1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Diagnostic.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Basic/ConvertUTF.h" 28 #include "llvm/CallingConv.h" 29 #include "llvm/Module.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/Target/TargetData.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 37 llvm::Module &M, const llvm::TargetData &TD, 38 Diagnostic &diags) 39 : BlockModule(C, M, TD, Types, *this), Context(C), 40 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 41 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 42 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 43 44 if (!Features.ObjC1) 45 Runtime = 0; 46 else if (!Features.NeXTRuntime) 47 Runtime = CreateGNUObjCRuntime(*this); 48 else if (Features.ObjCNonFragileABI) 49 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 50 else 51 Runtime = CreateMacObjCRuntime(*this); 52 53 // If debug info generation is enabled, create the CGDebugInfo object. 54 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 55 } 56 57 CodeGenModule::~CodeGenModule() { 58 delete Runtime; 59 delete DebugInfo; 60 } 61 62 void CodeGenModule::Release() { 63 EmitDeferred(); 64 if (Runtime) 65 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 66 AddGlobalCtor(ObjCInitFunction); 67 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 68 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 69 EmitAnnotations(); 70 EmitLLVMUsed(); 71 } 72 73 /// ErrorUnsupported - Print out an error that codegen doesn't support the 74 /// specified stmt yet. 75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 76 bool OmitOnError) { 77 if (OmitOnError && getDiags().hasErrorOccurred()) 78 return; 79 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 80 "cannot compile this %0 yet"); 81 std::string Msg = Type; 82 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 83 << Msg << S->getSourceRange(); 84 } 85 86 /// ErrorUnsupported - Print out an error that codegen doesn't support the 87 /// specified decl yet. 88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 89 bool OmitOnError) { 90 if (OmitOnError && getDiags().hasErrorOccurred()) 91 return; 92 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 93 "cannot compile this %0 yet"); 94 std::string Msg = Type; 95 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 96 } 97 98 /// setGlobalVisibility - Set the visibility for the given LLVM 99 /// GlobalValue according to the given clang AST visibility value. 100 static void setGlobalVisibility(llvm::GlobalValue *GV, 101 VisibilityAttr::VisibilityTypes Vis) { 102 switch (Vis) { 103 default: assert(0 && "Unknown visibility!"); 104 case VisibilityAttr::DefaultVisibility: 105 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 106 break; 107 case VisibilityAttr::HiddenVisibility: 108 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 109 break; 110 case VisibilityAttr::ProtectedVisibility: 111 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 112 break; 113 } 114 } 115 116 static void setGlobalOptionVisibility(llvm::GlobalValue *GV, 117 LangOptions::VisibilityMode Vis) { 118 switch (Vis) { 119 default: assert(0 && "Unknown visibility!"); 120 case LangOptions::NonVisibility: 121 break; 122 case LangOptions::DefaultVisibility: 123 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 124 break; 125 case LangOptions::HiddenVisibility: 126 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 127 break; 128 case LangOptions::ProtectedVisibility: 129 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 130 break; 131 } 132 } 133 134 135 /// \brief Retrieves the mangled name for the given declaration. 136 /// 137 /// If the given declaration requires a mangled name, returns an 138 /// const char* containing the mangled name. Otherwise, returns 139 /// the unmangled name. 140 /// 141 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 142 // In C, functions with no attributes never need to be mangled. Fastpath them. 143 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 144 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 145 return ND->getNameAsCString(); 146 } 147 148 llvm::SmallString<256> Name; 149 llvm::raw_svector_ostream Out(Name); 150 if (!mangleName(ND, Context, Out)) { 151 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 152 return ND->getNameAsCString(); 153 } 154 155 Name += '\0'; 156 return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData(); 157 } 158 159 /// AddGlobalCtor - Add a function to the list that will be called before 160 /// main() runs. 161 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 162 // FIXME: Type coercion of void()* types. 163 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 164 } 165 166 /// AddGlobalDtor - Add a function to the list that will be called 167 /// when the module is unloaded. 168 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 169 // FIXME: Type coercion of void()* types. 170 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 171 } 172 173 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 174 // Ctor function type is void()*. 175 llvm::FunctionType* CtorFTy = 176 llvm::FunctionType::get(llvm::Type::VoidTy, 177 std::vector<const llvm::Type*>(), 178 false); 179 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 180 181 // Get the type of a ctor entry, { i32, void ()* }. 182 llvm::StructType* CtorStructTy = 183 llvm::StructType::get(llvm::Type::Int32Ty, 184 llvm::PointerType::getUnqual(CtorFTy), NULL); 185 186 // Construct the constructor and destructor arrays. 187 std::vector<llvm::Constant*> Ctors; 188 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 189 std::vector<llvm::Constant*> S; 190 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 191 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 192 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 193 } 194 195 if (!Ctors.empty()) { 196 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 197 new llvm::GlobalVariable(AT, false, 198 llvm::GlobalValue::AppendingLinkage, 199 llvm::ConstantArray::get(AT, Ctors), 200 GlobalName, 201 &TheModule); 202 } 203 } 204 205 void CodeGenModule::EmitAnnotations() { 206 if (Annotations.empty()) 207 return; 208 209 // Create a new global variable for the ConstantStruct in the Module. 210 llvm::Constant *Array = 211 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 212 Annotations.size()), 213 Annotations); 214 llvm::GlobalValue *gv = 215 new llvm::GlobalVariable(Array->getType(), false, 216 llvm::GlobalValue::AppendingLinkage, Array, 217 "llvm.global.annotations", &TheModule); 218 gv->setSection("llvm.metadata"); 219 } 220 221 void CodeGenModule::SetGlobalValueAttributes(const Decl *D, 222 bool IsInternal, 223 bool IsInline, 224 llvm::GlobalValue *GV, 225 bool ForDefinition) { 226 // FIXME: Set up linkage and many other things. Note, this is a simple 227 // approximation of what we really want. 228 if (!ForDefinition) { 229 // Only a few attributes are set on declarations. 230 if (D->getAttr<DLLImportAttr>()) { 231 // The dllimport attribute is overridden by a subsequent declaration as 232 // dllexport. 233 if (!D->getAttr<DLLExportAttr>()) { 234 // dllimport attribute can be applied only to function decls, not to 235 // definitions. 236 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 237 if (!FD->getBody()) 238 GV->setLinkage(llvm::Function::DLLImportLinkage); 239 } else 240 GV->setLinkage(llvm::Function::DLLImportLinkage); 241 } 242 } else if (D->getAttr<WeakAttr>() || 243 D->getAttr<WeakImportAttr>()) { 244 // "extern_weak" is overloaded in LLVM; we probably should have 245 // separate linkage types for this. 246 GV->setLinkage(llvm::Function::ExternalWeakLinkage); 247 } 248 } else { 249 if (IsInternal) { 250 GV->setLinkage(llvm::Function::InternalLinkage); 251 } else { 252 if (D->getAttr<DLLExportAttr>()) { 253 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 254 // The dllexport attribute is ignored for undefined symbols. 255 if (FD->getBody()) 256 GV->setLinkage(llvm::Function::DLLExportLinkage); 257 } else 258 GV->setLinkage(llvm::Function::DLLExportLinkage); 259 } else if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>() || 260 IsInline) 261 GV->setLinkage(llvm::Function::WeakAnyLinkage); 262 } 263 } 264 265 // FIXME: Figure out the relative priority of the attribute, 266 // -fvisibility, and private_extern. 267 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) 268 setGlobalVisibility(GV, attr->getVisibility()); 269 else 270 setGlobalOptionVisibility(GV, getLangOptions().getVisibilityMode()); 271 272 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 273 GV->setSection(SA->getName()); 274 275 // Only add to llvm.used when we see a definition, otherwise we 276 // might add multiple times or risk the value being replaced by a 277 // subsequent RAUW. 278 if (ForDefinition) { 279 if (D->getAttr<UsedAttr>()) 280 AddUsedGlobal(GV); 281 } 282 } 283 284 void CodeGenModule::SetFunctionAttributes(const Decl *D, 285 const CGFunctionInfo &Info, 286 llvm::Function *F) { 287 AttributeListType AttributeList; 288 ConstructAttributeList(Info, D, AttributeList); 289 290 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 291 AttributeList.size())); 292 293 // Set the appropriate calling convention for the Function. 294 if (D->getAttr<FastCallAttr>()) 295 F->setCallingConv(llvm::CallingConv::X86_FastCall); 296 297 if (D->getAttr<StdCallAttr>()) 298 F->setCallingConv(llvm::CallingConv::X86_StdCall); 299 300 if (D->getAttr<RegparmAttr>()) 301 ErrorUnsupported(D, "regparm attribute"); 302 } 303 304 /// SetFunctionAttributesForDefinition - Set function attributes 305 /// specific to a function definition. 306 void CodeGenModule::SetFunctionAttributesForDefinition(const Decl *D, 307 llvm::Function *F) { 308 if (isa<ObjCMethodDecl>(D)) { 309 SetGlobalValueAttributes(D, true, false, F, true); 310 } else { 311 const FunctionDecl *FD = cast<FunctionDecl>(D); 312 SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static, 313 FD->isInline(), F, true); 314 } 315 316 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 317 F->addFnAttr(llvm::Attribute::NoUnwind); 318 319 if (D->getAttr<AlwaysInlineAttr>()) 320 F->addFnAttr(llvm::Attribute::AlwaysInline); 321 322 if (D->getAttr<NoinlineAttr>()) 323 F->addFnAttr(llvm::Attribute::NoInline); 324 } 325 326 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD, 327 llvm::Function *F) { 328 SetFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F); 329 330 SetFunctionAttributesForDefinition(MD, F); 331 } 332 333 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 334 llvm::Function *F) { 335 SetFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 336 337 SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static, 338 FD->isInline(), F, false); 339 } 340 341 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 342 assert(!GV->isDeclaration() && 343 "Only globals with definition can force usage."); 344 LLVMUsed.push_back(GV); 345 } 346 347 void CodeGenModule::EmitLLVMUsed() { 348 // Don't create llvm.used if there is no need. 349 if (LLVMUsed.empty()) 350 return; 351 352 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 353 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size()); 354 355 // Convert LLVMUsed to what ConstantArray needs. 356 std::vector<llvm::Constant*> UsedArray; 357 UsedArray.resize(LLVMUsed.size()); 358 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 359 UsedArray[i] = 360 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 361 } 362 363 llvm::GlobalVariable *GV = 364 new llvm::GlobalVariable(ATy, false, 365 llvm::GlobalValue::AppendingLinkage, 366 llvm::ConstantArray::get(ATy, UsedArray), 367 "llvm.used", &getModule()); 368 369 GV->setSection("llvm.metadata"); 370 } 371 372 void CodeGenModule::EmitDeferred() { 373 // Emit code for any potentially referenced deferred decls. Since a 374 // previously unused static decl may become used during the generation of code 375 // for a static function, iterate until no changes are made. 376 while (!DeferredDeclsToEmit.empty()) { 377 const ValueDecl *D = DeferredDeclsToEmit.back(); 378 DeferredDeclsToEmit.pop_back(); 379 380 // The mangled name for the decl must have been emitted in GlobalDeclMap. 381 // Look it up to see if it was defined with a stronger definition (e.g. an 382 // extern inline function with a strong function redefinition). If so, 383 // just ignore the deferred decl. 384 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 385 assert(CGRef && "Deferred decl wasn't referenced?"); 386 387 if (!CGRef->isDeclaration()) 388 continue; 389 390 // Otherwise, emit the definition and move on to the next one. 391 EmitGlobalDefinition(D); 392 } 393 } 394 395 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 396 /// annotation information for a given GlobalValue. The annotation struct is 397 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 398 /// GlobalValue being annotated. The second field is the constant string 399 /// created from the AnnotateAttr's annotation. The third field is a constant 400 /// string containing the name of the translation unit. The fourth field is 401 /// the line number in the file of the annotated value declaration. 402 /// 403 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 404 /// appears to. 405 /// 406 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 407 const AnnotateAttr *AA, 408 unsigned LineNo) { 409 llvm::Module *M = &getModule(); 410 411 // get [N x i8] constants for the annotation string, and the filename string 412 // which are the 2nd and 3rd elements of the global annotation structure. 413 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 414 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 415 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 416 true); 417 418 // Get the two global values corresponding to the ConstantArrays we just 419 // created to hold the bytes of the strings. 420 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 421 llvm::GlobalValue *annoGV = 422 new llvm::GlobalVariable(anno->getType(), false, 423 llvm::GlobalValue::InternalLinkage, anno, 424 GV->getName() + StringPrefix, M); 425 // translation unit name string, emitted into the llvm.metadata section. 426 llvm::GlobalValue *unitGV = 427 new llvm::GlobalVariable(unit->getType(), false, 428 llvm::GlobalValue::InternalLinkage, unit, 429 StringPrefix, M); 430 431 // Create the ConstantStruct that is the global annotion. 432 llvm::Constant *Fields[4] = { 433 llvm::ConstantExpr::getBitCast(GV, SBP), 434 llvm::ConstantExpr::getBitCast(annoGV, SBP), 435 llvm::ConstantExpr::getBitCast(unitGV, SBP), 436 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 437 }; 438 return llvm::ConstantStruct::get(Fields, 4, false); 439 } 440 441 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 442 // Never defer when EmitAllDecls is specified or the decl has 443 // attribute used. 444 if (Features.EmitAllDecls || Global->getAttr<UsedAttr>()) 445 return false; 446 447 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 448 // Constructors and destructors should never be deferred. 449 if (FD->getAttr<ConstructorAttr>() || FD->getAttr<DestructorAttr>()) 450 return false; 451 452 // FIXME: What about inline, and/or extern inline? 453 if (FD->getStorageClass() != FunctionDecl::Static) 454 return false; 455 } else { 456 const VarDecl *VD = cast<VarDecl>(Global); 457 assert(VD->isFileVarDecl() && "Invalid decl"); 458 459 if (VD->getStorageClass() != VarDecl::Static) 460 return false; 461 } 462 463 return true; 464 } 465 466 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 467 // If this is an alias definition (which otherwise looks like a declaration) 468 // emit it now. 469 if (Global->getAttr<AliasAttr>()) 470 return EmitAliasDefinition(Global); 471 472 // Ignore declarations, they will be emitted on their first use. 473 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 474 // Forward declarations are emitted lazily on first use. 475 if (!FD->isThisDeclarationADefinition()) 476 return; 477 } else { 478 const VarDecl *VD = cast<VarDecl>(Global); 479 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 480 481 // Forward declarations are emitted lazily on first use. 482 if (!VD->getInit() && VD->hasExternalStorage()) 483 return; 484 } 485 486 // Defer code generation when possible if this is a static definition, inline 487 // function etc. These we only want to emit if they are used. 488 if (MayDeferGeneration(Global)) { 489 // If the value has already been used, add it directly to the 490 // DeferredDeclsToEmit list. 491 const char *MangledName = getMangledName(Global); 492 if (GlobalDeclMap.count(MangledName)) 493 DeferredDeclsToEmit.push_back(Global); 494 else { 495 // Otherwise, remember that we saw a deferred decl with this name. The 496 // first use of the mangled name will cause it to move into 497 // DeferredDeclsToEmit. 498 DeferredDecls[MangledName] = Global; 499 } 500 return; 501 } 502 503 // Otherwise emit the definition. 504 EmitGlobalDefinition(Global); 505 } 506 507 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 508 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 509 EmitGlobalFunctionDefinition(FD); 510 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 511 EmitGlobalVarDefinition(VD); 512 } else { 513 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 514 } 515 } 516 517 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 518 /// module, create and return an llvm Function with the specified type. If there 519 /// is something in the module with the specified name, return it potentially 520 /// bitcasted to the right type. 521 /// 522 /// If D is non-null, it specifies a decl that correspond to this. This is used 523 /// to set the attributes on the function when it is first created. 524 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 525 const llvm::Type *Ty, 526 const FunctionDecl *D) { 527 // Lookup the entry, lazily creating it if necessary. 528 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 529 if (Entry) { 530 if (Entry->getType()->getElementType() == Ty) 531 return Entry; 532 533 // Make sure the result is of the correct type. 534 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 535 return llvm::ConstantExpr::getBitCast(Entry, PTy); 536 } 537 538 // This is the first use or definition of a mangled name. If there is a 539 // deferred decl with this name, remember that we need to emit it at the end 540 // of the file. 541 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 542 DeferredDecls.find(MangledName); 543 if (DDI != DeferredDecls.end()) { 544 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 545 // list, and remove it from DeferredDecls (since we don't need it anymore). 546 DeferredDeclsToEmit.push_back(DDI->second); 547 DeferredDecls.erase(DDI); 548 } 549 550 // This function doesn't have a complete type (for example, the return 551 // type is an incomplete struct). Use a fake type instead, and make 552 // sure not to try to set attributes. 553 bool ShouldSetAttributes = true; 554 if (!isa<llvm::FunctionType>(Ty)) { 555 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 556 std::vector<const llvm::Type*>(), false); 557 ShouldSetAttributes = false; 558 } 559 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 560 llvm::Function::ExternalLinkage, 561 "", &getModule()); 562 F->setName(MangledName); 563 if (D && ShouldSetAttributes) 564 SetFunctionAttributes(D, F); 565 Entry = F; 566 return F; 567 } 568 569 /// GetAddrOfFunction - Return the address of the given function. If Ty is 570 /// non-null, then this function will use the specified type if it has to 571 /// create it (this occurs when we see a definition of the function). 572 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D, 573 const llvm::Type *Ty) { 574 // If there was no specific requested type, just convert it now. 575 if (!Ty) 576 Ty = getTypes().ConvertType(D->getType()); 577 return GetOrCreateLLVMFunction(getMangledName(D), Ty, D); 578 } 579 580 /// CreateRuntimeFunction - Create a new runtime function with the specified 581 /// type and name. 582 llvm::Constant * 583 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 584 const char *Name) { 585 // Convert Name to be a uniqued string from the IdentifierInfo table. 586 Name = getContext().Idents.get(Name).getName(); 587 return GetOrCreateLLVMFunction(Name, FTy, 0); 588 } 589 590 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 591 /// create and return an llvm GlobalVariable with the specified type. If there 592 /// is something in the module with the specified name, return it potentially 593 /// bitcasted to the right type. 594 /// 595 /// If D is non-null, it specifies a decl that correspond to this. This is used 596 /// to set the attributes on the global when it is first created. 597 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 598 const llvm::PointerType*Ty, 599 const VarDecl *D) { 600 // Lookup the entry, lazily creating it if necessary. 601 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 602 if (Entry) { 603 if (Entry->getType() == Ty) 604 return Entry; 605 606 // Make sure the result is of the correct type. 607 return llvm::ConstantExpr::getBitCast(Entry, Ty); 608 } 609 610 // This is the first use or definition of a mangled name. If there is a 611 // deferred decl with this name, remember that we need to emit it at the end 612 // of the file. 613 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 614 DeferredDecls.find(MangledName); 615 if (DDI != DeferredDecls.end()) { 616 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 617 // list, and remove it from DeferredDecls (since we don't need it anymore). 618 DeferredDeclsToEmit.push_back(DDI->second); 619 DeferredDecls.erase(DDI); 620 } 621 622 llvm::GlobalVariable *GV = 623 new llvm::GlobalVariable(Ty->getElementType(), false, 624 llvm::GlobalValue::ExternalLinkage, 625 0, "", &getModule(), 626 0, Ty->getAddressSpace()); 627 GV->setName(MangledName); 628 629 // Handle things which are present even on external declarations. 630 if (D) { 631 // FIXME: This code is overly simple and should be merged with 632 // other global handling. 633 GV->setConstant(D->getType().isConstant(Context)); 634 635 // FIXME: Merge with other attribute handling code. 636 if (D->getStorageClass() == VarDecl::PrivateExtern) 637 setGlobalVisibility(GV, VisibilityAttr::HiddenVisibility); 638 639 if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>()) 640 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 641 } 642 643 return Entry = GV; 644 } 645 646 647 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 648 /// given global variable. If Ty is non-null and if the global doesn't exist, 649 /// then it will be greated with the specified type instead of whatever the 650 /// normal requested type would be. 651 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 652 const llvm::Type *Ty) { 653 assert(D->hasGlobalStorage() && "Not a global variable"); 654 QualType ASTTy = D->getType(); 655 if (Ty == 0) 656 Ty = getTypes().ConvertTypeForMem(ASTTy); 657 658 const llvm::PointerType *PTy = 659 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 660 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 661 } 662 663 /// CreateRuntimeVariable - Create a new runtime global variable with the 664 /// specified type and name. 665 llvm::Constant * 666 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 667 const char *Name) { 668 // Convert Name to be a uniqued string from the IdentifierInfo table. 669 Name = getContext().Idents.get(Name).getName(); 670 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 671 } 672 673 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 674 llvm::Constant *Init = 0; 675 QualType ASTTy = D->getType(); 676 677 if (D->getInit() == 0) { 678 // This is a tentative definition; tentative definitions are 679 // implicitly initialized with { 0 } 680 const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy); 681 if (ASTTy->isIncompleteArrayType()) { 682 // An incomplete array is normally [ TYPE x 0 ], but we need 683 // to fix it to [ TYPE x 1 ]. 684 const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy); 685 InitTy = llvm::ArrayType::get(ATy->getElementType(), 1); 686 } 687 Init = llvm::Constant::getNullValue(InitTy); 688 } else { 689 Init = EmitConstantExpr(D->getInit()); 690 if (!Init) { 691 ErrorUnsupported(D, "static initializer"); 692 QualType T = D->getInit()->getType(); 693 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 694 } 695 } 696 697 const llvm::Type* InitType = Init->getType(); 698 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 699 700 // Strip off a bitcast if we got one back. 701 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 702 assert(CE->getOpcode() == llvm::Instruction::BitCast); 703 Entry = CE->getOperand(0); 704 } 705 706 // Entry is now either a Function or GlobalVariable. 707 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 708 709 // If we already have this global and it has an initializer, then 710 // we are in the rare situation where we emitted the defining 711 // declaration of the global and are now being asked to emit a 712 // definition which would be common. This occurs, for example, in 713 // the following situation because statics can be emitted out of 714 // order: 715 // 716 // static int x; 717 // static int *y = &x; 718 // static int x = 10; 719 // int **z = &y; 720 // 721 // Bail here so we don't blow away the definition. Note that if we 722 // can't distinguish here if we emitted a definition with a null 723 // initializer, but this case is safe. 724 if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) { 725 assert(!D->getInit() && "Emitting multiple definitions of a decl!"); 726 return; 727 } 728 729 // We have a definition after a declaration with the wrong type. 730 // We must make a new GlobalVariable* and update everything that used OldGV 731 // (a declaration or tentative definition) with the new GlobalVariable* 732 // (which will be a definition). 733 // 734 // This happens if there is a prototype for a global (e.g. 735 // "extern int x[];") and then a definition of a different type (e.g. 736 // "int x[10];"). This also happens when an initializer has a different type 737 // from the type of the global (this happens with unions). 738 // 739 // FIXME: This also ends up happening if there's a definition followed by 740 // a tentative definition! (Although Sema rejects that construct 741 // at the moment.) 742 if (GV == 0 || 743 GV->getType()->getElementType() != InitType || 744 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 745 746 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 747 GlobalDeclMap.erase(getMangledName(D)); 748 749 // Make a new global with the correct type, this is now guaranteed to work. 750 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 751 GV->takeName(cast<llvm::GlobalValue>(Entry)); 752 753 // Replace all uses of the old global with the new global 754 llvm::Constant *NewPtrForOldDecl = 755 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 756 Entry->replaceAllUsesWith(NewPtrForOldDecl); 757 758 // Erase the old global, since it is no longer used. 759 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 760 } 761 762 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 763 SourceManager &SM = Context.getSourceManager(); 764 AddAnnotation(EmitAnnotateAttr(GV, AA, 765 SM.getInstantiationLineNumber(D->getLocation()))); 766 } 767 768 GV->setInitializer(Init); 769 GV->setConstant(D->getType().isConstant(Context)); 770 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 771 772 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) 773 setGlobalVisibility(GV, attr->getVisibility()); 774 else 775 setGlobalOptionVisibility(GV, getLangOptions().getVisibilityMode()); 776 777 // Set the llvm linkage type as appropriate. 778 if (D->getStorageClass() == VarDecl::Static) 779 GV->setLinkage(llvm::Function::InternalLinkage); 780 else if (D->getAttr<DLLImportAttr>()) 781 GV->setLinkage(llvm::Function::DLLImportLinkage); 782 else if (D->getAttr<DLLExportAttr>()) 783 GV->setLinkage(llvm::Function::DLLExportLinkage); 784 else if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>()) 785 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 786 else { 787 // FIXME: This isn't right. This should handle common linkage and other 788 // stuff. 789 switch (D->getStorageClass()) { 790 case VarDecl::Static: assert(0 && "This case handled above"); 791 case VarDecl::Auto: 792 case VarDecl::Register: 793 assert(0 && "Can't have auto or register globals"); 794 case VarDecl::None: 795 if (!D->getInit() && !CompileOpts.NoCommon) 796 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 797 else 798 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 799 break; 800 case VarDecl::Extern: 801 // FIXME: common 802 break; 803 804 case VarDecl::PrivateExtern: 805 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 806 // FIXME: common 807 break; 808 } 809 } 810 811 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 812 GV->setSection(SA->getName()); 813 814 if (D->getAttr<UsedAttr>()) 815 AddUsedGlobal(GV); 816 817 // Emit global variable debug information. 818 if (CGDebugInfo *DI = getDebugInfo()) { 819 DI->setLocation(D->getLocation()); 820 DI->EmitGlobalVariable(GV, D); 821 } 822 } 823 824 825 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 826 const llvm::FunctionType *Ty = 827 cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 828 829 // As a special case, make sure that definitions of K&R function 830 // "type foo()" aren't declared as varargs (which forces the backend 831 // to do unnecessary work). 832 if (D->getType()->isFunctionNoProtoType()) { 833 assert(Ty->isVarArg() && "Didn't lower type as expected"); 834 // Due to stret, the lowered function could have arguments. Just create the 835 // same type as was lowered by ConvertType but strip off the varargs bit. 836 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 837 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 838 } 839 840 // Get or create the prototype for teh function. 841 llvm::Constant *Entry = GetAddrOfFunction(D, Ty); 842 843 // Strip off a bitcast if we got one back. 844 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 845 assert(CE->getOpcode() == llvm::Instruction::BitCast); 846 Entry = CE->getOperand(0); 847 } 848 849 850 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 851 // If the types mismatch then we have to rewrite the definition. 852 assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() && 853 "Shouldn't replace non-declaration"); 854 855 // F is the Function* for the one with the wrong type, we must make a new 856 // Function* and update everything that used F (a declaration) with the new 857 // Function* (which will be a definition). 858 // 859 // This happens if there is a prototype for a function 860 // (e.g. "int f()") and then a definition of a different type 861 // (e.g. "int f(int x)"). Start by making a new function of the 862 // correct type, RAUW, then steal the name. 863 GlobalDeclMap.erase(getMangledName(D)); 864 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty)); 865 NewFn->takeName(cast<llvm::GlobalValue>(Entry)); 866 867 // Replace uses of F with the Function we will endow with a body. 868 llvm::Constant *NewPtrForOldDecl = 869 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 870 Entry->replaceAllUsesWith(NewPtrForOldDecl); 871 872 // Ok, delete the old function now, which is dead. 873 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 874 875 Entry = NewFn; 876 } 877 878 llvm::Function *Fn = cast<llvm::Function>(Entry); 879 880 CodeGenFunction(*this).GenerateCode(D, Fn); 881 882 SetFunctionAttributesForDefinition(D, Fn); 883 884 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 885 AddGlobalCtor(Fn, CA->getPriority()); 886 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 887 AddGlobalDtor(Fn, DA->getPriority()); 888 } 889 890 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 891 const AliasAttr *AA = D->getAttr<AliasAttr>(); 892 assert(AA && "Not an alias?"); 893 894 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 895 896 // Unique the name through the identifier table. 897 const char *AliaseeName = AA->getAliasee().c_str(); 898 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 899 900 // Create a reference to the named value. This ensures that it is emitted 901 // if a deferred decl. 902 llvm::Constant *Aliasee; 903 if (isa<llvm::FunctionType>(DeclTy)) 904 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0); 905 else 906 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 907 llvm::PointerType::getUnqual(DeclTy), 0); 908 909 // Create the new alias itself, but don't set a name yet. 910 llvm::GlobalValue *GA = 911 new llvm::GlobalAlias(Aliasee->getType(), 912 llvm::Function::ExternalLinkage, 913 "", Aliasee, &getModule()); 914 915 // See if there is already something with the alias' name in the module. 916 const char *MangledName = getMangledName(D); 917 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 918 919 if (Entry && !Entry->isDeclaration()) { 920 // If there is a definition in the module, then it wins over the alias. 921 // This is dubious, but allow it to be safe. Just ignore the alias. 922 GA->eraseFromParent(); 923 return; 924 } 925 926 if (Entry) { 927 // If there is a declaration in the module, then we had an extern followed 928 // by the alias, as in: 929 // extern int test6(); 930 // ... 931 // int test6() __attribute__((alias("test7"))); 932 // 933 // Remove it and replace uses of it with the alias. 934 935 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 936 Entry->getType())); 937 Entry->eraseFromParent(); 938 } 939 940 // Now we know that there is no conflict, set the name. 941 Entry = GA; 942 GA->setName(MangledName); 943 944 // Alias should never be internal or inline. 945 SetGlobalValueAttributes(D, false, false, GA, true); 946 } 947 948 /// getBuiltinLibFunction - Given a builtin id for a function like 949 /// "__builtin_fabsf", return a Function* for "fabsf". 950 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 951 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 952 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 953 "isn't a lib fn"); 954 955 // Get the name, skip over the __builtin_ prefix (if necessary). 956 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 957 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 958 Name += 10; 959 960 // Get the type for the builtin. 961 Builtin::Context::GetBuiltinTypeError Error; 962 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); 963 assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); 964 965 const llvm::FunctionType *Ty = 966 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 967 968 // Unique the name through the identifier table. 969 Name = getContext().Idents.get(Name).getName(); 970 // FIXME: param attributes for sext/zext etc. 971 return GetOrCreateLLVMFunction(Name, Ty, 0); 972 } 973 974 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 975 unsigned NumTys) { 976 return llvm::Intrinsic::getDeclaration(&getModule(), 977 (llvm::Intrinsic::ID)IID, Tys, NumTys); 978 } 979 980 llvm::Function *CodeGenModule::getMemCpyFn() { 981 if (MemCpyFn) return MemCpyFn; 982 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 983 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 984 } 985 986 llvm::Function *CodeGenModule::getMemMoveFn() { 987 if (MemMoveFn) return MemMoveFn; 988 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 989 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 990 } 991 992 llvm::Function *CodeGenModule::getMemSetFn() { 993 if (MemSetFn) return MemSetFn; 994 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 995 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 996 } 997 998 static void appendFieldAndPadding(CodeGenModule &CGM, 999 std::vector<llvm::Constant*>& Fields, 1000 FieldDecl *FieldD, FieldDecl *NextFieldD, 1001 llvm::Constant* Field, 1002 RecordDecl* RD, const llvm::StructType *STy) { 1003 // Append the field. 1004 Fields.push_back(Field); 1005 1006 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1007 1008 int NextStructFieldNo; 1009 if (!NextFieldD) { 1010 NextStructFieldNo = STy->getNumElements(); 1011 } else { 1012 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1013 } 1014 1015 // Append padding 1016 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1017 llvm::Constant *C = 1018 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1019 1020 Fields.push_back(C); 1021 } 1022 } 1023 1024 llvm::Constant *CodeGenModule:: 1025 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1026 std::string str; 1027 unsigned StringLength; 1028 1029 bool isUTF16 = false; 1030 if (Literal->containsNonAsciiOrNull()) { 1031 // Convert from UTF-8 to UTF-16. 1032 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1033 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1034 UTF16 *ToPtr = &ToBuf[0]; 1035 1036 ConversionResult Result; 1037 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1038 &ToPtr, ToPtr+Literal->getByteLength(), 1039 strictConversion); 1040 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1041 1042 StringLength = ToPtr-&ToBuf[0]; 1043 str.assign((char *)&ToBuf[0], StringLength*2); // Twice as many UTF8 chars. 1044 isUTF16 = true; 1045 } else { 1046 str.assign(Literal->getStrData(), Literal->getByteLength()); 1047 StringLength = str.length(); 1048 } 1049 llvm::StringMapEntry<llvm::Constant *> &Entry = 1050 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1051 1052 if (llvm::Constant *C = Entry.getValue()) 1053 return C; 1054 1055 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1056 llvm::Constant *Zeros[] = { Zero, Zero }; 1057 1058 if (!CFConstantStringClassRef) { 1059 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1060 Ty = llvm::ArrayType::get(Ty, 0); 1061 1062 // FIXME: This is fairly broken if 1063 // __CFConstantStringClassReference is already defined, in that it 1064 // will get renamed and the user will most likely see an opaque 1065 // error message. This is a general issue with relying on 1066 // particular names. 1067 llvm::GlobalVariable *GV = 1068 new llvm::GlobalVariable(Ty, false, 1069 llvm::GlobalVariable::ExternalLinkage, 0, 1070 "__CFConstantStringClassReference", 1071 &getModule()); 1072 1073 // Decay array -> ptr 1074 CFConstantStringClassRef = 1075 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1076 } 1077 1078 QualType CFTy = getContext().getCFConstantStringType(); 1079 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1080 1081 const llvm::StructType *STy = 1082 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1083 1084 std::vector<llvm::Constant*> Fields; 1085 RecordDecl::field_iterator Field = CFRD->field_begin(); 1086 1087 // Class pointer. 1088 FieldDecl *CurField = *Field++; 1089 FieldDecl *NextField = *Field++; 1090 appendFieldAndPadding(*this, Fields, CurField, NextField, 1091 CFConstantStringClassRef, CFRD, STy); 1092 1093 // Flags. 1094 CurField = NextField; 1095 NextField = *Field++; 1096 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1097 appendFieldAndPadding(*this, Fields, CurField, NextField, 1098 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1099 : llvm::ConstantInt::get(Ty, 0x07C8), 1100 CFRD, STy); 1101 1102 // String pointer. 1103 CurField = NextField; 1104 NextField = *Field++; 1105 llvm::Constant *C = llvm::ConstantArray::get(str); 1106 1107 const char *Sect, *Prefix; 1108 bool isConstant; 1109 if (isUTF16) { 1110 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1111 Sect = getContext().Target.getUnicodeStringSection(); 1112 // FIXME: Why does GCC not set constant here? 1113 isConstant = false; 1114 } else { 1115 Prefix = getContext().Target.getStringSymbolPrefix(true); 1116 Sect = getContext().Target.getCFStringDataSection(); 1117 // FIXME: -fwritable-strings should probably affect this, but we 1118 // are following gcc here. 1119 isConstant = true; 1120 } 1121 llvm::GlobalVariable *GV = 1122 new llvm::GlobalVariable(C->getType(), isConstant, 1123 llvm::GlobalValue::InternalLinkage, 1124 C, Prefix, &getModule()); 1125 if (Sect) 1126 GV->setSection(Sect); 1127 if (isUTF16) { 1128 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1129 GV->setAlignment(Align); 1130 } 1131 appendFieldAndPadding(*this, Fields, CurField, NextField, 1132 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1133 CFRD, STy); 1134 1135 // String length. 1136 CurField = NextField; 1137 NextField = 0; 1138 Ty = getTypes().ConvertType(getContext().LongTy); 1139 appendFieldAndPadding(*this, Fields, CurField, NextField, 1140 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1141 1142 // The struct. 1143 C = llvm::ConstantStruct::get(STy, Fields); 1144 GV = new llvm::GlobalVariable(C->getType(), true, 1145 llvm::GlobalVariable::InternalLinkage, C, 1146 getContext().Target.getCFStringSymbolPrefix(), 1147 &getModule()); 1148 if (const char *Sect = getContext().Target.getCFStringSection()) 1149 GV->setSection(Sect); 1150 Entry.setValue(GV); 1151 1152 return GV; 1153 } 1154 1155 /// GetStringForStringLiteral - Return the appropriate bytes for a 1156 /// string literal, properly padded to match the literal type. 1157 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1158 const char *StrData = E->getStrData(); 1159 unsigned Len = E->getByteLength(); 1160 1161 const ConstantArrayType *CAT = 1162 getContext().getAsConstantArrayType(E->getType()); 1163 assert(CAT && "String isn't pointer or array!"); 1164 1165 // Resize the string to the right size. 1166 std::string Str(StrData, StrData+Len); 1167 uint64_t RealLen = CAT->getSize().getZExtValue(); 1168 1169 if (E->isWide()) 1170 RealLen *= getContext().Target.getWCharWidth()/8; 1171 1172 Str.resize(RealLen, '\0'); 1173 1174 return Str; 1175 } 1176 1177 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1178 /// constant array for the given string literal. 1179 llvm::Constant * 1180 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1181 // FIXME: This can be more efficient. 1182 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1183 } 1184 1185 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1186 /// array for the given ObjCEncodeExpr node. 1187 llvm::Constant * 1188 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1189 std::string Str; 1190 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1191 1192 return GetAddrOfConstantCString(Str); 1193 } 1194 1195 1196 /// GenerateWritableString -- Creates storage for a string literal. 1197 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1198 bool constant, 1199 CodeGenModule &CGM, 1200 const char *GlobalName) { 1201 // Create Constant for this string literal. Don't add a '\0'. 1202 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1203 1204 // Create a global variable for this string 1205 return new llvm::GlobalVariable(C->getType(), constant, 1206 llvm::GlobalValue::InternalLinkage, 1207 C, GlobalName, &CGM.getModule()); 1208 } 1209 1210 /// GetAddrOfConstantString - Returns a pointer to a character array 1211 /// containing the literal. This contents are exactly that of the 1212 /// given string, i.e. it will not be null terminated automatically; 1213 /// see GetAddrOfConstantCString. Note that whether the result is 1214 /// actually a pointer to an LLVM constant depends on 1215 /// Feature.WriteableStrings. 1216 /// 1217 /// The result has pointer to array type. 1218 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1219 const char *GlobalName) { 1220 bool IsConstant = !Features.WritableStrings; 1221 1222 // Get the default prefix if a name wasn't specified. 1223 if (!GlobalName) 1224 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1225 1226 // Don't share any string literals if strings aren't constant. 1227 if (!IsConstant) 1228 return GenerateStringLiteral(str, false, *this, GlobalName); 1229 1230 llvm::StringMapEntry<llvm::Constant *> &Entry = 1231 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1232 1233 if (Entry.getValue()) 1234 return Entry.getValue(); 1235 1236 // Create a global variable for this. 1237 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1238 Entry.setValue(C); 1239 return C; 1240 } 1241 1242 /// GetAddrOfConstantCString - Returns a pointer to a character 1243 /// array containing the literal and a terminating '\-' 1244 /// character. The result has pointer to array type. 1245 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1246 const char *GlobalName){ 1247 return GetAddrOfConstantString(str + '\0', GlobalName); 1248 } 1249 1250 /// EmitObjCPropertyImplementations - Emit information for synthesized 1251 /// properties for an implementation. 1252 void CodeGenModule::EmitObjCPropertyImplementations(const 1253 ObjCImplementationDecl *D) { 1254 for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), 1255 e = D->propimpl_end(); i != e; ++i) { 1256 ObjCPropertyImplDecl *PID = *i; 1257 1258 // Dynamic is just for type-checking. 1259 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1260 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1261 1262 // Determine which methods need to be implemented, some may have 1263 // been overridden. Note that ::isSynthesized is not the method 1264 // we want, that just indicates if the decl came from a 1265 // property. What we want to know is if the method is defined in 1266 // this implementation. 1267 if (!D->getInstanceMethod(PD->getGetterName())) 1268 CodeGenFunction(*this).GenerateObjCGetter( 1269 const_cast<ObjCImplementationDecl *>(D), PID); 1270 if (!PD->isReadOnly() && 1271 !D->getInstanceMethod(PD->getSetterName())) 1272 CodeGenFunction(*this).GenerateObjCSetter( 1273 const_cast<ObjCImplementationDecl *>(D), PID); 1274 } 1275 } 1276 } 1277 1278 /// EmitNamespace - Emit all declarations in a namespace. 1279 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1280 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1281 I != E; ++I) 1282 EmitTopLevelDecl(*I); 1283 } 1284 1285 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1286 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1287 if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { 1288 ErrorUnsupported(LSD, "linkage spec"); 1289 return; 1290 } 1291 1292 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1293 I != E; ++I) 1294 EmitTopLevelDecl(*I); 1295 } 1296 1297 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1298 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1299 // If an error has occurred, stop code generation, but continue 1300 // parsing and semantic analysis (to ensure all warnings and errors 1301 // are emitted). 1302 if (Diags.hasErrorOccurred()) 1303 return; 1304 1305 switch (D->getKind()) { 1306 case Decl::Function: 1307 case Decl::Var: 1308 EmitGlobal(cast<ValueDecl>(D)); 1309 break; 1310 1311 case Decl::Namespace: 1312 EmitNamespace(cast<NamespaceDecl>(D)); 1313 break; 1314 1315 // Objective-C Decls 1316 1317 // Forward declarations, no (immediate) code generation. 1318 case Decl::ObjCClass: 1319 case Decl::ObjCForwardProtocol: 1320 case Decl::ObjCCategory: 1321 break; 1322 case Decl::ObjCInterface: 1323 // If we already laid out this interface due to an @class, and if we 1324 // codegen'd a reference it, update the 'opaque' type to be a real type now. 1325 Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D)); 1326 break; 1327 1328 case Decl::ObjCProtocol: 1329 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1330 break; 1331 1332 case Decl::ObjCCategoryImpl: 1333 // Categories have properties but don't support synthesize so we 1334 // can ignore them here. 1335 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1336 break; 1337 1338 case Decl::ObjCImplementation: { 1339 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1340 EmitObjCPropertyImplementations(OMD); 1341 Runtime->GenerateClass(OMD); 1342 break; 1343 } 1344 case Decl::ObjCMethod: { 1345 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1346 // If this is not a prototype, emit the body. 1347 if (OMD->getBody()) 1348 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1349 break; 1350 } 1351 case Decl::ObjCCompatibleAlias: 1352 // compatibility-alias is a directive and has no code gen. 1353 break; 1354 1355 case Decl::LinkageSpec: 1356 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1357 break; 1358 1359 case Decl::FileScopeAsm: { 1360 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1361 std::string AsmString(AD->getAsmString()->getStrData(), 1362 AD->getAsmString()->getByteLength()); 1363 1364 const std::string &S = getModule().getModuleInlineAsm(); 1365 if (S.empty()) 1366 getModule().setModuleInlineAsm(AsmString); 1367 else 1368 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1369 break; 1370 } 1371 1372 default: 1373 // Make sure we handled everything we should, every other kind is 1374 // a non-top-level decl. FIXME: Would be nice to have an 1375 // isTopLevelDeclKind function. Need to recode Decl::Kind to do 1376 // that easily. 1377 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1378 } 1379 } 1380