1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/Frontend/CodeGenOptions.h"
45 #include "clang/Sema/SemaDiagnostic.h"
46 #include "llvm/ADT/APSInt.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/IR/CallSite.h"
49 #include "llvm/IR/CallingConv.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/ProfileData/InstrProfReader.h"
55 #include "llvm/Support/ConvertUTF.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MD5.h"
58 
59 using namespace clang;
60 using namespace CodeGen;
61 
62 static const char AnnotationSection[] = "llvm.metadata";
63 
64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
65   switch (CGM.getTarget().getCXXABI().getKind()) {
66   case TargetCXXABI::GenericAArch64:
67   case TargetCXXABI::GenericARM:
68   case TargetCXXABI::iOS:
69   case TargetCXXABI::iOS64:
70   case TargetCXXABI::WatchOS:
71   case TargetCXXABI::GenericMIPS:
72   case TargetCXXABI::GenericItanium:
73   case TargetCXXABI::WebAssembly:
74     return CreateItaniumCXXABI(CGM);
75   case TargetCXXABI::Microsoft:
76     return CreateMicrosoftCXXABI(CGM);
77   }
78 
79   llvm_unreachable("invalid C++ ABI kind");
80 }
81 
82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
83                              const PreprocessorOptions &PPO,
84                              const CodeGenOptions &CGO, llvm::Module &M,
85                              DiagnosticsEngine &diags,
86                              CoverageSourceInfo *CoverageInfo)
87     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
88       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
89       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
90       VMContext(M.getContext()), Types(*this), VTables(*this),
91       SanitizerMD(new SanitizerMetadata(*this)) {
92 
93   // Initialize the type cache.
94   llvm::LLVMContext &LLVMContext = M.getContext();
95   VoidTy = llvm::Type::getVoidTy(LLVMContext);
96   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
97   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
98   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
99   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
100   FloatTy = llvm::Type::getFloatTy(LLVMContext);
101   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
102   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
103   PointerAlignInBytes =
104     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
105   IntAlignInBytes =
106     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
107   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
108   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
109   Int8PtrTy = Int8Ty->getPointerTo(0);
110   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
111 
112   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
113   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
114 
115   if (LangOpts.ObjC1)
116     createObjCRuntime();
117   if (LangOpts.OpenCL)
118     createOpenCLRuntime();
119   if (LangOpts.OpenMP)
120     createOpenMPRuntime();
121   if (LangOpts.CUDA)
122     createCUDARuntime();
123 
124   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
125   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
126       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
127     TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
128                                getCXXABI().getMangleContext()));
129 
130   // If debug info or coverage generation is enabled, create the CGDebugInfo
131   // object.
132   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
133       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
134     DebugInfo.reset(new CGDebugInfo(*this));
135 
136   Block.GlobalUniqueCount = 0;
137 
138   if (C.getLangOpts().ObjC1)
139     ObjCData.reset(new ObjCEntrypoints());
140 
141   if (CodeGenOpts.hasProfileClangUse()) {
142     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
143         CodeGenOpts.ProfileInstrumentUsePath);
144     if (auto E = ReaderOrErr.takeError()) {
145       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
146                                               "Could not read profile %0: %1");
147       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
148         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
149                                   << EI.message();
150       });
151     } else
152       PGOReader = std::move(ReaderOrErr.get());
153   }
154 
155   // If coverage mapping generation is enabled, create the
156   // CoverageMappingModuleGen object.
157   if (CodeGenOpts.CoverageMapping)
158     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
159 }
160 
161 CodeGenModule::~CodeGenModule() {}
162 
163 void CodeGenModule::createObjCRuntime() {
164   // This is just isGNUFamily(), but we want to force implementors of
165   // new ABIs to decide how best to do this.
166   switch (LangOpts.ObjCRuntime.getKind()) {
167   case ObjCRuntime::GNUstep:
168   case ObjCRuntime::GCC:
169   case ObjCRuntime::ObjFW:
170     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
171     return;
172 
173   case ObjCRuntime::FragileMacOSX:
174   case ObjCRuntime::MacOSX:
175   case ObjCRuntime::iOS:
176   case ObjCRuntime::WatchOS:
177     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
178     return;
179   }
180   llvm_unreachable("bad runtime kind");
181 }
182 
183 void CodeGenModule::createOpenCLRuntime() {
184   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
185 }
186 
187 void CodeGenModule::createOpenMPRuntime() {
188   // Select a specialized code generation class based on the target, if any.
189   // If it does not exist use the default implementation.
190   switch (getTarget().getTriple().getArch()) {
191 
192   case llvm::Triple::nvptx:
193   case llvm::Triple::nvptx64:
194     assert(getLangOpts().OpenMPIsDevice &&
195            "OpenMP NVPTX is only prepared to deal with device code.");
196     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
197     break;
198   default:
199     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
200     break;
201   }
202 }
203 
204 void CodeGenModule::createCUDARuntime() {
205   CUDARuntime.reset(CreateNVCUDARuntime(*this));
206 }
207 
208 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
209   Replacements[Name] = C;
210 }
211 
212 void CodeGenModule::applyReplacements() {
213   for (auto &I : Replacements) {
214     StringRef MangledName = I.first();
215     llvm::Constant *Replacement = I.second;
216     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
217     if (!Entry)
218       continue;
219     auto *OldF = cast<llvm::Function>(Entry);
220     auto *NewF = dyn_cast<llvm::Function>(Replacement);
221     if (!NewF) {
222       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
223         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
224       } else {
225         auto *CE = cast<llvm::ConstantExpr>(Replacement);
226         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
227                CE->getOpcode() == llvm::Instruction::GetElementPtr);
228         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
229       }
230     }
231 
232     // Replace old with new, but keep the old order.
233     OldF->replaceAllUsesWith(Replacement);
234     if (NewF) {
235       NewF->removeFromParent();
236       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
237                                                        NewF);
238     }
239     OldF->eraseFromParent();
240   }
241 }
242 
243 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
244   GlobalValReplacements.push_back(std::make_pair(GV, C));
245 }
246 
247 void CodeGenModule::applyGlobalValReplacements() {
248   for (auto &I : GlobalValReplacements) {
249     llvm::GlobalValue *GV = I.first;
250     llvm::Constant *C = I.second;
251 
252     GV->replaceAllUsesWith(C);
253     GV->eraseFromParent();
254   }
255 }
256 
257 // This is only used in aliases that we created and we know they have a
258 // linear structure.
259 static const llvm::GlobalObject *getAliasedGlobal(
260     const llvm::GlobalIndirectSymbol &GIS) {
261   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
262   const llvm::Constant *C = &GIS;
263   for (;;) {
264     C = C->stripPointerCasts();
265     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
266       return GO;
267     // stripPointerCasts will not walk over weak aliases.
268     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
269     if (!GIS2)
270       return nullptr;
271     if (!Visited.insert(GIS2).second)
272       return nullptr;
273     C = GIS2->getIndirectSymbol();
274   }
275 }
276 
277 void CodeGenModule::checkAliases() {
278   // Check if the constructed aliases are well formed. It is really unfortunate
279   // that we have to do this in CodeGen, but we only construct mangled names
280   // and aliases during codegen.
281   bool Error = false;
282   DiagnosticsEngine &Diags = getDiags();
283   for (const GlobalDecl &GD : Aliases) {
284     const auto *D = cast<ValueDecl>(GD.getDecl());
285     SourceLocation Location;
286     bool IsIFunc = D->hasAttr<IFuncAttr>();
287     if (const Attr *A = D->getDefiningAttr())
288       Location = A->getLocation();
289     else
290       llvm_unreachable("Not an alias or ifunc?");
291     StringRef MangledName = getMangledName(GD);
292     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
293     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
294     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
295     if (!GV) {
296       Error = true;
297       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
298     } else if (GV->isDeclaration()) {
299       Error = true;
300       Diags.Report(Location, diag::err_alias_to_undefined)
301           << IsIFunc << IsIFunc;
302     } else if (IsIFunc) {
303       // Check resolver function type.
304       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
305           GV->getType()->getPointerElementType());
306       assert(FTy);
307       if (!FTy->getReturnType()->isPointerTy())
308         Diags.Report(Location, diag::err_ifunc_resolver_return);
309       if (FTy->getNumParams())
310         Diags.Report(Location, diag::err_ifunc_resolver_params);
311     }
312 
313     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
314     llvm::GlobalValue *AliaseeGV;
315     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
316       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
317     else
318       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
319 
320     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
321       StringRef AliasSection = SA->getName();
322       if (AliasSection != AliaseeGV->getSection())
323         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
324             << AliasSection << IsIFunc << IsIFunc;
325     }
326 
327     // We have to handle alias to weak aliases in here. LLVM itself disallows
328     // this since the object semantics would not match the IL one. For
329     // compatibility with gcc we implement it by just pointing the alias
330     // to its aliasee's aliasee. We also warn, since the user is probably
331     // expecting the link to be weak.
332     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
333       if (GA->isInterposable()) {
334         Diags.Report(Location, diag::warn_alias_to_weak_alias)
335             << GV->getName() << GA->getName() << IsIFunc;
336         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
337             GA->getIndirectSymbol(), Alias->getType());
338         Alias->setIndirectSymbol(Aliasee);
339       }
340     }
341   }
342   if (!Error)
343     return;
344 
345   for (const GlobalDecl &GD : Aliases) {
346     StringRef MangledName = getMangledName(GD);
347     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
348     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
349     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
350     Alias->eraseFromParent();
351   }
352 }
353 
354 void CodeGenModule::clear() {
355   DeferredDeclsToEmit.clear();
356   if (OpenMPRuntime)
357     OpenMPRuntime->clear();
358 }
359 
360 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
361                                        StringRef MainFile) {
362   if (!hasDiagnostics())
363     return;
364   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
365     if (MainFile.empty())
366       MainFile = "<stdin>";
367     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
368   } else
369     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
370                                                       << Mismatched;
371 }
372 
373 void CodeGenModule::Release() {
374   EmitDeferred();
375   applyGlobalValReplacements();
376   applyReplacements();
377   checkAliases();
378   EmitCXXGlobalInitFunc();
379   EmitCXXGlobalDtorFunc();
380   EmitCXXThreadLocalInitFunc();
381   if (ObjCRuntime)
382     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
383       AddGlobalCtor(ObjCInitFunction);
384   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
385       CUDARuntime) {
386     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
387       AddGlobalCtor(CudaCtorFunction);
388     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
389       AddGlobalDtor(CudaDtorFunction);
390   }
391   if (OpenMPRuntime)
392     if (llvm::Function *OpenMPRegistrationFunction =
393             OpenMPRuntime->emitRegistrationFunction())
394       AddGlobalCtor(OpenMPRegistrationFunction, 0);
395   if (PGOReader) {
396     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
397     if (PGOStats.hasDiagnostics())
398       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
399   }
400   EmitCtorList(GlobalCtors, "llvm.global_ctors");
401   EmitCtorList(GlobalDtors, "llvm.global_dtors");
402   EmitGlobalAnnotations();
403   EmitStaticExternCAliases();
404   EmitDeferredUnusedCoverageMappings();
405   if (CoverageMapping)
406     CoverageMapping->emit();
407   if (CodeGenOpts.SanitizeCfiCrossDso)
408     CodeGenFunction(*this).EmitCfiCheckFail();
409   emitLLVMUsed();
410   if (SanStats)
411     SanStats->finish();
412 
413   if (CodeGenOpts.Autolink &&
414       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
415     EmitModuleLinkOptions();
416   }
417   if (CodeGenOpts.DwarfVersion) {
418     // We actually want the latest version when there are conflicts.
419     // We can change from Warning to Latest if such mode is supported.
420     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
421                               CodeGenOpts.DwarfVersion);
422   }
423   if (CodeGenOpts.EmitCodeView) {
424     // Indicate that we want CodeView in the metadata.
425     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
426   }
427   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
428     // We don't support LTO with 2 with different StrictVTablePointers
429     // FIXME: we could support it by stripping all the information introduced
430     // by StrictVTablePointers.
431 
432     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
433 
434     llvm::Metadata *Ops[2] = {
435               llvm::MDString::get(VMContext, "StrictVTablePointers"),
436               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
437                   llvm::Type::getInt32Ty(VMContext), 1))};
438 
439     getModule().addModuleFlag(llvm::Module::Require,
440                               "StrictVTablePointersRequirement",
441                               llvm::MDNode::get(VMContext, Ops));
442   }
443   if (DebugInfo)
444     // We support a single version in the linked module. The LLVM
445     // parser will drop debug info with a different version number
446     // (and warn about it, too).
447     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
448                               llvm::DEBUG_METADATA_VERSION);
449 
450   // We need to record the widths of enums and wchar_t, so that we can generate
451   // the correct build attributes in the ARM backend.
452   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
453   if (   Arch == llvm::Triple::arm
454       || Arch == llvm::Triple::armeb
455       || Arch == llvm::Triple::thumb
456       || Arch == llvm::Triple::thumbeb) {
457     // Width of wchar_t in bytes
458     uint64_t WCharWidth =
459         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
460     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
461 
462     // The minimum width of an enum in bytes
463     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
464     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
465   }
466 
467   if (CodeGenOpts.SanitizeCfiCrossDso) {
468     // Indicate that we want cross-DSO control flow integrity checks.
469     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
470   }
471 
472   if (LangOpts.CUDAIsDevice && getTarget().getTriple().isNVPTX()) {
473     // Indicate whether __nvvm_reflect should be configured to flush denormal
474     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
475     // property.)
476     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
477                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
478   }
479 
480   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
481     assert(PLevel < 3 && "Invalid PIC Level");
482     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
483   }
484 
485   if (uint32_t PLevel = Context.getLangOpts().PIELevel) {
486     assert(PLevel < 3 && "Invalid PIE Level");
487     getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
488   }
489 
490   SimplifyPersonality();
491 
492   if (getCodeGenOpts().EmitDeclMetadata)
493     EmitDeclMetadata();
494 
495   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
496     EmitCoverageFile();
497 
498   if (DebugInfo)
499     DebugInfo->finalize();
500 
501   EmitVersionIdentMetadata();
502 
503   EmitTargetMetadata();
504 }
505 
506 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
507   // Make sure that this type is translated.
508   Types.UpdateCompletedType(TD);
509 }
510 
511 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
512   // Make sure that this type is translated.
513   Types.RefreshTypeCacheForClass(RD);
514 }
515 
516 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
517   if (!TBAA)
518     return nullptr;
519   return TBAA->getTBAAInfo(QTy);
520 }
521 
522 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
523   if (!TBAA)
524     return nullptr;
525   return TBAA->getTBAAInfoForVTablePtr();
526 }
527 
528 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
529   if (!TBAA)
530     return nullptr;
531   return TBAA->getTBAAStructInfo(QTy);
532 }
533 
534 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
535                                                   llvm::MDNode *AccessN,
536                                                   uint64_t O) {
537   if (!TBAA)
538     return nullptr;
539   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
540 }
541 
542 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
543 /// and struct-path aware TBAA, the tag has the same format:
544 /// base type, access type and offset.
545 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
546 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
547                                                 llvm::MDNode *TBAAInfo,
548                                                 bool ConvertTypeToTag) {
549   if (ConvertTypeToTag && TBAA)
550     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
551                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
552   else
553     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
554 }
555 
556 void CodeGenModule::DecorateInstructionWithInvariantGroup(
557     llvm::Instruction *I, const CXXRecordDecl *RD) {
558   llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
559   auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD);
560   // Check if we have to wrap MDString in MDNode.
561   if (!MetaDataNode)
562     MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD);
563   I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode);
564 }
565 
566 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
567   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
568   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
569 }
570 
571 /// ErrorUnsupported - Print out an error that codegen doesn't support the
572 /// specified stmt yet.
573 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
574   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
575                                                "cannot compile this %0 yet");
576   std::string Msg = Type;
577   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
578     << Msg << S->getSourceRange();
579 }
580 
581 /// ErrorUnsupported - Print out an error that codegen doesn't support the
582 /// specified decl yet.
583 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
584   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
585                                                "cannot compile this %0 yet");
586   std::string Msg = Type;
587   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
588 }
589 
590 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
591   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
592 }
593 
594 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
595                                         const NamedDecl *D) const {
596   // Internal definitions always have default visibility.
597   if (GV->hasLocalLinkage()) {
598     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
599     return;
600   }
601 
602   // Set visibility for definitions.
603   LinkageInfo LV = D->getLinkageAndVisibility();
604   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
605     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
606 }
607 
608 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
609   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
610       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
611       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
612       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
613       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
614 }
615 
616 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
617     CodeGenOptions::TLSModel M) {
618   switch (M) {
619   case CodeGenOptions::GeneralDynamicTLSModel:
620     return llvm::GlobalVariable::GeneralDynamicTLSModel;
621   case CodeGenOptions::LocalDynamicTLSModel:
622     return llvm::GlobalVariable::LocalDynamicTLSModel;
623   case CodeGenOptions::InitialExecTLSModel:
624     return llvm::GlobalVariable::InitialExecTLSModel;
625   case CodeGenOptions::LocalExecTLSModel:
626     return llvm::GlobalVariable::LocalExecTLSModel;
627   }
628   llvm_unreachable("Invalid TLS model!");
629 }
630 
631 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
632   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
633 
634   llvm::GlobalValue::ThreadLocalMode TLM;
635   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
636 
637   // Override the TLS model if it is explicitly specified.
638   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
639     TLM = GetLLVMTLSModel(Attr->getModel());
640   }
641 
642   GV->setThreadLocalMode(TLM);
643 }
644 
645 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
646   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
647 
648   // Some ABIs don't have constructor variants.  Make sure that base and
649   // complete constructors get mangled the same.
650   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
651     if (!getTarget().getCXXABI().hasConstructorVariants()) {
652       CXXCtorType OrigCtorType = GD.getCtorType();
653       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
654       if (OrigCtorType == Ctor_Base)
655         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
656     }
657   }
658 
659   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
660   if (!FoundStr.empty())
661     return FoundStr;
662 
663   const auto *ND = cast<NamedDecl>(GD.getDecl());
664   SmallString<256> Buffer;
665   StringRef Str;
666   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
667     llvm::raw_svector_ostream Out(Buffer);
668     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
669       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
670     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
671       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
672     else
673       getCXXABI().getMangleContext().mangleName(ND, Out);
674     Str = Out.str();
675   } else {
676     IdentifierInfo *II = ND->getIdentifier();
677     assert(II && "Attempt to mangle unnamed decl.");
678     Str = II->getName();
679   }
680 
681   // Keep the first result in the case of a mangling collision.
682   auto Result = Manglings.insert(std::make_pair(Str, GD));
683   return FoundStr = Result.first->first();
684 }
685 
686 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
687                                              const BlockDecl *BD) {
688   MangleContext &MangleCtx = getCXXABI().getMangleContext();
689   const Decl *D = GD.getDecl();
690 
691   SmallString<256> Buffer;
692   llvm::raw_svector_ostream Out(Buffer);
693   if (!D)
694     MangleCtx.mangleGlobalBlock(BD,
695       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
696   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
697     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
698   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
699     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
700   else
701     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
702 
703   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
704   return Result.first->first();
705 }
706 
707 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
708   return getModule().getNamedValue(Name);
709 }
710 
711 /// AddGlobalCtor - Add a function to the list that will be called before
712 /// main() runs.
713 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
714                                   llvm::Constant *AssociatedData) {
715   // FIXME: Type coercion of void()* types.
716   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
717 }
718 
719 /// AddGlobalDtor - Add a function to the list that will be called
720 /// when the module is unloaded.
721 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
722   // FIXME: Type coercion of void()* types.
723   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
724 }
725 
726 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
727   // Ctor function type is void()*.
728   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
729   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
730 
731   // Get the type of a ctor entry, { i32, void ()*, i8* }.
732   llvm::StructType *CtorStructTy = llvm::StructType::get(
733       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
734 
735   // Construct the constructor and destructor arrays.
736   SmallVector<llvm::Constant *, 8> Ctors;
737   for (const auto &I : Fns) {
738     llvm::Constant *S[] = {
739         llvm::ConstantInt::get(Int32Ty, I.Priority, false),
740         llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy),
741         (I.AssociatedData
742              ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)
743              : llvm::Constant::getNullValue(VoidPtrTy))};
744     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
745   }
746 
747   if (!Ctors.empty()) {
748     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
749     new llvm::GlobalVariable(TheModule, AT, false,
750                              llvm::GlobalValue::AppendingLinkage,
751                              llvm::ConstantArray::get(AT, Ctors),
752                              GlobalName);
753   }
754 }
755 
756 llvm::GlobalValue::LinkageTypes
757 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
758   const auto *D = cast<FunctionDecl>(GD.getDecl());
759 
760   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
761 
762   if (isa<CXXDestructorDecl>(D) &&
763       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
764                                          GD.getDtorType())) {
765     // Destructor variants in the Microsoft C++ ABI are always internal or
766     // linkonce_odr thunks emitted on an as-needed basis.
767     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
768                                    : llvm::GlobalValue::LinkOnceODRLinkage;
769   }
770 
771   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
772 }
773 
774 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
775   const auto *FD = cast<FunctionDecl>(GD.getDecl());
776 
777   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
778     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
779       // Don't dllexport/import destructor thunks.
780       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
781       return;
782     }
783   }
784 
785   if (FD->hasAttr<DLLImportAttr>())
786     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
787   else if (FD->hasAttr<DLLExportAttr>())
788     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
789   else
790     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
791 }
792 
793 llvm::ConstantInt *
794 CodeGenModule::CreateCfiIdForTypeMetadata(llvm::Metadata *MD) {
795   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
796   if (!MDS) return nullptr;
797 
798   llvm::MD5 md5;
799   llvm::MD5::MD5Result result;
800   md5.update(MDS->getString());
801   md5.final(result);
802   uint64_t id = 0;
803   for (int i = 0; i < 8; ++i)
804     id |= static_cast<uint64_t>(result[i]) << (i * 8);
805   return llvm::ConstantInt::get(Int64Ty, id);
806 }
807 
808 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
809                                                     llvm::Function *F) {
810   setNonAliasAttributes(D, F);
811 }
812 
813 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
814                                               const CGFunctionInfo &Info,
815                                               llvm::Function *F) {
816   unsigned CallingConv;
817   AttributeListType AttributeList;
818   ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv,
819                          false);
820   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
821   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
822 }
823 
824 /// Determines whether the language options require us to model
825 /// unwind exceptions.  We treat -fexceptions as mandating this
826 /// except under the fragile ObjC ABI with only ObjC exceptions
827 /// enabled.  This means, for example, that C with -fexceptions
828 /// enables this.
829 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
830   // If exceptions are completely disabled, obviously this is false.
831   if (!LangOpts.Exceptions) return false;
832 
833   // If C++ exceptions are enabled, this is true.
834   if (LangOpts.CXXExceptions) return true;
835 
836   // If ObjC exceptions are enabled, this depends on the ABI.
837   if (LangOpts.ObjCExceptions) {
838     return LangOpts.ObjCRuntime.hasUnwindExceptions();
839   }
840 
841   return true;
842 }
843 
844 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
845                                                            llvm::Function *F) {
846   llvm::AttrBuilder B;
847 
848   if (CodeGenOpts.UnwindTables)
849     B.addAttribute(llvm::Attribute::UWTable);
850 
851   if (!hasUnwindExceptions(LangOpts))
852     B.addAttribute(llvm::Attribute::NoUnwind);
853 
854   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
855     B.addAttribute(llvm::Attribute::StackProtect);
856   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
857     B.addAttribute(llvm::Attribute::StackProtectStrong);
858   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
859     B.addAttribute(llvm::Attribute::StackProtectReq);
860 
861   if (!D) {
862     F->addAttributes(llvm::AttributeSet::FunctionIndex,
863                      llvm::AttributeSet::get(
864                          F->getContext(),
865                          llvm::AttributeSet::FunctionIndex, B));
866     return;
867   }
868 
869   if (D->hasAttr<NakedAttr>()) {
870     // Naked implies noinline: we should not be inlining such functions.
871     B.addAttribute(llvm::Attribute::Naked);
872     B.addAttribute(llvm::Attribute::NoInline);
873   } else if (D->hasAttr<NoDuplicateAttr>()) {
874     B.addAttribute(llvm::Attribute::NoDuplicate);
875   } else if (D->hasAttr<NoInlineAttr>()) {
876     B.addAttribute(llvm::Attribute::NoInline);
877   } else if (D->hasAttr<AlwaysInlineAttr>() &&
878              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
879                                               llvm::Attribute::NoInline)) {
880     // (noinline wins over always_inline, and we can't specify both in IR)
881     B.addAttribute(llvm::Attribute::AlwaysInline);
882   }
883 
884   if (D->hasAttr<ColdAttr>()) {
885     if (!D->hasAttr<OptimizeNoneAttr>())
886       B.addAttribute(llvm::Attribute::OptimizeForSize);
887     B.addAttribute(llvm::Attribute::Cold);
888   }
889 
890   if (D->hasAttr<MinSizeAttr>())
891     B.addAttribute(llvm::Attribute::MinSize);
892 
893   F->addAttributes(llvm::AttributeSet::FunctionIndex,
894                    llvm::AttributeSet::get(
895                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
896 
897   if (D->hasAttr<OptimizeNoneAttr>()) {
898     // OptimizeNone implies noinline; we should not be inlining such functions.
899     F->addFnAttr(llvm::Attribute::OptimizeNone);
900     F->addFnAttr(llvm::Attribute::NoInline);
901 
902     // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
903     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
904     F->removeFnAttr(llvm::Attribute::MinSize);
905     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
906            "OptimizeNone and AlwaysInline on same function!");
907 
908     // Attribute 'inlinehint' has no effect on 'optnone' functions.
909     // Explicitly remove it from the set of function attributes.
910     F->removeFnAttr(llvm::Attribute::InlineHint);
911   }
912 
913   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
914   if (alignment)
915     F->setAlignment(alignment);
916 
917   // Some C++ ABIs require 2-byte alignment for member functions, in order to
918   // reserve a bit for differentiating between virtual and non-virtual member
919   // functions. If the current target's C++ ABI requires this and this is a
920   // member function, set its alignment accordingly.
921   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
922     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
923       F->setAlignment(2);
924   }
925 }
926 
927 void CodeGenModule::SetCommonAttributes(const Decl *D,
928                                         llvm::GlobalValue *GV) {
929   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
930     setGlobalVisibility(GV, ND);
931   else
932     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
933 
934   if (D && D->hasAttr<UsedAttr>())
935     addUsedGlobal(GV);
936 }
937 
938 void CodeGenModule::setAliasAttributes(const Decl *D,
939                                        llvm::GlobalValue *GV) {
940   SetCommonAttributes(D, GV);
941 
942   // Process the dllexport attribute based on whether the original definition
943   // (not necessarily the aliasee) was exported.
944   if (D->hasAttr<DLLExportAttr>())
945     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
946 }
947 
948 void CodeGenModule::setNonAliasAttributes(const Decl *D,
949                                           llvm::GlobalObject *GO) {
950   SetCommonAttributes(D, GO);
951 
952   if (D)
953     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
954       GO->setSection(SA->getName());
955 
956   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
957 }
958 
959 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
960                                                   llvm::Function *F,
961                                                   const CGFunctionInfo &FI) {
962   SetLLVMFunctionAttributes(D, FI, F);
963   SetLLVMFunctionAttributesForDefinition(D, F);
964 
965   F->setLinkage(llvm::Function::InternalLinkage);
966 
967   setNonAliasAttributes(D, F);
968 }
969 
970 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
971                                          const NamedDecl *ND) {
972   // Set linkage and visibility in case we never see a definition.
973   LinkageInfo LV = ND->getLinkageAndVisibility();
974   if (LV.getLinkage() != ExternalLinkage) {
975     // Don't set internal linkage on declarations.
976   } else {
977     if (ND->hasAttr<DLLImportAttr>()) {
978       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
979       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
980     } else if (ND->hasAttr<DLLExportAttr>()) {
981       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
982       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
983     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
984       // "extern_weak" is overloaded in LLVM; we probably should have
985       // separate linkage types for this.
986       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
987     }
988 
989     // Set visibility on a declaration only if it's explicit.
990     if (LV.isVisibilityExplicit())
991       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
992   }
993 }
994 
995 void CodeGenModule::CreateFunctionBitSetEntry(const FunctionDecl *FD,
996                                               llvm::Function *F) {
997   // Only if we are checking indirect calls.
998   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
999     return;
1000 
1001   // Non-static class methods are handled via vtable pointer checks elsewhere.
1002   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1003     return;
1004 
1005   // Additionally, if building with cross-DSO support...
1006   if (CodeGenOpts.SanitizeCfiCrossDso) {
1007     // Don't emit entries for function declarations. In cross-DSO mode these are
1008     // handled with better precision at run time.
1009     if (!FD->hasBody())
1010       return;
1011     // Skip available_externally functions. They won't be codegen'ed in the
1012     // current module anyway.
1013     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1014       return;
1015   }
1016 
1017   llvm::NamedMDNode *BitsetsMD =
1018       getModule().getOrInsertNamedMetadata("llvm.bitsets");
1019 
1020   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1021   llvm::Metadata *BitsetOps[] = {
1022       MD, llvm::ConstantAsMetadata::get(F),
1023       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))};
1024   BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
1025 
1026   // Emit a hash-based bit set entry for cross-DSO calls.
1027   if (CodeGenOpts.SanitizeCfiCrossDso) {
1028     if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) {
1029       llvm::Metadata *BitsetOps2[] = {
1030           llvm::ConstantAsMetadata::get(TypeId),
1031           llvm::ConstantAsMetadata::get(F),
1032           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))};
1033       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2));
1034     }
1035   }
1036 }
1037 
1038 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1039                                           bool IsIncompleteFunction,
1040                                           bool IsThunk) {
1041   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1042     // If this is an intrinsic function, set the function's attributes
1043     // to the intrinsic's attributes.
1044     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1045     return;
1046   }
1047 
1048   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1049 
1050   if (!IsIncompleteFunction)
1051     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1052 
1053   // Add the Returned attribute for "this", except for iOS 5 and earlier
1054   // where substantial code, including the libstdc++ dylib, was compiled with
1055   // GCC and does not actually return "this".
1056   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1057       !(getTarget().getTriple().isiOS() &&
1058         getTarget().getTriple().isOSVersionLT(6))) {
1059     assert(!F->arg_empty() &&
1060            F->arg_begin()->getType()
1061              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1062            "unexpected this return");
1063     F->addAttribute(1, llvm::Attribute::Returned);
1064   }
1065 
1066   // Only a few attributes are set on declarations; these may later be
1067   // overridden by a definition.
1068 
1069   setLinkageAndVisibilityForGV(F, FD);
1070 
1071   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1072     F->setSection(SA->getName());
1073 
1074   if (FD->isReplaceableGlobalAllocationFunction()) {
1075     // A replaceable global allocation function does not act like a builtin by
1076     // default, only if it is invoked by a new-expression or delete-expression.
1077     F->addAttribute(llvm::AttributeSet::FunctionIndex,
1078                     llvm::Attribute::NoBuiltin);
1079 
1080     // A sane operator new returns a non-aliasing pointer.
1081     // FIXME: Also add NonNull attribute to the return value
1082     // for the non-nothrow forms?
1083     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1084     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1085         (Kind == OO_New || Kind == OO_Array_New))
1086       F->addAttribute(llvm::AttributeSet::ReturnIndex,
1087                       llvm::Attribute::NoAlias);
1088   }
1089 
1090   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1091     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1092   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1093     if (MD->isVirtual())
1094       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1095 
1096   CreateFunctionBitSetEntry(FD, F);
1097 }
1098 
1099 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1100   assert(!GV->isDeclaration() &&
1101          "Only globals with definition can force usage.");
1102   LLVMUsed.emplace_back(GV);
1103 }
1104 
1105 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1106   assert(!GV->isDeclaration() &&
1107          "Only globals with definition can force usage.");
1108   LLVMCompilerUsed.emplace_back(GV);
1109 }
1110 
1111 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1112                      std::vector<llvm::WeakVH> &List) {
1113   // Don't create llvm.used if there is no need.
1114   if (List.empty())
1115     return;
1116 
1117   // Convert List to what ConstantArray needs.
1118   SmallVector<llvm::Constant*, 8> UsedArray;
1119   UsedArray.resize(List.size());
1120   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1121     UsedArray[i] =
1122         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1123             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1124   }
1125 
1126   if (UsedArray.empty())
1127     return;
1128   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1129 
1130   auto *GV = new llvm::GlobalVariable(
1131       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1132       llvm::ConstantArray::get(ATy, UsedArray), Name);
1133 
1134   GV->setSection("llvm.metadata");
1135 }
1136 
1137 void CodeGenModule::emitLLVMUsed() {
1138   emitUsed(*this, "llvm.used", LLVMUsed);
1139   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1140 }
1141 
1142 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1143   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1144   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1145 }
1146 
1147 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1148   llvm::SmallString<32> Opt;
1149   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1150   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1151   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1152 }
1153 
1154 void CodeGenModule::AddDependentLib(StringRef Lib) {
1155   llvm::SmallString<24> Opt;
1156   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1157   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1158   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1159 }
1160 
1161 /// \brief Add link options implied by the given module, including modules
1162 /// it depends on, using a postorder walk.
1163 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1164                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1165                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1166   // Import this module's parent.
1167   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1168     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1169   }
1170 
1171   // Import this module's dependencies.
1172   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1173     if (Visited.insert(Mod->Imports[I - 1]).second)
1174       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1175   }
1176 
1177   // Add linker options to link against the libraries/frameworks
1178   // described by this module.
1179   llvm::LLVMContext &Context = CGM.getLLVMContext();
1180   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1181     // Link against a framework.  Frameworks are currently Darwin only, so we
1182     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1183     if (Mod->LinkLibraries[I-1].IsFramework) {
1184       llvm::Metadata *Args[2] = {
1185           llvm::MDString::get(Context, "-framework"),
1186           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1187 
1188       Metadata.push_back(llvm::MDNode::get(Context, Args));
1189       continue;
1190     }
1191 
1192     // Link against a library.
1193     llvm::SmallString<24> Opt;
1194     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1195       Mod->LinkLibraries[I-1].Library, Opt);
1196     auto *OptString = llvm::MDString::get(Context, Opt);
1197     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1198   }
1199 }
1200 
1201 void CodeGenModule::EmitModuleLinkOptions() {
1202   // Collect the set of all of the modules we want to visit to emit link
1203   // options, which is essentially the imported modules and all of their
1204   // non-explicit child modules.
1205   llvm::SetVector<clang::Module *> LinkModules;
1206   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1207   SmallVector<clang::Module *, 16> Stack;
1208 
1209   // Seed the stack with imported modules.
1210   for (Module *M : ImportedModules)
1211     if (Visited.insert(M).second)
1212       Stack.push_back(M);
1213 
1214   // Find all of the modules to import, making a little effort to prune
1215   // non-leaf modules.
1216   while (!Stack.empty()) {
1217     clang::Module *Mod = Stack.pop_back_val();
1218 
1219     bool AnyChildren = false;
1220 
1221     // Visit the submodules of this module.
1222     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1223                                         SubEnd = Mod->submodule_end();
1224          Sub != SubEnd; ++Sub) {
1225       // Skip explicit children; they need to be explicitly imported to be
1226       // linked against.
1227       if ((*Sub)->IsExplicit)
1228         continue;
1229 
1230       if (Visited.insert(*Sub).second) {
1231         Stack.push_back(*Sub);
1232         AnyChildren = true;
1233       }
1234     }
1235 
1236     // We didn't find any children, so add this module to the list of
1237     // modules to link against.
1238     if (!AnyChildren) {
1239       LinkModules.insert(Mod);
1240     }
1241   }
1242 
1243   // Add link options for all of the imported modules in reverse topological
1244   // order.  We don't do anything to try to order import link flags with respect
1245   // to linker options inserted by things like #pragma comment().
1246   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1247   Visited.clear();
1248   for (Module *M : LinkModules)
1249     if (Visited.insert(M).second)
1250       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1251   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1252   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1253 
1254   // Add the linker options metadata flag.
1255   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1256                             llvm::MDNode::get(getLLVMContext(),
1257                                               LinkerOptionsMetadata));
1258 }
1259 
1260 void CodeGenModule::EmitDeferred() {
1261   // Emit code for any potentially referenced deferred decls.  Since a
1262   // previously unused static decl may become used during the generation of code
1263   // for a static function, iterate until no changes are made.
1264 
1265   if (!DeferredVTables.empty()) {
1266     EmitDeferredVTables();
1267 
1268     // Emitting a vtable doesn't directly cause more vtables to
1269     // become deferred, although it can cause functions to be
1270     // emitted that then need those vtables.
1271     assert(DeferredVTables.empty());
1272   }
1273 
1274   // Stop if we're out of both deferred vtables and deferred declarations.
1275   if (DeferredDeclsToEmit.empty())
1276     return;
1277 
1278   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1279   // work, it will not interfere with this.
1280   std::vector<DeferredGlobal> CurDeclsToEmit;
1281   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1282 
1283   for (DeferredGlobal &G : CurDeclsToEmit) {
1284     GlobalDecl D = G.GD;
1285     G.GV = nullptr;
1286 
1287     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1288     // to get GlobalValue with exactly the type we need, not something that
1289     // might had been created for another decl with the same mangled name but
1290     // different type.
1291     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1292         GetAddrOfGlobal(D, /*IsForDefinition=*/true));
1293 
1294     // In case of different address spaces, we may still get a cast, even with
1295     // IsForDefinition equal to true. Query mangled names table to get
1296     // GlobalValue.
1297     if (!GV)
1298       GV = GetGlobalValue(getMangledName(D));
1299 
1300     // Make sure GetGlobalValue returned non-null.
1301     assert(GV);
1302 
1303     // Check to see if we've already emitted this.  This is necessary
1304     // for a couple of reasons: first, decls can end up in the
1305     // deferred-decls queue multiple times, and second, decls can end
1306     // up with definitions in unusual ways (e.g. by an extern inline
1307     // function acquiring a strong function redefinition).  Just
1308     // ignore these cases.
1309     if (!GV->isDeclaration())
1310       continue;
1311 
1312     // Otherwise, emit the definition and move on to the next one.
1313     EmitGlobalDefinition(D, GV);
1314 
1315     // If we found out that we need to emit more decls, do that recursively.
1316     // This has the advantage that the decls are emitted in a DFS and related
1317     // ones are close together, which is convenient for testing.
1318     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1319       EmitDeferred();
1320       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1321     }
1322   }
1323 }
1324 
1325 void CodeGenModule::EmitGlobalAnnotations() {
1326   if (Annotations.empty())
1327     return;
1328 
1329   // Create a new global variable for the ConstantStruct in the Module.
1330   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1331     Annotations[0]->getType(), Annotations.size()), Annotations);
1332   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1333                                       llvm::GlobalValue::AppendingLinkage,
1334                                       Array, "llvm.global.annotations");
1335   gv->setSection(AnnotationSection);
1336 }
1337 
1338 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1339   llvm::Constant *&AStr = AnnotationStrings[Str];
1340   if (AStr)
1341     return AStr;
1342 
1343   // Not found yet, create a new global.
1344   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1345   auto *gv =
1346       new llvm::GlobalVariable(getModule(), s->getType(), true,
1347                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1348   gv->setSection(AnnotationSection);
1349   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1350   AStr = gv;
1351   return gv;
1352 }
1353 
1354 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1355   SourceManager &SM = getContext().getSourceManager();
1356   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1357   if (PLoc.isValid())
1358     return EmitAnnotationString(PLoc.getFilename());
1359   return EmitAnnotationString(SM.getBufferName(Loc));
1360 }
1361 
1362 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1363   SourceManager &SM = getContext().getSourceManager();
1364   PresumedLoc PLoc = SM.getPresumedLoc(L);
1365   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1366     SM.getExpansionLineNumber(L);
1367   return llvm::ConstantInt::get(Int32Ty, LineNo);
1368 }
1369 
1370 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1371                                                 const AnnotateAttr *AA,
1372                                                 SourceLocation L) {
1373   // Get the globals for file name, annotation, and the line number.
1374   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1375                  *UnitGV = EmitAnnotationUnit(L),
1376                  *LineNoCst = EmitAnnotationLineNo(L);
1377 
1378   // Create the ConstantStruct for the global annotation.
1379   llvm::Constant *Fields[4] = {
1380     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1381     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1382     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1383     LineNoCst
1384   };
1385   return llvm::ConstantStruct::getAnon(Fields);
1386 }
1387 
1388 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1389                                          llvm::GlobalValue *GV) {
1390   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1391   // Get the struct elements for these annotations.
1392   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1393     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1394 }
1395 
1396 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1397                                            SourceLocation Loc) const {
1398   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1399   // Blacklist by function name.
1400   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1401     return true;
1402   // Blacklist by location.
1403   if (Loc.isValid())
1404     return SanitizerBL.isBlacklistedLocation(Loc);
1405   // If location is unknown, this may be a compiler-generated function. Assume
1406   // it's located in the main file.
1407   auto &SM = Context.getSourceManager();
1408   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1409     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1410   }
1411   return false;
1412 }
1413 
1414 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1415                                            SourceLocation Loc, QualType Ty,
1416                                            StringRef Category) const {
1417   // For now globals can be blacklisted only in ASan and KASan.
1418   if (!LangOpts.Sanitize.hasOneOf(
1419           SanitizerKind::Address | SanitizerKind::KernelAddress))
1420     return false;
1421   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1422   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1423     return true;
1424   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1425     return true;
1426   // Check global type.
1427   if (!Ty.isNull()) {
1428     // Drill down the array types: if global variable of a fixed type is
1429     // blacklisted, we also don't instrument arrays of them.
1430     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1431       Ty = AT->getElementType();
1432     Ty = Ty.getCanonicalType().getUnqualifiedType();
1433     // We allow to blacklist only record types (classes, structs etc.)
1434     if (Ty->isRecordType()) {
1435       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1436       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1437         return true;
1438     }
1439   }
1440   return false;
1441 }
1442 
1443 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1444   // Never defer when EmitAllDecls is specified.
1445   if (LangOpts.EmitAllDecls)
1446     return true;
1447 
1448   return getContext().DeclMustBeEmitted(Global);
1449 }
1450 
1451 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1452   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1453     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1454       // Implicit template instantiations may change linkage if they are later
1455       // explicitly instantiated, so they should not be emitted eagerly.
1456       return false;
1457   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1458   // codegen for global variables, because they may be marked as threadprivate.
1459   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1460       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1461     return false;
1462 
1463   return true;
1464 }
1465 
1466 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1467     const CXXUuidofExpr* E) {
1468   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1469   // well-formed.
1470   StringRef Uuid = E->getUuidStr();
1471   std::string Name = "_GUID_" + Uuid.lower();
1472   std::replace(Name.begin(), Name.end(), '-', '_');
1473 
1474   // The UUID descriptor should be pointer aligned.
1475   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1476 
1477   // Look for an existing global.
1478   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1479     return ConstantAddress(GV, Alignment);
1480 
1481   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1482   assert(Init && "failed to initialize as constant");
1483 
1484   auto *GV = new llvm::GlobalVariable(
1485       getModule(), Init->getType(),
1486       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1487   if (supportsCOMDAT())
1488     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1489   return ConstantAddress(GV, Alignment);
1490 }
1491 
1492 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1493   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1494   assert(AA && "No alias?");
1495 
1496   CharUnits Alignment = getContext().getDeclAlign(VD);
1497   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1498 
1499   // See if there is already something with the target's name in the module.
1500   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1501   if (Entry) {
1502     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1503     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1504     return ConstantAddress(Ptr, Alignment);
1505   }
1506 
1507   llvm::Constant *Aliasee;
1508   if (isa<llvm::FunctionType>(DeclTy))
1509     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1510                                       GlobalDecl(cast<FunctionDecl>(VD)),
1511                                       /*ForVTable=*/false);
1512   else
1513     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1514                                     llvm::PointerType::getUnqual(DeclTy),
1515                                     nullptr);
1516 
1517   auto *F = cast<llvm::GlobalValue>(Aliasee);
1518   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1519   WeakRefReferences.insert(F);
1520 
1521   return ConstantAddress(Aliasee, Alignment);
1522 }
1523 
1524 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1525   const auto *Global = cast<ValueDecl>(GD.getDecl());
1526 
1527   // Weak references don't produce any output by themselves.
1528   if (Global->hasAttr<WeakRefAttr>())
1529     return;
1530 
1531   // If this is an alias definition (which otherwise looks like a declaration)
1532   // emit it now.
1533   if (Global->hasAttr<AliasAttr>())
1534     return EmitAliasDefinition(GD);
1535 
1536   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1537   if (Global->hasAttr<IFuncAttr>())
1538     return emitIFuncDefinition(GD);
1539 
1540   // If this is CUDA, be selective about which declarations we emit.
1541   if (LangOpts.CUDA) {
1542     if (LangOpts.CUDAIsDevice) {
1543       if (!Global->hasAttr<CUDADeviceAttr>() &&
1544           !Global->hasAttr<CUDAGlobalAttr>() &&
1545           !Global->hasAttr<CUDAConstantAttr>() &&
1546           !Global->hasAttr<CUDASharedAttr>())
1547         return;
1548     } else {
1549       // We need to emit host-side 'shadows' for all global
1550       // device-side variables because the CUDA runtime needs their
1551       // size and host-side address in order to provide access to
1552       // their device-side incarnations.
1553 
1554       // So device-only functions are the only things we skip.
1555       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1556           Global->hasAttr<CUDADeviceAttr>())
1557         return;
1558 
1559       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1560              "Expected Variable or Function");
1561     }
1562   }
1563 
1564   if (LangOpts.OpenMP) {
1565     // If this is OpenMP device, check if it is legal to emit this global
1566     // normally.
1567     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1568       return;
1569     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1570       if (MustBeEmitted(Global))
1571         EmitOMPDeclareReduction(DRD);
1572       return;
1573     }
1574   }
1575 
1576   // Ignore declarations, they will be emitted on their first use.
1577   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1578     // Forward declarations are emitted lazily on first use.
1579     if (!FD->doesThisDeclarationHaveABody()) {
1580       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1581         return;
1582 
1583       StringRef MangledName = getMangledName(GD);
1584 
1585       // Compute the function info and LLVM type.
1586       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1587       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1588 
1589       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1590                               /*DontDefer=*/false);
1591       return;
1592     }
1593   } else {
1594     const auto *VD = cast<VarDecl>(Global);
1595     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1596     // We need to emit device-side global CUDA variables even if a
1597     // variable does not have a definition -- we still need to define
1598     // host-side shadow for it.
1599     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1600                            !VD->hasDefinition() &&
1601                            (VD->hasAttr<CUDAConstantAttr>() ||
1602                             VD->hasAttr<CUDADeviceAttr>());
1603     if (!MustEmitForCuda &&
1604         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1605         !Context.isMSStaticDataMemberInlineDefinition(VD))
1606       return;
1607   }
1608 
1609   // Defer code generation to first use when possible, e.g. if this is an inline
1610   // function. If the global must always be emitted, do it eagerly if possible
1611   // to benefit from cache locality.
1612   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1613     // Emit the definition if it can't be deferred.
1614     EmitGlobalDefinition(GD);
1615     return;
1616   }
1617 
1618   // If we're deferring emission of a C++ variable with an
1619   // initializer, remember the order in which it appeared in the file.
1620   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1621       cast<VarDecl>(Global)->hasInit()) {
1622     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1623     CXXGlobalInits.push_back(nullptr);
1624   }
1625 
1626   StringRef MangledName = getMangledName(GD);
1627   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1628     // The value has already been used and should therefore be emitted.
1629     addDeferredDeclToEmit(GV, GD);
1630   } else if (MustBeEmitted(Global)) {
1631     // The value must be emitted, but cannot be emitted eagerly.
1632     assert(!MayBeEmittedEagerly(Global));
1633     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1634   } else {
1635     // Otherwise, remember that we saw a deferred decl with this name.  The
1636     // first use of the mangled name will cause it to move into
1637     // DeferredDeclsToEmit.
1638     DeferredDecls[MangledName] = GD;
1639   }
1640 }
1641 
1642 namespace {
1643   struct FunctionIsDirectlyRecursive :
1644     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1645     const StringRef Name;
1646     const Builtin::Context &BI;
1647     bool Result;
1648     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1649       Name(N), BI(C), Result(false) {
1650     }
1651     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1652 
1653     bool TraverseCallExpr(CallExpr *E) {
1654       const FunctionDecl *FD = E->getDirectCallee();
1655       if (!FD)
1656         return true;
1657       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1658       if (Attr && Name == Attr->getLabel()) {
1659         Result = true;
1660         return false;
1661       }
1662       unsigned BuiltinID = FD->getBuiltinID();
1663       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1664         return true;
1665       StringRef BuiltinName = BI.getName(BuiltinID);
1666       if (BuiltinName.startswith("__builtin_") &&
1667           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1668         Result = true;
1669         return false;
1670       }
1671       return true;
1672     }
1673   };
1674 
1675   struct DLLImportFunctionVisitor
1676       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1677     bool SafeToInline = true;
1678 
1679     bool VisitVarDecl(VarDecl *VD) {
1680       // A thread-local variable cannot be imported.
1681       SafeToInline = !VD->getTLSKind();
1682       return SafeToInline;
1683     }
1684 
1685     // Make sure we're not referencing non-imported vars or functions.
1686     bool VisitDeclRefExpr(DeclRefExpr *E) {
1687       ValueDecl *VD = E->getDecl();
1688       if (isa<FunctionDecl>(VD))
1689         SafeToInline = VD->hasAttr<DLLImportAttr>();
1690       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1691         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1692       return SafeToInline;
1693     }
1694     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1695       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1696       return SafeToInline;
1697     }
1698     bool VisitCXXNewExpr(CXXNewExpr *E) {
1699       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1700       return SafeToInline;
1701     }
1702   };
1703 }
1704 
1705 // isTriviallyRecursive - Check if this function calls another
1706 // decl that, because of the asm attribute or the other decl being a builtin,
1707 // ends up pointing to itself.
1708 bool
1709 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1710   StringRef Name;
1711   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1712     // asm labels are a special kind of mangling we have to support.
1713     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1714     if (!Attr)
1715       return false;
1716     Name = Attr->getLabel();
1717   } else {
1718     Name = FD->getName();
1719   }
1720 
1721   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1722   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1723   return Walker.Result;
1724 }
1725 
1726 bool
1727 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1728   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1729     return true;
1730   const auto *F = cast<FunctionDecl>(GD.getDecl());
1731   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1732     return false;
1733 
1734   if (F->hasAttr<DLLImportAttr>()) {
1735     // Check whether it would be safe to inline this dllimport function.
1736     DLLImportFunctionVisitor Visitor;
1737     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1738     if (!Visitor.SafeToInline)
1739       return false;
1740   }
1741 
1742   // PR9614. Avoid cases where the source code is lying to us. An available
1743   // externally function should have an equivalent function somewhere else,
1744   // but a function that calls itself is clearly not equivalent to the real
1745   // implementation.
1746   // This happens in glibc's btowc and in some configure checks.
1747   return !isTriviallyRecursive(F);
1748 }
1749 
1750 /// If the type for the method's class was generated by
1751 /// CGDebugInfo::createContextChain(), the cache contains only a
1752 /// limited DIType without any declarations. Since EmitFunctionStart()
1753 /// needs to find the canonical declaration for each method, we need
1754 /// to construct the complete type prior to emitting the method.
1755 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1756   if (!D->isInstance())
1757     return;
1758 
1759   if (CGDebugInfo *DI = getModuleDebugInfo())
1760     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
1761       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1762       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1763     }
1764 }
1765 
1766 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1767   const auto *D = cast<ValueDecl>(GD.getDecl());
1768 
1769   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1770                                  Context.getSourceManager(),
1771                                  "Generating code for declaration");
1772 
1773   if (isa<FunctionDecl>(D)) {
1774     // At -O0, don't generate IR for functions with available_externally
1775     // linkage.
1776     if (!shouldEmitFunction(GD))
1777       return;
1778 
1779     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1780       CompleteDIClassType(Method);
1781       // Make sure to emit the definition(s) before we emit the thunks.
1782       // This is necessary for the generation of certain thunks.
1783       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1784         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1785       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1786         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1787       else
1788         EmitGlobalFunctionDefinition(GD, GV);
1789 
1790       if (Method->isVirtual())
1791         getVTables().EmitThunks(GD);
1792 
1793       return;
1794     }
1795 
1796     return EmitGlobalFunctionDefinition(GD, GV);
1797   }
1798 
1799   if (const auto *VD = dyn_cast<VarDecl>(D))
1800     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
1801 
1802   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1803 }
1804 
1805 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1806                                                       llvm::Function *NewFn);
1807 
1808 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1809 /// module, create and return an llvm Function with the specified type. If there
1810 /// is something in the module with the specified name, return it potentially
1811 /// bitcasted to the right type.
1812 ///
1813 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1814 /// to set the attributes on the function when it is first created.
1815 llvm::Constant *
1816 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1817                                        llvm::Type *Ty,
1818                                        GlobalDecl GD, bool ForVTable,
1819                                        bool DontDefer, bool IsThunk,
1820                                        llvm::AttributeSet ExtraAttrs,
1821                                        bool IsForDefinition) {
1822   const Decl *D = GD.getDecl();
1823 
1824   // Lookup the entry, lazily creating it if necessary.
1825   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1826   if (Entry) {
1827     if (WeakRefReferences.erase(Entry)) {
1828       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1829       if (FD && !FD->hasAttr<WeakAttr>())
1830         Entry->setLinkage(llvm::Function::ExternalLinkage);
1831     }
1832 
1833     // Handle dropped DLL attributes.
1834     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1835       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1836 
1837     // If there are two attempts to define the same mangled name, issue an
1838     // error.
1839     if (IsForDefinition && !Entry->isDeclaration()) {
1840       GlobalDecl OtherGD;
1841       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
1842       // to make sure that we issue an error only once.
1843       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1844           (GD.getCanonicalDecl().getDecl() !=
1845            OtherGD.getCanonicalDecl().getDecl()) &&
1846           DiagnosedConflictingDefinitions.insert(GD).second) {
1847         getDiags().Report(D->getLocation(),
1848                           diag::err_duplicate_mangled_name);
1849         getDiags().Report(OtherGD.getDecl()->getLocation(),
1850                           diag::note_previous_definition);
1851       }
1852     }
1853 
1854     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1855         (Entry->getType()->getElementType() == Ty)) {
1856       return Entry;
1857     }
1858 
1859     // Make sure the result is of the correct type.
1860     // (If function is requested for a definition, we always need to create a new
1861     // function, not just return a bitcast.)
1862     if (!IsForDefinition)
1863       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1864   }
1865 
1866   // This function doesn't have a complete type (for example, the return
1867   // type is an incomplete struct). Use a fake type instead, and make
1868   // sure not to try to set attributes.
1869   bool IsIncompleteFunction = false;
1870 
1871   llvm::FunctionType *FTy;
1872   if (isa<llvm::FunctionType>(Ty)) {
1873     FTy = cast<llvm::FunctionType>(Ty);
1874   } else {
1875     FTy = llvm::FunctionType::get(VoidTy, false);
1876     IsIncompleteFunction = true;
1877   }
1878 
1879   llvm::Function *F =
1880       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
1881                              Entry ? StringRef() : MangledName, &getModule());
1882 
1883   // If we already created a function with the same mangled name (but different
1884   // type) before, take its name and add it to the list of functions to be
1885   // replaced with F at the end of CodeGen.
1886   //
1887   // This happens if there is a prototype for a function (e.g. "int f()") and
1888   // then a definition of a different type (e.g. "int f(int x)").
1889   if (Entry) {
1890     F->takeName(Entry);
1891 
1892     // This might be an implementation of a function without a prototype, in
1893     // which case, try to do special replacement of calls which match the new
1894     // prototype.  The really key thing here is that we also potentially drop
1895     // arguments from the call site so as to make a direct call, which makes the
1896     // inliner happier and suppresses a number of optimizer warnings (!) about
1897     // dropping arguments.
1898     if (!Entry->use_empty()) {
1899       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
1900       Entry->removeDeadConstantUsers();
1901     }
1902 
1903     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
1904         F, Entry->getType()->getElementType()->getPointerTo());
1905     addGlobalValReplacement(Entry, BC);
1906   }
1907 
1908   assert(F->getName() == MangledName && "name was uniqued!");
1909   if (D)
1910     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1911   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1912     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1913     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1914                      llvm::AttributeSet::get(VMContext,
1915                                              llvm::AttributeSet::FunctionIndex,
1916                                              B));
1917   }
1918 
1919   if (!DontDefer) {
1920     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1921     // each other bottoming out with the base dtor.  Therefore we emit non-base
1922     // dtors on usage, even if there is no dtor definition in the TU.
1923     if (D && isa<CXXDestructorDecl>(D) &&
1924         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1925                                            GD.getDtorType()))
1926       addDeferredDeclToEmit(F, GD);
1927 
1928     // This is the first use or definition of a mangled name.  If there is a
1929     // deferred decl with this name, remember that we need to emit it at the end
1930     // of the file.
1931     auto DDI = DeferredDecls.find(MangledName);
1932     if (DDI != DeferredDecls.end()) {
1933       // Move the potentially referenced deferred decl to the
1934       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1935       // don't need it anymore).
1936       addDeferredDeclToEmit(F, DDI->second);
1937       DeferredDecls.erase(DDI);
1938 
1939       // Otherwise, there are cases we have to worry about where we're
1940       // using a declaration for which we must emit a definition but where
1941       // we might not find a top-level definition:
1942       //   - member functions defined inline in their classes
1943       //   - friend functions defined inline in some class
1944       //   - special member functions with implicit definitions
1945       // If we ever change our AST traversal to walk into class methods,
1946       // this will be unnecessary.
1947       //
1948       // We also don't emit a definition for a function if it's going to be an
1949       // entry in a vtable, unless it's already marked as used.
1950     } else if (getLangOpts().CPlusPlus && D) {
1951       // Look for a declaration that's lexically in a record.
1952       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1953            FD = FD->getPreviousDecl()) {
1954         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1955           if (FD->doesThisDeclarationHaveABody()) {
1956             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1957             break;
1958           }
1959         }
1960       }
1961     }
1962   }
1963 
1964   // Make sure the result is of the requested type.
1965   if (!IsIncompleteFunction) {
1966     assert(F->getType()->getElementType() == Ty);
1967     return F;
1968   }
1969 
1970   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1971   return llvm::ConstantExpr::getBitCast(F, PTy);
1972 }
1973 
1974 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1975 /// non-null, then this function will use the specified type if it has to
1976 /// create it (this occurs when we see a definition of the function).
1977 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1978                                                  llvm::Type *Ty,
1979                                                  bool ForVTable,
1980                                                  bool DontDefer,
1981                                                  bool IsForDefinition) {
1982   // If there was no specific requested type, just convert it now.
1983   if (!Ty) {
1984     const auto *FD = cast<FunctionDecl>(GD.getDecl());
1985     auto CanonTy = Context.getCanonicalType(FD->getType());
1986     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
1987   }
1988 
1989   StringRef MangledName = getMangledName(GD);
1990   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
1991                                  /*IsThunk=*/false, llvm::AttributeSet(),
1992                                  IsForDefinition);
1993 }
1994 
1995 /// CreateRuntimeFunction - Create a new runtime function with the specified
1996 /// type and name.
1997 llvm::Constant *
1998 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1999                                      StringRef Name,
2000                                      llvm::AttributeSet ExtraAttrs) {
2001   llvm::Constant *C =
2002       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2003                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2004   if (auto *F = dyn_cast<llvm::Function>(C))
2005     if (F->empty())
2006       F->setCallingConv(getRuntimeCC());
2007   return C;
2008 }
2009 
2010 /// CreateBuiltinFunction - Create a new builtin function with the specified
2011 /// type and name.
2012 llvm::Constant *
2013 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
2014                                      StringRef Name,
2015                                      llvm::AttributeSet ExtraAttrs) {
2016   llvm::Constant *C =
2017       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2018                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2019   if (auto *F = dyn_cast<llvm::Function>(C))
2020     if (F->empty())
2021       F->setCallingConv(getBuiltinCC());
2022   return C;
2023 }
2024 
2025 /// isTypeConstant - Determine whether an object of this type can be emitted
2026 /// as a constant.
2027 ///
2028 /// If ExcludeCtor is true, the duration when the object's constructor runs
2029 /// will not be considered. The caller will need to verify that the object is
2030 /// not written to during its construction.
2031 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2032   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2033     return false;
2034 
2035   if (Context.getLangOpts().CPlusPlus) {
2036     if (const CXXRecordDecl *Record
2037           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2038       return ExcludeCtor && !Record->hasMutableFields() &&
2039              Record->hasTrivialDestructor();
2040   }
2041 
2042   return true;
2043 }
2044 
2045 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2046 /// create and return an llvm GlobalVariable with the specified type.  If there
2047 /// is something in the module with the specified name, return it potentially
2048 /// bitcasted to the right type.
2049 ///
2050 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2051 /// to set the attributes on the global when it is first created.
2052 ///
2053 /// If IsForDefinition is true, it is guranteed that an actual global with
2054 /// type Ty will be returned, not conversion of a variable with the same
2055 /// mangled name but some other type.
2056 llvm::Constant *
2057 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2058                                      llvm::PointerType *Ty,
2059                                      const VarDecl *D,
2060                                      bool IsForDefinition) {
2061   // Lookup the entry, lazily creating it if necessary.
2062   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2063   if (Entry) {
2064     if (WeakRefReferences.erase(Entry)) {
2065       if (D && !D->hasAttr<WeakAttr>())
2066         Entry->setLinkage(llvm::Function::ExternalLinkage);
2067     }
2068 
2069     // Handle dropped DLL attributes.
2070     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2071       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2072 
2073     if (Entry->getType() == Ty)
2074       return Entry;
2075 
2076     // If there are two attempts to define the same mangled name, issue an
2077     // error.
2078     if (IsForDefinition && !Entry->isDeclaration()) {
2079       GlobalDecl OtherGD;
2080       const VarDecl *OtherD;
2081 
2082       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2083       // to make sure that we issue an error only once.
2084       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2085           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2086           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2087           OtherD->hasInit() &&
2088           DiagnosedConflictingDefinitions.insert(D).second) {
2089         getDiags().Report(D->getLocation(),
2090                           diag::err_duplicate_mangled_name);
2091         getDiags().Report(OtherGD.getDecl()->getLocation(),
2092                           diag::note_previous_definition);
2093       }
2094     }
2095 
2096     // Make sure the result is of the correct type.
2097     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2098       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2099 
2100     // (If global is requested for a definition, we always need to create a new
2101     // global, not just return a bitcast.)
2102     if (!IsForDefinition)
2103       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2104   }
2105 
2106   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2107   auto *GV = new llvm::GlobalVariable(
2108       getModule(), Ty->getElementType(), false,
2109       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2110       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2111 
2112   // If we already created a global with the same mangled name (but different
2113   // type) before, take its name and remove it from its parent.
2114   if (Entry) {
2115     GV->takeName(Entry);
2116 
2117     if (!Entry->use_empty()) {
2118       llvm::Constant *NewPtrForOldDecl =
2119           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2120       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2121     }
2122 
2123     Entry->eraseFromParent();
2124   }
2125 
2126   // This is the first use or definition of a mangled name.  If there is a
2127   // deferred decl with this name, remember that we need to emit it at the end
2128   // of the file.
2129   auto DDI = DeferredDecls.find(MangledName);
2130   if (DDI != DeferredDecls.end()) {
2131     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2132     // list, and remove it from DeferredDecls (since we don't need it anymore).
2133     addDeferredDeclToEmit(GV, DDI->second);
2134     DeferredDecls.erase(DDI);
2135   }
2136 
2137   // Handle things which are present even on external declarations.
2138   if (D) {
2139     // FIXME: This code is overly simple and should be merged with other global
2140     // handling.
2141     GV->setConstant(isTypeConstant(D->getType(), false));
2142 
2143     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2144 
2145     setLinkageAndVisibilityForGV(GV, D);
2146 
2147     if (D->getTLSKind()) {
2148       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2149         CXXThreadLocals.push_back(D);
2150       setTLSMode(GV, *D);
2151     }
2152 
2153     // If required by the ABI, treat declarations of static data members with
2154     // inline initializers as definitions.
2155     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2156       EmitGlobalVarDefinition(D);
2157     }
2158 
2159     // Handle XCore specific ABI requirements.
2160     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
2161         D->getLanguageLinkage() == CLanguageLinkage &&
2162         D->getType().isConstant(Context) &&
2163         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2164       GV->setSection(".cp.rodata");
2165   }
2166 
2167   if (AddrSpace != Ty->getAddressSpace())
2168     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2169 
2170   return GV;
2171 }
2172 
2173 llvm::Constant *
2174 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2175                                bool IsForDefinition) {
2176   if (isa<CXXConstructorDecl>(GD.getDecl()))
2177     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()),
2178                                 getFromCtorType(GD.getCtorType()),
2179                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2180                                 /*DontDefer=*/false, IsForDefinition);
2181   else if (isa<CXXDestructorDecl>(GD.getDecl()))
2182     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()),
2183                                 getFromDtorType(GD.getDtorType()),
2184                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2185                                 /*DontDefer=*/false, IsForDefinition);
2186   else if (isa<CXXMethodDecl>(GD.getDecl())) {
2187     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2188         cast<CXXMethodDecl>(GD.getDecl()));
2189     auto Ty = getTypes().GetFunctionType(*FInfo);
2190     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2191                              IsForDefinition);
2192   } else if (isa<FunctionDecl>(GD.getDecl())) {
2193     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2194     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2195     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2196                              IsForDefinition);
2197   } else
2198     return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr,
2199                               IsForDefinition);
2200 }
2201 
2202 llvm::GlobalVariable *
2203 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2204                                       llvm::Type *Ty,
2205                                       llvm::GlobalValue::LinkageTypes Linkage) {
2206   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2207   llvm::GlobalVariable *OldGV = nullptr;
2208 
2209   if (GV) {
2210     // Check if the variable has the right type.
2211     if (GV->getType()->getElementType() == Ty)
2212       return GV;
2213 
2214     // Because C++ name mangling, the only way we can end up with an already
2215     // existing global with the same name is if it has been declared extern "C".
2216     assert(GV->isDeclaration() && "Declaration has wrong type!");
2217     OldGV = GV;
2218   }
2219 
2220   // Create a new variable.
2221   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2222                                 Linkage, nullptr, Name);
2223 
2224   if (OldGV) {
2225     // Replace occurrences of the old variable if needed.
2226     GV->takeName(OldGV);
2227 
2228     if (!OldGV->use_empty()) {
2229       llvm::Constant *NewPtrForOldDecl =
2230       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2231       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2232     }
2233 
2234     OldGV->eraseFromParent();
2235   }
2236 
2237   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2238       !GV->hasAvailableExternallyLinkage())
2239     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2240 
2241   return GV;
2242 }
2243 
2244 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2245 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2246 /// then it will be created with the specified type instead of whatever the
2247 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2248 /// that an actual global with type Ty will be returned, not conversion of a
2249 /// variable with the same mangled name but some other type.
2250 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2251                                                   llvm::Type *Ty,
2252                                                   bool IsForDefinition) {
2253   assert(D->hasGlobalStorage() && "Not a global variable");
2254   QualType ASTTy = D->getType();
2255   if (!Ty)
2256     Ty = getTypes().ConvertTypeForMem(ASTTy);
2257 
2258   llvm::PointerType *PTy =
2259     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2260 
2261   StringRef MangledName = getMangledName(D);
2262   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2263 }
2264 
2265 /// CreateRuntimeVariable - Create a new runtime global variable with the
2266 /// specified type and name.
2267 llvm::Constant *
2268 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2269                                      StringRef Name) {
2270   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2271 }
2272 
2273 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2274   assert(!D->getInit() && "Cannot emit definite definitions here!");
2275 
2276   StringRef MangledName = getMangledName(D);
2277   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2278 
2279   // We already have a definition, not declaration, with the same mangled name.
2280   // Emitting of declaration is not required (and actually overwrites emitted
2281   // definition).
2282   if (GV && !GV->isDeclaration())
2283     return;
2284 
2285   // If we have not seen a reference to this variable yet, place it into the
2286   // deferred declarations table to be emitted if needed later.
2287   if (!MustBeEmitted(D) && !GV) {
2288       DeferredDecls[MangledName] = D;
2289       return;
2290   }
2291 
2292   // The tentative definition is the only definition.
2293   EmitGlobalVarDefinition(D);
2294 }
2295 
2296 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2297   return Context.toCharUnitsFromBits(
2298       getDataLayout().getTypeStoreSizeInBits(Ty));
2299 }
2300 
2301 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2302                                                  unsigned AddrSpace) {
2303   if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2304     if (D->hasAttr<CUDAConstantAttr>())
2305       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2306     else if (D->hasAttr<CUDASharedAttr>())
2307       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2308     else
2309       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2310   }
2311 
2312   return AddrSpace;
2313 }
2314 
2315 template<typename SomeDecl>
2316 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2317                                                llvm::GlobalValue *GV) {
2318   if (!getLangOpts().CPlusPlus)
2319     return;
2320 
2321   // Must have 'used' attribute, or else inline assembly can't rely on
2322   // the name existing.
2323   if (!D->template hasAttr<UsedAttr>())
2324     return;
2325 
2326   // Must have internal linkage and an ordinary name.
2327   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2328     return;
2329 
2330   // Must be in an extern "C" context. Entities declared directly within
2331   // a record are not extern "C" even if the record is in such a context.
2332   const SomeDecl *First = D->getFirstDecl();
2333   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2334     return;
2335 
2336   // OK, this is an internal linkage entity inside an extern "C" linkage
2337   // specification. Make a note of that so we can give it the "expected"
2338   // mangled name if nothing else is using that name.
2339   std::pair<StaticExternCMap::iterator, bool> R =
2340       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2341 
2342   // If we have multiple internal linkage entities with the same name
2343   // in extern "C" regions, none of them gets that name.
2344   if (!R.second)
2345     R.first->second = nullptr;
2346 }
2347 
2348 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2349   if (!CGM.supportsCOMDAT())
2350     return false;
2351 
2352   if (D.hasAttr<SelectAnyAttr>())
2353     return true;
2354 
2355   GVALinkage Linkage;
2356   if (auto *VD = dyn_cast<VarDecl>(&D))
2357     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2358   else
2359     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2360 
2361   switch (Linkage) {
2362   case GVA_Internal:
2363   case GVA_AvailableExternally:
2364   case GVA_StrongExternal:
2365     return false;
2366   case GVA_DiscardableODR:
2367   case GVA_StrongODR:
2368     return true;
2369   }
2370   llvm_unreachable("No such linkage");
2371 }
2372 
2373 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2374                                           llvm::GlobalObject &GO) {
2375   if (!shouldBeInCOMDAT(*this, D))
2376     return;
2377   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2378 }
2379 
2380 /// Pass IsTentative as true if you want to create a tentative definition.
2381 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2382                                             bool IsTentative) {
2383   llvm::Constant *Init = nullptr;
2384   QualType ASTTy = D->getType();
2385   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2386   bool NeedsGlobalCtor = false;
2387   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2388 
2389   const VarDecl *InitDecl;
2390   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2391 
2392   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2393   // as part of their declaration."  Sema has already checked for
2394   // error cases, so we just need to set Init to UndefValue.
2395   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2396       D->hasAttr<CUDASharedAttr>())
2397     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2398   else if (!InitExpr) {
2399     // This is a tentative definition; tentative definitions are
2400     // implicitly initialized with { 0 }.
2401     //
2402     // Note that tentative definitions are only emitted at the end of
2403     // a translation unit, so they should never have incomplete
2404     // type. In addition, EmitTentativeDefinition makes sure that we
2405     // never attempt to emit a tentative definition if a real one
2406     // exists. A use may still exists, however, so we still may need
2407     // to do a RAUW.
2408     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2409     Init = EmitNullConstant(D->getType());
2410   } else {
2411     initializedGlobalDecl = GlobalDecl(D);
2412     Init = EmitConstantInit(*InitDecl);
2413 
2414     if (!Init) {
2415       QualType T = InitExpr->getType();
2416       if (D->getType()->isReferenceType())
2417         T = D->getType();
2418 
2419       if (getLangOpts().CPlusPlus) {
2420         Init = EmitNullConstant(T);
2421         NeedsGlobalCtor = true;
2422       } else {
2423         ErrorUnsupported(D, "static initializer");
2424         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2425       }
2426     } else {
2427       // We don't need an initializer, so remove the entry for the delayed
2428       // initializer position (just in case this entry was delayed) if we
2429       // also don't need to register a destructor.
2430       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2431         DelayedCXXInitPosition.erase(D);
2432     }
2433   }
2434 
2435   llvm::Type* InitType = Init->getType();
2436   llvm::Constant *Entry =
2437       GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative);
2438 
2439   // Strip off a bitcast if we got one back.
2440   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2441     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2442            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2443            // All zero index gep.
2444            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2445     Entry = CE->getOperand(0);
2446   }
2447 
2448   // Entry is now either a Function or GlobalVariable.
2449   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2450 
2451   // We have a definition after a declaration with the wrong type.
2452   // We must make a new GlobalVariable* and update everything that used OldGV
2453   // (a declaration or tentative definition) with the new GlobalVariable*
2454   // (which will be a definition).
2455   //
2456   // This happens if there is a prototype for a global (e.g.
2457   // "extern int x[];") and then a definition of a different type (e.g.
2458   // "int x[10];"). This also happens when an initializer has a different type
2459   // from the type of the global (this happens with unions).
2460   if (!GV ||
2461       GV->getType()->getElementType() != InitType ||
2462       GV->getType()->getAddressSpace() !=
2463        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2464 
2465     // Move the old entry aside so that we'll create a new one.
2466     Entry->setName(StringRef());
2467 
2468     // Make a new global with the correct type, this is now guaranteed to work.
2469     GV = cast<llvm::GlobalVariable>(
2470         GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative));
2471 
2472     // Replace all uses of the old global with the new global
2473     llvm::Constant *NewPtrForOldDecl =
2474         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2475     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2476 
2477     // Erase the old global, since it is no longer used.
2478     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2479   }
2480 
2481   MaybeHandleStaticInExternC(D, GV);
2482 
2483   if (D->hasAttr<AnnotateAttr>())
2484     AddGlobalAnnotations(D, GV);
2485 
2486   // Set the llvm linkage type as appropriate.
2487   llvm::GlobalValue::LinkageTypes Linkage =
2488       getLLVMLinkageVarDefinition(D, GV->isConstant());
2489 
2490   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2491   // the device. [...]"
2492   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2493   // __device__, declares a variable that: [...]
2494   // Is accessible from all the threads within the grid and from the host
2495   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2496   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2497   if (GV && LangOpts.CUDA) {
2498     if (LangOpts.CUDAIsDevice) {
2499       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2500         GV->setExternallyInitialized(true);
2501     } else {
2502       // Host-side shadows of external declarations of device-side
2503       // global variables become internal definitions. These have to
2504       // be internal in order to prevent name conflicts with global
2505       // host variables with the same name in a different TUs.
2506       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2507         Linkage = llvm::GlobalValue::InternalLinkage;
2508 
2509         // Shadow variables and their properties must be registered
2510         // with CUDA runtime.
2511         unsigned Flags = 0;
2512         if (!D->hasDefinition())
2513           Flags |= CGCUDARuntime::ExternDeviceVar;
2514         if (D->hasAttr<CUDAConstantAttr>())
2515           Flags |= CGCUDARuntime::ConstantDeviceVar;
2516         getCUDARuntime().registerDeviceVar(*GV, Flags);
2517       } else if (D->hasAttr<CUDASharedAttr>())
2518         // __shared__ variables are odd. Shadows do get created, but
2519         // they are not registered with the CUDA runtime, so they
2520         // can't really be used to access their device-side
2521         // counterparts. It's not clear yet whether it's nvcc's bug or
2522         // a feature, but we've got to do the same for compatibility.
2523         Linkage = llvm::GlobalValue::InternalLinkage;
2524     }
2525   }
2526   GV->setInitializer(Init);
2527 
2528   // If it is safe to mark the global 'constant', do so now.
2529   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2530                   isTypeConstant(D->getType(), true));
2531 
2532   // If it is in a read-only section, mark it 'constant'.
2533   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2534     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2535     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2536       GV->setConstant(true);
2537   }
2538 
2539   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2540 
2541 
2542   // On Darwin, if the normal linkage of a C++ thread_local variable is
2543   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2544   // copies within a linkage unit; otherwise, the backing variable has
2545   // internal linkage and all accesses should just be calls to the
2546   // Itanium-specified entry point, which has the normal linkage of the
2547   // variable. This is to preserve the ability to change the implementation
2548   // behind the scenes.
2549   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2550       Context.getTargetInfo().getTriple().isOSDarwin() &&
2551       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2552       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2553     Linkage = llvm::GlobalValue::InternalLinkage;
2554 
2555   GV->setLinkage(Linkage);
2556   if (D->hasAttr<DLLImportAttr>())
2557     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2558   else if (D->hasAttr<DLLExportAttr>())
2559     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2560   else
2561     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2562 
2563   if (Linkage == llvm::GlobalVariable::CommonLinkage)
2564     // common vars aren't constant even if declared const.
2565     GV->setConstant(false);
2566 
2567   setNonAliasAttributes(D, GV);
2568 
2569   if (D->getTLSKind() && !GV->isThreadLocal()) {
2570     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2571       CXXThreadLocals.push_back(D);
2572     setTLSMode(GV, *D);
2573   }
2574 
2575   maybeSetTrivialComdat(*D, *GV);
2576 
2577   // Emit the initializer function if necessary.
2578   if (NeedsGlobalCtor || NeedsGlobalDtor)
2579     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2580 
2581   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2582 
2583   // Emit global variable debug information.
2584   if (CGDebugInfo *DI = getModuleDebugInfo())
2585     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2586       DI->EmitGlobalVariable(GV, D);
2587 }
2588 
2589 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2590                                       CodeGenModule &CGM, const VarDecl *D,
2591                                       bool NoCommon) {
2592   // Don't give variables common linkage if -fno-common was specified unless it
2593   // was overridden by a NoCommon attribute.
2594   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2595     return true;
2596 
2597   // C11 6.9.2/2:
2598   //   A declaration of an identifier for an object that has file scope without
2599   //   an initializer, and without a storage-class specifier or with the
2600   //   storage-class specifier static, constitutes a tentative definition.
2601   if (D->getInit() || D->hasExternalStorage())
2602     return true;
2603 
2604   // A variable cannot be both common and exist in a section.
2605   if (D->hasAttr<SectionAttr>())
2606     return true;
2607 
2608   // Thread local vars aren't considered common linkage.
2609   if (D->getTLSKind())
2610     return true;
2611 
2612   // Tentative definitions marked with WeakImportAttr are true definitions.
2613   if (D->hasAttr<WeakImportAttr>())
2614     return true;
2615 
2616   // A variable cannot be both common and exist in a comdat.
2617   if (shouldBeInCOMDAT(CGM, *D))
2618     return true;
2619 
2620   // Declarations with a required alignment do not have common linakge in MSVC
2621   // mode.
2622   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2623     if (D->hasAttr<AlignedAttr>())
2624       return true;
2625     QualType VarType = D->getType();
2626     if (Context.isAlignmentRequired(VarType))
2627       return true;
2628 
2629     if (const auto *RT = VarType->getAs<RecordType>()) {
2630       const RecordDecl *RD = RT->getDecl();
2631       for (const FieldDecl *FD : RD->fields()) {
2632         if (FD->isBitField())
2633           continue;
2634         if (FD->hasAttr<AlignedAttr>())
2635           return true;
2636         if (Context.isAlignmentRequired(FD->getType()))
2637           return true;
2638       }
2639     }
2640   }
2641 
2642   return false;
2643 }
2644 
2645 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2646     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2647   if (Linkage == GVA_Internal)
2648     return llvm::Function::InternalLinkage;
2649 
2650   if (D->hasAttr<WeakAttr>()) {
2651     if (IsConstantVariable)
2652       return llvm::GlobalVariable::WeakODRLinkage;
2653     else
2654       return llvm::GlobalVariable::WeakAnyLinkage;
2655   }
2656 
2657   // We are guaranteed to have a strong definition somewhere else,
2658   // so we can use available_externally linkage.
2659   if (Linkage == GVA_AvailableExternally)
2660     return llvm::Function::AvailableExternallyLinkage;
2661 
2662   // Note that Apple's kernel linker doesn't support symbol
2663   // coalescing, so we need to avoid linkonce and weak linkages there.
2664   // Normally, this means we just map to internal, but for explicit
2665   // instantiations we'll map to external.
2666 
2667   // In C++, the compiler has to emit a definition in every translation unit
2668   // that references the function.  We should use linkonce_odr because
2669   // a) if all references in this translation unit are optimized away, we
2670   // don't need to codegen it.  b) if the function persists, it needs to be
2671   // merged with other definitions. c) C++ has the ODR, so we know the
2672   // definition is dependable.
2673   if (Linkage == GVA_DiscardableODR)
2674     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2675                                             : llvm::Function::InternalLinkage;
2676 
2677   // An explicit instantiation of a template has weak linkage, since
2678   // explicit instantiations can occur in multiple translation units
2679   // and must all be equivalent. However, we are not allowed to
2680   // throw away these explicit instantiations.
2681   if (Linkage == GVA_StrongODR)
2682     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2683                                             : llvm::Function::ExternalLinkage;
2684 
2685   // C++ doesn't have tentative definitions and thus cannot have common
2686   // linkage.
2687   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2688       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2689                                  CodeGenOpts.NoCommon))
2690     return llvm::GlobalVariable::CommonLinkage;
2691 
2692   // selectany symbols are externally visible, so use weak instead of
2693   // linkonce.  MSVC optimizes away references to const selectany globals, so
2694   // all definitions should be the same and ODR linkage should be used.
2695   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2696   if (D->hasAttr<SelectAnyAttr>())
2697     return llvm::GlobalVariable::WeakODRLinkage;
2698 
2699   // Otherwise, we have strong external linkage.
2700   assert(Linkage == GVA_StrongExternal);
2701   return llvm::GlobalVariable::ExternalLinkage;
2702 }
2703 
2704 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2705     const VarDecl *VD, bool IsConstant) {
2706   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2707   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2708 }
2709 
2710 /// Replace the uses of a function that was declared with a non-proto type.
2711 /// We want to silently drop extra arguments from call sites
2712 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2713                                           llvm::Function *newFn) {
2714   // Fast path.
2715   if (old->use_empty()) return;
2716 
2717   llvm::Type *newRetTy = newFn->getReturnType();
2718   SmallVector<llvm::Value*, 4> newArgs;
2719   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2720 
2721   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2722          ui != ue; ) {
2723     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2724     llvm::User *user = use->getUser();
2725 
2726     // Recognize and replace uses of bitcasts.  Most calls to
2727     // unprototyped functions will use bitcasts.
2728     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2729       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2730         replaceUsesOfNonProtoConstant(bitcast, newFn);
2731       continue;
2732     }
2733 
2734     // Recognize calls to the function.
2735     llvm::CallSite callSite(user);
2736     if (!callSite) continue;
2737     if (!callSite.isCallee(&*use)) continue;
2738 
2739     // If the return types don't match exactly, then we can't
2740     // transform this call unless it's dead.
2741     if (callSite->getType() != newRetTy && !callSite->use_empty())
2742       continue;
2743 
2744     // Get the call site's attribute list.
2745     SmallVector<llvm::AttributeSet, 8> newAttrs;
2746     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2747 
2748     // Collect any return attributes from the call.
2749     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2750       newAttrs.push_back(
2751         llvm::AttributeSet::get(newFn->getContext(),
2752                                 oldAttrs.getRetAttributes()));
2753 
2754     // If the function was passed too few arguments, don't transform.
2755     unsigned newNumArgs = newFn->arg_size();
2756     if (callSite.arg_size() < newNumArgs) continue;
2757 
2758     // If extra arguments were passed, we silently drop them.
2759     // If any of the types mismatch, we don't transform.
2760     unsigned argNo = 0;
2761     bool dontTransform = false;
2762     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2763            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2764       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2765         dontTransform = true;
2766         break;
2767       }
2768 
2769       // Add any parameter attributes.
2770       if (oldAttrs.hasAttributes(argNo + 1))
2771         newAttrs.
2772           push_back(llvm::
2773                     AttributeSet::get(newFn->getContext(),
2774                                       oldAttrs.getParamAttributes(argNo + 1)));
2775     }
2776     if (dontTransform)
2777       continue;
2778 
2779     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2780       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2781                                                  oldAttrs.getFnAttributes()));
2782 
2783     // Okay, we can transform this.  Create the new call instruction and copy
2784     // over the required information.
2785     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2786 
2787     // Copy over any operand bundles.
2788     callSite.getOperandBundlesAsDefs(newBundles);
2789 
2790     llvm::CallSite newCall;
2791     if (callSite.isCall()) {
2792       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2793                                        callSite.getInstruction());
2794     } else {
2795       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2796       newCall = llvm::InvokeInst::Create(newFn,
2797                                          oldInvoke->getNormalDest(),
2798                                          oldInvoke->getUnwindDest(),
2799                                          newArgs, newBundles, "",
2800                                          callSite.getInstruction());
2801     }
2802     newArgs.clear(); // for the next iteration
2803 
2804     if (!newCall->getType()->isVoidTy())
2805       newCall->takeName(callSite.getInstruction());
2806     newCall.setAttributes(
2807                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2808     newCall.setCallingConv(callSite.getCallingConv());
2809 
2810     // Finally, remove the old call, replacing any uses with the new one.
2811     if (!callSite->use_empty())
2812       callSite->replaceAllUsesWith(newCall.getInstruction());
2813 
2814     // Copy debug location attached to CI.
2815     if (callSite->getDebugLoc())
2816       newCall->setDebugLoc(callSite->getDebugLoc());
2817 
2818     callSite->eraseFromParent();
2819   }
2820 }
2821 
2822 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2823 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2824 /// existing call uses of the old function in the module, this adjusts them to
2825 /// call the new function directly.
2826 ///
2827 /// This is not just a cleanup: the always_inline pass requires direct calls to
2828 /// functions to be able to inline them.  If there is a bitcast in the way, it
2829 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2830 /// run at -O0.
2831 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2832                                                       llvm::Function *NewFn) {
2833   // If we're redefining a global as a function, don't transform it.
2834   if (!isa<llvm::Function>(Old)) return;
2835 
2836   replaceUsesOfNonProtoConstant(Old, NewFn);
2837 }
2838 
2839 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2840   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2841   // If we have a definition, this might be a deferred decl. If the
2842   // instantiation is explicit, make sure we emit it at the end.
2843   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2844     GetAddrOfGlobalVar(VD);
2845 
2846   EmitTopLevelDecl(VD);
2847 }
2848 
2849 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2850                                                  llvm::GlobalValue *GV) {
2851   const auto *D = cast<FunctionDecl>(GD.getDecl());
2852 
2853   // Compute the function info and LLVM type.
2854   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2855   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2856 
2857   // Get or create the prototype for the function.
2858   if (!GV || (GV->getType()->getElementType() != Ty))
2859     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
2860                                                    /*DontDefer=*/true,
2861                                                    /*IsForDefinition=*/true));
2862 
2863   // Already emitted.
2864   if (!GV->isDeclaration())
2865     return;
2866 
2867   // We need to set linkage and visibility on the function before
2868   // generating code for it because various parts of IR generation
2869   // want to propagate this information down (e.g. to local static
2870   // declarations).
2871   auto *Fn = cast<llvm::Function>(GV);
2872   setFunctionLinkage(GD, Fn);
2873   setFunctionDLLStorageClass(GD, Fn);
2874 
2875   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2876   setGlobalVisibility(Fn, D);
2877 
2878   MaybeHandleStaticInExternC(D, Fn);
2879 
2880   maybeSetTrivialComdat(*D, *Fn);
2881 
2882   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2883 
2884   setFunctionDefinitionAttributes(D, Fn);
2885   SetLLVMFunctionAttributesForDefinition(D, Fn);
2886 
2887   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2888     AddGlobalCtor(Fn, CA->getPriority());
2889   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2890     AddGlobalDtor(Fn, DA->getPriority());
2891   if (D->hasAttr<AnnotateAttr>())
2892     AddGlobalAnnotations(D, Fn);
2893 }
2894 
2895 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2896   const auto *D = cast<ValueDecl>(GD.getDecl());
2897   const AliasAttr *AA = D->getAttr<AliasAttr>();
2898   assert(AA && "Not an alias?");
2899 
2900   StringRef MangledName = getMangledName(GD);
2901 
2902   if (AA->getAliasee() == MangledName) {
2903     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
2904     return;
2905   }
2906 
2907   // If there is a definition in the module, then it wins over the alias.
2908   // This is dubious, but allow it to be safe.  Just ignore the alias.
2909   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2910   if (Entry && !Entry->isDeclaration())
2911     return;
2912 
2913   Aliases.push_back(GD);
2914 
2915   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2916 
2917   // Create a reference to the named value.  This ensures that it is emitted
2918   // if a deferred decl.
2919   llvm::Constant *Aliasee;
2920   if (isa<llvm::FunctionType>(DeclTy))
2921     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2922                                       /*ForVTable=*/false);
2923   else
2924     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2925                                     llvm::PointerType::getUnqual(DeclTy),
2926                                     /*D=*/nullptr);
2927 
2928   // Create the new alias itself, but don't set a name yet.
2929   auto *GA = llvm::GlobalAlias::create(
2930       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2931 
2932   if (Entry) {
2933     if (GA->getAliasee() == Entry) {
2934       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
2935       return;
2936     }
2937 
2938     assert(Entry->isDeclaration());
2939 
2940     // If there is a declaration in the module, then we had an extern followed
2941     // by the alias, as in:
2942     //   extern int test6();
2943     //   ...
2944     //   int test6() __attribute__((alias("test7")));
2945     //
2946     // Remove it and replace uses of it with the alias.
2947     GA->takeName(Entry);
2948 
2949     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2950                                                           Entry->getType()));
2951     Entry->eraseFromParent();
2952   } else {
2953     GA->setName(MangledName);
2954   }
2955 
2956   // Set attributes which are particular to an alias; this is a
2957   // specialization of the attributes which may be set on a global
2958   // variable/function.
2959   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2960       D->isWeakImported()) {
2961     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2962   }
2963 
2964   if (const auto *VD = dyn_cast<VarDecl>(D))
2965     if (VD->getTLSKind())
2966       setTLSMode(GA, *VD);
2967 
2968   setAliasAttributes(D, GA);
2969 }
2970 
2971 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
2972   const auto *D = cast<ValueDecl>(GD.getDecl());
2973   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
2974   assert(IFA && "Not an ifunc?");
2975 
2976   StringRef MangledName = getMangledName(GD);
2977 
2978   if (IFA->getResolver() == MangledName) {
2979     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
2980     return;
2981   }
2982 
2983   // Report an error if some definition overrides ifunc.
2984   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2985   if (Entry && !Entry->isDeclaration()) {
2986     GlobalDecl OtherGD;
2987     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2988         DiagnosedConflictingDefinitions.insert(GD).second) {
2989       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
2990       Diags.Report(OtherGD.getDecl()->getLocation(),
2991                    diag::note_previous_definition);
2992     }
2993     return;
2994   }
2995 
2996   Aliases.push_back(GD);
2997 
2998   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2999   llvm::Constant *Resolver =
3000       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3001                               /*ForVTable=*/false);
3002   llvm::GlobalIFunc *GIF =
3003       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3004                                 "", Resolver, &getModule());
3005   if (Entry) {
3006     if (GIF->getResolver() == Entry) {
3007       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3008       return;
3009     }
3010     assert(Entry->isDeclaration());
3011 
3012     // If there is a declaration in the module, then we had an extern followed
3013     // by the ifunc, as in:
3014     //   extern int test();
3015     //   ...
3016     //   int test() __attribute__((ifunc("resolver")));
3017     //
3018     // Remove it and replace uses of it with the ifunc.
3019     GIF->takeName(Entry);
3020 
3021     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3022                                                           Entry->getType()));
3023     Entry->eraseFromParent();
3024   } else
3025     GIF->setName(MangledName);
3026 
3027   SetCommonAttributes(D, GIF);
3028 }
3029 
3030 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3031                                             ArrayRef<llvm::Type*> Tys) {
3032   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3033                                          Tys);
3034 }
3035 
3036 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3037 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3038                          const StringLiteral *Literal, bool TargetIsLSB,
3039                          bool &IsUTF16, unsigned &StringLength) {
3040   StringRef String = Literal->getString();
3041   unsigned NumBytes = String.size();
3042 
3043   // Check for simple case.
3044   if (!Literal->containsNonAsciiOrNull()) {
3045     StringLength = NumBytes;
3046     return *Map.insert(std::make_pair(String, nullptr)).first;
3047   }
3048 
3049   // Otherwise, convert the UTF8 literals into a string of shorts.
3050   IsUTF16 = true;
3051 
3052   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3053   const UTF8 *FromPtr = (const UTF8 *)String.data();
3054   UTF16 *ToPtr = &ToBuf[0];
3055 
3056   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
3057                            &ToPtr, ToPtr + NumBytes,
3058                            strictConversion);
3059 
3060   // ConvertUTF8toUTF16 returns the length in ToPtr.
3061   StringLength = ToPtr - &ToBuf[0];
3062 
3063   // Add an explicit null.
3064   *ToPtr = 0;
3065   return *Map.insert(std::make_pair(
3066                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3067                                    (StringLength + 1) * 2),
3068                          nullptr)).first;
3069 }
3070 
3071 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3072 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3073                        const StringLiteral *Literal, unsigned &StringLength) {
3074   StringRef String = Literal->getString();
3075   StringLength = String.size();
3076   return *Map.insert(std::make_pair(String, nullptr)).first;
3077 }
3078 
3079 ConstantAddress
3080 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3081   unsigned StringLength = 0;
3082   bool isUTF16 = false;
3083   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3084       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3085                                getDataLayout().isLittleEndian(), isUTF16,
3086                                StringLength);
3087 
3088   if (auto *C = Entry.second)
3089     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3090 
3091   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3092   llvm::Constant *Zeros[] = { Zero, Zero };
3093   llvm::Value *V;
3094 
3095   // If we don't already have it, get __CFConstantStringClassReference.
3096   if (!CFConstantStringClassRef) {
3097     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3098     Ty = llvm::ArrayType::get(Ty, 0);
3099     llvm::Constant *GV =
3100         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3101 
3102     if (getTarget().getTriple().isOSBinFormatCOFF()) {
3103       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3104       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3105       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3106       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3107 
3108       const VarDecl *VD = nullptr;
3109       for (const auto &Result : DC->lookup(&II))
3110         if ((VD = dyn_cast<VarDecl>(Result)))
3111           break;
3112 
3113       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3114         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3115         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3116       } else {
3117         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3118         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3119       }
3120     }
3121 
3122     // Decay array -> ptr
3123     V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3124     CFConstantStringClassRef = V;
3125   } else {
3126     V = CFConstantStringClassRef;
3127   }
3128 
3129   QualType CFTy = getContext().getCFConstantStringType();
3130 
3131   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3132 
3133   llvm::Constant *Fields[4];
3134 
3135   // Class pointer.
3136   Fields[0] = cast<llvm::ConstantExpr>(V);
3137 
3138   // Flags.
3139   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3140   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
3141                       : llvm::ConstantInt::get(Ty, 0x07C8);
3142 
3143   // String pointer.
3144   llvm::Constant *C = nullptr;
3145   if (isUTF16) {
3146     auto Arr = llvm::makeArrayRef(
3147         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3148         Entry.first().size() / 2);
3149     C = llvm::ConstantDataArray::get(VMContext, Arr);
3150   } else {
3151     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3152   }
3153 
3154   // Note: -fwritable-strings doesn't make the backing store strings of
3155   // CFStrings writable. (See <rdar://problem/10657500>)
3156   auto *GV =
3157       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3158                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3159   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3160   // Don't enforce the target's minimum global alignment, since the only use
3161   // of the string is via this class initializer.
3162   CharUnits Align = isUTF16
3163                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3164                         : getContext().getTypeAlignInChars(getContext().CharTy);
3165   GV->setAlignment(Align.getQuantity());
3166 
3167   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3168   // Without it LLVM can merge the string with a non unnamed_addr one during
3169   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3170   if (getTarget().getTriple().isOSBinFormatMachO())
3171     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3172                            : "__TEXT,__cstring,cstring_literals");
3173 
3174   // String.
3175   Fields[2] =
3176       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3177 
3178   if (isUTF16)
3179     // Cast the UTF16 string to the correct type.
3180     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
3181 
3182   // String length.
3183   Ty = getTypes().ConvertType(getContext().LongTy);
3184   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
3185 
3186   CharUnits Alignment = getPointerAlign();
3187 
3188   // The struct.
3189   C = llvm::ConstantStruct::get(STy, Fields);
3190   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3191                                 llvm::GlobalVariable::PrivateLinkage, C,
3192                                 "_unnamed_cfstring_");
3193   GV->setAlignment(Alignment.getQuantity());
3194   switch (getTarget().getTriple().getObjectFormat()) {
3195   case llvm::Triple::UnknownObjectFormat:
3196     llvm_unreachable("unknown file format");
3197   case llvm::Triple::COFF:
3198     GV->setSection(".rdata.cfstring");
3199     break;
3200   case llvm::Triple::ELF:
3201     GV->setSection(".rodata.cfstring");
3202     break;
3203   case llvm::Triple::MachO:
3204     GV->setSection("__DATA,__cfstring");
3205     break;
3206   }
3207   Entry.second = GV;
3208 
3209   return ConstantAddress(GV, Alignment);
3210 }
3211 
3212 ConstantAddress
3213 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
3214   unsigned StringLength = 0;
3215   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3216       GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
3217 
3218   if (auto *C = Entry.second)
3219     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3220 
3221   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3222   llvm::Constant *Zeros[] = { Zero, Zero };
3223   llvm::Value *V;
3224   // If we don't already have it, get _NSConstantStringClassReference.
3225   if (!ConstantStringClassRef) {
3226     std::string StringClass(getLangOpts().ObjCConstantStringClass);
3227     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3228     llvm::Constant *GV;
3229     if (LangOpts.ObjCRuntime.isNonFragile()) {
3230       std::string str =
3231         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
3232                             : "OBJC_CLASS_$_" + StringClass;
3233       GV = getObjCRuntime().GetClassGlobal(str);
3234       // Make sure the result is of the correct type.
3235       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3236       V = llvm::ConstantExpr::getBitCast(GV, PTy);
3237       ConstantStringClassRef = V;
3238     } else {
3239       std::string str =
3240         StringClass.empty() ? "_NSConstantStringClassReference"
3241                             : "_" + StringClass + "ClassReference";
3242       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
3243       GV = CreateRuntimeVariable(PTy, str);
3244       // Decay array -> ptr
3245       V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros);
3246       ConstantStringClassRef = V;
3247     }
3248   } else
3249     V = ConstantStringClassRef;
3250 
3251   if (!NSConstantStringType) {
3252     // Construct the type for a constant NSString.
3253     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
3254     D->startDefinition();
3255 
3256     QualType FieldTypes[3];
3257 
3258     // const int *isa;
3259     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
3260     // const char *str;
3261     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
3262     // unsigned int length;
3263     FieldTypes[2] = Context.UnsignedIntTy;
3264 
3265     // Create fields
3266     for (unsigned i = 0; i < 3; ++i) {
3267       FieldDecl *Field = FieldDecl::Create(Context, D,
3268                                            SourceLocation(),
3269                                            SourceLocation(), nullptr,
3270                                            FieldTypes[i], /*TInfo=*/nullptr,
3271                                            /*BitWidth=*/nullptr,
3272                                            /*Mutable=*/false,
3273                                            ICIS_NoInit);
3274       Field->setAccess(AS_public);
3275       D->addDecl(Field);
3276     }
3277 
3278     D->completeDefinition();
3279     QualType NSTy = Context.getTagDeclType(D);
3280     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
3281   }
3282 
3283   llvm::Constant *Fields[3];
3284 
3285   // Class pointer.
3286   Fields[0] = cast<llvm::ConstantExpr>(V);
3287 
3288   // String pointer.
3289   llvm::Constant *C =
3290       llvm::ConstantDataArray::getString(VMContext, Entry.first());
3291 
3292   llvm::GlobalValue::LinkageTypes Linkage;
3293   bool isConstant;
3294   Linkage = llvm::GlobalValue::PrivateLinkage;
3295   isConstant = !LangOpts.WritableStrings;
3296 
3297   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
3298                                       Linkage, C, ".str");
3299   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3300   // Don't enforce the target's minimum global alignment, since the only use
3301   // of the string is via this class initializer.
3302   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
3303   GV->setAlignment(Align.getQuantity());
3304   Fields[1] =
3305       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3306 
3307   // String length.
3308   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3309   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
3310 
3311   // The struct.
3312   CharUnits Alignment = getPointerAlign();
3313   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
3314   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3315                                 llvm::GlobalVariable::PrivateLinkage, C,
3316                                 "_unnamed_nsstring_");
3317   GV->setAlignment(Alignment.getQuantity());
3318   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
3319   const char *NSStringNonFragileABISection =
3320       "__DATA,__objc_stringobj,regular,no_dead_strip";
3321   // FIXME. Fix section.
3322   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
3323                      ? NSStringNonFragileABISection
3324                      : NSStringSection);
3325   Entry.second = GV;
3326 
3327   return ConstantAddress(GV, Alignment);
3328 }
3329 
3330 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3331   if (ObjCFastEnumerationStateType.isNull()) {
3332     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3333     D->startDefinition();
3334 
3335     QualType FieldTypes[] = {
3336       Context.UnsignedLongTy,
3337       Context.getPointerType(Context.getObjCIdType()),
3338       Context.getPointerType(Context.UnsignedLongTy),
3339       Context.getConstantArrayType(Context.UnsignedLongTy,
3340                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3341     };
3342 
3343     for (size_t i = 0; i < 4; ++i) {
3344       FieldDecl *Field = FieldDecl::Create(Context,
3345                                            D,
3346                                            SourceLocation(),
3347                                            SourceLocation(), nullptr,
3348                                            FieldTypes[i], /*TInfo=*/nullptr,
3349                                            /*BitWidth=*/nullptr,
3350                                            /*Mutable=*/false,
3351                                            ICIS_NoInit);
3352       Field->setAccess(AS_public);
3353       D->addDecl(Field);
3354     }
3355 
3356     D->completeDefinition();
3357     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3358   }
3359 
3360   return ObjCFastEnumerationStateType;
3361 }
3362 
3363 llvm::Constant *
3364 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3365   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3366 
3367   // Don't emit it as the address of the string, emit the string data itself
3368   // as an inline array.
3369   if (E->getCharByteWidth() == 1) {
3370     SmallString<64> Str(E->getString());
3371 
3372     // Resize the string to the right size, which is indicated by its type.
3373     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3374     Str.resize(CAT->getSize().getZExtValue());
3375     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3376   }
3377 
3378   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3379   llvm::Type *ElemTy = AType->getElementType();
3380   unsigned NumElements = AType->getNumElements();
3381 
3382   // Wide strings have either 2-byte or 4-byte elements.
3383   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3384     SmallVector<uint16_t, 32> Elements;
3385     Elements.reserve(NumElements);
3386 
3387     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3388       Elements.push_back(E->getCodeUnit(i));
3389     Elements.resize(NumElements);
3390     return llvm::ConstantDataArray::get(VMContext, Elements);
3391   }
3392 
3393   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3394   SmallVector<uint32_t, 32> Elements;
3395   Elements.reserve(NumElements);
3396 
3397   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3398     Elements.push_back(E->getCodeUnit(i));
3399   Elements.resize(NumElements);
3400   return llvm::ConstantDataArray::get(VMContext, Elements);
3401 }
3402 
3403 static llvm::GlobalVariable *
3404 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3405                       CodeGenModule &CGM, StringRef GlobalName,
3406                       CharUnits Alignment) {
3407   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3408   unsigned AddrSpace = 0;
3409   if (CGM.getLangOpts().OpenCL)
3410     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3411 
3412   llvm::Module &M = CGM.getModule();
3413   // Create a global variable for this string
3414   auto *GV = new llvm::GlobalVariable(
3415       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3416       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3417   GV->setAlignment(Alignment.getQuantity());
3418   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3419   if (GV->isWeakForLinker()) {
3420     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3421     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3422   }
3423 
3424   return GV;
3425 }
3426 
3427 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3428 /// constant array for the given string literal.
3429 ConstantAddress
3430 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3431                                                   StringRef Name) {
3432   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3433 
3434   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3435   llvm::GlobalVariable **Entry = nullptr;
3436   if (!LangOpts.WritableStrings) {
3437     Entry = &ConstantStringMap[C];
3438     if (auto GV = *Entry) {
3439       if (Alignment.getQuantity() > GV->getAlignment())
3440         GV->setAlignment(Alignment.getQuantity());
3441       return ConstantAddress(GV, Alignment);
3442     }
3443   }
3444 
3445   SmallString<256> MangledNameBuffer;
3446   StringRef GlobalVariableName;
3447   llvm::GlobalValue::LinkageTypes LT;
3448 
3449   // Mangle the string literal if the ABI allows for it.  However, we cannot
3450   // do this if  we are compiling with ASan or -fwritable-strings because they
3451   // rely on strings having normal linkage.
3452   if (!LangOpts.WritableStrings &&
3453       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3454       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3455     llvm::raw_svector_ostream Out(MangledNameBuffer);
3456     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3457 
3458     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3459     GlobalVariableName = MangledNameBuffer;
3460   } else {
3461     LT = llvm::GlobalValue::PrivateLinkage;
3462     GlobalVariableName = Name;
3463   }
3464 
3465   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3466   if (Entry)
3467     *Entry = GV;
3468 
3469   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3470                                   QualType());
3471   return ConstantAddress(GV, Alignment);
3472 }
3473 
3474 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3475 /// array for the given ObjCEncodeExpr node.
3476 ConstantAddress
3477 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3478   std::string Str;
3479   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3480 
3481   return GetAddrOfConstantCString(Str);
3482 }
3483 
3484 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3485 /// the literal and a terminating '\0' character.
3486 /// The result has pointer to array type.
3487 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3488     const std::string &Str, const char *GlobalName) {
3489   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3490   CharUnits Alignment =
3491     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3492 
3493   llvm::Constant *C =
3494       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3495 
3496   // Don't share any string literals if strings aren't constant.
3497   llvm::GlobalVariable **Entry = nullptr;
3498   if (!LangOpts.WritableStrings) {
3499     Entry = &ConstantStringMap[C];
3500     if (auto GV = *Entry) {
3501       if (Alignment.getQuantity() > GV->getAlignment())
3502         GV->setAlignment(Alignment.getQuantity());
3503       return ConstantAddress(GV, Alignment);
3504     }
3505   }
3506 
3507   // Get the default prefix if a name wasn't specified.
3508   if (!GlobalName)
3509     GlobalName = ".str";
3510   // Create a global variable for this.
3511   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3512                                   GlobalName, Alignment);
3513   if (Entry)
3514     *Entry = GV;
3515   return ConstantAddress(GV, Alignment);
3516 }
3517 
3518 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3519     const MaterializeTemporaryExpr *E, const Expr *Init) {
3520   assert((E->getStorageDuration() == SD_Static ||
3521           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3522   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3523 
3524   // If we're not materializing a subobject of the temporary, keep the
3525   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3526   QualType MaterializedType = Init->getType();
3527   if (Init == E->GetTemporaryExpr())
3528     MaterializedType = E->getType();
3529 
3530   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3531 
3532   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3533     return ConstantAddress(Slot, Align);
3534 
3535   // FIXME: If an externally-visible declaration extends multiple temporaries,
3536   // we need to give each temporary the same name in every translation unit (and
3537   // we also need to make the temporaries externally-visible).
3538   SmallString<256> Name;
3539   llvm::raw_svector_ostream Out(Name);
3540   getCXXABI().getMangleContext().mangleReferenceTemporary(
3541       VD, E->getManglingNumber(), Out);
3542 
3543   APValue *Value = nullptr;
3544   if (E->getStorageDuration() == SD_Static) {
3545     // We might have a cached constant initializer for this temporary. Note
3546     // that this might have a different value from the value computed by
3547     // evaluating the initializer if the surrounding constant expression
3548     // modifies the temporary.
3549     Value = getContext().getMaterializedTemporaryValue(E, false);
3550     if (Value && Value->isUninit())
3551       Value = nullptr;
3552   }
3553 
3554   // Try evaluating it now, it might have a constant initializer.
3555   Expr::EvalResult EvalResult;
3556   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3557       !EvalResult.hasSideEffects())
3558     Value = &EvalResult.Val;
3559 
3560   llvm::Constant *InitialValue = nullptr;
3561   bool Constant = false;
3562   llvm::Type *Type;
3563   if (Value) {
3564     // The temporary has a constant initializer, use it.
3565     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3566     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3567     Type = InitialValue->getType();
3568   } else {
3569     // No initializer, the initialization will be provided when we
3570     // initialize the declaration which performed lifetime extension.
3571     Type = getTypes().ConvertTypeForMem(MaterializedType);
3572   }
3573 
3574   // Create a global variable for this lifetime-extended temporary.
3575   llvm::GlobalValue::LinkageTypes Linkage =
3576       getLLVMLinkageVarDefinition(VD, Constant);
3577   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3578     const VarDecl *InitVD;
3579     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3580         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3581       // Temporaries defined inside a class get linkonce_odr linkage because the
3582       // class can be defined in multipe translation units.
3583       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3584     } else {
3585       // There is no need for this temporary to have external linkage if the
3586       // VarDecl has external linkage.
3587       Linkage = llvm::GlobalVariable::InternalLinkage;
3588     }
3589   }
3590   unsigned AddrSpace = GetGlobalVarAddressSpace(
3591       VD, getContext().getTargetAddressSpace(MaterializedType));
3592   auto *GV = new llvm::GlobalVariable(
3593       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3594       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3595       AddrSpace);
3596   setGlobalVisibility(GV, VD);
3597   GV->setAlignment(Align.getQuantity());
3598   if (supportsCOMDAT() && GV->isWeakForLinker())
3599     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3600   if (VD->getTLSKind())
3601     setTLSMode(GV, *VD);
3602   MaterializedGlobalTemporaryMap[E] = GV;
3603   return ConstantAddress(GV, Align);
3604 }
3605 
3606 /// EmitObjCPropertyImplementations - Emit information for synthesized
3607 /// properties for an implementation.
3608 void CodeGenModule::EmitObjCPropertyImplementations(const
3609                                                     ObjCImplementationDecl *D) {
3610   for (const auto *PID : D->property_impls()) {
3611     // Dynamic is just for type-checking.
3612     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3613       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3614 
3615       // Determine which methods need to be implemented, some may have
3616       // been overridden. Note that ::isPropertyAccessor is not the method
3617       // we want, that just indicates if the decl came from a
3618       // property. What we want to know is if the method is defined in
3619       // this implementation.
3620       if (!D->getInstanceMethod(PD->getGetterName()))
3621         CodeGenFunction(*this).GenerateObjCGetter(
3622                                  const_cast<ObjCImplementationDecl *>(D), PID);
3623       if (!PD->isReadOnly() &&
3624           !D->getInstanceMethod(PD->getSetterName()))
3625         CodeGenFunction(*this).GenerateObjCSetter(
3626                                  const_cast<ObjCImplementationDecl *>(D), PID);
3627     }
3628   }
3629 }
3630 
3631 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3632   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3633   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3634        ivar; ivar = ivar->getNextIvar())
3635     if (ivar->getType().isDestructedType())
3636       return true;
3637 
3638   return false;
3639 }
3640 
3641 static bool AllTrivialInitializers(CodeGenModule &CGM,
3642                                    ObjCImplementationDecl *D) {
3643   CodeGenFunction CGF(CGM);
3644   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3645        E = D->init_end(); B != E; ++B) {
3646     CXXCtorInitializer *CtorInitExp = *B;
3647     Expr *Init = CtorInitExp->getInit();
3648     if (!CGF.isTrivialInitializer(Init))
3649       return false;
3650   }
3651   return true;
3652 }
3653 
3654 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3655 /// for an implementation.
3656 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3657   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3658   if (needsDestructMethod(D)) {
3659     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3660     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3661     ObjCMethodDecl *DTORMethod =
3662       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3663                              cxxSelector, getContext().VoidTy, nullptr, D,
3664                              /*isInstance=*/true, /*isVariadic=*/false,
3665                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3666                              /*isDefined=*/false, ObjCMethodDecl::Required);
3667     D->addInstanceMethod(DTORMethod);
3668     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3669     D->setHasDestructors(true);
3670   }
3671 
3672   // If the implementation doesn't have any ivar initializers, we don't need
3673   // a .cxx_construct.
3674   if (D->getNumIvarInitializers() == 0 ||
3675       AllTrivialInitializers(*this, D))
3676     return;
3677 
3678   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3679   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3680   // The constructor returns 'self'.
3681   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3682                                                 D->getLocation(),
3683                                                 D->getLocation(),
3684                                                 cxxSelector,
3685                                                 getContext().getObjCIdType(),
3686                                                 nullptr, D, /*isInstance=*/true,
3687                                                 /*isVariadic=*/false,
3688                                                 /*isPropertyAccessor=*/true,
3689                                                 /*isImplicitlyDeclared=*/true,
3690                                                 /*isDefined=*/false,
3691                                                 ObjCMethodDecl::Required);
3692   D->addInstanceMethod(CTORMethod);
3693   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3694   D->setHasNonZeroConstructors(true);
3695 }
3696 
3697 /// EmitNamespace - Emit all declarations in a namespace.
3698 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
3699   for (auto *I : ND->decls()) {
3700     if (const auto *VD = dyn_cast<VarDecl>(I))
3701       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3702           VD->getTemplateSpecializationKind() != TSK_Undeclared)
3703         continue;
3704     EmitTopLevelDecl(I);
3705   }
3706 }
3707 
3708 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3709 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3710   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3711       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3712     ErrorUnsupported(LSD, "linkage spec");
3713     return;
3714   }
3715 
3716   for (auto *I : LSD->decls()) {
3717     // Meta-data for ObjC class includes references to implemented methods.
3718     // Generate class's method definitions first.
3719     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3720       for (auto *M : OID->methods())
3721         EmitTopLevelDecl(M);
3722     }
3723     EmitTopLevelDecl(I);
3724   }
3725 }
3726 
3727 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3728 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3729   // Ignore dependent declarations.
3730   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3731     return;
3732 
3733   switch (D->getKind()) {
3734   case Decl::CXXConversion:
3735   case Decl::CXXMethod:
3736   case Decl::Function:
3737     // Skip function templates
3738     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3739         cast<FunctionDecl>(D)->isLateTemplateParsed())
3740       return;
3741 
3742     EmitGlobal(cast<FunctionDecl>(D));
3743     // Always provide some coverage mapping
3744     // even for the functions that aren't emitted.
3745     AddDeferredUnusedCoverageMapping(D);
3746     break;
3747 
3748   case Decl::Var:
3749     // Skip variable templates
3750     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3751       return;
3752   case Decl::VarTemplateSpecialization:
3753     EmitGlobal(cast<VarDecl>(D));
3754     break;
3755 
3756   // Indirect fields from global anonymous structs and unions can be
3757   // ignored; only the actual variable requires IR gen support.
3758   case Decl::IndirectField:
3759     break;
3760 
3761   // C++ Decls
3762   case Decl::Namespace:
3763     EmitNamespace(cast<NamespaceDecl>(D));
3764     break;
3765     // No code generation needed.
3766   case Decl::UsingShadow:
3767   case Decl::ClassTemplate:
3768   case Decl::VarTemplate:
3769   case Decl::VarTemplatePartialSpecialization:
3770   case Decl::FunctionTemplate:
3771   case Decl::TypeAliasTemplate:
3772   case Decl::Block:
3773   case Decl::Empty:
3774     break;
3775   case Decl::Using:          // using X; [C++]
3776     if (CGDebugInfo *DI = getModuleDebugInfo())
3777         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3778     return;
3779   case Decl::NamespaceAlias:
3780     if (CGDebugInfo *DI = getModuleDebugInfo())
3781         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3782     return;
3783   case Decl::UsingDirective: // using namespace X; [C++]
3784     if (CGDebugInfo *DI = getModuleDebugInfo())
3785       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3786     return;
3787   case Decl::CXXConstructor:
3788     // Skip function templates
3789     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3790         cast<FunctionDecl>(D)->isLateTemplateParsed())
3791       return;
3792 
3793     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3794     break;
3795   case Decl::CXXDestructor:
3796     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3797       return;
3798     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3799     break;
3800 
3801   case Decl::StaticAssert:
3802     // Nothing to do.
3803     break;
3804 
3805   // Objective-C Decls
3806 
3807   // Forward declarations, no (immediate) code generation.
3808   case Decl::ObjCInterface:
3809   case Decl::ObjCCategory:
3810     break;
3811 
3812   case Decl::ObjCProtocol: {
3813     auto *Proto = cast<ObjCProtocolDecl>(D);
3814     if (Proto->isThisDeclarationADefinition())
3815       ObjCRuntime->GenerateProtocol(Proto);
3816     break;
3817   }
3818 
3819   case Decl::ObjCCategoryImpl:
3820     // Categories have properties but don't support synthesize so we
3821     // can ignore them here.
3822     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3823     break;
3824 
3825   case Decl::ObjCImplementation: {
3826     auto *OMD = cast<ObjCImplementationDecl>(D);
3827     EmitObjCPropertyImplementations(OMD);
3828     EmitObjCIvarInitializations(OMD);
3829     ObjCRuntime->GenerateClass(OMD);
3830     // Emit global variable debug information.
3831     if (CGDebugInfo *DI = getModuleDebugInfo())
3832       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3833         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3834             OMD->getClassInterface()), OMD->getLocation());
3835     break;
3836   }
3837   case Decl::ObjCMethod: {
3838     auto *OMD = cast<ObjCMethodDecl>(D);
3839     // If this is not a prototype, emit the body.
3840     if (OMD->getBody())
3841       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3842     break;
3843   }
3844   case Decl::ObjCCompatibleAlias:
3845     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3846     break;
3847 
3848   case Decl::PragmaComment: {
3849     const auto *PCD = cast<PragmaCommentDecl>(D);
3850     switch (PCD->getCommentKind()) {
3851     case PCK_Unknown:
3852       llvm_unreachable("unexpected pragma comment kind");
3853     case PCK_Linker:
3854       AppendLinkerOptions(PCD->getArg());
3855       break;
3856     case PCK_Lib:
3857       AddDependentLib(PCD->getArg());
3858       break;
3859     case PCK_Compiler:
3860     case PCK_ExeStr:
3861     case PCK_User:
3862       break; // We ignore all of these.
3863     }
3864     break;
3865   }
3866 
3867   case Decl::PragmaDetectMismatch: {
3868     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
3869     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
3870     break;
3871   }
3872 
3873   case Decl::LinkageSpec:
3874     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3875     break;
3876 
3877   case Decl::FileScopeAsm: {
3878     // File-scope asm is ignored during device-side CUDA compilation.
3879     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3880       break;
3881     // File-scope asm is ignored during device-side OpenMP compilation.
3882     if (LangOpts.OpenMPIsDevice)
3883       break;
3884     auto *AD = cast<FileScopeAsmDecl>(D);
3885     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3886     break;
3887   }
3888 
3889   case Decl::Import: {
3890     auto *Import = cast<ImportDecl>(D);
3891 
3892     // Ignore import declarations that come from imported modules.
3893     if (Import->getImportedOwningModule())
3894       break;
3895     if (CGDebugInfo *DI = getModuleDebugInfo())
3896       DI->EmitImportDecl(*Import);
3897 
3898     ImportedModules.insert(Import->getImportedModule());
3899     break;
3900   }
3901 
3902   case Decl::OMPThreadPrivate:
3903     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3904     break;
3905 
3906   case Decl::ClassTemplateSpecialization: {
3907     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3908     if (DebugInfo &&
3909         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3910         Spec->hasDefinition())
3911       DebugInfo->completeTemplateDefinition(*Spec);
3912     break;
3913   }
3914 
3915   case Decl::OMPDeclareReduction:
3916     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
3917     break;
3918 
3919   default:
3920     // Make sure we handled everything we should, every other kind is a
3921     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3922     // function. Need to recode Decl::Kind to do that easily.
3923     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3924     break;
3925   }
3926 }
3927 
3928 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3929   // Do we need to generate coverage mapping?
3930   if (!CodeGenOpts.CoverageMapping)
3931     return;
3932   switch (D->getKind()) {
3933   case Decl::CXXConversion:
3934   case Decl::CXXMethod:
3935   case Decl::Function:
3936   case Decl::ObjCMethod:
3937   case Decl::CXXConstructor:
3938   case Decl::CXXDestructor: {
3939     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
3940       return;
3941     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3942     if (I == DeferredEmptyCoverageMappingDecls.end())
3943       DeferredEmptyCoverageMappingDecls[D] = true;
3944     break;
3945   }
3946   default:
3947     break;
3948   };
3949 }
3950 
3951 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3952   // Do we need to generate coverage mapping?
3953   if (!CodeGenOpts.CoverageMapping)
3954     return;
3955   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3956     if (Fn->isTemplateInstantiation())
3957       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3958   }
3959   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3960   if (I == DeferredEmptyCoverageMappingDecls.end())
3961     DeferredEmptyCoverageMappingDecls[D] = false;
3962   else
3963     I->second = false;
3964 }
3965 
3966 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3967   std::vector<const Decl *> DeferredDecls;
3968   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
3969     if (!I.second)
3970       continue;
3971     DeferredDecls.push_back(I.first);
3972   }
3973   // Sort the declarations by their location to make sure that the tests get a
3974   // predictable order for the coverage mapping for the unused declarations.
3975   if (CodeGenOpts.DumpCoverageMapping)
3976     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3977               [] (const Decl *LHS, const Decl *RHS) {
3978       return LHS->getLocStart() < RHS->getLocStart();
3979     });
3980   for (const auto *D : DeferredDecls) {
3981     switch (D->getKind()) {
3982     case Decl::CXXConversion:
3983     case Decl::CXXMethod:
3984     case Decl::Function:
3985     case Decl::ObjCMethod: {
3986       CodeGenPGO PGO(*this);
3987       GlobalDecl GD(cast<FunctionDecl>(D));
3988       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3989                                   getFunctionLinkage(GD));
3990       break;
3991     }
3992     case Decl::CXXConstructor: {
3993       CodeGenPGO PGO(*this);
3994       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3995       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3996                                   getFunctionLinkage(GD));
3997       break;
3998     }
3999     case Decl::CXXDestructor: {
4000       CodeGenPGO PGO(*this);
4001       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4002       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4003                                   getFunctionLinkage(GD));
4004       break;
4005     }
4006     default:
4007       break;
4008     };
4009   }
4010 }
4011 
4012 /// Turns the given pointer into a constant.
4013 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4014                                           const void *Ptr) {
4015   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4016   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4017   return llvm::ConstantInt::get(i64, PtrInt);
4018 }
4019 
4020 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4021                                    llvm::NamedMDNode *&GlobalMetadata,
4022                                    GlobalDecl D,
4023                                    llvm::GlobalValue *Addr) {
4024   if (!GlobalMetadata)
4025     GlobalMetadata =
4026       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4027 
4028   // TODO: should we report variant information for ctors/dtors?
4029   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4030                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4031                                CGM.getLLVMContext(), D.getDecl()))};
4032   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4033 }
4034 
4035 /// For each function which is declared within an extern "C" region and marked
4036 /// as 'used', but has internal linkage, create an alias from the unmangled
4037 /// name to the mangled name if possible. People expect to be able to refer
4038 /// to such functions with an unmangled name from inline assembly within the
4039 /// same translation unit.
4040 void CodeGenModule::EmitStaticExternCAliases() {
4041   // Don't do anything if we're generating CUDA device code -- the NVPTX
4042   // assembly target doesn't support aliases.
4043   if (Context.getTargetInfo().getTriple().isNVPTX())
4044     return;
4045   for (auto &I : StaticExternCValues) {
4046     IdentifierInfo *Name = I.first;
4047     llvm::GlobalValue *Val = I.second;
4048     if (Val && !getModule().getNamedValue(Name->getName()))
4049       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4050   }
4051 }
4052 
4053 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4054                                              GlobalDecl &Result) const {
4055   auto Res = Manglings.find(MangledName);
4056   if (Res == Manglings.end())
4057     return false;
4058   Result = Res->getValue();
4059   return true;
4060 }
4061 
4062 /// Emits metadata nodes associating all the global values in the
4063 /// current module with the Decls they came from.  This is useful for
4064 /// projects using IR gen as a subroutine.
4065 ///
4066 /// Since there's currently no way to associate an MDNode directly
4067 /// with an llvm::GlobalValue, we create a global named metadata
4068 /// with the name 'clang.global.decl.ptrs'.
4069 void CodeGenModule::EmitDeclMetadata() {
4070   llvm::NamedMDNode *GlobalMetadata = nullptr;
4071 
4072   for (auto &I : MangledDeclNames) {
4073     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4074     // Some mangled names don't necessarily have an associated GlobalValue
4075     // in this module, e.g. if we mangled it for DebugInfo.
4076     if (Addr)
4077       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4078   }
4079 }
4080 
4081 /// Emits metadata nodes for all the local variables in the current
4082 /// function.
4083 void CodeGenFunction::EmitDeclMetadata() {
4084   if (LocalDeclMap.empty()) return;
4085 
4086   llvm::LLVMContext &Context = getLLVMContext();
4087 
4088   // Find the unique metadata ID for this name.
4089   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4090 
4091   llvm::NamedMDNode *GlobalMetadata = nullptr;
4092 
4093   for (auto &I : LocalDeclMap) {
4094     const Decl *D = I.first;
4095     llvm::Value *Addr = I.second.getPointer();
4096     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4097       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4098       Alloca->setMetadata(
4099           DeclPtrKind, llvm::MDNode::get(
4100                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4101     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4102       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4103       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4104     }
4105   }
4106 }
4107 
4108 void CodeGenModule::EmitVersionIdentMetadata() {
4109   llvm::NamedMDNode *IdentMetadata =
4110     TheModule.getOrInsertNamedMetadata("llvm.ident");
4111   std::string Version = getClangFullVersion();
4112   llvm::LLVMContext &Ctx = TheModule.getContext();
4113 
4114   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4115   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4116 }
4117 
4118 void CodeGenModule::EmitTargetMetadata() {
4119   // Warning, new MangledDeclNames may be appended within this loop.
4120   // We rely on MapVector insertions adding new elements to the end
4121   // of the container.
4122   // FIXME: Move this loop into the one target that needs it, and only
4123   // loop over those declarations for which we couldn't emit the target
4124   // metadata when we emitted the declaration.
4125   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4126     auto Val = *(MangledDeclNames.begin() + I);
4127     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4128     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4129     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4130   }
4131 }
4132 
4133 void CodeGenModule::EmitCoverageFile() {
4134   if (!getCodeGenOpts().CoverageFile.empty()) {
4135     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
4136       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4137       llvm::LLVMContext &Ctx = TheModule.getContext();
4138       llvm::MDString *CoverageFile =
4139           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
4140       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4141         llvm::MDNode *CU = CUNode->getOperand(i);
4142         llvm::Metadata *Elts[] = {CoverageFile, CU};
4143         GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4144       }
4145     }
4146   }
4147 }
4148 
4149 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4150   // Sema has checked that all uuid strings are of the form
4151   // "12345678-1234-1234-1234-1234567890ab".
4152   assert(Uuid.size() == 36);
4153   for (unsigned i = 0; i < 36; ++i) {
4154     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4155     else                                         assert(isHexDigit(Uuid[i]));
4156   }
4157 
4158   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4159   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4160 
4161   llvm::Constant *Field3[8];
4162   for (unsigned Idx = 0; Idx < 8; ++Idx)
4163     Field3[Idx] = llvm::ConstantInt::get(
4164         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4165 
4166   llvm::Constant *Fields[4] = {
4167     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4168     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4169     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4170     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4171   };
4172 
4173   return llvm::ConstantStruct::getAnon(Fields);
4174 }
4175 
4176 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4177                                                        bool ForEH) {
4178   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4179   // FIXME: should we even be calling this method if RTTI is disabled
4180   // and it's not for EH?
4181   if (!ForEH && !getLangOpts().RTTI)
4182     return llvm::Constant::getNullValue(Int8PtrTy);
4183 
4184   if (ForEH && Ty->isObjCObjectPointerType() &&
4185       LangOpts.ObjCRuntime.isGNUFamily())
4186     return ObjCRuntime->GetEHType(Ty);
4187 
4188   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4189 }
4190 
4191 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4192   for (auto RefExpr : D->varlists()) {
4193     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4194     bool PerformInit =
4195         VD->getAnyInitializer() &&
4196         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4197                                                         /*ForRef=*/false);
4198 
4199     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4200     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4201             VD, Addr, RefExpr->getLocStart(), PerformInit))
4202       CXXGlobalInits.push_back(InitFunction);
4203   }
4204 }
4205 
4206 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4207   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4208   if (InternalId)
4209     return InternalId;
4210 
4211   if (isExternallyVisible(T->getLinkage())) {
4212     std::string OutName;
4213     llvm::raw_string_ostream Out(OutName);
4214     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4215 
4216     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4217   } else {
4218     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4219                                            llvm::ArrayRef<llvm::Metadata *>());
4220   }
4221 
4222   return InternalId;
4223 }
4224 
4225 /// Returns whether this module needs the "all-vtables" bitset.
4226 bool CodeGenModule::NeedAllVtablesBitSet() const {
4227   // Returns true if at least one of vtable-based CFI checkers is enabled and
4228   // is not in the trapping mode.
4229   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4230            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4231           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4232            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4233           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4234            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4235           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4236            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4237 }
4238 
4239 void CodeGenModule::CreateVTableBitSetEntry(llvm::NamedMDNode *BitsetsMD,
4240                                             llvm::GlobalVariable *VTable,
4241                                             CharUnits Offset,
4242                                             const CXXRecordDecl *RD) {
4243   llvm::Metadata *MD =
4244       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4245   llvm::Metadata *BitsetOps[] = {
4246       MD, llvm::ConstantAsMetadata::get(VTable),
4247       llvm::ConstantAsMetadata::get(
4248           llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
4249   BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
4250 
4251   if (CodeGenOpts.SanitizeCfiCrossDso) {
4252     if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) {
4253       llvm::Metadata *BitsetOps2[] = {
4254           llvm::ConstantAsMetadata::get(TypeId),
4255           llvm::ConstantAsMetadata::get(VTable),
4256           llvm::ConstantAsMetadata::get(
4257               llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
4258       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2));
4259     }
4260   }
4261 
4262   if (NeedAllVtablesBitSet()) {
4263     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4264     llvm::Metadata *BitsetOps[] = {
4265         MD, llvm::ConstantAsMetadata::get(VTable),
4266         llvm::ConstantAsMetadata::get(
4267             llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
4268     // Avoid adding a node to BitsetsMD twice.
4269     if (!llvm::MDTuple::getIfExists(getLLVMContext(), BitsetOps))
4270       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
4271   }
4272 }
4273 
4274 // Fills in the supplied string map with the set of target features for the
4275 // passed in function.
4276 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4277                                           const FunctionDecl *FD) {
4278   StringRef TargetCPU = Target.getTargetOpts().CPU;
4279   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4280     // If we have a TargetAttr build up the feature map based on that.
4281     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4282 
4283     // Make a copy of the features as passed on the command line into the
4284     // beginning of the additional features from the function to override.
4285     ParsedAttr.first.insert(ParsedAttr.first.begin(),
4286                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4287                             Target.getTargetOpts().FeaturesAsWritten.end());
4288 
4289     if (ParsedAttr.second != "")
4290       TargetCPU = ParsedAttr.second;
4291 
4292     // Now populate the feature map, first with the TargetCPU which is either
4293     // the default or a new one from the target attribute string. Then we'll use
4294     // the passed in features (FeaturesAsWritten) along with the new ones from
4295     // the attribute.
4296     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4297   } else {
4298     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4299                           Target.getTargetOpts().Features);
4300   }
4301 }
4302 
4303 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4304   if (!SanStats)
4305     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4306 
4307   return *SanStats;
4308 }
4309