1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Diagnostic.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Basic/ConvertUTF.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Module.h"
30 #include "llvm/Intrinsics.h"
31 #include "llvm/Target/TargetData.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 
36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
37                              llvm::Module &M, const llvm::TargetData &TD,
38                              Diagnostic &diags)
39   : BlockModule(C, M, TD, Types, *this), Context(C),
40     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
41     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
42     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
43 
44   if (!Features.ObjC1)
45     Runtime = 0;
46   else if (!Features.NeXTRuntime)
47     Runtime = CreateGNUObjCRuntime(*this);
48   else if (Features.ObjCNonFragileABI)
49     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
50   else
51     Runtime = CreateMacObjCRuntime(*this);
52 
53   // If debug info generation is enabled, create the CGDebugInfo object.
54   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
55 }
56 
57 CodeGenModule::~CodeGenModule() {
58   delete Runtime;
59   delete DebugInfo;
60 }
61 
62 void CodeGenModule::Release() {
63   EmitDeferred();
64   if (Runtime)
65     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
66       AddGlobalCtor(ObjCInitFunction);
67   EmitCtorList(GlobalCtors, "llvm.global_ctors");
68   EmitCtorList(GlobalDtors, "llvm.global_dtors");
69   EmitAnnotations();
70   EmitLLVMUsed();
71 }
72 
73 /// ErrorUnsupported - Print out an error that codegen doesn't support the
74 /// specified stmt yet.
75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
76                                      bool OmitOnError) {
77   if (OmitOnError && getDiags().hasErrorOccurred())
78     return;
79   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
80                                                "cannot compile this %0 yet");
81   std::string Msg = Type;
82   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
83     << Msg << S->getSourceRange();
84 }
85 
86 /// ErrorUnsupported - Print out an error that codegen doesn't support the
87 /// specified decl yet.
88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
89                                      bool OmitOnError) {
90   if (OmitOnError && getDiags().hasErrorOccurred())
91     return;
92   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
93                                                "cannot compile this %0 yet");
94   std::string Msg = Type;
95   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
96 }
97 
98 LangOptions::VisibilityMode
99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
100   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
101     if (VD->getStorageClass() == VarDecl::PrivateExtern)
102       return LangOptions::Hidden;
103 
104   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
105     switch (attr->getVisibility()) {
106     default: assert(0 && "Unknown visibility!");
107     case VisibilityAttr::DefaultVisibility:
108       return LangOptions::Default;
109     case VisibilityAttr::HiddenVisibility:
110       return LangOptions::Hidden;
111     case VisibilityAttr::ProtectedVisibility:
112       return LangOptions::Protected;
113     }
114   }
115 
116   return getLangOptions().getVisibilityMode();
117 }
118 
119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
120                                         const Decl *D) const {
121   // Internal definitions always have default visibility.
122   if (GV->hasLocalLinkage()) {
123     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
124     return;
125   }
126 
127   switch (getDeclVisibilityMode(D)) {
128   default: assert(0 && "Unknown visibility!");
129   case LangOptions::Default:
130     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131   case LangOptions::Hidden:
132     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
133   case LangOptions::Protected:
134     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
135   }
136 }
137 
138 /// \brief Retrieves the mangled name for the given declaration.
139 ///
140 /// If the given declaration requires a mangled name, returns an
141 /// const char* containing the mangled name.  Otherwise, returns
142 /// the unmangled name.
143 ///
144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
145   // In C, functions with no attributes never need to be mangled. Fastpath them.
146   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
147     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
148     return ND->getNameAsCString();
149   }
150 
151   llvm::SmallString<256> Name;
152   llvm::raw_svector_ostream Out(Name);
153   if (!mangleName(ND, Context, Out)) {
154     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
155     return ND->getNameAsCString();
156   }
157 
158   Name += '\0';
159   return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData();
160 }
161 
162 /// AddGlobalCtor - Add a function to the list that will be called before
163 /// main() runs.
164 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
165   // FIXME: Type coercion of void()* types.
166   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
167 }
168 
169 /// AddGlobalDtor - Add a function to the list that will be called
170 /// when the module is unloaded.
171 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
172   // FIXME: Type coercion of void()* types.
173   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
174 }
175 
176 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
177   // Ctor function type is void()*.
178   llvm::FunctionType* CtorFTy =
179     llvm::FunctionType::get(llvm::Type::VoidTy,
180                             std::vector<const llvm::Type*>(),
181                             false);
182   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
183 
184   // Get the type of a ctor entry, { i32, void ()* }.
185   llvm::StructType* CtorStructTy =
186     llvm::StructType::get(llvm::Type::Int32Ty,
187                           llvm::PointerType::getUnqual(CtorFTy), NULL);
188 
189   // Construct the constructor and destructor arrays.
190   std::vector<llvm::Constant*> Ctors;
191   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
192     std::vector<llvm::Constant*> S;
193     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
194     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
195     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
196   }
197 
198   if (!Ctors.empty()) {
199     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
200     new llvm::GlobalVariable(AT, false,
201                              llvm::GlobalValue::AppendingLinkage,
202                              llvm::ConstantArray::get(AT, Ctors),
203                              GlobalName,
204                              &TheModule);
205   }
206 }
207 
208 void CodeGenModule::EmitAnnotations() {
209   if (Annotations.empty())
210     return;
211 
212   // Create a new global variable for the ConstantStruct in the Module.
213   llvm::Constant *Array =
214   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
215                                                 Annotations.size()),
216                            Annotations);
217   llvm::GlobalValue *gv =
218   new llvm::GlobalVariable(Array->getType(), false,
219                            llvm::GlobalValue::AppendingLinkage, Array,
220                            "llvm.global.annotations", &TheModule);
221   gv->setSection("llvm.metadata");
222 }
223 
224 static CodeGenModule::GVALinkage
225 GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) {
226   // "static" and attr(always_inline) functions get internal linkage.
227   if (FD->getStorageClass() == FunctionDecl::Static ||
228       FD->hasAttr<AlwaysInlineAttr>())
229     return CodeGenModule::GVA_Internal;
230 
231   if (!FD->isInline())
232     return CodeGenModule::GVA_StrongExternal;
233 
234   // If the inline function explicitly has the GNU inline attribute on it, then
235   // force to GNUC semantics (which is strong external), regardless of language.
236   if (FD->hasAttr<GNUCInlineAttr>())
237     return CodeGenModule::GVA_StrongExternal;
238 
239   // The definition of inline changes based on the language.  Note that we
240   // have already handled "static inline" above, with the GVA_Internal case.
241   if (Features.CPlusPlus)  // inline and extern inline.
242     return CodeGenModule::GVA_CXXInline;
243 
244   if (FD->getStorageClass() == FunctionDecl::Extern) {
245     // extern inline in C99 is a strong definition. In C89, it is extern inline.
246     if (Features.C99)
247       return CodeGenModule::GVA_StrongExternal;
248 
249     // In C89 mode, an 'extern inline' works like a C99 inline function.
250     return CodeGenModule::GVA_C99Inline;
251   }
252 
253   if (Features.C99)
254     return CodeGenModule::GVA_C99Inline;
255 
256   // Otherwise, this is the GNU inline extension in K&R and GNU C89 mode.
257   return CodeGenModule::GVA_StrongExternal;
258 }
259 
260 /// SetFunctionDefinitionAttributes - Set attributes for a global.
261 ///
262 /// FIXME: This is currently only done for aliases and functions, but
263 /// not for variables (these details are set in
264 /// EmitGlobalVarDefinition for variables).
265 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
266                                                     llvm::GlobalValue *GV) {
267   GVALinkage Linkage = GetLinkageForFunction(D, Features);
268 
269   if (Linkage == GVA_Internal) {
270     GV->setLinkage(llvm::Function::InternalLinkage);
271   } else if (D->hasAttr<DLLExportAttr>()) {
272     GV->setLinkage(llvm::Function::DLLExportLinkage);
273   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
274     GV->setLinkage(llvm::Function::WeakAnyLinkage);
275   } else if (Linkage == GVA_C99Inline) {
276     // In C99 mode, 'inline' functions are guaranteed to have a strong
277     // definition somewhere else, so we can use available_externally linkage.
278     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
279   } else if (Linkage == GVA_CXXInline) {
280     // In C++, the compiler has to emit a definition in every translation unit
281     // that references the function.  We should use linkonce_odr because
282     // a) if all references in this translation unit are optimized away, we
283     // don't need to codegen it.  b) if the function persists, it needs to be
284     // merged with other definitions. c) C++ has the ODR, so we know the
285     // definition is dependable.
286     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
287   } else {
288     assert(Linkage == GVA_StrongExternal);
289     // Otherwise, we have strong external linkage.
290     GV->setLinkage(llvm::Function::ExternalLinkage);
291   }
292 
293   SetCommonAttributes(D, GV);
294 }
295 
296 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
297                                               const CGFunctionInfo &Info,
298                                               llvm::Function *F) {
299   AttributeListType AttributeList;
300   ConstructAttributeList(Info, D, AttributeList);
301 
302   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
303                                         AttributeList.size()));
304 
305   // Set the appropriate calling convention for the Function.
306   if (D->hasAttr<FastCallAttr>())
307     F->setCallingConv(llvm::CallingConv::X86_FastCall);
308 
309   if (D->hasAttr<StdCallAttr>())
310     F->setCallingConv(llvm::CallingConv::X86_StdCall);
311 }
312 
313 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
314                                                            llvm::Function *F) {
315   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
316     F->addFnAttr(llvm::Attribute::NoUnwind);
317 
318   if (D->hasAttr<AlwaysInlineAttr>())
319     F->addFnAttr(llvm::Attribute::AlwaysInline);
320 
321   if (D->hasAttr<NoinlineAttr>())
322     F->addFnAttr(llvm::Attribute::NoInline);
323 }
324 
325 void CodeGenModule::SetCommonAttributes(const Decl *D,
326                                         llvm::GlobalValue *GV) {
327   setGlobalVisibility(GV, D);
328 
329   if (D->hasAttr<UsedAttr>())
330     AddUsedGlobal(GV);
331 
332   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
333     GV->setSection(SA->getName());
334 }
335 
336 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD,
337                                         llvm::Function *F) {
338   SetLLVMFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F);
339   SetLLVMFunctionAttributesForDefinition(MD, F);
340 
341   F->setLinkage(llvm::Function::InternalLinkage);
342 
343   SetCommonAttributes(MD, F);
344 }
345 
346 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
347                                           llvm::Function *F) {
348   SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
349 
350   // Only a few attributes are set on declarations; these may later be
351   // overridden by a definition.
352 
353   if (FD->hasAttr<DLLImportAttr>()) {
354     F->setLinkage(llvm::Function::DLLImportLinkage);
355   } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) {
356     // "extern_weak" is overloaded in LLVM; we probably should have
357     // separate linkage types for this.
358     F->setLinkage(llvm::Function::ExternalWeakLinkage);
359   } else {
360     F->setLinkage(llvm::Function::ExternalLinkage);
361   }
362 
363   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
364     F->setSection(SA->getName());
365 }
366 
367 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
368   assert(!GV->isDeclaration() &&
369          "Only globals with definition can force usage.");
370   LLVMUsed.push_back(GV);
371 }
372 
373 void CodeGenModule::EmitLLVMUsed() {
374   // Don't create llvm.used if there is no need.
375   if (LLVMUsed.empty())
376     return;
377 
378   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
379   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size());
380 
381   // Convert LLVMUsed to what ConstantArray needs.
382   std::vector<llvm::Constant*> UsedArray;
383   UsedArray.resize(LLVMUsed.size());
384   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
385     UsedArray[i] =
386      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
387   }
388 
389   llvm::GlobalVariable *GV =
390     new llvm::GlobalVariable(ATy, false,
391                              llvm::GlobalValue::AppendingLinkage,
392                              llvm::ConstantArray::get(ATy, UsedArray),
393                              "llvm.used", &getModule());
394 
395   GV->setSection("llvm.metadata");
396 }
397 
398 void CodeGenModule::EmitDeferred() {
399   // Emit code for any potentially referenced deferred decls.  Since a
400   // previously unused static decl may become used during the generation of code
401   // for a static function, iterate until no  changes are made.
402   while (!DeferredDeclsToEmit.empty()) {
403     const ValueDecl *D = DeferredDeclsToEmit.back();
404     DeferredDeclsToEmit.pop_back();
405 
406     // The mangled name for the decl must have been emitted in GlobalDeclMap.
407     // Look it up to see if it was defined with a stronger definition (e.g. an
408     // extern inline function with a strong function redefinition).  If so,
409     // just ignore the deferred decl.
410     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
411     assert(CGRef && "Deferred decl wasn't referenced?");
412 
413     if (!CGRef->isDeclaration())
414       continue;
415 
416     // Otherwise, emit the definition and move on to the next one.
417     EmitGlobalDefinition(D);
418   }
419 }
420 
421 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
422 /// annotation information for a given GlobalValue.  The annotation struct is
423 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
424 /// GlobalValue being annotated.  The second field is the constant string
425 /// created from the AnnotateAttr's annotation.  The third field is a constant
426 /// string containing the name of the translation unit.  The fourth field is
427 /// the line number in the file of the annotated value declaration.
428 ///
429 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
430 ///        appears to.
431 ///
432 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
433                                                 const AnnotateAttr *AA,
434                                                 unsigned LineNo) {
435   llvm::Module *M = &getModule();
436 
437   // get [N x i8] constants for the annotation string, and the filename string
438   // which are the 2nd and 3rd elements of the global annotation structure.
439   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
440   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
441   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
442                                                   true);
443 
444   // Get the two global values corresponding to the ConstantArrays we just
445   // created to hold the bytes of the strings.
446   const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
447   llvm::GlobalValue *annoGV =
448   new llvm::GlobalVariable(anno->getType(), false,
449                            llvm::GlobalValue::InternalLinkage, anno,
450                            GV->getName() + StringPrefix, M);
451   // translation unit name string, emitted into the llvm.metadata section.
452   llvm::GlobalValue *unitGV =
453   new llvm::GlobalVariable(unit->getType(), false,
454                            llvm::GlobalValue::InternalLinkage, unit,
455                            StringPrefix, M);
456 
457   // Create the ConstantStruct that is the global annotion.
458   llvm::Constant *Fields[4] = {
459     llvm::ConstantExpr::getBitCast(GV, SBP),
460     llvm::ConstantExpr::getBitCast(annoGV, SBP),
461     llvm::ConstantExpr::getBitCast(unitGV, SBP),
462     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
463   };
464   return llvm::ConstantStruct::get(Fields, 4, false);
465 }
466 
467 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
468   // Never defer when EmitAllDecls is specified or the decl has
469   // attribute used.
470   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
471     return false;
472 
473   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
474     // Constructors and destructors should never be deferred.
475     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
476       return false;
477 
478     GVALinkage Linkage = GetLinkageForFunction(FD, Features);
479 
480     // static, static inline, always_inline, and extern inline functions can
481     // always be deferred.  Normal inline functions can be deferred in C99/C++.
482     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
483         Linkage == GVA_CXXInline)
484       return true;
485     return false;
486   }
487 
488   const VarDecl *VD = cast<VarDecl>(Global);
489   assert(VD->isFileVarDecl() && "Invalid decl");
490   return VD->getStorageClass() == VarDecl::Static;
491 }
492 
493 void CodeGenModule::EmitGlobal(const ValueDecl *Global) {
494   // If this is an alias definition (which otherwise looks like a declaration)
495   // emit it now.
496   if (Global->hasAttr<AliasAttr>())
497     return EmitAliasDefinition(Global);
498 
499   // Ignore declarations, they will be emitted on their first use.
500   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
501     // Forward declarations are emitted lazily on first use.
502     if (!FD->isThisDeclarationADefinition())
503       return;
504   } else {
505     const VarDecl *VD = cast<VarDecl>(Global);
506     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
507 
508     // Forward declarations are emitted lazily on first use.
509     if (!VD->getInit() && VD->hasExternalStorage())
510       return;
511   }
512 
513   // Defer code generation when possible if this is a static definition, inline
514   // function etc.  These we only want to emit if they are used.
515   if (MayDeferGeneration(Global)) {
516     // If the value has already been used, add it directly to the
517     // DeferredDeclsToEmit list.
518     const char *MangledName = getMangledName(Global);
519     if (GlobalDeclMap.count(MangledName))
520       DeferredDeclsToEmit.push_back(Global);
521     else {
522       // Otherwise, remember that we saw a deferred decl with this name.  The
523       // first use of the mangled name will cause it to move into
524       // DeferredDeclsToEmit.
525       DeferredDecls[MangledName] = Global;
526     }
527     return;
528   }
529 
530   // Otherwise emit the definition.
531   EmitGlobalDefinition(Global);
532 }
533 
534 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) {
535   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
536     EmitGlobalFunctionDefinition(FD);
537   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
538     EmitGlobalVarDefinition(VD);
539   } else {
540     assert(0 && "Invalid argument to EmitGlobalDefinition()");
541   }
542 }
543 
544 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
545 /// module, create and return an llvm Function with the specified type. If there
546 /// is something in the module with the specified name, return it potentially
547 /// bitcasted to the right type.
548 ///
549 /// If D is non-null, it specifies a decl that correspond to this.  This is used
550 /// to set the attributes on the function when it is first created.
551 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
552                                                        const llvm::Type *Ty,
553                                                        const FunctionDecl *D) {
554   // Lookup the entry, lazily creating it if necessary.
555   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
556   if (Entry) {
557     if (Entry->getType()->getElementType() == Ty)
558       return Entry;
559 
560     // Make sure the result is of the correct type.
561     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
562     return llvm::ConstantExpr::getBitCast(Entry, PTy);
563   }
564 
565   // This is the first use or definition of a mangled name.  If there is a
566   // deferred decl with this name, remember that we need to emit it at the end
567   // of the file.
568   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
569   DeferredDecls.find(MangledName);
570   if (DDI != DeferredDecls.end()) {
571     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
572     // list, and remove it from DeferredDecls (since we don't need it anymore).
573     DeferredDeclsToEmit.push_back(DDI->second);
574     DeferredDecls.erase(DDI);
575   }
576 
577   // This function doesn't have a complete type (for example, the return
578   // type is an incomplete struct). Use a fake type instead, and make
579   // sure not to try to set attributes.
580   bool ShouldSetAttributes = true;
581   if (!isa<llvm::FunctionType>(Ty)) {
582     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
583                                  std::vector<const llvm::Type*>(), false);
584     ShouldSetAttributes = false;
585   }
586   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
587                                              llvm::Function::ExternalLinkage,
588                                              "", &getModule());
589   F->setName(MangledName);
590   if (D && ShouldSetAttributes)
591     SetFunctionAttributes(D, F);
592   Entry = F;
593   return F;
594 }
595 
596 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
597 /// non-null, then this function will use the specified type if it has to
598 /// create it (this occurs when we see a definition of the function).
599 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D,
600                                                  const llvm::Type *Ty) {
601   // If there was no specific requested type, just convert it now.
602   if (!Ty)
603     Ty = getTypes().ConvertType(D->getType());
604   return GetOrCreateLLVMFunction(getMangledName(D), Ty, D);
605 }
606 
607 /// CreateRuntimeFunction - Create a new runtime function with the specified
608 /// type and name.
609 llvm::Constant *
610 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
611                                      const char *Name) {
612   // Convert Name to be a uniqued string from the IdentifierInfo table.
613   Name = getContext().Idents.get(Name).getName();
614   return GetOrCreateLLVMFunction(Name, FTy, 0);
615 }
616 
617 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
618 /// create and return an llvm GlobalVariable with the specified type.  If there
619 /// is something in the module with the specified name, return it potentially
620 /// bitcasted to the right type.
621 ///
622 /// If D is non-null, it specifies a decl that correspond to this.  This is used
623 /// to set the attributes on the global when it is first created.
624 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
625                                                      const llvm::PointerType*Ty,
626                                                      const VarDecl *D) {
627   // Lookup the entry, lazily creating it if necessary.
628   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
629   if (Entry) {
630     if (Entry->getType() == Ty)
631       return Entry;
632 
633     // Make sure the result is of the correct type.
634     return llvm::ConstantExpr::getBitCast(Entry, Ty);
635   }
636 
637   // We don't support __thread yet.
638   if (D && D->isThreadSpecified())
639     ErrorUnsupported(D, "thread local ('__thread') variable", true);
640 
641   // This is the first use or definition of a mangled name.  If there is a
642   // deferred decl with this name, remember that we need to emit it at the end
643   // of the file.
644   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
645     DeferredDecls.find(MangledName);
646   if (DDI != DeferredDecls.end()) {
647     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
648     // list, and remove it from DeferredDecls (since we don't need it anymore).
649     DeferredDeclsToEmit.push_back(DDI->second);
650     DeferredDecls.erase(DDI);
651   }
652 
653   llvm::GlobalVariable *GV =
654     new llvm::GlobalVariable(Ty->getElementType(), false,
655                              llvm::GlobalValue::ExternalLinkage,
656                              0, "", &getModule(),
657                              0, Ty->getAddressSpace());
658   GV->setName(MangledName);
659 
660   // Handle things which are present even on external declarations.
661   if (D) {
662     // FIXME: This code is overly simple and should be merged with
663     // other global handling.
664     GV->setConstant(D->getType().isConstant(Context));
665 
666     // FIXME: Merge with other attribute handling code.
667     if (D->getStorageClass() == VarDecl::PrivateExtern)
668       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
669 
670     if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
671       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
672   }
673 
674   return Entry = GV;
675 }
676 
677 
678 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
679 /// given global variable.  If Ty is non-null and if the global doesn't exist,
680 /// then it will be greated with the specified type instead of whatever the
681 /// normal requested type would be.
682 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
683                                                   const llvm::Type *Ty) {
684   assert(D->hasGlobalStorage() && "Not a global variable");
685   QualType ASTTy = D->getType();
686   if (Ty == 0)
687     Ty = getTypes().ConvertTypeForMem(ASTTy);
688 
689   const llvm::PointerType *PTy =
690     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
691   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
692 }
693 
694 /// CreateRuntimeVariable - Create a new runtime global variable with the
695 /// specified type and name.
696 llvm::Constant *
697 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
698                                      const char *Name) {
699   // Convert Name to be a uniqued string from the IdentifierInfo table.
700   Name = getContext().Idents.get(Name).getName();
701   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
702 }
703 
704 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
705   llvm::Constant *Init = 0;
706   QualType ASTTy = D->getType();
707 
708   if (D->getInit() == 0) {
709     // This is a tentative definition; tentative definitions are
710     // implicitly initialized with { 0 }
711     const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy);
712     if (ASTTy->isIncompleteArrayType()) {
713       // An incomplete array is normally [ TYPE x 0 ], but we need
714       // to fix it to [ TYPE x 1 ].
715       const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy);
716       InitTy = llvm::ArrayType::get(ATy->getElementType(), 1);
717     }
718     Init = llvm::Constant::getNullValue(InitTy);
719   } else {
720     Init = EmitConstantExpr(D->getInit(), D->getType());
721     if (!Init) {
722       ErrorUnsupported(D, "static initializer");
723       QualType T = D->getInit()->getType();
724       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
725     }
726   }
727 
728   const llvm::Type* InitType = Init->getType();
729   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
730 
731   // Strip off a bitcast if we got one back.
732   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
733     assert(CE->getOpcode() == llvm::Instruction::BitCast);
734     Entry = CE->getOperand(0);
735   }
736 
737   // Entry is now either a Function or GlobalVariable.
738   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
739 
740   // If we already have this global and it has an initializer, then
741   // we are in the rare situation where we emitted the defining
742   // declaration of the global and are now being asked to emit a
743   // definition which would be common. This occurs, for example, in
744   // the following situation because statics can be emitted out of
745   // order:
746   //
747   //  static int x;
748   //  static int *y = &x;
749   //  static int x = 10;
750   //  int **z = &y;
751   //
752   // Bail here so we don't blow away the definition. Note that if we
753   // can't distinguish here if we emitted a definition with a null
754   // initializer, but this case is safe.
755   if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) {
756     assert(!D->getInit() && "Emitting multiple definitions of a decl!");
757     return;
758   }
759 
760   // We have a definition after a declaration with the wrong type.
761   // We must make a new GlobalVariable* and update everything that used OldGV
762   // (a declaration or tentative definition) with the new GlobalVariable*
763   // (which will be a definition).
764   //
765   // This happens if there is a prototype for a global (e.g.
766   // "extern int x[];") and then a definition of a different type (e.g.
767   // "int x[10];"). This also happens when an initializer has a different type
768   // from the type of the global (this happens with unions).
769   if (GV == 0 ||
770       GV->getType()->getElementType() != InitType ||
771       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
772 
773     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
774     GlobalDeclMap.erase(getMangledName(D));
775 
776     // Make a new global with the correct type, this is now guaranteed to work.
777     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
778     GV->takeName(cast<llvm::GlobalValue>(Entry));
779 
780     // Replace all uses of the old global with the new global
781     llvm::Constant *NewPtrForOldDecl =
782         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
783     Entry->replaceAllUsesWith(NewPtrForOldDecl);
784 
785     // Erase the old global, since it is no longer used.
786     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
787   }
788 
789   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
790     SourceManager &SM = Context.getSourceManager();
791     AddAnnotation(EmitAnnotateAttr(GV, AA,
792                               SM.getInstantiationLineNumber(D->getLocation())));
793   }
794 
795   GV->setInitializer(Init);
796   GV->setConstant(D->getType().isConstant(Context));
797   GV->setAlignment(getContext().getDeclAlignInBytes(D));
798 
799   // Set the llvm linkage type as appropriate.
800   if (D->getStorageClass() == VarDecl::Static)
801     GV->setLinkage(llvm::Function::InternalLinkage);
802   else if (D->hasAttr<DLLImportAttr>())
803     GV->setLinkage(llvm::Function::DLLImportLinkage);
804   else if (D->hasAttr<DLLExportAttr>())
805     GV->setLinkage(llvm::Function::DLLExportLinkage);
806   else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
807     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
808   else if (!CompileOpts.NoCommon &&
809            (!D->hasExternalStorage() && !D->getInit()))
810     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
811   else
812     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
813 
814   SetCommonAttributes(D, GV);
815 
816   // Emit global variable debug information.
817   if (CGDebugInfo *DI = getDebugInfo()) {
818     DI->setLocation(D->getLocation());
819     DI->EmitGlobalVariable(GV, D);
820   }
821 }
822 
823 
824 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) {
825   const llvm::FunctionType *Ty;
826 
827   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
828     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
829 
830     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
831   } else {
832     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
833 
834     // As a special case, make sure that definitions of K&R function
835     // "type foo()" aren't declared as varargs (which forces the backend
836     // to do unnecessary work).
837     if (D->getType()->isFunctionNoProtoType()) {
838       assert(Ty->isVarArg() && "Didn't lower type as expected");
839       // Due to stret, the lowered function could have arguments.
840       // Just create the same type as was lowered by ConvertType
841       // but strip off the varargs bit.
842       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
843       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
844     }
845   }
846 
847   // Get or create the prototype for teh function.
848   llvm::Constant *Entry = GetAddrOfFunction(D, Ty);
849 
850   // Strip off a bitcast if we got one back.
851   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
852     assert(CE->getOpcode() == llvm::Instruction::BitCast);
853     Entry = CE->getOperand(0);
854   }
855 
856 
857   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
858     // If the types mismatch then we have to rewrite the definition.
859     assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() &&
860            "Shouldn't replace non-declaration");
861 
862     // F is the Function* for the one with the wrong type, we must make a new
863     // Function* and update everything that used F (a declaration) with the new
864     // Function* (which will be a definition).
865     //
866     // This happens if there is a prototype for a function
867     // (e.g. "int f()") and then a definition of a different type
868     // (e.g. "int f(int x)").  Start by making a new function of the
869     // correct type, RAUW, then steal the name.
870     GlobalDeclMap.erase(getMangledName(D));
871     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty));
872     NewFn->takeName(cast<llvm::GlobalValue>(Entry));
873 
874     // Replace uses of F with the Function we will endow with a body.
875     llvm::Constant *NewPtrForOldDecl =
876       llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
877     Entry->replaceAllUsesWith(NewPtrForOldDecl);
878 
879     // Ok, delete the old function now, which is dead.
880     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
881 
882     Entry = NewFn;
883   }
884 
885   llvm::Function *Fn = cast<llvm::Function>(Entry);
886 
887   CodeGenFunction(*this).GenerateCode(D, Fn);
888 
889   SetFunctionDefinitionAttributes(D, Fn);
890   SetLLVMFunctionAttributesForDefinition(D, Fn);
891 
892   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
893     AddGlobalCtor(Fn, CA->getPriority());
894   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
895     AddGlobalDtor(Fn, DA->getPriority());
896 }
897 
898 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
899   const AliasAttr *AA = D->getAttr<AliasAttr>();
900   assert(AA && "Not an alias?");
901 
902   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
903 
904   // Unique the name through the identifier table.
905   const char *AliaseeName = AA->getAliasee().c_str();
906   AliaseeName = getContext().Idents.get(AliaseeName).getName();
907 
908   // Create a reference to the named value.  This ensures that it is emitted
909   // if a deferred decl.
910   llvm::Constant *Aliasee;
911   if (isa<llvm::FunctionType>(DeclTy))
912     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0);
913   else
914     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
915                                     llvm::PointerType::getUnqual(DeclTy), 0);
916 
917   // Create the new alias itself, but don't set a name yet.
918   llvm::GlobalValue *GA =
919     new llvm::GlobalAlias(Aliasee->getType(),
920                           llvm::Function::ExternalLinkage,
921                           "", Aliasee, &getModule());
922 
923   // See if there is already something with the alias' name in the module.
924   const char *MangledName = getMangledName(D);
925   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
926 
927   if (Entry && !Entry->isDeclaration()) {
928     // If there is a definition in the module, then it wins over the alias.
929     // This is dubious, but allow it to be safe.  Just ignore the alias.
930     GA->eraseFromParent();
931     return;
932   }
933 
934   if (Entry) {
935     // If there is a declaration in the module, then we had an extern followed
936     // by the alias, as in:
937     //   extern int test6();
938     //   ...
939     //   int test6() __attribute__((alias("test7")));
940     //
941     // Remove it and replace uses of it with the alias.
942 
943     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
944                                                           Entry->getType()));
945     Entry->eraseFromParent();
946   }
947 
948   // Now we know that there is no conflict, set the name.
949   Entry = GA;
950   GA->setName(MangledName);
951 
952   // Set attributes which are particular to an alias; this is a
953   // specialization of the attributes which may be set on a global
954   // variable/function.
955   if (D->hasAttr<DLLExportAttr>()) {
956     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
957       // The dllexport attribute is ignored for undefined symbols.
958       if (FD->getBody())
959         GA->setLinkage(llvm::Function::DLLExportLinkage);
960     } else {
961       GA->setLinkage(llvm::Function::DLLExportLinkage);
962     }
963   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
964     GA->setLinkage(llvm::Function::WeakAnyLinkage);
965   }
966 
967   SetCommonAttributes(D, GA);
968 }
969 
970 /// getBuiltinLibFunction - Given a builtin id for a function like
971 /// "__builtin_fabsf", return a Function* for "fabsf".
972 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
973   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
974           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
975          "isn't a lib fn");
976 
977   // Get the name, skip over the __builtin_ prefix (if necessary).
978   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
979   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
980     Name += 10;
981 
982   // Get the type for the builtin.
983   Builtin::Context::GetBuiltinTypeError Error;
984   QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error);
985   assert(Error == Builtin::Context::GE_None && "Can't get builtin type");
986 
987   const llvm::FunctionType *Ty =
988     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
989 
990   // Unique the name through the identifier table.
991   Name = getContext().Idents.get(Name).getName();
992   // FIXME: param attributes for sext/zext etc.
993   return GetOrCreateLLVMFunction(Name, Ty, 0);
994 }
995 
996 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
997                                             unsigned NumTys) {
998   return llvm::Intrinsic::getDeclaration(&getModule(),
999                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1000 }
1001 
1002 llvm::Function *CodeGenModule::getMemCpyFn() {
1003   if (MemCpyFn) return MemCpyFn;
1004   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1005   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1006 }
1007 
1008 llvm::Function *CodeGenModule::getMemMoveFn() {
1009   if (MemMoveFn) return MemMoveFn;
1010   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1011   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1012 }
1013 
1014 llvm::Function *CodeGenModule::getMemSetFn() {
1015   if (MemSetFn) return MemSetFn;
1016   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1017   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1018 }
1019 
1020 static void appendFieldAndPadding(CodeGenModule &CGM,
1021                                   std::vector<llvm::Constant*>& Fields,
1022                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1023                                   llvm::Constant* Field,
1024                                   RecordDecl* RD, const llvm::StructType *STy) {
1025   // Append the field.
1026   Fields.push_back(Field);
1027 
1028   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1029 
1030   int NextStructFieldNo;
1031   if (!NextFieldD) {
1032     NextStructFieldNo = STy->getNumElements();
1033   } else {
1034     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1035   }
1036 
1037   // Append padding
1038   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1039     llvm::Constant *C =
1040       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1041 
1042     Fields.push_back(C);
1043   }
1044 }
1045 
1046 llvm::Constant *CodeGenModule::
1047 GetAddrOfConstantCFString(const StringLiteral *Literal) {
1048   std::string str;
1049   unsigned StringLength;
1050 
1051   bool isUTF16 = false;
1052   if (Literal->containsNonAsciiOrNull()) {
1053     // Convert from UTF-8 to UTF-16.
1054     llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1055     const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1056     UTF16 *ToPtr = &ToBuf[0];
1057 
1058     ConversionResult Result;
1059     Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1060                                 &ToPtr, ToPtr+Literal->getByteLength(),
1061                                 strictConversion);
1062     if (Result == conversionOK) {
1063       // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1064       // without doing more surgery to this routine. Since we aren't explicitly
1065       // checking for endianness here, it's also a bug (when generating code for
1066       // a target that doesn't match the host endianness). Modeling this as an
1067       // i16 array is likely the cleanest solution.
1068       StringLength = ToPtr-&ToBuf[0];
1069       str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1070       isUTF16 = true;
1071     } else if (Result == sourceIllegal) {
1072       // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1073       str.assign(Literal->getStrData(), Literal->getByteLength());
1074       StringLength = str.length();
1075     } else
1076       assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1077 
1078   } else {
1079     str.assign(Literal->getStrData(), Literal->getByteLength());
1080     StringLength = str.length();
1081   }
1082   llvm::StringMapEntry<llvm::Constant *> &Entry =
1083     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1084 
1085   if (llvm::Constant *C = Entry.getValue())
1086     return C;
1087 
1088   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1089   llvm::Constant *Zeros[] = { Zero, Zero };
1090 
1091   if (!CFConstantStringClassRef) {
1092     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1093     Ty = llvm::ArrayType::get(Ty, 0);
1094 
1095     // FIXME: This is fairly broken if
1096     // __CFConstantStringClassReference is already defined, in that it
1097     // will get renamed and the user will most likely see an opaque
1098     // error message. This is a general issue with relying on
1099     // particular names.
1100     llvm::GlobalVariable *GV =
1101       new llvm::GlobalVariable(Ty, false,
1102                                llvm::GlobalVariable::ExternalLinkage, 0,
1103                                "__CFConstantStringClassReference",
1104                                &getModule());
1105 
1106     // Decay array -> ptr
1107     CFConstantStringClassRef =
1108       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1109   }
1110 
1111   QualType CFTy = getContext().getCFConstantStringType();
1112   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1113 
1114   const llvm::StructType *STy =
1115     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1116 
1117   std::vector<llvm::Constant*> Fields;
1118   RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
1119 
1120   // Class pointer.
1121   FieldDecl *CurField = *Field++;
1122   FieldDecl *NextField = *Field++;
1123   appendFieldAndPadding(*this, Fields, CurField, NextField,
1124                         CFConstantStringClassRef, CFRD, STy);
1125 
1126   // Flags.
1127   CurField = NextField;
1128   NextField = *Field++;
1129   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1130   appendFieldAndPadding(*this, Fields, CurField, NextField,
1131                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1132                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1133                         CFRD, STy);
1134 
1135   // String pointer.
1136   CurField = NextField;
1137   NextField = *Field++;
1138   llvm::Constant *C = llvm::ConstantArray::get(str);
1139 
1140   const char *Sect, *Prefix;
1141   bool isConstant;
1142   if (isUTF16) {
1143     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1144     Sect = getContext().Target.getUnicodeStringSection();
1145     // FIXME: Why does GCC not set constant here?
1146     isConstant = false;
1147   } else {
1148     Prefix = getContext().Target.getStringSymbolPrefix(true);
1149     Sect = getContext().Target.getCFStringDataSection();
1150     // FIXME: -fwritable-strings should probably affect this, but we
1151     // are following gcc here.
1152     isConstant = true;
1153   }
1154   llvm::GlobalVariable *GV =
1155     new llvm::GlobalVariable(C->getType(), isConstant,
1156                              llvm::GlobalValue::InternalLinkage,
1157                              C, Prefix, &getModule());
1158   if (Sect)
1159     GV->setSection(Sect);
1160   if (isUTF16) {
1161     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1162     GV->setAlignment(Align);
1163   }
1164   appendFieldAndPadding(*this, Fields, CurField, NextField,
1165                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1166                         CFRD, STy);
1167 
1168   // String length.
1169   CurField = NextField;
1170   NextField = 0;
1171   Ty = getTypes().ConvertType(getContext().LongTy);
1172   appendFieldAndPadding(*this, Fields, CurField, NextField,
1173                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1174 
1175   // The struct.
1176   C = llvm::ConstantStruct::get(STy, Fields);
1177   GV = new llvm::GlobalVariable(C->getType(), true,
1178                                 llvm::GlobalVariable::InternalLinkage, C,
1179                                 getContext().Target.getCFStringSymbolPrefix(),
1180                                 &getModule());
1181   if (const char *Sect = getContext().Target.getCFStringSection())
1182     GV->setSection(Sect);
1183   Entry.setValue(GV);
1184 
1185   return GV;
1186 }
1187 
1188 /// GetStringForStringLiteral - Return the appropriate bytes for a
1189 /// string literal, properly padded to match the literal type.
1190 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1191   const char *StrData = E->getStrData();
1192   unsigned Len = E->getByteLength();
1193 
1194   const ConstantArrayType *CAT =
1195     getContext().getAsConstantArrayType(E->getType());
1196   assert(CAT && "String isn't pointer or array!");
1197 
1198   // Resize the string to the right size.
1199   std::string Str(StrData, StrData+Len);
1200   uint64_t RealLen = CAT->getSize().getZExtValue();
1201 
1202   if (E->isWide())
1203     RealLen *= getContext().Target.getWCharWidth()/8;
1204 
1205   Str.resize(RealLen, '\0');
1206 
1207   return Str;
1208 }
1209 
1210 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1211 /// constant array for the given string literal.
1212 llvm::Constant *
1213 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1214   // FIXME: This can be more efficient.
1215   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1216 }
1217 
1218 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1219 /// array for the given ObjCEncodeExpr node.
1220 llvm::Constant *
1221 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1222   std::string Str;
1223   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1224 
1225   return GetAddrOfConstantCString(Str);
1226 }
1227 
1228 
1229 /// GenerateWritableString -- Creates storage for a string literal.
1230 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1231                                              bool constant,
1232                                              CodeGenModule &CGM,
1233                                              const char *GlobalName) {
1234   // Create Constant for this string literal. Don't add a '\0'.
1235   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1236 
1237   // Create a global variable for this string
1238   return new llvm::GlobalVariable(C->getType(), constant,
1239                                   llvm::GlobalValue::InternalLinkage,
1240                                   C, GlobalName, &CGM.getModule());
1241 }
1242 
1243 /// GetAddrOfConstantString - Returns a pointer to a character array
1244 /// containing the literal. This contents are exactly that of the
1245 /// given string, i.e. it will not be null terminated automatically;
1246 /// see GetAddrOfConstantCString. Note that whether the result is
1247 /// actually a pointer to an LLVM constant depends on
1248 /// Feature.WriteableStrings.
1249 ///
1250 /// The result has pointer to array type.
1251 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1252                                                        const char *GlobalName) {
1253   bool IsConstant = !Features.WritableStrings;
1254 
1255   // Get the default prefix if a name wasn't specified.
1256   if (!GlobalName)
1257     GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1258 
1259   // Don't share any string literals if strings aren't constant.
1260   if (!IsConstant)
1261     return GenerateStringLiteral(str, false, *this, GlobalName);
1262 
1263   llvm::StringMapEntry<llvm::Constant *> &Entry =
1264   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1265 
1266   if (Entry.getValue())
1267     return Entry.getValue();
1268 
1269   // Create a global variable for this.
1270   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1271   Entry.setValue(C);
1272   return C;
1273 }
1274 
1275 /// GetAddrOfConstantCString - Returns a pointer to a character
1276 /// array containing the literal and a terminating '\-'
1277 /// character. The result has pointer to array type.
1278 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1279                                                         const char *GlobalName){
1280   return GetAddrOfConstantString(str + '\0', GlobalName);
1281 }
1282 
1283 /// EmitObjCPropertyImplementations - Emit information for synthesized
1284 /// properties for an implementation.
1285 void CodeGenModule::EmitObjCPropertyImplementations(const
1286                                                     ObjCImplementationDecl *D) {
1287   for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(),
1288          e = D->propimpl_end(); i != e; ++i) {
1289     ObjCPropertyImplDecl *PID = *i;
1290 
1291     // Dynamic is just for type-checking.
1292     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1293       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1294 
1295       // Determine which methods need to be implemented, some may have
1296       // been overridden. Note that ::isSynthesized is not the method
1297       // we want, that just indicates if the decl came from a
1298       // property. What we want to know is if the method is defined in
1299       // this implementation.
1300       if (!D->getInstanceMethod(PD->getGetterName()))
1301         CodeGenFunction(*this).GenerateObjCGetter(
1302                                  const_cast<ObjCImplementationDecl *>(D), PID);
1303       if (!PD->isReadOnly() &&
1304           !D->getInstanceMethod(PD->getSetterName()))
1305         CodeGenFunction(*this).GenerateObjCSetter(
1306                                  const_cast<ObjCImplementationDecl *>(D), PID);
1307     }
1308   }
1309 }
1310 
1311 /// EmitNamespace - Emit all declarations in a namespace.
1312 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1313   for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
1314          E = ND->decls_end(getContext());
1315        I != E; ++I)
1316     EmitTopLevelDecl(*I);
1317 }
1318 
1319 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1320 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1321   if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1322     ErrorUnsupported(LSD, "linkage spec");
1323     return;
1324   }
1325 
1326   for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
1327          E = LSD->decls_end(getContext());
1328        I != E; ++I)
1329     EmitTopLevelDecl(*I);
1330 }
1331 
1332 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1333 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1334   // If an error has occurred, stop code generation, but continue
1335   // parsing and semantic analysis (to ensure all warnings and errors
1336   // are emitted).
1337   if (Diags.hasErrorOccurred())
1338     return;
1339 
1340   switch (D->getKind()) {
1341   case Decl::CXXMethod:
1342   case Decl::Function:
1343   case Decl::Var:
1344     EmitGlobal(cast<ValueDecl>(D));
1345     break;
1346 
1347   case Decl::Namespace:
1348     EmitNamespace(cast<NamespaceDecl>(D));
1349     break;
1350 
1351     // Objective-C Decls
1352 
1353   // Forward declarations, no (immediate) code generation.
1354   case Decl::ObjCClass:
1355   case Decl::ObjCForwardProtocol:
1356   case Decl::ObjCCategory:
1357     break;
1358   case Decl::ObjCInterface:
1359     // If we already laid out this interface due to an @class, and if we
1360     // codegen'd a reference it, update the 'opaque' type to be a real type now.
1361     Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D));
1362     break;
1363 
1364   case Decl::ObjCProtocol:
1365     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1366     break;
1367 
1368   case Decl::ObjCCategoryImpl:
1369     // Categories have properties but don't support synthesize so we
1370     // can ignore them here.
1371     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1372     break;
1373 
1374   case Decl::ObjCImplementation: {
1375     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1376     EmitObjCPropertyImplementations(OMD);
1377     Runtime->GenerateClass(OMD);
1378     break;
1379   }
1380   case Decl::ObjCMethod: {
1381     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1382     // If this is not a prototype, emit the body.
1383     if (OMD->getBody())
1384       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1385     break;
1386   }
1387   case Decl::ObjCCompatibleAlias:
1388     // compatibility-alias is a directive and has no code gen.
1389     break;
1390 
1391   case Decl::LinkageSpec:
1392     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1393     break;
1394 
1395   case Decl::FileScopeAsm: {
1396     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1397     std::string AsmString(AD->getAsmString()->getStrData(),
1398                           AD->getAsmString()->getByteLength());
1399 
1400     const std::string &S = getModule().getModuleInlineAsm();
1401     if (S.empty())
1402       getModule().setModuleInlineAsm(AsmString);
1403     else
1404       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1405     break;
1406   }
1407 
1408   default:
1409     // Make sure we handled everything we should, every other kind is
1410     // a non-top-level decl.  FIXME: Would be nice to have an
1411     // isTopLevelDeclKind function. Need to recode Decl::Kind to do
1412     // that easily.
1413     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1414   }
1415 }
1416