1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
44 
45   if (!Features.ObjC1)
46     Runtime = 0;
47   else if (!Features.NeXTRuntime)
48     Runtime = CreateGNUObjCRuntime(*this);
49   else if (Features.ObjCNonFragileABI)
50     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
51   else
52     Runtime = CreateMacObjCRuntime(*this);
53 
54   // If debug info generation is enabled, create the CGDebugInfo object.
55   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
56 }
57 
58 CodeGenModule::~CodeGenModule() {
59   delete Runtime;
60   delete DebugInfo;
61 }
62 
63 void CodeGenModule::Release() {
64   EmitDeferred();
65   if (Runtime)
66     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
67       AddGlobalCtor(ObjCInitFunction);
68   EmitCtorList(GlobalCtors, "llvm.global_ctors");
69   EmitCtorList(GlobalDtors, "llvm.global_dtors");
70   EmitAnnotations();
71   EmitLLVMUsed();
72 }
73 
74 /// ErrorUnsupported - Print out an error that codegen doesn't support the
75 /// specified stmt yet.
76 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
77                                      bool OmitOnError) {
78   if (OmitOnError && getDiags().hasErrorOccurred())
79     return;
80   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
81                                                "cannot compile this %0 yet");
82   std::string Msg = Type;
83   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
84     << Msg << S->getSourceRange();
85 }
86 
87 /// ErrorUnsupported - Print out an error that codegen doesn't support the
88 /// specified decl yet.
89 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
90                                      bool OmitOnError) {
91   if (OmitOnError && getDiags().hasErrorOccurred())
92     return;
93   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
94                                                "cannot compile this %0 yet");
95   std::string Msg = Type;
96   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
97 }
98 
99 LangOptions::VisibilityMode
100 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
101   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
102     if (VD->getStorageClass() == VarDecl::PrivateExtern)
103       return LangOptions::Hidden;
104 
105   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
106     switch (attr->getVisibility()) {
107     default: assert(0 && "Unknown visibility!");
108     case VisibilityAttr::DefaultVisibility:
109       return LangOptions::Default;
110     case VisibilityAttr::HiddenVisibility:
111       return LangOptions::Hidden;
112     case VisibilityAttr::ProtectedVisibility:
113       return LangOptions::Protected;
114     }
115   }
116 
117   return getLangOptions().getVisibilityMode();
118 }
119 
120 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
121                                         const Decl *D) const {
122   // Internal definitions always have default visibility.
123   if (GV->hasLocalLinkage()) {
124     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
125     return;
126   }
127 
128   switch (getDeclVisibilityMode(D)) {
129   default: assert(0 && "Unknown visibility!");
130   case LangOptions::Default:
131     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
132   case LangOptions::Hidden:
133     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
134   case LangOptions::Protected:
135     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
136   }
137 }
138 
139 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
140   const NamedDecl *ND = GD.getDecl();
141 
142   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
143     return getMangledCXXCtorName(D, GD.getCtorType());
144   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
145     return getMangledCXXDtorName(D, GD.getDtorType());
146 
147   return getMangledName(ND);
148 }
149 
150 /// \brief Retrieves the mangled name for the given declaration.
151 ///
152 /// If the given declaration requires a mangled name, returns an
153 /// const char* containing the mangled name.  Otherwise, returns
154 /// the unmangled name.
155 ///
156 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
157   // In C, functions with no attributes never need to be mangled. Fastpath them.
158   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
159     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
160     return ND->getNameAsCString();
161   }
162 
163   llvm::SmallString<256> Name;
164   llvm::raw_svector_ostream Out(Name);
165   if (!mangleName(ND, Context, Out)) {
166     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
167     return ND->getNameAsCString();
168   }
169 
170   Name += '\0';
171   return UniqueMangledName(Name.begin(), Name.end());
172 }
173 
174 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
175                                              const char *NameEnd) {
176   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
177 
178   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
179 }
180 
181 /// AddGlobalCtor - Add a function to the list that will be called before
182 /// main() runs.
183 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
184   // FIXME: Type coercion of void()* types.
185   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
186 }
187 
188 /// AddGlobalDtor - Add a function to the list that will be called
189 /// when the module is unloaded.
190 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
191   // FIXME: Type coercion of void()* types.
192   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
193 }
194 
195 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
196   // Ctor function type is void()*.
197   llvm::FunctionType* CtorFTy =
198     llvm::FunctionType::get(llvm::Type::VoidTy,
199                             std::vector<const llvm::Type*>(),
200                             false);
201   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
202 
203   // Get the type of a ctor entry, { i32, void ()* }.
204   llvm::StructType* CtorStructTy =
205     llvm::StructType::get(llvm::Type::Int32Ty,
206                           llvm::PointerType::getUnqual(CtorFTy), NULL);
207 
208   // Construct the constructor and destructor arrays.
209   std::vector<llvm::Constant*> Ctors;
210   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
211     std::vector<llvm::Constant*> S;
212     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
213     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
214     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
215   }
216 
217   if (!Ctors.empty()) {
218     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
219     new llvm::GlobalVariable(AT, false,
220                              llvm::GlobalValue::AppendingLinkage,
221                              llvm::ConstantArray::get(AT, Ctors),
222                              GlobalName,
223                              &TheModule);
224   }
225 }
226 
227 void CodeGenModule::EmitAnnotations() {
228   if (Annotations.empty())
229     return;
230 
231   // Create a new global variable for the ConstantStruct in the Module.
232   llvm::Constant *Array =
233   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
234                                                 Annotations.size()),
235                            Annotations);
236   llvm::GlobalValue *gv =
237   new llvm::GlobalVariable(Array->getType(), false,
238                            llvm::GlobalValue::AppendingLinkage, Array,
239                            "llvm.global.annotations", &TheModule);
240   gv->setSection("llvm.metadata");
241 }
242 
243 static CodeGenModule::GVALinkage
244 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
245                       const LangOptions &Features) {
246   // The kind of external linkage this function will have, if it is not
247   // inline or static.
248   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
249   if (Context.getLangOptions().CPlusPlus &&
250       (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) &&
251       !FD->isExplicitSpecialization())
252     External = CodeGenModule::GVA_TemplateInstantiation;
253 
254   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
255     // C++ member functions defined inside the class are always inline.
256     if (MD->isInline() || !MD->isOutOfLine())
257       return CodeGenModule::GVA_CXXInline;
258 
259     return External;
260   }
261 
262   // "static" functions get internal linkage.
263   if (FD->getStorageClass() == FunctionDecl::Static)
264     return CodeGenModule::GVA_Internal;
265 
266   if (!FD->isInline())
267     return External;
268 
269   // If the inline function explicitly has the GNU inline attribute on it, or if
270   // this is C89 mode, we use to GNU semantics.
271   if (!Features.C99 && !Features.CPlusPlus) {
272     // extern inline in GNU mode is like C99 inline.
273     if (FD->getStorageClass() == FunctionDecl::Extern)
274       return CodeGenModule::GVA_C99Inline;
275     // Normal inline is a strong symbol.
276     return CodeGenModule::GVA_StrongExternal;
277   } else if (FD->hasActiveGNUInlineAttribute(Context)) {
278     // GCC in C99 mode seems to use a different decision-making
279     // process for extern inline, which factors in previous
280     // declarations.
281     if (FD->isExternGNUInline(Context))
282       return CodeGenModule::GVA_C99Inline;
283     // Normal inline is a strong symbol.
284     return External;
285   }
286 
287   // The definition of inline changes based on the language.  Note that we
288   // have already handled "static inline" above, with the GVA_Internal case.
289   if (Features.CPlusPlus)  // inline and extern inline.
290     return CodeGenModule::GVA_CXXInline;
291 
292   assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
293   if (FD->isC99InlineDefinition())
294     return CodeGenModule::GVA_C99Inline;
295 
296   return CodeGenModule::GVA_StrongExternal;
297 }
298 
299 /// SetFunctionDefinitionAttributes - Set attributes for a global.
300 ///
301 /// FIXME: This is currently only done for aliases and functions, but not for
302 /// variables (these details are set in EmitGlobalVarDefinition for variables).
303 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
304                                                     llvm::GlobalValue *GV) {
305   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
306 
307   if (Linkage == GVA_Internal) {
308     GV->setLinkage(llvm::Function::InternalLinkage);
309   } else if (D->hasAttr<DLLExportAttr>()) {
310     GV->setLinkage(llvm::Function::DLLExportLinkage);
311   } else if (D->hasAttr<WeakAttr>()) {
312     GV->setLinkage(llvm::Function::WeakAnyLinkage);
313   } else if (Linkage == GVA_C99Inline) {
314     // In C99 mode, 'inline' functions are guaranteed to have a strong
315     // definition somewhere else, so we can use available_externally linkage.
316     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
317   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
318     // In C++, the compiler has to emit a definition in every translation unit
319     // that references the function.  We should use linkonce_odr because
320     // a) if all references in this translation unit are optimized away, we
321     // don't need to codegen it.  b) if the function persists, it needs to be
322     // merged with other definitions. c) C++ has the ODR, so we know the
323     // definition is dependable.
324     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
325   } else {
326     assert(Linkage == GVA_StrongExternal);
327     // Otherwise, we have strong external linkage.
328     GV->setLinkage(llvm::Function::ExternalLinkage);
329   }
330 
331   SetCommonAttributes(D, GV);
332 }
333 
334 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
335                                               const CGFunctionInfo &Info,
336                                               llvm::Function *F) {
337   AttributeListType AttributeList;
338   ConstructAttributeList(Info, D, AttributeList);
339 
340   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
341                                         AttributeList.size()));
342 
343   // Set the appropriate calling convention for the Function.
344   if (D->hasAttr<FastCallAttr>())
345     F->setCallingConv(llvm::CallingConv::X86_FastCall);
346 
347   if (D->hasAttr<StdCallAttr>())
348     F->setCallingConv(llvm::CallingConv::X86_StdCall);
349 }
350 
351 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
352                                                            llvm::Function *F) {
353   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
354     F->addFnAttr(llvm::Attribute::NoUnwind);
355 
356   if (D->hasAttr<AlwaysInlineAttr>())
357     F->addFnAttr(llvm::Attribute::AlwaysInline);
358 
359   if (D->hasAttr<NoinlineAttr>())
360     F->addFnAttr(llvm::Attribute::NoInline);
361 }
362 
363 void CodeGenModule::SetCommonAttributes(const Decl *D,
364                                         llvm::GlobalValue *GV) {
365   setGlobalVisibility(GV, D);
366 
367   if (D->hasAttr<UsedAttr>())
368     AddUsedGlobal(GV);
369 
370   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
371     GV->setSection(SA->getName());
372 }
373 
374 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
375                                                   llvm::Function *F,
376                                                   const CGFunctionInfo &FI) {
377   SetLLVMFunctionAttributes(D, FI, F);
378   SetLLVMFunctionAttributesForDefinition(D, F);
379 
380   F->setLinkage(llvm::Function::InternalLinkage);
381 
382   SetCommonAttributes(D, F);
383 }
384 
385 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
386                                           llvm::Function *F,
387                                           bool IsIncompleteFunction) {
388   if (!IsIncompleteFunction)
389     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
390 
391   // Only a few attributes are set on declarations; these may later be
392   // overridden by a definition.
393 
394   if (FD->hasAttr<DLLImportAttr>()) {
395     F->setLinkage(llvm::Function::DLLImportLinkage);
396   } else if (FD->hasAttr<WeakAttr>() ||
397              FD->hasAttr<WeakImportAttr>()) {
398     // "extern_weak" is overloaded in LLVM; we probably should have
399     // separate linkage types for this.
400     F->setLinkage(llvm::Function::ExternalWeakLinkage);
401   } else {
402     F->setLinkage(llvm::Function::ExternalLinkage);
403   }
404 
405   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
406     F->setSection(SA->getName());
407 }
408 
409 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
410   assert(!GV->isDeclaration() &&
411          "Only globals with definition can force usage.");
412   LLVMUsed.push_back(GV);
413 }
414 
415 void CodeGenModule::EmitLLVMUsed() {
416   // Don't create llvm.used if there is no need.
417   // FIXME. Runtime indicates that there might be more 'used' symbols; but not
418   // necessariy. So, this test is not accurate for emptiness.
419   if (LLVMUsed.empty() && !Runtime)
420     return;
421 
422   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
423 
424   // Convert LLVMUsed to what ConstantArray needs.
425   std::vector<llvm::Constant*> UsedArray;
426   UsedArray.resize(LLVMUsed.size());
427   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
428     UsedArray[i] =
429      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
430   }
431 
432   if (Runtime)
433     Runtime->MergeMetadataGlobals(UsedArray);
434   if (UsedArray.empty())
435     return;
436   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
437 
438   llvm::GlobalVariable *GV =
439     new llvm::GlobalVariable(ATy, false,
440                              llvm::GlobalValue::AppendingLinkage,
441                              llvm::ConstantArray::get(ATy, UsedArray),
442                              "llvm.used", &getModule());
443 
444   GV->setSection("llvm.metadata");
445 }
446 
447 void CodeGenModule::EmitDeferred() {
448   // Emit code for any potentially referenced deferred decls.  Since a
449   // previously unused static decl may become used during the generation of code
450   // for a static function, iterate until no  changes are made.
451   while (!DeferredDeclsToEmit.empty()) {
452     GlobalDecl D = DeferredDeclsToEmit.back();
453     DeferredDeclsToEmit.pop_back();
454 
455     // The mangled name for the decl must have been emitted in GlobalDeclMap.
456     // Look it up to see if it was defined with a stronger definition (e.g. an
457     // extern inline function with a strong function redefinition).  If so,
458     // just ignore the deferred decl.
459     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
460     assert(CGRef && "Deferred decl wasn't referenced?");
461 
462     if (!CGRef->isDeclaration())
463       continue;
464 
465     // Otherwise, emit the definition and move on to the next one.
466     EmitGlobalDefinition(D);
467   }
468 }
469 
470 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
471 /// annotation information for a given GlobalValue.  The annotation struct is
472 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
473 /// GlobalValue being annotated.  The second field is the constant string
474 /// created from the AnnotateAttr's annotation.  The third field is a constant
475 /// string containing the name of the translation unit.  The fourth field is
476 /// the line number in the file of the annotated value declaration.
477 ///
478 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
479 ///        appears to.
480 ///
481 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
482                                                 const AnnotateAttr *AA,
483                                                 unsigned LineNo) {
484   llvm::Module *M = &getModule();
485 
486   // get [N x i8] constants for the annotation string, and the filename string
487   // which are the 2nd and 3rd elements of the global annotation structure.
488   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
489   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
490   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
491                                                   true);
492 
493   // Get the two global values corresponding to the ConstantArrays we just
494   // created to hold the bytes of the strings.
495   const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
496   llvm::GlobalValue *annoGV =
497   new llvm::GlobalVariable(anno->getType(), false,
498                            llvm::GlobalValue::InternalLinkage, anno,
499                            GV->getName() + StringPrefix, M);
500   // translation unit name string, emitted into the llvm.metadata section.
501   llvm::GlobalValue *unitGV =
502   new llvm::GlobalVariable(unit->getType(), false,
503                            llvm::GlobalValue::InternalLinkage, unit,
504                            StringPrefix, M);
505 
506   // Create the ConstantStruct for the global annotation.
507   llvm::Constant *Fields[4] = {
508     llvm::ConstantExpr::getBitCast(GV, SBP),
509     llvm::ConstantExpr::getBitCast(annoGV, SBP),
510     llvm::ConstantExpr::getBitCast(unitGV, SBP),
511     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
512   };
513   return llvm::ConstantStruct::get(Fields, 4, false);
514 }
515 
516 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
517   // Never defer when EmitAllDecls is specified or the decl has
518   // attribute used.
519   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
520     return false;
521 
522   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
523     // Constructors and destructors should never be deferred.
524     if (FD->hasAttr<ConstructorAttr>() ||
525         FD->hasAttr<DestructorAttr>())
526       return false;
527 
528     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
529 
530     // static, static inline, always_inline, and extern inline functions can
531     // always be deferred.  Normal inline functions can be deferred in C99/C++.
532     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
533         Linkage == GVA_CXXInline)
534       return true;
535     return false;
536   }
537 
538   const VarDecl *VD = cast<VarDecl>(Global);
539   assert(VD->isFileVarDecl() && "Invalid decl");
540 
541   return VD->getStorageClass() == VarDecl::Static;
542 }
543 
544 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
545   const ValueDecl *Global = GD.getDecl();
546 
547   // If this is an alias definition (which otherwise looks like a declaration)
548   // emit it now.
549   if (Global->hasAttr<AliasAttr>())
550     return EmitAliasDefinition(Global);
551 
552   // Ignore declarations, they will be emitted on their first use.
553   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
554     // Forward declarations are emitted lazily on first use.
555     if (!FD->isThisDeclarationADefinition())
556       return;
557   } else {
558     const VarDecl *VD = cast<VarDecl>(Global);
559     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
560 
561     // In C++, if this is marked "extern", defer code generation.
562     if (getLangOptions().CPlusPlus && !VD->getInit() &&
563         (VD->getStorageClass() == VarDecl::Extern ||
564          VD->isExternC(getContext())))
565       return;
566 
567     // In C, if this isn't a definition, defer code generation.
568     if (!getLangOptions().CPlusPlus && !VD->getInit())
569       return;
570   }
571 
572   // Defer code generation when possible if this is a static definition, inline
573   // function etc.  These we only want to emit if they are used.
574   if (MayDeferGeneration(Global)) {
575     // If the value has already been used, add it directly to the
576     // DeferredDeclsToEmit list.
577     const char *MangledName = getMangledName(GD);
578     if (GlobalDeclMap.count(MangledName))
579       DeferredDeclsToEmit.push_back(GD);
580     else {
581       // Otherwise, remember that we saw a deferred decl with this name.  The
582       // first use of the mangled name will cause it to move into
583       // DeferredDeclsToEmit.
584       DeferredDecls[MangledName] = GD;
585     }
586     return;
587   }
588 
589   // Otherwise emit the definition.
590   EmitGlobalDefinition(GD);
591 }
592 
593 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
594   const ValueDecl *D = GD.getDecl();
595 
596   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
597     EmitCXXConstructor(CD, GD.getCtorType());
598   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
599     EmitCXXDestructor(DD, GD.getDtorType());
600   else if (isa<FunctionDecl>(D))
601     EmitGlobalFunctionDefinition(GD);
602   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
603     EmitGlobalVarDefinition(VD);
604   else {
605     assert(0 && "Invalid argument to EmitGlobalDefinition()");
606   }
607 }
608 
609 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
610 /// module, create and return an llvm Function with the specified type. If there
611 /// is something in the module with the specified name, return it potentially
612 /// bitcasted to the right type.
613 ///
614 /// If D is non-null, it specifies a decl that correspond to this.  This is used
615 /// to set the attributes on the function when it is first created.
616 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
617                                                        const llvm::Type *Ty,
618                                                        GlobalDecl D) {
619   // Lookup the entry, lazily creating it if necessary.
620   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
621   if (Entry) {
622     if (Entry->getType()->getElementType() == Ty)
623       return Entry;
624 
625     // Make sure the result is of the correct type.
626     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
627     return llvm::ConstantExpr::getBitCast(Entry, PTy);
628   }
629 
630   // This is the first use or definition of a mangled name.  If there is a
631   // deferred decl with this name, remember that we need to emit it at the end
632   // of the file.
633   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
634     DeferredDecls.find(MangledName);
635   if (DDI != DeferredDecls.end()) {
636     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
637     // list, and remove it from DeferredDecls (since we don't need it anymore).
638     DeferredDeclsToEmit.push_back(DDI->second);
639     DeferredDecls.erase(DDI);
640   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
641     // If this the first reference to a C++ inline function in a class, queue up
642     // the deferred function body for emission.  These are not seen as
643     // top-level declarations.
644     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
645       DeferredDeclsToEmit.push_back(D);
646   }
647 
648   // This function doesn't have a complete type (for example, the return
649   // type is an incomplete struct). Use a fake type instead, and make
650   // sure not to try to set attributes.
651   bool IsIncompleteFunction = false;
652   if (!isa<llvm::FunctionType>(Ty)) {
653     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
654                                  std::vector<const llvm::Type*>(), false);
655     IsIncompleteFunction = true;
656   }
657   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
658                                              llvm::Function::ExternalLinkage,
659                                              "", &getModule());
660   F->setName(MangledName);
661   if (D.getDecl())
662     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
663                           IsIncompleteFunction);
664   Entry = F;
665   return F;
666 }
667 
668 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
669 /// non-null, then this function will use the specified type if it has to
670 /// create it (this occurs when we see a definition of the function).
671 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
672                                                  const llvm::Type *Ty) {
673   // If there was no specific requested type, just convert it now.
674   if (!Ty)
675     Ty = getTypes().ConvertType(GD.getDecl()->getType());
676   return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD);
677 }
678 
679 /// CreateRuntimeFunction - Create a new runtime function with the specified
680 /// type and name.
681 llvm::Constant *
682 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
683                                      const char *Name) {
684   // Convert Name to be a uniqued string from the IdentifierInfo table.
685   Name = getContext().Idents.get(Name).getName();
686   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
687 }
688 
689 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
690 /// create and return an llvm GlobalVariable with the specified type.  If there
691 /// is something in the module with the specified name, return it potentially
692 /// bitcasted to the right type.
693 ///
694 /// If D is non-null, it specifies a decl that correspond to this.  This is used
695 /// to set the attributes on the global when it is first created.
696 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
697                                                      const llvm::PointerType*Ty,
698                                                      const VarDecl *D) {
699   // Lookup the entry, lazily creating it if necessary.
700   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
701   if (Entry) {
702     if (Entry->getType() == Ty)
703       return Entry;
704 
705     // Make sure the result is of the correct type.
706     return llvm::ConstantExpr::getBitCast(Entry, Ty);
707   }
708 
709   // This is the first use or definition of a mangled name.  If there is a
710   // deferred decl with this name, remember that we need to emit it at the end
711   // of the file.
712   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
713     DeferredDecls.find(MangledName);
714   if (DDI != DeferredDecls.end()) {
715     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
716     // list, and remove it from DeferredDecls (since we don't need it anymore).
717     DeferredDeclsToEmit.push_back(DDI->second);
718     DeferredDecls.erase(DDI);
719   }
720 
721   llvm::GlobalVariable *GV =
722     new llvm::GlobalVariable(Ty->getElementType(), false,
723                              llvm::GlobalValue::ExternalLinkage,
724                              0, "", &getModule(),
725                              false, Ty->getAddressSpace());
726   GV->setName(MangledName);
727 
728   // Handle things which are present even on external declarations.
729   if (D) {
730     // FIXME: This code is overly simple and should be merged with other global
731     // handling.
732     GV->setConstant(D->getType().isConstant(Context));
733 
734     // FIXME: Merge with other attribute handling code.
735     if (D->getStorageClass() == VarDecl::PrivateExtern)
736       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
737 
738     if (D->hasAttr<WeakAttr>() ||
739         D->hasAttr<WeakImportAttr>())
740       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
741 
742     GV->setThreadLocal(D->isThreadSpecified());
743   }
744 
745   return Entry = GV;
746 }
747 
748 
749 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
750 /// given global variable.  If Ty is non-null and if the global doesn't exist,
751 /// then it will be greated with the specified type instead of whatever the
752 /// normal requested type would be.
753 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
754                                                   const llvm::Type *Ty) {
755   assert(D->hasGlobalStorage() && "Not a global variable");
756   QualType ASTTy = D->getType();
757   if (Ty == 0)
758     Ty = getTypes().ConvertTypeForMem(ASTTy);
759 
760   const llvm::PointerType *PTy =
761     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
762   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
763 }
764 
765 /// CreateRuntimeVariable - Create a new runtime global variable with the
766 /// specified type and name.
767 llvm::Constant *
768 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
769                                      const char *Name) {
770   // Convert Name to be a uniqued string from the IdentifierInfo table.
771   Name = getContext().Idents.get(Name).getName();
772   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
773 }
774 
775 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
776   assert(!D->getInit() && "Cannot emit definite definitions here!");
777 
778   if (MayDeferGeneration(D)) {
779     // If we have not seen a reference to this variable yet, place it
780     // into the deferred declarations table to be emitted if needed
781     // later.
782     const char *MangledName = getMangledName(D);
783     if (GlobalDeclMap.count(MangledName) == 0) {
784       DeferredDecls[MangledName] = GlobalDecl(D);
785       return;
786     }
787   }
788 
789   // The tentative definition is the only definition.
790   EmitGlobalVarDefinition(D);
791 }
792 
793 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
794   llvm::Constant *Init = 0;
795   QualType ASTTy = D->getType();
796 
797   if (D->getInit() == 0) {
798     // This is a tentative definition; tentative definitions are
799     // implicitly initialized with { 0 }.
800     //
801     // Note that tentative definitions are only emitted at the end of
802     // a translation unit, so they should never have incomplete
803     // type. In addition, EmitTentativeDefinition makes sure that we
804     // never attempt to emit a tentative definition if a real one
805     // exists. A use may still exists, however, so we still may need
806     // to do a RAUW.
807     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
808     Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy));
809   } else {
810     Init = EmitConstantExpr(D->getInit(), D->getType());
811     if (!Init) {
812       ErrorUnsupported(D, "static initializer");
813       QualType T = D->getInit()->getType();
814       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
815     }
816   }
817 
818   const llvm::Type* InitType = Init->getType();
819   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
820 
821   // Strip off a bitcast if we got one back.
822   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
823     assert(CE->getOpcode() == llvm::Instruction::BitCast);
824     Entry = CE->getOperand(0);
825   }
826 
827   // Entry is now either a Function or GlobalVariable.
828   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
829 
830   // We have a definition after a declaration with the wrong type.
831   // We must make a new GlobalVariable* and update everything that used OldGV
832   // (a declaration or tentative definition) with the new GlobalVariable*
833   // (which will be a definition).
834   //
835   // This happens if there is a prototype for a global (e.g.
836   // "extern int x[];") and then a definition of a different type (e.g.
837   // "int x[10];"). This also happens when an initializer has a different type
838   // from the type of the global (this happens with unions).
839   if (GV == 0 ||
840       GV->getType()->getElementType() != InitType ||
841       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
842 
843     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
844     GlobalDeclMap.erase(getMangledName(D));
845 
846     // Make a new global with the correct type, this is now guaranteed to work.
847     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
848     GV->takeName(cast<llvm::GlobalValue>(Entry));
849 
850     // Replace all uses of the old global with the new global
851     llvm::Constant *NewPtrForOldDecl =
852         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
853     Entry->replaceAllUsesWith(NewPtrForOldDecl);
854 
855     // Erase the old global, since it is no longer used.
856     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
857   }
858 
859   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
860     SourceManager &SM = Context.getSourceManager();
861     AddAnnotation(EmitAnnotateAttr(GV, AA,
862                               SM.getInstantiationLineNumber(D->getLocation())));
863   }
864 
865   GV->setInitializer(Init);
866   GV->setConstant(D->getType().isConstant(Context));
867   GV->setAlignment(getContext().getDeclAlignInBytes(D));
868 
869   // Set the llvm linkage type as appropriate.
870   if (D->getStorageClass() == VarDecl::Static)
871     GV->setLinkage(llvm::Function::InternalLinkage);
872   else if (D->hasAttr<DLLImportAttr>())
873     GV->setLinkage(llvm::Function::DLLImportLinkage);
874   else if (D->hasAttr<DLLExportAttr>())
875     GV->setLinkage(llvm::Function::DLLExportLinkage);
876   else if (D->hasAttr<WeakAttr>())
877     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
878   else if (!CompileOpts.NoCommon &&
879            (!D->hasExternalStorage() && !D->getInit()))
880     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
881   else
882     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
883 
884   SetCommonAttributes(D, GV);
885 
886   // Emit global variable debug information.
887   if (CGDebugInfo *DI = getDebugInfo()) {
888     DI->setLocation(D->getLocation());
889     DI->EmitGlobalVariable(GV, D);
890   }
891 }
892 
893 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
894 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
895 /// existing call uses of the old function in the module, this adjusts them to
896 /// call the new function directly.
897 ///
898 /// This is not just a cleanup: the always_inline pass requires direct calls to
899 /// functions to be able to inline them.  If there is a bitcast in the way, it
900 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
901 /// run at -O0.
902 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
903                                                       llvm::Function *NewFn) {
904   // If we're redefining a global as a function, don't transform it.
905   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
906   if (OldFn == 0) return;
907 
908   const llvm::Type *NewRetTy = NewFn->getReturnType();
909   llvm::SmallVector<llvm::Value*, 4> ArgList;
910 
911   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
912        UI != E; ) {
913     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
914     unsigned OpNo = UI.getOperandNo();
915     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
916     if (!CI || OpNo != 0) continue;
917 
918     // If the return types don't match exactly, and if the call isn't dead, then
919     // we can't transform this call.
920     if (CI->getType() != NewRetTy && !CI->use_empty())
921       continue;
922 
923     // If the function was passed too few arguments, don't transform.  If extra
924     // arguments were passed, we silently drop them.  If any of the types
925     // mismatch, we don't transform.
926     unsigned ArgNo = 0;
927     bool DontTransform = false;
928     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
929          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
930       if (CI->getNumOperands()-1 == ArgNo ||
931           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
932         DontTransform = true;
933         break;
934       }
935     }
936     if (DontTransform)
937       continue;
938 
939     // Okay, we can transform this.  Create the new call instruction and copy
940     // over the required information.
941     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
942     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
943                                                      ArgList.end(), "", CI);
944     ArgList.clear();
945     if (NewCall->getType() != llvm::Type::VoidTy)
946       NewCall->takeName(CI);
947     NewCall->setCallingConv(CI->getCallingConv());
948     NewCall->setAttributes(CI->getAttributes());
949 
950     // Finally, remove the old call, replacing any uses with the new one.
951     if (!CI->use_empty())
952       CI->replaceAllUsesWith(NewCall);
953     CI->eraseFromParent();
954   }
955 }
956 
957 
958 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
959   const llvm::FunctionType *Ty;
960   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
961 
962   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
963     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
964 
965     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
966   } else {
967     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
968 
969     // As a special case, make sure that definitions of K&R function
970     // "type foo()" aren't declared as varargs (which forces the backend
971     // to do unnecessary work).
972     if (D->getType()->isFunctionNoProtoType()) {
973       assert(Ty->isVarArg() && "Didn't lower type as expected");
974       // Due to stret, the lowered function could have arguments.
975       // Just create the same type as was lowered by ConvertType
976       // but strip off the varargs bit.
977       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
978       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
979     }
980   }
981 
982   // Get or create the prototype for the function.
983   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
984 
985   // Strip off a bitcast if we got one back.
986   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
987     assert(CE->getOpcode() == llvm::Instruction::BitCast);
988     Entry = CE->getOperand(0);
989   }
990 
991 
992   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
993     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
994 
995     // If the types mismatch then we have to rewrite the definition.
996     assert(OldFn->isDeclaration() &&
997            "Shouldn't replace non-declaration");
998 
999     // F is the Function* for the one with the wrong type, we must make a new
1000     // Function* and update everything that used F (a declaration) with the new
1001     // Function* (which will be a definition).
1002     //
1003     // This happens if there is a prototype for a function
1004     // (e.g. "int f()") and then a definition of a different type
1005     // (e.g. "int f(int x)").  Start by making a new function of the
1006     // correct type, RAUW, then steal the name.
1007     GlobalDeclMap.erase(getMangledName(D));
1008     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1009     NewFn->takeName(OldFn);
1010 
1011     // If this is an implementation of a function without a prototype, try to
1012     // replace any existing uses of the function (which may be calls) with uses
1013     // of the new function
1014     if (D->getType()->isFunctionNoProtoType()) {
1015       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1016       OldFn->removeDeadConstantUsers();
1017     }
1018 
1019     // Replace uses of F with the Function we will endow with a body.
1020     if (!Entry->use_empty()) {
1021       llvm::Constant *NewPtrForOldDecl =
1022         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1023       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1024     }
1025 
1026     // Ok, delete the old function now, which is dead.
1027     OldFn->eraseFromParent();
1028 
1029     Entry = NewFn;
1030   }
1031 
1032   llvm::Function *Fn = cast<llvm::Function>(Entry);
1033 
1034   CodeGenFunction(*this).GenerateCode(D, Fn);
1035 
1036   SetFunctionDefinitionAttributes(D, Fn);
1037   SetLLVMFunctionAttributesForDefinition(D, Fn);
1038 
1039   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1040     AddGlobalCtor(Fn, CA->getPriority());
1041   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1042     AddGlobalDtor(Fn, DA->getPriority());
1043 }
1044 
1045 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1046   const AliasAttr *AA = D->getAttr<AliasAttr>();
1047   assert(AA && "Not an alias?");
1048 
1049   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1050 
1051   // Unique the name through the identifier table.
1052   const char *AliaseeName = AA->getAliasee().c_str();
1053   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1054 
1055   // Create a reference to the named value.  This ensures that it is emitted
1056   // if a deferred decl.
1057   llvm::Constant *Aliasee;
1058   if (isa<llvm::FunctionType>(DeclTy))
1059     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1060   else
1061     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1062                                     llvm::PointerType::getUnqual(DeclTy), 0);
1063 
1064   // Create the new alias itself, but don't set a name yet.
1065   llvm::GlobalValue *GA =
1066     new llvm::GlobalAlias(Aliasee->getType(),
1067                           llvm::Function::ExternalLinkage,
1068                           "", Aliasee, &getModule());
1069 
1070   // See if there is already something with the alias' name in the module.
1071   const char *MangledName = getMangledName(D);
1072   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1073 
1074   if (Entry && !Entry->isDeclaration()) {
1075     // If there is a definition in the module, then it wins over the alias.
1076     // This is dubious, but allow it to be safe.  Just ignore the alias.
1077     GA->eraseFromParent();
1078     return;
1079   }
1080 
1081   if (Entry) {
1082     // If there is a declaration in the module, then we had an extern followed
1083     // by the alias, as in:
1084     //   extern int test6();
1085     //   ...
1086     //   int test6() __attribute__((alias("test7")));
1087     //
1088     // Remove it and replace uses of it with the alias.
1089 
1090     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1091                                                           Entry->getType()));
1092     Entry->eraseFromParent();
1093   }
1094 
1095   // Now we know that there is no conflict, set the name.
1096   Entry = GA;
1097   GA->setName(MangledName);
1098 
1099   // Set attributes which are particular to an alias; this is a
1100   // specialization of the attributes which may be set on a global
1101   // variable/function.
1102   if (D->hasAttr<DLLExportAttr>()) {
1103     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1104       // The dllexport attribute is ignored for undefined symbols.
1105       if (FD->getBody(getContext()))
1106         GA->setLinkage(llvm::Function::DLLExportLinkage);
1107     } else {
1108       GA->setLinkage(llvm::Function::DLLExportLinkage);
1109     }
1110   } else if (D->hasAttr<WeakAttr>() ||
1111              D->hasAttr<WeakImportAttr>()) {
1112     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1113   }
1114 
1115   SetCommonAttributes(D, GA);
1116 }
1117 
1118 /// getBuiltinLibFunction - Given a builtin id for a function like
1119 /// "__builtin_fabsf", return a Function* for "fabsf".
1120 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1121   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1122           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1123          "isn't a lib fn");
1124 
1125   // Get the name, skip over the __builtin_ prefix (if necessary).
1126   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1127   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1128     Name += 10;
1129 
1130   // Get the type for the builtin.
1131   ASTContext::GetBuiltinTypeError Error;
1132   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1133   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1134 
1135   const llvm::FunctionType *Ty =
1136     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1137 
1138   // Unique the name through the identifier table.
1139   Name = getContext().Idents.get(Name).getName();
1140   // FIXME: param attributes for sext/zext etc.
1141   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1142 }
1143 
1144 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1145                                             unsigned NumTys) {
1146   return llvm::Intrinsic::getDeclaration(&getModule(),
1147                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1148 }
1149 
1150 llvm::Function *CodeGenModule::getMemCpyFn() {
1151   if (MemCpyFn) return MemCpyFn;
1152   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1153   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1154 }
1155 
1156 llvm::Function *CodeGenModule::getMemMoveFn() {
1157   if (MemMoveFn) return MemMoveFn;
1158   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1159   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1160 }
1161 
1162 llvm::Function *CodeGenModule::getMemSetFn() {
1163   if (MemSetFn) return MemSetFn;
1164   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1165   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1166 }
1167 
1168 static void appendFieldAndPadding(CodeGenModule &CGM,
1169                                   std::vector<llvm::Constant*>& Fields,
1170                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1171                                   llvm::Constant* Field,
1172                                   RecordDecl* RD, const llvm::StructType *STy) {
1173   // Append the field.
1174   Fields.push_back(Field);
1175 
1176   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1177 
1178   int NextStructFieldNo;
1179   if (!NextFieldD) {
1180     NextStructFieldNo = STy->getNumElements();
1181   } else {
1182     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1183   }
1184 
1185   // Append padding
1186   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1187     llvm::Constant *C =
1188       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1189 
1190     Fields.push_back(C);
1191   }
1192 }
1193 
1194 llvm::Constant *CodeGenModule::
1195 GetAddrOfConstantCFString(const StringLiteral *Literal) {
1196   std::string str;
1197   unsigned StringLength = 0;
1198 
1199   bool isUTF16 = false;
1200   if (Literal->containsNonAsciiOrNull()) {
1201     // Convert from UTF-8 to UTF-16.
1202     llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1203     const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1204     UTF16 *ToPtr = &ToBuf[0];
1205 
1206     ConversionResult Result;
1207     Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1208                                 &ToPtr, ToPtr+Literal->getByteLength(),
1209                                 strictConversion);
1210     if (Result == conversionOK) {
1211       // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1212       // without doing more surgery to this routine. Since we aren't explicitly
1213       // checking for endianness here, it's also a bug (when generating code for
1214       // a target that doesn't match the host endianness). Modeling this as an
1215       // i16 array is likely the cleanest solution.
1216       StringLength = ToPtr-&ToBuf[0];
1217       str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1218       isUTF16 = true;
1219     } else if (Result == sourceIllegal) {
1220       // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1221       str.assign(Literal->getStrData(), Literal->getByteLength());
1222       StringLength = str.length();
1223     } else
1224       assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1225 
1226   } else {
1227     str.assign(Literal->getStrData(), Literal->getByteLength());
1228     StringLength = str.length();
1229   }
1230   llvm::StringMapEntry<llvm::Constant *> &Entry =
1231     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1232 
1233   if (llvm::Constant *C = Entry.getValue())
1234     return C;
1235 
1236   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1237   llvm::Constant *Zeros[] = { Zero, Zero };
1238 
1239   if (!CFConstantStringClassRef) {
1240     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1241     Ty = llvm::ArrayType::get(Ty, 0);
1242 
1243     // FIXME: This is fairly broken if __CFConstantStringClassReference is
1244     // already defined, in that it will get renamed and the user will most
1245     // likely see an opaque error message. This is a general issue with relying
1246     // on particular names.
1247     llvm::GlobalVariable *GV =
1248       new llvm::GlobalVariable(Ty, false,
1249                                llvm::GlobalVariable::ExternalLinkage, 0,
1250                                "__CFConstantStringClassReference",
1251                                &getModule());
1252 
1253     // Decay array -> ptr
1254     CFConstantStringClassRef =
1255       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1256   }
1257 
1258   QualType CFTy = getContext().getCFConstantStringType();
1259   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1260 
1261   const llvm::StructType *STy =
1262     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1263 
1264   std::vector<llvm::Constant*> Fields;
1265   RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
1266 
1267   // Class pointer.
1268   FieldDecl *CurField = *Field++;
1269   FieldDecl *NextField = *Field++;
1270   appendFieldAndPadding(*this, Fields, CurField, NextField,
1271                         CFConstantStringClassRef, CFRD, STy);
1272 
1273   // Flags.
1274   CurField = NextField;
1275   NextField = *Field++;
1276   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1277   appendFieldAndPadding(*this, Fields, CurField, NextField,
1278                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1279                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1280                         CFRD, STy);
1281 
1282   // String pointer.
1283   CurField = NextField;
1284   NextField = *Field++;
1285   llvm::Constant *C = llvm::ConstantArray::get(str);
1286 
1287   const char *Sect, *Prefix;
1288   bool isConstant;
1289   if (isUTF16) {
1290     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1291     Sect = getContext().Target.getUnicodeStringSection();
1292     // FIXME: Why does GCC not set constant here?
1293     isConstant = false;
1294   } else {
1295     Prefix = getContext().Target.getStringSymbolPrefix(true);
1296     Sect = getContext().Target.getCFStringDataSection();
1297     // FIXME: -fwritable-strings should probably affect this, but we
1298     // are following gcc here.
1299     isConstant = true;
1300   }
1301   llvm::GlobalVariable *GV =
1302     new llvm::GlobalVariable(C->getType(), isConstant,
1303                              llvm::GlobalValue::InternalLinkage,
1304                              C, Prefix, &getModule());
1305   if (Sect)
1306     GV->setSection(Sect);
1307   if (isUTF16) {
1308     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1309     GV->setAlignment(Align);
1310   }
1311   appendFieldAndPadding(*this, Fields, CurField, NextField,
1312                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1313                         CFRD, STy);
1314 
1315   // String length.
1316   CurField = NextField;
1317   NextField = 0;
1318   Ty = getTypes().ConvertType(getContext().LongTy);
1319   appendFieldAndPadding(*this, Fields, CurField, NextField,
1320                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1321 
1322   // The struct.
1323   C = llvm::ConstantStruct::get(STy, Fields);
1324   GV = new llvm::GlobalVariable(C->getType(), true,
1325                                 llvm::GlobalVariable::InternalLinkage, C,
1326                                 getContext().Target.getCFStringSymbolPrefix(),
1327                                 &getModule());
1328   if (const char *Sect = getContext().Target.getCFStringSection())
1329     GV->setSection(Sect);
1330   Entry.setValue(GV);
1331 
1332   return GV;
1333 }
1334 
1335 /// GetStringForStringLiteral - Return the appropriate bytes for a
1336 /// string literal, properly padded to match the literal type.
1337 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1338   const char *StrData = E->getStrData();
1339   unsigned Len = E->getByteLength();
1340 
1341   const ConstantArrayType *CAT =
1342     getContext().getAsConstantArrayType(E->getType());
1343   assert(CAT && "String isn't pointer or array!");
1344 
1345   // Resize the string to the right size.
1346   std::string Str(StrData, StrData+Len);
1347   uint64_t RealLen = CAT->getSize().getZExtValue();
1348 
1349   if (E->isWide())
1350     RealLen *= getContext().Target.getWCharWidth()/8;
1351 
1352   Str.resize(RealLen, '\0');
1353 
1354   return Str;
1355 }
1356 
1357 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1358 /// constant array for the given string literal.
1359 llvm::Constant *
1360 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1361   // FIXME: This can be more efficient.
1362   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1363 }
1364 
1365 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1366 /// array for the given ObjCEncodeExpr node.
1367 llvm::Constant *
1368 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1369   std::string Str;
1370   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1371 
1372   return GetAddrOfConstantCString(Str);
1373 }
1374 
1375 
1376 /// GenerateWritableString -- Creates storage for a string literal.
1377 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1378                                              bool constant,
1379                                              CodeGenModule &CGM,
1380                                              const char *GlobalName) {
1381   // Create Constant for this string literal. Don't add a '\0'.
1382   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1383 
1384   // Create a global variable for this string
1385   return new llvm::GlobalVariable(C->getType(), constant,
1386                                   llvm::GlobalValue::InternalLinkage,
1387                                   C, GlobalName, &CGM.getModule());
1388 }
1389 
1390 /// GetAddrOfConstantString - Returns a pointer to a character array
1391 /// containing the literal. This contents are exactly that of the
1392 /// given string, i.e. it will not be null terminated automatically;
1393 /// see GetAddrOfConstantCString. Note that whether the result is
1394 /// actually a pointer to an LLVM constant depends on
1395 /// Feature.WriteableStrings.
1396 ///
1397 /// The result has pointer to array type.
1398 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1399                                                        const char *GlobalName) {
1400   bool IsConstant = !Features.WritableStrings;
1401 
1402   // Get the default prefix if a name wasn't specified.
1403   if (!GlobalName)
1404     GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1405 
1406   // Don't share any string literals if strings aren't constant.
1407   if (!IsConstant)
1408     return GenerateStringLiteral(str, false, *this, GlobalName);
1409 
1410   llvm::StringMapEntry<llvm::Constant *> &Entry =
1411   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1412 
1413   if (Entry.getValue())
1414     return Entry.getValue();
1415 
1416   // Create a global variable for this.
1417   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1418   Entry.setValue(C);
1419   return C;
1420 }
1421 
1422 /// GetAddrOfConstantCString - Returns a pointer to a character
1423 /// array containing the literal and a terminating '\-'
1424 /// character. The result has pointer to array type.
1425 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1426                                                         const char *GlobalName){
1427   return GetAddrOfConstantString(str + '\0', GlobalName);
1428 }
1429 
1430 /// EmitObjCPropertyImplementations - Emit information for synthesized
1431 /// properties for an implementation.
1432 void CodeGenModule::EmitObjCPropertyImplementations(const
1433                                                     ObjCImplementationDecl *D) {
1434   for (ObjCImplementationDecl::propimpl_iterator
1435          i = D->propimpl_begin(getContext()),
1436          e = D->propimpl_end(getContext()); i != e; ++i) {
1437     ObjCPropertyImplDecl *PID = *i;
1438 
1439     // Dynamic is just for type-checking.
1440     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1441       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1442 
1443       // Determine which methods need to be implemented, some may have
1444       // been overridden. Note that ::isSynthesized is not the method
1445       // we want, that just indicates if the decl came from a
1446       // property. What we want to know is if the method is defined in
1447       // this implementation.
1448       if (!D->getInstanceMethod(getContext(), PD->getGetterName()))
1449         CodeGenFunction(*this).GenerateObjCGetter(
1450                                  const_cast<ObjCImplementationDecl *>(D), PID);
1451       if (!PD->isReadOnly() &&
1452           !D->getInstanceMethod(getContext(), PD->getSetterName()))
1453         CodeGenFunction(*this).GenerateObjCSetter(
1454                                  const_cast<ObjCImplementationDecl *>(D), PID);
1455     }
1456   }
1457 }
1458 
1459 /// EmitNamespace - Emit all declarations in a namespace.
1460 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1461   for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
1462          E = ND->decls_end(getContext());
1463        I != E; ++I)
1464     EmitTopLevelDecl(*I);
1465 }
1466 
1467 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1468 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1469   if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1470     ErrorUnsupported(LSD, "linkage spec");
1471     return;
1472   }
1473 
1474   for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
1475          E = LSD->decls_end(getContext());
1476        I != E; ++I)
1477     EmitTopLevelDecl(*I);
1478 }
1479 
1480 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1481 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1482   // If an error has occurred, stop code generation, but continue
1483   // parsing and semantic analysis (to ensure all warnings and errors
1484   // are emitted).
1485   if (Diags.hasErrorOccurred())
1486     return;
1487 
1488   // Ignore dependent declarations.
1489   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1490     return;
1491 
1492   switch (D->getKind()) {
1493   case Decl::CXXMethod:
1494   case Decl::Function:
1495     // Skip function templates
1496     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1497       return;
1498 
1499     // Fall through
1500 
1501   case Decl::Var:
1502     EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
1503     break;
1504 
1505   // C++ Decls
1506   case Decl::Namespace:
1507     EmitNamespace(cast<NamespaceDecl>(D));
1508     break;
1509     // No code generation needed.
1510   case Decl::Using:
1511   case Decl::ClassTemplate:
1512   case Decl::FunctionTemplate:
1513     break;
1514   case Decl::CXXConstructor:
1515     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1516     break;
1517   case Decl::CXXDestructor:
1518     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1519     break;
1520 
1521   case Decl::StaticAssert:
1522     // Nothing to do.
1523     break;
1524 
1525   // Objective-C Decls
1526 
1527   // Forward declarations, no (immediate) code generation.
1528   case Decl::ObjCClass:
1529   case Decl::ObjCForwardProtocol:
1530   case Decl::ObjCCategory:
1531   case Decl::ObjCInterface:
1532     break;
1533 
1534   case Decl::ObjCProtocol:
1535     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1536     break;
1537 
1538   case Decl::ObjCCategoryImpl:
1539     // Categories have properties but don't support synthesize so we
1540     // can ignore them here.
1541     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1542     break;
1543 
1544   case Decl::ObjCImplementation: {
1545     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1546     EmitObjCPropertyImplementations(OMD);
1547     Runtime->GenerateClass(OMD);
1548     break;
1549   }
1550   case Decl::ObjCMethod: {
1551     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1552     // If this is not a prototype, emit the body.
1553     if (OMD->getBody(getContext()))
1554       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1555     break;
1556   }
1557   case Decl::ObjCCompatibleAlias:
1558     // compatibility-alias is a directive and has no code gen.
1559     break;
1560 
1561   case Decl::LinkageSpec:
1562     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1563     break;
1564 
1565   case Decl::FileScopeAsm: {
1566     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1567     std::string AsmString(AD->getAsmString()->getStrData(),
1568                           AD->getAsmString()->getByteLength());
1569 
1570     const std::string &S = getModule().getModuleInlineAsm();
1571     if (S.empty())
1572       getModule().setModuleInlineAsm(AsmString);
1573     else
1574       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1575     break;
1576   }
1577 
1578   default:
1579     // Make sure we handled everything we should, every other kind is a
1580     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1581     // function. Need to recode Decl::Kind to do that easily.
1582     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1583   }
1584 }
1585