<DLLExportAttr>()) {
1252     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1253       // The dllexport attribute is ignored for undefined symbols.
1254       if (FD->getBody())
1255         GA->setLinkage(llvm::Function::DLLExportLinkage);
1256     } else {
1257       GA->setLinkage(llvm::Function::DLLExportLinkage);
1258     }
1259   } else if (D->hasAttr<WeakAttr>() ||
1260              D->hasAttr<WeakImportAttr>()) {
1261     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1262   }
1263 
1264   SetCommonAttributes(D, GA);
1265 }
1266 
1267 /// getBuiltinLibFunction - Given a builtin id for a function like
1268 /// "__builtin_fabsf", return a Function* for "fabsf".
1269 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1270                                                   unsigned BuiltinID) {
1271   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1272           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1273          "isn't a lib fn");
1274 
1275   // Get the name, skip over the __builtin_ prefix (if necessary).
1276   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1277   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1278     Name += 10;
1279 
1280   // Get the type for the builtin.
1281   ASTContext::GetBuiltinTypeError Error;
1282   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1283   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1284 
1285   const llvm::FunctionType *Ty =
1286     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1287 
1288   // Unique the name through the identifier table.
1289   Name = getContext().Idents.get(Name).getName();
1290   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1291 }
1292 
1293 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1294                                             unsigned NumTys) {
1295   return llvm::Intrinsic::getDeclaration(&getModule(),
1296                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1297 }
1298 
1299 llvm::Function *CodeGenModule::getMemCpyFn() {
1300   if (MemCpyFn) return MemCpyFn;
1301   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1302   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1303 }
1304 
1305 llvm::Function *CodeGenModule::getMemMoveFn() {
1306   if (MemMoveFn) return MemMoveFn;
1307   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1308   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1309 }
1310 
1311 llvm::Function *CodeGenModule::getMemSetFn() {
1312   if (MemSetFn) return MemSetFn;
1313   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1314   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1315 }
1316 
1317 static llvm::StringMapEntry<llvm::Constant*> &
1318 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1319                          const StringLiteral *Literal,
1320                          bool TargetIsLSB,
1321                          bool &IsUTF16,
1322                          unsigned &StringLength) {
1323   unsigned NumBytes = Literal->getByteLength();
1324 
1325   // Check for simple case.
1326   if (!Literal->containsNonAsciiOrNull()) {
1327     StringLength = NumBytes;
1328     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1329                                                 StringLength));
1330   }
1331 
1332   // Otherwise, convert the UTF8 literals into a byte string.
1333   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1334   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1335   UTF16 *ToPtr = &ToBuf[0];
1336 
1337   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1338                                                &ToPtr, ToPtr + NumBytes,
1339                                                strictConversion);
1340 
1341   // Check for conversion failure.
1342   if (Result != conversionOK) {
1343     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1344     // this duplicate code.
1345     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1346     StringLength = NumBytes;
1347     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1348                                                 StringLength));
1349   }
1350 
1351   // ConvertUTF8toUTF16 returns the length in ToPtr.
1352   StringLength = ToPtr - &ToBuf[0];
1353 
1354   // Render the UTF-16 string into a byte array and convert to the target byte
1355   // order.
1356   //
1357   // FIXME: This isn't something we should need to do here.
1358   llvm::SmallString<128> AsBytes;
1359   AsBytes.reserve(StringLength * 2);
1360   for (unsigned i = 0; i != StringLength; ++i) {
1361     unsigned short Val = ToBuf[i];
1362     if (TargetIsLSB) {
1363       AsBytes.push_back(Val & 0xFF);
1364       AsBytes.push_back(Val >> 8);
1365     } else {
1366       AsBytes.push_back(Val >> 8);
1367       AsBytes.push_back(Val & 0xFF);
1368     }
1369   }
1370   // Append one extra null character, the second is automatically added by our
1371   // caller.
1372   AsBytes.push_back(0);
1373 
1374   IsUTF16 = true;
1375   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1376 }
1377 
1378 llvm::Constant *
1379 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1380   unsigned StringLength = 0;
1381   bool isUTF16 = false;
1382   llvm::StringMapEntry<llvm::Constant*> &Entry =
1383     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1384                              getTargetData().isLittleEndian(),
1385                              isUTF16, StringLength);
1386 
1387   if (llvm::Constant *C = Entry.getValue())
1388     return C;
1389 
1390   llvm::Constant *Zero =
1391       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1392   llvm::Constant *Zeros[] = { Zero, Zero };
1393 
1394   // If we don't already have it, get __CFConstantStringClassReference.
1395   if (!CFConstantStringClassRef) {
1396     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1397     Ty = llvm::ArrayType::get(Ty, 0);
1398     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1399                                            "__CFConstantStringClassReference");
1400     // Decay array -> ptr
1401     CFConstantStringClassRef =
1402       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1403   }
1404 
1405   QualType CFTy = getContext().getCFConstantStringType();
1406 
1407   const llvm::StructType *STy =
1408     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1409 
1410   std::vector<llvm::Constant*> Fields(4);
1411 
1412   // Class pointer.
1413   Fields[0] = CFConstantStringClassRef;
1414 
1415   // Flags.
1416   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1417   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1418     llvm::ConstantInt::get(Ty, 0x07C8);
1419 
1420   // String pointer.
1421   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1422 
1423   const char *Sect, *Prefix;
1424   bool isConstant;
1425   llvm::GlobalValue::LinkageTypes Linkage;
1426   if (isUTF16) {
1427     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1428     Sect = getContext().Target.getUnicodeStringSection();
1429     // FIXME: why do utf strings get "l" labels instead of "L" labels?
1430     Linkage = llvm::GlobalValue::InternalLinkage;
1431     // FIXME: Why does GCC not set constant here?
1432     isConstant = false;
1433   } else {
1434     Prefix = ".str";
1435     Sect = getContext().Target.getCFStringDataSection();
1436     Linkage = llvm::GlobalValue::PrivateLinkage;
1437     // FIXME: -fwritable-strings should probably affect this, but we
1438     // are following gcc here.
1439     isConstant = true;
1440   }
1441   llvm::GlobalVariable *GV =
1442     new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
1443                              Linkage, C, Prefix);
1444   if (Sect)
1445     GV->setSection(Sect);
1446   if (isUTF16) {
1447     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1448     GV->setAlignment(Align);
1449   }
1450   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1451 
1452   // String length.
1453   Ty = getTypes().ConvertType(getContext().LongTy);
1454   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1455 
1456   // The struct.
1457   C = llvm::ConstantStruct::get(STy, Fields);
1458   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1459                                 llvm::GlobalVariable::PrivateLinkage, C,
1460                                 "_unnamed_cfstring_");
1461   if (const char *Sect = getContext().Target.getCFStringSection())
1462     GV->setSection(Sect);
1463   Entry.setValue(GV);
1464 
1465   return GV;
1466 }
1467 
1468 /// GetStringForStringLiteral - Return the appropriate bytes for a
1469 /// string literal, properly padded to match the literal type.
1470 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1471   const char *StrData = E->getStrData();
1472   unsigned Len = E->getByteLength();
1473 
1474   const ConstantArrayType *CAT =
1475     getContext().getAsConstantArrayType(E->getType());
1476   assert(CAT && "String isn't pointer or array!");
1477 
1478   // Resize the string to the right size.
1479   std::string Str(StrData, StrData+Len);
1480   uint64_t RealLen = CAT->getSize().getZExtValue();
1481 
1482   if (E->isWide())
1483     RealLen *= getContext().Target.getWCharWidth()/8;
1484 
1485   Str.resize(RealLen, '\0');
1486 
1487   return Str;
1488 }
1489 
1490 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1491 /// constant array for the given string literal.
1492 llvm::Constant *
1493 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1494   // FIXME: This can be more efficient.
1495   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1496 }
1497 
1498 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1499 /// array for the given ObjCEncodeExpr node.
1500 llvm::Constant *
1501 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1502   std::string Str;
1503   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1504 
1505   return GetAddrOfConstantCString(Str);
1506 }
1507 
1508 
1509 /// GenerateWritableString -- Creates storage for a string literal.
1510 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1511                                              bool constant,
1512                                              CodeGenModule &CGM,
1513                                              const char *GlobalName) {
1514   // Create Constant for this string literal. Don't add a '\0'.
1515   llvm::Constant *C =
1516       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1517 
1518   // Create a global variable for this string
1519   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1520                                   llvm::GlobalValue::PrivateLinkage,
1521                                   C, GlobalName);
1522 }
1523 
1524 /// GetAddrOfConstantString - Returns a pointer to a character array
1525 /// containing the literal. This contents are exactly that of the
1526 /// given string, i.e. it will not be null terminated automatically;
1527 /// see GetAddrOfConstantCString. Note that whether the result is
1528 /// actually a pointer to an LLVM constant depends on
1529 /// Feature.WriteableStrings.
1530 ///
1531 /// The result has pointer to array type.
1532 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1533                                                        const char *GlobalName) {
1534   bool IsConstant = !Features.WritableStrings;
1535 
1536   // Get the default prefix if a name wasn't specified.
1537   if (!GlobalName)
1538     GlobalName = ".str";
1539 
1540   // Don't share any string literals if strings aren't constant.
1541   if (!IsConstant)
1542     return GenerateStringLiteral(str, false, *this, GlobalName);
1543 
1544   llvm::StringMapEntry<llvm::Constant *> &Entry =
1545     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1546 
1547   if (Entry.getValue())
1548     return Entry.getValue();
1549 
1550   // Create a global variable for this.
1551   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1552   Entry.setValue(C);
1553   return C;
1554 }
1555 
1556 /// GetAddrOfConstantCString - Returns a pointer to a character
1557 /// array containing the literal and a terminating '\-'
1558 /// character. The result has pointer to array type.
1559 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1560                                                         const char *GlobalName){
1561   return GetAddrOfConstantString(str + '\0', GlobalName);
1562 }
1563 
1564 /// EmitObjCPropertyImplementations - Emit information for synthesized
1565 /// properties for an implementation.
1566 void CodeGenModule::EmitObjCPropertyImplementations(const
1567                                                     ObjCImplementationDecl *D) {
1568   for (ObjCImplementationDecl::propimpl_iterator
1569          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1570     ObjCPropertyImplDecl *PID = *i;
1571 
1572     // Dynamic is just for type-checking.
1573     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1574       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1575 
1576       // Determine which methods need to be implemented, some may have
1577       // been overridden. Note that ::isSynthesized is not the method
1578       // we want, that just indicates if the decl came from a
1579       // property. What we want to know is if the method is defined in
1580       // this implementation.
1581       if (!D->getInstanceMethod(PD->getGetterName()))
1582         CodeGenFunction(*this).GenerateObjCGetter(
1583                                  const_cast<ObjCImplementationDecl *>(D), PID);
1584       if (!PD->isReadOnly() &&
1585           !D->getInstanceMethod(PD->getSetterName()))
1586         CodeGenFunction(*this).GenerateObjCSetter(
1587                                  const_cast<ObjCImplementationDecl *>(D), PID);
1588     }
1589   }
1590 }
1591 
1592 /// EmitNamespace - Emit all declarations in a namespace.
1593 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1594   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1595        I != E; ++I)
1596     EmitTopLevelDecl(*I);
1597 }
1598 
1599 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1600 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1601   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1602       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1603     ErrorUnsupported(LSD, "linkage spec");
1604     return;
1605   }
1606 
1607   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1608        I != E; ++I)
1609     EmitTopLevelDecl(*I);
1610 }
1611 
1612 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1613 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1614   // If an error has occurred, stop code generation, but continue
1615   // parsing and semantic analysis (to ensure all warnings and errors
1616   // are emitted).
1617   if (Diags.hasErrorOccurred())
1618     return;
1619 
1620   // Ignore dependent declarations.
1621   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1622     return;
1623 
1624   switch (D->getKind()) {
1625   case Decl::CXXConversion:
1626   case Decl::CXXMethod:
1627   case Decl::Function:
1628     // Skip function templates
1629     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1630       return;
1631 
1632     EmitGlobal(cast<FunctionDecl>(D));
1633     break;
1634 
1635   case Decl::Var:
1636     EmitGlobal(cast<VarDecl>(D));
1637     break;
1638 
1639   // C++ Decls
1640   case Decl::Namespace:
1641     EmitNamespace(cast<NamespaceDecl>(D));
1642     break;
1643     // No code generation needed.
1644   case Decl::Using:
1645   case Decl::UsingDirective:
1646   case Decl::ClassTemplate:
1647   case Decl::FunctionTemplate:
1648   case Decl::NamespaceAlias:
1649     break;
1650   case Decl::CXXConstructor:
1651     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1652     break;
1653   case Decl::CXXDestructor:
1654     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1655     break;
1656 
1657   case Decl::StaticAssert:
1658     // Nothing to do.
1659     break;
1660 
1661   // Objective-C Decls
1662 
1663   // Forward declarations, no (immediate) code generation.
1664   case Decl::ObjCClass:
1665   case Decl::ObjCForwardProtocol:
1666   case Decl::ObjCCategory:
1667   case Decl::ObjCInterface:
1668     break;
1669 
1670   case Decl::ObjCProtocol:
1671     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1672     break;
1673 
1674   case Decl::ObjCCategoryImpl:
1675     // Categories have properties but don't support synthesize so we
1676     // can ignore them here.
1677     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1678     break;
1679 
1680   case Decl::ObjCImplementation: {
1681     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1682     EmitObjCPropertyImplementations(OMD);
1683     Runtime->GenerateClass(OMD);
1684     break;
1685   }
1686   case Decl::ObjCMethod: {
1687     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1688     // If this is not a prototype, emit the body.
1689     if (OMD->getBody())
1690       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1691     break;
1692   }
1693   case Decl::ObjCCompatibleAlias:
1694     // compatibility-alias is a directive and has no code gen.
1695     break;
1696 
1697   case Decl::LinkageSpec:
1698     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1699     break;
1700 
1701   case Decl::FileScopeAsm: {
1702     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1703     std::string AsmString(AD->getAsmString()->getStrData(),
1704                           AD->getAsmString()->getByteLength());
1705 
1706     const std::string &S = getModule().getModuleInlineAsm();
1707     if (S.empty())
1708       getModule().setModuleInlineAsm(AsmString);
1709     else
1710       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1711     break;
1712   }
1713 
1714   default:
1715     // Make sure we handled everything we should, every other kind is a
1716     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1717     // function. Need to recode Decl::Kind to do that easily.
1718     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1719   }
1720 }
1721