1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Diagnostic.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Basic/ConvertUTF.h" 28 #include "llvm/CallingConv.h" 29 #include "llvm/Module.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/Target/TargetData.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 37 llvm::Module &M, const llvm::TargetData &TD, 38 Diagnostic &diags) 39 : BlockModule(C, M, TD, Types, *this), Context(C), 40 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 41 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 42 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 43 44 if (!Features.ObjC1) 45 Runtime = 0; 46 else if (!Features.NeXTRuntime) 47 Runtime = CreateGNUObjCRuntime(*this); 48 else if (Features.ObjCNonFragileABI) 49 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 50 else 51 Runtime = CreateMacObjCRuntime(*this); 52 53 // If debug info generation is enabled, create the CGDebugInfo object. 54 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 55 } 56 57 CodeGenModule::~CodeGenModule() { 58 delete Runtime; 59 delete DebugInfo; 60 } 61 62 void CodeGenModule::Release() { 63 EmitDeferred(); 64 if (Runtime) 65 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 66 AddGlobalCtor(ObjCInitFunction); 67 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 68 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 69 EmitAnnotations(); 70 EmitLLVMUsed(); 71 } 72 73 /// ErrorUnsupported - Print out an error that codegen doesn't support the 74 /// specified stmt yet. 75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 76 bool OmitOnError) { 77 if (OmitOnError && getDiags().hasErrorOccurred()) 78 return; 79 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 80 "cannot compile this %0 yet"); 81 std::string Msg = Type; 82 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 83 << Msg << S->getSourceRange(); 84 } 85 86 /// ErrorUnsupported - Print out an error that codegen doesn't support the 87 /// specified decl yet. 88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 89 bool OmitOnError) { 90 if (OmitOnError && getDiags().hasErrorOccurred()) 91 return; 92 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 93 "cannot compile this %0 yet"); 94 std::string Msg = Type; 95 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 96 } 97 98 LangOptions::VisibilityMode 99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 100 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 101 if (VD->getStorageClass() == VarDecl::PrivateExtern) 102 return LangOptions::Hidden; 103 104 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 105 switch (attr->getVisibility()) { 106 default: assert(0 && "Unknown visibility!"); 107 case VisibilityAttr::DefaultVisibility: 108 return LangOptions::Default; 109 case VisibilityAttr::HiddenVisibility: 110 return LangOptions::Hidden; 111 case VisibilityAttr::ProtectedVisibility: 112 return LangOptions::Protected; 113 } 114 } 115 116 return getLangOptions().getVisibilityMode(); 117 } 118 119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 120 const Decl *D) const { 121 // Internal definitions always have default visibility. 122 if (GV->hasLocalLinkage()) { 123 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 124 return; 125 } 126 127 switch (getDeclVisibilityMode(D)) { 128 default: assert(0 && "Unknown visibility!"); 129 case LangOptions::Default: 130 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 131 case LangOptions::Hidden: 132 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 133 case LangOptions::Protected: 134 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 135 } 136 } 137 138 /// \brief Retrieves the mangled name for the given declaration. 139 /// 140 /// If the given declaration requires a mangled name, returns an 141 /// const char* containing the mangled name. Otherwise, returns 142 /// the unmangled name. 143 /// 144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 145 // In C, functions with no attributes never need to be mangled. Fastpath them. 146 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 147 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 148 return ND->getNameAsCString(); 149 } 150 151 llvm::SmallString<256> Name; 152 llvm::raw_svector_ostream Out(Name); 153 if (!mangleName(ND, Context, Out)) { 154 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 155 return ND->getNameAsCString(); 156 } 157 158 Name += '\0'; 159 return UniqueMangledName(Name.begin(), Name.end()); 160 } 161 162 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 163 const char *NameEnd) { 164 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 165 166 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 167 } 168 169 /// AddGlobalCtor - Add a function to the list that will be called before 170 /// main() runs. 171 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 172 // FIXME: Type coercion of void()* types. 173 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 174 } 175 176 /// AddGlobalDtor - Add a function to the list that will be called 177 /// when the module is unloaded. 178 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 179 // FIXME: Type coercion of void()* types. 180 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 181 } 182 183 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 184 // Ctor function type is void()*. 185 llvm::FunctionType* CtorFTy = 186 llvm::FunctionType::get(llvm::Type::VoidTy, 187 std::vector<const llvm::Type*>(), 188 false); 189 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 190 191 // Get the type of a ctor entry, { i32, void ()* }. 192 llvm::StructType* CtorStructTy = 193 llvm::StructType::get(llvm::Type::Int32Ty, 194 llvm::PointerType::getUnqual(CtorFTy), NULL); 195 196 // Construct the constructor and destructor arrays. 197 std::vector<llvm::Constant*> Ctors; 198 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 199 std::vector<llvm::Constant*> S; 200 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 201 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 202 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 203 } 204 205 if (!Ctors.empty()) { 206 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 207 new llvm::GlobalVariable(AT, false, 208 llvm::GlobalValue::AppendingLinkage, 209 llvm::ConstantArray::get(AT, Ctors), 210 GlobalName, 211 &TheModule); 212 } 213 } 214 215 void CodeGenModule::EmitAnnotations() { 216 if (Annotations.empty()) 217 return; 218 219 // Create a new global variable for the ConstantStruct in the Module. 220 llvm::Constant *Array = 221 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 222 Annotations.size()), 223 Annotations); 224 llvm::GlobalValue *gv = 225 new llvm::GlobalVariable(Array->getType(), false, 226 llvm::GlobalValue::AppendingLinkage, Array, 227 "llvm.global.annotations", &TheModule); 228 gv->setSection("llvm.metadata"); 229 } 230 231 static CodeGenModule::GVALinkage 232 GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) { 233 // "static" and attr(always_inline) functions get internal linkage. 234 if (FD->getStorageClass() == FunctionDecl::Static) 235 return CodeGenModule::GVA_Internal; 236 237 if (!FD->isInline()) 238 return CodeGenModule::GVA_StrongExternal; 239 240 // If the inline function explicitly has the GNU inline attribute on it, or if 241 // this is C89 mode, we use to GNU semantics. 242 if (!Features.C99 && !Features.CPlusPlus) { 243 // extern inline in GNU mode is like C99 inline. 244 if (FD->getStorageClass() == FunctionDecl::Extern) 245 return CodeGenModule::GVA_C99Inline; 246 // Normal inline is a strong symbol. 247 return CodeGenModule::GVA_StrongExternal; 248 } else if (FD->hasActiveGNUInlineAttribute()) { 249 // GCC in C99 mode seems to use a different decision-making 250 // process for extern inline, which factors in previous 251 // declarations. 252 if (FD->isExternGNUInline()) 253 return CodeGenModule::GVA_C99Inline; 254 // Normal inline is a strong symbol. 255 return CodeGenModule::GVA_StrongExternal; 256 } 257 258 // The definition of inline changes based on the language. Note that we 259 // have already handled "static inline" above, with the GVA_Internal case. 260 if (Features.CPlusPlus) // inline and extern inline. 261 return CodeGenModule::GVA_CXXInline; 262 263 assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode"); 264 if (FD->isC99InlineDefinition()) 265 return CodeGenModule::GVA_C99Inline; 266 267 return CodeGenModule::GVA_StrongExternal; 268 } 269 270 /// SetFunctionDefinitionAttributes - Set attributes for a global. 271 /// 272 /// FIXME: This is currently only done for aliases and functions, but 273 /// not for variables (these details are set in 274 /// EmitGlobalVarDefinition for variables). 275 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 276 llvm::GlobalValue *GV) { 277 GVALinkage Linkage = GetLinkageForFunction(D, Features); 278 279 if (Linkage == GVA_Internal) { 280 GV->setLinkage(llvm::Function::InternalLinkage); 281 } else if (D->hasAttr<DLLExportAttr>()) { 282 GV->setLinkage(llvm::Function::DLLExportLinkage); 283 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 284 GV->setLinkage(llvm::Function::WeakAnyLinkage); 285 } else if (Linkage == GVA_C99Inline) { 286 // In C99 mode, 'inline' functions are guaranteed to have a strong 287 // definition somewhere else, so we can use available_externally linkage. 288 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 289 } else if (Linkage == GVA_CXXInline) { 290 // In C++, the compiler has to emit a definition in every translation unit 291 // that references the function. We should use linkonce_odr because 292 // a) if all references in this translation unit are optimized away, we 293 // don't need to codegen it. b) if the function persists, it needs to be 294 // merged with other definitions. c) C++ has the ODR, so we know the 295 // definition is dependable. 296 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 297 } else { 298 assert(Linkage == GVA_StrongExternal); 299 // Otherwise, we have strong external linkage. 300 GV->setLinkage(llvm::Function::ExternalLinkage); 301 } 302 303 SetCommonAttributes(D, GV); 304 } 305 306 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 307 const CGFunctionInfo &Info, 308 llvm::Function *F) { 309 AttributeListType AttributeList; 310 ConstructAttributeList(Info, D, AttributeList); 311 312 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 313 AttributeList.size())); 314 315 // Set the appropriate calling convention for the Function. 316 if (D->hasAttr<FastCallAttr>()) 317 F->setCallingConv(llvm::CallingConv::X86_FastCall); 318 319 if (D->hasAttr<StdCallAttr>()) 320 F->setCallingConv(llvm::CallingConv::X86_StdCall); 321 } 322 323 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 324 llvm::Function *F) { 325 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 326 F->addFnAttr(llvm::Attribute::NoUnwind); 327 328 if (D->hasAttr<AlwaysInlineAttr>()) 329 F->addFnAttr(llvm::Attribute::AlwaysInline); 330 331 if (D->hasAttr<NoinlineAttr>()) 332 F->addFnAttr(llvm::Attribute::NoInline); 333 } 334 335 void CodeGenModule::SetCommonAttributes(const Decl *D, 336 llvm::GlobalValue *GV) { 337 setGlobalVisibility(GV, D); 338 339 if (D->hasAttr<UsedAttr>()) 340 AddUsedGlobal(GV); 341 342 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 343 GV->setSection(SA->getName()); 344 } 345 346 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 347 llvm::Function *F, 348 const CGFunctionInfo &FI) { 349 SetLLVMFunctionAttributes(D, FI, F); 350 SetLLVMFunctionAttributesForDefinition(D, F); 351 352 F->setLinkage(llvm::Function::InternalLinkage); 353 354 SetCommonAttributes(D, F); 355 } 356 357 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 358 llvm::Function *F) { 359 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 360 361 // Only a few attributes are set on declarations; these may later be 362 // overridden by a definition. 363 364 if (FD->hasAttr<DLLImportAttr>()) { 365 F->setLinkage(llvm::Function::DLLImportLinkage); 366 } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) { 367 // "extern_weak" is overloaded in LLVM; we probably should have 368 // separate linkage types for this. 369 F->setLinkage(llvm::Function::ExternalWeakLinkage); 370 } else { 371 F->setLinkage(llvm::Function::ExternalLinkage); 372 } 373 374 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 375 F->setSection(SA->getName()); 376 } 377 378 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 379 assert(!GV->isDeclaration() && 380 "Only globals with definition can force usage."); 381 LLVMUsed.push_back(GV); 382 } 383 384 void CodeGenModule::EmitLLVMUsed() { 385 // Don't create llvm.used if there is no need. 386 if (LLVMUsed.empty()) 387 return; 388 389 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 390 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size()); 391 392 // Convert LLVMUsed to what ConstantArray needs. 393 std::vector<llvm::Constant*> UsedArray; 394 UsedArray.resize(LLVMUsed.size()); 395 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 396 UsedArray[i] = 397 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 398 } 399 400 llvm::GlobalVariable *GV = 401 new llvm::GlobalVariable(ATy, false, 402 llvm::GlobalValue::AppendingLinkage, 403 llvm::ConstantArray::get(ATy, UsedArray), 404 "llvm.used", &getModule()); 405 406 GV->setSection("llvm.metadata"); 407 } 408 409 void CodeGenModule::EmitDeferred() { 410 // Emit code for any potentially referenced deferred decls. Since a 411 // previously unused static decl may become used during the generation of code 412 // for a static function, iterate until no changes are made. 413 while (!DeferredDeclsToEmit.empty()) { 414 const ValueDecl *D = DeferredDeclsToEmit.back(); 415 DeferredDeclsToEmit.pop_back(); 416 417 // The mangled name for the decl must have been emitted in GlobalDeclMap. 418 // Look it up to see if it was defined with a stronger definition (e.g. an 419 // extern inline function with a strong function redefinition). If so, 420 // just ignore the deferred decl. 421 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 422 assert(CGRef && "Deferred decl wasn't referenced?"); 423 424 if (!CGRef->isDeclaration()) 425 continue; 426 427 // Otherwise, emit the definition and move on to the next one. 428 EmitGlobalDefinition(D); 429 } 430 } 431 432 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 433 /// annotation information for a given GlobalValue. The annotation struct is 434 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 435 /// GlobalValue being annotated. The second field is the constant string 436 /// created from the AnnotateAttr's annotation. The third field is a constant 437 /// string containing the name of the translation unit. The fourth field is 438 /// the line number in the file of the annotated value declaration. 439 /// 440 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 441 /// appears to. 442 /// 443 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 444 const AnnotateAttr *AA, 445 unsigned LineNo) { 446 llvm::Module *M = &getModule(); 447 448 // get [N x i8] constants for the annotation string, and the filename string 449 // which are the 2nd and 3rd elements of the global annotation structure. 450 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 451 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 452 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 453 true); 454 455 // Get the two global values corresponding to the ConstantArrays we just 456 // created to hold the bytes of the strings. 457 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 458 llvm::GlobalValue *annoGV = 459 new llvm::GlobalVariable(anno->getType(), false, 460 llvm::GlobalValue::InternalLinkage, anno, 461 GV->getName() + StringPrefix, M); 462 // translation unit name string, emitted into the llvm.metadata section. 463 llvm::GlobalValue *unitGV = 464 new llvm::GlobalVariable(unit->getType(), false, 465 llvm::GlobalValue::InternalLinkage, unit, 466 StringPrefix, M); 467 468 // Create the ConstantStruct for the global annotation. 469 llvm::Constant *Fields[4] = { 470 llvm::ConstantExpr::getBitCast(GV, SBP), 471 llvm::ConstantExpr::getBitCast(annoGV, SBP), 472 llvm::ConstantExpr::getBitCast(unitGV, SBP), 473 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 474 }; 475 return llvm::ConstantStruct::get(Fields, 4, false); 476 } 477 478 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 479 // Never defer when EmitAllDecls is specified or the decl has 480 // attribute used. 481 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 482 return false; 483 484 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 485 // Constructors and destructors should never be deferred. 486 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 487 return false; 488 489 GVALinkage Linkage = GetLinkageForFunction(FD, Features); 490 491 // static, static inline, always_inline, and extern inline functions can 492 // always be deferred. Normal inline functions can be deferred in C99/C++. 493 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 494 Linkage == GVA_CXXInline) 495 return true; 496 return false; 497 } 498 499 const VarDecl *VD = cast<VarDecl>(Global); 500 assert(VD->isFileVarDecl() && "Invalid decl"); 501 502 return VD->getStorageClass() == VarDecl::Static; 503 } 504 505 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 506 // If this is an alias definition (which otherwise looks like a declaration) 507 // emit it now. 508 if (Global->hasAttr<AliasAttr>()) 509 return EmitAliasDefinition(Global); 510 511 // Ignore declarations, they will be emitted on their first use. 512 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 513 // Forward declarations are emitted lazily on first use. 514 if (!FD->isThisDeclarationADefinition()) 515 return; 516 } else { 517 const VarDecl *VD = cast<VarDecl>(Global); 518 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 519 520 // In C++, if this is marked "extern", defer code generation. 521 if (getLangOptions().CPlusPlus && 522 VD->getStorageClass() == VarDecl::Extern && !VD->getInit()) 523 return; 524 525 // In C, if this isn't a definition, defer code generation. 526 if (!getLangOptions().CPlusPlus && !VD->getInit()) 527 return; 528 } 529 530 // Defer code generation when possible if this is a static definition, inline 531 // function etc. These we only want to emit if they are used. 532 if (MayDeferGeneration(Global)) { 533 // If the value has already been used, add it directly to the 534 // DeferredDeclsToEmit list. 535 const char *MangledName = getMangledName(Global); 536 if (GlobalDeclMap.count(MangledName)) 537 DeferredDeclsToEmit.push_back(Global); 538 else { 539 // Otherwise, remember that we saw a deferred decl with this name. The 540 // first use of the mangled name will cause it to move into 541 // DeferredDeclsToEmit. 542 DeferredDecls[MangledName] = Global; 543 } 544 return; 545 } 546 547 // Otherwise emit the definition. 548 EmitGlobalDefinition(Global); 549 } 550 551 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 552 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 553 EmitGlobalFunctionDefinition(FD); 554 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 555 EmitGlobalVarDefinition(VD); 556 } else { 557 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 558 } 559 } 560 561 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 562 /// module, create and return an llvm Function with the specified type. If there 563 /// is something in the module with the specified name, return it potentially 564 /// bitcasted to the right type. 565 /// 566 /// If D is non-null, it specifies a decl that correspond to this. This is used 567 /// to set the attributes on the function when it is first created. 568 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 569 const llvm::Type *Ty, 570 const FunctionDecl *D) { 571 // Lookup the entry, lazily creating it if necessary. 572 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 573 if (Entry) { 574 if (Entry->getType()->getElementType() == Ty) 575 return Entry; 576 577 // Make sure the result is of the correct type. 578 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 579 return llvm::ConstantExpr::getBitCast(Entry, PTy); 580 } 581 582 // This is the first use or definition of a mangled name. If there is a 583 // deferred decl with this name, remember that we need to emit it at the end 584 // of the file. 585 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 586 DeferredDecls.find(MangledName); 587 if (DDI != DeferredDecls.end()) { 588 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 589 // list, and remove it from DeferredDecls (since we don't need it anymore). 590 DeferredDeclsToEmit.push_back(DDI->second); 591 DeferredDecls.erase(DDI); 592 } 593 594 // This function doesn't have a complete type (for example, the return 595 // type is an incomplete struct). Use a fake type instead, and make 596 // sure not to try to set attributes. 597 bool ShouldSetAttributes = true; 598 if (!isa<llvm::FunctionType>(Ty)) { 599 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 600 std::vector<const llvm::Type*>(), false); 601 ShouldSetAttributes = false; 602 } 603 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 604 llvm::Function::ExternalLinkage, 605 "", &getModule()); 606 F->setName(MangledName); 607 if (D && ShouldSetAttributes) 608 SetFunctionAttributes(D, F); 609 Entry = F; 610 return F; 611 } 612 613 /// GetAddrOfFunction - Return the address of the given function. If Ty is 614 /// non-null, then this function will use the specified type if it has to 615 /// create it (this occurs when we see a definition of the function). 616 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D, 617 const llvm::Type *Ty) { 618 // If there was no specific requested type, just convert it now. 619 if (!Ty) 620 Ty = getTypes().ConvertType(D->getType()); 621 return GetOrCreateLLVMFunction(getMangledName(D), Ty, D); 622 } 623 624 /// CreateRuntimeFunction - Create a new runtime function with the specified 625 /// type and name. 626 llvm::Constant * 627 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 628 const char *Name) { 629 // Convert Name to be a uniqued string from the IdentifierInfo table. 630 Name = getContext().Idents.get(Name).getName(); 631 return GetOrCreateLLVMFunction(Name, FTy, 0); 632 } 633 634 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 635 /// create and return an llvm GlobalVariable with the specified type. If there 636 /// is something in the module with the specified name, return it potentially 637 /// bitcasted to the right type. 638 /// 639 /// If D is non-null, it specifies a decl that correspond to this. This is used 640 /// to set the attributes on the global when it is first created. 641 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 642 const llvm::PointerType*Ty, 643 const VarDecl *D) { 644 // Lookup the entry, lazily creating it if necessary. 645 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 646 if (Entry) { 647 if (Entry->getType() == Ty) 648 return Entry; 649 650 // Make sure the result is of the correct type. 651 return llvm::ConstantExpr::getBitCast(Entry, Ty); 652 } 653 654 // This is the first use or definition of a mangled name. If there is a 655 // deferred decl with this name, remember that we need to emit it at the end 656 // of the file. 657 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 658 DeferredDecls.find(MangledName); 659 if (DDI != DeferredDecls.end()) { 660 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 661 // list, and remove it from DeferredDecls (since we don't need it anymore). 662 DeferredDeclsToEmit.push_back(DDI->second); 663 DeferredDecls.erase(DDI); 664 } 665 666 llvm::GlobalVariable *GV = 667 new llvm::GlobalVariable(Ty->getElementType(), false, 668 llvm::GlobalValue::ExternalLinkage, 669 0, "", &getModule(), 670 false, Ty->getAddressSpace()); 671 GV->setName(MangledName); 672 673 // Handle things which are present even on external declarations. 674 if (D) { 675 // FIXME: This code is overly simple and should be merged with 676 // other global handling. 677 GV->setConstant(D->getType().isConstant(Context)); 678 679 // FIXME: Merge with other attribute handling code. 680 if (D->getStorageClass() == VarDecl::PrivateExtern) 681 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 682 683 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 684 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 685 686 GV->setThreadLocal(D->isThreadSpecified()); 687 } 688 689 return Entry = GV; 690 } 691 692 693 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 694 /// given global variable. If Ty is non-null and if the global doesn't exist, 695 /// then it will be greated with the specified type instead of whatever the 696 /// normal requested type would be. 697 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 698 const llvm::Type *Ty) { 699 assert(D->hasGlobalStorage() && "Not a global variable"); 700 QualType ASTTy = D->getType(); 701 if (Ty == 0) 702 Ty = getTypes().ConvertTypeForMem(ASTTy); 703 704 const llvm::PointerType *PTy = 705 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 706 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 707 } 708 709 /// CreateRuntimeVariable - Create a new runtime global variable with the 710 /// specified type and name. 711 llvm::Constant * 712 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 713 const char *Name) { 714 // Convert Name to be a uniqued string from the IdentifierInfo table. 715 Name = getContext().Idents.get(Name).getName(); 716 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 717 } 718 719 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 720 assert(!D->getInit() && "Cannot emit definite definitions here!"); 721 722 if (MayDeferGeneration(D)) { 723 // If we have not seen a reference to this variable yet, place it 724 // into the deferred declarations table to be emitted if needed 725 // later. 726 const char *MangledName = getMangledName(D); 727 if (GlobalDeclMap.count(MangledName) == 0) { 728 DeferredDecls[MangledName] = D; 729 return; 730 } 731 } 732 733 // The tentative definition is the only definition. 734 EmitGlobalVarDefinition(D); 735 } 736 737 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 738 llvm::Constant *Init = 0; 739 QualType ASTTy = D->getType(); 740 741 if (D->getInit() == 0) { 742 // This is a tentative definition; tentative definitions are 743 // implicitly initialized with { 0 }. 744 // 745 // Note that tentative definitions are only emitted at the end of 746 // a translation unit, so they should never have incomplete 747 // type. In addition, EmitTentativeDefinition makes sure that we 748 // never attempt to emit a tentative definition if a real one 749 // exists. A use may still exists, however, so we still may need 750 // to do a RAUW. 751 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 752 Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy)); 753 } else { 754 Init = EmitConstantExpr(D->getInit(), D->getType()); 755 if (!Init) { 756 ErrorUnsupported(D, "static initializer"); 757 QualType T = D->getInit()->getType(); 758 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 759 } 760 } 761 762 const llvm::Type* InitType = Init->getType(); 763 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 764 765 // Strip off a bitcast if we got one back. 766 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 767 assert(CE->getOpcode() == llvm::Instruction::BitCast); 768 Entry = CE->getOperand(0); 769 } 770 771 // Entry is now either a Function or GlobalVariable. 772 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 773 774 // We have a definition after a declaration with the wrong type. 775 // We must make a new GlobalVariable* and update everything that used OldGV 776 // (a declaration or tentative definition) with the new GlobalVariable* 777 // (which will be a definition). 778 // 779 // This happens if there is a prototype for a global (e.g. 780 // "extern int x[];") and then a definition of a different type (e.g. 781 // "int x[10];"). This also happens when an initializer has a different type 782 // from the type of the global (this happens with unions). 783 if (GV == 0 || 784 GV->getType()->getElementType() != InitType || 785 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 786 787 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 788 GlobalDeclMap.erase(getMangledName(D)); 789 790 // Make a new global with the correct type, this is now guaranteed to work. 791 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 792 GV->takeName(cast<llvm::GlobalValue>(Entry)); 793 794 // Replace all uses of the old global with the new global 795 llvm::Constant *NewPtrForOldDecl = 796 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 797 Entry->replaceAllUsesWith(NewPtrForOldDecl); 798 799 // Erase the old global, since it is no longer used. 800 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 801 } 802 803 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 804 SourceManager &SM = Context.getSourceManager(); 805 AddAnnotation(EmitAnnotateAttr(GV, AA, 806 SM.getInstantiationLineNumber(D->getLocation()))); 807 } 808 809 GV->setInitializer(Init); 810 GV->setConstant(D->getType().isConstant(Context)); 811 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 812 813 // Set the llvm linkage type as appropriate. 814 if (D->getStorageClass() == VarDecl::Static) 815 GV->setLinkage(llvm::Function::InternalLinkage); 816 else if (D->hasAttr<DLLImportAttr>()) 817 GV->setLinkage(llvm::Function::DLLImportLinkage); 818 else if (D->hasAttr<DLLExportAttr>()) 819 GV->setLinkage(llvm::Function::DLLExportLinkage); 820 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 821 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 822 else if (!CompileOpts.NoCommon && 823 (!D->hasExternalStorage() && !D->getInit())) 824 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 825 else 826 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 827 828 SetCommonAttributes(D, GV); 829 830 // Emit global variable debug information. 831 if (CGDebugInfo *DI = getDebugInfo()) { 832 DI->setLocation(D->getLocation()); 833 DI->EmitGlobalVariable(GV, D); 834 } 835 } 836 837 838 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 839 const llvm::FunctionType *Ty; 840 841 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 842 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 843 844 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 845 } else { 846 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 847 848 // As a special case, make sure that definitions of K&R function 849 // "type foo()" aren't declared as varargs (which forces the backend 850 // to do unnecessary work). 851 if (D->getType()->isFunctionNoProtoType()) { 852 assert(Ty->isVarArg() && "Didn't lower type as expected"); 853 // Due to stret, the lowered function could have arguments. 854 // Just create the same type as was lowered by ConvertType 855 // but strip off the varargs bit. 856 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 857 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 858 } 859 } 860 861 // Get or create the prototype for teh function. 862 llvm::Constant *Entry = GetAddrOfFunction(D, Ty); 863 864 // Strip off a bitcast if we got one back. 865 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 866 assert(CE->getOpcode() == llvm::Instruction::BitCast); 867 Entry = CE->getOperand(0); 868 } 869 870 871 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 872 // If the types mismatch then we have to rewrite the definition. 873 assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() && 874 "Shouldn't replace non-declaration"); 875 876 // F is the Function* for the one with the wrong type, we must make a new 877 // Function* and update everything that used F (a declaration) with the new 878 // Function* (which will be a definition). 879 // 880 // This happens if there is a prototype for a function 881 // (e.g. "int f()") and then a definition of a different type 882 // (e.g. "int f(int x)"). Start by making a new function of the 883 // correct type, RAUW, then steal the name. 884 GlobalDeclMap.erase(getMangledName(D)); 885 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty)); 886 NewFn->takeName(cast<llvm::GlobalValue>(Entry)); 887 888 // Replace uses of F with the Function we will endow with a body. 889 llvm::Constant *NewPtrForOldDecl = 890 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 891 Entry->replaceAllUsesWith(NewPtrForOldDecl); 892 893 // Ok, delete the old function now, which is dead. 894 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 895 896 Entry = NewFn; 897 } 898 899 llvm::Function *Fn = cast<llvm::Function>(Entry); 900 901 CodeGenFunction(*this).GenerateCode(D, Fn); 902 903 SetFunctionDefinitionAttributes(D, Fn); 904 SetLLVMFunctionAttributesForDefinition(D, Fn); 905 906 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 907 AddGlobalCtor(Fn, CA->getPriority()); 908 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 909 AddGlobalDtor(Fn, DA->getPriority()); 910 } 911 912 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 913 const AliasAttr *AA = D->getAttr<AliasAttr>(); 914 assert(AA && "Not an alias?"); 915 916 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 917 918 // Unique the name through the identifier table. 919 const char *AliaseeName = AA->getAliasee().c_str(); 920 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 921 922 // Create a reference to the named value. This ensures that it is emitted 923 // if a deferred decl. 924 llvm::Constant *Aliasee; 925 if (isa<llvm::FunctionType>(DeclTy)) 926 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0); 927 else 928 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 929 llvm::PointerType::getUnqual(DeclTy), 0); 930 931 // Create the new alias itself, but don't set a name yet. 932 llvm::GlobalValue *GA = 933 new llvm::GlobalAlias(Aliasee->getType(), 934 llvm::Function::ExternalLinkage, 935 "", Aliasee, &getModule()); 936 937 // See if there is already something with the alias' name in the module. 938 const char *MangledName = getMangledName(D); 939 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 940 941 if (Entry && !Entry->isDeclaration()) { 942 // If there is a definition in the module, then it wins over the alias. 943 // This is dubious, but allow it to be safe. Just ignore the alias. 944 GA->eraseFromParent(); 945 return; 946 } 947 948 if (Entry) { 949 // If there is a declaration in the module, then we had an extern followed 950 // by the alias, as in: 951 // extern int test6(); 952 // ... 953 // int test6() __attribute__((alias("test7"))); 954 // 955 // Remove it and replace uses of it with the alias. 956 957 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 958 Entry->getType())); 959 Entry->eraseFromParent(); 960 } 961 962 // Now we know that there is no conflict, set the name. 963 Entry = GA; 964 GA->setName(MangledName); 965 966 // Set attributes which are particular to an alias; this is a 967 // specialization of the attributes which may be set on a global 968 // variable/function. 969 if (D->hasAttr<DLLExportAttr>()) { 970 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 971 // The dllexport attribute is ignored for undefined symbols. 972 if (FD->getBody(getContext())) 973 GA->setLinkage(llvm::Function::DLLExportLinkage); 974 } else { 975 GA->setLinkage(llvm::Function::DLLExportLinkage); 976 } 977 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 978 GA->setLinkage(llvm::Function::WeakAnyLinkage); 979 } 980 981 SetCommonAttributes(D, GA); 982 } 983 984 /// getBuiltinLibFunction - Given a builtin id for a function like 985 /// "__builtin_fabsf", return a Function* for "fabsf". 986 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 987 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 988 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 989 "isn't a lib fn"); 990 991 // Get the name, skip over the __builtin_ prefix (if necessary). 992 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 993 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 994 Name += 10; 995 996 // Get the type for the builtin. 997 Builtin::Context::GetBuiltinTypeError Error; 998 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); 999 assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); 1000 1001 const llvm::FunctionType *Ty = 1002 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1003 1004 // Unique the name through the identifier table. 1005 Name = getContext().Idents.get(Name).getName(); 1006 // FIXME: param attributes for sext/zext etc. 1007 return GetOrCreateLLVMFunction(Name, Ty, 0); 1008 } 1009 1010 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1011 unsigned NumTys) { 1012 return llvm::Intrinsic::getDeclaration(&getModule(), 1013 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1014 } 1015 1016 llvm::Function *CodeGenModule::getMemCpyFn() { 1017 if (MemCpyFn) return MemCpyFn; 1018 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1019 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1020 } 1021 1022 llvm::Function *CodeGenModule::getMemMoveFn() { 1023 if (MemMoveFn) return MemMoveFn; 1024 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1025 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1026 } 1027 1028 llvm::Function *CodeGenModule::getMemSetFn() { 1029 if (MemSetFn) return MemSetFn; 1030 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1031 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1032 } 1033 1034 static void appendFieldAndPadding(CodeGenModule &CGM, 1035 std::vector<llvm::Constant*>& Fields, 1036 FieldDecl *FieldD, FieldDecl *NextFieldD, 1037 llvm::Constant* Field, 1038 RecordDecl* RD, const llvm::StructType *STy) { 1039 // Append the field. 1040 Fields.push_back(Field); 1041 1042 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1043 1044 int NextStructFieldNo; 1045 if (!NextFieldD) { 1046 NextStructFieldNo = STy->getNumElements(); 1047 } else { 1048 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1049 } 1050 1051 // Append padding 1052 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1053 llvm::Constant *C = 1054 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1055 1056 Fields.push_back(C); 1057 } 1058 } 1059 1060 llvm::Constant *CodeGenModule:: 1061 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1062 std::string str; 1063 unsigned StringLength = 0; 1064 1065 bool isUTF16 = false; 1066 if (Literal->containsNonAsciiOrNull()) { 1067 // Convert from UTF-8 to UTF-16. 1068 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1069 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1070 UTF16 *ToPtr = &ToBuf[0]; 1071 1072 ConversionResult Result; 1073 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1074 &ToPtr, ToPtr+Literal->getByteLength(), 1075 strictConversion); 1076 if (Result == conversionOK) { 1077 // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings 1078 // without doing more surgery to this routine. Since we aren't explicitly 1079 // checking for endianness here, it's also a bug (when generating code for 1080 // a target that doesn't match the host endianness). Modeling this as an 1081 // i16 array is likely the cleanest solution. 1082 StringLength = ToPtr-&ToBuf[0]; 1083 str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars. 1084 isUTF16 = true; 1085 } else if (Result == sourceIllegal) { 1086 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string. 1087 str.assign(Literal->getStrData(), Literal->getByteLength()); 1088 StringLength = str.length(); 1089 } else 1090 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1091 1092 } else { 1093 str.assign(Literal->getStrData(), Literal->getByteLength()); 1094 StringLength = str.length(); 1095 } 1096 llvm::StringMapEntry<llvm::Constant *> &Entry = 1097 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1098 1099 if (llvm::Constant *C = Entry.getValue()) 1100 return C; 1101 1102 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1103 llvm::Constant *Zeros[] = { Zero, Zero }; 1104 1105 if (!CFConstantStringClassRef) { 1106 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1107 Ty = llvm::ArrayType::get(Ty, 0); 1108 1109 // FIXME: This is fairly broken if 1110 // __CFConstantStringClassReference is already defined, in that it 1111 // will get renamed and the user will most likely see an opaque 1112 // error message. This is a general issue with relying on 1113 // particular names. 1114 llvm::GlobalVariable *GV = 1115 new llvm::GlobalVariable(Ty, false, 1116 llvm::GlobalVariable::ExternalLinkage, 0, 1117 "__CFConstantStringClassReference", 1118 &getModule()); 1119 1120 // Decay array -> ptr 1121 CFConstantStringClassRef = 1122 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1123 } 1124 1125 QualType CFTy = getContext().getCFConstantStringType(); 1126 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1127 1128 const llvm::StructType *STy = 1129 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1130 1131 std::vector<llvm::Constant*> Fields; 1132 RecordDecl::field_iterator Field = CFRD->field_begin(getContext()); 1133 1134 // Class pointer. 1135 FieldDecl *CurField = *Field++; 1136 FieldDecl *NextField = *Field++; 1137 appendFieldAndPadding(*this, Fields, CurField, NextField, 1138 CFConstantStringClassRef, CFRD, STy); 1139 1140 // Flags. 1141 CurField = NextField; 1142 NextField = *Field++; 1143 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1144 appendFieldAndPadding(*this, Fields, CurField, NextField, 1145 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1146 : llvm::ConstantInt::get(Ty, 0x07C8), 1147 CFRD, STy); 1148 1149 // String pointer. 1150 CurField = NextField; 1151 NextField = *Field++; 1152 llvm::Constant *C = llvm::ConstantArray::get(str); 1153 1154 const char *Sect, *Prefix; 1155 bool isConstant; 1156 if (isUTF16) { 1157 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1158 Sect = getContext().Target.getUnicodeStringSection(); 1159 // FIXME: Why does GCC not set constant here? 1160 isConstant = false; 1161 } else { 1162 Prefix = getContext().Target.getStringSymbolPrefix(true); 1163 Sect = getContext().Target.getCFStringDataSection(); 1164 // FIXME: -fwritable-strings should probably affect this, but we 1165 // are following gcc here. 1166 isConstant = true; 1167 } 1168 llvm::GlobalVariable *GV = 1169 new llvm::GlobalVariable(C->getType(), isConstant, 1170 llvm::GlobalValue::InternalLinkage, 1171 C, Prefix, &getModule()); 1172 if (Sect) 1173 GV->setSection(Sect); 1174 if (isUTF16) { 1175 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1176 GV->setAlignment(Align); 1177 } 1178 appendFieldAndPadding(*this, Fields, CurField, NextField, 1179 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1180 CFRD, STy); 1181 1182 // String length. 1183 CurField = NextField; 1184 NextField = 0; 1185 Ty = getTypes().ConvertType(getContext().LongTy); 1186 appendFieldAndPadding(*this, Fields, CurField, NextField, 1187 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1188 1189 // The struct. 1190 C = llvm::ConstantStruct::get(STy, Fields); 1191 GV = new llvm::GlobalVariable(C->getType(), true, 1192 llvm::GlobalVariable::InternalLinkage, C, 1193 getContext().Target.getCFStringSymbolPrefix(), 1194 &getModule()); 1195 if (const char *Sect = getContext().Target.getCFStringSection()) 1196 GV->setSection(Sect); 1197 Entry.setValue(GV); 1198 1199 return GV; 1200 } 1201 1202 /// GetStringForStringLiteral - Return the appropriate bytes for a 1203 /// string literal, properly padded to match the literal type. 1204 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1205 const char *StrData = E->getStrData(); 1206 unsigned Len = E->getByteLength(); 1207 1208 const ConstantArrayType *CAT = 1209 getContext().getAsConstantArrayType(E->getType()); 1210 assert(CAT && "String isn't pointer or array!"); 1211 1212 // Resize the string to the right size. 1213 std::string Str(StrData, StrData+Len); 1214 uint64_t RealLen = CAT->getSize().getZExtValue(); 1215 1216 if (E->isWide()) 1217 RealLen *= getContext().Target.getWCharWidth()/8; 1218 1219 Str.resize(RealLen, '\0'); 1220 1221 return Str; 1222 } 1223 1224 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1225 /// constant array for the given string literal. 1226 llvm::Constant * 1227 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1228 // FIXME: This can be more efficient. 1229 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1230 } 1231 1232 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1233 /// array for the given ObjCEncodeExpr node. 1234 llvm::Constant * 1235 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1236 std::string Str; 1237 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1238 1239 return GetAddrOfConstantCString(Str); 1240 } 1241 1242 1243 /// GenerateWritableString -- Creates storage for a string literal. 1244 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1245 bool constant, 1246 CodeGenModule &CGM, 1247 const char *GlobalName) { 1248 // Create Constant for this string literal. Don't add a '\0'. 1249 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1250 1251 // Create a global variable for this string 1252 return new llvm::GlobalVariable(C->getType(), constant, 1253 llvm::GlobalValue::InternalLinkage, 1254 C, GlobalName, &CGM.getModule()); 1255 } 1256 1257 /// GetAddrOfConstantString - Returns a pointer to a character array 1258 /// containing the literal. This contents are exactly that of the 1259 /// given string, i.e. it will not be null terminated automatically; 1260 /// see GetAddrOfConstantCString. Note that whether the result is 1261 /// actually a pointer to an LLVM constant depends on 1262 /// Feature.WriteableStrings. 1263 /// 1264 /// The result has pointer to array type. 1265 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1266 const char *GlobalName) { 1267 bool IsConstant = !Features.WritableStrings; 1268 1269 // Get the default prefix if a name wasn't specified. 1270 if (!GlobalName) 1271 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1272 1273 // Don't share any string literals if strings aren't constant. 1274 if (!IsConstant) 1275 return GenerateStringLiteral(str, false, *this, GlobalName); 1276 1277 llvm::StringMapEntry<llvm::Constant *> &Entry = 1278 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1279 1280 if (Entry.getValue()) 1281 return Entry.getValue(); 1282 1283 // Create a global variable for this. 1284 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1285 Entry.setValue(C); 1286 return C; 1287 } 1288 1289 /// GetAddrOfConstantCString - Returns a pointer to a character 1290 /// array containing the literal and a terminating '\-' 1291 /// character. The result has pointer to array type. 1292 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1293 const char *GlobalName){ 1294 return GetAddrOfConstantString(str + '\0', GlobalName); 1295 } 1296 1297 /// EmitObjCPropertyImplementations - Emit information for synthesized 1298 /// properties for an implementation. 1299 void CodeGenModule::EmitObjCPropertyImplementations(const 1300 ObjCImplementationDecl *D) { 1301 for (ObjCImplementationDecl::propimpl_iterator 1302 i = D->propimpl_begin(getContext()), 1303 e = D->propimpl_end(getContext()); i != e; ++i) { 1304 ObjCPropertyImplDecl *PID = *i; 1305 1306 // Dynamic is just for type-checking. 1307 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1308 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1309 1310 // Determine which methods need to be implemented, some may have 1311 // been overridden. Note that ::isSynthesized is not the method 1312 // we want, that just indicates if the decl came from a 1313 // property. What we want to know is if the method is defined in 1314 // this implementation. 1315 if (!D->getInstanceMethod(getContext(), PD->getGetterName())) 1316 CodeGenFunction(*this).GenerateObjCGetter( 1317 const_cast<ObjCImplementationDecl *>(D), PID); 1318 if (!PD->isReadOnly() && 1319 !D->getInstanceMethod(getContext(), PD->getSetterName())) 1320 CodeGenFunction(*this).GenerateObjCSetter( 1321 const_cast<ObjCImplementationDecl *>(D), PID); 1322 } 1323 } 1324 } 1325 1326 /// EmitNamespace - Emit all declarations in a namespace. 1327 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1328 for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()), 1329 E = ND->decls_end(getContext()); 1330 I != E; ++I) 1331 EmitTopLevelDecl(*I); 1332 } 1333 1334 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1335 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1336 if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { 1337 ErrorUnsupported(LSD, "linkage spec"); 1338 return; 1339 } 1340 1341 for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()), 1342 E = LSD->decls_end(getContext()); 1343 I != E; ++I) 1344 EmitTopLevelDecl(*I); 1345 } 1346 1347 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1348 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1349 // If an error has occurred, stop code generation, but continue 1350 // parsing and semantic analysis (to ensure all warnings and errors 1351 // are emitted). 1352 if (Diags.hasErrorOccurred()) 1353 return; 1354 1355 switch (D->getKind()) { 1356 case Decl::CXXMethod: 1357 case Decl::Function: 1358 case Decl::Var: 1359 EmitGlobal(cast<ValueDecl>(D)); 1360 break; 1361 1362 // C++ Decls 1363 case Decl::Namespace: 1364 EmitNamespace(cast<NamespaceDecl>(D)); 1365 break; 1366 case Decl::CXXConstructor: 1367 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1368 break; 1369 case Decl::CXXDestructor: 1370 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1371 break; 1372 1373 // Objective-C Decls 1374 1375 // Forward declarations, no (immediate) code generation. 1376 case Decl::ObjCClass: 1377 case Decl::ObjCForwardProtocol: 1378 case Decl::ObjCCategory: 1379 case Decl::ObjCInterface: 1380 break; 1381 1382 case Decl::ObjCProtocol: 1383 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1384 break; 1385 1386 case Decl::ObjCCategoryImpl: 1387 // Categories have properties but don't support synthesize so we 1388 // can ignore them here. 1389 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1390 break; 1391 1392 case Decl::ObjCImplementation: { 1393 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1394 EmitObjCPropertyImplementations(OMD); 1395 Runtime->GenerateClass(OMD); 1396 break; 1397 } 1398 case Decl::ObjCMethod: { 1399 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1400 // If this is not a prototype, emit the body. 1401 if (OMD->getBody(getContext())) 1402 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1403 break; 1404 } 1405 case Decl::ObjCCompatibleAlias: 1406 // compatibility-alias is a directive and has no code gen. 1407 break; 1408 1409 case Decl::LinkageSpec: 1410 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1411 break; 1412 1413 case Decl::FileScopeAsm: { 1414 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1415 std::string AsmString(AD->getAsmString()->getStrData(), 1416 AD->getAsmString()->getByteLength()); 1417 1418 const std::string &S = getModule().getModuleInlineAsm(); 1419 if (S.empty()) 1420 getModule().setModuleInlineAsm(AsmString); 1421 else 1422 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1423 break; 1424 } 1425 1426 default: 1427 // Make sure we handled everything we should, every other kind is 1428 // a non-top-level decl. FIXME: Would be nice to have an 1429 // isTopLevelDeclKind function. Need to recode Decl::Kind to do 1430 // that easily. 1431 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1432 } 1433 } 1434