1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Diagnostic.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Basic/ConvertUTF.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Module.h"
30 #include "llvm/Intrinsics.h"
31 #include "llvm/Target/TargetData.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 
36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
37                              llvm::Module &M, const llvm::TargetData &TD,
38                              Diagnostic &diags)
39   : BlockModule(C, M, TD, Types, *this), Context(C),
40     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
41     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
42     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
43 
44   if (!Features.ObjC1)
45     Runtime = 0;
46   else if (!Features.NeXTRuntime)
47     Runtime = CreateGNUObjCRuntime(*this);
48   else if (Features.ObjCNonFragileABI)
49     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
50   else
51     Runtime = CreateMacObjCRuntime(*this);
52 
53   // If debug info generation is enabled, create the CGDebugInfo object.
54   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
55 }
56 
57 CodeGenModule::~CodeGenModule() {
58   delete Runtime;
59   delete DebugInfo;
60 }
61 
62 void CodeGenModule::Release() {
63   EmitDeferred();
64   if (Runtime)
65     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
66       AddGlobalCtor(ObjCInitFunction);
67   EmitCtorList(GlobalCtors, "llvm.global_ctors");
68   EmitCtorList(GlobalDtors, "llvm.global_dtors");
69   EmitAnnotations();
70   EmitLLVMUsed();
71 }
72 
73 /// ErrorUnsupported - Print out an error that codegen doesn't support the
74 /// specified stmt yet.
75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
76                                      bool OmitOnError) {
77   if (OmitOnError && getDiags().hasErrorOccurred())
78     return;
79   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
80                                                "cannot compile this %0 yet");
81   std::string Msg = Type;
82   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
83     << Msg << S->getSourceRange();
84 }
85 
86 /// ErrorUnsupported - Print out an error that codegen doesn't support the
87 /// specified decl yet.
88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
89                                      bool OmitOnError) {
90   if (OmitOnError && getDiags().hasErrorOccurred())
91     return;
92   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
93                                                "cannot compile this %0 yet");
94   std::string Msg = Type;
95   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
96 }
97 
98 LangOptions::VisibilityMode
99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
100   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
101     if (VD->getStorageClass() == VarDecl::PrivateExtern)
102       return LangOptions::Hidden;
103 
104   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
105     switch (attr->getVisibility()) {
106     default: assert(0 && "Unknown visibility!");
107     case VisibilityAttr::DefaultVisibility:
108       return LangOptions::Default;
109     case VisibilityAttr::HiddenVisibility:
110       return LangOptions::Hidden;
111     case VisibilityAttr::ProtectedVisibility:
112       return LangOptions::Protected;
113     }
114   }
115 
116   return getLangOptions().getVisibilityMode();
117 }
118 
119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
120                                         const Decl *D) const {
121   // Internal definitions always have default visibility.
122   if (GV->hasLocalLinkage()) {
123     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
124     return;
125   }
126 
127   switch (getDeclVisibilityMode(D)) {
128   default: assert(0 && "Unknown visibility!");
129   case LangOptions::Default:
130     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131   case LangOptions::Hidden:
132     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
133   case LangOptions::Protected:
134     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
135   }
136 }
137 
138 /// \brief Retrieves the mangled name for the given declaration.
139 ///
140 /// If the given declaration requires a mangled name, returns an
141 /// const char* containing the mangled name.  Otherwise, returns
142 /// the unmangled name.
143 ///
144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
145   // In C, functions with no attributes never need to be mangled. Fastpath them.
146   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
147     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
148     return ND->getNameAsCString();
149   }
150 
151   llvm::SmallString<256> Name;
152   llvm::raw_svector_ostream Out(Name);
153   if (!mangleName(ND, Context, Out)) {
154     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
155     return ND->getNameAsCString();
156   }
157 
158   Name += '\0';
159   return UniqueMangledName(Name.begin(), Name.end());
160 }
161 
162 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
163                                              const char *NameEnd) {
164   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
165 
166   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
167 }
168 
169 /// AddGlobalCtor - Add a function to the list that will be called before
170 /// main() runs.
171 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
172   // FIXME: Type coercion of void()* types.
173   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
174 }
175 
176 /// AddGlobalDtor - Add a function to the list that will be called
177 /// when the module is unloaded.
178 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
179   // FIXME: Type coercion of void()* types.
180   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
181 }
182 
183 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
184   // Ctor function type is void()*.
185   llvm::FunctionType* CtorFTy =
186     llvm::FunctionType::get(llvm::Type::VoidTy,
187                             std::vector<const llvm::Type*>(),
188                             false);
189   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
190 
191   // Get the type of a ctor entry, { i32, void ()* }.
192   llvm::StructType* CtorStructTy =
193     llvm::StructType::get(llvm::Type::Int32Ty,
194                           llvm::PointerType::getUnqual(CtorFTy), NULL);
195 
196   // Construct the constructor and destructor arrays.
197   std::vector<llvm::Constant*> Ctors;
198   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
199     std::vector<llvm::Constant*> S;
200     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
201     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
202     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
203   }
204 
205   if (!Ctors.empty()) {
206     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
207     new llvm::GlobalVariable(AT, false,
208                              llvm::GlobalValue::AppendingLinkage,
209                              llvm::ConstantArray::get(AT, Ctors),
210                              GlobalName,
211                              &TheModule);
212   }
213 }
214 
215 void CodeGenModule::EmitAnnotations() {
216   if (Annotations.empty())
217     return;
218 
219   // Create a new global variable for the ConstantStruct in the Module.
220   llvm::Constant *Array =
221   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
222                                                 Annotations.size()),
223                            Annotations);
224   llvm::GlobalValue *gv =
225   new llvm::GlobalVariable(Array->getType(), false,
226                            llvm::GlobalValue::AppendingLinkage, Array,
227                            "llvm.global.annotations", &TheModule);
228   gv->setSection("llvm.metadata");
229 }
230 
231 static CodeGenModule::GVALinkage
232 GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) {
233   // "static" and attr(always_inline) functions get internal linkage.
234   if (FD->getStorageClass() == FunctionDecl::Static)
235     return CodeGenModule::GVA_Internal;
236 
237   if (!FD->isInline())
238     return CodeGenModule::GVA_StrongExternal;
239 
240   // If the inline function explicitly has the GNU inline attribute on it, or if
241   // this is C89 mode, we use to GNU semantics.
242   if (!Features.C99 && !Features.CPlusPlus) {
243     // extern inline in GNU mode is like C99 inline.
244     if (FD->getStorageClass() == FunctionDecl::Extern)
245       return CodeGenModule::GVA_C99Inline;
246     // Normal inline is a strong symbol.
247     return CodeGenModule::GVA_StrongExternal;
248   } else if (FD->hasActiveGNUInlineAttribute()) {
249     // GCC in C99 mode seems to use a different decision-making
250     // process for extern inline, which factors in previous
251     // declarations.
252     if (FD->isExternGNUInline())
253       return CodeGenModule::GVA_C99Inline;
254     // Normal inline is a strong symbol.
255     return CodeGenModule::GVA_StrongExternal;
256   }
257 
258   // The definition of inline changes based on the language.  Note that we
259   // have already handled "static inline" above, with the GVA_Internal case.
260   if (Features.CPlusPlus)  // inline and extern inline.
261     return CodeGenModule::GVA_CXXInline;
262 
263   assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
264   if (FD->isC99InlineDefinition())
265     return CodeGenModule::GVA_C99Inline;
266 
267   return CodeGenModule::GVA_StrongExternal;
268 }
269 
270 /// SetFunctionDefinitionAttributes - Set attributes for a global.
271 ///
272 /// FIXME: This is currently only done for aliases and functions, but
273 /// not for variables (these details are set in
274 /// EmitGlobalVarDefinition for variables).
275 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
276                                                     llvm::GlobalValue *GV) {
277   GVALinkage Linkage = GetLinkageForFunction(D, Features);
278 
279   if (Linkage == GVA_Internal) {
280     GV->setLinkage(llvm::Function::InternalLinkage);
281   } else if (D->hasAttr<DLLExportAttr>()) {
282     GV->setLinkage(llvm::Function::DLLExportLinkage);
283   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
284     GV->setLinkage(llvm::Function::WeakAnyLinkage);
285   } else if (Linkage == GVA_C99Inline) {
286     // In C99 mode, 'inline' functions are guaranteed to have a strong
287     // definition somewhere else, so we can use available_externally linkage.
288     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
289   } else if (Linkage == GVA_CXXInline) {
290     // In C++, the compiler has to emit a definition in every translation unit
291     // that references the function.  We should use linkonce_odr because
292     // a) if all references in this translation unit are optimized away, we
293     // don't need to codegen it.  b) if the function persists, it needs to be
294     // merged with other definitions. c) C++ has the ODR, so we know the
295     // definition is dependable.
296     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
297   } else {
298     assert(Linkage == GVA_StrongExternal);
299     // Otherwise, we have strong external linkage.
300     GV->setLinkage(llvm::Function::ExternalLinkage);
301   }
302 
303   SetCommonAttributes(D, GV);
304 }
305 
306 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
307                                               const CGFunctionInfo &Info,
308                                               llvm::Function *F) {
309   AttributeListType AttributeList;
310   ConstructAttributeList(Info, D, AttributeList);
311 
312   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
313                                         AttributeList.size()));
314 
315   // Set the appropriate calling convention for the Function.
316   if (D->hasAttr<FastCallAttr>())
317     F->setCallingConv(llvm::CallingConv::X86_FastCall);
318 
319   if (D->hasAttr<StdCallAttr>())
320     F->setCallingConv(llvm::CallingConv::X86_StdCall);
321 }
322 
323 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
324                                                            llvm::Function *F) {
325   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
326     F->addFnAttr(llvm::Attribute::NoUnwind);
327 
328   if (D->hasAttr<AlwaysInlineAttr>())
329     F->addFnAttr(llvm::Attribute::AlwaysInline);
330 
331   if (D->hasAttr<NoinlineAttr>())
332     F->addFnAttr(llvm::Attribute::NoInline);
333 }
334 
335 void CodeGenModule::SetCommonAttributes(const Decl *D,
336                                         llvm::GlobalValue *GV) {
337   setGlobalVisibility(GV, D);
338 
339   if (D->hasAttr<UsedAttr>())
340     AddUsedGlobal(GV);
341 
342   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
343     GV->setSection(SA->getName());
344 }
345 
346 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
347                                                   llvm::Function *F,
348                                                   const CGFunctionInfo &FI) {
349   SetLLVMFunctionAttributes(D, FI, F);
350   SetLLVMFunctionAttributesForDefinition(D, F);
351 
352   F->setLinkage(llvm::Function::InternalLinkage);
353 
354   SetCommonAttributes(D, F);
355 }
356 
357 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
358                                           llvm::Function *F) {
359   SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
360 
361   // Only a few attributes are set on declarations; these may later be
362   // overridden by a definition.
363 
364   if (FD->hasAttr<DLLImportAttr>()) {
365     F->setLinkage(llvm::Function::DLLImportLinkage);
366   } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) {
367     // "extern_weak" is overloaded in LLVM; we probably should have
368     // separate linkage types for this.
369     F->setLinkage(llvm::Function::ExternalWeakLinkage);
370   } else {
371     F->setLinkage(llvm::Function::ExternalLinkage);
372   }
373 
374   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
375     F->setSection(SA->getName());
376 }
377 
378 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
379   assert(!GV->isDeclaration() &&
380          "Only globals with definition can force usage.");
381   LLVMUsed.push_back(GV);
382 }
383 
384 void CodeGenModule::EmitLLVMUsed() {
385   // Don't create llvm.used if there is no need.
386   if (LLVMUsed.empty())
387     return;
388 
389   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
390   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size());
391 
392   // Convert LLVMUsed to what ConstantArray needs.
393   std::vector<llvm::Constant*> UsedArray;
394   UsedArray.resize(LLVMUsed.size());
395   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
396     UsedArray[i] =
397      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
398   }
399 
400   llvm::GlobalVariable *GV =
401     new llvm::GlobalVariable(ATy, false,
402                              llvm::GlobalValue::AppendingLinkage,
403                              llvm::ConstantArray::get(ATy, UsedArray),
404                              "llvm.used", &getModule());
405 
406   GV->setSection("llvm.metadata");
407 }
408 
409 void CodeGenModule::EmitDeferred() {
410   // Emit code for any potentially referenced deferred decls.  Since a
411   // previously unused static decl may become used during the generation of code
412   // for a static function, iterate until no  changes are made.
413   while (!DeferredDeclsToEmit.empty()) {
414     const ValueDecl *D = DeferredDeclsToEmit.back();
415     DeferredDeclsToEmit.pop_back();
416 
417     // The mangled name for the decl must have been emitted in GlobalDeclMap.
418     // Look it up to see if it was defined with a stronger definition (e.g. an
419     // extern inline function with a strong function redefinition).  If so,
420     // just ignore the deferred decl.
421     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
422     assert(CGRef && "Deferred decl wasn't referenced?");
423 
424     if (!CGRef->isDeclaration())
425       continue;
426 
427     // Otherwise, emit the definition and move on to the next one.
428     EmitGlobalDefinition(D);
429   }
430 }
431 
432 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
433 /// annotation information for a given GlobalValue.  The annotation struct is
434 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
435 /// GlobalValue being annotated.  The second field is the constant string
436 /// created from the AnnotateAttr's annotation.  The third field is a constant
437 /// string containing the name of the translation unit.  The fourth field is
438 /// the line number in the file of the annotated value declaration.
439 ///
440 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
441 ///        appears to.
442 ///
443 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
444                                                 const AnnotateAttr *AA,
445                                                 unsigned LineNo) {
446   llvm::Module *M = &getModule();
447 
448   // get [N x i8] constants for the annotation string, and the filename string
449   // which are the 2nd and 3rd elements of the global annotation structure.
450   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
451   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
452   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
453                                                   true);
454 
455   // Get the two global values corresponding to the ConstantArrays we just
456   // created to hold the bytes of the strings.
457   const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
458   llvm::GlobalValue *annoGV =
459   new llvm::GlobalVariable(anno->getType(), false,
460                            llvm::GlobalValue::InternalLinkage, anno,
461                            GV->getName() + StringPrefix, M);
462   // translation unit name string, emitted into the llvm.metadata section.
463   llvm::GlobalValue *unitGV =
464   new llvm::GlobalVariable(unit->getType(), false,
465                            llvm::GlobalValue::InternalLinkage, unit,
466                            StringPrefix, M);
467 
468   // Create the ConstantStruct for the global annotation.
469   llvm::Constant *Fields[4] = {
470     llvm::ConstantExpr::getBitCast(GV, SBP),
471     llvm::ConstantExpr::getBitCast(annoGV, SBP),
472     llvm::ConstantExpr::getBitCast(unitGV, SBP),
473     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
474   };
475   return llvm::ConstantStruct::get(Fields, 4, false);
476 }
477 
478 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
479   // Never defer when EmitAllDecls is specified or the decl has
480   // attribute used.
481   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
482     return false;
483 
484   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
485     // Constructors and destructors should never be deferred.
486     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
487       return false;
488 
489     GVALinkage Linkage = GetLinkageForFunction(FD, Features);
490 
491     // static, static inline, always_inline, and extern inline functions can
492     // always be deferred.  Normal inline functions can be deferred in C99/C++.
493     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
494         Linkage == GVA_CXXInline)
495       return true;
496     return false;
497   }
498 
499   const VarDecl *VD = cast<VarDecl>(Global);
500   assert(VD->isFileVarDecl() && "Invalid decl");
501 
502   return VD->getStorageClass() == VarDecl::Static;
503 }
504 
505 void CodeGenModule::EmitGlobal(const ValueDecl *Global) {
506   // If this is an alias definition (which otherwise looks like a declaration)
507   // emit it now.
508   if (Global->hasAttr<AliasAttr>())
509     return EmitAliasDefinition(Global);
510 
511   // Ignore declarations, they will be emitted on their first use.
512   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
513     // Forward declarations are emitted lazily on first use.
514     if (!FD->isThisDeclarationADefinition())
515       return;
516   } else {
517     const VarDecl *VD = cast<VarDecl>(Global);
518     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
519 
520     // In C++, if this is marked "extern", defer code generation.
521     if (getLangOptions().CPlusPlus &&
522         VD->getStorageClass() == VarDecl::Extern && !VD->getInit())
523       return;
524 
525     // In C, if this isn't a definition, defer code generation.
526     if (!getLangOptions().CPlusPlus && !VD->getInit())
527       return;
528   }
529 
530   // Defer code generation when possible if this is a static definition, inline
531   // function etc.  These we only want to emit if they are used.
532   if (MayDeferGeneration(Global)) {
533     // If the value has already been used, add it directly to the
534     // DeferredDeclsToEmit list.
535     const char *MangledName = getMangledName(Global);
536     if (GlobalDeclMap.count(MangledName))
537       DeferredDeclsToEmit.push_back(Global);
538     else {
539       // Otherwise, remember that we saw a deferred decl with this name.  The
540       // first use of the mangled name will cause it to move into
541       // DeferredDeclsToEmit.
542       DeferredDecls[MangledName] = Global;
543     }
544     return;
545   }
546 
547   // Otherwise emit the definition.
548   EmitGlobalDefinition(Global);
549 }
550 
551 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) {
552   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
553     EmitGlobalFunctionDefinition(FD);
554   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
555     EmitGlobalVarDefinition(VD);
556   } else {
557     assert(0 && "Invalid argument to EmitGlobalDefinition()");
558   }
559 }
560 
561 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
562 /// module, create and return an llvm Function with the specified type. If there
563 /// is something in the module with the specified name, return it potentially
564 /// bitcasted to the right type.
565 ///
566 /// If D is non-null, it specifies a decl that correspond to this.  This is used
567 /// to set the attributes on the function when it is first created.
568 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
569                                                        const llvm::Type *Ty,
570                                                        const FunctionDecl *D) {
571   // Lookup the entry, lazily creating it if necessary.
572   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
573   if (Entry) {
574     if (Entry->getType()->getElementType() == Ty)
575       return Entry;
576 
577     // Make sure the result is of the correct type.
578     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
579     return llvm::ConstantExpr::getBitCast(Entry, PTy);
580   }
581 
582   // This is the first use or definition of a mangled name.  If there is a
583   // deferred decl with this name, remember that we need to emit it at the end
584   // of the file.
585   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
586   DeferredDecls.find(MangledName);
587   if (DDI != DeferredDecls.end()) {
588     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
589     // list, and remove it from DeferredDecls (since we don't need it anymore).
590     DeferredDeclsToEmit.push_back(DDI->second);
591     DeferredDecls.erase(DDI);
592   }
593 
594   // This function doesn't have a complete type (for example, the return
595   // type is an incomplete struct). Use a fake type instead, and make
596   // sure not to try to set attributes.
597   bool ShouldSetAttributes = true;
598   if (!isa<llvm::FunctionType>(Ty)) {
599     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
600                                  std::vector<const llvm::Type*>(), false);
601     ShouldSetAttributes = false;
602   }
603   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
604                                              llvm::Function::ExternalLinkage,
605                                              "", &getModule());
606   F->setName(MangledName);
607   if (D && ShouldSetAttributes)
608     SetFunctionAttributes(D, F);
609   Entry = F;
610   return F;
611 }
612 
613 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
614 /// non-null, then this function will use the specified type if it has to
615 /// create it (this occurs when we see a definition of the function).
616 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D,
617                                                  const llvm::Type *Ty) {
618   // If there was no specific requested type, just convert it now.
619   if (!Ty)
620     Ty = getTypes().ConvertType(D->getType());
621   return GetOrCreateLLVMFunction(getMangledName(D), Ty, D);
622 }
623 
624 /// CreateRuntimeFunction - Create a new runtime function with the specified
625 /// type and name.
626 llvm::Constant *
627 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
628                                      const char *Name) {
629   // Convert Name to be a uniqued string from the IdentifierInfo table.
630   Name = getContext().Idents.get(Name).getName();
631   return GetOrCreateLLVMFunction(Name, FTy, 0);
632 }
633 
634 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
635 /// create and return an llvm GlobalVariable with the specified type.  If there
636 /// is something in the module with the specified name, return it potentially
637 /// bitcasted to the right type.
638 ///
639 /// If D is non-null, it specifies a decl that correspond to this.  This is used
640 /// to set the attributes on the global when it is first created.
641 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
642                                                      const llvm::PointerType*Ty,
643                                                      const VarDecl *D) {
644   // Lookup the entry, lazily creating it if necessary.
645   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
646   if (Entry) {
647     if (Entry->getType() == Ty)
648       return Entry;
649 
650     // Make sure the result is of the correct type.
651     return llvm::ConstantExpr::getBitCast(Entry, Ty);
652   }
653 
654   // This is the first use or definition of a mangled name.  If there is a
655   // deferred decl with this name, remember that we need to emit it at the end
656   // of the file.
657   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
658     DeferredDecls.find(MangledName);
659   if (DDI != DeferredDecls.end()) {
660     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
661     // list, and remove it from DeferredDecls (since we don't need it anymore).
662     DeferredDeclsToEmit.push_back(DDI->second);
663     DeferredDecls.erase(DDI);
664   }
665 
666   llvm::GlobalVariable *GV =
667     new llvm::GlobalVariable(Ty->getElementType(), false,
668                              llvm::GlobalValue::ExternalLinkage,
669                              0, "", &getModule(),
670                              false, Ty->getAddressSpace());
671   GV->setName(MangledName);
672 
673   // Handle things which are present even on external declarations.
674   if (D) {
675     // FIXME: This code is overly simple and should be merged with
676     // other global handling.
677     GV->setConstant(D->getType().isConstant(Context));
678 
679     // FIXME: Merge with other attribute handling code.
680     if (D->getStorageClass() == VarDecl::PrivateExtern)
681       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
682 
683     if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
684       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
685 
686     GV->setThreadLocal(D->isThreadSpecified());
687   }
688 
689   return Entry = GV;
690 }
691 
692 
693 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
694 /// given global variable.  If Ty is non-null and if the global doesn't exist,
695 /// then it will be greated with the specified type instead of whatever the
696 /// normal requested type would be.
697 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
698                                                   const llvm::Type *Ty) {
699   assert(D->hasGlobalStorage() && "Not a global variable");
700   QualType ASTTy = D->getType();
701   if (Ty == 0)
702     Ty = getTypes().ConvertTypeForMem(ASTTy);
703 
704   const llvm::PointerType *PTy =
705     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
706   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
707 }
708 
709 /// CreateRuntimeVariable - Create a new runtime global variable with the
710 /// specified type and name.
711 llvm::Constant *
712 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
713                                      const char *Name) {
714   // Convert Name to be a uniqued string from the IdentifierInfo table.
715   Name = getContext().Idents.get(Name).getName();
716   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
717 }
718 
719 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
720   assert(!D->getInit() && "Cannot emit definite definitions here!");
721 
722   if (MayDeferGeneration(D)) {
723     // If we have not seen a reference to this variable yet, place it
724     // into the deferred declarations table to be emitted if needed
725     // later.
726     const char *MangledName = getMangledName(D);
727     if (GlobalDeclMap.count(MangledName) == 0) {
728       DeferredDecls[MangledName] = D;
729       return;
730     }
731   }
732 
733   // The tentative definition is the only definition.
734   EmitGlobalVarDefinition(D);
735 }
736 
737 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
738   llvm::Constant *Init = 0;
739   QualType ASTTy = D->getType();
740 
741   if (D->getInit() == 0) {
742     // This is a tentative definition; tentative definitions are
743     // implicitly initialized with { 0 }.
744     //
745     // Note that tentative definitions are only emitted at the end of
746     // a translation unit, so they should never have incomplete
747     // type. In addition, EmitTentativeDefinition makes sure that we
748     // never attempt to emit a tentative definition if a real one
749     // exists. A use may still exists, however, so we still may need
750     // to do a RAUW.
751     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
752     Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy));
753   } else {
754     Init = EmitConstantExpr(D->getInit(), D->getType());
755     if (!Init) {
756       ErrorUnsupported(D, "static initializer");
757       QualType T = D->getInit()->getType();
758       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
759     }
760   }
761 
762   const llvm::Type* InitType = Init->getType();
763   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
764 
765   // Strip off a bitcast if we got one back.
766   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
767     assert(CE->getOpcode() == llvm::Instruction::BitCast);
768     Entry = CE->getOperand(0);
769   }
770 
771   // Entry is now either a Function or GlobalVariable.
772   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
773 
774   // We have a definition after a declaration with the wrong type.
775   // We must make a new GlobalVariable* and update everything that used OldGV
776   // (a declaration or tentative definition) with the new GlobalVariable*
777   // (which will be a definition).
778   //
779   // This happens if there is a prototype for a global (e.g.
780   // "extern int x[];") and then a definition of a different type (e.g.
781   // "int x[10];"). This also happens when an initializer has a different type
782   // from the type of the global (this happens with unions).
783   if (GV == 0 ||
784       GV->getType()->getElementType() != InitType ||
785       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
786 
787     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
788     GlobalDeclMap.erase(getMangledName(D));
789 
790     // Make a new global with the correct type, this is now guaranteed to work.
791     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
792     GV->takeName(cast<llvm::GlobalValue>(Entry));
793 
794     // Replace all uses of the old global with the new global
795     llvm::Constant *NewPtrForOldDecl =
796         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
797     Entry->replaceAllUsesWith(NewPtrForOldDecl);
798 
799     // Erase the old global, since it is no longer used.
800     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
801   }
802 
803   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
804     SourceManager &SM = Context.getSourceManager();
805     AddAnnotation(EmitAnnotateAttr(GV, AA,
806                               SM.getInstantiationLineNumber(D->getLocation())));
807   }
808 
809   GV->setInitializer(Init);
810   GV->setConstant(D->getType().isConstant(Context));
811   GV->setAlignment(getContext().getDeclAlignInBytes(D));
812 
813   // Set the llvm linkage type as appropriate.
814   if (D->getStorageClass() == VarDecl::Static)
815     GV->setLinkage(llvm::Function::InternalLinkage);
816   else if (D->hasAttr<DLLImportAttr>())
817     GV->setLinkage(llvm::Function::DLLImportLinkage);
818   else if (D->hasAttr<DLLExportAttr>())
819     GV->setLinkage(llvm::Function::DLLExportLinkage);
820   else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
821     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
822   else if (!CompileOpts.NoCommon &&
823            (!D->hasExternalStorage() && !D->getInit()))
824     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
825   else
826     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
827 
828   SetCommonAttributes(D, GV);
829 
830   // Emit global variable debug information.
831   if (CGDebugInfo *DI = getDebugInfo()) {
832     DI->setLocation(D->getLocation());
833     DI->EmitGlobalVariable(GV, D);
834   }
835 }
836 
837 
838 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) {
839   const llvm::FunctionType *Ty;
840 
841   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
842     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
843 
844     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
845   } else {
846     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
847 
848     // As a special case, make sure that definitions of K&R function
849     // "type foo()" aren't declared as varargs (which forces the backend
850     // to do unnecessary work).
851     if (D->getType()->isFunctionNoProtoType()) {
852       assert(Ty->isVarArg() && "Didn't lower type as expected");
853       // Due to stret, the lowered function could have arguments.
854       // Just create the same type as was lowered by ConvertType
855       // but strip off the varargs bit.
856       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
857       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
858     }
859   }
860 
861   // Get or create the prototype for teh function.
862   llvm::Constant *Entry = GetAddrOfFunction(D, Ty);
863 
864   // Strip off a bitcast if we got one back.
865   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
866     assert(CE->getOpcode() == llvm::Instruction::BitCast);
867     Entry = CE->getOperand(0);
868   }
869 
870 
871   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
872     // If the types mismatch then we have to rewrite the definition.
873     assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() &&
874            "Shouldn't replace non-declaration");
875 
876     // F is the Function* for the one with the wrong type, we must make a new
877     // Function* and update everything that used F (a declaration) with the new
878     // Function* (which will be a definition).
879     //
880     // This happens if there is a prototype for a function
881     // (e.g. "int f()") and then a definition of a different type
882     // (e.g. "int f(int x)").  Start by making a new function of the
883     // correct type, RAUW, then steal the name.
884     GlobalDeclMap.erase(getMangledName(D));
885     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty));
886     NewFn->takeName(cast<llvm::GlobalValue>(Entry));
887 
888     // Replace uses of F with the Function we will endow with a body.
889     llvm::Constant *NewPtrForOldDecl =
890       llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
891     Entry->replaceAllUsesWith(NewPtrForOldDecl);
892 
893     // Ok, delete the old function now, which is dead.
894     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
895 
896     Entry = NewFn;
897   }
898 
899   llvm::Function *Fn = cast<llvm::Function>(Entry);
900 
901   CodeGenFunction(*this).GenerateCode(D, Fn);
902 
903   SetFunctionDefinitionAttributes(D, Fn);
904   SetLLVMFunctionAttributesForDefinition(D, Fn);
905 
906   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
907     AddGlobalCtor(Fn, CA->getPriority());
908   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
909     AddGlobalDtor(Fn, DA->getPriority());
910 }
911 
912 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
913   const AliasAttr *AA = D->getAttr<AliasAttr>();
914   assert(AA && "Not an alias?");
915 
916   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
917 
918   // Unique the name through the identifier table.
919   const char *AliaseeName = AA->getAliasee().c_str();
920   AliaseeName = getContext().Idents.get(AliaseeName).getName();
921 
922   // Create a reference to the named value.  This ensures that it is emitted
923   // if a deferred decl.
924   llvm::Constant *Aliasee;
925   if (isa<llvm::FunctionType>(DeclTy))
926     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0);
927   else
928     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
929                                     llvm::PointerType::getUnqual(DeclTy), 0);
930 
931   // Create the new alias itself, but don't set a name yet.
932   llvm::GlobalValue *GA =
933     new llvm::GlobalAlias(Aliasee->getType(),
934                           llvm::Function::ExternalLinkage,
935                           "", Aliasee, &getModule());
936 
937   // See if there is already something with the alias' name in the module.
938   const char *MangledName = getMangledName(D);
939   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
940 
941   if (Entry && !Entry->isDeclaration()) {
942     // If there is a definition in the module, then it wins over the alias.
943     // This is dubious, but allow it to be safe.  Just ignore the alias.
944     GA->eraseFromParent();
945     return;
946   }
947 
948   if (Entry) {
949     // If there is a declaration in the module, then we had an extern followed
950     // by the alias, as in:
951     //   extern int test6();
952     //   ...
953     //   int test6() __attribute__((alias("test7")));
954     //
955     // Remove it and replace uses of it with the alias.
956 
957     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
958                                                           Entry->getType()));
959     Entry->eraseFromParent();
960   }
961 
962   // Now we know that there is no conflict, set the name.
963   Entry = GA;
964   GA->setName(MangledName);
965 
966   // Set attributes which are particular to an alias; this is a
967   // specialization of the attributes which may be set on a global
968   // variable/function.
969   if (D->hasAttr<DLLExportAttr>()) {
970     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
971       // The dllexport attribute is ignored for undefined symbols.
972       if (FD->getBody(getContext()))
973         GA->setLinkage(llvm::Function::DLLExportLinkage);
974     } else {
975       GA->setLinkage(llvm::Function::DLLExportLinkage);
976     }
977   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
978     GA->setLinkage(llvm::Function::WeakAnyLinkage);
979   }
980 
981   SetCommonAttributes(D, GA);
982 }
983 
984 /// getBuiltinLibFunction - Given a builtin id for a function like
985 /// "__builtin_fabsf", return a Function* for "fabsf".
986 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
987   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
988           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
989          "isn't a lib fn");
990 
991   // Get the name, skip over the __builtin_ prefix (if necessary).
992   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
993   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
994     Name += 10;
995 
996   // Get the type for the builtin.
997   Builtin::Context::GetBuiltinTypeError Error;
998   QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error);
999   assert(Error == Builtin::Context::GE_None && "Can't get builtin type");
1000 
1001   const llvm::FunctionType *Ty =
1002     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1003 
1004   // Unique the name through the identifier table.
1005   Name = getContext().Idents.get(Name).getName();
1006   // FIXME: param attributes for sext/zext etc.
1007   return GetOrCreateLLVMFunction(Name, Ty, 0);
1008 }
1009 
1010 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1011                                             unsigned NumTys) {
1012   return llvm::Intrinsic::getDeclaration(&getModule(),
1013                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1014 }
1015 
1016 llvm::Function *CodeGenModule::getMemCpyFn() {
1017   if (MemCpyFn) return MemCpyFn;
1018   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1019   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1020 }
1021 
1022 llvm::Function *CodeGenModule::getMemMoveFn() {
1023   if (MemMoveFn) return MemMoveFn;
1024   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1025   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1026 }
1027 
1028 llvm::Function *CodeGenModule::getMemSetFn() {
1029   if (MemSetFn) return MemSetFn;
1030   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1031   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1032 }
1033 
1034 static void appendFieldAndPadding(CodeGenModule &CGM,
1035                                   std::vector<llvm::Constant*>& Fields,
1036                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1037                                   llvm::Constant* Field,
1038                                   RecordDecl* RD, const llvm::StructType *STy) {
1039   // Append the field.
1040   Fields.push_back(Field);
1041 
1042   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1043 
1044   int NextStructFieldNo;
1045   if (!NextFieldD) {
1046     NextStructFieldNo = STy->getNumElements();
1047   } else {
1048     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1049   }
1050 
1051   // Append padding
1052   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1053     llvm::Constant *C =
1054       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1055 
1056     Fields.push_back(C);
1057   }
1058 }
1059 
1060 llvm::Constant *CodeGenModule::
1061 GetAddrOfConstantCFString(const StringLiteral *Literal) {
1062   std::string str;
1063   unsigned StringLength = 0;
1064 
1065   bool isUTF16 = false;
1066   if (Literal->containsNonAsciiOrNull()) {
1067     // Convert from UTF-8 to UTF-16.
1068     llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1069     const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1070     UTF16 *ToPtr = &ToBuf[0];
1071 
1072     ConversionResult Result;
1073     Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1074                                 &ToPtr, ToPtr+Literal->getByteLength(),
1075                                 strictConversion);
1076     if (Result == conversionOK) {
1077       // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1078       // without doing more surgery to this routine. Since we aren't explicitly
1079       // checking for endianness here, it's also a bug (when generating code for
1080       // a target that doesn't match the host endianness). Modeling this as an
1081       // i16 array is likely the cleanest solution.
1082       StringLength = ToPtr-&ToBuf[0];
1083       str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1084       isUTF16 = true;
1085     } else if (Result == sourceIllegal) {
1086       // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1087       str.assign(Literal->getStrData(), Literal->getByteLength());
1088       StringLength = str.length();
1089     } else
1090       assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1091 
1092   } else {
1093     str.assign(Literal->getStrData(), Literal->getByteLength());
1094     StringLength = str.length();
1095   }
1096   llvm::StringMapEntry<llvm::Constant *> &Entry =
1097     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1098 
1099   if (llvm::Constant *C = Entry.getValue())
1100     return C;
1101 
1102   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1103   llvm::Constant *Zeros[] = { Zero, Zero };
1104 
1105   if (!CFConstantStringClassRef) {
1106     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1107     Ty = llvm::ArrayType::get(Ty, 0);
1108 
1109     // FIXME: This is fairly broken if
1110     // __CFConstantStringClassReference is already defined, in that it
1111     // will get renamed and the user will most likely see an opaque
1112     // error message. This is a general issue with relying on
1113     // particular names.
1114     llvm::GlobalVariable *GV =
1115       new llvm::GlobalVariable(Ty, false,
1116                                llvm::GlobalVariable::ExternalLinkage, 0,
1117                                "__CFConstantStringClassReference",
1118                                &getModule());
1119 
1120     // Decay array -> ptr
1121     CFConstantStringClassRef =
1122       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1123   }
1124 
1125   QualType CFTy = getContext().getCFConstantStringType();
1126   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1127 
1128   const llvm::StructType *STy =
1129     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1130 
1131   std::vector<llvm::Constant*> Fields;
1132   RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
1133 
1134   // Class pointer.
1135   FieldDecl *CurField = *Field++;
1136   FieldDecl *NextField = *Field++;
1137   appendFieldAndPadding(*this, Fields, CurField, NextField,
1138                         CFConstantStringClassRef, CFRD, STy);
1139 
1140   // Flags.
1141   CurField = NextField;
1142   NextField = *Field++;
1143   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1144   appendFieldAndPadding(*this, Fields, CurField, NextField,
1145                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1146                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1147                         CFRD, STy);
1148 
1149   // String pointer.
1150   CurField = NextField;
1151   NextField = *Field++;
1152   llvm::Constant *C = llvm::ConstantArray::get(str);
1153 
1154   const char *Sect, *Prefix;
1155   bool isConstant;
1156   if (isUTF16) {
1157     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1158     Sect = getContext().Target.getUnicodeStringSection();
1159     // FIXME: Why does GCC not set constant here?
1160     isConstant = false;
1161   } else {
1162     Prefix = getContext().Target.getStringSymbolPrefix(true);
1163     Sect = getContext().Target.getCFStringDataSection();
1164     // FIXME: -fwritable-strings should probably affect this, but we
1165     // are following gcc here.
1166     isConstant = true;
1167   }
1168   llvm::GlobalVariable *GV =
1169     new llvm::GlobalVariable(C->getType(), isConstant,
1170                              llvm::GlobalValue::InternalLinkage,
1171                              C, Prefix, &getModule());
1172   if (Sect)
1173     GV->setSection(Sect);
1174   if (isUTF16) {
1175     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1176     GV->setAlignment(Align);
1177   }
1178   appendFieldAndPadding(*this, Fields, CurField, NextField,
1179                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1180                         CFRD, STy);
1181 
1182   // String length.
1183   CurField = NextField;
1184   NextField = 0;
1185   Ty = getTypes().ConvertType(getContext().LongTy);
1186   appendFieldAndPadding(*this, Fields, CurField, NextField,
1187                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1188 
1189   // The struct.
1190   C = llvm::ConstantStruct::get(STy, Fields);
1191   GV = new llvm::GlobalVariable(C->getType(), true,
1192                                 llvm::GlobalVariable::InternalLinkage, C,
1193                                 getContext().Target.getCFStringSymbolPrefix(),
1194                                 &getModule());
1195   if (const char *Sect = getContext().Target.getCFStringSection())
1196     GV->setSection(Sect);
1197   Entry.setValue(GV);
1198 
1199   return GV;
1200 }
1201 
1202 /// GetStringForStringLiteral - Return the appropriate bytes for a
1203 /// string literal, properly padded to match the literal type.
1204 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1205   const char *StrData = E->getStrData();
1206   unsigned Len = E->getByteLength();
1207 
1208   const ConstantArrayType *CAT =
1209     getContext().getAsConstantArrayType(E->getType());
1210   assert(CAT && "String isn't pointer or array!");
1211 
1212   // Resize the string to the right size.
1213   std::string Str(StrData, StrData+Len);
1214   uint64_t RealLen = CAT->getSize().getZExtValue();
1215 
1216   if (E->isWide())
1217     RealLen *= getContext().Target.getWCharWidth()/8;
1218 
1219   Str.resize(RealLen, '\0');
1220 
1221   return Str;
1222 }
1223 
1224 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1225 /// constant array for the given string literal.
1226 llvm::Constant *
1227 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1228   // FIXME: This can be more efficient.
1229   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1230 }
1231 
1232 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1233 /// array for the given ObjCEncodeExpr node.
1234 llvm::Constant *
1235 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1236   std::string Str;
1237   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1238 
1239   return GetAddrOfConstantCString(Str);
1240 }
1241 
1242 
1243 /// GenerateWritableString -- Creates storage for a string literal.
1244 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1245                                              bool constant,
1246                                              CodeGenModule &CGM,
1247                                              const char *GlobalName) {
1248   // Create Constant for this string literal. Don't add a '\0'.
1249   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1250 
1251   // Create a global variable for this string
1252   return new llvm::GlobalVariable(C->getType(), constant,
1253                                   llvm::GlobalValue::InternalLinkage,
1254                                   C, GlobalName, &CGM.getModule());
1255 }
1256 
1257 /// GetAddrOfConstantString - Returns a pointer to a character array
1258 /// containing the literal. This contents are exactly that of the
1259 /// given string, i.e. it will not be null terminated automatically;
1260 /// see GetAddrOfConstantCString. Note that whether the result is
1261 /// actually a pointer to an LLVM constant depends on
1262 /// Feature.WriteableStrings.
1263 ///
1264 /// The result has pointer to array type.
1265 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1266                                                        const char *GlobalName) {
1267   bool IsConstant = !Features.WritableStrings;
1268 
1269   // Get the default prefix if a name wasn't specified.
1270   if (!GlobalName)
1271     GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1272 
1273   // Don't share any string literals if strings aren't constant.
1274   if (!IsConstant)
1275     return GenerateStringLiteral(str, false, *this, GlobalName);
1276 
1277   llvm::StringMapEntry<llvm::Constant *> &Entry =
1278   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1279 
1280   if (Entry.getValue())
1281     return Entry.getValue();
1282 
1283   // Create a global variable for this.
1284   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1285   Entry.setValue(C);
1286   return C;
1287 }
1288 
1289 /// GetAddrOfConstantCString - Returns a pointer to a character
1290 /// array containing the literal and a terminating '\-'
1291 /// character. The result has pointer to array type.
1292 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1293                                                         const char *GlobalName){
1294   return GetAddrOfConstantString(str + '\0', GlobalName);
1295 }
1296 
1297 /// EmitObjCPropertyImplementations - Emit information for synthesized
1298 /// properties for an implementation.
1299 void CodeGenModule::EmitObjCPropertyImplementations(const
1300                                                     ObjCImplementationDecl *D) {
1301   for (ObjCImplementationDecl::propimpl_iterator
1302          i = D->propimpl_begin(getContext()),
1303          e = D->propimpl_end(getContext()); i != e; ++i) {
1304     ObjCPropertyImplDecl *PID = *i;
1305 
1306     // Dynamic is just for type-checking.
1307     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1308       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1309 
1310       // Determine which methods need to be implemented, some may have
1311       // been overridden. Note that ::isSynthesized is not the method
1312       // we want, that just indicates if the decl came from a
1313       // property. What we want to know is if the method is defined in
1314       // this implementation.
1315       if (!D->getInstanceMethod(getContext(), PD->getGetterName()))
1316         CodeGenFunction(*this).GenerateObjCGetter(
1317                                  const_cast<ObjCImplementationDecl *>(D), PID);
1318       if (!PD->isReadOnly() &&
1319           !D->getInstanceMethod(getContext(), PD->getSetterName()))
1320         CodeGenFunction(*this).GenerateObjCSetter(
1321                                  const_cast<ObjCImplementationDecl *>(D), PID);
1322     }
1323   }
1324 }
1325 
1326 /// EmitNamespace - Emit all declarations in a namespace.
1327 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1328   for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
1329          E = ND->decls_end(getContext());
1330        I != E; ++I)
1331     EmitTopLevelDecl(*I);
1332 }
1333 
1334 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1335 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1336   if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1337     ErrorUnsupported(LSD, "linkage spec");
1338     return;
1339   }
1340 
1341   for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
1342          E = LSD->decls_end(getContext());
1343        I != E; ++I)
1344     EmitTopLevelDecl(*I);
1345 }
1346 
1347 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1348 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1349   // If an error has occurred, stop code generation, but continue
1350   // parsing and semantic analysis (to ensure all warnings and errors
1351   // are emitted).
1352   if (Diags.hasErrorOccurred())
1353     return;
1354 
1355   switch (D->getKind()) {
1356   case Decl::CXXMethod:
1357   case Decl::Function:
1358   case Decl::Var:
1359     EmitGlobal(cast<ValueDecl>(D));
1360     break;
1361 
1362   // C++ Decls
1363   case Decl::Namespace:
1364     EmitNamespace(cast<NamespaceDecl>(D));
1365     break;
1366   case Decl::CXXConstructor:
1367     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1368     break;
1369   case Decl::CXXDestructor:
1370     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1371     break;
1372 
1373   // Objective-C Decls
1374 
1375   // Forward declarations, no (immediate) code generation.
1376   case Decl::ObjCClass:
1377   case Decl::ObjCForwardProtocol:
1378   case Decl::ObjCCategory:
1379   case Decl::ObjCInterface:
1380     break;
1381 
1382   case Decl::ObjCProtocol:
1383     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1384     break;
1385 
1386   case Decl::ObjCCategoryImpl:
1387     // Categories have properties but don't support synthesize so we
1388     // can ignore them here.
1389     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1390     break;
1391 
1392   case Decl::ObjCImplementation: {
1393     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1394     EmitObjCPropertyImplementations(OMD);
1395     Runtime->GenerateClass(OMD);
1396     break;
1397   }
1398   case Decl::ObjCMethod: {
1399     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1400     // If this is not a prototype, emit the body.
1401     if (OMD->getBody(getContext()))
1402       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1403     break;
1404   }
1405   case Decl::ObjCCompatibleAlias:
1406     // compatibility-alias is a directive and has no code gen.
1407     break;
1408 
1409   case Decl::LinkageSpec:
1410     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1411     break;
1412 
1413   case Decl::FileScopeAsm: {
1414     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1415     std::string AsmString(AD->getAsmString()->getStrData(),
1416                           AD->getAsmString()->getByteLength());
1417 
1418     const std::string &S = getModule().getModuleInlineAsm();
1419     if (S.empty())
1420       getModule().setModuleInlineAsm(AsmString);
1421     else
1422       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1423     break;
1424   }
1425 
1426   default:
1427     // Make sure we handled everything we should, every other kind is
1428     // a non-top-level decl.  FIXME: Would be nice to have an
1429     // isTopLevelDeclKind function. Need to recode Decl::Kind to do
1430     // that easily.
1431     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1432   }
1433 }
1434