1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeNVPTX.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/FileManager.h" 42 #include "clang/Basic/Module.h" 43 #include "clang/Basic/SourceManager.h" 44 #include "clang/Basic/TargetInfo.h" 45 #include "clang/Basic/Version.h" 46 #include "clang/CodeGen/ConstantInitBuilder.h" 47 #include "clang/Frontend/FrontendDiagnostic.h" 48 #include "llvm/ADT/StringSwitch.h" 49 #include "llvm/ADT/Triple.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 52 #include "llvm/IR/CallingConv.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ProfileSummary.h" 58 #include "llvm/ProfileData/InstrProfReader.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/ConvertUTF.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/MD5.h" 64 #include "llvm/Support/TimeProfiler.h" 65 66 using namespace clang; 67 using namespace CodeGen; 68 69 static llvm::cl::opt<bool> LimitedCoverage( 70 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 71 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 72 llvm::cl::init(false)); 73 74 static const char AnnotationSection[] = "llvm.metadata"; 75 76 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 77 switch (CGM.getTarget().getCXXABI().getKind()) { 78 case TargetCXXABI::Fuchsia: 79 case TargetCXXABI::GenericAArch64: 80 case TargetCXXABI::GenericARM: 81 case TargetCXXABI::iOS: 82 case TargetCXXABI::iOS64: 83 case TargetCXXABI::WatchOS: 84 case TargetCXXABI::GenericMIPS: 85 case TargetCXXABI::GenericItanium: 86 case TargetCXXABI::WebAssembly: 87 case TargetCXXABI::XL: 88 return CreateItaniumCXXABI(CGM); 89 case TargetCXXABI::Microsoft: 90 return CreateMicrosoftCXXABI(CGM); 91 } 92 93 llvm_unreachable("invalid C++ ABI kind"); 94 } 95 96 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 97 const PreprocessorOptions &PPO, 98 const CodeGenOptions &CGO, llvm::Module &M, 99 DiagnosticsEngine &diags, 100 CoverageSourceInfo *CoverageInfo) 101 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 102 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 103 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 104 VMContext(M.getContext()), Types(*this), VTables(*this), 105 SanitizerMD(new SanitizerMetadata(*this)) { 106 107 // Initialize the type cache. 108 llvm::LLVMContext &LLVMContext = M.getContext(); 109 VoidTy = llvm::Type::getVoidTy(LLVMContext); 110 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 111 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 112 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 113 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 114 HalfTy = llvm::Type::getHalfTy(LLVMContext); 115 FloatTy = llvm::Type::getFloatTy(LLVMContext); 116 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 117 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 118 PointerAlignInBytes = 119 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 120 SizeSizeInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 122 IntAlignInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 124 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 125 IntPtrTy = llvm::IntegerType::get(LLVMContext, 126 C.getTargetInfo().getMaxPointerWidth()); 127 Int8PtrTy = Int8Ty->getPointerTo(0); 128 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 129 AllocaInt8PtrTy = Int8Ty->getPointerTo( 130 M.getDataLayout().getAllocaAddrSpace()); 131 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 132 133 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 134 135 if (LangOpts.ObjC) 136 createObjCRuntime(); 137 if (LangOpts.OpenCL) 138 createOpenCLRuntime(); 139 if (LangOpts.OpenMP) 140 createOpenMPRuntime(); 141 if (LangOpts.CUDA) 142 createCUDARuntime(); 143 144 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 145 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 146 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 147 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 148 getCXXABI().getMangleContext())); 149 150 // If debug info or coverage generation is enabled, create the CGDebugInfo 151 // object. 152 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 153 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 154 DebugInfo.reset(new CGDebugInfo(*this)); 155 156 Block.GlobalUniqueCount = 0; 157 158 if (C.getLangOpts().ObjC) 159 ObjCData.reset(new ObjCEntrypoints()); 160 161 if (CodeGenOpts.hasProfileClangUse()) { 162 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 163 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 164 if (auto E = ReaderOrErr.takeError()) { 165 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 166 "Could not read profile %0: %1"); 167 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 168 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 169 << EI.message(); 170 }); 171 } else 172 PGOReader = std::move(ReaderOrErr.get()); 173 } 174 175 // If coverage mapping generation is enabled, create the 176 // CoverageMappingModuleGen object. 177 if (CodeGenOpts.CoverageMapping) 178 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 179 } 180 181 CodeGenModule::~CodeGenModule() {} 182 183 void CodeGenModule::createObjCRuntime() { 184 // This is just isGNUFamily(), but we want to force implementors of 185 // new ABIs to decide how best to do this. 186 switch (LangOpts.ObjCRuntime.getKind()) { 187 case ObjCRuntime::GNUstep: 188 case ObjCRuntime::GCC: 189 case ObjCRuntime::ObjFW: 190 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 191 return; 192 193 case ObjCRuntime::FragileMacOSX: 194 case ObjCRuntime::MacOSX: 195 case ObjCRuntime::iOS: 196 case ObjCRuntime::WatchOS: 197 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 198 return; 199 } 200 llvm_unreachable("bad runtime kind"); 201 } 202 203 void CodeGenModule::createOpenCLRuntime() { 204 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 205 } 206 207 void CodeGenModule::createOpenMPRuntime() { 208 // Select a specialized code generation class based on the target, if any. 209 // If it does not exist use the default implementation. 210 switch (getTriple().getArch()) { 211 case llvm::Triple::nvptx: 212 case llvm::Triple::nvptx64: 213 assert(getLangOpts().OpenMPIsDevice && 214 "OpenMP NVPTX is only prepared to deal with device code."); 215 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 216 break; 217 default: 218 if (LangOpts.OpenMPSimd) 219 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 220 else 221 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 222 break; 223 } 224 225 // The OpenMP-IR-Builder should eventually replace the above runtime codegens 226 // but we are not there yet so they both reside in CGModule for now and the 227 // OpenMP-IR-Builder is opt-in only. 228 if (LangOpts.OpenMPIRBuilder) { 229 OMPBuilder.reset(new llvm::OpenMPIRBuilder(TheModule)); 230 OMPBuilder->initialize(); 231 } 232 } 233 234 void CodeGenModule::createCUDARuntime() { 235 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 236 } 237 238 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 239 Replacements[Name] = C; 240 } 241 242 void CodeGenModule::applyReplacements() { 243 for (auto &I : Replacements) { 244 StringRef MangledName = I.first(); 245 llvm::Constant *Replacement = I.second; 246 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 247 if (!Entry) 248 continue; 249 auto *OldF = cast<llvm::Function>(Entry); 250 auto *NewF = dyn_cast<llvm::Function>(Replacement); 251 if (!NewF) { 252 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 253 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 254 } else { 255 auto *CE = cast<llvm::ConstantExpr>(Replacement); 256 assert(CE->getOpcode() == llvm::Instruction::BitCast || 257 CE->getOpcode() == llvm::Instruction::GetElementPtr); 258 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 259 } 260 } 261 262 // Replace old with new, but keep the old order. 263 OldF->replaceAllUsesWith(Replacement); 264 if (NewF) { 265 NewF->removeFromParent(); 266 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 267 NewF); 268 } 269 OldF->eraseFromParent(); 270 } 271 } 272 273 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 274 GlobalValReplacements.push_back(std::make_pair(GV, C)); 275 } 276 277 void CodeGenModule::applyGlobalValReplacements() { 278 for (auto &I : GlobalValReplacements) { 279 llvm::GlobalValue *GV = I.first; 280 llvm::Constant *C = I.second; 281 282 GV->replaceAllUsesWith(C); 283 GV->eraseFromParent(); 284 } 285 } 286 287 // This is only used in aliases that we created and we know they have a 288 // linear structure. 289 static const llvm::GlobalObject *getAliasedGlobal( 290 const llvm::GlobalIndirectSymbol &GIS) { 291 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 292 const llvm::Constant *C = &GIS; 293 for (;;) { 294 C = C->stripPointerCasts(); 295 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 296 return GO; 297 // stripPointerCasts will not walk over weak aliases. 298 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 299 if (!GIS2) 300 return nullptr; 301 if (!Visited.insert(GIS2).second) 302 return nullptr; 303 C = GIS2->getIndirectSymbol(); 304 } 305 } 306 307 void CodeGenModule::checkAliases() { 308 // Check if the constructed aliases are well formed. It is really unfortunate 309 // that we have to do this in CodeGen, but we only construct mangled names 310 // and aliases during codegen. 311 bool Error = false; 312 DiagnosticsEngine &Diags = getDiags(); 313 for (const GlobalDecl &GD : Aliases) { 314 const auto *D = cast<ValueDecl>(GD.getDecl()); 315 SourceLocation Location; 316 bool IsIFunc = D->hasAttr<IFuncAttr>(); 317 if (const Attr *A = D->getDefiningAttr()) 318 Location = A->getLocation(); 319 else 320 llvm_unreachable("Not an alias or ifunc?"); 321 StringRef MangledName = getMangledName(GD); 322 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 323 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 324 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 325 if (!GV) { 326 Error = true; 327 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 328 } else if (GV->isDeclaration()) { 329 Error = true; 330 Diags.Report(Location, diag::err_alias_to_undefined) 331 << IsIFunc << IsIFunc; 332 } else if (IsIFunc) { 333 // Check resolver function type. 334 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 335 GV->getType()->getPointerElementType()); 336 assert(FTy); 337 if (!FTy->getReturnType()->isPointerTy()) 338 Diags.Report(Location, diag::err_ifunc_resolver_return); 339 } 340 341 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 342 llvm::GlobalValue *AliaseeGV; 343 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 344 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 345 else 346 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 347 348 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 349 StringRef AliasSection = SA->getName(); 350 if (AliasSection != AliaseeGV->getSection()) 351 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 352 << AliasSection << IsIFunc << IsIFunc; 353 } 354 355 // We have to handle alias to weak aliases in here. LLVM itself disallows 356 // this since the object semantics would not match the IL one. For 357 // compatibility with gcc we implement it by just pointing the alias 358 // to its aliasee's aliasee. We also warn, since the user is probably 359 // expecting the link to be weak. 360 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 361 if (GA->isInterposable()) { 362 Diags.Report(Location, diag::warn_alias_to_weak_alias) 363 << GV->getName() << GA->getName() << IsIFunc; 364 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 365 GA->getIndirectSymbol(), Alias->getType()); 366 Alias->setIndirectSymbol(Aliasee); 367 } 368 } 369 } 370 if (!Error) 371 return; 372 373 for (const GlobalDecl &GD : Aliases) { 374 StringRef MangledName = getMangledName(GD); 375 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 376 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 377 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 378 Alias->eraseFromParent(); 379 } 380 } 381 382 void CodeGenModule::clear() { 383 DeferredDeclsToEmit.clear(); 384 if (OpenMPRuntime) 385 OpenMPRuntime->clear(); 386 } 387 388 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 389 StringRef MainFile) { 390 if (!hasDiagnostics()) 391 return; 392 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 393 if (MainFile.empty()) 394 MainFile = "<stdin>"; 395 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 396 } else { 397 if (Mismatched > 0) 398 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 399 400 if (Missing > 0) 401 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 402 } 403 } 404 405 void CodeGenModule::Release() { 406 EmitDeferred(); 407 EmitVTablesOpportunistically(); 408 applyGlobalValReplacements(); 409 applyReplacements(); 410 checkAliases(); 411 emitMultiVersionFunctions(); 412 EmitCXXGlobalInitFunc(); 413 EmitCXXGlobalDtorFunc(); 414 registerGlobalDtorsWithAtExit(); 415 EmitCXXThreadLocalInitFunc(); 416 if (ObjCRuntime) 417 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 418 AddGlobalCtor(ObjCInitFunction); 419 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 420 CUDARuntime) { 421 if (llvm::Function *CudaCtorFunction = 422 CUDARuntime->makeModuleCtorFunction()) 423 AddGlobalCtor(CudaCtorFunction); 424 } 425 if (OpenMPRuntime) { 426 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 427 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 428 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 429 } 430 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 431 OpenMPRuntime->clear(); 432 } 433 if (PGOReader) { 434 getModule().setProfileSummary( 435 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 436 llvm::ProfileSummary::PSK_Instr); 437 if (PGOStats.hasDiagnostics()) 438 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 439 } 440 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 441 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 442 EmitGlobalAnnotations(); 443 EmitStaticExternCAliases(); 444 EmitDeferredUnusedCoverageMappings(); 445 if (CoverageMapping) 446 CoverageMapping->emit(); 447 if (CodeGenOpts.SanitizeCfiCrossDso) { 448 CodeGenFunction(*this).EmitCfiCheckFail(); 449 CodeGenFunction(*this).EmitCfiCheckStub(); 450 } 451 emitAtAvailableLinkGuard(); 452 if (Context.getTargetInfo().getTriple().isWasm() && 453 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 454 EmitMainVoidAlias(); 455 } 456 emitLLVMUsed(); 457 if (SanStats) 458 SanStats->finish(); 459 460 if (CodeGenOpts.Autolink && 461 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 462 EmitModuleLinkOptions(); 463 } 464 465 // On ELF we pass the dependent library specifiers directly to the linker 466 // without manipulating them. This is in contrast to other platforms where 467 // they are mapped to a specific linker option by the compiler. This 468 // difference is a result of the greater variety of ELF linkers and the fact 469 // that ELF linkers tend to handle libraries in a more complicated fashion 470 // than on other platforms. This forces us to defer handling the dependent 471 // libs to the linker. 472 // 473 // CUDA/HIP device and host libraries are different. Currently there is no 474 // way to differentiate dependent libraries for host or device. Existing 475 // usage of #pragma comment(lib, *) is intended for host libraries on 476 // Windows. Therefore emit llvm.dependent-libraries only for host. 477 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 478 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 479 for (auto *MD : ELFDependentLibraries) 480 NMD->addOperand(MD); 481 } 482 483 // Record mregparm value now so it is visible through rest of codegen. 484 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 485 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 486 CodeGenOpts.NumRegisterParameters); 487 488 if (CodeGenOpts.DwarfVersion) { 489 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 490 CodeGenOpts.DwarfVersion); 491 } 492 493 if (Context.getLangOpts().SemanticInterposition) 494 // Require various optimization to respect semantic interposition. 495 getModule().setSemanticInterposition(1); 496 497 if (CodeGenOpts.EmitCodeView) { 498 // Indicate that we want CodeView in the metadata. 499 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 500 } 501 if (CodeGenOpts.CodeViewGHash) { 502 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 503 } 504 if (CodeGenOpts.ControlFlowGuard) { 505 // Function ID tables and checks for Control Flow Guard (cfguard=2). 506 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 507 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 508 // Function ID tables for Control Flow Guard (cfguard=1). 509 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 510 } 511 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 512 // We don't support LTO with 2 with different StrictVTablePointers 513 // FIXME: we could support it by stripping all the information introduced 514 // by StrictVTablePointers. 515 516 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 517 518 llvm::Metadata *Ops[2] = { 519 llvm::MDString::get(VMContext, "StrictVTablePointers"), 520 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 521 llvm::Type::getInt32Ty(VMContext), 1))}; 522 523 getModule().addModuleFlag(llvm::Module::Require, 524 "StrictVTablePointersRequirement", 525 llvm::MDNode::get(VMContext, Ops)); 526 } 527 if (DebugInfo) 528 // We support a single version in the linked module. The LLVM 529 // parser will drop debug info with a different version number 530 // (and warn about it, too). 531 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 532 llvm::DEBUG_METADATA_VERSION); 533 534 // We need to record the widths of enums and wchar_t, so that we can generate 535 // the correct build attributes in the ARM backend. wchar_size is also used by 536 // TargetLibraryInfo. 537 uint64_t WCharWidth = 538 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 539 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 540 541 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 542 if ( Arch == llvm::Triple::arm 543 || Arch == llvm::Triple::armeb 544 || Arch == llvm::Triple::thumb 545 || Arch == llvm::Triple::thumbeb) { 546 // The minimum width of an enum in bytes 547 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 548 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 549 } 550 551 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 552 StringRef ABIStr = Target.getABI(); 553 llvm::LLVMContext &Ctx = TheModule.getContext(); 554 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 555 llvm::MDString::get(Ctx, ABIStr)); 556 } 557 558 if (CodeGenOpts.SanitizeCfiCrossDso) { 559 // Indicate that we want cross-DSO control flow integrity checks. 560 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 561 } 562 563 if (CodeGenOpts.WholeProgramVTables) { 564 // Indicate whether VFE was enabled for this module, so that the 565 // vcall_visibility metadata added under whole program vtables is handled 566 // appropriately in the optimizer. 567 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 568 CodeGenOpts.VirtualFunctionElimination); 569 } 570 571 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 572 getModule().addModuleFlag(llvm::Module::Override, 573 "CFI Canonical Jump Tables", 574 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 575 } 576 577 if (CodeGenOpts.CFProtectionReturn && 578 Target.checkCFProtectionReturnSupported(getDiags())) { 579 // Indicate that we want to instrument return control flow protection. 580 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 581 1); 582 } 583 584 if (CodeGenOpts.CFProtectionBranch && 585 Target.checkCFProtectionBranchSupported(getDiags())) { 586 // Indicate that we want to instrument branch control flow protection. 587 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 588 1); 589 } 590 591 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 592 // Indicate whether __nvvm_reflect should be configured to flush denormal 593 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 594 // property.) 595 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 596 CodeGenOpts.FP32DenormalMode.Output != 597 llvm::DenormalMode::IEEE); 598 } 599 600 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 601 if (LangOpts.OpenCL) { 602 EmitOpenCLMetadata(); 603 // Emit SPIR version. 604 if (getTriple().isSPIR()) { 605 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 606 // opencl.spir.version named metadata. 607 // C++ is backwards compatible with OpenCL v2.0. 608 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 609 llvm::Metadata *SPIRVerElts[] = { 610 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 611 Int32Ty, Version / 100)), 612 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 613 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 614 llvm::NamedMDNode *SPIRVerMD = 615 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 616 llvm::LLVMContext &Ctx = TheModule.getContext(); 617 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 618 } 619 } 620 621 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 622 assert(PLevel < 3 && "Invalid PIC Level"); 623 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 624 if (Context.getLangOpts().PIE) 625 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 626 } 627 628 if (getCodeGenOpts().CodeModel.size() > 0) { 629 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 630 .Case("tiny", llvm::CodeModel::Tiny) 631 .Case("small", llvm::CodeModel::Small) 632 .Case("kernel", llvm::CodeModel::Kernel) 633 .Case("medium", llvm::CodeModel::Medium) 634 .Case("large", llvm::CodeModel::Large) 635 .Default(~0u); 636 if (CM != ~0u) { 637 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 638 getModule().setCodeModel(codeModel); 639 } 640 } 641 642 if (CodeGenOpts.NoPLT) 643 getModule().setRtLibUseGOT(); 644 645 SimplifyPersonality(); 646 647 if (getCodeGenOpts().EmitDeclMetadata) 648 EmitDeclMetadata(); 649 650 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 651 EmitCoverageFile(); 652 653 if (DebugInfo) 654 DebugInfo->finalize(); 655 656 if (getCodeGenOpts().EmitVersionIdentMetadata) 657 EmitVersionIdentMetadata(); 658 659 if (!getCodeGenOpts().RecordCommandLine.empty()) 660 EmitCommandLineMetadata(); 661 662 EmitTargetMetadata(); 663 664 EmitBackendOptionsMetadata(getCodeGenOpts()); 665 } 666 667 void CodeGenModule::EmitOpenCLMetadata() { 668 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 669 // opencl.ocl.version named metadata node. 670 // C++ is backwards compatible with OpenCL v2.0. 671 // FIXME: We might need to add CXX version at some point too? 672 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 673 llvm::Metadata *OCLVerElts[] = { 674 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 675 Int32Ty, Version / 100)), 676 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 677 Int32Ty, (Version % 100) / 10))}; 678 llvm::NamedMDNode *OCLVerMD = 679 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 680 llvm::LLVMContext &Ctx = TheModule.getContext(); 681 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 682 } 683 684 void CodeGenModule::EmitBackendOptionsMetadata( 685 const CodeGenOptions CodeGenOpts) { 686 switch (getTriple().getArch()) { 687 default: 688 break; 689 case llvm::Triple::riscv32: 690 case llvm::Triple::riscv64: 691 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 692 CodeGenOpts.SmallDataLimit); 693 break; 694 } 695 } 696 697 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 698 // Make sure that this type is translated. 699 Types.UpdateCompletedType(TD); 700 } 701 702 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 703 // Make sure that this type is translated. 704 Types.RefreshTypeCacheForClass(RD); 705 } 706 707 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 708 if (!TBAA) 709 return nullptr; 710 return TBAA->getTypeInfo(QTy); 711 } 712 713 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 714 if (!TBAA) 715 return TBAAAccessInfo(); 716 if (getLangOpts().CUDAIsDevice) { 717 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 718 // access info. 719 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 720 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 721 nullptr) 722 return TBAAAccessInfo(); 723 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 724 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 725 nullptr) 726 return TBAAAccessInfo(); 727 } 728 } 729 return TBAA->getAccessInfo(AccessType); 730 } 731 732 TBAAAccessInfo 733 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 734 if (!TBAA) 735 return TBAAAccessInfo(); 736 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 737 } 738 739 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 740 if (!TBAA) 741 return nullptr; 742 return TBAA->getTBAAStructInfo(QTy); 743 } 744 745 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 746 if (!TBAA) 747 return nullptr; 748 return TBAA->getBaseTypeInfo(QTy); 749 } 750 751 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 752 if (!TBAA) 753 return nullptr; 754 return TBAA->getAccessTagInfo(Info); 755 } 756 757 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 758 TBAAAccessInfo TargetInfo) { 759 if (!TBAA) 760 return TBAAAccessInfo(); 761 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 762 } 763 764 TBAAAccessInfo 765 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 766 TBAAAccessInfo InfoB) { 767 if (!TBAA) 768 return TBAAAccessInfo(); 769 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 770 } 771 772 TBAAAccessInfo 773 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 774 TBAAAccessInfo SrcInfo) { 775 if (!TBAA) 776 return TBAAAccessInfo(); 777 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 778 } 779 780 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 781 TBAAAccessInfo TBAAInfo) { 782 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 783 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 784 } 785 786 void CodeGenModule::DecorateInstructionWithInvariantGroup( 787 llvm::Instruction *I, const CXXRecordDecl *RD) { 788 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 789 llvm::MDNode::get(getLLVMContext(), {})); 790 } 791 792 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 793 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 794 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 795 } 796 797 /// ErrorUnsupported - Print out an error that codegen doesn't support the 798 /// specified stmt yet. 799 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 800 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 801 "cannot compile this %0 yet"); 802 std::string Msg = Type; 803 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 804 << Msg << S->getSourceRange(); 805 } 806 807 /// ErrorUnsupported - Print out an error that codegen doesn't support the 808 /// specified decl yet. 809 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 810 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 811 "cannot compile this %0 yet"); 812 std::string Msg = Type; 813 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 814 } 815 816 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 817 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 818 } 819 820 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 821 const NamedDecl *D) const { 822 if (GV->hasDLLImportStorageClass()) 823 return; 824 // Internal definitions always have default visibility. 825 if (GV->hasLocalLinkage()) { 826 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 827 return; 828 } 829 if (!D) 830 return; 831 // Set visibility for definitions, and for declarations if requested globally 832 // or set explicitly. 833 LinkageInfo LV = D->getLinkageAndVisibility(); 834 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 835 !GV->isDeclarationForLinker()) 836 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 837 } 838 839 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 840 llvm::GlobalValue *GV) { 841 if (GV->hasLocalLinkage()) 842 return true; 843 844 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 845 return true; 846 847 // DLLImport explicitly marks the GV as external. 848 if (GV->hasDLLImportStorageClass()) 849 return false; 850 851 const llvm::Triple &TT = CGM.getTriple(); 852 if (TT.isWindowsGNUEnvironment()) { 853 // In MinGW, variables without DLLImport can still be automatically 854 // imported from a DLL by the linker; don't mark variables that 855 // potentially could come from another DLL as DSO local. 856 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 857 !GV->isThreadLocal()) 858 return false; 859 } 860 861 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 862 // remain unresolved in the link, they can be resolved to zero, which is 863 // outside the current DSO. 864 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 865 return false; 866 867 // Every other GV is local on COFF. 868 // Make an exception for windows OS in the triple: Some firmware builds use 869 // *-win32-macho triples. This (accidentally?) produced windows relocations 870 // without GOT tables in older clang versions; Keep this behaviour. 871 // FIXME: even thread local variables? 872 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 873 return true; 874 875 // Only handle COFF and ELF for now. 876 if (!TT.isOSBinFormatELF()) 877 return false; 878 879 // If this is not an executable, don't assume anything is local. 880 const auto &CGOpts = CGM.getCodeGenOpts(); 881 llvm::Reloc::Model RM = CGOpts.RelocationModel; 882 const auto &LOpts = CGM.getLangOpts(); 883 if (RM != llvm::Reloc::Static && !LOpts.PIE) 884 return false; 885 886 // A definition cannot be preempted from an executable. 887 if (!GV->isDeclarationForLinker()) 888 return true; 889 890 // Most PIC code sequences that assume that a symbol is local cannot produce a 891 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 892 // depended, it seems worth it to handle it here. 893 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 894 return false; 895 896 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 897 llvm::Triple::ArchType Arch = TT.getArch(); 898 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 899 Arch == llvm::Triple::ppc64le) 900 return false; 901 902 // If we can use copy relocations we can assume it is local. 903 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 904 if (!Var->isThreadLocal() && 905 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 906 return true; 907 908 // If we can use a plt entry as the symbol address we can assume it 909 // is local. 910 // FIXME: This should work for PIE, but the gold linker doesn't support it. 911 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 912 return true; 913 914 // Otherwise don't assume it is local. 915 return false; 916 } 917 918 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 919 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 920 } 921 922 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 923 GlobalDecl GD) const { 924 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 925 // C++ destructors have a few C++ ABI specific special cases. 926 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 927 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 928 return; 929 } 930 setDLLImportDLLExport(GV, D); 931 } 932 933 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 934 const NamedDecl *D) const { 935 if (D && D->isExternallyVisible()) { 936 if (D->hasAttr<DLLImportAttr>()) 937 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 938 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 939 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 940 } 941 } 942 943 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 944 GlobalDecl GD) const { 945 setDLLImportDLLExport(GV, GD); 946 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 947 } 948 949 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 950 const NamedDecl *D) const { 951 setDLLImportDLLExport(GV, D); 952 setGVPropertiesAux(GV, D); 953 } 954 955 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 956 const NamedDecl *D) const { 957 setGlobalVisibility(GV, D); 958 setDSOLocal(GV); 959 GV->setPartition(CodeGenOpts.SymbolPartition); 960 } 961 962 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 963 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 964 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 965 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 966 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 967 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 968 } 969 970 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 971 CodeGenOptions::TLSModel M) { 972 switch (M) { 973 case CodeGenOptions::GeneralDynamicTLSModel: 974 return llvm::GlobalVariable::GeneralDynamicTLSModel; 975 case CodeGenOptions::LocalDynamicTLSModel: 976 return llvm::GlobalVariable::LocalDynamicTLSModel; 977 case CodeGenOptions::InitialExecTLSModel: 978 return llvm::GlobalVariable::InitialExecTLSModel; 979 case CodeGenOptions::LocalExecTLSModel: 980 return llvm::GlobalVariable::LocalExecTLSModel; 981 } 982 llvm_unreachable("Invalid TLS model!"); 983 } 984 985 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 986 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 987 988 llvm::GlobalValue::ThreadLocalMode TLM; 989 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 990 991 // Override the TLS model if it is explicitly specified. 992 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 993 TLM = GetLLVMTLSModel(Attr->getModel()); 994 } 995 996 GV->setThreadLocalMode(TLM); 997 } 998 999 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1000 StringRef Name) { 1001 const TargetInfo &Target = CGM.getTarget(); 1002 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1003 } 1004 1005 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1006 const CPUSpecificAttr *Attr, 1007 unsigned CPUIndex, 1008 raw_ostream &Out) { 1009 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1010 // supported. 1011 if (Attr) 1012 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1013 else if (CGM.getTarget().supportsIFunc()) 1014 Out << ".resolver"; 1015 } 1016 1017 static void AppendTargetMangling(const CodeGenModule &CGM, 1018 const TargetAttr *Attr, raw_ostream &Out) { 1019 if (Attr->isDefaultVersion()) 1020 return; 1021 1022 Out << '.'; 1023 const TargetInfo &Target = CGM.getTarget(); 1024 ParsedTargetAttr Info = 1025 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1026 // Multiversioning doesn't allow "no-${feature}", so we can 1027 // only have "+" prefixes here. 1028 assert(LHS.startswith("+") && RHS.startswith("+") && 1029 "Features should always have a prefix."); 1030 return Target.multiVersionSortPriority(LHS.substr(1)) > 1031 Target.multiVersionSortPriority(RHS.substr(1)); 1032 }); 1033 1034 bool IsFirst = true; 1035 1036 if (!Info.Architecture.empty()) { 1037 IsFirst = false; 1038 Out << "arch_" << Info.Architecture; 1039 } 1040 1041 for (StringRef Feat : Info.Features) { 1042 if (!IsFirst) 1043 Out << '_'; 1044 IsFirst = false; 1045 Out << Feat.substr(1); 1046 } 1047 } 1048 1049 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 1050 const NamedDecl *ND, 1051 bool OmitMultiVersionMangling = false) { 1052 SmallString<256> Buffer; 1053 llvm::raw_svector_ostream Out(Buffer); 1054 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1055 if (MC.shouldMangleDeclName(ND)) 1056 MC.mangleName(GD.getWithDecl(ND), Out); 1057 else { 1058 IdentifierInfo *II = ND->getIdentifier(); 1059 assert(II && "Attempt to mangle unnamed decl."); 1060 const auto *FD = dyn_cast<FunctionDecl>(ND); 1061 1062 if (FD && 1063 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1064 Out << "__regcall3__" << II->getName(); 1065 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1066 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1067 Out << "__device_stub__" << II->getName(); 1068 } else { 1069 Out << II->getName(); 1070 } 1071 } 1072 1073 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1074 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1075 switch (FD->getMultiVersionKind()) { 1076 case MultiVersionKind::CPUDispatch: 1077 case MultiVersionKind::CPUSpecific: 1078 AppendCPUSpecificCPUDispatchMangling(CGM, 1079 FD->getAttr<CPUSpecificAttr>(), 1080 GD.getMultiVersionIndex(), Out); 1081 break; 1082 case MultiVersionKind::Target: 1083 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1084 break; 1085 case MultiVersionKind::None: 1086 llvm_unreachable("None multiversion type isn't valid here"); 1087 } 1088 } 1089 1090 return std::string(Out.str()); 1091 } 1092 1093 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1094 const FunctionDecl *FD) { 1095 if (!FD->isMultiVersion()) 1096 return; 1097 1098 // Get the name of what this would be without the 'target' attribute. This 1099 // allows us to lookup the version that was emitted when this wasn't a 1100 // multiversion function. 1101 std::string NonTargetName = 1102 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1103 GlobalDecl OtherGD; 1104 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1105 assert(OtherGD.getCanonicalDecl() 1106 .getDecl() 1107 ->getAsFunction() 1108 ->isMultiVersion() && 1109 "Other GD should now be a multiversioned function"); 1110 // OtherFD is the version of this function that was mangled BEFORE 1111 // becoming a MultiVersion function. It potentially needs to be updated. 1112 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1113 .getDecl() 1114 ->getAsFunction() 1115 ->getMostRecentDecl(); 1116 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1117 // This is so that if the initial version was already the 'default' 1118 // version, we don't try to update it. 1119 if (OtherName != NonTargetName) { 1120 // Remove instead of erase, since others may have stored the StringRef 1121 // to this. 1122 const auto ExistingRecord = Manglings.find(NonTargetName); 1123 if (ExistingRecord != std::end(Manglings)) 1124 Manglings.remove(&(*ExistingRecord)); 1125 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1126 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1127 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1128 Entry->setName(OtherName); 1129 } 1130 } 1131 } 1132 1133 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1134 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1135 1136 // Some ABIs don't have constructor variants. Make sure that base and 1137 // complete constructors get mangled the same. 1138 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1139 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1140 CXXCtorType OrigCtorType = GD.getCtorType(); 1141 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1142 if (OrigCtorType == Ctor_Base) 1143 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1144 } 1145 } 1146 1147 auto FoundName = MangledDeclNames.find(CanonicalGD); 1148 if (FoundName != MangledDeclNames.end()) 1149 return FoundName->second; 1150 1151 // Keep the first result in the case of a mangling collision. 1152 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1153 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1154 1155 // Ensure either we have different ABIs between host and device compilations, 1156 // says host compilation following MSVC ABI but device compilation follows 1157 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1158 // mangling should be the same after name stubbing. The later checking is 1159 // very important as the device kernel name being mangled in host-compilation 1160 // is used to resolve the device binaries to be executed. Inconsistent naming 1161 // result in undefined behavior. Even though we cannot check that naming 1162 // directly between host- and device-compilations, the host- and 1163 // device-mangling in host compilation could help catching certain ones. 1164 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1165 getLangOpts().CUDAIsDevice || 1166 (getContext().getAuxTargetInfo() && 1167 (getContext().getAuxTargetInfo()->getCXXABI() != 1168 getContext().getTargetInfo().getCXXABI())) || 1169 getCUDARuntime().getDeviceSideName(ND) == 1170 getMangledNameImpl( 1171 *this, 1172 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1173 ND)); 1174 1175 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1176 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1177 } 1178 1179 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1180 const BlockDecl *BD) { 1181 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1182 const Decl *D = GD.getDecl(); 1183 1184 SmallString<256> Buffer; 1185 llvm::raw_svector_ostream Out(Buffer); 1186 if (!D) 1187 MangleCtx.mangleGlobalBlock(BD, 1188 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1189 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1190 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1191 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1192 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1193 else 1194 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1195 1196 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1197 return Result.first->first(); 1198 } 1199 1200 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1201 return getModule().getNamedValue(Name); 1202 } 1203 1204 /// AddGlobalCtor - Add a function to the list that will be called before 1205 /// main() runs. 1206 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1207 llvm::Constant *AssociatedData) { 1208 // FIXME: Type coercion of void()* types. 1209 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1210 } 1211 1212 /// AddGlobalDtor - Add a function to the list that will be called 1213 /// when the module is unloaded. 1214 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1215 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1216 DtorsUsingAtExit[Priority].push_back(Dtor); 1217 return; 1218 } 1219 1220 // FIXME: Type coercion of void()* types. 1221 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1222 } 1223 1224 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1225 if (Fns.empty()) return; 1226 1227 // Ctor function type is void()*. 1228 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1229 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1230 TheModule.getDataLayout().getProgramAddressSpace()); 1231 1232 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1233 llvm::StructType *CtorStructTy = llvm::StructType::get( 1234 Int32Ty, CtorPFTy, VoidPtrTy); 1235 1236 // Construct the constructor and destructor arrays. 1237 ConstantInitBuilder builder(*this); 1238 auto ctors = builder.beginArray(CtorStructTy); 1239 for (const auto &I : Fns) { 1240 auto ctor = ctors.beginStruct(CtorStructTy); 1241 ctor.addInt(Int32Ty, I.Priority); 1242 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1243 if (I.AssociatedData) 1244 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1245 else 1246 ctor.addNullPointer(VoidPtrTy); 1247 ctor.finishAndAddTo(ctors); 1248 } 1249 1250 auto list = 1251 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1252 /*constant*/ false, 1253 llvm::GlobalValue::AppendingLinkage); 1254 1255 // The LTO linker doesn't seem to like it when we set an alignment 1256 // on appending variables. Take it off as a workaround. 1257 list->setAlignment(llvm::None); 1258 1259 Fns.clear(); 1260 } 1261 1262 llvm::GlobalValue::LinkageTypes 1263 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1264 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1265 1266 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1267 1268 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1269 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1270 1271 if (isa<CXXConstructorDecl>(D) && 1272 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1273 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1274 // Our approach to inheriting constructors is fundamentally different from 1275 // that used by the MS ABI, so keep our inheriting constructor thunks 1276 // internal rather than trying to pick an unambiguous mangling for them. 1277 return llvm::GlobalValue::InternalLinkage; 1278 } 1279 1280 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1281 } 1282 1283 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1284 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1285 if (!MDS) return nullptr; 1286 1287 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1288 } 1289 1290 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1291 const CGFunctionInfo &Info, 1292 llvm::Function *F) { 1293 unsigned CallingConv; 1294 llvm::AttributeList PAL; 1295 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1296 F->setAttributes(PAL); 1297 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1298 } 1299 1300 static void removeImageAccessQualifier(std::string& TyName) { 1301 std::string ReadOnlyQual("__read_only"); 1302 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1303 if (ReadOnlyPos != std::string::npos) 1304 // "+ 1" for the space after access qualifier. 1305 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1306 else { 1307 std::string WriteOnlyQual("__write_only"); 1308 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1309 if (WriteOnlyPos != std::string::npos) 1310 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1311 else { 1312 std::string ReadWriteQual("__read_write"); 1313 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1314 if (ReadWritePos != std::string::npos) 1315 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1316 } 1317 } 1318 } 1319 1320 // Returns the address space id that should be produced to the 1321 // kernel_arg_addr_space metadata. This is always fixed to the ids 1322 // as specified in the SPIR 2.0 specification in order to differentiate 1323 // for example in clGetKernelArgInfo() implementation between the address 1324 // spaces with targets without unique mapping to the OpenCL address spaces 1325 // (basically all single AS CPUs). 1326 static unsigned ArgInfoAddressSpace(LangAS AS) { 1327 switch (AS) { 1328 case LangAS::opencl_global: return 1; 1329 case LangAS::opencl_constant: return 2; 1330 case LangAS::opencl_local: return 3; 1331 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 1332 default: 1333 return 0; // Assume private. 1334 } 1335 } 1336 1337 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1338 const FunctionDecl *FD, 1339 CodeGenFunction *CGF) { 1340 assert(((FD && CGF) || (!FD && !CGF)) && 1341 "Incorrect use - FD and CGF should either be both null or not!"); 1342 // Create MDNodes that represent the kernel arg metadata. 1343 // Each MDNode is a list in the form of "key", N number of values which is 1344 // the same number of values as their are kernel arguments. 1345 1346 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1347 1348 // MDNode for the kernel argument address space qualifiers. 1349 SmallVector<llvm::Metadata *, 8> addressQuals; 1350 1351 // MDNode for the kernel argument access qualifiers (images only). 1352 SmallVector<llvm::Metadata *, 8> accessQuals; 1353 1354 // MDNode for the kernel argument type names. 1355 SmallVector<llvm::Metadata *, 8> argTypeNames; 1356 1357 // MDNode for the kernel argument base type names. 1358 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1359 1360 // MDNode for the kernel argument type qualifiers. 1361 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1362 1363 // MDNode for the kernel argument names. 1364 SmallVector<llvm::Metadata *, 8> argNames; 1365 1366 if (FD && CGF) 1367 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1368 const ParmVarDecl *parm = FD->getParamDecl(i); 1369 QualType ty = parm->getType(); 1370 std::string typeQuals; 1371 1372 if (ty->isPointerType()) { 1373 QualType pointeeTy = ty->getPointeeType(); 1374 1375 // Get address qualifier. 1376 addressQuals.push_back( 1377 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1378 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1379 1380 // Get argument type name. 1381 std::string typeName = 1382 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1383 1384 // Turn "unsigned type" to "utype" 1385 std::string::size_type pos = typeName.find("unsigned"); 1386 if (pointeeTy.isCanonical() && pos != std::string::npos) 1387 typeName.erase(pos + 1, 8); 1388 1389 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1390 1391 std::string baseTypeName = 1392 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1393 Policy) + 1394 "*"; 1395 1396 // Turn "unsigned type" to "utype" 1397 pos = baseTypeName.find("unsigned"); 1398 if (pos != std::string::npos) 1399 baseTypeName.erase(pos + 1, 8); 1400 1401 argBaseTypeNames.push_back( 1402 llvm::MDString::get(VMContext, baseTypeName)); 1403 1404 // Get argument type qualifiers: 1405 if (ty.isRestrictQualified()) 1406 typeQuals = "restrict"; 1407 if (pointeeTy.isConstQualified() || 1408 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1409 typeQuals += typeQuals.empty() ? "const" : " const"; 1410 if (pointeeTy.isVolatileQualified()) 1411 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1412 } else { 1413 uint32_t AddrSpc = 0; 1414 bool isPipe = ty->isPipeType(); 1415 if (ty->isImageType() || isPipe) 1416 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1417 1418 addressQuals.push_back( 1419 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1420 1421 // Get argument type name. 1422 std::string typeName; 1423 if (isPipe) 1424 typeName = ty.getCanonicalType() 1425 ->castAs<PipeType>() 1426 ->getElementType() 1427 .getAsString(Policy); 1428 else 1429 typeName = ty.getUnqualifiedType().getAsString(Policy); 1430 1431 // Turn "unsigned type" to "utype" 1432 std::string::size_type pos = typeName.find("unsigned"); 1433 if (ty.isCanonical() && pos != std::string::npos) 1434 typeName.erase(pos + 1, 8); 1435 1436 std::string baseTypeName; 1437 if (isPipe) 1438 baseTypeName = ty.getCanonicalType() 1439 ->castAs<PipeType>() 1440 ->getElementType() 1441 .getCanonicalType() 1442 .getAsString(Policy); 1443 else 1444 baseTypeName = 1445 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1446 1447 // Remove access qualifiers on images 1448 // (as they are inseparable from type in clang implementation, 1449 // but OpenCL spec provides a special query to get access qualifier 1450 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1451 if (ty->isImageType()) { 1452 removeImageAccessQualifier(typeName); 1453 removeImageAccessQualifier(baseTypeName); 1454 } 1455 1456 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1457 1458 // Turn "unsigned type" to "utype" 1459 pos = baseTypeName.find("unsigned"); 1460 if (pos != std::string::npos) 1461 baseTypeName.erase(pos + 1, 8); 1462 1463 argBaseTypeNames.push_back( 1464 llvm::MDString::get(VMContext, baseTypeName)); 1465 1466 if (isPipe) 1467 typeQuals = "pipe"; 1468 } 1469 1470 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1471 1472 // Get image and pipe access qualifier: 1473 if (ty->isImageType() || ty->isPipeType()) { 1474 const Decl *PDecl = parm; 1475 if (auto *TD = dyn_cast<TypedefType>(ty)) 1476 PDecl = TD->getDecl(); 1477 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1478 if (A && A->isWriteOnly()) 1479 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1480 else if (A && A->isReadWrite()) 1481 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1482 else 1483 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1484 } else 1485 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1486 1487 // Get argument name. 1488 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1489 } 1490 1491 Fn->setMetadata("kernel_arg_addr_space", 1492 llvm::MDNode::get(VMContext, addressQuals)); 1493 Fn->setMetadata("kernel_arg_access_qual", 1494 llvm::MDNode::get(VMContext, accessQuals)); 1495 Fn->setMetadata("kernel_arg_type", 1496 llvm::MDNode::get(VMContext, argTypeNames)); 1497 Fn->setMetadata("kernel_arg_base_type", 1498 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1499 Fn->setMetadata("kernel_arg_type_qual", 1500 llvm::MDNode::get(VMContext, argTypeQuals)); 1501 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1502 Fn->setMetadata("kernel_arg_name", 1503 llvm::MDNode::get(VMContext, argNames)); 1504 } 1505 1506 /// Determines whether the language options require us to model 1507 /// unwind exceptions. We treat -fexceptions as mandating this 1508 /// except under the fragile ObjC ABI with only ObjC exceptions 1509 /// enabled. This means, for example, that C with -fexceptions 1510 /// enables this. 1511 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1512 // If exceptions are completely disabled, obviously this is false. 1513 if (!LangOpts.Exceptions) return false; 1514 1515 // If C++ exceptions are enabled, this is true. 1516 if (LangOpts.CXXExceptions) return true; 1517 1518 // If ObjC exceptions are enabled, this depends on the ABI. 1519 if (LangOpts.ObjCExceptions) { 1520 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1521 } 1522 1523 return true; 1524 } 1525 1526 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1527 const CXXMethodDecl *MD) { 1528 // Check that the type metadata can ever actually be used by a call. 1529 if (!CGM.getCodeGenOpts().LTOUnit || 1530 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1531 return false; 1532 1533 // Only functions whose address can be taken with a member function pointer 1534 // need this sort of type metadata. 1535 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1536 !isa<CXXDestructorDecl>(MD); 1537 } 1538 1539 std::vector<const CXXRecordDecl *> 1540 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1541 llvm::SetVector<const CXXRecordDecl *> MostBases; 1542 1543 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1544 CollectMostBases = [&](const CXXRecordDecl *RD) { 1545 if (RD->getNumBases() == 0) 1546 MostBases.insert(RD); 1547 for (const CXXBaseSpecifier &B : RD->bases()) 1548 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1549 }; 1550 CollectMostBases(RD); 1551 return MostBases.takeVector(); 1552 } 1553 1554 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1555 llvm::Function *F) { 1556 llvm::AttrBuilder B; 1557 1558 if (CodeGenOpts.UnwindTables) 1559 B.addAttribute(llvm::Attribute::UWTable); 1560 1561 if (CodeGenOpts.StackClashProtector) 1562 B.addAttribute("probe-stack", "inline-asm"); 1563 1564 if (!hasUnwindExceptions(LangOpts)) 1565 B.addAttribute(llvm::Attribute::NoUnwind); 1566 1567 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1568 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1569 B.addAttribute(llvm::Attribute::StackProtect); 1570 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1571 B.addAttribute(llvm::Attribute::StackProtectStrong); 1572 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1573 B.addAttribute(llvm::Attribute::StackProtectReq); 1574 } 1575 1576 if (!D) { 1577 // If we don't have a declaration to control inlining, the function isn't 1578 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1579 // disabled, mark the function as noinline. 1580 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1581 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1582 B.addAttribute(llvm::Attribute::NoInline); 1583 1584 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1585 return; 1586 } 1587 1588 // Track whether we need to add the optnone LLVM attribute, 1589 // starting with the default for this optimization level. 1590 bool ShouldAddOptNone = 1591 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1592 // We can't add optnone in the following cases, it won't pass the verifier. 1593 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1594 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1595 1596 // Add optnone, but do so only if the function isn't always_inline. 1597 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1598 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1599 B.addAttribute(llvm::Attribute::OptimizeNone); 1600 1601 // OptimizeNone implies noinline; we should not be inlining such functions. 1602 B.addAttribute(llvm::Attribute::NoInline); 1603 1604 // We still need to handle naked functions even though optnone subsumes 1605 // much of their semantics. 1606 if (D->hasAttr<NakedAttr>()) 1607 B.addAttribute(llvm::Attribute::Naked); 1608 1609 // OptimizeNone wins over OptimizeForSize and MinSize. 1610 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1611 F->removeFnAttr(llvm::Attribute::MinSize); 1612 } else if (D->hasAttr<NakedAttr>()) { 1613 // Naked implies noinline: we should not be inlining such functions. 1614 B.addAttribute(llvm::Attribute::Naked); 1615 B.addAttribute(llvm::Attribute::NoInline); 1616 } else if (D->hasAttr<NoDuplicateAttr>()) { 1617 B.addAttribute(llvm::Attribute::NoDuplicate); 1618 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1619 // Add noinline if the function isn't always_inline. 1620 B.addAttribute(llvm::Attribute::NoInline); 1621 } else if (D->hasAttr<AlwaysInlineAttr>() && 1622 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1623 // (noinline wins over always_inline, and we can't specify both in IR) 1624 B.addAttribute(llvm::Attribute::AlwaysInline); 1625 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1626 // If we're not inlining, then force everything that isn't always_inline to 1627 // carry an explicit noinline attribute. 1628 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1629 B.addAttribute(llvm::Attribute::NoInline); 1630 } else { 1631 // Otherwise, propagate the inline hint attribute and potentially use its 1632 // absence to mark things as noinline. 1633 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1634 // Search function and template pattern redeclarations for inline. 1635 auto CheckForInline = [](const FunctionDecl *FD) { 1636 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1637 return Redecl->isInlineSpecified(); 1638 }; 1639 if (any_of(FD->redecls(), CheckRedeclForInline)) 1640 return true; 1641 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1642 if (!Pattern) 1643 return false; 1644 return any_of(Pattern->redecls(), CheckRedeclForInline); 1645 }; 1646 if (CheckForInline(FD)) { 1647 B.addAttribute(llvm::Attribute::InlineHint); 1648 } else if (CodeGenOpts.getInlining() == 1649 CodeGenOptions::OnlyHintInlining && 1650 !FD->isInlined() && 1651 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1652 B.addAttribute(llvm::Attribute::NoInline); 1653 } 1654 } 1655 } 1656 1657 // Add other optimization related attributes if we are optimizing this 1658 // function. 1659 if (!D->hasAttr<OptimizeNoneAttr>()) { 1660 if (D->hasAttr<ColdAttr>()) { 1661 if (!ShouldAddOptNone) 1662 B.addAttribute(llvm::Attribute::OptimizeForSize); 1663 B.addAttribute(llvm::Attribute::Cold); 1664 } 1665 1666 if (D->hasAttr<MinSizeAttr>()) 1667 B.addAttribute(llvm::Attribute::MinSize); 1668 } 1669 1670 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1671 1672 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1673 if (alignment) 1674 F->setAlignment(llvm::Align(alignment)); 1675 1676 if (!D->hasAttr<AlignedAttr>()) 1677 if (LangOpts.FunctionAlignment) 1678 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1679 1680 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1681 // reserve a bit for differentiating between virtual and non-virtual member 1682 // functions. If the current target's C++ ABI requires this and this is a 1683 // member function, set its alignment accordingly. 1684 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1685 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1686 F->setAlignment(llvm::Align(2)); 1687 } 1688 1689 // In the cross-dso CFI mode with canonical jump tables, we want !type 1690 // attributes on definitions only. 1691 if (CodeGenOpts.SanitizeCfiCrossDso && 1692 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1693 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1694 // Skip available_externally functions. They won't be codegen'ed in the 1695 // current module anyway. 1696 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1697 CreateFunctionTypeMetadataForIcall(FD, F); 1698 } 1699 } 1700 1701 // Emit type metadata on member functions for member function pointer checks. 1702 // These are only ever necessary on definitions; we're guaranteed that the 1703 // definition will be present in the LTO unit as a result of LTO visibility. 1704 auto *MD = dyn_cast<CXXMethodDecl>(D); 1705 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1706 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1707 llvm::Metadata *Id = 1708 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1709 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1710 F->addTypeMetadata(0, Id); 1711 } 1712 } 1713 } 1714 1715 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1716 const Decl *D = GD.getDecl(); 1717 if (dyn_cast_or_null<NamedDecl>(D)) 1718 setGVProperties(GV, GD); 1719 else 1720 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1721 1722 if (D && D->hasAttr<UsedAttr>()) 1723 addUsedGlobal(GV); 1724 1725 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1726 const auto *VD = cast<VarDecl>(D); 1727 if (VD->getType().isConstQualified() && 1728 VD->getStorageDuration() == SD_Static) 1729 addUsedGlobal(GV); 1730 } 1731 } 1732 1733 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1734 llvm::AttrBuilder &Attrs) { 1735 // Add target-cpu and target-features attributes to functions. If 1736 // we have a decl for the function and it has a target attribute then 1737 // parse that and add it to the feature set. 1738 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1739 std::vector<std::string> Features; 1740 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1741 FD = FD ? FD->getMostRecentDecl() : FD; 1742 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1743 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1744 bool AddedAttr = false; 1745 if (TD || SD) { 1746 llvm::StringMap<bool> FeatureMap; 1747 getContext().getFunctionFeatureMap(FeatureMap, GD); 1748 1749 // Produce the canonical string for this set of features. 1750 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1751 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1752 1753 // Now add the target-cpu and target-features to the function. 1754 // While we populated the feature map above, we still need to 1755 // get and parse the target attribute so we can get the cpu for 1756 // the function. 1757 if (TD) { 1758 ParsedTargetAttr ParsedAttr = TD->parse(); 1759 if (ParsedAttr.Architecture != "" && 1760 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1761 TargetCPU = ParsedAttr.Architecture; 1762 } 1763 } else { 1764 // Otherwise just add the existing target cpu and target features to the 1765 // function. 1766 Features = getTarget().getTargetOpts().Features; 1767 } 1768 1769 if (TargetCPU != "") { 1770 Attrs.addAttribute("target-cpu", TargetCPU); 1771 AddedAttr = true; 1772 } 1773 if (!Features.empty()) { 1774 llvm::sort(Features); 1775 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1776 AddedAttr = true; 1777 } 1778 1779 return AddedAttr; 1780 } 1781 1782 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1783 llvm::GlobalObject *GO) { 1784 const Decl *D = GD.getDecl(); 1785 SetCommonAttributes(GD, GO); 1786 1787 if (D) { 1788 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1789 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1790 GV->addAttribute("bss-section", SA->getName()); 1791 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1792 GV->addAttribute("data-section", SA->getName()); 1793 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1794 GV->addAttribute("rodata-section", SA->getName()); 1795 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1796 GV->addAttribute("relro-section", SA->getName()); 1797 } 1798 1799 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1800 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1801 if (!D->getAttr<SectionAttr>()) 1802 F->addFnAttr("implicit-section-name", SA->getName()); 1803 1804 llvm::AttrBuilder Attrs; 1805 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1806 // We know that GetCPUAndFeaturesAttributes will always have the 1807 // newest set, since it has the newest possible FunctionDecl, so the 1808 // new ones should replace the old. 1809 F->removeFnAttr("target-cpu"); 1810 F->removeFnAttr("target-features"); 1811 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1812 } 1813 } 1814 1815 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1816 GO->setSection(CSA->getName()); 1817 else if (const auto *SA = D->getAttr<SectionAttr>()) 1818 GO->setSection(SA->getName()); 1819 } 1820 1821 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1822 } 1823 1824 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1825 llvm::Function *F, 1826 const CGFunctionInfo &FI) { 1827 const Decl *D = GD.getDecl(); 1828 SetLLVMFunctionAttributes(GD, FI, F); 1829 SetLLVMFunctionAttributesForDefinition(D, F); 1830 1831 F->setLinkage(llvm::Function::InternalLinkage); 1832 1833 setNonAliasAttributes(GD, F); 1834 } 1835 1836 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1837 // Set linkage and visibility in case we never see a definition. 1838 LinkageInfo LV = ND->getLinkageAndVisibility(); 1839 // Don't set internal linkage on declarations. 1840 // "extern_weak" is overloaded in LLVM; we probably should have 1841 // separate linkage types for this. 1842 if (isExternallyVisible(LV.getLinkage()) && 1843 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1844 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1845 } 1846 1847 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1848 llvm::Function *F) { 1849 // Only if we are checking indirect calls. 1850 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1851 return; 1852 1853 // Non-static class methods are handled via vtable or member function pointer 1854 // checks elsewhere. 1855 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1856 return; 1857 1858 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1859 F->addTypeMetadata(0, MD); 1860 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1861 1862 // Emit a hash-based bit set entry for cross-DSO calls. 1863 if (CodeGenOpts.SanitizeCfiCrossDso) 1864 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1865 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1866 } 1867 1868 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1869 bool IsIncompleteFunction, 1870 bool IsThunk) { 1871 1872 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1873 // If this is an intrinsic function, set the function's attributes 1874 // to the intrinsic's attributes. 1875 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1876 return; 1877 } 1878 1879 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1880 1881 if (!IsIncompleteFunction) 1882 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1883 1884 // Add the Returned attribute for "this", except for iOS 5 and earlier 1885 // where substantial code, including the libstdc++ dylib, was compiled with 1886 // GCC and does not actually return "this". 1887 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1888 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1889 assert(!F->arg_empty() && 1890 F->arg_begin()->getType() 1891 ->canLosslesslyBitCastTo(F->getReturnType()) && 1892 "unexpected this return"); 1893 F->addAttribute(1, llvm::Attribute::Returned); 1894 } 1895 1896 // Only a few attributes are set on declarations; these may later be 1897 // overridden by a definition. 1898 1899 setLinkageForGV(F, FD); 1900 setGVProperties(F, FD); 1901 1902 // Setup target-specific attributes. 1903 if (!IsIncompleteFunction && F->isDeclaration()) 1904 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1905 1906 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1907 F->setSection(CSA->getName()); 1908 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1909 F->setSection(SA->getName()); 1910 1911 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 1912 if (FD->isInlineBuiltinDeclaration()) { 1913 const FunctionDecl *FDBody; 1914 bool HasBody = FD->hasBody(FDBody); 1915 (void)HasBody; 1916 assert(HasBody && "Inline builtin declarations should always have an " 1917 "available body!"); 1918 if (shouldEmitFunction(FDBody)) 1919 F->addAttribute(llvm::AttributeList::FunctionIndex, 1920 llvm::Attribute::NoBuiltin); 1921 } 1922 1923 if (FD->isReplaceableGlobalAllocationFunction()) { 1924 // A replaceable global allocation function does not act like a builtin by 1925 // default, only if it is invoked by a new-expression or delete-expression. 1926 F->addAttribute(llvm::AttributeList::FunctionIndex, 1927 llvm::Attribute::NoBuiltin); 1928 } 1929 1930 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1931 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1932 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1933 if (MD->isVirtual()) 1934 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1935 1936 // Don't emit entries for function declarations in the cross-DSO mode. This 1937 // is handled with better precision by the receiving DSO. But if jump tables 1938 // are non-canonical then we need type metadata in order to produce the local 1939 // jump table. 1940 if (!CodeGenOpts.SanitizeCfiCrossDso || 1941 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 1942 CreateFunctionTypeMetadataForIcall(FD, F); 1943 1944 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1945 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1946 1947 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1948 // Annotate the callback behavior as metadata: 1949 // - The callback callee (as argument number). 1950 // - The callback payloads (as argument numbers). 1951 llvm::LLVMContext &Ctx = F->getContext(); 1952 llvm::MDBuilder MDB(Ctx); 1953 1954 // The payload indices are all but the first one in the encoding. The first 1955 // identifies the callback callee. 1956 int CalleeIdx = *CB->encoding_begin(); 1957 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1958 F->addMetadata(llvm::LLVMContext::MD_callback, 1959 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1960 CalleeIdx, PayloadIndices, 1961 /* VarArgsArePassed */ false)})); 1962 } 1963 } 1964 1965 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1966 assert(!GV->isDeclaration() && 1967 "Only globals with definition can force usage."); 1968 LLVMUsed.emplace_back(GV); 1969 } 1970 1971 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1972 assert(!GV->isDeclaration() && 1973 "Only globals with definition can force usage."); 1974 LLVMCompilerUsed.emplace_back(GV); 1975 } 1976 1977 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1978 std::vector<llvm::WeakTrackingVH> &List) { 1979 // Don't create llvm.used if there is no need. 1980 if (List.empty()) 1981 return; 1982 1983 // Convert List to what ConstantArray needs. 1984 SmallVector<llvm::Constant*, 8> UsedArray; 1985 UsedArray.resize(List.size()); 1986 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1987 UsedArray[i] = 1988 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1989 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1990 } 1991 1992 if (UsedArray.empty()) 1993 return; 1994 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1995 1996 auto *GV = new llvm::GlobalVariable( 1997 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1998 llvm::ConstantArray::get(ATy, UsedArray), Name); 1999 2000 GV->setSection("llvm.metadata"); 2001 } 2002 2003 void CodeGenModule::emitLLVMUsed() { 2004 emitUsed(*this, "llvm.used", LLVMUsed); 2005 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2006 } 2007 2008 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2009 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2010 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2011 } 2012 2013 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2014 llvm::SmallString<32> Opt; 2015 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2016 if (Opt.empty()) 2017 return; 2018 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2019 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2020 } 2021 2022 void CodeGenModule::AddDependentLib(StringRef Lib) { 2023 auto &C = getLLVMContext(); 2024 if (getTarget().getTriple().isOSBinFormatELF()) { 2025 ELFDependentLibraries.push_back( 2026 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2027 return; 2028 } 2029 2030 llvm::SmallString<24> Opt; 2031 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2032 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2033 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2034 } 2035 2036 /// Add link options implied by the given module, including modules 2037 /// it depends on, using a postorder walk. 2038 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2039 SmallVectorImpl<llvm::MDNode *> &Metadata, 2040 llvm::SmallPtrSet<Module *, 16> &Visited) { 2041 // Import this module's parent. 2042 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2043 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2044 } 2045 2046 // Import this module's dependencies. 2047 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2048 if (Visited.insert(Mod->Imports[I - 1]).second) 2049 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2050 } 2051 2052 // Add linker options to link against the libraries/frameworks 2053 // described by this module. 2054 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2055 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2056 2057 // For modules that use export_as for linking, use that module 2058 // name instead. 2059 if (Mod->UseExportAsModuleLinkName) 2060 return; 2061 2062 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2063 // Link against a framework. Frameworks are currently Darwin only, so we 2064 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2065 if (Mod->LinkLibraries[I-1].IsFramework) { 2066 llvm::Metadata *Args[2] = { 2067 llvm::MDString::get(Context, "-framework"), 2068 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2069 2070 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2071 continue; 2072 } 2073 2074 // Link against a library. 2075 if (IsELF) { 2076 llvm::Metadata *Args[2] = { 2077 llvm::MDString::get(Context, "lib"), 2078 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2079 }; 2080 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2081 } else { 2082 llvm::SmallString<24> Opt; 2083 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2084 Mod->LinkLibraries[I - 1].Library, Opt); 2085 auto *OptString = llvm::MDString::get(Context, Opt); 2086 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2087 } 2088 } 2089 } 2090 2091 void CodeGenModule::EmitModuleLinkOptions() { 2092 // Collect the set of all of the modules we want to visit to emit link 2093 // options, which is essentially the imported modules and all of their 2094 // non-explicit child modules. 2095 llvm::SetVector<clang::Module *> LinkModules; 2096 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2097 SmallVector<clang::Module *, 16> Stack; 2098 2099 // Seed the stack with imported modules. 2100 for (Module *M : ImportedModules) { 2101 // Do not add any link flags when an implementation TU of a module imports 2102 // a header of that same module. 2103 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2104 !getLangOpts().isCompilingModule()) 2105 continue; 2106 if (Visited.insert(M).second) 2107 Stack.push_back(M); 2108 } 2109 2110 // Find all of the modules to import, making a little effort to prune 2111 // non-leaf modules. 2112 while (!Stack.empty()) { 2113 clang::Module *Mod = Stack.pop_back_val(); 2114 2115 bool AnyChildren = false; 2116 2117 // Visit the submodules of this module. 2118 for (const auto &SM : Mod->submodules()) { 2119 // Skip explicit children; they need to be explicitly imported to be 2120 // linked against. 2121 if (SM->IsExplicit) 2122 continue; 2123 2124 if (Visited.insert(SM).second) { 2125 Stack.push_back(SM); 2126 AnyChildren = true; 2127 } 2128 } 2129 2130 // We didn't find any children, so add this module to the list of 2131 // modules to link against. 2132 if (!AnyChildren) { 2133 LinkModules.insert(Mod); 2134 } 2135 } 2136 2137 // Add link options for all of the imported modules in reverse topological 2138 // order. We don't do anything to try to order import link flags with respect 2139 // to linker options inserted by things like #pragma comment(). 2140 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2141 Visited.clear(); 2142 for (Module *M : LinkModules) 2143 if (Visited.insert(M).second) 2144 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2145 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2146 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2147 2148 // Add the linker options metadata flag. 2149 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2150 for (auto *MD : LinkerOptionsMetadata) 2151 NMD->addOperand(MD); 2152 } 2153 2154 void CodeGenModule::EmitDeferred() { 2155 // Emit deferred declare target declarations. 2156 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2157 getOpenMPRuntime().emitDeferredTargetDecls(); 2158 2159 // Emit code for any potentially referenced deferred decls. Since a 2160 // previously unused static decl may become used during the generation of code 2161 // for a static function, iterate until no changes are made. 2162 2163 if (!DeferredVTables.empty()) { 2164 EmitDeferredVTables(); 2165 2166 // Emitting a vtable doesn't directly cause more vtables to 2167 // become deferred, although it can cause functions to be 2168 // emitted that then need those vtables. 2169 assert(DeferredVTables.empty()); 2170 } 2171 2172 // Stop if we're out of both deferred vtables and deferred declarations. 2173 if (DeferredDeclsToEmit.empty()) 2174 return; 2175 2176 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2177 // work, it will not interfere with this. 2178 std::vector<GlobalDecl> CurDeclsToEmit; 2179 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2180 2181 for (GlobalDecl &D : CurDeclsToEmit) { 2182 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2183 // to get GlobalValue with exactly the type we need, not something that 2184 // might had been created for another decl with the same mangled name but 2185 // different type. 2186 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2187 GetAddrOfGlobal(D, ForDefinition)); 2188 2189 // In case of different address spaces, we may still get a cast, even with 2190 // IsForDefinition equal to true. Query mangled names table to get 2191 // GlobalValue. 2192 if (!GV) 2193 GV = GetGlobalValue(getMangledName(D)); 2194 2195 // Make sure GetGlobalValue returned non-null. 2196 assert(GV); 2197 2198 // Check to see if we've already emitted this. This is necessary 2199 // for a couple of reasons: first, decls can end up in the 2200 // deferred-decls queue multiple times, and second, decls can end 2201 // up with definitions in unusual ways (e.g. by an extern inline 2202 // function acquiring a strong function redefinition). Just 2203 // ignore these cases. 2204 if (!GV->isDeclaration()) 2205 continue; 2206 2207 // If this is OpenMP, check if it is legal to emit this global normally. 2208 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2209 continue; 2210 2211 // Otherwise, emit the definition and move on to the next one. 2212 EmitGlobalDefinition(D, GV); 2213 2214 // If we found out that we need to emit more decls, do that recursively. 2215 // This has the advantage that the decls are emitted in a DFS and related 2216 // ones are close together, which is convenient for testing. 2217 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2218 EmitDeferred(); 2219 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2220 } 2221 } 2222 } 2223 2224 void CodeGenModule::EmitVTablesOpportunistically() { 2225 // Try to emit external vtables as available_externally if they have emitted 2226 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2227 // is not allowed to create new references to things that need to be emitted 2228 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2229 2230 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2231 && "Only emit opportunistic vtables with optimizations"); 2232 2233 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2234 assert(getVTables().isVTableExternal(RD) && 2235 "This queue should only contain external vtables"); 2236 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2237 VTables.GenerateClassData(RD); 2238 } 2239 OpportunisticVTables.clear(); 2240 } 2241 2242 void CodeGenModule::EmitGlobalAnnotations() { 2243 if (Annotations.empty()) 2244 return; 2245 2246 // Create a new global variable for the ConstantStruct in the Module. 2247 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2248 Annotations[0]->getType(), Annotations.size()), Annotations); 2249 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2250 llvm::GlobalValue::AppendingLinkage, 2251 Array, "llvm.global.annotations"); 2252 gv->setSection(AnnotationSection); 2253 } 2254 2255 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2256 llvm::Constant *&AStr = AnnotationStrings[Str]; 2257 if (AStr) 2258 return AStr; 2259 2260 // Not found yet, create a new global. 2261 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2262 auto *gv = 2263 new llvm::GlobalVariable(getModule(), s->getType(), true, 2264 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2265 gv->setSection(AnnotationSection); 2266 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2267 AStr = gv; 2268 return gv; 2269 } 2270 2271 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2272 SourceManager &SM = getContext().getSourceManager(); 2273 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2274 if (PLoc.isValid()) 2275 return EmitAnnotationString(PLoc.getFilename()); 2276 return EmitAnnotationString(SM.getBufferName(Loc)); 2277 } 2278 2279 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2280 SourceManager &SM = getContext().getSourceManager(); 2281 PresumedLoc PLoc = SM.getPresumedLoc(L); 2282 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2283 SM.getExpansionLineNumber(L); 2284 return llvm::ConstantInt::get(Int32Ty, LineNo); 2285 } 2286 2287 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2288 const AnnotateAttr *AA, 2289 SourceLocation L) { 2290 // Get the globals for file name, annotation, and the line number. 2291 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2292 *UnitGV = EmitAnnotationUnit(L), 2293 *LineNoCst = EmitAnnotationLineNo(L); 2294 2295 llvm::Constant *ASZeroGV = GV; 2296 if (GV->getAddressSpace() != 0) { 2297 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2298 GV, GV->getValueType()->getPointerTo(0)); 2299 } 2300 2301 // Create the ConstantStruct for the global annotation. 2302 llvm::Constant *Fields[4] = { 2303 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2304 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2305 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2306 LineNoCst 2307 }; 2308 return llvm::ConstantStruct::getAnon(Fields); 2309 } 2310 2311 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2312 llvm::GlobalValue *GV) { 2313 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2314 // Get the struct elements for these annotations. 2315 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2316 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2317 } 2318 2319 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2320 llvm::Function *Fn, 2321 SourceLocation Loc) const { 2322 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2323 // Blacklist by function name. 2324 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2325 return true; 2326 // Blacklist by location. 2327 if (Loc.isValid()) 2328 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2329 // If location is unknown, this may be a compiler-generated function. Assume 2330 // it's located in the main file. 2331 auto &SM = Context.getSourceManager(); 2332 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2333 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2334 } 2335 return false; 2336 } 2337 2338 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2339 SourceLocation Loc, QualType Ty, 2340 StringRef Category) const { 2341 // For now globals can be blacklisted only in ASan and KASan. 2342 const SanitizerMask EnabledAsanMask = 2343 LangOpts.Sanitize.Mask & 2344 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2345 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2346 SanitizerKind::MemTag); 2347 if (!EnabledAsanMask) 2348 return false; 2349 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2350 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2351 return true; 2352 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2353 return true; 2354 // Check global type. 2355 if (!Ty.isNull()) { 2356 // Drill down the array types: if global variable of a fixed type is 2357 // blacklisted, we also don't instrument arrays of them. 2358 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2359 Ty = AT->getElementType(); 2360 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2361 // We allow to blacklist only record types (classes, structs etc.) 2362 if (Ty->isRecordType()) { 2363 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2364 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2365 return true; 2366 } 2367 } 2368 return false; 2369 } 2370 2371 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2372 StringRef Category) const { 2373 const auto &XRayFilter = getContext().getXRayFilter(); 2374 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2375 auto Attr = ImbueAttr::NONE; 2376 if (Loc.isValid()) 2377 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2378 if (Attr == ImbueAttr::NONE) 2379 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2380 switch (Attr) { 2381 case ImbueAttr::NONE: 2382 return false; 2383 case ImbueAttr::ALWAYS: 2384 Fn->addFnAttr("function-instrument", "xray-always"); 2385 break; 2386 case ImbueAttr::ALWAYS_ARG1: 2387 Fn->addFnAttr("function-instrument", "xray-always"); 2388 Fn->addFnAttr("xray-log-args", "1"); 2389 break; 2390 case ImbueAttr::NEVER: 2391 Fn->addFnAttr("function-instrument", "xray-never"); 2392 break; 2393 } 2394 return true; 2395 } 2396 2397 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2398 // Never defer when EmitAllDecls is specified. 2399 if (LangOpts.EmitAllDecls) 2400 return true; 2401 2402 if (CodeGenOpts.KeepStaticConsts) { 2403 const auto *VD = dyn_cast<VarDecl>(Global); 2404 if (VD && VD->getType().isConstQualified() && 2405 VD->getStorageDuration() == SD_Static) 2406 return true; 2407 } 2408 2409 return getContext().DeclMustBeEmitted(Global); 2410 } 2411 2412 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2413 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2414 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2415 // Implicit template instantiations may change linkage if they are later 2416 // explicitly instantiated, so they should not be emitted eagerly. 2417 return false; 2418 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2419 // not emit them eagerly unless we sure that the function must be emitted on 2420 // the host. 2421 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2422 !LangOpts.OpenMPIsDevice && 2423 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2424 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2425 return false; 2426 } 2427 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2428 if (Context.getInlineVariableDefinitionKind(VD) == 2429 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2430 // A definition of an inline constexpr static data member may change 2431 // linkage later if it's redeclared outside the class. 2432 return false; 2433 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2434 // codegen for global variables, because they may be marked as threadprivate. 2435 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2436 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2437 !isTypeConstant(Global->getType(), false) && 2438 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2439 return false; 2440 2441 return true; 2442 } 2443 2444 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2445 StringRef Name = getMangledName(GD); 2446 2447 // The UUID descriptor should be pointer aligned. 2448 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2449 2450 // Look for an existing global. 2451 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2452 return ConstantAddress(GV, Alignment); 2453 2454 ConstantEmitter Emitter(*this); 2455 llvm::Constant *Init; 2456 2457 APValue &V = GD->getAsAPValue(); 2458 if (!V.isAbsent()) { 2459 // If possible, emit the APValue version of the initializer. In particular, 2460 // this gets the type of the constant right. 2461 Init = Emitter.emitForInitializer( 2462 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2463 } else { 2464 // As a fallback, directly construct the constant. 2465 // FIXME: This may get padding wrong under esoteric struct layout rules. 2466 // MSVC appears to create a complete type 'struct __s_GUID' that it 2467 // presumably uses to represent these constants. 2468 MSGuidDecl::Parts Parts = GD->getParts(); 2469 llvm::Constant *Fields[4] = { 2470 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2471 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2472 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2473 llvm::ConstantDataArray::getRaw( 2474 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2475 Int8Ty)}; 2476 Init = llvm::ConstantStruct::getAnon(Fields); 2477 } 2478 2479 auto *GV = new llvm::GlobalVariable( 2480 getModule(), Init->getType(), 2481 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2482 if (supportsCOMDAT()) 2483 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2484 setDSOLocal(GV); 2485 2486 llvm::Constant *Addr = GV; 2487 if (!V.isAbsent()) { 2488 Emitter.finalize(GV); 2489 } else { 2490 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2491 Addr = llvm::ConstantExpr::getBitCast( 2492 GV, Ty->getPointerTo(GV->getAddressSpace())); 2493 } 2494 return ConstantAddress(Addr, Alignment); 2495 } 2496 2497 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2498 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2499 assert(AA && "No alias?"); 2500 2501 CharUnits Alignment = getContext().getDeclAlign(VD); 2502 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2503 2504 // See if there is already something with the target's name in the module. 2505 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2506 if (Entry) { 2507 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2508 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2509 return ConstantAddress(Ptr, Alignment); 2510 } 2511 2512 llvm::Constant *Aliasee; 2513 if (isa<llvm::FunctionType>(DeclTy)) 2514 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2515 GlobalDecl(cast<FunctionDecl>(VD)), 2516 /*ForVTable=*/false); 2517 else 2518 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2519 llvm::PointerType::getUnqual(DeclTy), 2520 nullptr); 2521 2522 auto *F = cast<llvm::GlobalValue>(Aliasee); 2523 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2524 WeakRefReferences.insert(F); 2525 2526 return ConstantAddress(Aliasee, Alignment); 2527 } 2528 2529 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2530 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2531 2532 // Weak references don't produce any output by themselves. 2533 if (Global->hasAttr<WeakRefAttr>()) 2534 return; 2535 2536 // If this is an alias definition (which otherwise looks like a declaration) 2537 // emit it now. 2538 if (Global->hasAttr<AliasAttr>()) 2539 return EmitAliasDefinition(GD); 2540 2541 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2542 if (Global->hasAttr<IFuncAttr>()) 2543 return emitIFuncDefinition(GD); 2544 2545 // If this is a cpu_dispatch multiversion function, emit the resolver. 2546 if (Global->hasAttr<CPUDispatchAttr>()) 2547 return emitCPUDispatchDefinition(GD); 2548 2549 // If this is CUDA, be selective about which declarations we emit. 2550 if (LangOpts.CUDA) { 2551 if (LangOpts.CUDAIsDevice) { 2552 if (!Global->hasAttr<CUDADeviceAttr>() && 2553 !Global->hasAttr<CUDAGlobalAttr>() && 2554 !Global->hasAttr<CUDAConstantAttr>() && 2555 !Global->hasAttr<CUDASharedAttr>() && 2556 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2557 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2558 return; 2559 } else { 2560 // We need to emit host-side 'shadows' for all global 2561 // device-side variables because the CUDA runtime needs their 2562 // size and host-side address in order to provide access to 2563 // their device-side incarnations. 2564 2565 // So device-only functions are the only things we skip. 2566 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2567 Global->hasAttr<CUDADeviceAttr>()) 2568 return; 2569 2570 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2571 "Expected Variable or Function"); 2572 } 2573 } 2574 2575 if (LangOpts.OpenMP) { 2576 // If this is OpenMP, check if it is legal to emit this global normally. 2577 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2578 return; 2579 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2580 if (MustBeEmitted(Global)) 2581 EmitOMPDeclareReduction(DRD); 2582 return; 2583 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2584 if (MustBeEmitted(Global)) 2585 EmitOMPDeclareMapper(DMD); 2586 return; 2587 } 2588 } 2589 2590 // Ignore declarations, they will be emitted on their first use. 2591 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2592 // Forward declarations are emitted lazily on first use. 2593 if (!FD->doesThisDeclarationHaveABody()) { 2594 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2595 return; 2596 2597 StringRef MangledName = getMangledName(GD); 2598 2599 // Compute the function info and LLVM type. 2600 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2601 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2602 2603 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2604 /*DontDefer=*/false); 2605 return; 2606 } 2607 } else { 2608 const auto *VD = cast<VarDecl>(Global); 2609 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2610 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2611 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2612 if (LangOpts.OpenMP) { 2613 // Emit declaration of the must-be-emitted declare target variable. 2614 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2615 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2616 bool UnifiedMemoryEnabled = 2617 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2618 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2619 !UnifiedMemoryEnabled) { 2620 (void)GetAddrOfGlobalVar(VD); 2621 } else { 2622 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2623 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2624 UnifiedMemoryEnabled)) && 2625 "Link clause or to clause with unified memory expected."); 2626 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2627 } 2628 2629 return; 2630 } 2631 } 2632 // If this declaration may have caused an inline variable definition to 2633 // change linkage, make sure that it's emitted. 2634 if (Context.getInlineVariableDefinitionKind(VD) == 2635 ASTContext::InlineVariableDefinitionKind::Strong) 2636 GetAddrOfGlobalVar(VD); 2637 return; 2638 } 2639 } 2640 2641 // Defer code generation to first use when possible, e.g. if this is an inline 2642 // function. If the global must always be emitted, do it eagerly if possible 2643 // to benefit from cache locality. 2644 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2645 // Emit the definition if it can't be deferred. 2646 EmitGlobalDefinition(GD); 2647 return; 2648 } 2649 2650 // If we're deferring emission of a C++ variable with an 2651 // initializer, remember the order in which it appeared in the file. 2652 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2653 cast<VarDecl>(Global)->hasInit()) { 2654 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2655 CXXGlobalInits.push_back(nullptr); 2656 } 2657 2658 StringRef MangledName = getMangledName(GD); 2659 if (GetGlobalValue(MangledName) != nullptr) { 2660 // The value has already been used and should therefore be emitted. 2661 addDeferredDeclToEmit(GD); 2662 } else if (MustBeEmitted(Global)) { 2663 // The value must be emitted, but cannot be emitted eagerly. 2664 assert(!MayBeEmittedEagerly(Global)); 2665 addDeferredDeclToEmit(GD); 2666 } else { 2667 // Otherwise, remember that we saw a deferred decl with this name. The 2668 // first use of the mangled name will cause it to move into 2669 // DeferredDeclsToEmit. 2670 DeferredDecls[MangledName] = GD; 2671 } 2672 } 2673 2674 // Check if T is a class type with a destructor that's not dllimport. 2675 static bool HasNonDllImportDtor(QualType T) { 2676 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2677 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2678 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2679 return true; 2680 2681 return false; 2682 } 2683 2684 namespace { 2685 struct FunctionIsDirectlyRecursive 2686 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2687 const StringRef Name; 2688 const Builtin::Context &BI; 2689 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2690 : Name(N), BI(C) {} 2691 2692 bool VisitCallExpr(const CallExpr *E) { 2693 const FunctionDecl *FD = E->getDirectCallee(); 2694 if (!FD) 2695 return false; 2696 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2697 if (Attr && Name == Attr->getLabel()) 2698 return true; 2699 unsigned BuiltinID = FD->getBuiltinID(); 2700 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2701 return false; 2702 StringRef BuiltinName = BI.getName(BuiltinID); 2703 if (BuiltinName.startswith("__builtin_") && 2704 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2705 return true; 2706 } 2707 return false; 2708 } 2709 2710 bool VisitStmt(const Stmt *S) { 2711 for (const Stmt *Child : S->children()) 2712 if (Child && this->Visit(Child)) 2713 return true; 2714 return false; 2715 } 2716 }; 2717 2718 // Make sure we're not referencing non-imported vars or functions. 2719 struct DLLImportFunctionVisitor 2720 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2721 bool SafeToInline = true; 2722 2723 bool shouldVisitImplicitCode() const { return true; } 2724 2725 bool VisitVarDecl(VarDecl *VD) { 2726 if (VD->getTLSKind()) { 2727 // A thread-local variable cannot be imported. 2728 SafeToInline = false; 2729 return SafeToInline; 2730 } 2731 2732 // A variable definition might imply a destructor call. 2733 if (VD->isThisDeclarationADefinition()) 2734 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2735 2736 return SafeToInline; 2737 } 2738 2739 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2740 if (const auto *D = E->getTemporary()->getDestructor()) 2741 SafeToInline = D->hasAttr<DLLImportAttr>(); 2742 return SafeToInline; 2743 } 2744 2745 bool VisitDeclRefExpr(DeclRefExpr *E) { 2746 ValueDecl *VD = E->getDecl(); 2747 if (isa<FunctionDecl>(VD)) 2748 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2749 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2750 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2751 return SafeToInline; 2752 } 2753 2754 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2755 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2756 return SafeToInline; 2757 } 2758 2759 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2760 CXXMethodDecl *M = E->getMethodDecl(); 2761 if (!M) { 2762 // Call through a pointer to member function. This is safe to inline. 2763 SafeToInline = true; 2764 } else { 2765 SafeToInline = M->hasAttr<DLLImportAttr>(); 2766 } 2767 return SafeToInline; 2768 } 2769 2770 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2771 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2772 return SafeToInline; 2773 } 2774 2775 bool VisitCXXNewExpr(CXXNewExpr *E) { 2776 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2777 return SafeToInline; 2778 } 2779 }; 2780 } 2781 2782 // isTriviallyRecursive - Check if this function calls another 2783 // decl that, because of the asm attribute or the other decl being a builtin, 2784 // ends up pointing to itself. 2785 bool 2786 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2787 StringRef Name; 2788 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2789 // asm labels are a special kind of mangling we have to support. 2790 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2791 if (!Attr) 2792 return false; 2793 Name = Attr->getLabel(); 2794 } else { 2795 Name = FD->getName(); 2796 } 2797 2798 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2799 const Stmt *Body = FD->getBody(); 2800 return Body ? Walker.Visit(Body) : false; 2801 } 2802 2803 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2804 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2805 return true; 2806 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2807 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2808 return false; 2809 2810 if (F->hasAttr<DLLImportAttr>()) { 2811 // Check whether it would be safe to inline this dllimport function. 2812 DLLImportFunctionVisitor Visitor; 2813 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2814 if (!Visitor.SafeToInline) 2815 return false; 2816 2817 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2818 // Implicit destructor invocations aren't captured in the AST, so the 2819 // check above can't see them. Check for them manually here. 2820 for (const Decl *Member : Dtor->getParent()->decls()) 2821 if (isa<FieldDecl>(Member)) 2822 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2823 return false; 2824 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2825 if (HasNonDllImportDtor(B.getType())) 2826 return false; 2827 } 2828 } 2829 2830 // PR9614. Avoid cases where the source code is lying to us. An available 2831 // externally function should have an equivalent function somewhere else, 2832 // but a function that calls itself through asm label/`__builtin_` trickery is 2833 // clearly not equivalent to the real implementation. 2834 // This happens in glibc's btowc and in some configure checks. 2835 return !isTriviallyRecursive(F); 2836 } 2837 2838 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2839 return CodeGenOpts.OptimizationLevel > 0; 2840 } 2841 2842 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2843 llvm::GlobalValue *GV) { 2844 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2845 2846 if (FD->isCPUSpecificMultiVersion()) { 2847 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2848 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2849 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2850 // Requires multiple emits. 2851 } else 2852 EmitGlobalFunctionDefinition(GD, GV); 2853 } 2854 2855 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2856 const auto *D = cast<ValueDecl>(GD.getDecl()); 2857 2858 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2859 Context.getSourceManager(), 2860 "Generating code for declaration"); 2861 2862 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2863 // At -O0, don't generate IR for functions with available_externally 2864 // linkage. 2865 if (!shouldEmitFunction(GD)) 2866 return; 2867 2868 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 2869 std::string Name; 2870 llvm::raw_string_ostream OS(Name); 2871 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 2872 /*Qualified=*/true); 2873 return Name; 2874 }); 2875 2876 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2877 // Make sure to emit the definition(s) before we emit the thunks. 2878 // This is necessary for the generation of certain thunks. 2879 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2880 ABI->emitCXXStructor(GD); 2881 else if (FD->isMultiVersion()) 2882 EmitMultiVersionFunctionDefinition(GD, GV); 2883 else 2884 EmitGlobalFunctionDefinition(GD, GV); 2885 2886 if (Method->isVirtual()) 2887 getVTables().EmitThunks(GD); 2888 2889 return; 2890 } 2891 2892 if (FD->isMultiVersion()) 2893 return EmitMultiVersionFunctionDefinition(GD, GV); 2894 return EmitGlobalFunctionDefinition(GD, GV); 2895 } 2896 2897 if (const auto *VD = dyn_cast<VarDecl>(D)) 2898 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2899 2900 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2901 } 2902 2903 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2904 llvm::Function *NewFn); 2905 2906 static unsigned 2907 TargetMVPriority(const TargetInfo &TI, 2908 const CodeGenFunction::MultiVersionResolverOption &RO) { 2909 unsigned Priority = 0; 2910 for (StringRef Feat : RO.Conditions.Features) 2911 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2912 2913 if (!RO.Conditions.Architecture.empty()) 2914 Priority = std::max( 2915 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2916 return Priority; 2917 } 2918 2919 void CodeGenModule::emitMultiVersionFunctions() { 2920 for (GlobalDecl GD : MultiVersionFuncs) { 2921 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2922 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2923 getContext().forEachMultiversionedFunctionVersion( 2924 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2925 GlobalDecl CurGD{ 2926 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2927 StringRef MangledName = getMangledName(CurGD); 2928 llvm::Constant *Func = GetGlobalValue(MangledName); 2929 if (!Func) { 2930 if (CurFD->isDefined()) { 2931 EmitGlobalFunctionDefinition(CurGD, nullptr); 2932 Func = GetGlobalValue(MangledName); 2933 } else { 2934 const CGFunctionInfo &FI = 2935 getTypes().arrangeGlobalDeclaration(GD); 2936 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2937 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2938 /*DontDefer=*/false, ForDefinition); 2939 } 2940 assert(Func && "This should have just been created"); 2941 } 2942 2943 const auto *TA = CurFD->getAttr<TargetAttr>(); 2944 llvm::SmallVector<StringRef, 8> Feats; 2945 TA->getAddedFeatures(Feats); 2946 2947 Options.emplace_back(cast<llvm::Function>(Func), 2948 TA->getArchitecture(), Feats); 2949 }); 2950 2951 llvm::Function *ResolverFunc; 2952 const TargetInfo &TI = getTarget(); 2953 2954 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 2955 ResolverFunc = cast<llvm::Function>( 2956 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2957 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 2958 } else { 2959 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2960 } 2961 2962 if (supportsCOMDAT()) 2963 ResolverFunc->setComdat( 2964 getModule().getOrInsertComdat(ResolverFunc->getName())); 2965 2966 llvm::stable_sort( 2967 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2968 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2969 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2970 }); 2971 CodeGenFunction CGF(*this); 2972 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2973 } 2974 } 2975 2976 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2977 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2978 assert(FD && "Not a FunctionDecl?"); 2979 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2980 assert(DD && "Not a cpu_dispatch Function?"); 2981 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 2982 2983 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2984 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2985 DeclTy = getTypes().GetFunctionType(FInfo); 2986 } 2987 2988 StringRef ResolverName = getMangledName(GD); 2989 2990 llvm::Type *ResolverType; 2991 GlobalDecl ResolverGD; 2992 if (getTarget().supportsIFunc()) 2993 ResolverType = llvm::FunctionType::get( 2994 llvm::PointerType::get(DeclTy, 2995 Context.getTargetAddressSpace(FD->getType())), 2996 false); 2997 else { 2998 ResolverType = DeclTy; 2999 ResolverGD = GD; 3000 } 3001 3002 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3003 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3004 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3005 if (supportsCOMDAT()) 3006 ResolverFunc->setComdat( 3007 getModule().getOrInsertComdat(ResolverFunc->getName())); 3008 3009 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3010 const TargetInfo &Target = getTarget(); 3011 unsigned Index = 0; 3012 for (const IdentifierInfo *II : DD->cpus()) { 3013 // Get the name of the target function so we can look it up/create it. 3014 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3015 getCPUSpecificMangling(*this, II->getName()); 3016 3017 llvm::Constant *Func = GetGlobalValue(MangledName); 3018 3019 if (!Func) { 3020 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3021 if (ExistingDecl.getDecl() && 3022 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3023 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3024 Func = GetGlobalValue(MangledName); 3025 } else { 3026 if (!ExistingDecl.getDecl()) 3027 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3028 3029 Func = GetOrCreateLLVMFunction( 3030 MangledName, DeclTy, ExistingDecl, 3031 /*ForVTable=*/false, /*DontDefer=*/true, 3032 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3033 } 3034 } 3035 3036 llvm::SmallVector<StringRef, 32> Features; 3037 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3038 llvm::transform(Features, Features.begin(), 3039 [](StringRef Str) { return Str.substr(1); }); 3040 Features.erase(std::remove_if( 3041 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3042 return !Target.validateCpuSupports(Feat); 3043 }), Features.end()); 3044 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3045 ++Index; 3046 } 3047 3048 llvm::sort( 3049 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3050 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3051 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3052 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3053 }); 3054 3055 // If the list contains multiple 'default' versions, such as when it contains 3056 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3057 // always run on at least a 'pentium'). We do this by deleting the 'least 3058 // advanced' (read, lowest mangling letter). 3059 while (Options.size() > 1 && 3060 CodeGenFunction::GetX86CpuSupportsMask( 3061 (Options.end() - 2)->Conditions.Features) == 0) { 3062 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3063 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3064 if (LHSName.compare(RHSName) < 0) 3065 Options.erase(Options.end() - 2); 3066 else 3067 Options.erase(Options.end() - 1); 3068 } 3069 3070 CodeGenFunction CGF(*this); 3071 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3072 3073 if (getTarget().supportsIFunc()) { 3074 std::string AliasName = getMangledNameImpl( 3075 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3076 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3077 if (!AliasFunc) { 3078 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3079 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3080 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3081 auto *GA = llvm::GlobalAlias::create( 3082 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3083 GA->setLinkage(llvm::Function::WeakODRLinkage); 3084 SetCommonAttributes(GD, GA); 3085 } 3086 } 3087 } 3088 3089 /// If a dispatcher for the specified mangled name is not in the module, create 3090 /// and return an llvm Function with the specified type. 3091 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3092 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3093 std::string MangledName = 3094 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3095 3096 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3097 // a separate resolver). 3098 std::string ResolverName = MangledName; 3099 if (getTarget().supportsIFunc()) 3100 ResolverName += ".ifunc"; 3101 else if (FD->isTargetMultiVersion()) 3102 ResolverName += ".resolver"; 3103 3104 // If this already exists, just return that one. 3105 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3106 return ResolverGV; 3107 3108 // Since this is the first time we've created this IFunc, make sure 3109 // that we put this multiversioned function into the list to be 3110 // replaced later if necessary (target multiversioning only). 3111 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3112 MultiVersionFuncs.push_back(GD); 3113 3114 if (getTarget().supportsIFunc()) { 3115 llvm::Type *ResolverType = llvm::FunctionType::get( 3116 llvm::PointerType::get( 3117 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3118 false); 3119 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3120 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3121 /*ForVTable=*/false); 3122 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3123 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3124 GIF->setName(ResolverName); 3125 SetCommonAttributes(FD, GIF); 3126 3127 return GIF; 3128 } 3129 3130 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3131 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3132 assert(isa<llvm::GlobalValue>(Resolver) && 3133 "Resolver should be created for the first time"); 3134 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3135 return Resolver; 3136 } 3137 3138 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3139 /// module, create and return an llvm Function with the specified type. If there 3140 /// is something in the module with the specified name, return it potentially 3141 /// bitcasted to the right type. 3142 /// 3143 /// If D is non-null, it specifies a decl that correspond to this. This is used 3144 /// to set the attributes on the function when it is first created. 3145 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3146 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3147 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3148 ForDefinition_t IsForDefinition) { 3149 const Decl *D = GD.getDecl(); 3150 3151 // Any attempts to use a MultiVersion function should result in retrieving 3152 // the iFunc instead. Name Mangling will handle the rest of the changes. 3153 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3154 // For the device mark the function as one that should be emitted. 3155 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3156 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3157 !DontDefer && !IsForDefinition) { 3158 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3159 GlobalDecl GDDef; 3160 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3161 GDDef = GlobalDecl(CD, GD.getCtorType()); 3162 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3163 GDDef = GlobalDecl(DD, GD.getDtorType()); 3164 else 3165 GDDef = GlobalDecl(FDDef); 3166 EmitGlobal(GDDef); 3167 } 3168 } 3169 3170 if (FD->isMultiVersion()) { 3171 if (FD->hasAttr<TargetAttr>()) 3172 UpdateMultiVersionNames(GD, FD); 3173 if (!IsForDefinition) 3174 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3175 } 3176 } 3177 3178 // Lookup the entry, lazily creating it if necessary. 3179 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3180 if (Entry) { 3181 if (WeakRefReferences.erase(Entry)) { 3182 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3183 if (FD && !FD->hasAttr<WeakAttr>()) 3184 Entry->setLinkage(llvm::Function::ExternalLinkage); 3185 } 3186 3187 // Handle dropped DLL attributes. 3188 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3189 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3190 setDSOLocal(Entry); 3191 } 3192 3193 // If there are two attempts to define the same mangled name, issue an 3194 // error. 3195 if (IsForDefinition && !Entry->isDeclaration()) { 3196 GlobalDecl OtherGD; 3197 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3198 // to make sure that we issue an error only once. 3199 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3200 (GD.getCanonicalDecl().getDecl() != 3201 OtherGD.getCanonicalDecl().getDecl()) && 3202 DiagnosedConflictingDefinitions.insert(GD).second) { 3203 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3204 << MangledName; 3205 getDiags().Report(OtherGD.getDecl()->getLocation(), 3206 diag::note_previous_definition); 3207 } 3208 } 3209 3210 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3211 (Entry->getValueType() == Ty)) { 3212 return Entry; 3213 } 3214 3215 // Make sure the result is of the correct type. 3216 // (If function is requested for a definition, we always need to create a new 3217 // function, not just return a bitcast.) 3218 if (!IsForDefinition) 3219 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3220 } 3221 3222 // This function doesn't have a complete type (for example, the return 3223 // type is an incomplete struct). Use a fake type instead, and make 3224 // sure not to try to set attributes. 3225 bool IsIncompleteFunction = false; 3226 3227 llvm::FunctionType *FTy; 3228 if (isa<llvm::FunctionType>(Ty)) { 3229 FTy = cast<llvm::FunctionType>(Ty); 3230 } else { 3231 FTy = llvm::FunctionType::get(VoidTy, false); 3232 IsIncompleteFunction = true; 3233 } 3234 3235 llvm::Function *F = 3236 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3237 Entry ? StringRef() : MangledName, &getModule()); 3238 3239 // If we already created a function with the same mangled name (but different 3240 // type) before, take its name and add it to the list of functions to be 3241 // replaced with F at the end of CodeGen. 3242 // 3243 // This happens if there is a prototype for a function (e.g. "int f()") and 3244 // then a definition of a different type (e.g. "int f(int x)"). 3245 if (Entry) { 3246 F->takeName(Entry); 3247 3248 // This might be an implementation of a function without a prototype, in 3249 // which case, try to do special replacement of calls which match the new 3250 // prototype. The really key thing here is that we also potentially drop 3251 // arguments from the call site so as to make a direct call, which makes the 3252 // inliner happier and suppresses a number of optimizer warnings (!) about 3253 // dropping arguments. 3254 if (!Entry->use_empty()) { 3255 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3256 Entry->removeDeadConstantUsers(); 3257 } 3258 3259 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3260 F, Entry->getValueType()->getPointerTo()); 3261 addGlobalValReplacement(Entry, BC); 3262 } 3263 3264 assert(F->getName() == MangledName && "name was uniqued!"); 3265 if (D) 3266 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3267 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3268 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3269 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3270 } 3271 3272 if (!DontDefer) { 3273 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3274 // each other bottoming out with the base dtor. Therefore we emit non-base 3275 // dtors on usage, even if there is no dtor definition in the TU. 3276 if (D && isa<CXXDestructorDecl>(D) && 3277 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3278 GD.getDtorType())) 3279 addDeferredDeclToEmit(GD); 3280 3281 // This is the first use or definition of a mangled name. If there is a 3282 // deferred decl with this name, remember that we need to emit it at the end 3283 // of the file. 3284 auto DDI = DeferredDecls.find(MangledName); 3285 if (DDI != DeferredDecls.end()) { 3286 // Move the potentially referenced deferred decl to the 3287 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3288 // don't need it anymore). 3289 addDeferredDeclToEmit(DDI->second); 3290 DeferredDecls.erase(DDI); 3291 3292 // Otherwise, there are cases we have to worry about where we're 3293 // using a declaration for which we must emit a definition but where 3294 // we might not find a top-level definition: 3295 // - member functions defined inline in their classes 3296 // - friend functions defined inline in some class 3297 // - special member functions with implicit definitions 3298 // If we ever change our AST traversal to walk into class methods, 3299 // this will be unnecessary. 3300 // 3301 // We also don't emit a definition for a function if it's going to be an 3302 // entry in a vtable, unless it's already marked as used. 3303 } else if (getLangOpts().CPlusPlus && D) { 3304 // Look for a declaration that's lexically in a record. 3305 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3306 FD = FD->getPreviousDecl()) { 3307 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3308 if (FD->doesThisDeclarationHaveABody()) { 3309 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3310 break; 3311 } 3312 } 3313 } 3314 } 3315 } 3316 3317 // Make sure the result is of the requested type. 3318 if (!IsIncompleteFunction) { 3319 assert(F->getFunctionType() == Ty); 3320 return F; 3321 } 3322 3323 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3324 return llvm::ConstantExpr::getBitCast(F, PTy); 3325 } 3326 3327 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3328 /// non-null, then this function will use the specified type if it has to 3329 /// create it (this occurs when we see a definition of the function). 3330 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3331 llvm::Type *Ty, 3332 bool ForVTable, 3333 bool DontDefer, 3334 ForDefinition_t IsForDefinition) { 3335 // If there was no specific requested type, just convert it now. 3336 if (!Ty) { 3337 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3338 Ty = getTypes().ConvertType(FD->getType()); 3339 } 3340 3341 // Devirtualized destructor calls may come through here instead of via 3342 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3343 // of the complete destructor when necessary. 3344 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3345 if (getTarget().getCXXABI().isMicrosoft() && 3346 GD.getDtorType() == Dtor_Complete && 3347 DD->getParent()->getNumVBases() == 0) 3348 GD = GlobalDecl(DD, Dtor_Base); 3349 } 3350 3351 StringRef MangledName = getMangledName(GD); 3352 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3353 /*IsThunk=*/false, llvm::AttributeList(), 3354 IsForDefinition); 3355 } 3356 3357 static const FunctionDecl * 3358 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3359 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3360 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3361 3362 IdentifierInfo &CII = C.Idents.get(Name); 3363 for (const auto &Result : DC->lookup(&CII)) 3364 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3365 return FD; 3366 3367 if (!C.getLangOpts().CPlusPlus) 3368 return nullptr; 3369 3370 // Demangle the premangled name from getTerminateFn() 3371 IdentifierInfo &CXXII = 3372 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3373 ? C.Idents.get("terminate") 3374 : C.Idents.get(Name); 3375 3376 for (const auto &N : {"__cxxabiv1", "std"}) { 3377 IdentifierInfo &NS = C.Idents.get(N); 3378 for (const auto &Result : DC->lookup(&NS)) { 3379 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3380 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3381 for (const auto &Result : LSD->lookup(&NS)) 3382 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3383 break; 3384 3385 if (ND) 3386 for (const auto &Result : ND->lookup(&CXXII)) 3387 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3388 return FD; 3389 } 3390 } 3391 3392 return nullptr; 3393 } 3394 3395 /// CreateRuntimeFunction - Create a new runtime function with the specified 3396 /// type and name. 3397 llvm::FunctionCallee 3398 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3399 llvm::AttributeList ExtraAttrs, bool Local, 3400 bool AssumeConvergent) { 3401 if (AssumeConvergent) { 3402 ExtraAttrs = 3403 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3404 llvm::Attribute::Convergent); 3405 } 3406 3407 llvm::Constant *C = 3408 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3409 /*DontDefer=*/false, /*IsThunk=*/false, 3410 ExtraAttrs); 3411 3412 if (auto *F = dyn_cast<llvm::Function>(C)) { 3413 if (F->empty()) { 3414 F->setCallingConv(getRuntimeCC()); 3415 3416 // In Windows Itanium environments, try to mark runtime functions 3417 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3418 // will link their standard library statically or dynamically. Marking 3419 // functions imported when they are not imported can cause linker errors 3420 // and warnings. 3421 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3422 !getCodeGenOpts().LTOVisibilityPublicStd) { 3423 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3424 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3425 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3426 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3427 } 3428 } 3429 setDSOLocal(F); 3430 } 3431 } 3432 3433 return {FTy, C}; 3434 } 3435 3436 /// isTypeConstant - Determine whether an object of this type can be emitted 3437 /// as a constant. 3438 /// 3439 /// If ExcludeCtor is true, the duration when the object's constructor runs 3440 /// will not be considered. The caller will need to verify that the object is 3441 /// not written to during its construction. 3442 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3443 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3444 return false; 3445 3446 if (Context.getLangOpts().CPlusPlus) { 3447 if (const CXXRecordDecl *Record 3448 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3449 return ExcludeCtor && !Record->hasMutableFields() && 3450 Record->hasTrivialDestructor(); 3451 } 3452 3453 return true; 3454 } 3455 3456 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3457 /// create and return an llvm GlobalVariable with the specified type. If there 3458 /// is something in the module with the specified name, return it potentially 3459 /// bitcasted to the right type. 3460 /// 3461 /// If D is non-null, it specifies a decl that correspond to this. This is used 3462 /// to set the attributes on the global when it is first created. 3463 /// 3464 /// If IsForDefinition is true, it is guaranteed that an actual global with 3465 /// type Ty will be returned, not conversion of a variable with the same 3466 /// mangled name but some other type. 3467 llvm::Constant * 3468 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3469 llvm::PointerType *Ty, 3470 const VarDecl *D, 3471 ForDefinition_t IsForDefinition) { 3472 // Lookup the entry, lazily creating it if necessary. 3473 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3474 if (Entry) { 3475 if (WeakRefReferences.erase(Entry)) { 3476 if (D && !D->hasAttr<WeakAttr>()) 3477 Entry->setLinkage(llvm::Function::ExternalLinkage); 3478 } 3479 3480 // Handle dropped DLL attributes. 3481 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3482 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3483 3484 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3485 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3486 3487 if (Entry->getType() == Ty) 3488 return Entry; 3489 3490 // If there are two attempts to define the same mangled name, issue an 3491 // error. 3492 if (IsForDefinition && !Entry->isDeclaration()) { 3493 GlobalDecl OtherGD; 3494 const VarDecl *OtherD; 3495 3496 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3497 // to make sure that we issue an error only once. 3498 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3499 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3500 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3501 OtherD->hasInit() && 3502 DiagnosedConflictingDefinitions.insert(D).second) { 3503 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3504 << MangledName; 3505 getDiags().Report(OtherGD.getDecl()->getLocation(), 3506 diag::note_previous_definition); 3507 } 3508 } 3509 3510 // Make sure the result is of the correct type. 3511 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3512 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3513 3514 // (If global is requested for a definition, we always need to create a new 3515 // global, not just return a bitcast.) 3516 if (!IsForDefinition) 3517 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3518 } 3519 3520 auto AddrSpace = GetGlobalVarAddressSpace(D); 3521 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3522 3523 auto *GV = new llvm::GlobalVariable( 3524 getModule(), Ty->getElementType(), false, 3525 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3526 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3527 3528 // If we already created a global with the same mangled name (but different 3529 // type) before, take its name and remove it from its parent. 3530 if (Entry) { 3531 GV->takeName(Entry); 3532 3533 if (!Entry->use_empty()) { 3534 llvm::Constant *NewPtrForOldDecl = 3535 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3536 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3537 } 3538 3539 Entry->eraseFromParent(); 3540 } 3541 3542 // This is the first use or definition of a mangled name. If there is a 3543 // deferred decl with this name, remember that we need to emit it at the end 3544 // of the file. 3545 auto DDI = DeferredDecls.find(MangledName); 3546 if (DDI != DeferredDecls.end()) { 3547 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3548 // list, and remove it from DeferredDecls (since we don't need it anymore). 3549 addDeferredDeclToEmit(DDI->second); 3550 DeferredDecls.erase(DDI); 3551 } 3552 3553 // Handle things which are present even on external declarations. 3554 if (D) { 3555 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3556 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3557 3558 // FIXME: This code is overly simple and should be merged with other global 3559 // handling. 3560 GV->setConstant(isTypeConstant(D->getType(), false)); 3561 3562 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3563 3564 setLinkageForGV(GV, D); 3565 3566 if (D->getTLSKind()) { 3567 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3568 CXXThreadLocals.push_back(D); 3569 setTLSMode(GV, *D); 3570 } 3571 3572 setGVProperties(GV, D); 3573 3574 // If required by the ABI, treat declarations of static data members with 3575 // inline initializers as definitions. 3576 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3577 EmitGlobalVarDefinition(D); 3578 } 3579 3580 // Emit section information for extern variables. 3581 if (D->hasExternalStorage()) { 3582 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3583 GV->setSection(SA->getName()); 3584 } 3585 3586 // Handle XCore specific ABI requirements. 3587 if (getTriple().getArch() == llvm::Triple::xcore && 3588 D->getLanguageLinkage() == CLanguageLinkage && 3589 D->getType().isConstant(Context) && 3590 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3591 GV->setSection(".cp.rodata"); 3592 3593 // Check if we a have a const declaration with an initializer, we may be 3594 // able to emit it as available_externally to expose it's value to the 3595 // optimizer. 3596 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3597 D->getType().isConstQualified() && !GV->hasInitializer() && 3598 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3599 const auto *Record = 3600 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3601 bool HasMutableFields = Record && Record->hasMutableFields(); 3602 if (!HasMutableFields) { 3603 const VarDecl *InitDecl; 3604 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3605 if (InitExpr) { 3606 ConstantEmitter emitter(*this); 3607 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3608 if (Init) { 3609 auto *InitType = Init->getType(); 3610 if (GV->getValueType() != InitType) { 3611 // The type of the initializer does not match the definition. 3612 // This happens when an initializer has a different type from 3613 // the type of the global (because of padding at the end of a 3614 // structure for instance). 3615 GV->setName(StringRef()); 3616 // Make a new global with the correct type, this is now guaranteed 3617 // to work. 3618 auto *NewGV = cast<llvm::GlobalVariable>( 3619 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3620 ->stripPointerCasts()); 3621 3622 // Erase the old global, since it is no longer used. 3623 GV->eraseFromParent(); 3624 GV = NewGV; 3625 } else { 3626 GV->setInitializer(Init); 3627 GV->setConstant(true); 3628 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3629 } 3630 emitter.finalize(GV); 3631 } 3632 } 3633 } 3634 } 3635 } 3636 3637 if (GV->isDeclaration()) 3638 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3639 3640 LangAS ExpectedAS = 3641 D ? D->getType().getAddressSpace() 3642 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3643 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3644 Ty->getPointerAddressSpace()); 3645 if (AddrSpace != ExpectedAS) 3646 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3647 ExpectedAS, Ty); 3648 3649 return GV; 3650 } 3651 3652 llvm::Constant * 3653 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3654 ForDefinition_t IsForDefinition) { 3655 const Decl *D = GD.getDecl(); 3656 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3657 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3658 /*DontDefer=*/false, IsForDefinition); 3659 else if (isa<CXXMethodDecl>(D)) { 3660 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3661 cast<CXXMethodDecl>(D)); 3662 auto Ty = getTypes().GetFunctionType(*FInfo); 3663 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3664 IsForDefinition); 3665 } else if (isa<FunctionDecl>(D)) { 3666 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3667 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3668 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3669 IsForDefinition); 3670 } else 3671 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3672 IsForDefinition); 3673 } 3674 3675 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3676 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3677 unsigned Alignment) { 3678 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3679 llvm::GlobalVariable *OldGV = nullptr; 3680 3681 if (GV) { 3682 // Check if the variable has the right type. 3683 if (GV->getValueType() == Ty) 3684 return GV; 3685 3686 // Because C++ name mangling, the only way we can end up with an already 3687 // existing global with the same name is if it has been declared extern "C". 3688 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3689 OldGV = GV; 3690 } 3691 3692 // Create a new variable. 3693 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3694 Linkage, nullptr, Name); 3695 3696 if (OldGV) { 3697 // Replace occurrences of the old variable if needed. 3698 GV->takeName(OldGV); 3699 3700 if (!OldGV->use_empty()) { 3701 llvm::Constant *NewPtrForOldDecl = 3702 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3703 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3704 } 3705 3706 OldGV->eraseFromParent(); 3707 } 3708 3709 if (supportsCOMDAT() && GV->isWeakForLinker() && 3710 !GV->hasAvailableExternallyLinkage()) 3711 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3712 3713 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3714 3715 return GV; 3716 } 3717 3718 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3719 /// given global variable. If Ty is non-null and if the global doesn't exist, 3720 /// then it will be created with the specified type instead of whatever the 3721 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3722 /// that an actual global with type Ty will be returned, not conversion of a 3723 /// variable with the same mangled name but some other type. 3724 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3725 llvm::Type *Ty, 3726 ForDefinition_t IsForDefinition) { 3727 assert(D->hasGlobalStorage() && "Not a global variable"); 3728 QualType ASTTy = D->getType(); 3729 if (!Ty) 3730 Ty = getTypes().ConvertTypeForMem(ASTTy); 3731 3732 llvm::PointerType *PTy = 3733 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3734 3735 StringRef MangledName = getMangledName(D); 3736 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3737 } 3738 3739 /// CreateRuntimeVariable - Create a new runtime global variable with the 3740 /// specified type and name. 3741 llvm::Constant * 3742 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3743 StringRef Name) { 3744 auto PtrTy = 3745 getContext().getLangOpts().OpenCL 3746 ? llvm::PointerType::get( 3747 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3748 : llvm::PointerType::getUnqual(Ty); 3749 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3750 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3751 return Ret; 3752 } 3753 3754 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3755 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3756 3757 StringRef MangledName = getMangledName(D); 3758 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3759 3760 // We already have a definition, not declaration, with the same mangled name. 3761 // Emitting of declaration is not required (and actually overwrites emitted 3762 // definition). 3763 if (GV && !GV->isDeclaration()) 3764 return; 3765 3766 // If we have not seen a reference to this variable yet, place it into the 3767 // deferred declarations table to be emitted if needed later. 3768 if (!MustBeEmitted(D) && !GV) { 3769 DeferredDecls[MangledName] = D; 3770 return; 3771 } 3772 3773 // The tentative definition is the only definition. 3774 EmitGlobalVarDefinition(D); 3775 } 3776 3777 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 3778 EmitExternalVarDeclaration(D); 3779 } 3780 3781 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3782 return Context.toCharUnitsFromBits( 3783 getDataLayout().getTypeStoreSizeInBits(Ty)); 3784 } 3785 3786 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3787 LangAS AddrSpace = LangAS::Default; 3788 if (LangOpts.OpenCL) { 3789 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3790 assert(AddrSpace == LangAS::opencl_global || 3791 AddrSpace == LangAS::opencl_constant || 3792 AddrSpace == LangAS::opencl_local || 3793 AddrSpace >= LangAS::FirstTargetAddressSpace); 3794 return AddrSpace; 3795 } 3796 3797 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3798 if (D && D->hasAttr<CUDAConstantAttr>()) 3799 return LangAS::cuda_constant; 3800 else if (D && D->hasAttr<CUDASharedAttr>()) 3801 return LangAS::cuda_shared; 3802 else if (D && D->hasAttr<CUDADeviceAttr>()) 3803 return LangAS::cuda_device; 3804 else if (D && D->getType().isConstQualified()) 3805 return LangAS::cuda_constant; 3806 else 3807 return LangAS::cuda_device; 3808 } 3809 3810 if (LangOpts.OpenMP) { 3811 LangAS AS; 3812 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3813 return AS; 3814 } 3815 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3816 } 3817 3818 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3819 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3820 if (LangOpts.OpenCL) 3821 return LangAS::opencl_constant; 3822 if (auto AS = getTarget().getConstantAddressSpace()) 3823 return AS.getValue(); 3824 return LangAS::Default; 3825 } 3826 3827 // In address space agnostic languages, string literals are in default address 3828 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3829 // emitted in constant address space in LLVM IR. To be consistent with other 3830 // parts of AST, string literal global variables in constant address space 3831 // need to be casted to default address space before being put into address 3832 // map and referenced by other part of CodeGen. 3833 // In OpenCL, string literals are in constant address space in AST, therefore 3834 // they should not be casted to default address space. 3835 static llvm::Constant * 3836 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3837 llvm::GlobalVariable *GV) { 3838 llvm::Constant *Cast = GV; 3839 if (!CGM.getLangOpts().OpenCL) { 3840 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3841 if (AS != LangAS::Default) 3842 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3843 CGM, GV, AS.getValue(), LangAS::Default, 3844 GV->getValueType()->getPointerTo( 3845 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3846 } 3847 } 3848 return Cast; 3849 } 3850 3851 template<typename SomeDecl> 3852 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3853 llvm::GlobalValue *GV) { 3854 if (!getLangOpts().CPlusPlus) 3855 return; 3856 3857 // Must have 'used' attribute, or else inline assembly can't rely on 3858 // the name existing. 3859 if (!D->template hasAttr<UsedAttr>()) 3860 return; 3861 3862 // Must have internal linkage and an ordinary name. 3863 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3864 return; 3865 3866 // Must be in an extern "C" context. Entities declared directly within 3867 // a record are not extern "C" even if the record is in such a context. 3868 const SomeDecl *First = D->getFirstDecl(); 3869 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3870 return; 3871 3872 // OK, this is an internal linkage entity inside an extern "C" linkage 3873 // specification. Make a note of that so we can give it the "expected" 3874 // mangled name if nothing else is using that name. 3875 std::pair<StaticExternCMap::iterator, bool> R = 3876 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3877 3878 // If we have multiple internal linkage entities with the same name 3879 // in extern "C" regions, none of them gets that name. 3880 if (!R.second) 3881 R.first->second = nullptr; 3882 } 3883 3884 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3885 if (!CGM.supportsCOMDAT()) 3886 return false; 3887 3888 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 3889 // them being "merged" by the COMDAT Folding linker optimization. 3890 if (D.hasAttr<CUDAGlobalAttr>()) 3891 return false; 3892 3893 if (D.hasAttr<SelectAnyAttr>()) 3894 return true; 3895 3896 GVALinkage Linkage; 3897 if (auto *VD = dyn_cast<VarDecl>(&D)) 3898 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3899 else 3900 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3901 3902 switch (Linkage) { 3903 case GVA_Internal: 3904 case GVA_AvailableExternally: 3905 case GVA_StrongExternal: 3906 return false; 3907 case GVA_DiscardableODR: 3908 case GVA_StrongODR: 3909 return true; 3910 } 3911 llvm_unreachable("No such linkage"); 3912 } 3913 3914 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3915 llvm::GlobalObject &GO) { 3916 if (!shouldBeInCOMDAT(*this, D)) 3917 return; 3918 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3919 } 3920 3921 /// Pass IsTentative as true if you want to create a tentative definition. 3922 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3923 bool IsTentative) { 3924 // OpenCL global variables of sampler type are translated to function calls, 3925 // therefore no need to be translated. 3926 QualType ASTTy = D->getType(); 3927 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3928 return; 3929 3930 // If this is OpenMP device, check if it is legal to emit this global 3931 // normally. 3932 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3933 OpenMPRuntime->emitTargetGlobalVariable(D)) 3934 return; 3935 3936 llvm::Constant *Init = nullptr; 3937 bool NeedsGlobalCtor = false; 3938 bool NeedsGlobalDtor = 3939 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 3940 3941 const VarDecl *InitDecl; 3942 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3943 3944 Optional<ConstantEmitter> emitter; 3945 3946 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3947 // as part of their declaration." Sema has already checked for 3948 // error cases, so we just need to set Init to UndefValue. 3949 bool IsCUDASharedVar = 3950 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3951 // Shadows of initialized device-side global variables are also left 3952 // undefined. 3953 bool IsCUDAShadowVar = 3954 !getLangOpts().CUDAIsDevice && 3955 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3956 D->hasAttr<CUDASharedAttr>()); 3957 bool IsCUDADeviceShadowVar = 3958 getLangOpts().CUDAIsDevice && 3959 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 3960 D->getType()->isCUDADeviceBuiltinTextureType()); 3961 // HIP pinned shadow of initialized host-side global variables are also 3962 // left undefined. 3963 if (getLangOpts().CUDA && 3964 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 3965 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3966 else if (D->hasAttr<LoaderUninitializedAttr>()) 3967 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3968 else if (!InitExpr) { 3969 // This is a tentative definition; tentative definitions are 3970 // implicitly initialized with { 0 }. 3971 // 3972 // Note that tentative definitions are only emitted at the end of 3973 // a translation unit, so they should never have incomplete 3974 // type. In addition, EmitTentativeDefinition makes sure that we 3975 // never attempt to emit a tentative definition if a real one 3976 // exists. A use may still exists, however, so we still may need 3977 // to do a RAUW. 3978 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3979 Init = EmitNullConstant(D->getType()); 3980 } else { 3981 initializedGlobalDecl = GlobalDecl(D); 3982 emitter.emplace(*this); 3983 Init = emitter->tryEmitForInitializer(*InitDecl); 3984 3985 if (!Init) { 3986 QualType T = InitExpr->getType(); 3987 if (D->getType()->isReferenceType()) 3988 T = D->getType(); 3989 3990 if (getLangOpts().CPlusPlus) { 3991 Init = EmitNullConstant(T); 3992 NeedsGlobalCtor = true; 3993 } else { 3994 ErrorUnsupported(D, "static initializer"); 3995 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3996 } 3997 } else { 3998 // We don't need an initializer, so remove the entry for the delayed 3999 // initializer position (just in case this entry was delayed) if we 4000 // also don't need to register a destructor. 4001 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4002 DelayedCXXInitPosition.erase(D); 4003 } 4004 } 4005 4006 llvm::Type* InitType = Init->getType(); 4007 llvm::Constant *Entry = 4008 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4009 4010 // Strip off pointer casts if we got them. 4011 Entry = Entry->stripPointerCasts(); 4012 4013 // Entry is now either a Function or GlobalVariable. 4014 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4015 4016 // We have a definition after a declaration with the wrong type. 4017 // We must make a new GlobalVariable* and update everything that used OldGV 4018 // (a declaration or tentative definition) with the new GlobalVariable* 4019 // (which will be a definition). 4020 // 4021 // This happens if there is a prototype for a global (e.g. 4022 // "extern int x[];") and then a definition of a different type (e.g. 4023 // "int x[10];"). This also happens when an initializer has a different type 4024 // from the type of the global (this happens with unions). 4025 if (!GV || GV->getValueType() != InitType || 4026 GV->getType()->getAddressSpace() != 4027 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4028 4029 // Move the old entry aside so that we'll create a new one. 4030 Entry->setName(StringRef()); 4031 4032 // Make a new global with the correct type, this is now guaranteed to work. 4033 GV = cast<llvm::GlobalVariable>( 4034 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4035 ->stripPointerCasts()); 4036 4037 // Replace all uses of the old global with the new global 4038 llvm::Constant *NewPtrForOldDecl = 4039 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4040 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4041 4042 // Erase the old global, since it is no longer used. 4043 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4044 } 4045 4046 MaybeHandleStaticInExternC(D, GV); 4047 4048 if (D->hasAttr<AnnotateAttr>()) 4049 AddGlobalAnnotations(D, GV); 4050 4051 // Set the llvm linkage type as appropriate. 4052 llvm::GlobalValue::LinkageTypes Linkage = 4053 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4054 4055 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4056 // the device. [...]" 4057 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4058 // __device__, declares a variable that: [...] 4059 // Is accessible from all the threads within the grid and from the host 4060 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4061 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4062 if (GV && LangOpts.CUDA) { 4063 if (LangOpts.CUDAIsDevice) { 4064 if (Linkage != llvm::GlobalValue::InternalLinkage && 4065 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4066 GV->setExternallyInitialized(true); 4067 } else { 4068 // Host-side shadows of external declarations of device-side 4069 // global variables become internal definitions. These have to 4070 // be internal in order to prevent name conflicts with global 4071 // host variables with the same name in a different TUs. 4072 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 4073 Linkage = llvm::GlobalValue::InternalLinkage; 4074 // Shadow variables and their properties must be registered with CUDA 4075 // runtime. Skip Extern global variables, which will be registered in 4076 // the TU where they are defined. 4077 if (!D->hasExternalStorage()) 4078 getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(), 4079 D->hasAttr<CUDAConstantAttr>()); 4080 } else if (D->hasAttr<CUDASharedAttr>()) { 4081 // __shared__ variables are odd. Shadows do get created, but 4082 // they are not registered with the CUDA runtime, so they 4083 // can't really be used to access their device-side 4084 // counterparts. It's not clear yet whether it's nvcc's bug or 4085 // a feature, but we've got to do the same for compatibility. 4086 Linkage = llvm::GlobalValue::InternalLinkage; 4087 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4088 D->getType()->isCUDADeviceBuiltinTextureType()) { 4089 // Builtin surfaces and textures and their template arguments are 4090 // also registered with CUDA runtime. 4091 Linkage = llvm::GlobalValue::InternalLinkage; 4092 const ClassTemplateSpecializationDecl *TD = 4093 cast<ClassTemplateSpecializationDecl>( 4094 D->getType()->getAs<RecordType>()->getDecl()); 4095 const TemplateArgumentList &Args = TD->getTemplateArgs(); 4096 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) { 4097 assert(Args.size() == 2 && 4098 "Unexpected number of template arguments of CUDA device " 4099 "builtin surface type."); 4100 auto SurfType = Args[1].getAsIntegral(); 4101 if (!D->hasExternalStorage()) 4102 getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(), 4103 SurfType.getSExtValue()); 4104 } else { 4105 assert(Args.size() == 3 && 4106 "Unexpected number of template arguments of CUDA device " 4107 "builtin texture type."); 4108 auto TexType = Args[1].getAsIntegral(); 4109 auto Normalized = Args[2].getAsIntegral(); 4110 if (!D->hasExternalStorage()) 4111 getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(), 4112 TexType.getSExtValue(), 4113 Normalized.getZExtValue()); 4114 } 4115 } 4116 } 4117 } 4118 4119 GV->setInitializer(Init); 4120 if (emitter) 4121 emitter->finalize(GV); 4122 4123 // If it is safe to mark the global 'constant', do so now. 4124 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4125 isTypeConstant(D->getType(), true)); 4126 4127 // If it is in a read-only section, mark it 'constant'. 4128 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4129 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4130 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4131 GV->setConstant(true); 4132 } 4133 4134 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4135 4136 // On Darwin, if the normal linkage of a C++ thread_local variable is 4137 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 4138 // copies within a linkage unit; otherwise, the backing variable has 4139 // internal linkage and all accesses should just be calls to the 4140 // Itanium-specified entry point, which has the normal linkage of the 4141 // variable. This is to preserve the ability to change the implementation 4142 // behind the scenes. 4143 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 4144 Context.getTargetInfo().getTriple().isOSDarwin() && 4145 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 4146 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 4147 Linkage = llvm::GlobalValue::InternalLinkage; 4148 4149 GV->setLinkage(Linkage); 4150 if (D->hasAttr<DLLImportAttr>()) 4151 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4152 else if (D->hasAttr<DLLExportAttr>()) 4153 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4154 else 4155 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4156 4157 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4158 // common vars aren't constant even if declared const. 4159 GV->setConstant(false); 4160 // Tentative definition of global variables may be initialized with 4161 // non-zero null pointers. In this case they should have weak linkage 4162 // since common linkage must have zero initializer and must not have 4163 // explicit section therefore cannot have non-zero initial value. 4164 if (!GV->getInitializer()->isNullValue()) 4165 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4166 } 4167 4168 setNonAliasAttributes(D, GV); 4169 4170 if (D->getTLSKind() && !GV->isThreadLocal()) { 4171 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4172 CXXThreadLocals.push_back(D); 4173 setTLSMode(GV, *D); 4174 } 4175 4176 maybeSetTrivialComdat(*D, *GV); 4177 4178 // Emit the initializer function if necessary. 4179 if (NeedsGlobalCtor || NeedsGlobalDtor) 4180 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4181 4182 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4183 4184 // Emit global variable debug information. 4185 if (CGDebugInfo *DI = getModuleDebugInfo()) 4186 if (getCodeGenOpts().hasReducedDebugInfo()) 4187 DI->EmitGlobalVariable(GV, D); 4188 } 4189 4190 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4191 if (CGDebugInfo *DI = getModuleDebugInfo()) 4192 if (getCodeGenOpts().hasReducedDebugInfo()) { 4193 QualType ASTTy = D->getType(); 4194 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4195 llvm::PointerType *PTy = 4196 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4197 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4198 DI->EmitExternalVariable( 4199 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4200 } 4201 } 4202 4203 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4204 CodeGenModule &CGM, const VarDecl *D, 4205 bool NoCommon) { 4206 // Don't give variables common linkage if -fno-common was specified unless it 4207 // was overridden by a NoCommon attribute. 4208 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4209 return true; 4210 4211 // C11 6.9.2/2: 4212 // A declaration of an identifier for an object that has file scope without 4213 // an initializer, and without a storage-class specifier or with the 4214 // storage-class specifier static, constitutes a tentative definition. 4215 if (D->getInit() || D->hasExternalStorage()) 4216 return true; 4217 4218 // A variable cannot be both common and exist in a section. 4219 if (D->hasAttr<SectionAttr>()) 4220 return true; 4221 4222 // A variable cannot be both common and exist in a section. 4223 // We don't try to determine which is the right section in the front-end. 4224 // If no specialized section name is applicable, it will resort to default. 4225 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4226 D->hasAttr<PragmaClangDataSectionAttr>() || 4227 D->hasAttr<PragmaClangRelroSectionAttr>() || 4228 D->hasAttr<PragmaClangRodataSectionAttr>()) 4229 return true; 4230 4231 // Thread local vars aren't considered common linkage. 4232 if (D->getTLSKind()) 4233 return true; 4234 4235 // Tentative definitions marked with WeakImportAttr are true definitions. 4236 if (D->hasAttr<WeakImportAttr>()) 4237 return true; 4238 4239 // A variable cannot be both common and exist in a comdat. 4240 if (shouldBeInCOMDAT(CGM, *D)) 4241 return true; 4242 4243 // Declarations with a required alignment do not have common linkage in MSVC 4244 // mode. 4245 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4246 if (D->hasAttr<AlignedAttr>()) 4247 return true; 4248 QualType VarType = D->getType(); 4249 if (Context.isAlignmentRequired(VarType)) 4250 return true; 4251 4252 if (const auto *RT = VarType->getAs<RecordType>()) { 4253 const RecordDecl *RD = RT->getDecl(); 4254 for (const FieldDecl *FD : RD->fields()) { 4255 if (FD->isBitField()) 4256 continue; 4257 if (FD->hasAttr<AlignedAttr>()) 4258 return true; 4259 if (Context.isAlignmentRequired(FD->getType())) 4260 return true; 4261 } 4262 } 4263 } 4264 4265 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4266 // common symbols, so symbols with greater alignment requirements cannot be 4267 // common. 4268 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4269 // alignments for common symbols via the aligncomm directive, so this 4270 // restriction only applies to MSVC environments. 4271 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4272 Context.getTypeAlignIfKnown(D->getType()) > 4273 Context.toBits(CharUnits::fromQuantity(32))) 4274 return true; 4275 4276 return false; 4277 } 4278 4279 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4280 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4281 if (Linkage == GVA_Internal) 4282 return llvm::Function::InternalLinkage; 4283 4284 if (D->hasAttr<WeakAttr>()) { 4285 if (IsConstantVariable) 4286 return llvm::GlobalVariable::WeakODRLinkage; 4287 else 4288 return llvm::GlobalVariable::WeakAnyLinkage; 4289 } 4290 4291 if (const auto *FD = D->getAsFunction()) 4292 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4293 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4294 4295 // We are guaranteed to have a strong definition somewhere else, 4296 // so we can use available_externally linkage. 4297 if (Linkage == GVA_AvailableExternally) 4298 return llvm::GlobalValue::AvailableExternallyLinkage; 4299 4300 // Note that Apple's kernel linker doesn't support symbol 4301 // coalescing, so we need to avoid linkonce and weak linkages there. 4302 // Normally, this means we just map to internal, but for explicit 4303 // instantiations we'll map to external. 4304 4305 // In C++, the compiler has to emit a definition in every translation unit 4306 // that references the function. We should use linkonce_odr because 4307 // a) if all references in this translation unit are optimized away, we 4308 // don't need to codegen it. b) if the function persists, it needs to be 4309 // merged with other definitions. c) C++ has the ODR, so we know the 4310 // definition is dependable. 4311 if (Linkage == GVA_DiscardableODR) 4312 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4313 : llvm::Function::InternalLinkage; 4314 4315 // An explicit instantiation of a template has weak linkage, since 4316 // explicit instantiations can occur in multiple translation units 4317 // and must all be equivalent. However, we are not allowed to 4318 // throw away these explicit instantiations. 4319 // 4320 // We don't currently support CUDA device code spread out across multiple TUs, 4321 // so say that CUDA templates are either external (for kernels) or internal. 4322 // This lets llvm perform aggressive inter-procedural optimizations. 4323 if (Linkage == GVA_StrongODR) { 4324 if (Context.getLangOpts().AppleKext) 4325 return llvm::Function::ExternalLinkage; 4326 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 4327 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4328 : llvm::Function::InternalLinkage; 4329 return llvm::Function::WeakODRLinkage; 4330 } 4331 4332 // C++ doesn't have tentative definitions and thus cannot have common 4333 // linkage. 4334 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4335 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4336 CodeGenOpts.NoCommon)) 4337 return llvm::GlobalVariable::CommonLinkage; 4338 4339 // selectany symbols are externally visible, so use weak instead of 4340 // linkonce. MSVC optimizes away references to const selectany globals, so 4341 // all definitions should be the same and ODR linkage should be used. 4342 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4343 if (D->hasAttr<SelectAnyAttr>()) 4344 return llvm::GlobalVariable::WeakODRLinkage; 4345 4346 // Otherwise, we have strong external linkage. 4347 assert(Linkage == GVA_StrongExternal); 4348 return llvm::GlobalVariable::ExternalLinkage; 4349 } 4350 4351 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4352 const VarDecl *VD, bool IsConstant) { 4353 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4354 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4355 } 4356 4357 /// Replace the uses of a function that was declared with a non-proto type. 4358 /// We want to silently drop extra arguments from call sites 4359 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4360 llvm::Function *newFn) { 4361 // Fast path. 4362 if (old->use_empty()) return; 4363 4364 llvm::Type *newRetTy = newFn->getReturnType(); 4365 SmallVector<llvm::Value*, 4> newArgs; 4366 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4367 4368 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4369 ui != ue; ) { 4370 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4371 llvm::User *user = use->getUser(); 4372 4373 // Recognize and replace uses of bitcasts. Most calls to 4374 // unprototyped functions will use bitcasts. 4375 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4376 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4377 replaceUsesOfNonProtoConstant(bitcast, newFn); 4378 continue; 4379 } 4380 4381 // Recognize calls to the function. 4382 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4383 if (!callSite) continue; 4384 if (!callSite->isCallee(&*use)) 4385 continue; 4386 4387 // If the return types don't match exactly, then we can't 4388 // transform this call unless it's dead. 4389 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4390 continue; 4391 4392 // Get the call site's attribute list. 4393 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4394 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4395 4396 // If the function was passed too few arguments, don't transform. 4397 unsigned newNumArgs = newFn->arg_size(); 4398 if (callSite->arg_size() < newNumArgs) 4399 continue; 4400 4401 // If extra arguments were passed, we silently drop them. 4402 // If any of the types mismatch, we don't transform. 4403 unsigned argNo = 0; 4404 bool dontTransform = false; 4405 for (llvm::Argument &A : newFn->args()) { 4406 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4407 dontTransform = true; 4408 break; 4409 } 4410 4411 // Add any parameter attributes. 4412 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4413 argNo++; 4414 } 4415 if (dontTransform) 4416 continue; 4417 4418 // Okay, we can transform this. Create the new call instruction and copy 4419 // over the required information. 4420 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4421 4422 // Copy over any operand bundles. 4423 callSite->getOperandBundlesAsDefs(newBundles); 4424 4425 llvm::CallBase *newCall; 4426 if (dyn_cast<llvm::CallInst>(callSite)) { 4427 newCall = 4428 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4429 } else { 4430 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4431 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4432 oldInvoke->getUnwindDest(), newArgs, 4433 newBundles, "", callSite); 4434 } 4435 newArgs.clear(); // for the next iteration 4436 4437 if (!newCall->getType()->isVoidTy()) 4438 newCall->takeName(callSite); 4439 newCall->setAttributes(llvm::AttributeList::get( 4440 newFn->getContext(), oldAttrs.getFnAttributes(), 4441 oldAttrs.getRetAttributes(), newArgAttrs)); 4442 newCall->setCallingConv(callSite->getCallingConv()); 4443 4444 // Finally, remove the old call, replacing any uses with the new one. 4445 if (!callSite->use_empty()) 4446 callSite->replaceAllUsesWith(newCall); 4447 4448 // Copy debug location attached to CI. 4449 if (callSite->getDebugLoc()) 4450 newCall->setDebugLoc(callSite->getDebugLoc()); 4451 4452 callSite->eraseFromParent(); 4453 } 4454 } 4455 4456 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4457 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4458 /// existing call uses of the old function in the module, this adjusts them to 4459 /// call the new function directly. 4460 /// 4461 /// This is not just a cleanup: the always_inline pass requires direct calls to 4462 /// functions to be able to inline them. If there is a bitcast in the way, it 4463 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4464 /// run at -O0. 4465 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4466 llvm::Function *NewFn) { 4467 // If we're redefining a global as a function, don't transform it. 4468 if (!isa<llvm::Function>(Old)) return; 4469 4470 replaceUsesOfNonProtoConstant(Old, NewFn); 4471 } 4472 4473 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4474 auto DK = VD->isThisDeclarationADefinition(); 4475 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4476 return; 4477 4478 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4479 // If we have a definition, this might be a deferred decl. If the 4480 // instantiation is explicit, make sure we emit it at the end. 4481 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4482 GetAddrOfGlobalVar(VD); 4483 4484 EmitTopLevelDecl(VD); 4485 } 4486 4487 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4488 llvm::GlobalValue *GV) { 4489 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4490 4491 // Compute the function info and LLVM type. 4492 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4493 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4494 4495 // Get or create the prototype for the function. 4496 if (!GV || (GV->getValueType() != Ty)) 4497 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4498 /*DontDefer=*/true, 4499 ForDefinition)); 4500 4501 // Already emitted. 4502 if (!GV->isDeclaration()) 4503 return; 4504 4505 // We need to set linkage and visibility on the function before 4506 // generating code for it because various parts of IR generation 4507 // want to propagate this information down (e.g. to local static 4508 // declarations). 4509 auto *Fn = cast<llvm::Function>(GV); 4510 setFunctionLinkage(GD, Fn); 4511 4512 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4513 setGVProperties(Fn, GD); 4514 4515 MaybeHandleStaticInExternC(D, Fn); 4516 4517 4518 maybeSetTrivialComdat(*D, *Fn); 4519 4520 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4521 4522 setNonAliasAttributes(GD, Fn); 4523 SetLLVMFunctionAttributesForDefinition(D, Fn); 4524 4525 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4526 AddGlobalCtor(Fn, CA->getPriority()); 4527 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4528 AddGlobalDtor(Fn, DA->getPriority()); 4529 if (D->hasAttr<AnnotateAttr>()) 4530 AddGlobalAnnotations(D, Fn); 4531 } 4532 4533 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4534 const auto *D = cast<ValueDecl>(GD.getDecl()); 4535 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4536 assert(AA && "Not an alias?"); 4537 4538 StringRef MangledName = getMangledName(GD); 4539 4540 if (AA->getAliasee() == MangledName) { 4541 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4542 return; 4543 } 4544 4545 // If there is a definition in the module, then it wins over the alias. 4546 // This is dubious, but allow it to be safe. Just ignore the alias. 4547 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4548 if (Entry && !Entry->isDeclaration()) 4549 return; 4550 4551 Aliases.push_back(GD); 4552 4553 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4554 4555 // Create a reference to the named value. This ensures that it is emitted 4556 // if a deferred decl. 4557 llvm::Constant *Aliasee; 4558 llvm::GlobalValue::LinkageTypes LT; 4559 if (isa<llvm::FunctionType>(DeclTy)) { 4560 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4561 /*ForVTable=*/false); 4562 LT = getFunctionLinkage(GD); 4563 } else { 4564 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4565 llvm::PointerType::getUnqual(DeclTy), 4566 /*D=*/nullptr); 4567 LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()), 4568 D->getType().isConstQualified()); 4569 } 4570 4571 // Create the new alias itself, but don't set a name yet. 4572 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4573 auto *GA = 4574 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4575 4576 if (Entry) { 4577 if (GA->getAliasee() == Entry) { 4578 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4579 return; 4580 } 4581 4582 assert(Entry->isDeclaration()); 4583 4584 // If there is a declaration in the module, then we had an extern followed 4585 // by the alias, as in: 4586 // extern int test6(); 4587 // ... 4588 // int test6() __attribute__((alias("test7"))); 4589 // 4590 // Remove it and replace uses of it with the alias. 4591 GA->takeName(Entry); 4592 4593 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4594 Entry->getType())); 4595 Entry->eraseFromParent(); 4596 } else { 4597 GA->setName(MangledName); 4598 } 4599 4600 // Set attributes which are particular to an alias; this is a 4601 // specialization of the attributes which may be set on a global 4602 // variable/function. 4603 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4604 D->isWeakImported()) { 4605 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4606 } 4607 4608 if (const auto *VD = dyn_cast<VarDecl>(D)) 4609 if (VD->getTLSKind()) 4610 setTLSMode(GA, *VD); 4611 4612 SetCommonAttributes(GD, GA); 4613 } 4614 4615 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4616 const auto *D = cast<ValueDecl>(GD.getDecl()); 4617 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4618 assert(IFA && "Not an ifunc?"); 4619 4620 StringRef MangledName = getMangledName(GD); 4621 4622 if (IFA->getResolver() == MangledName) { 4623 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4624 return; 4625 } 4626 4627 // Report an error if some definition overrides ifunc. 4628 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4629 if (Entry && !Entry->isDeclaration()) { 4630 GlobalDecl OtherGD; 4631 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4632 DiagnosedConflictingDefinitions.insert(GD).second) { 4633 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4634 << MangledName; 4635 Diags.Report(OtherGD.getDecl()->getLocation(), 4636 diag::note_previous_definition); 4637 } 4638 return; 4639 } 4640 4641 Aliases.push_back(GD); 4642 4643 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4644 llvm::Constant *Resolver = 4645 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4646 /*ForVTable=*/false); 4647 llvm::GlobalIFunc *GIF = 4648 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4649 "", Resolver, &getModule()); 4650 if (Entry) { 4651 if (GIF->getResolver() == Entry) { 4652 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4653 return; 4654 } 4655 assert(Entry->isDeclaration()); 4656 4657 // If there is a declaration in the module, then we had an extern followed 4658 // by the ifunc, as in: 4659 // extern int test(); 4660 // ... 4661 // int test() __attribute__((ifunc("resolver"))); 4662 // 4663 // Remove it and replace uses of it with the ifunc. 4664 GIF->takeName(Entry); 4665 4666 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4667 Entry->getType())); 4668 Entry->eraseFromParent(); 4669 } else 4670 GIF->setName(MangledName); 4671 4672 SetCommonAttributes(GD, GIF); 4673 } 4674 4675 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4676 ArrayRef<llvm::Type*> Tys) { 4677 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4678 Tys); 4679 } 4680 4681 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4682 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4683 const StringLiteral *Literal, bool TargetIsLSB, 4684 bool &IsUTF16, unsigned &StringLength) { 4685 StringRef String = Literal->getString(); 4686 unsigned NumBytes = String.size(); 4687 4688 // Check for simple case. 4689 if (!Literal->containsNonAsciiOrNull()) { 4690 StringLength = NumBytes; 4691 return *Map.insert(std::make_pair(String, nullptr)).first; 4692 } 4693 4694 // Otherwise, convert the UTF8 literals into a string of shorts. 4695 IsUTF16 = true; 4696 4697 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4698 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4699 llvm::UTF16 *ToPtr = &ToBuf[0]; 4700 4701 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4702 ToPtr + NumBytes, llvm::strictConversion); 4703 4704 // ConvertUTF8toUTF16 returns the length in ToPtr. 4705 StringLength = ToPtr - &ToBuf[0]; 4706 4707 // Add an explicit null. 4708 *ToPtr = 0; 4709 return *Map.insert(std::make_pair( 4710 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4711 (StringLength + 1) * 2), 4712 nullptr)).first; 4713 } 4714 4715 ConstantAddress 4716 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4717 unsigned StringLength = 0; 4718 bool isUTF16 = false; 4719 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4720 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4721 getDataLayout().isLittleEndian(), isUTF16, 4722 StringLength); 4723 4724 if (auto *C = Entry.second) 4725 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4726 4727 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4728 llvm::Constant *Zeros[] = { Zero, Zero }; 4729 4730 const ASTContext &Context = getContext(); 4731 const llvm::Triple &Triple = getTriple(); 4732 4733 const auto CFRuntime = getLangOpts().CFRuntime; 4734 const bool IsSwiftABI = 4735 static_cast<unsigned>(CFRuntime) >= 4736 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4737 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4738 4739 // If we don't already have it, get __CFConstantStringClassReference. 4740 if (!CFConstantStringClassRef) { 4741 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4742 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4743 Ty = llvm::ArrayType::get(Ty, 0); 4744 4745 switch (CFRuntime) { 4746 default: break; 4747 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4748 case LangOptions::CoreFoundationABI::Swift5_0: 4749 CFConstantStringClassName = 4750 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4751 : "$s10Foundation19_NSCFConstantStringCN"; 4752 Ty = IntPtrTy; 4753 break; 4754 case LangOptions::CoreFoundationABI::Swift4_2: 4755 CFConstantStringClassName = 4756 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4757 : "$S10Foundation19_NSCFConstantStringCN"; 4758 Ty = IntPtrTy; 4759 break; 4760 case LangOptions::CoreFoundationABI::Swift4_1: 4761 CFConstantStringClassName = 4762 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4763 : "__T010Foundation19_NSCFConstantStringCN"; 4764 Ty = IntPtrTy; 4765 break; 4766 } 4767 4768 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4769 4770 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4771 llvm::GlobalValue *GV = nullptr; 4772 4773 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4774 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4775 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4776 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4777 4778 const VarDecl *VD = nullptr; 4779 for (const auto &Result : DC->lookup(&II)) 4780 if ((VD = dyn_cast<VarDecl>(Result))) 4781 break; 4782 4783 if (Triple.isOSBinFormatELF()) { 4784 if (!VD) 4785 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4786 } else { 4787 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4788 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4789 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4790 else 4791 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4792 } 4793 4794 setDSOLocal(GV); 4795 } 4796 } 4797 4798 // Decay array -> ptr 4799 CFConstantStringClassRef = 4800 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4801 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4802 } 4803 4804 QualType CFTy = Context.getCFConstantStringType(); 4805 4806 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4807 4808 ConstantInitBuilder Builder(*this); 4809 auto Fields = Builder.beginStruct(STy); 4810 4811 // Class pointer. 4812 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4813 4814 // Flags. 4815 if (IsSwiftABI) { 4816 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4817 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4818 } else { 4819 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4820 } 4821 4822 // String pointer. 4823 llvm::Constant *C = nullptr; 4824 if (isUTF16) { 4825 auto Arr = llvm::makeArrayRef( 4826 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4827 Entry.first().size() / 2); 4828 C = llvm::ConstantDataArray::get(VMContext, Arr); 4829 } else { 4830 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4831 } 4832 4833 // Note: -fwritable-strings doesn't make the backing store strings of 4834 // CFStrings writable. (See <rdar://problem/10657500>) 4835 auto *GV = 4836 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4837 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4838 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4839 // Don't enforce the target's minimum global alignment, since the only use 4840 // of the string is via this class initializer. 4841 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4842 : Context.getTypeAlignInChars(Context.CharTy); 4843 GV->setAlignment(Align.getAsAlign()); 4844 4845 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4846 // Without it LLVM can merge the string with a non unnamed_addr one during 4847 // LTO. Doing that changes the section it ends in, which surprises ld64. 4848 if (Triple.isOSBinFormatMachO()) 4849 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4850 : "__TEXT,__cstring,cstring_literals"); 4851 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4852 // the static linker to adjust permissions to read-only later on. 4853 else if (Triple.isOSBinFormatELF()) 4854 GV->setSection(".rodata"); 4855 4856 // String. 4857 llvm::Constant *Str = 4858 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4859 4860 if (isUTF16) 4861 // Cast the UTF16 string to the correct type. 4862 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4863 Fields.add(Str); 4864 4865 // String length. 4866 llvm::IntegerType *LengthTy = 4867 llvm::IntegerType::get(getModule().getContext(), 4868 Context.getTargetInfo().getLongWidth()); 4869 if (IsSwiftABI) { 4870 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4871 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4872 LengthTy = Int32Ty; 4873 else 4874 LengthTy = IntPtrTy; 4875 } 4876 Fields.addInt(LengthTy, StringLength); 4877 4878 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 4879 // properly aligned on 32-bit platforms. 4880 CharUnits Alignment = 4881 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 4882 4883 // The struct. 4884 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4885 /*isConstant=*/false, 4886 llvm::GlobalVariable::PrivateLinkage); 4887 GV->addAttribute("objc_arc_inert"); 4888 switch (Triple.getObjectFormat()) { 4889 case llvm::Triple::UnknownObjectFormat: 4890 llvm_unreachable("unknown file format"); 4891 case llvm::Triple::XCOFF: 4892 llvm_unreachable("XCOFF is not yet implemented"); 4893 case llvm::Triple::COFF: 4894 case llvm::Triple::ELF: 4895 case llvm::Triple::Wasm: 4896 GV->setSection("cfstring"); 4897 break; 4898 case llvm::Triple::MachO: 4899 GV->setSection("__DATA,__cfstring"); 4900 break; 4901 } 4902 Entry.second = GV; 4903 4904 return ConstantAddress(GV, Alignment); 4905 } 4906 4907 bool CodeGenModule::getExpressionLocationsEnabled() const { 4908 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4909 } 4910 4911 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4912 if (ObjCFastEnumerationStateType.isNull()) { 4913 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4914 D->startDefinition(); 4915 4916 QualType FieldTypes[] = { 4917 Context.UnsignedLongTy, 4918 Context.getPointerType(Context.getObjCIdType()), 4919 Context.getPointerType(Context.UnsignedLongTy), 4920 Context.getConstantArrayType(Context.UnsignedLongTy, 4921 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 4922 }; 4923 4924 for (size_t i = 0; i < 4; ++i) { 4925 FieldDecl *Field = FieldDecl::Create(Context, 4926 D, 4927 SourceLocation(), 4928 SourceLocation(), nullptr, 4929 FieldTypes[i], /*TInfo=*/nullptr, 4930 /*BitWidth=*/nullptr, 4931 /*Mutable=*/false, 4932 ICIS_NoInit); 4933 Field->setAccess(AS_public); 4934 D->addDecl(Field); 4935 } 4936 4937 D->completeDefinition(); 4938 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4939 } 4940 4941 return ObjCFastEnumerationStateType; 4942 } 4943 4944 llvm::Constant * 4945 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4946 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4947 4948 // Don't emit it as the address of the string, emit the string data itself 4949 // as an inline array. 4950 if (E->getCharByteWidth() == 1) { 4951 SmallString<64> Str(E->getString()); 4952 4953 // Resize the string to the right size, which is indicated by its type. 4954 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4955 Str.resize(CAT->getSize().getZExtValue()); 4956 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4957 } 4958 4959 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4960 llvm::Type *ElemTy = AType->getElementType(); 4961 unsigned NumElements = AType->getNumElements(); 4962 4963 // Wide strings have either 2-byte or 4-byte elements. 4964 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4965 SmallVector<uint16_t, 32> Elements; 4966 Elements.reserve(NumElements); 4967 4968 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4969 Elements.push_back(E->getCodeUnit(i)); 4970 Elements.resize(NumElements); 4971 return llvm::ConstantDataArray::get(VMContext, Elements); 4972 } 4973 4974 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4975 SmallVector<uint32_t, 32> Elements; 4976 Elements.reserve(NumElements); 4977 4978 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4979 Elements.push_back(E->getCodeUnit(i)); 4980 Elements.resize(NumElements); 4981 return llvm::ConstantDataArray::get(VMContext, Elements); 4982 } 4983 4984 static llvm::GlobalVariable * 4985 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4986 CodeGenModule &CGM, StringRef GlobalName, 4987 CharUnits Alignment) { 4988 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4989 CGM.getStringLiteralAddressSpace()); 4990 4991 llvm::Module &M = CGM.getModule(); 4992 // Create a global variable for this string 4993 auto *GV = new llvm::GlobalVariable( 4994 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4995 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4996 GV->setAlignment(Alignment.getAsAlign()); 4997 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4998 if (GV->isWeakForLinker()) { 4999 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5000 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5001 } 5002 CGM.setDSOLocal(GV); 5003 5004 return GV; 5005 } 5006 5007 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5008 /// constant array for the given string literal. 5009 ConstantAddress 5010 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5011 StringRef Name) { 5012 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5013 5014 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5015 llvm::GlobalVariable **Entry = nullptr; 5016 if (!LangOpts.WritableStrings) { 5017 Entry = &ConstantStringMap[C]; 5018 if (auto GV = *Entry) { 5019 if (Alignment.getQuantity() > GV->getAlignment()) 5020 GV->setAlignment(Alignment.getAsAlign()); 5021 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5022 Alignment); 5023 } 5024 } 5025 5026 SmallString<256> MangledNameBuffer; 5027 StringRef GlobalVariableName; 5028 llvm::GlobalValue::LinkageTypes LT; 5029 5030 // Mangle the string literal if that's how the ABI merges duplicate strings. 5031 // Don't do it if they are writable, since we don't want writes in one TU to 5032 // affect strings in another. 5033 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5034 !LangOpts.WritableStrings) { 5035 llvm::raw_svector_ostream Out(MangledNameBuffer); 5036 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5037 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5038 GlobalVariableName = MangledNameBuffer; 5039 } else { 5040 LT = llvm::GlobalValue::PrivateLinkage; 5041 GlobalVariableName = Name; 5042 } 5043 5044 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5045 if (Entry) 5046 *Entry = GV; 5047 5048 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5049 QualType()); 5050 5051 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5052 Alignment); 5053 } 5054 5055 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5056 /// array for the given ObjCEncodeExpr node. 5057 ConstantAddress 5058 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5059 std::string Str; 5060 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5061 5062 return GetAddrOfConstantCString(Str); 5063 } 5064 5065 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5066 /// the literal and a terminating '\0' character. 5067 /// The result has pointer to array type. 5068 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5069 const std::string &Str, const char *GlobalName) { 5070 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5071 CharUnits Alignment = 5072 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5073 5074 llvm::Constant *C = 5075 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5076 5077 // Don't share any string literals if strings aren't constant. 5078 llvm::GlobalVariable **Entry = nullptr; 5079 if (!LangOpts.WritableStrings) { 5080 Entry = &ConstantStringMap[C]; 5081 if (auto GV = *Entry) { 5082 if (Alignment.getQuantity() > GV->getAlignment()) 5083 GV->setAlignment(Alignment.getAsAlign()); 5084 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5085 Alignment); 5086 } 5087 } 5088 5089 // Get the default prefix if a name wasn't specified. 5090 if (!GlobalName) 5091 GlobalName = ".str"; 5092 // Create a global variable for this. 5093 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5094 GlobalName, Alignment); 5095 if (Entry) 5096 *Entry = GV; 5097 5098 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5099 Alignment); 5100 } 5101 5102 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5103 const MaterializeTemporaryExpr *E, const Expr *Init) { 5104 assert((E->getStorageDuration() == SD_Static || 5105 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5106 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5107 5108 // If we're not materializing a subobject of the temporary, keep the 5109 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5110 QualType MaterializedType = Init->getType(); 5111 if (Init == E->getSubExpr()) 5112 MaterializedType = E->getType(); 5113 5114 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5115 5116 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5117 return ConstantAddress(Slot, Align); 5118 5119 // FIXME: If an externally-visible declaration extends multiple temporaries, 5120 // we need to give each temporary the same name in every translation unit (and 5121 // we also need to make the temporaries externally-visible). 5122 SmallString<256> Name; 5123 llvm::raw_svector_ostream Out(Name); 5124 getCXXABI().getMangleContext().mangleReferenceTemporary( 5125 VD, E->getManglingNumber(), Out); 5126 5127 APValue *Value = nullptr; 5128 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5129 // If the initializer of the extending declaration is a constant 5130 // initializer, we should have a cached constant initializer for this 5131 // temporary. Note that this might have a different value from the value 5132 // computed by evaluating the initializer if the surrounding constant 5133 // expression modifies the temporary. 5134 Value = E->getOrCreateValue(false); 5135 } 5136 5137 // Try evaluating it now, it might have a constant initializer. 5138 Expr::EvalResult EvalResult; 5139 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5140 !EvalResult.hasSideEffects()) 5141 Value = &EvalResult.Val; 5142 5143 LangAS AddrSpace = 5144 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5145 5146 Optional<ConstantEmitter> emitter; 5147 llvm::Constant *InitialValue = nullptr; 5148 bool Constant = false; 5149 llvm::Type *Type; 5150 if (Value) { 5151 // The temporary has a constant initializer, use it. 5152 emitter.emplace(*this); 5153 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5154 MaterializedType); 5155 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5156 Type = InitialValue->getType(); 5157 } else { 5158 // No initializer, the initialization will be provided when we 5159 // initialize the declaration which performed lifetime extension. 5160 Type = getTypes().ConvertTypeForMem(MaterializedType); 5161 } 5162 5163 // Create a global variable for this lifetime-extended temporary. 5164 llvm::GlobalValue::LinkageTypes Linkage = 5165 getLLVMLinkageVarDefinition(VD, Constant); 5166 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5167 const VarDecl *InitVD; 5168 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5169 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5170 // Temporaries defined inside a class get linkonce_odr linkage because the 5171 // class can be defined in multiple translation units. 5172 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5173 } else { 5174 // There is no need for this temporary to have external linkage if the 5175 // VarDecl has external linkage. 5176 Linkage = llvm::GlobalVariable::InternalLinkage; 5177 } 5178 } 5179 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5180 auto *GV = new llvm::GlobalVariable( 5181 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5182 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5183 if (emitter) emitter->finalize(GV); 5184 setGVProperties(GV, VD); 5185 GV->setAlignment(Align.getAsAlign()); 5186 if (supportsCOMDAT() && GV->isWeakForLinker()) 5187 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5188 if (VD->getTLSKind()) 5189 setTLSMode(GV, *VD); 5190 llvm::Constant *CV = GV; 5191 if (AddrSpace != LangAS::Default) 5192 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5193 *this, GV, AddrSpace, LangAS::Default, 5194 Type->getPointerTo( 5195 getContext().getTargetAddressSpace(LangAS::Default))); 5196 MaterializedGlobalTemporaryMap[E] = CV; 5197 return ConstantAddress(CV, Align); 5198 } 5199 5200 /// EmitObjCPropertyImplementations - Emit information for synthesized 5201 /// properties for an implementation. 5202 void CodeGenModule::EmitObjCPropertyImplementations(const 5203 ObjCImplementationDecl *D) { 5204 for (const auto *PID : D->property_impls()) { 5205 // Dynamic is just for type-checking. 5206 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5207 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5208 5209 // Determine which methods need to be implemented, some may have 5210 // been overridden. Note that ::isPropertyAccessor is not the method 5211 // we want, that just indicates if the decl came from a 5212 // property. What we want to know is if the method is defined in 5213 // this implementation. 5214 auto *Getter = PID->getGetterMethodDecl(); 5215 if (!Getter || Getter->isSynthesizedAccessorStub()) 5216 CodeGenFunction(*this).GenerateObjCGetter( 5217 const_cast<ObjCImplementationDecl *>(D), PID); 5218 auto *Setter = PID->getSetterMethodDecl(); 5219 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5220 CodeGenFunction(*this).GenerateObjCSetter( 5221 const_cast<ObjCImplementationDecl *>(D), PID); 5222 } 5223 } 5224 } 5225 5226 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5227 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5228 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5229 ivar; ivar = ivar->getNextIvar()) 5230 if (ivar->getType().isDestructedType()) 5231 return true; 5232 5233 return false; 5234 } 5235 5236 static bool AllTrivialInitializers(CodeGenModule &CGM, 5237 ObjCImplementationDecl *D) { 5238 CodeGenFunction CGF(CGM); 5239 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5240 E = D->init_end(); B != E; ++B) { 5241 CXXCtorInitializer *CtorInitExp = *B; 5242 Expr *Init = CtorInitExp->getInit(); 5243 if (!CGF.isTrivialInitializer(Init)) 5244 return false; 5245 } 5246 return true; 5247 } 5248 5249 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5250 /// for an implementation. 5251 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5252 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5253 if (needsDestructMethod(D)) { 5254 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5255 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5256 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5257 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5258 getContext().VoidTy, nullptr, D, 5259 /*isInstance=*/true, /*isVariadic=*/false, 5260 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5261 /*isImplicitlyDeclared=*/true, 5262 /*isDefined=*/false, ObjCMethodDecl::Required); 5263 D->addInstanceMethod(DTORMethod); 5264 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5265 D->setHasDestructors(true); 5266 } 5267 5268 // If the implementation doesn't have any ivar initializers, we don't need 5269 // a .cxx_construct. 5270 if (D->getNumIvarInitializers() == 0 || 5271 AllTrivialInitializers(*this, D)) 5272 return; 5273 5274 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5275 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5276 // The constructor returns 'self'. 5277 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5278 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5279 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5280 /*isVariadic=*/false, 5281 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5282 /*isImplicitlyDeclared=*/true, 5283 /*isDefined=*/false, ObjCMethodDecl::Required); 5284 D->addInstanceMethod(CTORMethod); 5285 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5286 D->setHasNonZeroConstructors(true); 5287 } 5288 5289 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5290 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5291 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5292 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5293 ErrorUnsupported(LSD, "linkage spec"); 5294 return; 5295 } 5296 5297 EmitDeclContext(LSD); 5298 } 5299 5300 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5301 for (auto *I : DC->decls()) { 5302 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5303 // are themselves considered "top-level", so EmitTopLevelDecl on an 5304 // ObjCImplDecl does not recursively visit them. We need to do that in 5305 // case they're nested inside another construct (LinkageSpecDecl / 5306 // ExportDecl) that does stop them from being considered "top-level". 5307 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5308 for (auto *M : OID->methods()) 5309 EmitTopLevelDecl(M); 5310 } 5311 5312 EmitTopLevelDecl(I); 5313 } 5314 } 5315 5316 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5317 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5318 // Ignore dependent declarations. 5319 if (D->isTemplated()) 5320 return; 5321 5322 switch (D->getKind()) { 5323 case Decl::CXXConversion: 5324 case Decl::CXXMethod: 5325 case Decl::Function: 5326 EmitGlobal(cast<FunctionDecl>(D)); 5327 // Always provide some coverage mapping 5328 // even for the functions that aren't emitted. 5329 AddDeferredUnusedCoverageMapping(D); 5330 break; 5331 5332 case Decl::CXXDeductionGuide: 5333 // Function-like, but does not result in code emission. 5334 break; 5335 5336 case Decl::Var: 5337 case Decl::Decomposition: 5338 case Decl::VarTemplateSpecialization: 5339 EmitGlobal(cast<VarDecl>(D)); 5340 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5341 for (auto *B : DD->bindings()) 5342 if (auto *HD = B->getHoldingVar()) 5343 EmitGlobal(HD); 5344 break; 5345 5346 // Indirect fields from global anonymous structs and unions can be 5347 // ignored; only the actual variable requires IR gen support. 5348 case Decl::IndirectField: 5349 break; 5350 5351 // C++ Decls 5352 case Decl::Namespace: 5353 EmitDeclContext(cast<NamespaceDecl>(D)); 5354 break; 5355 case Decl::ClassTemplateSpecialization: { 5356 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5357 if (DebugInfo && 5358 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 5359 Spec->hasDefinition()) 5360 DebugInfo->completeTemplateDefinition(*Spec); 5361 } LLVM_FALLTHROUGH; 5362 case Decl::CXXRecord: 5363 if (DebugInfo) { 5364 if (auto *ES = D->getASTContext().getExternalSource()) 5365 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5366 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 5367 } 5368 // Emit any static data members, they may be definitions. 5369 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 5370 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5371 EmitTopLevelDecl(I); 5372 break; 5373 // No code generation needed. 5374 case Decl::UsingShadow: 5375 case Decl::ClassTemplate: 5376 case Decl::VarTemplate: 5377 case Decl::Concept: 5378 case Decl::VarTemplatePartialSpecialization: 5379 case Decl::FunctionTemplate: 5380 case Decl::TypeAliasTemplate: 5381 case Decl::Block: 5382 case Decl::Empty: 5383 case Decl::Binding: 5384 break; 5385 case Decl::Using: // using X; [C++] 5386 if (CGDebugInfo *DI = getModuleDebugInfo()) 5387 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5388 return; 5389 case Decl::NamespaceAlias: 5390 if (CGDebugInfo *DI = getModuleDebugInfo()) 5391 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5392 return; 5393 case Decl::UsingDirective: // using namespace X; [C++] 5394 if (CGDebugInfo *DI = getModuleDebugInfo()) 5395 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5396 return; 5397 case Decl::CXXConstructor: 5398 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5399 break; 5400 case Decl::CXXDestructor: 5401 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5402 break; 5403 5404 case Decl::StaticAssert: 5405 // Nothing to do. 5406 break; 5407 5408 // Objective-C Decls 5409 5410 // Forward declarations, no (immediate) code generation. 5411 case Decl::ObjCInterface: 5412 case Decl::ObjCCategory: 5413 break; 5414 5415 case Decl::ObjCProtocol: { 5416 auto *Proto = cast<ObjCProtocolDecl>(D); 5417 if (Proto->isThisDeclarationADefinition()) 5418 ObjCRuntime->GenerateProtocol(Proto); 5419 break; 5420 } 5421 5422 case Decl::ObjCCategoryImpl: 5423 // Categories have properties but don't support synthesize so we 5424 // can ignore them here. 5425 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5426 break; 5427 5428 case Decl::ObjCImplementation: { 5429 auto *OMD = cast<ObjCImplementationDecl>(D); 5430 EmitObjCPropertyImplementations(OMD); 5431 EmitObjCIvarInitializations(OMD); 5432 ObjCRuntime->GenerateClass(OMD); 5433 // Emit global variable debug information. 5434 if (CGDebugInfo *DI = getModuleDebugInfo()) 5435 if (getCodeGenOpts().hasReducedDebugInfo()) 5436 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5437 OMD->getClassInterface()), OMD->getLocation()); 5438 break; 5439 } 5440 case Decl::ObjCMethod: { 5441 auto *OMD = cast<ObjCMethodDecl>(D); 5442 // If this is not a prototype, emit the body. 5443 if (OMD->getBody()) 5444 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5445 break; 5446 } 5447 case Decl::ObjCCompatibleAlias: 5448 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5449 break; 5450 5451 case Decl::PragmaComment: { 5452 const auto *PCD = cast<PragmaCommentDecl>(D); 5453 switch (PCD->getCommentKind()) { 5454 case PCK_Unknown: 5455 llvm_unreachable("unexpected pragma comment kind"); 5456 case PCK_Linker: 5457 AppendLinkerOptions(PCD->getArg()); 5458 break; 5459 case PCK_Lib: 5460 AddDependentLib(PCD->getArg()); 5461 break; 5462 case PCK_Compiler: 5463 case PCK_ExeStr: 5464 case PCK_User: 5465 break; // We ignore all of these. 5466 } 5467 break; 5468 } 5469 5470 case Decl::PragmaDetectMismatch: { 5471 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5472 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5473 break; 5474 } 5475 5476 case Decl::LinkageSpec: 5477 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5478 break; 5479 5480 case Decl::FileScopeAsm: { 5481 // File-scope asm is ignored during device-side CUDA compilation. 5482 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5483 break; 5484 // File-scope asm is ignored during device-side OpenMP compilation. 5485 if (LangOpts.OpenMPIsDevice) 5486 break; 5487 auto *AD = cast<FileScopeAsmDecl>(D); 5488 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5489 break; 5490 } 5491 5492 case Decl::Import: { 5493 auto *Import = cast<ImportDecl>(D); 5494 5495 // If we've already imported this module, we're done. 5496 if (!ImportedModules.insert(Import->getImportedModule())) 5497 break; 5498 5499 // Emit debug information for direct imports. 5500 if (!Import->getImportedOwningModule()) { 5501 if (CGDebugInfo *DI = getModuleDebugInfo()) 5502 DI->EmitImportDecl(*Import); 5503 } 5504 5505 // Find all of the submodules and emit the module initializers. 5506 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5507 SmallVector<clang::Module *, 16> Stack; 5508 Visited.insert(Import->getImportedModule()); 5509 Stack.push_back(Import->getImportedModule()); 5510 5511 while (!Stack.empty()) { 5512 clang::Module *Mod = Stack.pop_back_val(); 5513 if (!EmittedModuleInitializers.insert(Mod).second) 5514 continue; 5515 5516 for (auto *D : Context.getModuleInitializers(Mod)) 5517 EmitTopLevelDecl(D); 5518 5519 // Visit the submodules of this module. 5520 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5521 SubEnd = Mod->submodule_end(); 5522 Sub != SubEnd; ++Sub) { 5523 // Skip explicit children; they need to be explicitly imported to emit 5524 // the initializers. 5525 if ((*Sub)->IsExplicit) 5526 continue; 5527 5528 if (Visited.insert(*Sub).second) 5529 Stack.push_back(*Sub); 5530 } 5531 } 5532 break; 5533 } 5534 5535 case Decl::Export: 5536 EmitDeclContext(cast<ExportDecl>(D)); 5537 break; 5538 5539 case Decl::OMPThreadPrivate: 5540 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5541 break; 5542 5543 case Decl::OMPAllocate: 5544 break; 5545 5546 case Decl::OMPDeclareReduction: 5547 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5548 break; 5549 5550 case Decl::OMPDeclareMapper: 5551 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5552 break; 5553 5554 case Decl::OMPRequires: 5555 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5556 break; 5557 5558 default: 5559 // Make sure we handled everything we should, every other kind is a 5560 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5561 // function. Need to recode Decl::Kind to do that easily. 5562 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5563 break; 5564 } 5565 } 5566 5567 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5568 // Do we need to generate coverage mapping? 5569 if (!CodeGenOpts.CoverageMapping) 5570 return; 5571 switch (D->getKind()) { 5572 case Decl::CXXConversion: 5573 case Decl::CXXMethod: 5574 case Decl::Function: 5575 case Decl::ObjCMethod: 5576 case Decl::CXXConstructor: 5577 case Decl::CXXDestructor: { 5578 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5579 return; 5580 SourceManager &SM = getContext().getSourceManager(); 5581 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5582 return; 5583 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5584 if (I == DeferredEmptyCoverageMappingDecls.end()) 5585 DeferredEmptyCoverageMappingDecls[D] = true; 5586 break; 5587 } 5588 default: 5589 break; 5590 }; 5591 } 5592 5593 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5594 // Do we need to generate coverage mapping? 5595 if (!CodeGenOpts.CoverageMapping) 5596 return; 5597 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5598 if (Fn->isTemplateInstantiation()) 5599 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5600 } 5601 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5602 if (I == DeferredEmptyCoverageMappingDecls.end()) 5603 DeferredEmptyCoverageMappingDecls[D] = false; 5604 else 5605 I->second = false; 5606 } 5607 5608 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5609 // We call takeVector() here to avoid use-after-free. 5610 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5611 // we deserialize function bodies to emit coverage info for them, and that 5612 // deserializes more declarations. How should we handle that case? 5613 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5614 if (!Entry.second) 5615 continue; 5616 const Decl *D = Entry.first; 5617 switch (D->getKind()) { 5618 case Decl::CXXConversion: 5619 case Decl::CXXMethod: 5620 case Decl::Function: 5621 case Decl::ObjCMethod: { 5622 CodeGenPGO PGO(*this); 5623 GlobalDecl GD(cast<FunctionDecl>(D)); 5624 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5625 getFunctionLinkage(GD)); 5626 break; 5627 } 5628 case Decl::CXXConstructor: { 5629 CodeGenPGO PGO(*this); 5630 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5631 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5632 getFunctionLinkage(GD)); 5633 break; 5634 } 5635 case Decl::CXXDestructor: { 5636 CodeGenPGO PGO(*this); 5637 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5638 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5639 getFunctionLinkage(GD)); 5640 break; 5641 } 5642 default: 5643 break; 5644 }; 5645 } 5646 } 5647 5648 void CodeGenModule::EmitMainVoidAlias() { 5649 // In order to transition away from "__original_main" gracefully, emit an 5650 // alias for "main" in the no-argument case so that libc can detect when 5651 // new-style no-argument main is in used. 5652 if (llvm::Function *F = getModule().getFunction("main")) { 5653 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 5654 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 5655 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 5656 } 5657 } 5658 5659 /// Turns the given pointer into a constant. 5660 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5661 const void *Ptr) { 5662 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5663 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5664 return llvm::ConstantInt::get(i64, PtrInt); 5665 } 5666 5667 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5668 llvm::NamedMDNode *&GlobalMetadata, 5669 GlobalDecl D, 5670 llvm::GlobalValue *Addr) { 5671 if (!GlobalMetadata) 5672 GlobalMetadata = 5673 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5674 5675 // TODO: should we report variant information for ctors/dtors? 5676 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5677 llvm::ConstantAsMetadata::get(GetPointerConstant( 5678 CGM.getLLVMContext(), D.getDecl()))}; 5679 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5680 } 5681 5682 /// For each function which is declared within an extern "C" region and marked 5683 /// as 'used', but has internal linkage, create an alias from the unmangled 5684 /// name to the mangled name if possible. People expect to be able to refer 5685 /// to such functions with an unmangled name from inline assembly within the 5686 /// same translation unit. 5687 void CodeGenModule::EmitStaticExternCAliases() { 5688 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5689 return; 5690 for (auto &I : StaticExternCValues) { 5691 IdentifierInfo *Name = I.first; 5692 llvm::GlobalValue *Val = I.second; 5693 if (Val && !getModule().getNamedValue(Name->getName())) 5694 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5695 } 5696 } 5697 5698 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5699 GlobalDecl &Result) const { 5700 auto Res = Manglings.find(MangledName); 5701 if (Res == Manglings.end()) 5702 return false; 5703 Result = Res->getValue(); 5704 return true; 5705 } 5706 5707 /// Emits metadata nodes associating all the global values in the 5708 /// current module with the Decls they came from. This is useful for 5709 /// projects using IR gen as a subroutine. 5710 /// 5711 /// Since there's currently no way to associate an MDNode directly 5712 /// with an llvm::GlobalValue, we create a global named metadata 5713 /// with the name 'clang.global.decl.ptrs'. 5714 void CodeGenModule::EmitDeclMetadata() { 5715 llvm::NamedMDNode *GlobalMetadata = nullptr; 5716 5717 for (auto &I : MangledDeclNames) { 5718 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5719 // Some mangled names don't necessarily have an associated GlobalValue 5720 // in this module, e.g. if we mangled it for DebugInfo. 5721 if (Addr) 5722 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5723 } 5724 } 5725 5726 /// Emits metadata nodes for all the local variables in the current 5727 /// function. 5728 void CodeGenFunction::EmitDeclMetadata() { 5729 if (LocalDeclMap.empty()) return; 5730 5731 llvm::LLVMContext &Context = getLLVMContext(); 5732 5733 // Find the unique metadata ID for this name. 5734 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5735 5736 llvm::NamedMDNode *GlobalMetadata = nullptr; 5737 5738 for (auto &I : LocalDeclMap) { 5739 const Decl *D = I.first; 5740 llvm::Value *Addr = I.second.getPointer(); 5741 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5742 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5743 Alloca->setMetadata( 5744 DeclPtrKind, llvm::MDNode::get( 5745 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5746 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5747 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5748 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5749 } 5750 } 5751 } 5752 5753 void CodeGenModule::EmitVersionIdentMetadata() { 5754 llvm::NamedMDNode *IdentMetadata = 5755 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5756 std::string Version = getClangFullVersion(); 5757 llvm::LLVMContext &Ctx = TheModule.getContext(); 5758 5759 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5760 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5761 } 5762 5763 void CodeGenModule::EmitCommandLineMetadata() { 5764 llvm::NamedMDNode *CommandLineMetadata = 5765 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5766 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5767 llvm::LLVMContext &Ctx = TheModule.getContext(); 5768 5769 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5770 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5771 } 5772 5773 void CodeGenModule::EmitTargetMetadata() { 5774 // Warning, new MangledDeclNames may be appended within this loop. 5775 // We rely on MapVector insertions adding new elements to the end 5776 // of the container. 5777 // FIXME: Move this loop into the one target that needs it, and only 5778 // loop over those declarations for which we couldn't emit the target 5779 // metadata when we emitted the declaration. 5780 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5781 auto Val = *(MangledDeclNames.begin() + I); 5782 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5783 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5784 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5785 } 5786 } 5787 5788 void CodeGenModule::EmitCoverageFile() { 5789 if (getCodeGenOpts().CoverageDataFile.empty() && 5790 getCodeGenOpts().CoverageNotesFile.empty()) 5791 return; 5792 5793 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5794 if (!CUNode) 5795 return; 5796 5797 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5798 llvm::LLVMContext &Ctx = TheModule.getContext(); 5799 auto *CoverageDataFile = 5800 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5801 auto *CoverageNotesFile = 5802 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5803 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5804 llvm::MDNode *CU = CUNode->getOperand(i); 5805 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5806 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5807 } 5808 } 5809 5810 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5811 bool ForEH) { 5812 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5813 // FIXME: should we even be calling this method if RTTI is disabled 5814 // and it's not for EH? 5815 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 5816 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 5817 getTriple().isNVPTX())) 5818 return llvm::Constant::getNullValue(Int8PtrTy); 5819 5820 if (ForEH && Ty->isObjCObjectPointerType() && 5821 LangOpts.ObjCRuntime.isGNUFamily()) 5822 return ObjCRuntime->GetEHType(Ty); 5823 5824 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5825 } 5826 5827 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5828 // Do not emit threadprivates in simd-only mode. 5829 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5830 return; 5831 for (auto RefExpr : D->varlists()) { 5832 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5833 bool PerformInit = 5834 VD->getAnyInitializer() && 5835 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5836 /*ForRef=*/false); 5837 5838 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5839 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5840 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5841 CXXGlobalInits.push_back(InitFunction); 5842 } 5843 } 5844 5845 llvm::Metadata * 5846 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5847 StringRef Suffix) { 5848 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5849 if (InternalId) 5850 return InternalId; 5851 5852 if (isExternallyVisible(T->getLinkage())) { 5853 std::string OutName; 5854 llvm::raw_string_ostream Out(OutName); 5855 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5856 Out << Suffix; 5857 5858 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5859 } else { 5860 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5861 llvm::ArrayRef<llvm::Metadata *>()); 5862 } 5863 5864 return InternalId; 5865 } 5866 5867 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5868 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5869 } 5870 5871 llvm::Metadata * 5872 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5873 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5874 } 5875 5876 // Generalize pointer types to a void pointer with the qualifiers of the 5877 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5878 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5879 // 'void *'. 5880 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5881 if (!Ty->isPointerType()) 5882 return Ty; 5883 5884 return Ctx.getPointerType( 5885 QualType(Ctx.VoidTy).withCVRQualifiers( 5886 Ty->getPointeeType().getCVRQualifiers())); 5887 } 5888 5889 // Apply type generalization to a FunctionType's return and argument types 5890 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5891 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5892 SmallVector<QualType, 8> GeneralizedParams; 5893 for (auto &Param : FnType->param_types()) 5894 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5895 5896 return Ctx.getFunctionType( 5897 GeneralizeType(Ctx, FnType->getReturnType()), 5898 GeneralizedParams, FnType->getExtProtoInfo()); 5899 } 5900 5901 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5902 return Ctx.getFunctionNoProtoType( 5903 GeneralizeType(Ctx, FnType->getReturnType())); 5904 5905 llvm_unreachable("Encountered unknown FunctionType"); 5906 } 5907 5908 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5909 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5910 GeneralizedMetadataIdMap, ".generalized"); 5911 } 5912 5913 /// Returns whether this module needs the "all-vtables" type identifier. 5914 bool CodeGenModule::NeedAllVtablesTypeId() const { 5915 // Returns true if at least one of vtable-based CFI checkers is enabled and 5916 // is not in the trapping mode. 5917 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5918 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5919 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5920 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5921 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5922 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5923 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5924 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5925 } 5926 5927 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5928 CharUnits Offset, 5929 const CXXRecordDecl *RD) { 5930 llvm::Metadata *MD = 5931 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5932 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5933 5934 if (CodeGenOpts.SanitizeCfiCrossDso) 5935 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5936 VTable->addTypeMetadata(Offset.getQuantity(), 5937 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5938 5939 if (NeedAllVtablesTypeId()) { 5940 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5941 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5942 } 5943 } 5944 5945 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5946 if (!SanStats) 5947 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 5948 5949 return *SanStats; 5950 } 5951 llvm::Value * 5952 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5953 CodeGenFunction &CGF) { 5954 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5955 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5956 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5957 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5958 "__translate_sampler_initializer"), 5959 {C}); 5960 } 5961 5962 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 5963 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 5964 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 5965 /* forPointeeType= */ true); 5966 } 5967 5968 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 5969 LValueBaseInfo *BaseInfo, 5970 TBAAAccessInfo *TBAAInfo, 5971 bool forPointeeType) { 5972 if (TBAAInfo) 5973 *TBAAInfo = getTBAAAccessInfo(T); 5974 5975 // Honor alignment typedef attributes even on incomplete types. 5976 // We also honor them straight for C++ class types, even as pointees; 5977 // there's an expressivity gap here. 5978 if (auto TT = T->getAs<TypedefType>()) { 5979 if (auto Align = TT->getDecl()->getMaxAlignment()) { 5980 if (BaseInfo) 5981 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 5982 return getContext().toCharUnitsFromBits(Align); 5983 } 5984 } 5985 5986 if (BaseInfo) 5987 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 5988 5989 CharUnits Alignment; 5990 if (T->isIncompleteType()) { 5991 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 5992 } else { 5993 // For C++ class pointees, we don't know whether we're pointing at a 5994 // base or a complete object, so we generally need to use the 5995 // non-virtual alignment. 5996 const CXXRecordDecl *RD; 5997 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 5998 Alignment = getClassPointerAlignment(RD); 5999 } else { 6000 Alignment = getContext().getTypeAlignInChars(T); 6001 if (T.getQualifiers().hasUnaligned()) 6002 Alignment = CharUnits::One(); 6003 } 6004 6005 // Cap to the global maximum type alignment unless the alignment 6006 // was somehow explicit on the type. 6007 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6008 if (Alignment.getQuantity() > MaxAlign && 6009 !getContext().isAlignmentRequired(T)) 6010 Alignment = CharUnits::fromQuantity(MaxAlign); 6011 } 6012 } 6013 return Alignment; 6014 } 6015