1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Diagnostic.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Basic/ConvertUTF.h" 28 #include "llvm/CallingConv.h" 29 #include "llvm/Module.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/Target/TargetData.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 37 llvm::Module &M, const llvm::TargetData &TD, 38 Diagnostic &diags) 39 : BlockModule(C, M, TD, Types, *this), Context(C), 40 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 41 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 42 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 43 44 if (!Features.ObjC1) 45 Runtime = 0; 46 else if (!Features.NeXTRuntime) 47 Runtime = CreateGNUObjCRuntime(*this); 48 else if (Features.ObjCNonFragileABI) 49 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 50 else 51 Runtime = CreateMacObjCRuntime(*this); 52 53 // If debug info generation is enabled, create the CGDebugInfo object. 54 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 55 } 56 57 CodeGenModule::~CodeGenModule() { 58 delete Runtime; 59 delete DebugInfo; 60 } 61 62 void CodeGenModule::Release() { 63 EmitDeferred(); 64 if (Runtime) 65 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 66 AddGlobalCtor(ObjCInitFunction); 67 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 68 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 69 EmitAnnotations(); 70 EmitLLVMUsed(); 71 } 72 73 /// ErrorUnsupported - Print out an error that codegen doesn't support the 74 /// specified stmt yet. 75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 76 bool OmitOnError) { 77 if (OmitOnError && getDiags().hasErrorOccurred()) 78 return; 79 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 80 "cannot compile this %0 yet"); 81 std::string Msg = Type; 82 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 83 << Msg << S->getSourceRange(); 84 } 85 86 /// ErrorUnsupported - Print out an error that codegen doesn't support the 87 /// specified decl yet. 88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 89 bool OmitOnError) { 90 if (OmitOnError && getDiags().hasErrorOccurred()) 91 return; 92 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 93 "cannot compile this %0 yet"); 94 std::string Msg = Type; 95 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 96 } 97 98 LangOptions::VisibilityMode 99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 100 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 101 if (VD->getStorageClass() == VarDecl::PrivateExtern) 102 return LangOptions::Hidden; 103 104 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 105 switch (attr->getVisibility()) { 106 default: assert(0 && "Unknown visibility!"); 107 case VisibilityAttr::DefaultVisibility: 108 return LangOptions::Default; 109 case VisibilityAttr::HiddenVisibility: 110 return LangOptions::Hidden; 111 case VisibilityAttr::ProtectedVisibility: 112 return LangOptions::Protected; 113 } 114 } 115 116 return getLangOptions().getVisibilityMode(); 117 } 118 119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 120 const Decl *D) const { 121 // Internal definitions always have default visibility. 122 if (GV->hasLocalLinkage()) { 123 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 124 return; 125 } 126 127 switch (getDeclVisibilityMode(D)) { 128 default: assert(0 && "Unknown visibility!"); 129 case LangOptions::Default: 130 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 131 case LangOptions::Hidden: 132 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 133 case LangOptions::Protected: 134 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 135 } 136 } 137 138 /// \brief Retrieves the mangled name for the given declaration. 139 /// 140 /// If the given declaration requires a mangled name, returns an 141 /// const char* containing the mangled name. Otherwise, returns 142 /// the unmangled name. 143 /// 144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 145 // In C, functions with no attributes never need to be mangled. Fastpath them. 146 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 147 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 148 return ND->getNameAsCString(); 149 } 150 151 llvm::SmallString<256> Name; 152 llvm::raw_svector_ostream Out(Name); 153 if (!mangleName(ND, Context, Out)) { 154 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 155 return ND->getNameAsCString(); 156 } 157 158 Name += '\0'; 159 return UniqueMangledName(Name.begin(), Name.end()); 160 } 161 162 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 163 const char *NameEnd) { 164 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 165 166 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 167 } 168 169 /// AddGlobalCtor - Add a function to the list that will be called before 170 /// main() runs. 171 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 172 // FIXME: Type coercion of void()* types. 173 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 174 } 175 176 /// AddGlobalDtor - Add a function to the list that will be called 177 /// when the module is unloaded. 178 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 179 // FIXME: Type coercion of void()* types. 180 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 181 } 182 183 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 184 // Ctor function type is void()*. 185 llvm::FunctionType* CtorFTy = 186 llvm::FunctionType::get(llvm::Type::VoidTy, 187 std::vector<const llvm::Type*>(), 188 false); 189 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 190 191 // Get the type of a ctor entry, { i32, void ()* }. 192 llvm::StructType* CtorStructTy = 193 llvm::StructType::get(llvm::Type::Int32Ty, 194 llvm::PointerType::getUnqual(CtorFTy), NULL); 195 196 // Construct the constructor and destructor arrays. 197 std::vector<llvm::Constant*> Ctors; 198 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 199 std::vector<llvm::Constant*> S; 200 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 201 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 202 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 203 } 204 205 if (!Ctors.empty()) { 206 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 207 new llvm::GlobalVariable(AT, false, 208 llvm::GlobalValue::AppendingLinkage, 209 llvm::ConstantArray::get(AT, Ctors), 210 GlobalName, 211 &TheModule); 212 } 213 } 214 215 void CodeGenModule::EmitAnnotations() { 216 if (Annotations.empty()) 217 return; 218 219 // Create a new global variable for the ConstantStruct in the Module. 220 llvm::Constant *Array = 221 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 222 Annotations.size()), 223 Annotations); 224 llvm::GlobalValue *gv = 225 new llvm::GlobalVariable(Array->getType(), false, 226 llvm::GlobalValue::AppendingLinkage, Array, 227 "llvm.global.annotations", &TheModule); 228 gv->setSection("llvm.metadata"); 229 } 230 231 static CodeGenModule::GVALinkage 232 GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) { 233 // "static" and attr(always_inline) functions get internal linkage. 234 if (FD->getStorageClass() == FunctionDecl::Static || 235 FD->hasAttr<AlwaysInlineAttr>()) 236 return CodeGenModule::GVA_Internal; 237 238 if (!FD->isInline()) 239 return CodeGenModule::GVA_StrongExternal; 240 241 // If the inline function explicitly has the GNU inline attribute on it, then 242 // force to GNUC semantics (which is strong external), regardless of language. 243 if (FD->hasAttr<GNUInlineAttr>()) 244 return CodeGenModule::GVA_StrongExternal; 245 246 // The definition of inline changes based on the language. Note that we 247 // have already handled "static inline" above, with the GVA_Internal case. 248 if (Features.CPlusPlus) // inline and extern inline. 249 return CodeGenModule::GVA_CXXInline; 250 251 if (FD->getStorageClass() == FunctionDecl::Extern) { 252 // extern inline in C99 is a strong definition. In C89, it is extern inline. 253 if (Features.C99) 254 return CodeGenModule::GVA_StrongExternal; 255 256 // In C89 mode, an 'extern inline' works like a C99 inline function. 257 return CodeGenModule::GVA_C99Inline; 258 } 259 260 if (Features.C99) 261 return CodeGenModule::GVA_C99Inline; 262 263 // Otherwise, this is the GNU inline extension in K&R and GNU C89 mode. 264 return CodeGenModule::GVA_StrongExternal; 265 } 266 267 /// SetFunctionDefinitionAttributes - Set attributes for a global. 268 /// 269 /// FIXME: This is currently only done for aliases and functions, but 270 /// not for variables (these details are set in 271 /// EmitGlobalVarDefinition for variables). 272 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 273 llvm::GlobalValue *GV) { 274 GVALinkage Linkage = GetLinkageForFunction(D, Features); 275 276 if (Linkage == GVA_Internal) { 277 GV->setLinkage(llvm::Function::InternalLinkage); 278 } else if (D->hasAttr<DLLExportAttr>()) { 279 GV->setLinkage(llvm::Function::DLLExportLinkage); 280 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 281 GV->setLinkage(llvm::Function::WeakAnyLinkage); 282 } else if (Linkage == GVA_C99Inline) { 283 // In C99 mode, 'inline' functions are guaranteed to have a strong 284 // definition somewhere else, so we can use available_externally linkage. 285 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 286 } else if (Linkage == GVA_CXXInline) { 287 // In C++, the compiler has to emit a definition in every translation unit 288 // that references the function. We should use linkonce_odr because 289 // a) if all references in this translation unit are optimized away, we 290 // don't need to codegen it. b) if the function persists, it needs to be 291 // merged with other definitions. c) C++ has the ODR, so we know the 292 // definition is dependable. 293 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 294 } else { 295 assert(Linkage == GVA_StrongExternal); 296 // Otherwise, we have strong external linkage. 297 GV->setLinkage(llvm::Function::ExternalLinkage); 298 } 299 300 SetCommonAttributes(D, GV); 301 } 302 303 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 304 const CGFunctionInfo &Info, 305 llvm::Function *F) { 306 AttributeListType AttributeList; 307 ConstructAttributeList(Info, D, AttributeList); 308 309 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 310 AttributeList.size())); 311 312 // Set the appropriate calling convention for the Function. 313 if (D->hasAttr<FastCallAttr>()) 314 F->setCallingConv(llvm::CallingConv::X86_FastCall); 315 316 if (D->hasAttr<StdCallAttr>()) 317 F->setCallingConv(llvm::CallingConv::X86_StdCall); 318 } 319 320 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 321 llvm::Function *F) { 322 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 323 F->addFnAttr(llvm::Attribute::NoUnwind); 324 325 if (D->hasAttr<AlwaysInlineAttr>()) 326 F->addFnAttr(llvm::Attribute::AlwaysInline); 327 328 if (D->hasAttr<NoinlineAttr>()) 329 F->addFnAttr(llvm::Attribute::NoInline); 330 } 331 332 void CodeGenModule::SetCommonAttributes(const Decl *D, 333 llvm::GlobalValue *GV) { 334 setGlobalVisibility(GV, D); 335 336 if (D->hasAttr<UsedAttr>()) 337 AddUsedGlobal(GV); 338 339 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 340 GV->setSection(SA->getName()); 341 } 342 343 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 344 llvm::Function *F, 345 const CGFunctionInfo &FI) { 346 SetLLVMFunctionAttributes(D, FI, F); 347 SetLLVMFunctionAttributesForDefinition(D, F); 348 349 F->setLinkage(llvm::Function::InternalLinkage); 350 351 SetCommonAttributes(D, F); 352 } 353 354 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 355 llvm::Function *F) { 356 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 357 358 // Only a few attributes are set on declarations; these may later be 359 // overridden by a definition. 360 361 if (FD->hasAttr<DLLImportAttr>()) { 362 F->setLinkage(llvm::Function::DLLImportLinkage); 363 } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) { 364 // "extern_weak" is overloaded in LLVM; we probably should have 365 // separate linkage types for this. 366 F->setLinkage(llvm::Function::ExternalWeakLinkage); 367 } else { 368 F->setLinkage(llvm::Function::ExternalLinkage); 369 } 370 371 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 372 F->setSection(SA->getName()); 373 } 374 375 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 376 assert(!GV->isDeclaration() && 377 "Only globals with definition can force usage."); 378 LLVMUsed.push_back(GV); 379 } 380 381 void CodeGenModule::EmitLLVMUsed() { 382 // Don't create llvm.used if there is no need. 383 if (LLVMUsed.empty()) 384 return; 385 386 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 387 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size()); 388 389 // Convert LLVMUsed to what ConstantArray needs. 390 std::vector<llvm::Constant*> UsedArray; 391 UsedArray.resize(LLVMUsed.size()); 392 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 393 UsedArray[i] = 394 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 395 } 396 397 llvm::GlobalVariable *GV = 398 new llvm::GlobalVariable(ATy, false, 399 llvm::GlobalValue::AppendingLinkage, 400 llvm::ConstantArray::get(ATy, UsedArray), 401 "llvm.used", &getModule()); 402 403 GV->setSection("llvm.metadata"); 404 } 405 406 void CodeGenModule::EmitDeferred() { 407 // Emit code for any potentially referenced deferred decls. Since a 408 // previously unused static decl may become used during the generation of code 409 // for a static function, iterate until no changes are made. 410 while (!DeferredDeclsToEmit.empty()) { 411 const ValueDecl *D = DeferredDeclsToEmit.back(); 412 DeferredDeclsToEmit.pop_back(); 413 414 // The mangled name for the decl must have been emitted in GlobalDeclMap. 415 // Look it up to see if it was defined with a stronger definition (e.g. an 416 // extern inline function with a strong function redefinition). If so, 417 // just ignore the deferred decl. 418 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 419 assert(CGRef && "Deferred decl wasn't referenced?"); 420 421 if (!CGRef->isDeclaration()) 422 continue; 423 424 // Otherwise, emit the definition and move on to the next one. 425 EmitGlobalDefinition(D); 426 } 427 } 428 429 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 430 /// annotation information for a given GlobalValue. The annotation struct is 431 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 432 /// GlobalValue being annotated. The second field is the constant string 433 /// created from the AnnotateAttr's annotation. The third field is a constant 434 /// string containing the name of the translation unit. The fourth field is 435 /// the line number in the file of the annotated value declaration. 436 /// 437 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 438 /// appears to. 439 /// 440 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 441 const AnnotateAttr *AA, 442 unsigned LineNo) { 443 llvm::Module *M = &getModule(); 444 445 // get [N x i8] constants for the annotation string, and the filename string 446 // which are the 2nd and 3rd elements of the global annotation structure. 447 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 448 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 449 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 450 true); 451 452 // Get the two global values corresponding to the ConstantArrays we just 453 // created to hold the bytes of the strings. 454 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 455 llvm::GlobalValue *annoGV = 456 new llvm::GlobalVariable(anno->getType(), false, 457 llvm::GlobalValue::InternalLinkage, anno, 458 GV->getName() + StringPrefix, M); 459 // translation unit name string, emitted into the llvm.metadata section. 460 llvm::GlobalValue *unitGV = 461 new llvm::GlobalVariable(unit->getType(), false, 462 llvm::GlobalValue::InternalLinkage, unit, 463 StringPrefix, M); 464 465 // Create the ConstantStruct for the global annotation. 466 llvm::Constant *Fields[4] = { 467 llvm::ConstantExpr::getBitCast(GV, SBP), 468 llvm::ConstantExpr::getBitCast(annoGV, SBP), 469 llvm::ConstantExpr::getBitCast(unitGV, SBP), 470 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 471 }; 472 return llvm::ConstantStruct::get(Fields, 4, false); 473 } 474 475 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 476 // Never defer when EmitAllDecls is specified or the decl has 477 // attribute used. 478 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 479 return false; 480 481 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 482 // Constructors and destructors should never be deferred. 483 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 484 return false; 485 486 GVALinkage Linkage = GetLinkageForFunction(FD, Features); 487 488 // static, static inline, always_inline, and extern inline functions can 489 // always be deferred. Normal inline functions can be deferred in C99/C++. 490 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 491 Linkage == GVA_CXXInline) 492 return true; 493 return false; 494 } 495 496 const VarDecl *VD = cast<VarDecl>(Global); 497 assert(VD->isFileVarDecl() && "Invalid decl"); 498 499 return VD->getStorageClass() == VarDecl::Static; 500 } 501 502 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 503 // If this is an alias definition (which otherwise looks like a declaration) 504 // emit it now. 505 if (Global->hasAttr<AliasAttr>()) 506 return EmitAliasDefinition(Global); 507 508 // Ignore declarations, they will be emitted on their first use. 509 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 510 // Forward declarations are emitted lazily on first use. 511 if (!FD->isThisDeclarationADefinition()) 512 return; 513 } else { 514 const VarDecl *VD = cast<VarDecl>(Global); 515 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 516 517 // In C++, if this is marked "extern", defer code generation. 518 if (getLangOptions().CPlusPlus && 519 VD->getStorageClass() == VarDecl::Extern && !VD->getInit()) 520 return; 521 522 // In C, if this isn't a definition, defer code generation. 523 if (!getLangOptions().CPlusPlus && !VD->getInit()) 524 return; 525 } 526 527 // Defer code generation when possible if this is a static definition, inline 528 // function etc. These we only want to emit if they are used. 529 if (MayDeferGeneration(Global)) { 530 // If the value has already been used, add it directly to the 531 // DeferredDeclsToEmit list. 532 const char *MangledName = getMangledName(Global); 533 if (GlobalDeclMap.count(MangledName)) 534 DeferredDeclsToEmit.push_back(Global); 535 else { 536 // Otherwise, remember that we saw a deferred decl with this name. The 537 // first use of the mangled name will cause it to move into 538 // DeferredDeclsToEmit. 539 DeferredDecls[MangledName] = Global; 540 } 541 return; 542 } 543 544 // Otherwise emit the definition. 545 EmitGlobalDefinition(Global); 546 } 547 548 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 549 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 550 EmitGlobalFunctionDefinition(FD); 551 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 552 EmitGlobalVarDefinition(VD); 553 } else { 554 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 555 } 556 } 557 558 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 559 /// module, create and return an llvm Function with the specified type. If there 560 /// is something in the module with the specified name, return it potentially 561 /// bitcasted to the right type. 562 /// 563 /// If D is non-null, it specifies a decl that correspond to this. This is used 564 /// to set the attributes on the function when it is first created. 565 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 566 const llvm::Type *Ty, 567 const FunctionDecl *D) { 568 // Lookup the entry, lazily creating it if necessary. 569 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 570 if (Entry) { 571 if (Entry->getType()->getElementType() == Ty) 572 return Entry; 573 574 // Make sure the result is of the correct type. 575 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 576 return llvm::ConstantExpr::getBitCast(Entry, PTy); 577 } 578 579 // This is the first use or definition of a mangled name. If there is a 580 // deferred decl with this name, remember that we need to emit it at the end 581 // of the file. 582 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 583 DeferredDecls.find(MangledName); 584 if (DDI != DeferredDecls.end()) { 585 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 586 // list, and remove it from DeferredDecls (since we don't need it anymore). 587 DeferredDeclsToEmit.push_back(DDI->second); 588 DeferredDecls.erase(DDI); 589 } 590 591 // This function doesn't have a complete type (for example, the return 592 // type is an incomplete struct). Use a fake type instead, and make 593 // sure not to try to set attributes. 594 bool ShouldSetAttributes = true; 595 if (!isa<llvm::FunctionType>(Ty)) { 596 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 597 std::vector<const llvm::Type*>(), false); 598 ShouldSetAttributes = false; 599 } 600 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 601 llvm::Function::ExternalLinkage, 602 "", &getModule()); 603 F->setName(MangledName); 604 if (D && ShouldSetAttributes) 605 SetFunctionAttributes(D, F); 606 Entry = F; 607 return F; 608 } 609 610 /// GetAddrOfFunction - Return the address of the given function. If Ty is 611 /// non-null, then this function will use the specified type if it has to 612 /// create it (this occurs when we see a definition of the function). 613 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D, 614 const llvm::Type *Ty) { 615 // If there was no specific requested type, just convert it now. 616 if (!Ty) 617 Ty = getTypes().ConvertType(D->getType()); 618 return GetOrCreateLLVMFunction(getMangledName(D), Ty, D); 619 } 620 621 /// CreateRuntimeFunction - Create a new runtime function with the specified 622 /// type and name. 623 llvm::Constant * 624 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 625 const char *Name) { 626 // Convert Name to be a uniqued string from the IdentifierInfo table. 627 Name = getContext().Idents.get(Name).getName(); 628 return GetOrCreateLLVMFunction(Name, FTy, 0); 629 } 630 631 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 632 /// create and return an llvm GlobalVariable with the specified type. If there 633 /// is something in the module with the specified name, return it potentially 634 /// bitcasted to the right type. 635 /// 636 /// If D is non-null, it specifies a decl that correspond to this. This is used 637 /// to set the attributes on the global when it is first created. 638 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 639 const llvm::PointerType*Ty, 640 const VarDecl *D) { 641 // Lookup the entry, lazily creating it if necessary. 642 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 643 if (Entry) { 644 if (Entry->getType() == Ty) 645 return Entry; 646 647 // Make sure the result is of the correct type. 648 return llvm::ConstantExpr::getBitCast(Entry, Ty); 649 } 650 651 // This is the first use or definition of a mangled name. If there is a 652 // deferred decl with this name, remember that we need to emit it at the end 653 // of the file. 654 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 655 DeferredDecls.find(MangledName); 656 if (DDI != DeferredDecls.end()) { 657 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 658 // list, and remove it from DeferredDecls (since we don't need it anymore). 659 DeferredDeclsToEmit.push_back(DDI->second); 660 DeferredDecls.erase(DDI); 661 } 662 663 llvm::GlobalVariable *GV = 664 new llvm::GlobalVariable(Ty->getElementType(), false, 665 llvm::GlobalValue::ExternalLinkage, 666 0, "", &getModule(), 667 false, Ty->getAddressSpace()); 668 GV->setName(MangledName); 669 670 // Handle things which are present even on external declarations. 671 if (D) { 672 // FIXME: This code is overly simple and should be merged with 673 // other global handling. 674 GV->setConstant(D->getType().isConstant(Context)); 675 676 // FIXME: Merge with other attribute handling code. 677 if (D->getStorageClass() == VarDecl::PrivateExtern) 678 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 679 680 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 681 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 682 683 GV->setThreadLocal(D->isThreadSpecified()); 684 } 685 686 return Entry = GV; 687 } 688 689 690 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 691 /// given global variable. If Ty is non-null and if the global doesn't exist, 692 /// then it will be greated with the specified type instead of whatever the 693 /// normal requested type would be. 694 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 695 const llvm::Type *Ty) { 696 assert(D->hasGlobalStorage() && "Not a global variable"); 697 QualType ASTTy = D->getType(); 698 if (Ty == 0) 699 Ty = getTypes().ConvertTypeForMem(ASTTy); 700 701 const llvm::PointerType *PTy = 702 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 703 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 704 } 705 706 /// CreateRuntimeVariable - Create a new runtime global variable with the 707 /// specified type and name. 708 llvm::Constant * 709 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 710 const char *Name) { 711 // Convert Name to be a uniqued string from the IdentifierInfo table. 712 Name = getContext().Idents.get(Name).getName(); 713 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 714 } 715 716 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 717 assert(!D->getInit() && "Cannot emit definite definitions here!"); 718 719 // See if we have already defined this (as a variable), if so we do 720 // not need to do anything. 721 llvm::GlobalValue *GV = GlobalDeclMap[getMangledName(D)]; 722 if (!GV && MayDeferGeneration(D)) // this variable was never referenced 723 return; 724 725 if (llvm::GlobalVariable *Var = dyn_cast_or_null<llvm::GlobalVariable>(GV)) 726 if (Var->hasInitializer()) 727 return; 728 729 EmitGlobalVarDefinition(D); 730 } 731 732 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 733 llvm::Constant *Init = 0; 734 QualType ASTTy = D->getType(); 735 736 if (D->getInit() == 0) { 737 // This is a tentative definition; tentative definitions are 738 // implicitly initialized with { 0 }. 739 // 740 // Note that tentative definitions are only emitted at the end of 741 // a translation unit, so they should never have incomplete 742 // type. In addition, EmitTentativeDefinition makes sure that we 743 // never attempt to emit a tentative definition if a real one 744 // exists. A use may still exists, however, so we still may need 745 // to do a RAUW. 746 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 747 Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy)); 748 } else { 749 Init = EmitConstantExpr(D->getInit(), D->getType()); 750 if (!Init) { 751 ErrorUnsupported(D, "static initializer"); 752 QualType T = D->getInit()->getType(); 753 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 754 } 755 } 756 757 const llvm::Type* InitType = Init->getType(); 758 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 759 760 // Strip off a bitcast if we got one back. 761 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 762 assert(CE->getOpcode() == llvm::Instruction::BitCast); 763 Entry = CE->getOperand(0); 764 } 765 766 // Entry is now either a Function or GlobalVariable. 767 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 768 769 // We have a definition after a declaration with the wrong type. 770 // We must make a new GlobalVariable* and update everything that used OldGV 771 // (a declaration or tentative definition) with the new GlobalVariable* 772 // (which will be a definition). 773 // 774 // This happens if there is a prototype for a global (e.g. 775 // "extern int x[];") and then a definition of a different type (e.g. 776 // "int x[10];"). This also happens when an initializer has a different type 777 // from the type of the global (this happens with unions). 778 if (GV == 0 || 779 GV->getType()->getElementType() != InitType || 780 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 781 782 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 783 GlobalDeclMap.erase(getMangledName(D)); 784 785 // Make a new global with the correct type, this is now guaranteed to work. 786 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 787 GV->takeName(cast<llvm::GlobalValue>(Entry)); 788 789 // Replace all uses of the old global with the new global 790 llvm::Constant *NewPtrForOldDecl = 791 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 792 Entry->replaceAllUsesWith(NewPtrForOldDecl); 793 794 // Erase the old global, since it is no longer used. 795 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 796 } 797 798 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 799 SourceManager &SM = Context.getSourceManager(); 800 AddAnnotation(EmitAnnotateAttr(GV, AA, 801 SM.getInstantiationLineNumber(D->getLocation()))); 802 } 803 804 GV->setInitializer(Init); 805 GV->setConstant(D->getType().isConstant(Context)); 806 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 807 808 // Set the llvm linkage type as appropriate. 809 if (D->getStorageClass() == VarDecl::Static) 810 GV->setLinkage(llvm::Function::InternalLinkage); 811 else if (D->hasAttr<DLLImportAttr>()) 812 GV->setLinkage(llvm::Function::DLLImportLinkage); 813 else if (D->hasAttr<DLLExportAttr>()) 814 GV->setLinkage(llvm::Function::DLLExportLinkage); 815 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 816 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 817 else if (!CompileOpts.NoCommon && 818 (!D->hasExternalStorage() && !D->getInit())) 819 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 820 else 821 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 822 823 SetCommonAttributes(D, GV); 824 825 // Emit global variable debug information. 826 if (CGDebugInfo *DI = getDebugInfo()) { 827 DI->setLocation(D->getLocation()); 828 DI->EmitGlobalVariable(GV, D); 829 } 830 } 831 832 833 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 834 const llvm::FunctionType *Ty; 835 836 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 837 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 838 839 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 840 } else { 841 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 842 843 // As a special case, make sure that definitions of K&R function 844 // "type foo()" aren't declared as varargs (which forces the backend 845 // to do unnecessary work). 846 if (D->getType()->isFunctionNoProtoType()) { 847 assert(Ty->isVarArg() && "Didn't lower type as expected"); 848 // Due to stret, the lowered function could have arguments. 849 // Just create the same type as was lowered by ConvertType 850 // but strip off the varargs bit. 851 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 852 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 853 } 854 } 855 856 // Get or create the prototype for teh function. 857 llvm::Constant *Entry = GetAddrOfFunction(D, Ty); 858 859 // Strip off a bitcast if we got one back. 860 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 861 assert(CE->getOpcode() == llvm::Instruction::BitCast); 862 Entry = CE->getOperand(0); 863 } 864 865 866 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 867 // If the types mismatch then we have to rewrite the definition. 868 assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() && 869 "Shouldn't replace non-declaration"); 870 871 // F is the Function* for the one with the wrong type, we must make a new 872 // Function* and update everything that used F (a declaration) with the new 873 // Function* (which will be a definition). 874 // 875 // This happens if there is a prototype for a function 876 // (e.g. "int f()") and then a definition of a different type 877 // (e.g. "int f(int x)"). Start by making a new function of the 878 // correct type, RAUW, then steal the name. 879 GlobalDeclMap.erase(getMangledName(D)); 880 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty)); 881 NewFn->takeName(cast<llvm::GlobalValue>(Entry)); 882 883 // Replace uses of F with the Function we will endow with a body. 884 llvm::Constant *NewPtrForOldDecl = 885 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 886 Entry->replaceAllUsesWith(NewPtrForOldDecl); 887 888 // Ok, delete the old function now, which is dead. 889 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 890 891 Entry = NewFn; 892 } 893 894 llvm::Function *Fn = cast<llvm::Function>(Entry); 895 896 CodeGenFunction(*this).GenerateCode(D, Fn); 897 898 SetFunctionDefinitionAttributes(D, Fn); 899 SetLLVMFunctionAttributesForDefinition(D, Fn); 900 901 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 902 AddGlobalCtor(Fn, CA->getPriority()); 903 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 904 AddGlobalDtor(Fn, DA->getPriority()); 905 } 906 907 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 908 const AliasAttr *AA = D->getAttr<AliasAttr>(); 909 assert(AA && "Not an alias?"); 910 911 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 912 913 // Unique the name through the identifier table. 914 const char *AliaseeName = AA->getAliasee().c_str(); 915 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 916 917 // Create a reference to the named value. This ensures that it is emitted 918 // if a deferred decl. 919 llvm::Constant *Aliasee; 920 if (isa<llvm::FunctionType>(DeclTy)) 921 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0); 922 else 923 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 924 llvm::PointerType::getUnqual(DeclTy), 0); 925 926 // Create the new alias itself, but don't set a name yet. 927 llvm::GlobalValue *GA = 928 new llvm::GlobalAlias(Aliasee->getType(), 929 llvm::Function::ExternalLinkage, 930 "", Aliasee, &getModule()); 931 932 // See if there is already something with the alias' name in the module. 933 const char *MangledName = getMangledName(D); 934 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 935 936 if (Entry && !Entry->isDeclaration()) { 937 // If there is a definition in the module, then it wins over the alias. 938 // This is dubious, but allow it to be safe. Just ignore the alias. 939 GA->eraseFromParent(); 940 return; 941 } 942 943 if (Entry) { 944 // If there is a declaration in the module, then we had an extern followed 945 // by the alias, as in: 946 // extern int test6(); 947 // ... 948 // int test6() __attribute__((alias("test7"))); 949 // 950 // Remove it and replace uses of it with the alias. 951 952 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 953 Entry->getType())); 954 Entry->eraseFromParent(); 955 } 956 957 // Now we know that there is no conflict, set the name. 958 Entry = GA; 959 GA->setName(MangledName); 960 961 // Set attributes which are particular to an alias; this is a 962 // specialization of the attributes which may be set on a global 963 // variable/function. 964 if (D->hasAttr<DLLExportAttr>()) { 965 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 966 // The dllexport attribute is ignored for undefined symbols. 967 if (FD->getBody(getContext())) 968 GA->setLinkage(llvm::Function::DLLExportLinkage); 969 } else { 970 GA->setLinkage(llvm::Function::DLLExportLinkage); 971 } 972 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 973 GA->setLinkage(llvm::Function::WeakAnyLinkage); 974 } 975 976 SetCommonAttributes(D, GA); 977 } 978 979 /// getBuiltinLibFunction - Given a builtin id for a function like 980 /// "__builtin_fabsf", return a Function* for "fabsf". 981 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 982 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 983 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 984 "isn't a lib fn"); 985 986 // Get the name, skip over the __builtin_ prefix (if necessary). 987 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 988 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 989 Name += 10; 990 991 // Get the type for the builtin. 992 Builtin::Context::GetBuiltinTypeError Error; 993 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); 994 assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); 995 996 const llvm::FunctionType *Ty = 997 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 998 999 // Unique the name through the identifier table. 1000 Name = getContext().Idents.get(Name).getName(); 1001 // FIXME: param attributes for sext/zext etc. 1002 return GetOrCreateLLVMFunction(Name, Ty, 0); 1003 } 1004 1005 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1006 unsigned NumTys) { 1007 return llvm::Intrinsic::getDeclaration(&getModule(), 1008 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1009 } 1010 1011 llvm::Function *CodeGenModule::getMemCpyFn() { 1012 if (MemCpyFn) return MemCpyFn; 1013 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1014 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1015 } 1016 1017 llvm::Function *CodeGenModule::getMemMoveFn() { 1018 if (MemMoveFn) return MemMoveFn; 1019 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1020 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1021 } 1022 1023 llvm::Function *CodeGenModule::getMemSetFn() { 1024 if (MemSetFn) return MemSetFn; 1025 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1026 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1027 } 1028 1029 static void appendFieldAndPadding(CodeGenModule &CGM, 1030 std::vector<llvm::Constant*>& Fields, 1031 FieldDecl *FieldD, FieldDecl *NextFieldD, 1032 llvm::Constant* Field, 1033 RecordDecl* RD, const llvm::StructType *STy) { 1034 // Append the field. 1035 Fields.push_back(Field); 1036 1037 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1038 1039 int NextStructFieldNo; 1040 if (!NextFieldD) { 1041 NextStructFieldNo = STy->getNumElements(); 1042 } else { 1043 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1044 } 1045 1046 // Append padding 1047 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1048 llvm::Constant *C = 1049 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1050 1051 Fields.push_back(C); 1052 } 1053 } 1054 1055 llvm::Constant *CodeGenModule:: 1056 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1057 std::string str; 1058 unsigned StringLength = 0; 1059 1060 bool isUTF16 = false; 1061 if (Literal->containsNonAsciiOrNull()) { 1062 // Convert from UTF-8 to UTF-16. 1063 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1064 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1065 UTF16 *ToPtr = &ToBuf[0]; 1066 1067 ConversionResult Result; 1068 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1069 &ToPtr, ToPtr+Literal->getByteLength(), 1070 strictConversion); 1071 if (Result == conversionOK) { 1072 // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings 1073 // without doing more surgery to this routine. Since we aren't explicitly 1074 // checking for endianness here, it's also a bug (when generating code for 1075 // a target that doesn't match the host endianness). Modeling this as an 1076 // i16 array is likely the cleanest solution. 1077 StringLength = ToPtr-&ToBuf[0]; 1078 str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars. 1079 isUTF16 = true; 1080 } else if (Result == sourceIllegal) { 1081 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string. 1082 str.assign(Literal->getStrData(), Literal->getByteLength()); 1083 StringLength = str.length(); 1084 } else 1085 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1086 1087 } else { 1088 str.assign(Literal->getStrData(), Literal->getByteLength()); 1089 StringLength = str.length(); 1090 } 1091 llvm::StringMapEntry<llvm::Constant *> &Entry = 1092 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1093 1094 if (llvm::Constant *C = Entry.getValue()) 1095 return C; 1096 1097 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1098 llvm::Constant *Zeros[] = { Zero, Zero }; 1099 1100 if (!CFConstantStringClassRef) { 1101 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1102 Ty = llvm::ArrayType::get(Ty, 0); 1103 1104 // FIXME: This is fairly broken if 1105 // __CFConstantStringClassReference is already defined, in that it 1106 // will get renamed and the user will most likely see an opaque 1107 // error message. This is a general issue with relying on 1108 // particular names. 1109 llvm::GlobalVariable *GV = 1110 new llvm::GlobalVariable(Ty, false, 1111 llvm::GlobalVariable::ExternalLinkage, 0, 1112 "__CFConstantStringClassReference", 1113 &getModule()); 1114 1115 // Decay array -> ptr 1116 CFConstantStringClassRef = 1117 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1118 } 1119 1120 QualType CFTy = getContext().getCFConstantStringType(); 1121 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1122 1123 const llvm::StructType *STy = 1124 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1125 1126 std::vector<llvm::Constant*> Fields; 1127 RecordDecl::field_iterator Field = CFRD->field_begin(getContext()); 1128 1129 // Class pointer. 1130 FieldDecl *CurField = *Field++; 1131 FieldDecl *NextField = *Field++; 1132 appendFieldAndPadding(*this, Fields, CurField, NextField, 1133 CFConstantStringClassRef, CFRD, STy); 1134 1135 // Flags. 1136 CurField = NextField; 1137 NextField = *Field++; 1138 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1139 appendFieldAndPadding(*this, Fields, CurField, NextField, 1140 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1141 : llvm::ConstantInt::get(Ty, 0x07C8), 1142 CFRD, STy); 1143 1144 // String pointer. 1145 CurField = NextField; 1146 NextField = *Field++; 1147 llvm::Constant *C = llvm::ConstantArray::get(str); 1148 1149 const char *Sect, *Prefix; 1150 bool isConstant; 1151 if (isUTF16) { 1152 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1153 Sect = getContext().Target.getUnicodeStringSection(); 1154 // FIXME: Why does GCC not set constant here? 1155 isConstant = false; 1156 } else { 1157 Prefix = getContext().Target.getStringSymbolPrefix(true); 1158 Sect = getContext().Target.getCFStringDataSection(); 1159 // FIXME: -fwritable-strings should probably affect this, but we 1160 // are following gcc here. 1161 isConstant = true; 1162 } 1163 llvm::GlobalVariable *GV = 1164 new llvm::GlobalVariable(C->getType(), isConstant, 1165 llvm::GlobalValue::InternalLinkage, 1166 C, Prefix, &getModule()); 1167 if (Sect) 1168 GV->setSection(Sect); 1169 if (isUTF16) { 1170 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1171 GV->setAlignment(Align); 1172 } 1173 appendFieldAndPadding(*this, Fields, CurField, NextField, 1174 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1175 CFRD, STy); 1176 1177 // String length. 1178 CurField = NextField; 1179 NextField = 0; 1180 Ty = getTypes().ConvertType(getContext().LongTy); 1181 appendFieldAndPadding(*this, Fields, CurField, NextField, 1182 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1183 1184 // The struct. 1185 C = llvm::ConstantStruct::get(STy, Fields); 1186 GV = new llvm::GlobalVariable(C->getType(), true, 1187 llvm::GlobalVariable::InternalLinkage, C, 1188 getContext().Target.getCFStringSymbolPrefix(), 1189 &getModule()); 1190 if (const char *Sect = getContext().Target.getCFStringSection()) 1191 GV->setSection(Sect); 1192 Entry.setValue(GV); 1193 1194 return GV; 1195 } 1196 1197 /// GetStringForStringLiteral - Return the appropriate bytes for a 1198 /// string literal, properly padded to match the literal type. 1199 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1200 const char *StrData = E->getStrData(); 1201 unsigned Len = E->getByteLength(); 1202 1203 const ConstantArrayType *CAT = 1204 getContext().getAsConstantArrayType(E->getType()); 1205 assert(CAT && "String isn't pointer or array!"); 1206 1207 // Resize the string to the right size. 1208 std::string Str(StrData, StrData+Len); 1209 uint64_t RealLen = CAT->getSize().getZExtValue(); 1210 1211 if (E->isWide()) 1212 RealLen *= getContext().Target.getWCharWidth()/8; 1213 1214 Str.resize(RealLen, '\0'); 1215 1216 return Str; 1217 } 1218 1219 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1220 /// constant array for the given string literal. 1221 llvm::Constant * 1222 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1223 // FIXME: This can be more efficient. 1224 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1225 } 1226 1227 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1228 /// array for the given ObjCEncodeExpr node. 1229 llvm::Constant * 1230 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1231 std::string Str; 1232 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1233 1234 return GetAddrOfConstantCString(Str); 1235 } 1236 1237 1238 /// GenerateWritableString -- Creates storage for a string literal. 1239 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1240 bool constant, 1241 CodeGenModule &CGM, 1242 const char *GlobalName) { 1243 // Create Constant for this string literal. Don't add a '\0'. 1244 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1245 1246 // Create a global variable for this string 1247 return new llvm::GlobalVariable(C->getType(), constant, 1248 llvm::GlobalValue::InternalLinkage, 1249 C, GlobalName, &CGM.getModule()); 1250 } 1251 1252 /// GetAddrOfConstantString - Returns a pointer to a character array 1253 /// containing the literal. This contents are exactly that of the 1254 /// given string, i.e. it will not be null terminated automatically; 1255 /// see GetAddrOfConstantCString. Note that whether the result is 1256 /// actually a pointer to an LLVM constant depends on 1257 /// Feature.WriteableStrings. 1258 /// 1259 /// The result has pointer to array type. 1260 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1261 const char *GlobalName) { 1262 bool IsConstant = !Features.WritableStrings; 1263 1264 // Get the default prefix if a name wasn't specified. 1265 if (!GlobalName) 1266 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1267 1268 // Don't share any string literals if strings aren't constant. 1269 if (!IsConstant) 1270 return GenerateStringLiteral(str, false, *this, GlobalName); 1271 1272 llvm::StringMapEntry<llvm::Constant *> &Entry = 1273 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1274 1275 if (Entry.getValue()) 1276 return Entry.getValue(); 1277 1278 // Create a global variable for this. 1279 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1280 Entry.setValue(C); 1281 return C; 1282 } 1283 1284 /// GetAddrOfConstantCString - Returns a pointer to a character 1285 /// array containing the literal and a terminating '\-' 1286 /// character. The result has pointer to array type. 1287 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1288 const char *GlobalName){ 1289 return GetAddrOfConstantString(str + '\0', GlobalName); 1290 } 1291 1292 /// EmitObjCPropertyImplementations - Emit information for synthesized 1293 /// properties for an implementation. 1294 void CodeGenModule::EmitObjCPropertyImplementations(const 1295 ObjCImplementationDecl *D) { 1296 for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), 1297 e = D->propimpl_end(); i != e; ++i) { 1298 ObjCPropertyImplDecl *PID = *i; 1299 1300 // Dynamic is just for type-checking. 1301 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1302 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1303 1304 // Determine which methods need to be implemented, some may have 1305 // been overridden. Note that ::isSynthesized is not the method 1306 // we want, that just indicates if the decl came from a 1307 // property. What we want to know is if the method is defined in 1308 // this implementation. 1309 if (!D->getInstanceMethod(PD->getGetterName())) 1310 CodeGenFunction(*this).GenerateObjCGetter( 1311 const_cast<ObjCImplementationDecl *>(D), PID); 1312 if (!PD->isReadOnly() && 1313 !D->getInstanceMethod(PD->getSetterName())) 1314 CodeGenFunction(*this).GenerateObjCSetter( 1315 const_cast<ObjCImplementationDecl *>(D), PID); 1316 } 1317 } 1318 } 1319 1320 /// EmitNamespace - Emit all declarations in a namespace. 1321 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1322 for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()), 1323 E = ND->decls_end(getContext()); 1324 I != E; ++I) 1325 EmitTopLevelDecl(*I); 1326 } 1327 1328 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1329 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1330 if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { 1331 ErrorUnsupported(LSD, "linkage spec"); 1332 return; 1333 } 1334 1335 for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()), 1336 E = LSD->decls_end(getContext()); 1337 I != E; ++I) 1338 EmitTopLevelDecl(*I); 1339 } 1340 1341 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1342 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1343 // If an error has occurred, stop code generation, but continue 1344 // parsing and semantic analysis (to ensure all warnings and errors 1345 // are emitted). 1346 if (Diags.hasErrorOccurred()) 1347 return; 1348 1349 switch (D->getKind()) { 1350 case Decl::CXXMethod: 1351 case Decl::Function: 1352 case Decl::Var: 1353 EmitGlobal(cast<ValueDecl>(D)); 1354 break; 1355 1356 // C++ Decls 1357 case Decl::Namespace: 1358 EmitNamespace(cast<NamespaceDecl>(D)); 1359 break; 1360 case Decl::CXXConstructor: 1361 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1362 break; 1363 case Decl::CXXDestructor: 1364 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1365 break; 1366 1367 // Objective-C Decls 1368 1369 // Forward declarations, no (immediate) code generation. 1370 case Decl::ObjCClass: 1371 case Decl::ObjCForwardProtocol: 1372 case Decl::ObjCCategory: 1373 break; 1374 case Decl::ObjCInterface: 1375 // If we already laid out this interface due to an @class, and if we 1376 // codegen'd a reference it, update the 'opaque' type to be a real type now. 1377 Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D)); 1378 break; 1379 1380 case Decl::ObjCProtocol: 1381 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1382 break; 1383 1384 case Decl::ObjCCategoryImpl: 1385 // Categories have properties but don't support synthesize so we 1386 // can ignore them here. 1387 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1388 break; 1389 1390 case Decl::ObjCImplementation: { 1391 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1392 EmitObjCPropertyImplementations(OMD); 1393 Runtime->GenerateClass(OMD); 1394 break; 1395 } 1396 case Decl::ObjCMethod: { 1397 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1398 // If this is not a prototype, emit the body. 1399 if (OMD->getBody(getContext())) 1400 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1401 break; 1402 } 1403 case Decl::ObjCCompatibleAlias: 1404 // compatibility-alias is a directive and has no code gen. 1405 break; 1406 1407 case Decl::LinkageSpec: 1408 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1409 break; 1410 1411 case Decl::FileScopeAsm: { 1412 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1413 std::string AsmString(AD->getAsmString()->getStrData(), 1414 AD->getAsmString()->getByteLength()); 1415 1416 const std::string &S = getModule().getModuleInlineAsm(); 1417 if (S.empty()) 1418 getModule().setModuleInlineAsm(AsmString); 1419 else 1420 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1421 break; 1422 } 1423 1424 default: 1425 // Make sure we handled everything we should, every other kind is 1426 // a non-top-level decl. FIXME: Would be nice to have an 1427 // isTopLevelDeclKind function. Need to recode Decl::Kind to do 1428 // that easily. 1429 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1430 } 1431 } 1432