1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeNVPTX.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/FileManager.h" 42 #include "clang/Basic/Module.h" 43 #include "clang/Basic/SourceManager.h" 44 #include "clang/Basic/TargetInfo.h" 45 #include "clang/Basic/Version.h" 46 #include "clang/CodeGen/ConstantInitBuilder.h" 47 #include "clang/Frontend/FrontendDiagnostic.h" 48 #include "llvm/ADT/StringSwitch.h" 49 #include "llvm/ADT/Triple.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 52 #include "llvm/IR/CallingConv.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ProfileSummary.h" 58 #include "llvm/ProfileData/InstrProfReader.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/ConvertUTF.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/MD5.h" 64 #include "llvm/Support/TimeProfiler.h" 65 66 using namespace clang; 67 using namespace CodeGen; 68 69 static llvm::cl::opt<bool> LimitedCoverage( 70 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 71 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 72 llvm::cl::init(false)); 73 74 static const char AnnotationSection[] = "llvm.metadata"; 75 76 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 77 switch (CGM.getTarget().getCXXABI().getKind()) { 78 case TargetCXXABI::Fuchsia: 79 case TargetCXXABI::GenericAArch64: 80 case TargetCXXABI::GenericARM: 81 case TargetCXXABI::iOS: 82 case TargetCXXABI::iOS64: 83 case TargetCXXABI::WatchOS: 84 case TargetCXXABI::GenericMIPS: 85 case TargetCXXABI::GenericItanium: 86 case TargetCXXABI::WebAssembly: 87 case TargetCXXABI::XL: 88 return CreateItaniumCXXABI(CGM); 89 case TargetCXXABI::Microsoft: 90 return CreateMicrosoftCXXABI(CGM); 91 } 92 93 llvm_unreachable("invalid C++ ABI kind"); 94 } 95 96 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 97 const PreprocessorOptions &PPO, 98 const CodeGenOptions &CGO, llvm::Module &M, 99 DiagnosticsEngine &diags, 100 CoverageSourceInfo *CoverageInfo) 101 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 102 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 103 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 104 VMContext(M.getContext()), Types(*this), VTables(*this), 105 SanitizerMD(new SanitizerMetadata(*this)) { 106 107 // Initialize the type cache. 108 llvm::LLVMContext &LLVMContext = M.getContext(); 109 VoidTy = llvm::Type::getVoidTy(LLVMContext); 110 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 111 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 112 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 113 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 114 HalfTy = llvm::Type::getHalfTy(LLVMContext); 115 FloatTy = llvm::Type::getFloatTy(LLVMContext); 116 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 117 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 118 PointerAlignInBytes = 119 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 120 SizeSizeInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 122 IntAlignInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 124 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 125 IntPtrTy = llvm::IntegerType::get(LLVMContext, 126 C.getTargetInfo().getMaxPointerWidth()); 127 Int8PtrTy = Int8Ty->getPointerTo(0); 128 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 129 AllocaInt8PtrTy = Int8Ty->getPointerTo( 130 M.getDataLayout().getAllocaAddrSpace()); 131 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 132 133 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 134 135 if (LangOpts.ObjC) 136 createObjCRuntime(); 137 if (LangOpts.OpenCL) 138 createOpenCLRuntime(); 139 if (LangOpts.OpenMP) 140 createOpenMPRuntime(); 141 if (LangOpts.CUDA) 142 createCUDARuntime(); 143 144 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 145 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 146 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 147 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 148 getCXXABI().getMangleContext())); 149 150 // If debug info or coverage generation is enabled, create the CGDebugInfo 151 // object. 152 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 153 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 154 DebugInfo.reset(new CGDebugInfo(*this)); 155 156 Block.GlobalUniqueCount = 0; 157 158 if (C.getLangOpts().ObjC) 159 ObjCData.reset(new ObjCEntrypoints()); 160 161 if (CodeGenOpts.hasProfileClangUse()) { 162 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 163 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 164 if (auto E = ReaderOrErr.takeError()) { 165 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 166 "Could not read profile %0: %1"); 167 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 168 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 169 << EI.message(); 170 }); 171 } else 172 PGOReader = std::move(ReaderOrErr.get()); 173 } 174 175 // If coverage mapping generation is enabled, create the 176 // CoverageMappingModuleGen object. 177 if (CodeGenOpts.CoverageMapping) 178 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 179 } 180 181 CodeGenModule::~CodeGenModule() {} 182 183 void CodeGenModule::createObjCRuntime() { 184 // This is just isGNUFamily(), but we want to force implementors of 185 // new ABIs to decide how best to do this. 186 switch (LangOpts.ObjCRuntime.getKind()) { 187 case ObjCRuntime::GNUstep: 188 case ObjCRuntime::GCC: 189 case ObjCRuntime::ObjFW: 190 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 191 return; 192 193 case ObjCRuntime::FragileMacOSX: 194 case ObjCRuntime::MacOSX: 195 case ObjCRuntime::iOS: 196 case ObjCRuntime::WatchOS: 197 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 198 return; 199 } 200 llvm_unreachable("bad runtime kind"); 201 } 202 203 void CodeGenModule::createOpenCLRuntime() { 204 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 205 } 206 207 void CodeGenModule::createOpenMPRuntime() { 208 // Select a specialized code generation class based on the target, if any. 209 // If it does not exist use the default implementation. 210 switch (getTriple().getArch()) { 211 case llvm::Triple::nvptx: 212 case llvm::Triple::nvptx64: 213 assert(getLangOpts().OpenMPIsDevice && 214 "OpenMP NVPTX is only prepared to deal with device code."); 215 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 216 break; 217 default: 218 if (LangOpts.OpenMPSimd) 219 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 220 else 221 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 222 break; 223 } 224 225 // The OpenMP-IR-Builder should eventually replace the above runtime codegens 226 // but we are not there yet so they both reside in CGModule for now and the 227 // OpenMP-IR-Builder is opt-in only. 228 if (LangOpts.OpenMPIRBuilder) { 229 OMPBuilder.reset(new llvm::OpenMPIRBuilder(TheModule)); 230 OMPBuilder->initialize(); 231 } 232 } 233 234 void CodeGenModule::createCUDARuntime() { 235 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 236 } 237 238 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 239 Replacements[Name] = C; 240 } 241 242 void CodeGenModule::applyReplacements() { 243 for (auto &I : Replacements) { 244 StringRef MangledName = I.first(); 245 llvm::Constant *Replacement = I.second; 246 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 247 if (!Entry) 248 continue; 249 auto *OldF = cast<llvm::Function>(Entry); 250 auto *NewF = dyn_cast<llvm::Function>(Replacement); 251 if (!NewF) { 252 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 253 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 254 } else { 255 auto *CE = cast<llvm::ConstantExpr>(Replacement); 256 assert(CE->getOpcode() == llvm::Instruction::BitCast || 257 CE->getOpcode() == llvm::Instruction::GetElementPtr); 258 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 259 } 260 } 261 262 // Replace old with new, but keep the old order. 263 OldF->replaceAllUsesWith(Replacement); 264 if (NewF) { 265 NewF->removeFromParent(); 266 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 267 NewF); 268 } 269 OldF->eraseFromParent(); 270 } 271 } 272 273 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 274 GlobalValReplacements.push_back(std::make_pair(GV, C)); 275 } 276 277 void CodeGenModule::applyGlobalValReplacements() { 278 for (auto &I : GlobalValReplacements) { 279 llvm::GlobalValue *GV = I.first; 280 llvm::Constant *C = I.second; 281 282 GV->replaceAllUsesWith(C); 283 GV->eraseFromParent(); 284 } 285 } 286 287 // This is only used in aliases that we created and we know they have a 288 // linear structure. 289 static const llvm::GlobalObject *getAliasedGlobal( 290 const llvm::GlobalIndirectSymbol &GIS) { 291 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 292 const llvm::Constant *C = &GIS; 293 for (;;) { 294 C = C->stripPointerCasts(); 295 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 296 return GO; 297 // stripPointerCasts will not walk over weak aliases. 298 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 299 if (!GIS2) 300 return nullptr; 301 if (!Visited.insert(GIS2).second) 302 return nullptr; 303 C = GIS2->getIndirectSymbol(); 304 } 305 } 306 307 void CodeGenModule::checkAliases() { 308 // Check if the constructed aliases are well formed. It is really unfortunate 309 // that we have to do this in CodeGen, but we only construct mangled names 310 // and aliases during codegen. 311 bool Error = false; 312 DiagnosticsEngine &Diags = getDiags(); 313 for (const GlobalDecl &GD : Aliases) { 314 const auto *D = cast<ValueDecl>(GD.getDecl()); 315 SourceLocation Location; 316 bool IsIFunc = D->hasAttr<IFuncAttr>(); 317 if (const Attr *A = D->getDefiningAttr()) 318 Location = A->getLocation(); 319 else 320 llvm_unreachable("Not an alias or ifunc?"); 321 StringRef MangledName = getMangledName(GD); 322 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 323 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 324 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 325 if (!GV) { 326 Error = true; 327 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 328 } else if (GV->isDeclaration()) { 329 Error = true; 330 Diags.Report(Location, diag::err_alias_to_undefined) 331 << IsIFunc << IsIFunc; 332 } else if (IsIFunc) { 333 // Check resolver function type. 334 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 335 GV->getType()->getPointerElementType()); 336 assert(FTy); 337 if (!FTy->getReturnType()->isPointerTy()) 338 Diags.Report(Location, diag::err_ifunc_resolver_return); 339 } 340 341 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 342 llvm::GlobalValue *AliaseeGV; 343 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 344 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 345 else 346 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 347 348 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 349 StringRef AliasSection = SA->getName(); 350 if (AliasSection != AliaseeGV->getSection()) 351 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 352 << AliasSection << IsIFunc << IsIFunc; 353 } 354 355 // We have to handle alias to weak aliases in here. LLVM itself disallows 356 // this since the object semantics would not match the IL one. For 357 // compatibility with gcc we implement it by just pointing the alias 358 // to its aliasee's aliasee. We also warn, since the user is probably 359 // expecting the link to be weak. 360 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 361 if (GA->isInterposable()) { 362 Diags.Report(Location, diag::warn_alias_to_weak_alias) 363 << GV->getName() << GA->getName() << IsIFunc; 364 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 365 GA->getIndirectSymbol(), Alias->getType()); 366 Alias->setIndirectSymbol(Aliasee); 367 } 368 } 369 } 370 if (!Error) 371 return; 372 373 for (const GlobalDecl &GD : Aliases) { 374 StringRef MangledName = getMangledName(GD); 375 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 376 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 377 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 378 Alias->eraseFromParent(); 379 } 380 } 381 382 void CodeGenModule::clear() { 383 DeferredDeclsToEmit.clear(); 384 if (OpenMPRuntime) 385 OpenMPRuntime->clear(); 386 } 387 388 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 389 StringRef MainFile) { 390 if (!hasDiagnostics()) 391 return; 392 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 393 if (MainFile.empty()) 394 MainFile = "<stdin>"; 395 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 396 } else { 397 if (Mismatched > 0) 398 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 399 400 if (Missing > 0) 401 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 402 } 403 } 404 405 void CodeGenModule::Release() { 406 EmitDeferred(); 407 EmitVTablesOpportunistically(); 408 applyGlobalValReplacements(); 409 applyReplacements(); 410 checkAliases(); 411 emitMultiVersionFunctions(); 412 EmitCXXGlobalInitFunc(); 413 EmitCXXGlobalDtorFunc(); 414 registerGlobalDtorsWithAtExit(); 415 EmitCXXThreadLocalInitFunc(); 416 if (ObjCRuntime) 417 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 418 AddGlobalCtor(ObjCInitFunction); 419 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 420 CUDARuntime) { 421 if (llvm::Function *CudaCtorFunction = 422 CUDARuntime->makeModuleCtorFunction()) 423 AddGlobalCtor(CudaCtorFunction); 424 } 425 if (OpenMPRuntime) { 426 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 427 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 428 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 429 } 430 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 431 OpenMPRuntime->clear(); 432 } 433 if (PGOReader) { 434 getModule().setProfileSummary( 435 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 436 llvm::ProfileSummary::PSK_Instr); 437 if (PGOStats.hasDiagnostics()) 438 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 439 } 440 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 441 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 442 EmitGlobalAnnotations(); 443 EmitStaticExternCAliases(); 444 EmitDeferredUnusedCoverageMappings(); 445 if (CoverageMapping) 446 CoverageMapping->emit(); 447 if (CodeGenOpts.SanitizeCfiCrossDso) { 448 CodeGenFunction(*this).EmitCfiCheckFail(); 449 CodeGenFunction(*this).EmitCfiCheckStub(); 450 } 451 emitAtAvailableLinkGuard(); 452 if (Context.getTargetInfo().getTriple().isWasm() && 453 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 454 EmitMainVoidAlias(); 455 } 456 emitLLVMUsed(); 457 if (SanStats) 458 SanStats->finish(); 459 460 if (CodeGenOpts.Autolink && 461 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 462 EmitModuleLinkOptions(); 463 } 464 465 // On ELF we pass the dependent library specifiers directly to the linker 466 // without manipulating them. This is in contrast to other platforms where 467 // they are mapped to a specific linker option by the compiler. This 468 // difference is a result of the greater variety of ELF linkers and the fact 469 // that ELF linkers tend to handle libraries in a more complicated fashion 470 // than on other platforms. This forces us to defer handling the dependent 471 // libs to the linker. 472 // 473 // CUDA/HIP device and host libraries are different. Currently there is no 474 // way to differentiate dependent libraries for host or device. Existing 475 // usage of #pragma comment(lib, *) is intended for host libraries on 476 // Windows. Therefore emit llvm.dependent-libraries only for host. 477 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 478 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 479 for (auto *MD : ELFDependentLibraries) 480 NMD->addOperand(MD); 481 } 482 483 // Record mregparm value now so it is visible through rest of codegen. 484 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 485 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 486 CodeGenOpts.NumRegisterParameters); 487 488 if (CodeGenOpts.DwarfVersion) { 489 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 490 CodeGenOpts.DwarfVersion); 491 } 492 493 if (Context.getLangOpts().SemanticInterposition) 494 // Require various optimization to respect semantic interposition. 495 getModule().setSemanticInterposition(1); 496 497 if (CodeGenOpts.EmitCodeView) { 498 // Indicate that we want CodeView in the metadata. 499 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 500 } 501 if (CodeGenOpts.CodeViewGHash) { 502 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 503 } 504 if (CodeGenOpts.ControlFlowGuard) { 505 // Function ID tables and checks for Control Flow Guard (cfguard=2). 506 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 507 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 508 // Function ID tables for Control Flow Guard (cfguard=1). 509 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 510 } 511 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 512 // We don't support LTO with 2 with different StrictVTablePointers 513 // FIXME: we could support it by stripping all the information introduced 514 // by StrictVTablePointers. 515 516 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 517 518 llvm::Metadata *Ops[2] = { 519 llvm::MDString::get(VMContext, "StrictVTablePointers"), 520 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 521 llvm::Type::getInt32Ty(VMContext), 1))}; 522 523 getModule().addModuleFlag(llvm::Module::Require, 524 "StrictVTablePointersRequirement", 525 llvm::MDNode::get(VMContext, Ops)); 526 } 527 if (DebugInfo) 528 // We support a single version in the linked module. The LLVM 529 // parser will drop debug info with a different version number 530 // (and warn about it, too). 531 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 532 llvm::DEBUG_METADATA_VERSION); 533 534 // We need to record the widths of enums and wchar_t, so that we can generate 535 // the correct build attributes in the ARM backend. wchar_size is also used by 536 // TargetLibraryInfo. 537 uint64_t WCharWidth = 538 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 539 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 540 541 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 542 if ( Arch == llvm::Triple::arm 543 || Arch == llvm::Triple::armeb 544 || Arch == llvm::Triple::thumb 545 || Arch == llvm::Triple::thumbeb) { 546 // The minimum width of an enum in bytes 547 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 548 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 549 } 550 551 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 552 StringRef ABIStr = Target.getABI(); 553 llvm::LLVMContext &Ctx = TheModule.getContext(); 554 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 555 llvm::MDString::get(Ctx, ABIStr)); 556 } 557 558 if (CodeGenOpts.SanitizeCfiCrossDso) { 559 // Indicate that we want cross-DSO control flow integrity checks. 560 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 561 } 562 563 if (CodeGenOpts.WholeProgramVTables) { 564 // Indicate whether VFE was enabled for this module, so that the 565 // vcall_visibility metadata added under whole program vtables is handled 566 // appropriately in the optimizer. 567 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 568 CodeGenOpts.VirtualFunctionElimination); 569 } 570 571 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 572 getModule().addModuleFlag(llvm::Module::Override, 573 "CFI Canonical Jump Tables", 574 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 575 } 576 577 if (CodeGenOpts.CFProtectionReturn && 578 Target.checkCFProtectionReturnSupported(getDiags())) { 579 // Indicate that we want to instrument return control flow protection. 580 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 581 1); 582 } 583 584 if (CodeGenOpts.CFProtectionBranch && 585 Target.checkCFProtectionBranchSupported(getDiags())) { 586 // Indicate that we want to instrument branch control flow protection. 587 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 588 1); 589 } 590 591 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 592 // Indicate whether __nvvm_reflect should be configured to flush denormal 593 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 594 // property.) 595 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 596 CodeGenOpts.FP32DenormalMode.Output != 597 llvm::DenormalMode::IEEE); 598 } 599 600 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 601 if (LangOpts.OpenCL) { 602 EmitOpenCLMetadata(); 603 // Emit SPIR version. 604 if (getTriple().isSPIR()) { 605 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 606 // opencl.spir.version named metadata. 607 // C++ is backwards compatible with OpenCL v2.0. 608 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 609 llvm::Metadata *SPIRVerElts[] = { 610 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 611 Int32Ty, Version / 100)), 612 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 613 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 614 llvm::NamedMDNode *SPIRVerMD = 615 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 616 llvm::LLVMContext &Ctx = TheModule.getContext(); 617 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 618 } 619 } 620 621 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 622 assert(PLevel < 3 && "Invalid PIC Level"); 623 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 624 if (Context.getLangOpts().PIE) 625 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 626 } 627 628 if (getCodeGenOpts().CodeModel.size() > 0) { 629 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 630 .Case("tiny", llvm::CodeModel::Tiny) 631 .Case("small", llvm::CodeModel::Small) 632 .Case("kernel", llvm::CodeModel::Kernel) 633 .Case("medium", llvm::CodeModel::Medium) 634 .Case("large", llvm::CodeModel::Large) 635 .Default(~0u); 636 if (CM != ~0u) { 637 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 638 getModule().setCodeModel(codeModel); 639 } 640 } 641 642 if (CodeGenOpts.NoPLT) 643 getModule().setRtLibUseGOT(); 644 645 SimplifyPersonality(); 646 647 if (getCodeGenOpts().EmitDeclMetadata) 648 EmitDeclMetadata(); 649 650 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 651 EmitCoverageFile(); 652 653 if (DebugInfo) 654 DebugInfo->finalize(); 655 656 if (getCodeGenOpts().EmitVersionIdentMetadata) 657 EmitVersionIdentMetadata(); 658 659 if (!getCodeGenOpts().RecordCommandLine.empty()) 660 EmitCommandLineMetadata(); 661 662 EmitTargetMetadata(); 663 664 EmitBackendOptionsMetadata(getCodeGenOpts()); 665 } 666 667 void CodeGenModule::EmitOpenCLMetadata() { 668 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 669 // opencl.ocl.version named metadata node. 670 // C++ is backwards compatible with OpenCL v2.0. 671 // FIXME: We might need to add CXX version at some point too? 672 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 673 llvm::Metadata *OCLVerElts[] = { 674 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 675 Int32Ty, Version / 100)), 676 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 677 Int32Ty, (Version % 100) / 10))}; 678 llvm::NamedMDNode *OCLVerMD = 679 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 680 llvm::LLVMContext &Ctx = TheModule.getContext(); 681 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 682 } 683 684 void CodeGenModule::EmitBackendOptionsMetadata( 685 const CodeGenOptions CodeGenOpts) { 686 switch (getTriple().getArch()) { 687 default: 688 break; 689 case llvm::Triple::riscv32: 690 case llvm::Triple::riscv64: 691 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 692 CodeGenOpts.SmallDataLimit); 693 break; 694 } 695 } 696 697 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 698 // Make sure that this type is translated. 699 Types.UpdateCompletedType(TD); 700 } 701 702 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 703 // Make sure that this type is translated. 704 Types.RefreshTypeCacheForClass(RD); 705 } 706 707 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 708 if (!TBAA) 709 return nullptr; 710 return TBAA->getTypeInfo(QTy); 711 } 712 713 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 714 if (!TBAA) 715 return TBAAAccessInfo(); 716 if (getLangOpts().CUDAIsDevice) { 717 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 718 // access info. 719 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 720 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 721 nullptr) 722 return TBAAAccessInfo(); 723 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 724 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 725 nullptr) 726 return TBAAAccessInfo(); 727 } 728 } 729 return TBAA->getAccessInfo(AccessType); 730 } 731 732 TBAAAccessInfo 733 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 734 if (!TBAA) 735 return TBAAAccessInfo(); 736 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 737 } 738 739 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 740 if (!TBAA) 741 return nullptr; 742 return TBAA->getTBAAStructInfo(QTy); 743 } 744 745 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 746 if (!TBAA) 747 return nullptr; 748 return TBAA->getBaseTypeInfo(QTy); 749 } 750 751 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 752 if (!TBAA) 753 return nullptr; 754 return TBAA->getAccessTagInfo(Info); 755 } 756 757 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 758 TBAAAccessInfo TargetInfo) { 759 if (!TBAA) 760 return TBAAAccessInfo(); 761 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 762 } 763 764 TBAAAccessInfo 765 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 766 TBAAAccessInfo InfoB) { 767 if (!TBAA) 768 return TBAAAccessInfo(); 769 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 770 } 771 772 TBAAAccessInfo 773 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 774 TBAAAccessInfo SrcInfo) { 775 if (!TBAA) 776 return TBAAAccessInfo(); 777 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 778 } 779 780 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 781 TBAAAccessInfo TBAAInfo) { 782 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 783 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 784 } 785 786 void CodeGenModule::DecorateInstructionWithInvariantGroup( 787 llvm::Instruction *I, const CXXRecordDecl *RD) { 788 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 789 llvm::MDNode::get(getLLVMContext(), {})); 790 } 791 792 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 793 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 794 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 795 } 796 797 /// ErrorUnsupported - Print out an error that codegen doesn't support the 798 /// specified stmt yet. 799 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 800 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 801 "cannot compile this %0 yet"); 802 std::string Msg = Type; 803 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 804 << Msg << S->getSourceRange(); 805 } 806 807 /// ErrorUnsupported - Print out an error that codegen doesn't support the 808 /// specified decl yet. 809 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 810 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 811 "cannot compile this %0 yet"); 812 std::string Msg = Type; 813 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 814 } 815 816 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 817 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 818 } 819 820 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 821 const NamedDecl *D) const { 822 if (GV->hasDLLImportStorageClass()) 823 return; 824 // Internal definitions always have default visibility. 825 if (GV->hasLocalLinkage()) { 826 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 827 return; 828 } 829 if (!D) 830 return; 831 // Set visibility for definitions, and for declarations if requested globally 832 // or set explicitly. 833 LinkageInfo LV = D->getLinkageAndVisibility(); 834 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 835 !GV->isDeclarationForLinker()) 836 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 837 } 838 839 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 840 llvm::GlobalValue *GV) { 841 if (GV->hasLocalLinkage()) 842 return true; 843 844 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 845 return true; 846 847 // DLLImport explicitly marks the GV as external. 848 if (GV->hasDLLImportStorageClass()) 849 return false; 850 851 const llvm::Triple &TT = CGM.getTriple(); 852 if (TT.isWindowsGNUEnvironment()) { 853 // In MinGW, variables without DLLImport can still be automatically 854 // imported from a DLL by the linker; don't mark variables that 855 // potentially could come from another DLL as DSO local. 856 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 857 !GV->isThreadLocal()) 858 return false; 859 } 860 861 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 862 // remain unresolved in the link, they can be resolved to zero, which is 863 // outside the current DSO. 864 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 865 return false; 866 867 // Every other GV is local on COFF. 868 // Make an exception for windows OS in the triple: Some firmware builds use 869 // *-win32-macho triples. This (accidentally?) produced windows relocations 870 // without GOT tables in older clang versions; Keep this behaviour. 871 // FIXME: even thread local variables? 872 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 873 return true; 874 875 // Only handle COFF and ELF for now. 876 if (!TT.isOSBinFormatELF()) 877 return false; 878 879 // If this is not an executable, don't assume anything is local. 880 const auto &CGOpts = CGM.getCodeGenOpts(); 881 llvm::Reloc::Model RM = CGOpts.RelocationModel; 882 const auto &LOpts = CGM.getLangOpts(); 883 if (RM != llvm::Reloc::Static && !LOpts.PIE) 884 return false; 885 886 // A definition cannot be preempted from an executable. 887 if (!GV->isDeclarationForLinker()) 888 return true; 889 890 // Most PIC code sequences that assume that a symbol is local cannot produce a 891 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 892 // depended, it seems worth it to handle it here. 893 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 894 return false; 895 896 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 897 llvm::Triple::ArchType Arch = TT.getArch(); 898 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 899 Arch == llvm::Triple::ppc64le) 900 return false; 901 902 // If we can use copy relocations we can assume it is local. 903 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 904 if (!Var->isThreadLocal() && 905 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 906 return true; 907 908 // If we can use a plt entry as the symbol address we can assume it 909 // is local. 910 // FIXME: This should work for PIE, but the gold linker doesn't support it. 911 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 912 return true; 913 914 // Otherwise don't assume it is local. 915 return false; 916 } 917 918 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 919 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 920 } 921 922 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 923 GlobalDecl GD) const { 924 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 925 // C++ destructors have a few C++ ABI specific special cases. 926 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 927 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 928 return; 929 } 930 setDLLImportDLLExport(GV, D); 931 } 932 933 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 934 const NamedDecl *D) const { 935 if (D && D->isExternallyVisible()) { 936 if (D->hasAttr<DLLImportAttr>()) 937 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 938 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 939 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 940 } 941 } 942 943 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 944 GlobalDecl GD) const { 945 setDLLImportDLLExport(GV, GD); 946 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 947 } 948 949 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 950 const NamedDecl *D) const { 951 setDLLImportDLLExport(GV, D); 952 setGVPropertiesAux(GV, D); 953 } 954 955 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 956 const NamedDecl *D) const { 957 setGlobalVisibility(GV, D); 958 setDSOLocal(GV); 959 GV->setPartition(CodeGenOpts.SymbolPartition); 960 } 961 962 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 963 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 964 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 965 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 966 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 967 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 968 } 969 970 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 971 CodeGenOptions::TLSModel M) { 972 switch (M) { 973 case CodeGenOptions::GeneralDynamicTLSModel: 974 return llvm::GlobalVariable::GeneralDynamicTLSModel; 975 case CodeGenOptions::LocalDynamicTLSModel: 976 return llvm::GlobalVariable::LocalDynamicTLSModel; 977 case CodeGenOptions::InitialExecTLSModel: 978 return llvm::GlobalVariable::InitialExecTLSModel; 979 case CodeGenOptions::LocalExecTLSModel: 980 return llvm::GlobalVariable::LocalExecTLSModel; 981 } 982 llvm_unreachable("Invalid TLS model!"); 983 } 984 985 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 986 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 987 988 llvm::GlobalValue::ThreadLocalMode TLM; 989 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 990 991 // Override the TLS model if it is explicitly specified. 992 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 993 TLM = GetLLVMTLSModel(Attr->getModel()); 994 } 995 996 GV->setThreadLocalMode(TLM); 997 } 998 999 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1000 StringRef Name) { 1001 const TargetInfo &Target = CGM.getTarget(); 1002 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1003 } 1004 1005 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1006 const CPUSpecificAttr *Attr, 1007 unsigned CPUIndex, 1008 raw_ostream &Out) { 1009 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1010 // supported. 1011 if (Attr) 1012 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1013 else if (CGM.getTarget().supportsIFunc()) 1014 Out << ".resolver"; 1015 } 1016 1017 static void AppendTargetMangling(const CodeGenModule &CGM, 1018 const TargetAttr *Attr, raw_ostream &Out) { 1019 if (Attr->isDefaultVersion()) 1020 return; 1021 1022 Out << '.'; 1023 const TargetInfo &Target = CGM.getTarget(); 1024 ParsedTargetAttr Info = 1025 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1026 // Multiversioning doesn't allow "no-${feature}", so we can 1027 // only have "+" prefixes here. 1028 assert(LHS.startswith("+") && RHS.startswith("+") && 1029 "Features should always have a prefix."); 1030 return Target.multiVersionSortPriority(LHS.substr(1)) > 1031 Target.multiVersionSortPriority(RHS.substr(1)); 1032 }); 1033 1034 bool IsFirst = true; 1035 1036 if (!Info.Architecture.empty()) { 1037 IsFirst = false; 1038 Out << "arch_" << Info.Architecture; 1039 } 1040 1041 for (StringRef Feat : Info.Features) { 1042 if (!IsFirst) 1043 Out << '_'; 1044 IsFirst = false; 1045 Out << Feat.substr(1); 1046 } 1047 } 1048 1049 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 1050 const NamedDecl *ND, 1051 bool OmitMultiVersionMangling = false) { 1052 SmallString<256> Buffer; 1053 llvm::raw_svector_ostream Out(Buffer); 1054 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1055 if (MC.shouldMangleDeclName(ND)) 1056 MC.mangleName(GD.getWithDecl(ND), Out); 1057 else { 1058 IdentifierInfo *II = ND->getIdentifier(); 1059 assert(II && "Attempt to mangle unnamed decl."); 1060 const auto *FD = dyn_cast<FunctionDecl>(ND); 1061 1062 if (FD && 1063 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1064 Out << "__regcall3__" << II->getName(); 1065 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1066 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1067 Out << "__device_stub__" << II->getName(); 1068 } else { 1069 Out << II->getName(); 1070 } 1071 } 1072 1073 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1074 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1075 switch (FD->getMultiVersionKind()) { 1076 case MultiVersionKind::CPUDispatch: 1077 case MultiVersionKind::CPUSpecific: 1078 AppendCPUSpecificCPUDispatchMangling(CGM, 1079 FD->getAttr<CPUSpecificAttr>(), 1080 GD.getMultiVersionIndex(), Out); 1081 break; 1082 case MultiVersionKind::Target: 1083 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1084 break; 1085 case MultiVersionKind::None: 1086 llvm_unreachable("None multiversion type isn't valid here"); 1087 } 1088 } 1089 1090 return std::string(Out.str()); 1091 } 1092 1093 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1094 const FunctionDecl *FD) { 1095 if (!FD->isMultiVersion()) 1096 return; 1097 1098 // Get the name of what this would be without the 'target' attribute. This 1099 // allows us to lookup the version that was emitted when this wasn't a 1100 // multiversion function. 1101 std::string NonTargetName = 1102 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1103 GlobalDecl OtherGD; 1104 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1105 assert(OtherGD.getCanonicalDecl() 1106 .getDecl() 1107 ->getAsFunction() 1108 ->isMultiVersion() && 1109 "Other GD should now be a multiversioned function"); 1110 // OtherFD is the version of this function that was mangled BEFORE 1111 // becoming a MultiVersion function. It potentially needs to be updated. 1112 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1113 .getDecl() 1114 ->getAsFunction() 1115 ->getMostRecentDecl(); 1116 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1117 // This is so that if the initial version was already the 'default' 1118 // version, we don't try to update it. 1119 if (OtherName != NonTargetName) { 1120 // Remove instead of erase, since others may have stored the StringRef 1121 // to this. 1122 const auto ExistingRecord = Manglings.find(NonTargetName); 1123 if (ExistingRecord != std::end(Manglings)) 1124 Manglings.remove(&(*ExistingRecord)); 1125 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1126 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1127 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1128 Entry->setName(OtherName); 1129 } 1130 } 1131 } 1132 1133 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1134 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1135 1136 // Some ABIs don't have constructor variants. Make sure that base and 1137 // complete constructors get mangled the same. 1138 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1139 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1140 CXXCtorType OrigCtorType = GD.getCtorType(); 1141 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1142 if (OrigCtorType == Ctor_Base) 1143 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1144 } 1145 } 1146 1147 auto FoundName = MangledDeclNames.find(CanonicalGD); 1148 if (FoundName != MangledDeclNames.end()) 1149 return FoundName->second; 1150 1151 // Keep the first result in the case of a mangling collision. 1152 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1153 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1154 1155 // Ensure either we have different ABIs between host and device compilations, 1156 // says host compilation following MSVC ABI but device compilation follows 1157 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1158 // mangling should be the same after name stubbing. The later checking is 1159 // very important as the device kernel name being mangled in host-compilation 1160 // is used to resolve the device binaries to be executed. Inconsistent naming 1161 // result in undefined behavior. Even though we cannot check that naming 1162 // directly between host- and device-compilations, the host- and 1163 // device-mangling in host compilation could help catching certain ones. 1164 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1165 getLangOpts().CUDAIsDevice || 1166 (getContext().getAuxTargetInfo() && 1167 (getContext().getAuxTargetInfo()->getCXXABI() != 1168 getContext().getTargetInfo().getCXXABI())) || 1169 getCUDARuntime().getDeviceSideName(ND) == 1170 getMangledNameImpl( 1171 *this, 1172 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1173 ND)); 1174 1175 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1176 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1177 } 1178 1179 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1180 const BlockDecl *BD) { 1181 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1182 const Decl *D = GD.getDecl(); 1183 1184 SmallString<256> Buffer; 1185 llvm::raw_svector_ostream Out(Buffer); 1186 if (!D) 1187 MangleCtx.mangleGlobalBlock(BD, 1188 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1189 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1190 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1191 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1192 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1193 else 1194 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1195 1196 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1197 return Result.first->first(); 1198 } 1199 1200 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1201 return getModule().getNamedValue(Name); 1202 } 1203 1204 /// AddGlobalCtor - Add a function to the list that will be called before 1205 /// main() runs. 1206 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1207 llvm::Constant *AssociatedData) { 1208 // FIXME: Type coercion of void()* types. 1209 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1210 } 1211 1212 /// AddGlobalDtor - Add a function to the list that will be called 1213 /// when the module is unloaded. 1214 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1215 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1216 DtorsUsingAtExit[Priority].push_back(Dtor); 1217 return; 1218 } 1219 1220 // FIXME: Type coercion of void()* types. 1221 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1222 } 1223 1224 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1225 if (Fns.empty()) return; 1226 1227 // Ctor function type is void()*. 1228 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1229 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1230 TheModule.getDataLayout().getProgramAddressSpace()); 1231 1232 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1233 llvm::StructType *CtorStructTy = llvm::StructType::get( 1234 Int32Ty, CtorPFTy, VoidPtrTy); 1235 1236 // Construct the constructor and destructor arrays. 1237 ConstantInitBuilder builder(*this); 1238 auto ctors = builder.beginArray(CtorStructTy); 1239 for (const auto &I : Fns) { 1240 auto ctor = ctors.beginStruct(CtorStructTy); 1241 ctor.addInt(Int32Ty, I.Priority); 1242 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1243 if (I.AssociatedData) 1244 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1245 else 1246 ctor.addNullPointer(VoidPtrTy); 1247 ctor.finishAndAddTo(ctors); 1248 } 1249 1250 auto list = 1251 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1252 /*constant*/ false, 1253 llvm::GlobalValue::AppendingLinkage); 1254 1255 // The LTO linker doesn't seem to like it when we set an alignment 1256 // on appending variables. Take it off as a workaround. 1257 list->setAlignment(llvm::None); 1258 1259 Fns.clear(); 1260 } 1261 1262 llvm::GlobalValue::LinkageTypes 1263 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1264 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1265 1266 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1267 1268 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1269 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1270 1271 if (isa<CXXConstructorDecl>(D) && 1272 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1273 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1274 // Our approach to inheriting constructors is fundamentally different from 1275 // that used by the MS ABI, so keep our inheriting constructor thunks 1276 // internal rather than trying to pick an unambiguous mangling for them. 1277 return llvm::GlobalValue::InternalLinkage; 1278 } 1279 1280 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1281 } 1282 1283 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1284 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1285 if (!MDS) return nullptr; 1286 1287 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1288 } 1289 1290 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1291 const CGFunctionInfo &Info, 1292 llvm::Function *F) { 1293 unsigned CallingConv; 1294 llvm::AttributeList PAL; 1295 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1296 F->setAttributes(PAL); 1297 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1298 } 1299 1300 static void removeImageAccessQualifier(std::string& TyName) { 1301 std::string ReadOnlyQual("__read_only"); 1302 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1303 if (ReadOnlyPos != std::string::npos) 1304 // "+ 1" for the space after access qualifier. 1305 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1306 else { 1307 std::string WriteOnlyQual("__write_only"); 1308 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1309 if (WriteOnlyPos != std::string::npos) 1310 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1311 else { 1312 std::string ReadWriteQual("__read_write"); 1313 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1314 if (ReadWritePos != std::string::npos) 1315 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1316 } 1317 } 1318 } 1319 1320 // Returns the address space id that should be produced to the 1321 // kernel_arg_addr_space metadata. This is always fixed to the ids 1322 // as specified in the SPIR 2.0 specification in order to differentiate 1323 // for example in clGetKernelArgInfo() implementation between the address 1324 // spaces with targets without unique mapping to the OpenCL address spaces 1325 // (basically all single AS CPUs). 1326 static unsigned ArgInfoAddressSpace(LangAS AS) { 1327 switch (AS) { 1328 case LangAS::opencl_global: return 1; 1329 case LangAS::opencl_constant: return 2; 1330 case LangAS::opencl_local: return 3; 1331 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 1332 default: 1333 return 0; // Assume private. 1334 } 1335 } 1336 1337 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1338 const FunctionDecl *FD, 1339 CodeGenFunction *CGF) { 1340 assert(((FD && CGF) || (!FD && !CGF)) && 1341 "Incorrect use - FD and CGF should either be both null or not!"); 1342 // Create MDNodes that represent the kernel arg metadata. 1343 // Each MDNode is a list in the form of "key", N number of values which is 1344 // the same number of values as their are kernel arguments. 1345 1346 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1347 1348 // MDNode for the kernel argument address space qualifiers. 1349 SmallVector<llvm::Metadata *, 8> addressQuals; 1350 1351 // MDNode for the kernel argument access qualifiers (images only). 1352 SmallVector<llvm::Metadata *, 8> accessQuals; 1353 1354 // MDNode for the kernel argument type names. 1355 SmallVector<llvm::Metadata *, 8> argTypeNames; 1356 1357 // MDNode for the kernel argument base type names. 1358 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1359 1360 // MDNode for the kernel argument type qualifiers. 1361 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1362 1363 // MDNode for the kernel argument names. 1364 SmallVector<llvm::Metadata *, 8> argNames; 1365 1366 if (FD && CGF) 1367 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1368 const ParmVarDecl *parm = FD->getParamDecl(i); 1369 QualType ty = parm->getType(); 1370 std::string typeQuals; 1371 1372 if (ty->isPointerType()) { 1373 QualType pointeeTy = ty->getPointeeType(); 1374 1375 // Get address qualifier. 1376 addressQuals.push_back( 1377 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1378 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1379 1380 // Get argument type name. 1381 std::string typeName = 1382 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1383 1384 // Turn "unsigned type" to "utype" 1385 std::string::size_type pos = typeName.find("unsigned"); 1386 if (pointeeTy.isCanonical() && pos != std::string::npos) 1387 typeName.erase(pos + 1, 8); 1388 1389 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1390 1391 std::string baseTypeName = 1392 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1393 Policy) + 1394 "*"; 1395 1396 // Turn "unsigned type" to "utype" 1397 pos = baseTypeName.find("unsigned"); 1398 if (pos != std::string::npos) 1399 baseTypeName.erase(pos + 1, 8); 1400 1401 argBaseTypeNames.push_back( 1402 llvm::MDString::get(VMContext, baseTypeName)); 1403 1404 // Get argument type qualifiers: 1405 if (ty.isRestrictQualified()) 1406 typeQuals = "restrict"; 1407 if (pointeeTy.isConstQualified() || 1408 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1409 typeQuals += typeQuals.empty() ? "const" : " const"; 1410 if (pointeeTy.isVolatileQualified()) 1411 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1412 } else { 1413 uint32_t AddrSpc = 0; 1414 bool isPipe = ty->isPipeType(); 1415 if (ty->isImageType() || isPipe) 1416 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1417 1418 addressQuals.push_back( 1419 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1420 1421 // Get argument type name. 1422 std::string typeName; 1423 if (isPipe) 1424 typeName = ty.getCanonicalType() 1425 ->castAs<PipeType>() 1426 ->getElementType() 1427 .getAsString(Policy); 1428 else 1429 typeName = ty.getUnqualifiedType().getAsString(Policy); 1430 1431 // Turn "unsigned type" to "utype" 1432 std::string::size_type pos = typeName.find("unsigned"); 1433 if (ty.isCanonical() && pos != std::string::npos) 1434 typeName.erase(pos + 1, 8); 1435 1436 std::string baseTypeName; 1437 if (isPipe) 1438 baseTypeName = ty.getCanonicalType() 1439 ->castAs<PipeType>() 1440 ->getElementType() 1441 .getCanonicalType() 1442 .getAsString(Policy); 1443 else 1444 baseTypeName = 1445 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1446 1447 // Remove access qualifiers on images 1448 // (as they are inseparable from type in clang implementation, 1449 // but OpenCL spec provides a special query to get access qualifier 1450 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1451 if (ty->isImageType()) { 1452 removeImageAccessQualifier(typeName); 1453 removeImageAccessQualifier(baseTypeName); 1454 } 1455 1456 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1457 1458 // Turn "unsigned type" to "utype" 1459 pos = baseTypeName.find("unsigned"); 1460 if (pos != std::string::npos) 1461 baseTypeName.erase(pos + 1, 8); 1462 1463 argBaseTypeNames.push_back( 1464 llvm::MDString::get(VMContext, baseTypeName)); 1465 1466 if (isPipe) 1467 typeQuals = "pipe"; 1468 } 1469 1470 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1471 1472 // Get image and pipe access qualifier: 1473 if (ty->isImageType() || ty->isPipeType()) { 1474 const Decl *PDecl = parm; 1475 if (auto *TD = dyn_cast<TypedefType>(ty)) 1476 PDecl = TD->getDecl(); 1477 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1478 if (A && A->isWriteOnly()) 1479 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1480 else if (A && A->isReadWrite()) 1481 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1482 else 1483 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1484 } else 1485 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1486 1487 // Get argument name. 1488 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1489 } 1490 1491 Fn->setMetadata("kernel_arg_addr_space", 1492 llvm::MDNode::get(VMContext, addressQuals)); 1493 Fn->setMetadata("kernel_arg_access_qual", 1494 llvm::MDNode::get(VMContext, accessQuals)); 1495 Fn->setMetadata("kernel_arg_type", 1496 llvm::MDNode::get(VMContext, argTypeNames)); 1497 Fn->setMetadata("kernel_arg_base_type", 1498 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1499 Fn->setMetadata("kernel_arg_type_qual", 1500 llvm::MDNode::get(VMContext, argTypeQuals)); 1501 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1502 Fn->setMetadata("kernel_arg_name", 1503 llvm::MDNode::get(VMContext, argNames)); 1504 } 1505 1506 /// Determines whether the language options require us to model 1507 /// unwind exceptions. We treat -fexceptions as mandating this 1508 /// except under the fragile ObjC ABI with only ObjC exceptions 1509 /// enabled. This means, for example, that C with -fexceptions 1510 /// enables this. 1511 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1512 // If exceptions are completely disabled, obviously this is false. 1513 if (!LangOpts.Exceptions) return false; 1514 1515 // If C++ exceptions are enabled, this is true. 1516 if (LangOpts.CXXExceptions) return true; 1517 1518 // If ObjC exceptions are enabled, this depends on the ABI. 1519 if (LangOpts.ObjCExceptions) { 1520 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1521 } 1522 1523 return true; 1524 } 1525 1526 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1527 const CXXMethodDecl *MD) { 1528 // Check that the type metadata can ever actually be used by a call. 1529 if (!CGM.getCodeGenOpts().LTOUnit || 1530 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1531 return false; 1532 1533 // Only functions whose address can be taken with a member function pointer 1534 // need this sort of type metadata. 1535 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1536 !isa<CXXDestructorDecl>(MD); 1537 } 1538 1539 std::vector<const CXXRecordDecl *> 1540 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1541 llvm::SetVector<const CXXRecordDecl *> MostBases; 1542 1543 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1544 CollectMostBases = [&](const CXXRecordDecl *RD) { 1545 if (RD->getNumBases() == 0) 1546 MostBases.insert(RD); 1547 for (const CXXBaseSpecifier &B : RD->bases()) 1548 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1549 }; 1550 CollectMostBases(RD); 1551 return MostBases.takeVector(); 1552 } 1553 1554 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1555 llvm::Function *F) { 1556 llvm::AttrBuilder B; 1557 1558 if (CodeGenOpts.UnwindTables) 1559 B.addAttribute(llvm::Attribute::UWTable); 1560 1561 if (CodeGenOpts.StackClashProtector) 1562 B.addAttribute("probe-stack", "inline-asm"); 1563 1564 if (!hasUnwindExceptions(LangOpts)) 1565 B.addAttribute(llvm::Attribute::NoUnwind); 1566 1567 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1568 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1569 B.addAttribute(llvm::Attribute::StackProtect); 1570 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1571 B.addAttribute(llvm::Attribute::StackProtectStrong); 1572 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1573 B.addAttribute(llvm::Attribute::StackProtectReq); 1574 } 1575 1576 if (!D) { 1577 // If we don't have a declaration to control inlining, the function isn't 1578 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1579 // disabled, mark the function as noinline. 1580 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1581 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1582 B.addAttribute(llvm::Attribute::NoInline); 1583 1584 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1585 return; 1586 } 1587 1588 // Track whether we need to add the optnone LLVM attribute, 1589 // starting with the default for this optimization level. 1590 bool ShouldAddOptNone = 1591 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1592 // We can't add optnone in the following cases, it won't pass the verifier. 1593 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1594 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1595 1596 // Add optnone, but do so only if the function isn't always_inline. 1597 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1598 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1599 B.addAttribute(llvm::Attribute::OptimizeNone); 1600 1601 // OptimizeNone implies noinline; we should not be inlining such functions. 1602 B.addAttribute(llvm::Attribute::NoInline); 1603 1604 // We still need to handle naked functions even though optnone subsumes 1605 // much of their semantics. 1606 if (D->hasAttr<NakedAttr>()) 1607 B.addAttribute(llvm::Attribute::Naked); 1608 1609 // OptimizeNone wins over OptimizeForSize and MinSize. 1610 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1611 F->removeFnAttr(llvm::Attribute::MinSize); 1612 } else if (D->hasAttr<NakedAttr>()) { 1613 // Naked implies noinline: we should not be inlining such functions. 1614 B.addAttribute(llvm::Attribute::Naked); 1615 B.addAttribute(llvm::Attribute::NoInline); 1616 } else if (D->hasAttr<NoDuplicateAttr>()) { 1617 B.addAttribute(llvm::Attribute::NoDuplicate); 1618 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1619 // Add noinline if the function isn't always_inline. 1620 B.addAttribute(llvm::Attribute::NoInline); 1621 } else if (D->hasAttr<AlwaysInlineAttr>() && 1622 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1623 // (noinline wins over always_inline, and we can't specify both in IR) 1624 B.addAttribute(llvm::Attribute::AlwaysInline); 1625 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1626 // If we're not inlining, then force everything that isn't always_inline to 1627 // carry an explicit noinline attribute. 1628 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1629 B.addAttribute(llvm::Attribute::NoInline); 1630 } else { 1631 // Otherwise, propagate the inline hint attribute and potentially use its 1632 // absence to mark things as noinline. 1633 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1634 // Search function and template pattern redeclarations for inline. 1635 auto CheckForInline = [](const FunctionDecl *FD) { 1636 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1637 return Redecl->isInlineSpecified(); 1638 }; 1639 if (any_of(FD->redecls(), CheckRedeclForInline)) 1640 return true; 1641 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1642 if (!Pattern) 1643 return false; 1644 return any_of(Pattern->redecls(), CheckRedeclForInline); 1645 }; 1646 if (CheckForInline(FD)) { 1647 B.addAttribute(llvm::Attribute::InlineHint); 1648 } else if (CodeGenOpts.getInlining() == 1649 CodeGenOptions::OnlyHintInlining && 1650 !FD->isInlined() && 1651 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1652 B.addAttribute(llvm::Attribute::NoInline); 1653 } 1654 } 1655 } 1656 1657 // Add other optimization related attributes if we are optimizing this 1658 // function. 1659 if (!D->hasAttr<OptimizeNoneAttr>()) { 1660 if (D->hasAttr<ColdAttr>()) { 1661 if (!ShouldAddOptNone) 1662 B.addAttribute(llvm::Attribute::OptimizeForSize); 1663 B.addAttribute(llvm::Attribute::Cold); 1664 } 1665 1666 if (D->hasAttr<MinSizeAttr>()) 1667 B.addAttribute(llvm::Attribute::MinSize); 1668 } 1669 1670 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1671 1672 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1673 if (alignment) 1674 F->setAlignment(llvm::Align(alignment)); 1675 1676 if (!D->hasAttr<AlignedAttr>()) 1677 if (LangOpts.FunctionAlignment) 1678 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1679 1680 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1681 // reserve a bit for differentiating between virtual and non-virtual member 1682 // functions. If the current target's C++ ABI requires this and this is a 1683 // member function, set its alignment accordingly. 1684 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1685 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1686 F->setAlignment(llvm::Align(2)); 1687 } 1688 1689 // In the cross-dso CFI mode with canonical jump tables, we want !type 1690 // attributes on definitions only. 1691 if (CodeGenOpts.SanitizeCfiCrossDso && 1692 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1693 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1694 // Skip available_externally functions. They won't be codegen'ed in the 1695 // current module anyway. 1696 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1697 CreateFunctionTypeMetadataForIcall(FD, F); 1698 } 1699 } 1700 1701 // Emit type metadata on member functions for member function pointer checks. 1702 // These are only ever necessary on definitions; we're guaranteed that the 1703 // definition will be present in the LTO unit as a result of LTO visibility. 1704 auto *MD = dyn_cast<CXXMethodDecl>(D); 1705 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1706 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1707 llvm::Metadata *Id = 1708 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1709 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1710 F->addTypeMetadata(0, Id); 1711 } 1712 } 1713 } 1714 1715 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1716 const Decl *D = GD.getDecl(); 1717 if (dyn_cast_or_null<NamedDecl>(D)) 1718 setGVProperties(GV, GD); 1719 else 1720 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1721 1722 if (D && D->hasAttr<UsedAttr>()) 1723 addUsedGlobal(GV); 1724 1725 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1726 const auto *VD = cast<VarDecl>(D); 1727 if (VD->getType().isConstQualified() && 1728 VD->getStorageDuration() == SD_Static) 1729 addUsedGlobal(GV); 1730 } 1731 } 1732 1733 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1734 llvm::AttrBuilder &Attrs) { 1735 // Add target-cpu and target-features attributes to functions. If 1736 // we have a decl for the function and it has a target attribute then 1737 // parse that and add it to the feature set. 1738 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1739 std::vector<std::string> Features; 1740 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1741 FD = FD ? FD->getMostRecentDecl() : FD; 1742 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1743 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1744 bool AddedAttr = false; 1745 if (TD || SD) { 1746 llvm::StringMap<bool> FeatureMap; 1747 getContext().getFunctionFeatureMap(FeatureMap, GD); 1748 1749 // Produce the canonical string for this set of features. 1750 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1751 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1752 1753 // Now add the target-cpu and target-features to the function. 1754 // While we populated the feature map above, we still need to 1755 // get and parse the target attribute so we can get the cpu for 1756 // the function. 1757 if (TD) { 1758 ParsedTargetAttr ParsedAttr = TD->parse(); 1759 if (ParsedAttr.Architecture != "" && 1760 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1761 TargetCPU = ParsedAttr.Architecture; 1762 } 1763 } else { 1764 // Otherwise just add the existing target cpu and target features to the 1765 // function. 1766 Features = getTarget().getTargetOpts().Features; 1767 } 1768 1769 if (TargetCPU != "") { 1770 Attrs.addAttribute("target-cpu", TargetCPU); 1771 AddedAttr = true; 1772 } 1773 if (!Features.empty()) { 1774 llvm::sort(Features); 1775 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1776 AddedAttr = true; 1777 } 1778 1779 return AddedAttr; 1780 } 1781 1782 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1783 llvm::GlobalObject *GO) { 1784 const Decl *D = GD.getDecl(); 1785 SetCommonAttributes(GD, GO); 1786 1787 if (D) { 1788 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1789 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1790 GV->addAttribute("bss-section", SA->getName()); 1791 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1792 GV->addAttribute("data-section", SA->getName()); 1793 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1794 GV->addAttribute("rodata-section", SA->getName()); 1795 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1796 GV->addAttribute("relro-section", SA->getName()); 1797 } 1798 1799 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1800 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1801 if (!D->getAttr<SectionAttr>()) 1802 F->addFnAttr("implicit-section-name", SA->getName()); 1803 1804 llvm::AttrBuilder Attrs; 1805 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1806 // We know that GetCPUAndFeaturesAttributes will always have the 1807 // newest set, since it has the newest possible FunctionDecl, so the 1808 // new ones should replace the old. 1809 F->removeFnAttr("target-cpu"); 1810 F->removeFnAttr("target-features"); 1811 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1812 } 1813 } 1814 1815 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1816 GO->setSection(CSA->getName()); 1817 else if (const auto *SA = D->getAttr<SectionAttr>()) 1818 GO->setSection(SA->getName()); 1819 } 1820 1821 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1822 } 1823 1824 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1825 llvm::Function *F, 1826 const CGFunctionInfo &FI) { 1827 const Decl *D = GD.getDecl(); 1828 SetLLVMFunctionAttributes(GD, FI, F); 1829 SetLLVMFunctionAttributesForDefinition(D, F); 1830 1831 F->setLinkage(llvm::Function::InternalLinkage); 1832 1833 setNonAliasAttributes(GD, F); 1834 } 1835 1836 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1837 // Set linkage and visibility in case we never see a definition. 1838 LinkageInfo LV = ND->getLinkageAndVisibility(); 1839 // Don't set internal linkage on declarations. 1840 // "extern_weak" is overloaded in LLVM; we probably should have 1841 // separate linkage types for this. 1842 if (isExternallyVisible(LV.getLinkage()) && 1843 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1844 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1845 } 1846 1847 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1848 llvm::Function *F) { 1849 // Only if we are checking indirect calls. 1850 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1851 return; 1852 1853 // Non-static class methods are handled via vtable or member function pointer 1854 // checks elsewhere. 1855 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1856 return; 1857 1858 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1859 F->addTypeMetadata(0, MD); 1860 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1861 1862 // Emit a hash-based bit set entry for cross-DSO calls. 1863 if (CodeGenOpts.SanitizeCfiCrossDso) 1864 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1865 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1866 } 1867 1868 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1869 bool IsIncompleteFunction, 1870 bool IsThunk) { 1871 1872 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1873 // If this is an intrinsic function, set the function's attributes 1874 // to the intrinsic's attributes. 1875 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1876 return; 1877 } 1878 1879 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1880 1881 if (!IsIncompleteFunction) 1882 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1883 1884 // Add the Returned attribute for "this", except for iOS 5 and earlier 1885 // where substantial code, including the libstdc++ dylib, was compiled with 1886 // GCC and does not actually return "this". 1887 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1888 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1889 assert(!F->arg_empty() && 1890 F->arg_begin()->getType() 1891 ->canLosslesslyBitCastTo(F->getReturnType()) && 1892 "unexpected this return"); 1893 F->addAttribute(1, llvm::Attribute::Returned); 1894 } 1895 1896 // Only a few attributes are set on declarations; these may later be 1897 // overridden by a definition. 1898 1899 setLinkageForGV(F, FD); 1900 setGVProperties(F, FD); 1901 1902 // Setup target-specific attributes. 1903 if (!IsIncompleteFunction && F->isDeclaration()) 1904 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1905 1906 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1907 F->setSection(CSA->getName()); 1908 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1909 F->setSection(SA->getName()); 1910 1911 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 1912 if (FD->isInlineBuiltinDeclaration() && shouldEmitFunction(FD)) { 1913 F->addAttribute(llvm::AttributeList::FunctionIndex, 1914 llvm::Attribute::NoBuiltin); 1915 } 1916 1917 if (FD->isReplaceableGlobalAllocationFunction()) { 1918 // A replaceable global allocation function does not act like a builtin by 1919 // default, only if it is invoked by a new-expression or delete-expression. 1920 F->addAttribute(llvm::AttributeList::FunctionIndex, 1921 llvm::Attribute::NoBuiltin); 1922 } 1923 1924 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1925 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1926 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1927 if (MD->isVirtual()) 1928 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1929 1930 // Don't emit entries for function declarations in the cross-DSO mode. This 1931 // is handled with better precision by the receiving DSO. But if jump tables 1932 // are non-canonical then we need type metadata in order to produce the local 1933 // jump table. 1934 if (!CodeGenOpts.SanitizeCfiCrossDso || 1935 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 1936 CreateFunctionTypeMetadataForIcall(FD, F); 1937 1938 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1939 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1940 1941 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1942 // Annotate the callback behavior as metadata: 1943 // - The callback callee (as argument number). 1944 // - The callback payloads (as argument numbers). 1945 llvm::LLVMContext &Ctx = F->getContext(); 1946 llvm::MDBuilder MDB(Ctx); 1947 1948 // The payload indices are all but the first one in the encoding. The first 1949 // identifies the callback callee. 1950 int CalleeIdx = *CB->encoding_begin(); 1951 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1952 F->addMetadata(llvm::LLVMContext::MD_callback, 1953 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1954 CalleeIdx, PayloadIndices, 1955 /* VarArgsArePassed */ false)})); 1956 } 1957 } 1958 1959 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1960 assert(!GV->isDeclaration() && 1961 "Only globals with definition can force usage."); 1962 LLVMUsed.emplace_back(GV); 1963 } 1964 1965 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1966 assert(!GV->isDeclaration() && 1967 "Only globals with definition can force usage."); 1968 LLVMCompilerUsed.emplace_back(GV); 1969 } 1970 1971 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1972 std::vector<llvm::WeakTrackingVH> &List) { 1973 // Don't create llvm.used if there is no need. 1974 if (List.empty()) 1975 return; 1976 1977 // Convert List to what ConstantArray needs. 1978 SmallVector<llvm::Constant*, 8> UsedArray; 1979 UsedArray.resize(List.size()); 1980 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1981 UsedArray[i] = 1982 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1983 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1984 } 1985 1986 if (UsedArray.empty()) 1987 return; 1988 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1989 1990 auto *GV = new llvm::GlobalVariable( 1991 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1992 llvm::ConstantArray::get(ATy, UsedArray), Name); 1993 1994 GV->setSection("llvm.metadata"); 1995 } 1996 1997 void CodeGenModule::emitLLVMUsed() { 1998 emitUsed(*this, "llvm.used", LLVMUsed); 1999 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2000 } 2001 2002 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2003 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2004 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2005 } 2006 2007 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2008 llvm::SmallString<32> Opt; 2009 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2010 if (Opt.empty()) 2011 return; 2012 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2013 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2014 } 2015 2016 void CodeGenModule::AddDependentLib(StringRef Lib) { 2017 auto &C = getLLVMContext(); 2018 if (getTarget().getTriple().isOSBinFormatELF()) { 2019 ELFDependentLibraries.push_back( 2020 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2021 return; 2022 } 2023 2024 llvm::SmallString<24> Opt; 2025 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2026 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2027 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2028 } 2029 2030 /// Add link options implied by the given module, including modules 2031 /// it depends on, using a postorder walk. 2032 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2033 SmallVectorImpl<llvm::MDNode *> &Metadata, 2034 llvm::SmallPtrSet<Module *, 16> &Visited) { 2035 // Import this module's parent. 2036 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2037 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2038 } 2039 2040 // Import this module's dependencies. 2041 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2042 if (Visited.insert(Mod->Imports[I - 1]).second) 2043 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2044 } 2045 2046 // Add linker options to link against the libraries/frameworks 2047 // described by this module. 2048 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2049 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2050 2051 // For modules that use export_as for linking, use that module 2052 // name instead. 2053 if (Mod->UseExportAsModuleLinkName) 2054 return; 2055 2056 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2057 // Link against a framework. Frameworks are currently Darwin only, so we 2058 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2059 if (Mod->LinkLibraries[I-1].IsFramework) { 2060 llvm::Metadata *Args[2] = { 2061 llvm::MDString::get(Context, "-framework"), 2062 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2063 2064 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2065 continue; 2066 } 2067 2068 // Link against a library. 2069 if (IsELF) { 2070 llvm::Metadata *Args[2] = { 2071 llvm::MDString::get(Context, "lib"), 2072 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2073 }; 2074 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2075 } else { 2076 llvm::SmallString<24> Opt; 2077 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2078 Mod->LinkLibraries[I - 1].Library, Opt); 2079 auto *OptString = llvm::MDString::get(Context, Opt); 2080 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2081 } 2082 } 2083 } 2084 2085 void CodeGenModule::EmitModuleLinkOptions() { 2086 // Collect the set of all of the modules we want to visit to emit link 2087 // options, which is essentially the imported modules and all of their 2088 // non-explicit child modules. 2089 llvm::SetVector<clang::Module *> LinkModules; 2090 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2091 SmallVector<clang::Module *, 16> Stack; 2092 2093 // Seed the stack with imported modules. 2094 for (Module *M : ImportedModules) { 2095 // Do not add any link flags when an implementation TU of a module imports 2096 // a header of that same module. 2097 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2098 !getLangOpts().isCompilingModule()) 2099 continue; 2100 if (Visited.insert(M).second) 2101 Stack.push_back(M); 2102 } 2103 2104 // Find all of the modules to import, making a little effort to prune 2105 // non-leaf modules. 2106 while (!Stack.empty()) { 2107 clang::Module *Mod = Stack.pop_back_val(); 2108 2109 bool AnyChildren = false; 2110 2111 // Visit the submodules of this module. 2112 for (const auto &SM : Mod->submodules()) { 2113 // Skip explicit children; they need to be explicitly imported to be 2114 // linked against. 2115 if (SM->IsExplicit) 2116 continue; 2117 2118 if (Visited.insert(SM).second) { 2119 Stack.push_back(SM); 2120 AnyChildren = true; 2121 } 2122 } 2123 2124 // We didn't find any children, so add this module to the list of 2125 // modules to link against. 2126 if (!AnyChildren) { 2127 LinkModules.insert(Mod); 2128 } 2129 } 2130 2131 // Add link options for all of the imported modules in reverse topological 2132 // order. We don't do anything to try to order import link flags with respect 2133 // to linker options inserted by things like #pragma comment(). 2134 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2135 Visited.clear(); 2136 for (Module *M : LinkModules) 2137 if (Visited.insert(M).second) 2138 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2139 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2140 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2141 2142 // Add the linker options metadata flag. 2143 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2144 for (auto *MD : LinkerOptionsMetadata) 2145 NMD->addOperand(MD); 2146 } 2147 2148 void CodeGenModule::EmitDeferred() { 2149 // Emit deferred declare target declarations. 2150 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2151 getOpenMPRuntime().emitDeferredTargetDecls(); 2152 2153 // Emit code for any potentially referenced deferred decls. Since a 2154 // previously unused static decl may become used during the generation of code 2155 // for a static function, iterate until no changes are made. 2156 2157 if (!DeferredVTables.empty()) { 2158 EmitDeferredVTables(); 2159 2160 // Emitting a vtable doesn't directly cause more vtables to 2161 // become deferred, although it can cause functions to be 2162 // emitted that then need those vtables. 2163 assert(DeferredVTables.empty()); 2164 } 2165 2166 // Stop if we're out of both deferred vtables and deferred declarations. 2167 if (DeferredDeclsToEmit.empty()) 2168 return; 2169 2170 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2171 // work, it will not interfere with this. 2172 std::vector<GlobalDecl> CurDeclsToEmit; 2173 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2174 2175 for (GlobalDecl &D : CurDeclsToEmit) { 2176 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2177 // to get GlobalValue with exactly the type we need, not something that 2178 // might had been created for another decl with the same mangled name but 2179 // different type. 2180 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2181 GetAddrOfGlobal(D, ForDefinition)); 2182 2183 // In case of different address spaces, we may still get a cast, even with 2184 // IsForDefinition equal to true. Query mangled names table to get 2185 // GlobalValue. 2186 if (!GV) 2187 GV = GetGlobalValue(getMangledName(D)); 2188 2189 // Make sure GetGlobalValue returned non-null. 2190 assert(GV); 2191 2192 // Check to see if we've already emitted this. This is necessary 2193 // for a couple of reasons: first, decls can end up in the 2194 // deferred-decls queue multiple times, and second, decls can end 2195 // up with definitions in unusual ways (e.g. by an extern inline 2196 // function acquiring a strong function redefinition). Just 2197 // ignore these cases. 2198 if (!GV->isDeclaration()) 2199 continue; 2200 2201 // If this is OpenMP, check if it is legal to emit this global normally. 2202 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2203 continue; 2204 2205 // Otherwise, emit the definition and move on to the next one. 2206 EmitGlobalDefinition(D, GV); 2207 2208 // If we found out that we need to emit more decls, do that recursively. 2209 // This has the advantage that the decls are emitted in a DFS and related 2210 // ones are close together, which is convenient for testing. 2211 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2212 EmitDeferred(); 2213 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2214 } 2215 } 2216 } 2217 2218 void CodeGenModule::EmitVTablesOpportunistically() { 2219 // Try to emit external vtables as available_externally if they have emitted 2220 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2221 // is not allowed to create new references to things that need to be emitted 2222 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2223 2224 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2225 && "Only emit opportunistic vtables with optimizations"); 2226 2227 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2228 assert(getVTables().isVTableExternal(RD) && 2229 "This queue should only contain external vtables"); 2230 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2231 VTables.GenerateClassData(RD); 2232 } 2233 OpportunisticVTables.clear(); 2234 } 2235 2236 void CodeGenModule::EmitGlobalAnnotations() { 2237 if (Annotations.empty()) 2238 return; 2239 2240 // Create a new global variable for the ConstantStruct in the Module. 2241 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2242 Annotations[0]->getType(), Annotations.size()), Annotations); 2243 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2244 llvm::GlobalValue::AppendingLinkage, 2245 Array, "llvm.global.annotations"); 2246 gv->setSection(AnnotationSection); 2247 } 2248 2249 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2250 llvm::Constant *&AStr = AnnotationStrings[Str]; 2251 if (AStr) 2252 return AStr; 2253 2254 // Not found yet, create a new global. 2255 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2256 auto *gv = 2257 new llvm::GlobalVariable(getModule(), s->getType(), true, 2258 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2259 gv->setSection(AnnotationSection); 2260 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2261 AStr = gv; 2262 return gv; 2263 } 2264 2265 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2266 SourceManager &SM = getContext().getSourceManager(); 2267 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2268 if (PLoc.isValid()) 2269 return EmitAnnotationString(PLoc.getFilename()); 2270 return EmitAnnotationString(SM.getBufferName(Loc)); 2271 } 2272 2273 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2274 SourceManager &SM = getContext().getSourceManager(); 2275 PresumedLoc PLoc = SM.getPresumedLoc(L); 2276 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2277 SM.getExpansionLineNumber(L); 2278 return llvm::ConstantInt::get(Int32Ty, LineNo); 2279 } 2280 2281 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2282 const AnnotateAttr *AA, 2283 SourceLocation L) { 2284 // Get the globals for file name, annotation, and the line number. 2285 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2286 *UnitGV = EmitAnnotationUnit(L), 2287 *LineNoCst = EmitAnnotationLineNo(L); 2288 2289 llvm::Constant *ASZeroGV = GV; 2290 if (GV->getAddressSpace() != 0) { 2291 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2292 GV, GV->getValueType()->getPointerTo(0)); 2293 } 2294 2295 // Create the ConstantStruct for the global annotation. 2296 llvm::Constant *Fields[4] = { 2297 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2298 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2299 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2300 LineNoCst 2301 }; 2302 return llvm::ConstantStruct::getAnon(Fields); 2303 } 2304 2305 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2306 llvm::GlobalValue *GV) { 2307 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2308 // Get the struct elements for these annotations. 2309 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2310 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2311 } 2312 2313 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2314 llvm::Function *Fn, 2315 SourceLocation Loc) const { 2316 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2317 // Blacklist by function name. 2318 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2319 return true; 2320 // Blacklist by location. 2321 if (Loc.isValid()) 2322 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2323 // If location is unknown, this may be a compiler-generated function. Assume 2324 // it's located in the main file. 2325 auto &SM = Context.getSourceManager(); 2326 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2327 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2328 } 2329 return false; 2330 } 2331 2332 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2333 SourceLocation Loc, QualType Ty, 2334 StringRef Category) const { 2335 // For now globals can be blacklisted only in ASan and KASan. 2336 const SanitizerMask EnabledAsanMask = 2337 LangOpts.Sanitize.Mask & 2338 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2339 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2340 SanitizerKind::MemTag); 2341 if (!EnabledAsanMask) 2342 return false; 2343 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2344 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2345 return true; 2346 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2347 return true; 2348 // Check global type. 2349 if (!Ty.isNull()) { 2350 // Drill down the array types: if global variable of a fixed type is 2351 // blacklisted, we also don't instrument arrays of them. 2352 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2353 Ty = AT->getElementType(); 2354 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2355 // We allow to blacklist only record types (classes, structs etc.) 2356 if (Ty->isRecordType()) { 2357 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2358 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2359 return true; 2360 } 2361 } 2362 return false; 2363 } 2364 2365 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2366 StringRef Category) const { 2367 const auto &XRayFilter = getContext().getXRayFilter(); 2368 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2369 auto Attr = ImbueAttr::NONE; 2370 if (Loc.isValid()) 2371 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2372 if (Attr == ImbueAttr::NONE) 2373 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2374 switch (Attr) { 2375 case ImbueAttr::NONE: 2376 return false; 2377 case ImbueAttr::ALWAYS: 2378 Fn->addFnAttr("function-instrument", "xray-always"); 2379 break; 2380 case ImbueAttr::ALWAYS_ARG1: 2381 Fn->addFnAttr("function-instrument", "xray-always"); 2382 Fn->addFnAttr("xray-log-args", "1"); 2383 break; 2384 case ImbueAttr::NEVER: 2385 Fn->addFnAttr("function-instrument", "xray-never"); 2386 break; 2387 } 2388 return true; 2389 } 2390 2391 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2392 // Never defer when EmitAllDecls is specified. 2393 if (LangOpts.EmitAllDecls) 2394 return true; 2395 2396 if (CodeGenOpts.KeepStaticConsts) { 2397 const auto *VD = dyn_cast<VarDecl>(Global); 2398 if (VD && VD->getType().isConstQualified() && 2399 VD->getStorageDuration() == SD_Static) 2400 return true; 2401 } 2402 2403 return getContext().DeclMustBeEmitted(Global); 2404 } 2405 2406 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2407 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2408 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2409 // Implicit template instantiations may change linkage if they are later 2410 // explicitly instantiated, so they should not be emitted eagerly. 2411 return false; 2412 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2413 // not emit them eagerly unless we sure that the function must be emitted on 2414 // the host. 2415 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2416 !LangOpts.OpenMPIsDevice && 2417 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2418 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2419 return false; 2420 } 2421 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2422 if (Context.getInlineVariableDefinitionKind(VD) == 2423 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2424 // A definition of an inline constexpr static data member may change 2425 // linkage later if it's redeclared outside the class. 2426 return false; 2427 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2428 // codegen for global variables, because they may be marked as threadprivate. 2429 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2430 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2431 !isTypeConstant(Global->getType(), false) && 2432 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2433 return false; 2434 2435 return true; 2436 } 2437 2438 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2439 StringRef Name = getMangledName(GD); 2440 2441 // The UUID descriptor should be pointer aligned. 2442 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2443 2444 // Look for an existing global. 2445 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2446 return ConstantAddress(GV, Alignment); 2447 2448 ConstantEmitter Emitter(*this); 2449 llvm::Constant *Init; 2450 2451 APValue &V = GD->getAsAPValue(); 2452 if (!V.isAbsent()) { 2453 // If possible, emit the APValue version of the initializer. In particular, 2454 // this gets the type of the constant right. 2455 Init = Emitter.emitForInitializer( 2456 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2457 } else { 2458 // As a fallback, directly construct the constant. 2459 // FIXME: This may get padding wrong under esoteric struct layout rules. 2460 // MSVC appears to create a complete type 'struct __s_GUID' that it 2461 // presumably uses to represent these constants. 2462 MSGuidDecl::Parts Parts = GD->getParts(); 2463 llvm::Constant *Fields[4] = { 2464 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2465 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2466 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2467 llvm::ConstantDataArray::getRaw( 2468 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2469 Int8Ty)}; 2470 Init = llvm::ConstantStruct::getAnon(Fields); 2471 } 2472 2473 auto *GV = new llvm::GlobalVariable( 2474 getModule(), Init->getType(), 2475 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2476 if (supportsCOMDAT()) 2477 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2478 setDSOLocal(GV); 2479 2480 llvm::Constant *Addr = GV; 2481 if (!V.isAbsent()) { 2482 Emitter.finalize(GV); 2483 } else { 2484 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2485 Addr = llvm::ConstantExpr::getBitCast( 2486 GV, Ty->getPointerTo(GV->getAddressSpace())); 2487 } 2488 return ConstantAddress(Addr, Alignment); 2489 } 2490 2491 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2492 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2493 assert(AA && "No alias?"); 2494 2495 CharUnits Alignment = getContext().getDeclAlign(VD); 2496 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2497 2498 // See if there is already something with the target's name in the module. 2499 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2500 if (Entry) { 2501 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2502 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2503 return ConstantAddress(Ptr, Alignment); 2504 } 2505 2506 llvm::Constant *Aliasee; 2507 if (isa<llvm::FunctionType>(DeclTy)) 2508 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2509 GlobalDecl(cast<FunctionDecl>(VD)), 2510 /*ForVTable=*/false); 2511 else 2512 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2513 llvm::PointerType::getUnqual(DeclTy), 2514 nullptr); 2515 2516 auto *F = cast<llvm::GlobalValue>(Aliasee); 2517 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2518 WeakRefReferences.insert(F); 2519 2520 return ConstantAddress(Aliasee, Alignment); 2521 } 2522 2523 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2524 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2525 2526 // Weak references don't produce any output by themselves. 2527 if (Global->hasAttr<WeakRefAttr>()) 2528 return; 2529 2530 // If this is an alias definition (which otherwise looks like a declaration) 2531 // emit it now. 2532 if (Global->hasAttr<AliasAttr>()) 2533 return EmitAliasDefinition(GD); 2534 2535 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2536 if (Global->hasAttr<IFuncAttr>()) 2537 return emitIFuncDefinition(GD); 2538 2539 // If this is a cpu_dispatch multiversion function, emit the resolver. 2540 if (Global->hasAttr<CPUDispatchAttr>()) 2541 return emitCPUDispatchDefinition(GD); 2542 2543 // If this is CUDA, be selective about which declarations we emit. 2544 if (LangOpts.CUDA) { 2545 if (LangOpts.CUDAIsDevice) { 2546 if (!Global->hasAttr<CUDADeviceAttr>() && 2547 !Global->hasAttr<CUDAGlobalAttr>() && 2548 !Global->hasAttr<CUDAConstantAttr>() && 2549 !Global->hasAttr<CUDASharedAttr>() && 2550 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2551 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2552 return; 2553 } else { 2554 // We need to emit host-side 'shadows' for all global 2555 // device-side variables because the CUDA runtime needs their 2556 // size and host-side address in order to provide access to 2557 // their device-side incarnations. 2558 2559 // So device-only functions are the only things we skip. 2560 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2561 Global->hasAttr<CUDADeviceAttr>()) 2562 return; 2563 2564 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2565 "Expected Variable or Function"); 2566 } 2567 } 2568 2569 if (LangOpts.OpenMP) { 2570 // If this is OpenMP, check if it is legal to emit this global normally. 2571 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2572 return; 2573 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2574 if (MustBeEmitted(Global)) 2575 EmitOMPDeclareReduction(DRD); 2576 return; 2577 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2578 if (MustBeEmitted(Global)) 2579 EmitOMPDeclareMapper(DMD); 2580 return; 2581 } 2582 } 2583 2584 // Ignore declarations, they will be emitted on their first use. 2585 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2586 // Forward declarations are emitted lazily on first use. 2587 if (!FD->doesThisDeclarationHaveABody()) { 2588 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2589 return; 2590 2591 StringRef MangledName = getMangledName(GD); 2592 2593 // Compute the function info and LLVM type. 2594 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2595 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2596 2597 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2598 /*DontDefer=*/false); 2599 return; 2600 } 2601 } else { 2602 const auto *VD = cast<VarDecl>(Global); 2603 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2604 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2605 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2606 if (LangOpts.OpenMP) { 2607 // Emit declaration of the must-be-emitted declare target variable. 2608 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2609 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2610 bool UnifiedMemoryEnabled = 2611 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2612 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2613 !UnifiedMemoryEnabled) { 2614 (void)GetAddrOfGlobalVar(VD); 2615 } else { 2616 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2617 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2618 UnifiedMemoryEnabled)) && 2619 "Link clause or to clause with unified memory expected."); 2620 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2621 } 2622 2623 return; 2624 } 2625 } 2626 // If this declaration may have caused an inline variable definition to 2627 // change linkage, make sure that it's emitted. 2628 if (Context.getInlineVariableDefinitionKind(VD) == 2629 ASTContext::InlineVariableDefinitionKind::Strong) 2630 GetAddrOfGlobalVar(VD); 2631 return; 2632 } 2633 } 2634 2635 // Defer code generation to first use when possible, e.g. if this is an inline 2636 // function. If the global must always be emitted, do it eagerly if possible 2637 // to benefit from cache locality. 2638 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2639 // Emit the definition if it can't be deferred. 2640 EmitGlobalDefinition(GD); 2641 return; 2642 } 2643 2644 // If we're deferring emission of a C++ variable with an 2645 // initializer, remember the order in which it appeared in the file. 2646 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2647 cast<VarDecl>(Global)->hasInit()) { 2648 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2649 CXXGlobalInits.push_back(nullptr); 2650 } 2651 2652 StringRef MangledName = getMangledName(GD); 2653 if (GetGlobalValue(MangledName) != nullptr) { 2654 // The value has already been used and should therefore be emitted. 2655 addDeferredDeclToEmit(GD); 2656 } else if (MustBeEmitted(Global)) { 2657 // The value must be emitted, but cannot be emitted eagerly. 2658 assert(!MayBeEmittedEagerly(Global)); 2659 addDeferredDeclToEmit(GD); 2660 } else { 2661 // Otherwise, remember that we saw a deferred decl with this name. The 2662 // first use of the mangled name will cause it to move into 2663 // DeferredDeclsToEmit. 2664 DeferredDecls[MangledName] = GD; 2665 } 2666 } 2667 2668 // Check if T is a class type with a destructor that's not dllimport. 2669 static bool HasNonDllImportDtor(QualType T) { 2670 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2671 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2672 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2673 return true; 2674 2675 return false; 2676 } 2677 2678 namespace { 2679 struct FunctionIsDirectlyRecursive 2680 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2681 const StringRef Name; 2682 const Builtin::Context &BI; 2683 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2684 : Name(N), BI(C) {} 2685 2686 bool VisitCallExpr(const CallExpr *E) { 2687 const FunctionDecl *FD = E->getDirectCallee(); 2688 if (!FD) 2689 return false; 2690 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2691 if (Attr && Name == Attr->getLabel()) 2692 return true; 2693 unsigned BuiltinID = FD->getBuiltinID(); 2694 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2695 return false; 2696 StringRef BuiltinName = BI.getName(BuiltinID); 2697 if (BuiltinName.startswith("__builtin_") && 2698 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2699 return true; 2700 } 2701 return false; 2702 } 2703 2704 bool VisitStmt(const Stmt *S) { 2705 for (const Stmt *Child : S->children()) 2706 if (Child && this->Visit(Child)) 2707 return true; 2708 return false; 2709 } 2710 }; 2711 2712 // Make sure we're not referencing non-imported vars or functions. 2713 struct DLLImportFunctionVisitor 2714 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2715 bool SafeToInline = true; 2716 2717 bool shouldVisitImplicitCode() const { return true; } 2718 2719 bool VisitVarDecl(VarDecl *VD) { 2720 if (VD->getTLSKind()) { 2721 // A thread-local variable cannot be imported. 2722 SafeToInline = false; 2723 return SafeToInline; 2724 } 2725 2726 // A variable definition might imply a destructor call. 2727 if (VD->isThisDeclarationADefinition()) 2728 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2729 2730 return SafeToInline; 2731 } 2732 2733 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2734 if (const auto *D = E->getTemporary()->getDestructor()) 2735 SafeToInline = D->hasAttr<DLLImportAttr>(); 2736 return SafeToInline; 2737 } 2738 2739 bool VisitDeclRefExpr(DeclRefExpr *E) { 2740 ValueDecl *VD = E->getDecl(); 2741 if (isa<FunctionDecl>(VD)) 2742 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2743 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2744 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2745 return SafeToInline; 2746 } 2747 2748 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2749 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2750 return SafeToInline; 2751 } 2752 2753 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2754 CXXMethodDecl *M = E->getMethodDecl(); 2755 if (!M) { 2756 // Call through a pointer to member function. This is safe to inline. 2757 SafeToInline = true; 2758 } else { 2759 SafeToInline = M->hasAttr<DLLImportAttr>(); 2760 } 2761 return SafeToInline; 2762 } 2763 2764 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2765 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2766 return SafeToInline; 2767 } 2768 2769 bool VisitCXXNewExpr(CXXNewExpr *E) { 2770 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2771 return SafeToInline; 2772 } 2773 }; 2774 } 2775 2776 // isTriviallyRecursive - Check if this function calls another 2777 // decl that, because of the asm attribute or the other decl being a builtin, 2778 // ends up pointing to itself. 2779 bool 2780 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2781 StringRef Name; 2782 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2783 // asm labels are a special kind of mangling we have to support. 2784 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2785 if (!Attr) 2786 return false; 2787 Name = Attr->getLabel(); 2788 } else { 2789 Name = FD->getName(); 2790 } 2791 2792 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2793 const Stmt *Body = FD->getBody(); 2794 return Body ? Walker.Visit(Body) : false; 2795 } 2796 2797 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2798 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2799 return true; 2800 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2801 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2802 return false; 2803 2804 if (F->hasAttr<DLLImportAttr>()) { 2805 // Check whether it would be safe to inline this dllimport function. 2806 DLLImportFunctionVisitor Visitor; 2807 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2808 if (!Visitor.SafeToInline) 2809 return false; 2810 2811 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2812 // Implicit destructor invocations aren't captured in the AST, so the 2813 // check above can't see them. Check for them manually here. 2814 for (const Decl *Member : Dtor->getParent()->decls()) 2815 if (isa<FieldDecl>(Member)) 2816 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2817 return false; 2818 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2819 if (HasNonDllImportDtor(B.getType())) 2820 return false; 2821 } 2822 } 2823 2824 // PR9614. Avoid cases where the source code is lying to us. An available 2825 // externally function should have an equivalent function somewhere else, 2826 // but a function that calls itself through asm label/`__builtin_` trickery is 2827 // clearly not equivalent to the real implementation. 2828 // This happens in glibc's btowc and in some configure checks. 2829 return !isTriviallyRecursive(F); 2830 } 2831 2832 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2833 return CodeGenOpts.OptimizationLevel > 0; 2834 } 2835 2836 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2837 llvm::GlobalValue *GV) { 2838 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2839 2840 if (FD->isCPUSpecificMultiVersion()) { 2841 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2842 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2843 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2844 // Requires multiple emits. 2845 } else 2846 EmitGlobalFunctionDefinition(GD, GV); 2847 } 2848 2849 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2850 const auto *D = cast<ValueDecl>(GD.getDecl()); 2851 2852 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2853 Context.getSourceManager(), 2854 "Generating code for declaration"); 2855 2856 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2857 // At -O0, don't generate IR for functions with available_externally 2858 // linkage. 2859 if (!shouldEmitFunction(GD)) 2860 return; 2861 2862 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 2863 std::string Name; 2864 llvm::raw_string_ostream OS(Name); 2865 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 2866 /*Qualified=*/true); 2867 return Name; 2868 }); 2869 2870 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2871 // Make sure to emit the definition(s) before we emit the thunks. 2872 // This is necessary for the generation of certain thunks. 2873 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2874 ABI->emitCXXStructor(GD); 2875 else if (FD->isMultiVersion()) 2876 EmitMultiVersionFunctionDefinition(GD, GV); 2877 else 2878 EmitGlobalFunctionDefinition(GD, GV); 2879 2880 if (Method->isVirtual()) 2881 getVTables().EmitThunks(GD); 2882 2883 return; 2884 } 2885 2886 if (FD->isMultiVersion()) 2887 return EmitMultiVersionFunctionDefinition(GD, GV); 2888 return EmitGlobalFunctionDefinition(GD, GV); 2889 } 2890 2891 if (const auto *VD = dyn_cast<VarDecl>(D)) 2892 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2893 2894 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2895 } 2896 2897 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2898 llvm::Function *NewFn); 2899 2900 static unsigned 2901 TargetMVPriority(const TargetInfo &TI, 2902 const CodeGenFunction::MultiVersionResolverOption &RO) { 2903 unsigned Priority = 0; 2904 for (StringRef Feat : RO.Conditions.Features) 2905 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2906 2907 if (!RO.Conditions.Architecture.empty()) 2908 Priority = std::max( 2909 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2910 return Priority; 2911 } 2912 2913 void CodeGenModule::emitMultiVersionFunctions() { 2914 for (GlobalDecl GD : MultiVersionFuncs) { 2915 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2916 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2917 getContext().forEachMultiversionedFunctionVersion( 2918 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2919 GlobalDecl CurGD{ 2920 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2921 StringRef MangledName = getMangledName(CurGD); 2922 llvm::Constant *Func = GetGlobalValue(MangledName); 2923 if (!Func) { 2924 if (CurFD->isDefined()) { 2925 EmitGlobalFunctionDefinition(CurGD, nullptr); 2926 Func = GetGlobalValue(MangledName); 2927 } else { 2928 const CGFunctionInfo &FI = 2929 getTypes().arrangeGlobalDeclaration(GD); 2930 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2931 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2932 /*DontDefer=*/false, ForDefinition); 2933 } 2934 assert(Func && "This should have just been created"); 2935 } 2936 2937 const auto *TA = CurFD->getAttr<TargetAttr>(); 2938 llvm::SmallVector<StringRef, 8> Feats; 2939 TA->getAddedFeatures(Feats); 2940 2941 Options.emplace_back(cast<llvm::Function>(Func), 2942 TA->getArchitecture(), Feats); 2943 }); 2944 2945 llvm::Function *ResolverFunc; 2946 const TargetInfo &TI = getTarget(); 2947 2948 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 2949 ResolverFunc = cast<llvm::Function>( 2950 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2951 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 2952 } else { 2953 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2954 } 2955 2956 if (supportsCOMDAT()) 2957 ResolverFunc->setComdat( 2958 getModule().getOrInsertComdat(ResolverFunc->getName())); 2959 2960 llvm::stable_sort( 2961 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2962 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2963 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2964 }); 2965 CodeGenFunction CGF(*this); 2966 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2967 } 2968 } 2969 2970 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2971 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2972 assert(FD && "Not a FunctionDecl?"); 2973 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2974 assert(DD && "Not a cpu_dispatch Function?"); 2975 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 2976 2977 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2978 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2979 DeclTy = getTypes().GetFunctionType(FInfo); 2980 } 2981 2982 StringRef ResolverName = getMangledName(GD); 2983 2984 llvm::Type *ResolverType; 2985 GlobalDecl ResolverGD; 2986 if (getTarget().supportsIFunc()) 2987 ResolverType = llvm::FunctionType::get( 2988 llvm::PointerType::get(DeclTy, 2989 Context.getTargetAddressSpace(FD->getType())), 2990 false); 2991 else { 2992 ResolverType = DeclTy; 2993 ResolverGD = GD; 2994 } 2995 2996 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2997 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2998 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 2999 if (supportsCOMDAT()) 3000 ResolverFunc->setComdat( 3001 getModule().getOrInsertComdat(ResolverFunc->getName())); 3002 3003 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3004 const TargetInfo &Target = getTarget(); 3005 unsigned Index = 0; 3006 for (const IdentifierInfo *II : DD->cpus()) { 3007 // Get the name of the target function so we can look it up/create it. 3008 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3009 getCPUSpecificMangling(*this, II->getName()); 3010 3011 llvm::Constant *Func = GetGlobalValue(MangledName); 3012 3013 if (!Func) { 3014 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3015 if (ExistingDecl.getDecl() && 3016 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3017 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3018 Func = GetGlobalValue(MangledName); 3019 } else { 3020 if (!ExistingDecl.getDecl()) 3021 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3022 3023 Func = GetOrCreateLLVMFunction( 3024 MangledName, DeclTy, ExistingDecl, 3025 /*ForVTable=*/false, /*DontDefer=*/true, 3026 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3027 } 3028 } 3029 3030 llvm::SmallVector<StringRef, 32> Features; 3031 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3032 llvm::transform(Features, Features.begin(), 3033 [](StringRef Str) { return Str.substr(1); }); 3034 Features.erase(std::remove_if( 3035 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3036 return !Target.validateCpuSupports(Feat); 3037 }), Features.end()); 3038 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3039 ++Index; 3040 } 3041 3042 llvm::sort( 3043 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3044 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3045 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3046 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3047 }); 3048 3049 // If the list contains multiple 'default' versions, such as when it contains 3050 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3051 // always run on at least a 'pentium'). We do this by deleting the 'least 3052 // advanced' (read, lowest mangling letter). 3053 while (Options.size() > 1 && 3054 CodeGenFunction::GetX86CpuSupportsMask( 3055 (Options.end() - 2)->Conditions.Features) == 0) { 3056 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3057 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3058 if (LHSName.compare(RHSName) < 0) 3059 Options.erase(Options.end() - 2); 3060 else 3061 Options.erase(Options.end() - 1); 3062 } 3063 3064 CodeGenFunction CGF(*this); 3065 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3066 3067 if (getTarget().supportsIFunc()) { 3068 std::string AliasName = getMangledNameImpl( 3069 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3070 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3071 if (!AliasFunc) { 3072 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3073 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3074 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3075 auto *GA = llvm::GlobalAlias::create( 3076 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3077 GA->setLinkage(llvm::Function::WeakODRLinkage); 3078 SetCommonAttributes(GD, GA); 3079 } 3080 } 3081 } 3082 3083 /// If a dispatcher for the specified mangled name is not in the module, create 3084 /// and return an llvm Function with the specified type. 3085 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3086 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3087 std::string MangledName = 3088 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3089 3090 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3091 // a separate resolver). 3092 std::string ResolverName = MangledName; 3093 if (getTarget().supportsIFunc()) 3094 ResolverName += ".ifunc"; 3095 else if (FD->isTargetMultiVersion()) 3096 ResolverName += ".resolver"; 3097 3098 // If this already exists, just return that one. 3099 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3100 return ResolverGV; 3101 3102 // Since this is the first time we've created this IFunc, make sure 3103 // that we put this multiversioned function into the list to be 3104 // replaced later if necessary (target multiversioning only). 3105 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3106 MultiVersionFuncs.push_back(GD); 3107 3108 if (getTarget().supportsIFunc()) { 3109 llvm::Type *ResolverType = llvm::FunctionType::get( 3110 llvm::PointerType::get( 3111 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3112 false); 3113 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3114 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3115 /*ForVTable=*/false); 3116 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3117 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3118 GIF->setName(ResolverName); 3119 SetCommonAttributes(FD, GIF); 3120 3121 return GIF; 3122 } 3123 3124 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3125 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3126 assert(isa<llvm::GlobalValue>(Resolver) && 3127 "Resolver should be created for the first time"); 3128 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3129 return Resolver; 3130 } 3131 3132 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3133 /// module, create and return an llvm Function with the specified type. If there 3134 /// is something in the module with the specified name, return it potentially 3135 /// bitcasted to the right type. 3136 /// 3137 /// If D is non-null, it specifies a decl that correspond to this. This is used 3138 /// to set the attributes on the function when it is first created. 3139 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3140 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3141 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3142 ForDefinition_t IsForDefinition) { 3143 const Decl *D = GD.getDecl(); 3144 3145 // Any attempts to use a MultiVersion function should result in retrieving 3146 // the iFunc instead. Name Mangling will handle the rest of the changes. 3147 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3148 // For the device mark the function as one that should be emitted. 3149 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3150 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3151 !DontDefer && !IsForDefinition) { 3152 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3153 GlobalDecl GDDef; 3154 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3155 GDDef = GlobalDecl(CD, GD.getCtorType()); 3156 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3157 GDDef = GlobalDecl(DD, GD.getDtorType()); 3158 else 3159 GDDef = GlobalDecl(FDDef); 3160 EmitGlobal(GDDef); 3161 } 3162 } 3163 3164 if (FD->isMultiVersion()) { 3165 if (FD->hasAttr<TargetAttr>()) 3166 UpdateMultiVersionNames(GD, FD); 3167 if (!IsForDefinition) 3168 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3169 } 3170 } 3171 3172 // Lookup the entry, lazily creating it if necessary. 3173 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3174 if (Entry) { 3175 if (WeakRefReferences.erase(Entry)) { 3176 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3177 if (FD && !FD->hasAttr<WeakAttr>()) 3178 Entry->setLinkage(llvm::Function::ExternalLinkage); 3179 } 3180 3181 // Handle dropped DLL attributes. 3182 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3183 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3184 setDSOLocal(Entry); 3185 } 3186 3187 // If there are two attempts to define the same mangled name, issue an 3188 // error. 3189 if (IsForDefinition && !Entry->isDeclaration()) { 3190 GlobalDecl OtherGD; 3191 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3192 // to make sure that we issue an error only once. 3193 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3194 (GD.getCanonicalDecl().getDecl() != 3195 OtherGD.getCanonicalDecl().getDecl()) && 3196 DiagnosedConflictingDefinitions.insert(GD).second) { 3197 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3198 << MangledName; 3199 getDiags().Report(OtherGD.getDecl()->getLocation(), 3200 diag::note_previous_definition); 3201 } 3202 } 3203 3204 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3205 (Entry->getValueType() == Ty)) { 3206 return Entry; 3207 } 3208 3209 // Make sure the result is of the correct type. 3210 // (If function is requested for a definition, we always need to create a new 3211 // function, not just return a bitcast.) 3212 if (!IsForDefinition) 3213 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3214 } 3215 3216 // This function doesn't have a complete type (for example, the return 3217 // type is an incomplete struct). Use a fake type instead, and make 3218 // sure not to try to set attributes. 3219 bool IsIncompleteFunction = false; 3220 3221 llvm::FunctionType *FTy; 3222 if (isa<llvm::FunctionType>(Ty)) { 3223 FTy = cast<llvm::FunctionType>(Ty); 3224 } else { 3225 FTy = llvm::FunctionType::get(VoidTy, false); 3226 IsIncompleteFunction = true; 3227 } 3228 3229 llvm::Function *F = 3230 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3231 Entry ? StringRef() : MangledName, &getModule()); 3232 3233 // If we already created a function with the same mangled name (but different 3234 // type) before, take its name and add it to the list of functions to be 3235 // replaced with F at the end of CodeGen. 3236 // 3237 // This happens if there is a prototype for a function (e.g. "int f()") and 3238 // then a definition of a different type (e.g. "int f(int x)"). 3239 if (Entry) { 3240 F->takeName(Entry); 3241 3242 // This might be an implementation of a function without a prototype, in 3243 // which case, try to do special replacement of calls which match the new 3244 // prototype. The really key thing here is that we also potentially drop 3245 // arguments from the call site so as to make a direct call, which makes the 3246 // inliner happier and suppresses a number of optimizer warnings (!) about 3247 // dropping arguments. 3248 if (!Entry->use_empty()) { 3249 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3250 Entry->removeDeadConstantUsers(); 3251 } 3252 3253 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3254 F, Entry->getValueType()->getPointerTo()); 3255 addGlobalValReplacement(Entry, BC); 3256 } 3257 3258 assert(F->getName() == MangledName && "name was uniqued!"); 3259 if (D) 3260 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3261 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3262 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3263 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3264 } 3265 3266 if (!DontDefer) { 3267 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3268 // each other bottoming out with the base dtor. Therefore we emit non-base 3269 // dtors on usage, even if there is no dtor definition in the TU. 3270 if (D && isa<CXXDestructorDecl>(D) && 3271 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3272 GD.getDtorType())) 3273 addDeferredDeclToEmit(GD); 3274 3275 // This is the first use or definition of a mangled name. If there is a 3276 // deferred decl with this name, remember that we need to emit it at the end 3277 // of the file. 3278 auto DDI = DeferredDecls.find(MangledName); 3279 if (DDI != DeferredDecls.end()) { 3280 // Move the potentially referenced deferred decl to the 3281 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3282 // don't need it anymore). 3283 addDeferredDeclToEmit(DDI->second); 3284 DeferredDecls.erase(DDI); 3285 3286 // Otherwise, there are cases we have to worry about where we're 3287 // using a declaration for which we must emit a definition but where 3288 // we might not find a top-level definition: 3289 // - member functions defined inline in their classes 3290 // - friend functions defined inline in some class 3291 // - special member functions with implicit definitions 3292 // If we ever change our AST traversal to walk into class methods, 3293 // this will be unnecessary. 3294 // 3295 // We also don't emit a definition for a function if it's going to be an 3296 // entry in a vtable, unless it's already marked as used. 3297 } else if (getLangOpts().CPlusPlus && D) { 3298 // Look for a declaration that's lexically in a record. 3299 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3300 FD = FD->getPreviousDecl()) { 3301 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3302 if (FD->doesThisDeclarationHaveABody()) { 3303 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3304 break; 3305 } 3306 } 3307 } 3308 } 3309 } 3310 3311 // Make sure the result is of the requested type. 3312 if (!IsIncompleteFunction) { 3313 assert(F->getFunctionType() == Ty); 3314 return F; 3315 } 3316 3317 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3318 return llvm::ConstantExpr::getBitCast(F, PTy); 3319 } 3320 3321 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3322 /// non-null, then this function will use the specified type if it has to 3323 /// create it (this occurs when we see a definition of the function). 3324 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3325 llvm::Type *Ty, 3326 bool ForVTable, 3327 bool DontDefer, 3328 ForDefinition_t IsForDefinition) { 3329 // If there was no specific requested type, just convert it now. 3330 if (!Ty) { 3331 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3332 Ty = getTypes().ConvertType(FD->getType()); 3333 } 3334 3335 // Devirtualized destructor calls may come through here instead of via 3336 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3337 // of the complete destructor when necessary. 3338 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3339 if (getTarget().getCXXABI().isMicrosoft() && 3340 GD.getDtorType() == Dtor_Complete && 3341 DD->getParent()->getNumVBases() == 0) 3342 GD = GlobalDecl(DD, Dtor_Base); 3343 } 3344 3345 StringRef MangledName = getMangledName(GD); 3346 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3347 /*IsThunk=*/false, llvm::AttributeList(), 3348 IsForDefinition); 3349 } 3350 3351 static const FunctionDecl * 3352 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3353 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3354 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3355 3356 IdentifierInfo &CII = C.Idents.get(Name); 3357 for (const auto &Result : DC->lookup(&CII)) 3358 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3359 return FD; 3360 3361 if (!C.getLangOpts().CPlusPlus) 3362 return nullptr; 3363 3364 // Demangle the premangled name from getTerminateFn() 3365 IdentifierInfo &CXXII = 3366 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3367 ? C.Idents.get("terminate") 3368 : C.Idents.get(Name); 3369 3370 for (const auto &N : {"__cxxabiv1", "std"}) { 3371 IdentifierInfo &NS = C.Idents.get(N); 3372 for (const auto &Result : DC->lookup(&NS)) { 3373 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3374 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3375 for (const auto &Result : LSD->lookup(&NS)) 3376 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3377 break; 3378 3379 if (ND) 3380 for (const auto &Result : ND->lookup(&CXXII)) 3381 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3382 return FD; 3383 } 3384 } 3385 3386 return nullptr; 3387 } 3388 3389 /// CreateRuntimeFunction - Create a new runtime function with the specified 3390 /// type and name. 3391 llvm::FunctionCallee 3392 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3393 llvm::AttributeList ExtraAttrs, bool Local, 3394 bool AssumeConvergent) { 3395 if (AssumeConvergent) { 3396 ExtraAttrs = 3397 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3398 llvm::Attribute::Convergent); 3399 } 3400 3401 llvm::Constant *C = 3402 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3403 /*DontDefer=*/false, /*IsThunk=*/false, 3404 ExtraAttrs); 3405 3406 if (auto *F = dyn_cast<llvm::Function>(C)) { 3407 if (F->empty()) { 3408 F->setCallingConv(getRuntimeCC()); 3409 3410 // In Windows Itanium environments, try to mark runtime functions 3411 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3412 // will link their standard library statically or dynamically. Marking 3413 // functions imported when they are not imported can cause linker errors 3414 // and warnings. 3415 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3416 !getCodeGenOpts().LTOVisibilityPublicStd) { 3417 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3418 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3419 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3420 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3421 } 3422 } 3423 setDSOLocal(F); 3424 } 3425 } 3426 3427 return {FTy, C}; 3428 } 3429 3430 /// isTypeConstant - Determine whether an object of this type can be emitted 3431 /// as a constant. 3432 /// 3433 /// If ExcludeCtor is true, the duration when the object's constructor runs 3434 /// will not be considered. The caller will need to verify that the object is 3435 /// not written to during its construction. 3436 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3437 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3438 return false; 3439 3440 if (Context.getLangOpts().CPlusPlus) { 3441 if (const CXXRecordDecl *Record 3442 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3443 return ExcludeCtor && !Record->hasMutableFields() && 3444 Record->hasTrivialDestructor(); 3445 } 3446 3447 return true; 3448 } 3449 3450 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3451 /// create and return an llvm GlobalVariable with the specified type. If there 3452 /// is something in the module with the specified name, return it potentially 3453 /// bitcasted to the right type. 3454 /// 3455 /// If D is non-null, it specifies a decl that correspond to this. This is used 3456 /// to set the attributes on the global when it is first created. 3457 /// 3458 /// If IsForDefinition is true, it is guaranteed that an actual global with 3459 /// type Ty will be returned, not conversion of a variable with the same 3460 /// mangled name but some other type. 3461 llvm::Constant * 3462 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3463 llvm::PointerType *Ty, 3464 const VarDecl *D, 3465 ForDefinition_t IsForDefinition) { 3466 // Lookup the entry, lazily creating it if necessary. 3467 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3468 if (Entry) { 3469 if (WeakRefReferences.erase(Entry)) { 3470 if (D && !D->hasAttr<WeakAttr>()) 3471 Entry->setLinkage(llvm::Function::ExternalLinkage); 3472 } 3473 3474 // Handle dropped DLL attributes. 3475 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3476 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3477 3478 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3479 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3480 3481 if (Entry->getType() == Ty) 3482 return Entry; 3483 3484 // If there are two attempts to define the same mangled name, issue an 3485 // error. 3486 if (IsForDefinition && !Entry->isDeclaration()) { 3487 GlobalDecl OtherGD; 3488 const VarDecl *OtherD; 3489 3490 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3491 // to make sure that we issue an error only once. 3492 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3493 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3494 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3495 OtherD->hasInit() && 3496 DiagnosedConflictingDefinitions.insert(D).second) { 3497 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3498 << MangledName; 3499 getDiags().Report(OtherGD.getDecl()->getLocation(), 3500 diag::note_previous_definition); 3501 } 3502 } 3503 3504 // Make sure the result is of the correct type. 3505 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3506 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3507 3508 // (If global is requested for a definition, we always need to create a new 3509 // global, not just return a bitcast.) 3510 if (!IsForDefinition) 3511 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3512 } 3513 3514 auto AddrSpace = GetGlobalVarAddressSpace(D); 3515 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3516 3517 auto *GV = new llvm::GlobalVariable( 3518 getModule(), Ty->getElementType(), false, 3519 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3520 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3521 3522 // If we already created a global with the same mangled name (but different 3523 // type) before, take its name and remove it from its parent. 3524 if (Entry) { 3525 GV->takeName(Entry); 3526 3527 if (!Entry->use_empty()) { 3528 llvm::Constant *NewPtrForOldDecl = 3529 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3530 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3531 } 3532 3533 Entry->eraseFromParent(); 3534 } 3535 3536 // This is the first use or definition of a mangled name. If there is a 3537 // deferred decl with this name, remember that we need to emit it at the end 3538 // of the file. 3539 auto DDI = DeferredDecls.find(MangledName); 3540 if (DDI != DeferredDecls.end()) { 3541 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3542 // list, and remove it from DeferredDecls (since we don't need it anymore). 3543 addDeferredDeclToEmit(DDI->second); 3544 DeferredDecls.erase(DDI); 3545 } 3546 3547 // Handle things which are present even on external declarations. 3548 if (D) { 3549 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3550 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3551 3552 // FIXME: This code is overly simple and should be merged with other global 3553 // handling. 3554 GV->setConstant(isTypeConstant(D->getType(), false)); 3555 3556 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3557 3558 setLinkageForGV(GV, D); 3559 3560 if (D->getTLSKind()) { 3561 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3562 CXXThreadLocals.push_back(D); 3563 setTLSMode(GV, *D); 3564 } 3565 3566 setGVProperties(GV, D); 3567 3568 // If required by the ABI, treat declarations of static data members with 3569 // inline initializers as definitions. 3570 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3571 EmitGlobalVarDefinition(D); 3572 } 3573 3574 // Emit section information for extern variables. 3575 if (D->hasExternalStorage()) { 3576 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3577 GV->setSection(SA->getName()); 3578 } 3579 3580 // Handle XCore specific ABI requirements. 3581 if (getTriple().getArch() == llvm::Triple::xcore && 3582 D->getLanguageLinkage() == CLanguageLinkage && 3583 D->getType().isConstant(Context) && 3584 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3585 GV->setSection(".cp.rodata"); 3586 3587 // Check if we a have a const declaration with an initializer, we may be 3588 // able to emit it as available_externally to expose it's value to the 3589 // optimizer. 3590 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3591 D->getType().isConstQualified() && !GV->hasInitializer() && 3592 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3593 const auto *Record = 3594 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3595 bool HasMutableFields = Record && Record->hasMutableFields(); 3596 if (!HasMutableFields) { 3597 const VarDecl *InitDecl; 3598 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3599 if (InitExpr) { 3600 ConstantEmitter emitter(*this); 3601 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3602 if (Init) { 3603 auto *InitType = Init->getType(); 3604 if (GV->getValueType() != InitType) { 3605 // The type of the initializer does not match the definition. 3606 // This happens when an initializer has a different type from 3607 // the type of the global (because of padding at the end of a 3608 // structure for instance). 3609 GV->setName(StringRef()); 3610 // Make a new global with the correct type, this is now guaranteed 3611 // to work. 3612 auto *NewGV = cast<llvm::GlobalVariable>( 3613 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3614 ->stripPointerCasts()); 3615 3616 // Erase the old global, since it is no longer used. 3617 GV->eraseFromParent(); 3618 GV = NewGV; 3619 } else { 3620 GV->setInitializer(Init); 3621 GV->setConstant(true); 3622 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3623 } 3624 emitter.finalize(GV); 3625 } 3626 } 3627 } 3628 } 3629 } 3630 3631 if (GV->isDeclaration()) 3632 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3633 3634 LangAS ExpectedAS = 3635 D ? D->getType().getAddressSpace() 3636 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3637 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3638 Ty->getPointerAddressSpace()); 3639 if (AddrSpace != ExpectedAS) 3640 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3641 ExpectedAS, Ty); 3642 3643 return GV; 3644 } 3645 3646 llvm::Constant * 3647 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3648 ForDefinition_t IsForDefinition) { 3649 const Decl *D = GD.getDecl(); 3650 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3651 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3652 /*DontDefer=*/false, IsForDefinition); 3653 else if (isa<CXXMethodDecl>(D)) { 3654 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3655 cast<CXXMethodDecl>(D)); 3656 auto Ty = getTypes().GetFunctionType(*FInfo); 3657 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3658 IsForDefinition); 3659 } else if (isa<FunctionDecl>(D)) { 3660 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3661 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3662 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3663 IsForDefinition); 3664 } else 3665 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3666 IsForDefinition); 3667 } 3668 3669 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3670 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3671 unsigned Alignment) { 3672 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3673 llvm::GlobalVariable *OldGV = nullptr; 3674 3675 if (GV) { 3676 // Check if the variable has the right type. 3677 if (GV->getValueType() == Ty) 3678 return GV; 3679 3680 // Because C++ name mangling, the only way we can end up with an already 3681 // existing global with the same name is if it has been declared extern "C". 3682 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3683 OldGV = GV; 3684 } 3685 3686 // Create a new variable. 3687 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3688 Linkage, nullptr, Name); 3689 3690 if (OldGV) { 3691 // Replace occurrences of the old variable if needed. 3692 GV->takeName(OldGV); 3693 3694 if (!OldGV->use_empty()) { 3695 llvm::Constant *NewPtrForOldDecl = 3696 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3697 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3698 } 3699 3700 OldGV->eraseFromParent(); 3701 } 3702 3703 if (supportsCOMDAT() && GV->isWeakForLinker() && 3704 !GV->hasAvailableExternallyLinkage()) 3705 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3706 3707 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3708 3709 return GV; 3710 } 3711 3712 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3713 /// given global variable. If Ty is non-null and if the global doesn't exist, 3714 /// then it will be created with the specified type instead of whatever the 3715 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3716 /// that an actual global with type Ty will be returned, not conversion of a 3717 /// variable with the same mangled name but some other type. 3718 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3719 llvm::Type *Ty, 3720 ForDefinition_t IsForDefinition) { 3721 assert(D->hasGlobalStorage() && "Not a global variable"); 3722 QualType ASTTy = D->getType(); 3723 if (!Ty) 3724 Ty = getTypes().ConvertTypeForMem(ASTTy); 3725 3726 llvm::PointerType *PTy = 3727 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3728 3729 StringRef MangledName = getMangledName(D); 3730 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3731 } 3732 3733 /// CreateRuntimeVariable - Create a new runtime global variable with the 3734 /// specified type and name. 3735 llvm::Constant * 3736 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3737 StringRef Name) { 3738 auto PtrTy = 3739 getContext().getLangOpts().OpenCL 3740 ? llvm::PointerType::get( 3741 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3742 : llvm::PointerType::getUnqual(Ty); 3743 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3744 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3745 return Ret; 3746 } 3747 3748 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3749 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3750 3751 StringRef MangledName = getMangledName(D); 3752 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3753 3754 // We already have a definition, not declaration, with the same mangled name. 3755 // Emitting of declaration is not required (and actually overwrites emitted 3756 // definition). 3757 if (GV && !GV->isDeclaration()) 3758 return; 3759 3760 // If we have not seen a reference to this variable yet, place it into the 3761 // deferred declarations table to be emitted if needed later. 3762 if (!MustBeEmitted(D) && !GV) { 3763 DeferredDecls[MangledName] = D; 3764 return; 3765 } 3766 3767 // The tentative definition is the only definition. 3768 EmitGlobalVarDefinition(D); 3769 } 3770 3771 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 3772 EmitExternalVarDeclaration(D); 3773 } 3774 3775 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3776 return Context.toCharUnitsFromBits( 3777 getDataLayout().getTypeStoreSizeInBits(Ty)); 3778 } 3779 3780 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3781 LangAS AddrSpace = LangAS::Default; 3782 if (LangOpts.OpenCL) { 3783 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3784 assert(AddrSpace == LangAS::opencl_global || 3785 AddrSpace == LangAS::opencl_constant || 3786 AddrSpace == LangAS::opencl_local || 3787 AddrSpace >= LangAS::FirstTargetAddressSpace); 3788 return AddrSpace; 3789 } 3790 3791 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3792 if (D && D->hasAttr<CUDAConstantAttr>()) 3793 return LangAS::cuda_constant; 3794 else if (D && D->hasAttr<CUDASharedAttr>()) 3795 return LangAS::cuda_shared; 3796 else if (D && D->hasAttr<CUDADeviceAttr>()) 3797 return LangAS::cuda_device; 3798 else if (D && D->getType().isConstQualified()) 3799 return LangAS::cuda_constant; 3800 else 3801 return LangAS::cuda_device; 3802 } 3803 3804 if (LangOpts.OpenMP) { 3805 LangAS AS; 3806 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3807 return AS; 3808 } 3809 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3810 } 3811 3812 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3813 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3814 if (LangOpts.OpenCL) 3815 return LangAS::opencl_constant; 3816 if (auto AS = getTarget().getConstantAddressSpace()) 3817 return AS.getValue(); 3818 return LangAS::Default; 3819 } 3820 3821 // In address space agnostic languages, string literals are in default address 3822 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3823 // emitted in constant address space in LLVM IR. To be consistent with other 3824 // parts of AST, string literal global variables in constant address space 3825 // need to be casted to default address space before being put into address 3826 // map and referenced by other part of CodeGen. 3827 // In OpenCL, string literals are in constant address space in AST, therefore 3828 // they should not be casted to default address space. 3829 static llvm::Constant * 3830 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3831 llvm::GlobalVariable *GV) { 3832 llvm::Constant *Cast = GV; 3833 if (!CGM.getLangOpts().OpenCL) { 3834 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3835 if (AS != LangAS::Default) 3836 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3837 CGM, GV, AS.getValue(), LangAS::Default, 3838 GV->getValueType()->getPointerTo( 3839 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3840 } 3841 } 3842 return Cast; 3843 } 3844 3845 template<typename SomeDecl> 3846 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3847 llvm::GlobalValue *GV) { 3848 if (!getLangOpts().CPlusPlus) 3849 return; 3850 3851 // Must have 'used' attribute, or else inline assembly can't rely on 3852 // the name existing. 3853 if (!D->template hasAttr<UsedAttr>()) 3854 return; 3855 3856 // Must have internal linkage and an ordinary name. 3857 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3858 return; 3859 3860 // Must be in an extern "C" context. Entities declared directly within 3861 // a record are not extern "C" even if the record is in such a context. 3862 const SomeDecl *First = D->getFirstDecl(); 3863 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3864 return; 3865 3866 // OK, this is an internal linkage entity inside an extern "C" linkage 3867 // specification. Make a note of that so we can give it the "expected" 3868 // mangled name if nothing else is using that name. 3869 std::pair<StaticExternCMap::iterator, bool> R = 3870 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3871 3872 // If we have multiple internal linkage entities with the same name 3873 // in extern "C" regions, none of them gets that name. 3874 if (!R.second) 3875 R.first->second = nullptr; 3876 } 3877 3878 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3879 if (!CGM.supportsCOMDAT()) 3880 return false; 3881 3882 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 3883 // them being "merged" by the COMDAT Folding linker optimization. 3884 if (D.hasAttr<CUDAGlobalAttr>()) 3885 return false; 3886 3887 if (D.hasAttr<SelectAnyAttr>()) 3888 return true; 3889 3890 GVALinkage Linkage; 3891 if (auto *VD = dyn_cast<VarDecl>(&D)) 3892 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3893 else 3894 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3895 3896 switch (Linkage) { 3897 case GVA_Internal: 3898 case GVA_AvailableExternally: 3899 case GVA_StrongExternal: 3900 return false; 3901 case GVA_DiscardableODR: 3902 case GVA_StrongODR: 3903 return true; 3904 } 3905 llvm_unreachable("No such linkage"); 3906 } 3907 3908 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3909 llvm::GlobalObject &GO) { 3910 if (!shouldBeInCOMDAT(*this, D)) 3911 return; 3912 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3913 } 3914 3915 /// Pass IsTentative as true if you want to create a tentative definition. 3916 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3917 bool IsTentative) { 3918 // OpenCL global variables of sampler type are translated to function calls, 3919 // therefore no need to be translated. 3920 QualType ASTTy = D->getType(); 3921 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3922 return; 3923 3924 // If this is OpenMP device, check if it is legal to emit this global 3925 // normally. 3926 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3927 OpenMPRuntime->emitTargetGlobalVariable(D)) 3928 return; 3929 3930 llvm::Constant *Init = nullptr; 3931 bool NeedsGlobalCtor = false; 3932 bool NeedsGlobalDtor = 3933 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 3934 3935 const VarDecl *InitDecl; 3936 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3937 3938 Optional<ConstantEmitter> emitter; 3939 3940 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3941 // as part of their declaration." Sema has already checked for 3942 // error cases, so we just need to set Init to UndefValue. 3943 bool IsCUDASharedVar = 3944 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3945 // Shadows of initialized device-side global variables are also left 3946 // undefined. 3947 bool IsCUDAShadowVar = 3948 !getLangOpts().CUDAIsDevice && 3949 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3950 D->hasAttr<CUDASharedAttr>()); 3951 bool IsCUDADeviceShadowVar = 3952 getLangOpts().CUDAIsDevice && 3953 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 3954 D->getType()->isCUDADeviceBuiltinTextureType()); 3955 // HIP pinned shadow of initialized host-side global variables are also 3956 // left undefined. 3957 if (getLangOpts().CUDA && 3958 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 3959 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3960 else if (D->hasAttr<LoaderUninitializedAttr>()) 3961 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3962 else if (!InitExpr) { 3963 // This is a tentative definition; tentative definitions are 3964 // implicitly initialized with { 0 }. 3965 // 3966 // Note that tentative definitions are only emitted at the end of 3967 // a translation unit, so they should never have incomplete 3968 // type. In addition, EmitTentativeDefinition makes sure that we 3969 // never attempt to emit a tentative definition if a real one 3970 // exists. A use may still exists, however, so we still may need 3971 // to do a RAUW. 3972 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3973 Init = EmitNullConstant(D->getType()); 3974 } else { 3975 initializedGlobalDecl = GlobalDecl(D); 3976 emitter.emplace(*this); 3977 Init = emitter->tryEmitForInitializer(*InitDecl); 3978 3979 if (!Init) { 3980 QualType T = InitExpr->getType(); 3981 if (D->getType()->isReferenceType()) 3982 T = D->getType(); 3983 3984 if (getLangOpts().CPlusPlus) { 3985 Init = EmitNullConstant(T); 3986 NeedsGlobalCtor = true; 3987 } else { 3988 ErrorUnsupported(D, "static initializer"); 3989 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3990 } 3991 } else { 3992 // We don't need an initializer, so remove the entry for the delayed 3993 // initializer position (just in case this entry was delayed) if we 3994 // also don't need to register a destructor. 3995 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3996 DelayedCXXInitPosition.erase(D); 3997 } 3998 } 3999 4000 llvm::Type* InitType = Init->getType(); 4001 llvm::Constant *Entry = 4002 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4003 4004 // Strip off pointer casts if we got them. 4005 Entry = Entry->stripPointerCasts(); 4006 4007 // Entry is now either a Function or GlobalVariable. 4008 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4009 4010 // We have a definition after a declaration with the wrong type. 4011 // We must make a new GlobalVariable* and update everything that used OldGV 4012 // (a declaration or tentative definition) with the new GlobalVariable* 4013 // (which will be a definition). 4014 // 4015 // This happens if there is a prototype for a global (e.g. 4016 // "extern int x[];") and then a definition of a different type (e.g. 4017 // "int x[10];"). This also happens when an initializer has a different type 4018 // from the type of the global (this happens with unions). 4019 if (!GV || GV->getValueType() != InitType || 4020 GV->getType()->getAddressSpace() != 4021 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4022 4023 // Move the old entry aside so that we'll create a new one. 4024 Entry->setName(StringRef()); 4025 4026 // Make a new global with the correct type, this is now guaranteed to work. 4027 GV = cast<llvm::GlobalVariable>( 4028 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4029 ->stripPointerCasts()); 4030 4031 // Replace all uses of the old global with the new global 4032 llvm::Constant *NewPtrForOldDecl = 4033 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4034 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4035 4036 // Erase the old global, since it is no longer used. 4037 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4038 } 4039 4040 MaybeHandleStaticInExternC(D, GV); 4041 4042 if (D->hasAttr<AnnotateAttr>()) 4043 AddGlobalAnnotations(D, GV); 4044 4045 // Set the llvm linkage type as appropriate. 4046 llvm::GlobalValue::LinkageTypes Linkage = 4047 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4048 4049 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4050 // the device. [...]" 4051 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4052 // __device__, declares a variable that: [...] 4053 // Is accessible from all the threads within the grid and from the host 4054 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4055 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4056 if (GV && LangOpts.CUDA) { 4057 if (LangOpts.CUDAIsDevice) { 4058 if (Linkage != llvm::GlobalValue::InternalLinkage && 4059 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4060 GV->setExternallyInitialized(true); 4061 } else { 4062 // Host-side shadows of external declarations of device-side 4063 // global variables become internal definitions. These have to 4064 // be internal in order to prevent name conflicts with global 4065 // host variables with the same name in a different TUs. 4066 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 4067 Linkage = llvm::GlobalValue::InternalLinkage; 4068 // Shadow variables and their properties must be registered with CUDA 4069 // runtime. Skip Extern global variables, which will be registered in 4070 // the TU where they are defined. 4071 if (!D->hasExternalStorage()) 4072 getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(), 4073 D->hasAttr<CUDAConstantAttr>()); 4074 } else if (D->hasAttr<CUDASharedAttr>()) { 4075 // __shared__ variables are odd. Shadows do get created, but 4076 // they are not registered with the CUDA runtime, so they 4077 // can't really be used to access their device-side 4078 // counterparts. It's not clear yet whether it's nvcc's bug or 4079 // a feature, but we've got to do the same for compatibility. 4080 Linkage = llvm::GlobalValue::InternalLinkage; 4081 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4082 D->getType()->isCUDADeviceBuiltinTextureType()) { 4083 // Builtin surfaces and textures and their template arguments are 4084 // also registered with CUDA runtime. 4085 Linkage = llvm::GlobalValue::InternalLinkage; 4086 const ClassTemplateSpecializationDecl *TD = 4087 cast<ClassTemplateSpecializationDecl>( 4088 D->getType()->getAs<RecordType>()->getDecl()); 4089 const TemplateArgumentList &Args = TD->getTemplateArgs(); 4090 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) { 4091 assert(Args.size() == 2 && 4092 "Unexpected number of template arguments of CUDA device " 4093 "builtin surface type."); 4094 auto SurfType = Args[1].getAsIntegral(); 4095 if (!D->hasExternalStorage()) 4096 getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(), 4097 SurfType.getSExtValue()); 4098 } else { 4099 assert(Args.size() == 3 && 4100 "Unexpected number of template arguments of CUDA device " 4101 "builtin texture type."); 4102 auto TexType = Args[1].getAsIntegral(); 4103 auto Normalized = Args[2].getAsIntegral(); 4104 if (!D->hasExternalStorage()) 4105 getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(), 4106 TexType.getSExtValue(), 4107 Normalized.getZExtValue()); 4108 } 4109 } 4110 } 4111 } 4112 4113 GV->setInitializer(Init); 4114 if (emitter) 4115 emitter->finalize(GV); 4116 4117 // If it is safe to mark the global 'constant', do so now. 4118 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4119 isTypeConstant(D->getType(), true)); 4120 4121 // If it is in a read-only section, mark it 'constant'. 4122 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4123 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4124 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4125 GV->setConstant(true); 4126 } 4127 4128 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4129 4130 // On Darwin, if the normal linkage of a C++ thread_local variable is 4131 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 4132 // copies within a linkage unit; otherwise, the backing variable has 4133 // internal linkage and all accesses should just be calls to the 4134 // Itanium-specified entry point, which has the normal linkage of the 4135 // variable. This is to preserve the ability to change the implementation 4136 // behind the scenes. 4137 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 4138 Context.getTargetInfo().getTriple().isOSDarwin() && 4139 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 4140 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 4141 Linkage = llvm::GlobalValue::InternalLinkage; 4142 4143 GV->setLinkage(Linkage); 4144 if (D->hasAttr<DLLImportAttr>()) 4145 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4146 else if (D->hasAttr<DLLExportAttr>()) 4147 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4148 else 4149 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4150 4151 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4152 // common vars aren't constant even if declared const. 4153 GV->setConstant(false); 4154 // Tentative definition of global variables may be initialized with 4155 // non-zero null pointers. In this case they should have weak linkage 4156 // since common linkage must have zero initializer and must not have 4157 // explicit section therefore cannot have non-zero initial value. 4158 if (!GV->getInitializer()->isNullValue()) 4159 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4160 } 4161 4162 setNonAliasAttributes(D, GV); 4163 4164 if (D->getTLSKind() && !GV->isThreadLocal()) { 4165 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4166 CXXThreadLocals.push_back(D); 4167 setTLSMode(GV, *D); 4168 } 4169 4170 maybeSetTrivialComdat(*D, *GV); 4171 4172 // Emit the initializer function if necessary. 4173 if (NeedsGlobalCtor || NeedsGlobalDtor) 4174 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4175 4176 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4177 4178 // Emit global variable debug information. 4179 if (CGDebugInfo *DI = getModuleDebugInfo()) 4180 if (getCodeGenOpts().hasReducedDebugInfo()) 4181 DI->EmitGlobalVariable(GV, D); 4182 } 4183 4184 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4185 if (CGDebugInfo *DI = getModuleDebugInfo()) 4186 if (getCodeGenOpts().hasReducedDebugInfo()) { 4187 QualType ASTTy = D->getType(); 4188 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4189 llvm::PointerType *PTy = 4190 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4191 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4192 DI->EmitExternalVariable( 4193 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4194 } 4195 } 4196 4197 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4198 CodeGenModule &CGM, const VarDecl *D, 4199 bool NoCommon) { 4200 // Don't give variables common linkage if -fno-common was specified unless it 4201 // was overridden by a NoCommon attribute. 4202 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4203 return true; 4204 4205 // C11 6.9.2/2: 4206 // A declaration of an identifier for an object that has file scope without 4207 // an initializer, and without a storage-class specifier or with the 4208 // storage-class specifier static, constitutes a tentative definition. 4209 if (D->getInit() || D->hasExternalStorage()) 4210 return true; 4211 4212 // A variable cannot be both common and exist in a section. 4213 if (D->hasAttr<SectionAttr>()) 4214 return true; 4215 4216 // A variable cannot be both common and exist in a section. 4217 // We don't try to determine which is the right section in the front-end. 4218 // If no specialized section name is applicable, it will resort to default. 4219 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4220 D->hasAttr<PragmaClangDataSectionAttr>() || 4221 D->hasAttr<PragmaClangRelroSectionAttr>() || 4222 D->hasAttr<PragmaClangRodataSectionAttr>()) 4223 return true; 4224 4225 // Thread local vars aren't considered common linkage. 4226 if (D->getTLSKind()) 4227 return true; 4228 4229 // Tentative definitions marked with WeakImportAttr are true definitions. 4230 if (D->hasAttr<WeakImportAttr>()) 4231 return true; 4232 4233 // A variable cannot be both common and exist in a comdat. 4234 if (shouldBeInCOMDAT(CGM, *D)) 4235 return true; 4236 4237 // Declarations with a required alignment do not have common linkage in MSVC 4238 // mode. 4239 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4240 if (D->hasAttr<AlignedAttr>()) 4241 return true; 4242 QualType VarType = D->getType(); 4243 if (Context.isAlignmentRequired(VarType)) 4244 return true; 4245 4246 if (const auto *RT = VarType->getAs<RecordType>()) { 4247 const RecordDecl *RD = RT->getDecl(); 4248 for (const FieldDecl *FD : RD->fields()) { 4249 if (FD->isBitField()) 4250 continue; 4251 if (FD->hasAttr<AlignedAttr>()) 4252 return true; 4253 if (Context.isAlignmentRequired(FD->getType())) 4254 return true; 4255 } 4256 } 4257 } 4258 4259 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4260 // common symbols, so symbols with greater alignment requirements cannot be 4261 // common. 4262 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4263 // alignments for common symbols via the aligncomm directive, so this 4264 // restriction only applies to MSVC environments. 4265 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4266 Context.getTypeAlignIfKnown(D->getType()) > 4267 Context.toBits(CharUnits::fromQuantity(32))) 4268 return true; 4269 4270 return false; 4271 } 4272 4273 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4274 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4275 if (Linkage == GVA_Internal) 4276 return llvm::Function::InternalLinkage; 4277 4278 if (D->hasAttr<WeakAttr>()) { 4279 if (IsConstantVariable) 4280 return llvm::GlobalVariable::WeakODRLinkage; 4281 else 4282 return llvm::GlobalVariable::WeakAnyLinkage; 4283 } 4284 4285 if (const auto *FD = D->getAsFunction()) 4286 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4287 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4288 4289 // We are guaranteed to have a strong definition somewhere else, 4290 // so we can use available_externally linkage. 4291 if (Linkage == GVA_AvailableExternally) 4292 return llvm::GlobalValue::AvailableExternallyLinkage; 4293 4294 // Note that Apple's kernel linker doesn't support symbol 4295 // coalescing, so we need to avoid linkonce and weak linkages there. 4296 // Normally, this means we just map to internal, but for explicit 4297 // instantiations we'll map to external. 4298 4299 // In C++, the compiler has to emit a definition in every translation unit 4300 // that references the function. We should use linkonce_odr because 4301 // a) if all references in this translation unit are optimized away, we 4302 // don't need to codegen it. b) if the function persists, it needs to be 4303 // merged with other definitions. c) C++ has the ODR, so we know the 4304 // definition is dependable. 4305 if (Linkage == GVA_DiscardableODR) 4306 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4307 : llvm::Function::InternalLinkage; 4308 4309 // An explicit instantiation of a template has weak linkage, since 4310 // explicit instantiations can occur in multiple translation units 4311 // and must all be equivalent. However, we are not allowed to 4312 // throw away these explicit instantiations. 4313 // 4314 // We don't currently support CUDA device code spread out across multiple TUs, 4315 // so say that CUDA templates are either external (for kernels) or internal. 4316 // This lets llvm perform aggressive inter-procedural optimizations. 4317 if (Linkage == GVA_StrongODR) { 4318 if (Context.getLangOpts().AppleKext) 4319 return llvm::Function::ExternalLinkage; 4320 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 4321 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4322 : llvm::Function::InternalLinkage; 4323 return llvm::Function::WeakODRLinkage; 4324 } 4325 4326 // C++ doesn't have tentative definitions and thus cannot have common 4327 // linkage. 4328 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4329 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4330 CodeGenOpts.NoCommon)) 4331 return llvm::GlobalVariable::CommonLinkage; 4332 4333 // selectany symbols are externally visible, so use weak instead of 4334 // linkonce. MSVC optimizes away references to const selectany globals, so 4335 // all definitions should be the same and ODR linkage should be used. 4336 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4337 if (D->hasAttr<SelectAnyAttr>()) 4338 return llvm::GlobalVariable::WeakODRLinkage; 4339 4340 // Otherwise, we have strong external linkage. 4341 assert(Linkage == GVA_StrongExternal); 4342 return llvm::GlobalVariable::ExternalLinkage; 4343 } 4344 4345 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4346 const VarDecl *VD, bool IsConstant) { 4347 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4348 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4349 } 4350 4351 /// Replace the uses of a function that was declared with a non-proto type. 4352 /// We want to silently drop extra arguments from call sites 4353 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4354 llvm::Function *newFn) { 4355 // Fast path. 4356 if (old->use_empty()) return; 4357 4358 llvm::Type *newRetTy = newFn->getReturnType(); 4359 SmallVector<llvm::Value*, 4> newArgs; 4360 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4361 4362 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4363 ui != ue; ) { 4364 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4365 llvm::User *user = use->getUser(); 4366 4367 // Recognize and replace uses of bitcasts. Most calls to 4368 // unprototyped functions will use bitcasts. 4369 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4370 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4371 replaceUsesOfNonProtoConstant(bitcast, newFn); 4372 continue; 4373 } 4374 4375 // Recognize calls to the function. 4376 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4377 if (!callSite) continue; 4378 if (!callSite->isCallee(&*use)) 4379 continue; 4380 4381 // If the return types don't match exactly, then we can't 4382 // transform this call unless it's dead. 4383 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4384 continue; 4385 4386 // Get the call site's attribute list. 4387 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4388 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4389 4390 // If the function was passed too few arguments, don't transform. 4391 unsigned newNumArgs = newFn->arg_size(); 4392 if (callSite->arg_size() < newNumArgs) 4393 continue; 4394 4395 // If extra arguments were passed, we silently drop them. 4396 // If any of the types mismatch, we don't transform. 4397 unsigned argNo = 0; 4398 bool dontTransform = false; 4399 for (llvm::Argument &A : newFn->args()) { 4400 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4401 dontTransform = true; 4402 break; 4403 } 4404 4405 // Add any parameter attributes. 4406 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4407 argNo++; 4408 } 4409 if (dontTransform) 4410 continue; 4411 4412 // Okay, we can transform this. Create the new call instruction and copy 4413 // over the required information. 4414 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4415 4416 // Copy over any operand bundles. 4417 callSite->getOperandBundlesAsDefs(newBundles); 4418 4419 llvm::CallBase *newCall; 4420 if (dyn_cast<llvm::CallInst>(callSite)) { 4421 newCall = 4422 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4423 } else { 4424 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4425 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4426 oldInvoke->getUnwindDest(), newArgs, 4427 newBundles, "", callSite); 4428 } 4429 newArgs.clear(); // for the next iteration 4430 4431 if (!newCall->getType()->isVoidTy()) 4432 newCall->takeName(callSite); 4433 newCall->setAttributes(llvm::AttributeList::get( 4434 newFn->getContext(), oldAttrs.getFnAttributes(), 4435 oldAttrs.getRetAttributes(), newArgAttrs)); 4436 newCall->setCallingConv(callSite->getCallingConv()); 4437 4438 // Finally, remove the old call, replacing any uses with the new one. 4439 if (!callSite->use_empty()) 4440 callSite->replaceAllUsesWith(newCall); 4441 4442 // Copy debug location attached to CI. 4443 if (callSite->getDebugLoc()) 4444 newCall->setDebugLoc(callSite->getDebugLoc()); 4445 4446 callSite->eraseFromParent(); 4447 } 4448 } 4449 4450 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4451 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4452 /// existing call uses of the old function in the module, this adjusts them to 4453 /// call the new function directly. 4454 /// 4455 /// This is not just a cleanup: the always_inline pass requires direct calls to 4456 /// functions to be able to inline them. If there is a bitcast in the way, it 4457 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4458 /// run at -O0. 4459 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4460 llvm::Function *NewFn) { 4461 // If we're redefining a global as a function, don't transform it. 4462 if (!isa<llvm::Function>(Old)) return; 4463 4464 replaceUsesOfNonProtoConstant(Old, NewFn); 4465 } 4466 4467 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4468 auto DK = VD->isThisDeclarationADefinition(); 4469 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4470 return; 4471 4472 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4473 // If we have a definition, this might be a deferred decl. If the 4474 // instantiation is explicit, make sure we emit it at the end. 4475 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4476 GetAddrOfGlobalVar(VD); 4477 4478 EmitTopLevelDecl(VD); 4479 } 4480 4481 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4482 llvm::GlobalValue *GV) { 4483 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4484 4485 // Compute the function info and LLVM type. 4486 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4487 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4488 4489 // Get or create the prototype for the function. 4490 if (!GV || (GV->getValueType() != Ty)) 4491 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4492 /*DontDefer=*/true, 4493 ForDefinition)); 4494 4495 // Already emitted. 4496 if (!GV->isDeclaration()) 4497 return; 4498 4499 // We need to set linkage and visibility on the function before 4500 // generating code for it because various parts of IR generation 4501 // want to propagate this information down (e.g. to local static 4502 // declarations). 4503 auto *Fn = cast<llvm::Function>(GV); 4504 setFunctionLinkage(GD, Fn); 4505 4506 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4507 setGVProperties(Fn, GD); 4508 4509 MaybeHandleStaticInExternC(D, Fn); 4510 4511 4512 maybeSetTrivialComdat(*D, *Fn); 4513 4514 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4515 4516 setNonAliasAttributes(GD, Fn); 4517 SetLLVMFunctionAttributesForDefinition(D, Fn); 4518 4519 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4520 AddGlobalCtor(Fn, CA->getPriority()); 4521 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4522 AddGlobalDtor(Fn, DA->getPriority()); 4523 if (D->hasAttr<AnnotateAttr>()) 4524 AddGlobalAnnotations(D, Fn); 4525 } 4526 4527 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4528 const auto *D = cast<ValueDecl>(GD.getDecl()); 4529 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4530 assert(AA && "Not an alias?"); 4531 4532 StringRef MangledName = getMangledName(GD); 4533 4534 if (AA->getAliasee() == MangledName) { 4535 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4536 return; 4537 } 4538 4539 // If there is a definition in the module, then it wins over the alias. 4540 // This is dubious, but allow it to be safe. Just ignore the alias. 4541 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4542 if (Entry && !Entry->isDeclaration()) 4543 return; 4544 4545 Aliases.push_back(GD); 4546 4547 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4548 4549 // Create a reference to the named value. This ensures that it is emitted 4550 // if a deferred decl. 4551 llvm::Constant *Aliasee; 4552 llvm::GlobalValue::LinkageTypes LT; 4553 if (isa<llvm::FunctionType>(DeclTy)) { 4554 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4555 /*ForVTable=*/false); 4556 LT = getFunctionLinkage(GD); 4557 } else { 4558 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4559 llvm::PointerType::getUnqual(DeclTy), 4560 /*D=*/nullptr); 4561 LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()), 4562 D->getType().isConstQualified()); 4563 } 4564 4565 // Create the new alias itself, but don't set a name yet. 4566 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4567 auto *GA = 4568 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4569 4570 if (Entry) { 4571 if (GA->getAliasee() == Entry) { 4572 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4573 return; 4574 } 4575 4576 assert(Entry->isDeclaration()); 4577 4578 // If there is a declaration in the module, then we had an extern followed 4579 // by the alias, as in: 4580 // extern int test6(); 4581 // ... 4582 // int test6() __attribute__((alias("test7"))); 4583 // 4584 // Remove it and replace uses of it with the alias. 4585 GA->takeName(Entry); 4586 4587 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4588 Entry->getType())); 4589 Entry->eraseFromParent(); 4590 } else { 4591 GA->setName(MangledName); 4592 } 4593 4594 // Set attributes which are particular to an alias; this is a 4595 // specialization of the attributes which may be set on a global 4596 // variable/function. 4597 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4598 D->isWeakImported()) { 4599 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4600 } 4601 4602 if (const auto *VD = dyn_cast<VarDecl>(D)) 4603 if (VD->getTLSKind()) 4604 setTLSMode(GA, *VD); 4605 4606 SetCommonAttributes(GD, GA); 4607 } 4608 4609 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4610 const auto *D = cast<ValueDecl>(GD.getDecl()); 4611 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4612 assert(IFA && "Not an ifunc?"); 4613 4614 StringRef MangledName = getMangledName(GD); 4615 4616 if (IFA->getResolver() == MangledName) { 4617 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4618 return; 4619 } 4620 4621 // Report an error if some definition overrides ifunc. 4622 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4623 if (Entry && !Entry->isDeclaration()) { 4624 GlobalDecl OtherGD; 4625 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4626 DiagnosedConflictingDefinitions.insert(GD).second) { 4627 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4628 << MangledName; 4629 Diags.Report(OtherGD.getDecl()->getLocation(), 4630 diag::note_previous_definition); 4631 } 4632 return; 4633 } 4634 4635 Aliases.push_back(GD); 4636 4637 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4638 llvm::Constant *Resolver = 4639 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4640 /*ForVTable=*/false); 4641 llvm::GlobalIFunc *GIF = 4642 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4643 "", Resolver, &getModule()); 4644 if (Entry) { 4645 if (GIF->getResolver() == Entry) { 4646 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4647 return; 4648 } 4649 assert(Entry->isDeclaration()); 4650 4651 // If there is a declaration in the module, then we had an extern followed 4652 // by the ifunc, as in: 4653 // extern int test(); 4654 // ... 4655 // int test() __attribute__((ifunc("resolver"))); 4656 // 4657 // Remove it and replace uses of it with the ifunc. 4658 GIF->takeName(Entry); 4659 4660 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4661 Entry->getType())); 4662 Entry->eraseFromParent(); 4663 } else 4664 GIF->setName(MangledName); 4665 4666 SetCommonAttributes(GD, GIF); 4667 } 4668 4669 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4670 ArrayRef<llvm::Type*> Tys) { 4671 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4672 Tys); 4673 } 4674 4675 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4676 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4677 const StringLiteral *Literal, bool TargetIsLSB, 4678 bool &IsUTF16, unsigned &StringLength) { 4679 StringRef String = Literal->getString(); 4680 unsigned NumBytes = String.size(); 4681 4682 // Check for simple case. 4683 if (!Literal->containsNonAsciiOrNull()) { 4684 StringLength = NumBytes; 4685 return *Map.insert(std::make_pair(String, nullptr)).first; 4686 } 4687 4688 // Otherwise, convert the UTF8 literals into a string of shorts. 4689 IsUTF16 = true; 4690 4691 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4692 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4693 llvm::UTF16 *ToPtr = &ToBuf[0]; 4694 4695 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4696 ToPtr + NumBytes, llvm::strictConversion); 4697 4698 // ConvertUTF8toUTF16 returns the length in ToPtr. 4699 StringLength = ToPtr - &ToBuf[0]; 4700 4701 // Add an explicit null. 4702 *ToPtr = 0; 4703 return *Map.insert(std::make_pair( 4704 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4705 (StringLength + 1) * 2), 4706 nullptr)).first; 4707 } 4708 4709 ConstantAddress 4710 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4711 unsigned StringLength = 0; 4712 bool isUTF16 = false; 4713 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4714 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4715 getDataLayout().isLittleEndian(), isUTF16, 4716 StringLength); 4717 4718 if (auto *C = Entry.second) 4719 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4720 4721 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4722 llvm::Constant *Zeros[] = { Zero, Zero }; 4723 4724 const ASTContext &Context = getContext(); 4725 const llvm::Triple &Triple = getTriple(); 4726 4727 const auto CFRuntime = getLangOpts().CFRuntime; 4728 const bool IsSwiftABI = 4729 static_cast<unsigned>(CFRuntime) >= 4730 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4731 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4732 4733 // If we don't already have it, get __CFConstantStringClassReference. 4734 if (!CFConstantStringClassRef) { 4735 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4736 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4737 Ty = llvm::ArrayType::get(Ty, 0); 4738 4739 switch (CFRuntime) { 4740 default: break; 4741 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4742 case LangOptions::CoreFoundationABI::Swift5_0: 4743 CFConstantStringClassName = 4744 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4745 : "$s10Foundation19_NSCFConstantStringCN"; 4746 Ty = IntPtrTy; 4747 break; 4748 case LangOptions::CoreFoundationABI::Swift4_2: 4749 CFConstantStringClassName = 4750 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4751 : "$S10Foundation19_NSCFConstantStringCN"; 4752 Ty = IntPtrTy; 4753 break; 4754 case LangOptions::CoreFoundationABI::Swift4_1: 4755 CFConstantStringClassName = 4756 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4757 : "__T010Foundation19_NSCFConstantStringCN"; 4758 Ty = IntPtrTy; 4759 break; 4760 } 4761 4762 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4763 4764 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4765 llvm::GlobalValue *GV = nullptr; 4766 4767 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4768 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4769 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4770 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4771 4772 const VarDecl *VD = nullptr; 4773 for (const auto &Result : DC->lookup(&II)) 4774 if ((VD = dyn_cast<VarDecl>(Result))) 4775 break; 4776 4777 if (Triple.isOSBinFormatELF()) { 4778 if (!VD) 4779 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4780 } else { 4781 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4782 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4783 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4784 else 4785 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4786 } 4787 4788 setDSOLocal(GV); 4789 } 4790 } 4791 4792 // Decay array -> ptr 4793 CFConstantStringClassRef = 4794 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4795 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4796 } 4797 4798 QualType CFTy = Context.getCFConstantStringType(); 4799 4800 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4801 4802 ConstantInitBuilder Builder(*this); 4803 auto Fields = Builder.beginStruct(STy); 4804 4805 // Class pointer. 4806 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4807 4808 // Flags. 4809 if (IsSwiftABI) { 4810 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4811 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4812 } else { 4813 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4814 } 4815 4816 // String pointer. 4817 llvm::Constant *C = nullptr; 4818 if (isUTF16) { 4819 auto Arr = llvm::makeArrayRef( 4820 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4821 Entry.first().size() / 2); 4822 C = llvm::ConstantDataArray::get(VMContext, Arr); 4823 } else { 4824 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4825 } 4826 4827 // Note: -fwritable-strings doesn't make the backing store strings of 4828 // CFStrings writable. (See <rdar://problem/10657500>) 4829 auto *GV = 4830 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4831 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4832 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4833 // Don't enforce the target's minimum global alignment, since the only use 4834 // of the string is via this class initializer. 4835 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4836 : Context.getTypeAlignInChars(Context.CharTy); 4837 GV->setAlignment(Align.getAsAlign()); 4838 4839 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4840 // Without it LLVM can merge the string with a non unnamed_addr one during 4841 // LTO. Doing that changes the section it ends in, which surprises ld64. 4842 if (Triple.isOSBinFormatMachO()) 4843 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4844 : "__TEXT,__cstring,cstring_literals"); 4845 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4846 // the static linker to adjust permissions to read-only later on. 4847 else if (Triple.isOSBinFormatELF()) 4848 GV->setSection(".rodata"); 4849 4850 // String. 4851 llvm::Constant *Str = 4852 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4853 4854 if (isUTF16) 4855 // Cast the UTF16 string to the correct type. 4856 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4857 Fields.add(Str); 4858 4859 // String length. 4860 llvm::IntegerType *LengthTy = 4861 llvm::IntegerType::get(getModule().getContext(), 4862 Context.getTargetInfo().getLongWidth()); 4863 if (IsSwiftABI) { 4864 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4865 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4866 LengthTy = Int32Ty; 4867 else 4868 LengthTy = IntPtrTy; 4869 } 4870 Fields.addInt(LengthTy, StringLength); 4871 4872 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 4873 // properly aligned on 32-bit platforms. 4874 CharUnits Alignment = 4875 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 4876 4877 // The struct. 4878 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4879 /*isConstant=*/false, 4880 llvm::GlobalVariable::PrivateLinkage); 4881 GV->addAttribute("objc_arc_inert"); 4882 switch (Triple.getObjectFormat()) { 4883 case llvm::Triple::UnknownObjectFormat: 4884 llvm_unreachable("unknown file format"); 4885 case llvm::Triple::XCOFF: 4886 llvm_unreachable("XCOFF is not yet implemented"); 4887 case llvm::Triple::COFF: 4888 case llvm::Triple::ELF: 4889 case llvm::Triple::Wasm: 4890 GV->setSection("cfstring"); 4891 break; 4892 case llvm::Triple::MachO: 4893 GV->setSection("__DATA,__cfstring"); 4894 break; 4895 } 4896 Entry.second = GV; 4897 4898 return ConstantAddress(GV, Alignment); 4899 } 4900 4901 bool CodeGenModule::getExpressionLocationsEnabled() const { 4902 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4903 } 4904 4905 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4906 if (ObjCFastEnumerationStateType.isNull()) { 4907 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4908 D->startDefinition(); 4909 4910 QualType FieldTypes[] = { 4911 Context.UnsignedLongTy, 4912 Context.getPointerType(Context.getObjCIdType()), 4913 Context.getPointerType(Context.UnsignedLongTy), 4914 Context.getConstantArrayType(Context.UnsignedLongTy, 4915 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 4916 }; 4917 4918 for (size_t i = 0; i < 4; ++i) { 4919 FieldDecl *Field = FieldDecl::Create(Context, 4920 D, 4921 SourceLocation(), 4922 SourceLocation(), nullptr, 4923 FieldTypes[i], /*TInfo=*/nullptr, 4924 /*BitWidth=*/nullptr, 4925 /*Mutable=*/false, 4926 ICIS_NoInit); 4927 Field->setAccess(AS_public); 4928 D->addDecl(Field); 4929 } 4930 4931 D->completeDefinition(); 4932 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4933 } 4934 4935 return ObjCFastEnumerationStateType; 4936 } 4937 4938 llvm::Constant * 4939 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4940 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4941 4942 // Don't emit it as the address of the string, emit the string data itself 4943 // as an inline array. 4944 if (E->getCharByteWidth() == 1) { 4945 SmallString<64> Str(E->getString()); 4946 4947 // Resize the string to the right size, which is indicated by its type. 4948 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4949 Str.resize(CAT->getSize().getZExtValue()); 4950 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4951 } 4952 4953 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4954 llvm::Type *ElemTy = AType->getElementType(); 4955 unsigned NumElements = AType->getNumElements(); 4956 4957 // Wide strings have either 2-byte or 4-byte elements. 4958 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4959 SmallVector<uint16_t, 32> Elements; 4960 Elements.reserve(NumElements); 4961 4962 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4963 Elements.push_back(E->getCodeUnit(i)); 4964 Elements.resize(NumElements); 4965 return llvm::ConstantDataArray::get(VMContext, Elements); 4966 } 4967 4968 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4969 SmallVector<uint32_t, 32> Elements; 4970 Elements.reserve(NumElements); 4971 4972 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4973 Elements.push_back(E->getCodeUnit(i)); 4974 Elements.resize(NumElements); 4975 return llvm::ConstantDataArray::get(VMContext, Elements); 4976 } 4977 4978 static llvm::GlobalVariable * 4979 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4980 CodeGenModule &CGM, StringRef GlobalName, 4981 CharUnits Alignment) { 4982 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4983 CGM.getStringLiteralAddressSpace()); 4984 4985 llvm::Module &M = CGM.getModule(); 4986 // Create a global variable for this string 4987 auto *GV = new llvm::GlobalVariable( 4988 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4989 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4990 GV->setAlignment(Alignment.getAsAlign()); 4991 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4992 if (GV->isWeakForLinker()) { 4993 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4994 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4995 } 4996 CGM.setDSOLocal(GV); 4997 4998 return GV; 4999 } 5000 5001 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5002 /// constant array for the given string literal. 5003 ConstantAddress 5004 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5005 StringRef Name) { 5006 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5007 5008 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5009 llvm::GlobalVariable **Entry = nullptr; 5010 if (!LangOpts.WritableStrings) { 5011 Entry = &ConstantStringMap[C]; 5012 if (auto GV = *Entry) { 5013 if (Alignment.getQuantity() > GV->getAlignment()) 5014 GV->setAlignment(Alignment.getAsAlign()); 5015 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5016 Alignment); 5017 } 5018 } 5019 5020 SmallString<256> MangledNameBuffer; 5021 StringRef GlobalVariableName; 5022 llvm::GlobalValue::LinkageTypes LT; 5023 5024 // Mangle the string literal if that's how the ABI merges duplicate strings. 5025 // Don't do it if they are writable, since we don't want writes in one TU to 5026 // affect strings in another. 5027 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5028 !LangOpts.WritableStrings) { 5029 llvm::raw_svector_ostream Out(MangledNameBuffer); 5030 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5031 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5032 GlobalVariableName = MangledNameBuffer; 5033 } else { 5034 LT = llvm::GlobalValue::PrivateLinkage; 5035 GlobalVariableName = Name; 5036 } 5037 5038 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5039 if (Entry) 5040 *Entry = GV; 5041 5042 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5043 QualType()); 5044 5045 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5046 Alignment); 5047 } 5048 5049 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5050 /// array for the given ObjCEncodeExpr node. 5051 ConstantAddress 5052 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5053 std::string Str; 5054 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5055 5056 return GetAddrOfConstantCString(Str); 5057 } 5058 5059 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5060 /// the literal and a terminating '\0' character. 5061 /// The result has pointer to array type. 5062 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5063 const std::string &Str, const char *GlobalName) { 5064 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5065 CharUnits Alignment = 5066 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5067 5068 llvm::Constant *C = 5069 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5070 5071 // Don't share any string literals if strings aren't constant. 5072 llvm::GlobalVariable **Entry = nullptr; 5073 if (!LangOpts.WritableStrings) { 5074 Entry = &ConstantStringMap[C]; 5075 if (auto GV = *Entry) { 5076 if (Alignment.getQuantity() > GV->getAlignment()) 5077 GV->setAlignment(Alignment.getAsAlign()); 5078 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5079 Alignment); 5080 } 5081 } 5082 5083 // Get the default prefix if a name wasn't specified. 5084 if (!GlobalName) 5085 GlobalName = ".str"; 5086 // Create a global variable for this. 5087 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5088 GlobalName, Alignment); 5089 if (Entry) 5090 *Entry = GV; 5091 5092 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5093 Alignment); 5094 } 5095 5096 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5097 const MaterializeTemporaryExpr *E, const Expr *Init) { 5098 assert((E->getStorageDuration() == SD_Static || 5099 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5100 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5101 5102 // If we're not materializing a subobject of the temporary, keep the 5103 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5104 QualType MaterializedType = Init->getType(); 5105 if (Init == E->getSubExpr()) 5106 MaterializedType = E->getType(); 5107 5108 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5109 5110 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5111 return ConstantAddress(Slot, Align); 5112 5113 // FIXME: If an externally-visible declaration extends multiple temporaries, 5114 // we need to give each temporary the same name in every translation unit (and 5115 // we also need to make the temporaries externally-visible). 5116 SmallString<256> Name; 5117 llvm::raw_svector_ostream Out(Name); 5118 getCXXABI().getMangleContext().mangleReferenceTemporary( 5119 VD, E->getManglingNumber(), Out); 5120 5121 APValue *Value = nullptr; 5122 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5123 // If the initializer of the extending declaration is a constant 5124 // initializer, we should have a cached constant initializer for this 5125 // temporary. Note that this might have a different value from the value 5126 // computed by evaluating the initializer if the surrounding constant 5127 // expression modifies the temporary. 5128 Value = E->getOrCreateValue(false); 5129 } 5130 5131 // Try evaluating it now, it might have a constant initializer. 5132 Expr::EvalResult EvalResult; 5133 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5134 !EvalResult.hasSideEffects()) 5135 Value = &EvalResult.Val; 5136 5137 LangAS AddrSpace = 5138 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5139 5140 Optional<ConstantEmitter> emitter; 5141 llvm::Constant *InitialValue = nullptr; 5142 bool Constant = false; 5143 llvm::Type *Type; 5144 if (Value) { 5145 // The temporary has a constant initializer, use it. 5146 emitter.emplace(*this); 5147 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5148 MaterializedType); 5149 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5150 Type = InitialValue->getType(); 5151 } else { 5152 // No initializer, the initialization will be provided when we 5153 // initialize the declaration which performed lifetime extension. 5154 Type = getTypes().ConvertTypeForMem(MaterializedType); 5155 } 5156 5157 // Create a global variable for this lifetime-extended temporary. 5158 llvm::GlobalValue::LinkageTypes Linkage = 5159 getLLVMLinkageVarDefinition(VD, Constant); 5160 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5161 const VarDecl *InitVD; 5162 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5163 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5164 // Temporaries defined inside a class get linkonce_odr linkage because the 5165 // class can be defined in multiple translation units. 5166 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5167 } else { 5168 // There is no need for this temporary to have external linkage if the 5169 // VarDecl has external linkage. 5170 Linkage = llvm::GlobalVariable::InternalLinkage; 5171 } 5172 } 5173 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5174 auto *GV = new llvm::GlobalVariable( 5175 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5176 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5177 if (emitter) emitter->finalize(GV); 5178 setGVProperties(GV, VD); 5179 GV->setAlignment(Align.getAsAlign()); 5180 if (supportsCOMDAT() && GV->isWeakForLinker()) 5181 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5182 if (VD->getTLSKind()) 5183 setTLSMode(GV, *VD); 5184 llvm::Constant *CV = GV; 5185 if (AddrSpace != LangAS::Default) 5186 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5187 *this, GV, AddrSpace, LangAS::Default, 5188 Type->getPointerTo( 5189 getContext().getTargetAddressSpace(LangAS::Default))); 5190 MaterializedGlobalTemporaryMap[E] = CV; 5191 return ConstantAddress(CV, Align); 5192 } 5193 5194 /// EmitObjCPropertyImplementations - Emit information for synthesized 5195 /// properties for an implementation. 5196 void CodeGenModule::EmitObjCPropertyImplementations(const 5197 ObjCImplementationDecl *D) { 5198 for (const auto *PID : D->property_impls()) { 5199 // Dynamic is just for type-checking. 5200 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5201 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5202 5203 // Determine which methods need to be implemented, some may have 5204 // been overridden. Note that ::isPropertyAccessor is not the method 5205 // we want, that just indicates if the decl came from a 5206 // property. What we want to know is if the method is defined in 5207 // this implementation. 5208 auto *Getter = PID->getGetterMethodDecl(); 5209 if (!Getter || Getter->isSynthesizedAccessorStub()) 5210 CodeGenFunction(*this).GenerateObjCGetter( 5211 const_cast<ObjCImplementationDecl *>(D), PID); 5212 auto *Setter = PID->getSetterMethodDecl(); 5213 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5214 CodeGenFunction(*this).GenerateObjCSetter( 5215 const_cast<ObjCImplementationDecl *>(D), PID); 5216 } 5217 } 5218 } 5219 5220 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5221 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5222 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5223 ivar; ivar = ivar->getNextIvar()) 5224 if (ivar->getType().isDestructedType()) 5225 return true; 5226 5227 return false; 5228 } 5229 5230 static bool AllTrivialInitializers(CodeGenModule &CGM, 5231 ObjCImplementationDecl *D) { 5232 CodeGenFunction CGF(CGM); 5233 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5234 E = D->init_end(); B != E; ++B) { 5235 CXXCtorInitializer *CtorInitExp = *B; 5236 Expr *Init = CtorInitExp->getInit(); 5237 if (!CGF.isTrivialInitializer(Init)) 5238 return false; 5239 } 5240 return true; 5241 } 5242 5243 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5244 /// for an implementation. 5245 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5246 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5247 if (needsDestructMethod(D)) { 5248 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5249 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5250 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5251 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5252 getContext().VoidTy, nullptr, D, 5253 /*isInstance=*/true, /*isVariadic=*/false, 5254 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5255 /*isImplicitlyDeclared=*/true, 5256 /*isDefined=*/false, ObjCMethodDecl::Required); 5257 D->addInstanceMethod(DTORMethod); 5258 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5259 D->setHasDestructors(true); 5260 } 5261 5262 // If the implementation doesn't have any ivar initializers, we don't need 5263 // a .cxx_construct. 5264 if (D->getNumIvarInitializers() == 0 || 5265 AllTrivialInitializers(*this, D)) 5266 return; 5267 5268 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5269 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5270 // The constructor returns 'self'. 5271 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5272 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5273 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5274 /*isVariadic=*/false, 5275 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5276 /*isImplicitlyDeclared=*/true, 5277 /*isDefined=*/false, ObjCMethodDecl::Required); 5278 D->addInstanceMethod(CTORMethod); 5279 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5280 D->setHasNonZeroConstructors(true); 5281 } 5282 5283 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5284 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5285 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5286 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5287 ErrorUnsupported(LSD, "linkage spec"); 5288 return; 5289 } 5290 5291 EmitDeclContext(LSD); 5292 } 5293 5294 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5295 for (auto *I : DC->decls()) { 5296 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5297 // are themselves considered "top-level", so EmitTopLevelDecl on an 5298 // ObjCImplDecl does not recursively visit them. We need to do that in 5299 // case they're nested inside another construct (LinkageSpecDecl / 5300 // ExportDecl) that does stop them from being considered "top-level". 5301 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5302 for (auto *M : OID->methods()) 5303 EmitTopLevelDecl(M); 5304 } 5305 5306 EmitTopLevelDecl(I); 5307 } 5308 } 5309 5310 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5311 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5312 // Ignore dependent declarations. 5313 if (D->isTemplated()) 5314 return; 5315 5316 switch (D->getKind()) { 5317 case Decl::CXXConversion: 5318 case Decl::CXXMethod: 5319 case Decl::Function: 5320 EmitGlobal(cast<FunctionDecl>(D)); 5321 // Always provide some coverage mapping 5322 // even for the functions that aren't emitted. 5323 AddDeferredUnusedCoverageMapping(D); 5324 break; 5325 5326 case Decl::CXXDeductionGuide: 5327 // Function-like, but does not result in code emission. 5328 break; 5329 5330 case Decl::Var: 5331 case Decl::Decomposition: 5332 case Decl::VarTemplateSpecialization: 5333 EmitGlobal(cast<VarDecl>(D)); 5334 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5335 for (auto *B : DD->bindings()) 5336 if (auto *HD = B->getHoldingVar()) 5337 EmitGlobal(HD); 5338 break; 5339 5340 // Indirect fields from global anonymous structs and unions can be 5341 // ignored; only the actual variable requires IR gen support. 5342 case Decl::IndirectField: 5343 break; 5344 5345 // C++ Decls 5346 case Decl::Namespace: 5347 EmitDeclContext(cast<NamespaceDecl>(D)); 5348 break; 5349 case Decl::ClassTemplateSpecialization: { 5350 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5351 if (DebugInfo && 5352 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 5353 Spec->hasDefinition()) 5354 DebugInfo->completeTemplateDefinition(*Spec); 5355 } LLVM_FALLTHROUGH; 5356 case Decl::CXXRecord: 5357 if (DebugInfo) { 5358 if (auto *ES = D->getASTContext().getExternalSource()) 5359 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5360 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 5361 } 5362 // Emit any static data members, they may be definitions. 5363 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 5364 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5365 EmitTopLevelDecl(I); 5366 break; 5367 // No code generation needed. 5368 case Decl::UsingShadow: 5369 case Decl::ClassTemplate: 5370 case Decl::VarTemplate: 5371 case Decl::Concept: 5372 case Decl::VarTemplatePartialSpecialization: 5373 case Decl::FunctionTemplate: 5374 case Decl::TypeAliasTemplate: 5375 case Decl::Block: 5376 case Decl::Empty: 5377 case Decl::Binding: 5378 break; 5379 case Decl::Using: // using X; [C++] 5380 if (CGDebugInfo *DI = getModuleDebugInfo()) 5381 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5382 return; 5383 case Decl::NamespaceAlias: 5384 if (CGDebugInfo *DI = getModuleDebugInfo()) 5385 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5386 return; 5387 case Decl::UsingDirective: // using namespace X; [C++] 5388 if (CGDebugInfo *DI = getModuleDebugInfo()) 5389 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5390 return; 5391 case Decl::CXXConstructor: 5392 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5393 break; 5394 case Decl::CXXDestructor: 5395 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5396 break; 5397 5398 case Decl::StaticAssert: 5399 // Nothing to do. 5400 break; 5401 5402 // Objective-C Decls 5403 5404 // Forward declarations, no (immediate) code generation. 5405 case Decl::ObjCInterface: 5406 case Decl::ObjCCategory: 5407 break; 5408 5409 case Decl::ObjCProtocol: { 5410 auto *Proto = cast<ObjCProtocolDecl>(D); 5411 if (Proto->isThisDeclarationADefinition()) 5412 ObjCRuntime->GenerateProtocol(Proto); 5413 break; 5414 } 5415 5416 case Decl::ObjCCategoryImpl: 5417 // Categories have properties but don't support synthesize so we 5418 // can ignore them here. 5419 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5420 break; 5421 5422 case Decl::ObjCImplementation: { 5423 auto *OMD = cast<ObjCImplementationDecl>(D); 5424 EmitObjCPropertyImplementations(OMD); 5425 EmitObjCIvarInitializations(OMD); 5426 ObjCRuntime->GenerateClass(OMD); 5427 // Emit global variable debug information. 5428 if (CGDebugInfo *DI = getModuleDebugInfo()) 5429 if (getCodeGenOpts().hasReducedDebugInfo()) 5430 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5431 OMD->getClassInterface()), OMD->getLocation()); 5432 break; 5433 } 5434 case Decl::ObjCMethod: { 5435 auto *OMD = cast<ObjCMethodDecl>(D); 5436 // If this is not a prototype, emit the body. 5437 if (OMD->getBody()) 5438 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5439 break; 5440 } 5441 case Decl::ObjCCompatibleAlias: 5442 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5443 break; 5444 5445 case Decl::PragmaComment: { 5446 const auto *PCD = cast<PragmaCommentDecl>(D); 5447 switch (PCD->getCommentKind()) { 5448 case PCK_Unknown: 5449 llvm_unreachable("unexpected pragma comment kind"); 5450 case PCK_Linker: 5451 AppendLinkerOptions(PCD->getArg()); 5452 break; 5453 case PCK_Lib: 5454 AddDependentLib(PCD->getArg()); 5455 break; 5456 case PCK_Compiler: 5457 case PCK_ExeStr: 5458 case PCK_User: 5459 break; // We ignore all of these. 5460 } 5461 break; 5462 } 5463 5464 case Decl::PragmaDetectMismatch: { 5465 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5466 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5467 break; 5468 } 5469 5470 case Decl::LinkageSpec: 5471 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5472 break; 5473 5474 case Decl::FileScopeAsm: { 5475 // File-scope asm is ignored during device-side CUDA compilation. 5476 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5477 break; 5478 // File-scope asm is ignored during device-side OpenMP compilation. 5479 if (LangOpts.OpenMPIsDevice) 5480 break; 5481 auto *AD = cast<FileScopeAsmDecl>(D); 5482 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5483 break; 5484 } 5485 5486 case Decl::Import: { 5487 auto *Import = cast<ImportDecl>(D); 5488 5489 // If we've already imported this module, we're done. 5490 if (!ImportedModules.insert(Import->getImportedModule())) 5491 break; 5492 5493 // Emit debug information for direct imports. 5494 if (!Import->getImportedOwningModule()) { 5495 if (CGDebugInfo *DI = getModuleDebugInfo()) 5496 DI->EmitImportDecl(*Import); 5497 } 5498 5499 // Find all of the submodules and emit the module initializers. 5500 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5501 SmallVector<clang::Module *, 16> Stack; 5502 Visited.insert(Import->getImportedModule()); 5503 Stack.push_back(Import->getImportedModule()); 5504 5505 while (!Stack.empty()) { 5506 clang::Module *Mod = Stack.pop_back_val(); 5507 if (!EmittedModuleInitializers.insert(Mod).second) 5508 continue; 5509 5510 for (auto *D : Context.getModuleInitializers(Mod)) 5511 EmitTopLevelDecl(D); 5512 5513 // Visit the submodules of this module. 5514 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5515 SubEnd = Mod->submodule_end(); 5516 Sub != SubEnd; ++Sub) { 5517 // Skip explicit children; they need to be explicitly imported to emit 5518 // the initializers. 5519 if ((*Sub)->IsExplicit) 5520 continue; 5521 5522 if (Visited.insert(*Sub).second) 5523 Stack.push_back(*Sub); 5524 } 5525 } 5526 break; 5527 } 5528 5529 case Decl::Export: 5530 EmitDeclContext(cast<ExportDecl>(D)); 5531 break; 5532 5533 case Decl::OMPThreadPrivate: 5534 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5535 break; 5536 5537 case Decl::OMPAllocate: 5538 break; 5539 5540 case Decl::OMPDeclareReduction: 5541 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5542 break; 5543 5544 case Decl::OMPDeclareMapper: 5545 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5546 break; 5547 5548 case Decl::OMPRequires: 5549 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5550 break; 5551 5552 default: 5553 // Make sure we handled everything we should, every other kind is a 5554 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5555 // function. Need to recode Decl::Kind to do that easily. 5556 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5557 break; 5558 } 5559 } 5560 5561 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5562 // Do we need to generate coverage mapping? 5563 if (!CodeGenOpts.CoverageMapping) 5564 return; 5565 switch (D->getKind()) { 5566 case Decl::CXXConversion: 5567 case Decl::CXXMethod: 5568 case Decl::Function: 5569 case Decl::ObjCMethod: 5570 case Decl::CXXConstructor: 5571 case Decl::CXXDestructor: { 5572 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5573 return; 5574 SourceManager &SM = getContext().getSourceManager(); 5575 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5576 return; 5577 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5578 if (I == DeferredEmptyCoverageMappingDecls.end()) 5579 DeferredEmptyCoverageMappingDecls[D] = true; 5580 break; 5581 } 5582 default: 5583 break; 5584 }; 5585 } 5586 5587 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5588 // Do we need to generate coverage mapping? 5589 if (!CodeGenOpts.CoverageMapping) 5590 return; 5591 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5592 if (Fn->isTemplateInstantiation()) 5593 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5594 } 5595 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5596 if (I == DeferredEmptyCoverageMappingDecls.end()) 5597 DeferredEmptyCoverageMappingDecls[D] = false; 5598 else 5599 I->second = false; 5600 } 5601 5602 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5603 // We call takeVector() here to avoid use-after-free. 5604 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5605 // we deserialize function bodies to emit coverage info for them, and that 5606 // deserializes more declarations. How should we handle that case? 5607 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5608 if (!Entry.second) 5609 continue; 5610 const Decl *D = Entry.first; 5611 switch (D->getKind()) { 5612 case Decl::CXXConversion: 5613 case Decl::CXXMethod: 5614 case Decl::Function: 5615 case Decl::ObjCMethod: { 5616 CodeGenPGO PGO(*this); 5617 GlobalDecl GD(cast<FunctionDecl>(D)); 5618 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5619 getFunctionLinkage(GD)); 5620 break; 5621 } 5622 case Decl::CXXConstructor: { 5623 CodeGenPGO PGO(*this); 5624 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5625 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5626 getFunctionLinkage(GD)); 5627 break; 5628 } 5629 case Decl::CXXDestructor: { 5630 CodeGenPGO PGO(*this); 5631 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5632 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5633 getFunctionLinkage(GD)); 5634 break; 5635 } 5636 default: 5637 break; 5638 }; 5639 } 5640 } 5641 5642 void CodeGenModule::EmitMainVoidAlias() { 5643 // In order to transition away from "__original_main" gracefully, emit an 5644 // alias for "main" in the no-argument case so that libc can detect when 5645 // new-style no-argument main is in used. 5646 if (llvm::Function *F = getModule().getFunction("main")) { 5647 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 5648 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 5649 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 5650 } 5651 } 5652 5653 /// Turns the given pointer into a constant. 5654 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5655 const void *Ptr) { 5656 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5657 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5658 return llvm::ConstantInt::get(i64, PtrInt); 5659 } 5660 5661 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5662 llvm::NamedMDNode *&GlobalMetadata, 5663 GlobalDecl D, 5664 llvm::GlobalValue *Addr) { 5665 if (!GlobalMetadata) 5666 GlobalMetadata = 5667 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5668 5669 // TODO: should we report variant information for ctors/dtors? 5670 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5671 llvm::ConstantAsMetadata::get(GetPointerConstant( 5672 CGM.getLLVMContext(), D.getDecl()))}; 5673 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5674 } 5675 5676 /// For each function which is declared within an extern "C" region and marked 5677 /// as 'used', but has internal linkage, create an alias from the unmangled 5678 /// name to the mangled name if possible. People expect to be able to refer 5679 /// to such functions with an unmangled name from inline assembly within the 5680 /// same translation unit. 5681 void CodeGenModule::EmitStaticExternCAliases() { 5682 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5683 return; 5684 for (auto &I : StaticExternCValues) { 5685 IdentifierInfo *Name = I.first; 5686 llvm::GlobalValue *Val = I.second; 5687 if (Val && !getModule().getNamedValue(Name->getName())) 5688 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5689 } 5690 } 5691 5692 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5693 GlobalDecl &Result) const { 5694 auto Res = Manglings.find(MangledName); 5695 if (Res == Manglings.end()) 5696 return false; 5697 Result = Res->getValue(); 5698 return true; 5699 } 5700 5701 /// Emits metadata nodes associating all the global values in the 5702 /// current module with the Decls they came from. This is useful for 5703 /// projects using IR gen as a subroutine. 5704 /// 5705 /// Since there's currently no way to associate an MDNode directly 5706 /// with an llvm::GlobalValue, we create a global named metadata 5707 /// with the name 'clang.global.decl.ptrs'. 5708 void CodeGenModule::EmitDeclMetadata() { 5709 llvm::NamedMDNode *GlobalMetadata = nullptr; 5710 5711 for (auto &I : MangledDeclNames) { 5712 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5713 // Some mangled names don't necessarily have an associated GlobalValue 5714 // in this module, e.g. if we mangled it for DebugInfo. 5715 if (Addr) 5716 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5717 } 5718 } 5719 5720 /// Emits metadata nodes for all the local variables in the current 5721 /// function. 5722 void CodeGenFunction::EmitDeclMetadata() { 5723 if (LocalDeclMap.empty()) return; 5724 5725 llvm::LLVMContext &Context = getLLVMContext(); 5726 5727 // Find the unique metadata ID for this name. 5728 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5729 5730 llvm::NamedMDNode *GlobalMetadata = nullptr; 5731 5732 for (auto &I : LocalDeclMap) { 5733 const Decl *D = I.first; 5734 llvm::Value *Addr = I.second.getPointer(); 5735 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5736 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5737 Alloca->setMetadata( 5738 DeclPtrKind, llvm::MDNode::get( 5739 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5740 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5741 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5742 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5743 } 5744 } 5745 } 5746 5747 void CodeGenModule::EmitVersionIdentMetadata() { 5748 llvm::NamedMDNode *IdentMetadata = 5749 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5750 std::string Version = getClangFullVersion(); 5751 llvm::LLVMContext &Ctx = TheModule.getContext(); 5752 5753 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5754 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5755 } 5756 5757 void CodeGenModule::EmitCommandLineMetadata() { 5758 llvm::NamedMDNode *CommandLineMetadata = 5759 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5760 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5761 llvm::LLVMContext &Ctx = TheModule.getContext(); 5762 5763 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5764 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5765 } 5766 5767 void CodeGenModule::EmitTargetMetadata() { 5768 // Warning, new MangledDeclNames may be appended within this loop. 5769 // We rely on MapVector insertions adding new elements to the end 5770 // of the container. 5771 // FIXME: Move this loop into the one target that needs it, and only 5772 // loop over those declarations for which we couldn't emit the target 5773 // metadata when we emitted the declaration. 5774 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5775 auto Val = *(MangledDeclNames.begin() + I); 5776 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5777 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5778 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5779 } 5780 } 5781 5782 void CodeGenModule::EmitCoverageFile() { 5783 if (getCodeGenOpts().CoverageDataFile.empty() && 5784 getCodeGenOpts().CoverageNotesFile.empty()) 5785 return; 5786 5787 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5788 if (!CUNode) 5789 return; 5790 5791 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5792 llvm::LLVMContext &Ctx = TheModule.getContext(); 5793 auto *CoverageDataFile = 5794 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5795 auto *CoverageNotesFile = 5796 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5797 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5798 llvm::MDNode *CU = CUNode->getOperand(i); 5799 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5800 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5801 } 5802 } 5803 5804 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5805 bool ForEH) { 5806 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5807 // FIXME: should we even be calling this method if RTTI is disabled 5808 // and it's not for EH? 5809 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 5810 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 5811 getTriple().isNVPTX())) 5812 return llvm::Constant::getNullValue(Int8PtrTy); 5813 5814 if (ForEH && Ty->isObjCObjectPointerType() && 5815 LangOpts.ObjCRuntime.isGNUFamily()) 5816 return ObjCRuntime->GetEHType(Ty); 5817 5818 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5819 } 5820 5821 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5822 // Do not emit threadprivates in simd-only mode. 5823 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5824 return; 5825 for (auto RefExpr : D->varlists()) { 5826 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5827 bool PerformInit = 5828 VD->getAnyInitializer() && 5829 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5830 /*ForRef=*/false); 5831 5832 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5833 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5834 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5835 CXXGlobalInits.push_back(InitFunction); 5836 } 5837 } 5838 5839 llvm::Metadata * 5840 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5841 StringRef Suffix) { 5842 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5843 if (InternalId) 5844 return InternalId; 5845 5846 if (isExternallyVisible(T->getLinkage())) { 5847 std::string OutName; 5848 llvm::raw_string_ostream Out(OutName); 5849 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5850 Out << Suffix; 5851 5852 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5853 } else { 5854 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5855 llvm::ArrayRef<llvm::Metadata *>()); 5856 } 5857 5858 return InternalId; 5859 } 5860 5861 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5862 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5863 } 5864 5865 llvm::Metadata * 5866 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5867 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5868 } 5869 5870 // Generalize pointer types to a void pointer with the qualifiers of the 5871 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5872 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5873 // 'void *'. 5874 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5875 if (!Ty->isPointerType()) 5876 return Ty; 5877 5878 return Ctx.getPointerType( 5879 QualType(Ctx.VoidTy).withCVRQualifiers( 5880 Ty->getPointeeType().getCVRQualifiers())); 5881 } 5882 5883 // Apply type generalization to a FunctionType's return and argument types 5884 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5885 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5886 SmallVector<QualType, 8> GeneralizedParams; 5887 for (auto &Param : FnType->param_types()) 5888 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5889 5890 return Ctx.getFunctionType( 5891 GeneralizeType(Ctx, FnType->getReturnType()), 5892 GeneralizedParams, FnType->getExtProtoInfo()); 5893 } 5894 5895 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5896 return Ctx.getFunctionNoProtoType( 5897 GeneralizeType(Ctx, FnType->getReturnType())); 5898 5899 llvm_unreachable("Encountered unknown FunctionType"); 5900 } 5901 5902 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5903 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5904 GeneralizedMetadataIdMap, ".generalized"); 5905 } 5906 5907 /// Returns whether this module needs the "all-vtables" type identifier. 5908 bool CodeGenModule::NeedAllVtablesTypeId() const { 5909 // Returns true if at least one of vtable-based CFI checkers is enabled and 5910 // is not in the trapping mode. 5911 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5912 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5913 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5914 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5915 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5916 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5917 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5918 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5919 } 5920 5921 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5922 CharUnits Offset, 5923 const CXXRecordDecl *RD) { 5924 llvm::Metadata *MD = 5925 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5926 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5927 5928 if (CodeGenOpts.SanitizeCfiCrossDso) 5929 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5930 VTable->addTypeMetadata(Offset.getQuantity(), 5931 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5932 5933 if (NeedAllVtablesTypeId()) { 5934 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5935 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5936 } 5937 } 5938 5939 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5940 if (!SanStats) 5941 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 5942 5943 return *SanStats; 5944 } 5945 llvm::Value * 5946 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5947 CodeGenFunction &CGF) { 5948 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5949 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5950 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5951 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5952 "__translate_sampler_initializer"), 5953 {C}); 5954 } 5955