1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/Diagnostic.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Basic/ConvertUTF.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Module.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Target/TargetData.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 38 llvm::Module &M, const llvm::TargetData &TD, 39 Diagnostic &diags) 40 : BlockModule(C, M, TD, Types, *this), Context(C), 41 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 42 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 43 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 44 VMContext(M.getContext()) { 45 46 if (!Features.ObjC1) 47 Runtime = 0; 48 else if (!Features.NeXTRuntime) 49 Runtime = CreateGNUObjCRuntime(*this); 50 else if (Features.ObjCNonFragileABI) 51 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 52 else 53 Runtime = CreateMacObjCRuntime(*this); 54 55 // If debug info generation is enabled, create the CGDebugInfo object. 56 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 57 } 58 59 CodeGenModule::~CodeGenModule() { 60 delete Runtime; 61 delete DebugInfo; 62 } 63 64 void CodeGenModule::Release() { 65 // We need to call this first because it can add deferred declarations. 66 EmitCXXGlobalInitFunc(); 67 68 EmitDeferred(); 69 if (Runtime) 70 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 71 AddGlobalCtor(ObjCInitFunction); 72 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 73 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 74 EmitAnnotations(); 75 EmitLLVMUsed(); 76 } 77 78 /// ErrorUnsupported - Print out an error that codegen doesn't support the 79 /// specified stmt yet. 80 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 81 bool OmitOnError) { 82 if (OmitOnError && getDiags().hasErrorOccurred()) 83 return; 84 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 85 "cannot compile this %0 yet"); 86 std::string Msg = Type; 87 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 88 << Msg << S->getSourceRange(); 89 } 90 91 /// ErrorUnsupported - Print out an error that codegen doesn't support the 92 /// specified decl yet. 93 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 94 bool OmitOnError) { 95 if (OmitOnError && getDiags().hasErrorOccurred()) 96 return; 97 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 98 "cannot compile this %0 yet"); 99 std::string Msg = Type; 100 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 101 } 102 103 LangOptions::VisibilityMode 104 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 105 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 106 if (VD->getStorageClass() == VarDecl::PrivateExtern) 107 return LangOptions::Hidden; 108 109 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 110 switch (attr->getVisibility()) { 111 default: assert(0 && "Unknown visibility!"); 112 case VisibilityAttr::DefaultVisibility: 113 return LangOptions::Default; 114 case VisibilityAttr::HiddenVisibility: 115 return LangOptions::Hidden; 116 case VisibilityAttr::ProtectedVisibility: 117 return LangOptions::Protected; 118 } 119 } 120 121 return getLangOptions().getVisibilityMode(); 122 } 123 124 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 125 const Decl *D) const { 126 // Internal definitions always have default visibility. 127 if (GV->hasLocalLinkage()) { 128 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 129 return; 130 } 131 132 switch (getDeclVisibilityMode(D)) { 133 default: assert(0 && "Unknown visibility!"); 134 case LangOptions::Default: 135 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 136 case LangOptions::Hidden: 137 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 138 case LangOptions::Protected: 139 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 140 } 141 } 142 143 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 144 const NamedDecl *ND = GD.getDecl(); 145 146 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 147 return getMangledCXXCtorName(D, GD.getCtorType()); 148 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 149 return getMangledCXXDtorName(D, GD.getDtorType()); 150 151 return getMangledName(ND); 152 } 153 154 /// \brief Retrieves the mangled name for the given declaration. 155 /// 156 /// If the given declaration requires a mangled name, returns an 157 /// const char* containing the mangled name. Otherwise, returns 158 /// the unmangled name. 159 /// 160 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 161 // In C, functions with no attributes never need to be mangled. Fastpath them. 162 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 163 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 164 return ND->getNameAsCString(); 165 } 166 167 llvm::SmallString<256> Name; 168 llvm::raw_svector_ostream Out(Name); 169 if (!mangleName(ND, Context, Out)) { 170 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 171 return ND->getNameAsCString(); 172 } 173 174 Name += '\0'; 175 return UniqueMangledName(Name.begin(), Name.end()); 176 } 177 178 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 179 const char *NameEnd) { 180 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 181 182 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 183 } 184 185 /// AddGlobalCtor - Add a function to the list that will be called before 186 /// main() runs. 187 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 188 // FIXME: Type coercion of void()* types. 189 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 190 } 191 192 /// AddGlobalDtor - Add a function to the list that will be called 193 /// when the module is unloaded. 194 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 195 // FIXME: Type coercion of void()* types. 196 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 197 } 198 199 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 200 // Ctor function type is void()*. 201 llvm::FunctionType* CtorFTy = 202 llvm::FunctionType::get(llvm::Type::VoidTy, 203 std::vector<const llvm::Type*>(), 204 false); 205 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 206 207 // Get the type of a ctor entry, { i32, void ()* }. 208 llvm::StructType* CtorStructTy = 209 llvm::StructType::get(VMContext, llvm::Type::Int32Ty, 210 llvm::PointerType::getUnqual(CtorFTy), NULL); 211 212 // Construct the constructor and destructor arrays. 213 std::vector<llvm::Constant*> Ctors; 214 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 215 std::vector<llvm::Constant*> S; 216 S.push_back( 217 llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 218 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 219 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 220 } 221 222 if (!Ctors.empty()) { 223 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 224 new llvm::GlobalVariable(TheModule, AT, false, 225 llvm::GlobalValue::AppendingLinkage, 226 llvm::ConstantArray::get(AT, Ctors), 227 GlobalName); 228 } 229 } 230 231 void CodeGenModule::EmitAnnotations() { 232 if (Annotations.empty()) 233 return; 234 235 // Create a new global variable for the ConstantStruct in the Module. 236 llvm::Constant *Array = 237 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 238 Annotations.size()), 239 Annotations); 240 llvm::GlobalValue *gv = 241 new llvm::GlobalVariable(TheModule, Array->getType(), false, 242 llvm::GlobalValue::AppendingLinkage, Array, 243 "llvm.global.annotations"); 244 gv->setSection("llvm.metadata"); 245 } 246 247 static CodeGenModule::GVALinkage 248 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 249 const LangOptions &Features) { 250 // The kind of external linkage this function will have, if it is not 251 // inline or static. 252 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 253 if (Context.getLangOptions().CPlusPlus && 254 (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) && 255 !FD->isExplicitSpecialization()) 256 External = CodeGenModule::GVA_TemplateInstantiation; 257 258 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 259 // C++ member functions defined inside the class are always inline. 260 if (MD->isInline() || !MD->isOutOfLine()) 261 return CodeGenModule::GVA_CXXInline; 262 263 return External; 264 } 265 266 // "static" functions get internal linkage. 267 if (FD->getStorageClass() == FunctionDecl::Static) 268 return CodeGenModule::GVA_Internal; 269 270 if (!FD->isInline()) 271 return External; 272 273 // If the inline function explicitly has the GNU inline attribute on it, or if 274 // this is C89 mode, we use to GNU semantics. 275 if (!Features.C99 && !Features.CPlusPlus) { 276 // extern inline in GNU mode is like C99 inline. 277 if (FD->getStorageClass() == FunctionDecl::Extern) 278 return CodeGenModule::GVA_C99Inline; 279 // Normal inline is a strong symbol. 280 return CodeGenModule::GVA_StrongExternal; 281 } else if (FD->hasActiveGNUInlineAttribute(Context)) { 282 // GCC in C99 mode seems to use a different decision-making 283 // process for extern inline, which factors in previous 284 // declarations. 285 if (FD->isExternGNUInline(Context)) 286 return CodeGenModule::GVA_C99Inline; 287 // Normal inline is a strong symbol. 288 return External; 289 } 290 291 // The definition of inline changes based on the language. Note that we 292 // have already handled "static inline" above, with the GVA_Internal case. 293 if (Features.CPlusPlus) // inline and extern inline. 294 return CodeGenModule::GVA_CXXInline; 295 296 assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode"); 297 if (FD->isC99InlineDefinition()) 298 return CodeGenModule::GVA_C99Inline; 299 300 return CodeGenModule::GVA_StrongExternal; 301 } 302 303 /// SetFunctionDefinitionAttributes - Set attributes for a global. 304 /// 305 /// FIXME: This is currently only done for aliases and functions, but not for 306 /// variables (these details are set in EmitGlobalVarDefinition for variables). 307 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 308 llvm::GlobalValue *GV) { 309 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 310 311 if (Linkage == GVA_Internal) { 312 GV->setLinkage(llvm::Function::InternalLinkage); 313 } else if (D->hasAttr<DLLExportAttr>()) { 314 GV->setLinkage(llvm::Function::DLLExportLinkage); 315 } else if (D->hasAttr<WeakAttr>()) { 316 GV->setLinkage(llvm::Function::WeakAnyLinkage); 317 } else if (Linkage == GVA_C99Inline) { 318 // In C99 mode, 'inline' functions are guaranteed to have a strong 319 // definition somewhere else, so we can use available_externally linkage. 320 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 321 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 322 // In C++, the compiler has to emit a definition in every translation unit 323 // that references the function. We should use linkonce_odr because 324 // a) if all references in this translation unit are optimized away, we 325 // don't need to codegen it. b) if the function persists, it needs to be 326 // merged with other definitions. c) C++ has the ODR, so we know the 327 // definition is dependable. 328 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 329 } else { 330 assert(Linkage == GVA_StrongExternal); 331 // Otherwise, we have strong external linkage. 332 GV->setLinkage(llvm::Function::ExternalLinkage); 333 } 334 335 SetCommonAttributes(D, GV); 336 } 337 338 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 339 const CGFunctionInfo &Info, 340 llvm::Function *F) { 341 AttributeListType AttributeList; 342 ConstructAttributeList(Info, D, AttributeList); 343 344 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 345 AttributeList.size())); 346 347 // Set the appropriate calling convention for the Function. 348 if (D->hasAttr<FastCallAttr>()) 349 F->setCallingConv(llvm::CallingConv::X86_FastCall); 350 351 if (D->hasAttr<StdCallAttr>()) 352 F->setCallingConv(llvm::CallingConv::X86_StdCall); 353 } 354 355 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 356 llvm::Function *F) { 357 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 358 F->addFnAttr(llvm::Attribute::NoUnwind); 359 360 if (D->hasAttr<AlwaysInlineAttr>()) 361 F->addFnAttr(llvm::Attribute::AlwaysInline); 362 363 if (D->hasAttr<NoinlineAttr>()) 364 F->addFnAttr(llvm::Attribute::NoInline); 365 } 366 367 void CodeGenModule::SetCommonAttributes(const Decl *D, 368 llvm::GlobalValue *GV) { 369 setGlobalVisibility(GV, D); 370 371 if (D->hasAttr<UsedAttr>()) 372 AddUsedGlobal(GV); 373 374 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 375 GV->setSection(SA->getName()); 376 } 377 378 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 379 llvm::Function *F, 380 const CGFunctionInfo &FI) { 381 SetLLVMFunctionAttributes(D, FI, F); 382 SetLLVMFunctionAttributesForDefinition(D, F); 383 384 F->setLinkage(llvm::Function::InternalLinkage); 385 386 SetCommonAttributes(D, F); 387 } 388 389 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 390 llvm::Function *F, 391 bool IsIncompleteFunction) { 392 if (!IsIncompleteFunction) 393 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 394 395 // Only a few attributes are set on declarations; these may later be 396 // overridden by a definition. 397 398 if (FD->hasAttr<DLLImportAttr>()) { 399 F->setLinkage(llvm::Function::DLLImportLinkage); 400 } else if (FD->hasAttr<WeakAttr>() || 401 FD->hasAttr<WeakImportAttr>()) { 402 // "extern_weak" is overloaded in LLVM; we probably should have 403 // separate linkage types for this. 404 F->setLinkage(llvm::Function::ExternalWeakLinkage); 405 } else { 406 F->setLinkage(llvm::Function::ExternalLinkage); 407 } 408 409 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 410 F->setSection(SA->getName()); 411 } 412 413 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 414 assert(!GV->isDeclaration() && 415 "Only globals with definition can force usage."); 416 LLVMUsed.push_back(GV); 417 } 418 419 void CodeGenModule::EmitLLVMUsed() { 420 // Don't create llvm.used if there is no need. 421 if (LLVMUsed.empty()) 422 return; 423 424 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 425 426 // Convert LLVMUsed to what ConstantArray needs. 427 std::vector<llvm::Constant*> UsedArray; 428 UsedArray.resize(LLVMUsed.size()); 429 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 430 UsedArray[i] = 431 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 432 i8PTy); 433 } 434 435 if (UsedArray.empty()) 436 return; 437 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 438 439 llvm::GlobalVariable *GV = 440 new llvm::GlobalVariable(getModule(), ATy, false, 441 llvm::GlobalValue::AppendingLinkage, 442 llvm::ConstantArray::get(ATy, UsedArray), 443 "llvm.used"); 444 445 GV->setSection("llvm.metadata"); 446 } 447 448 void CodeGenModule::EmitDeferred() { 449 // Emit code for any potentially referenced deferred decls. Since a 450 // previously unused static decl may become used during the generation of code 451 // for a static function, iterate until no changes are made. 452 while (!DeferredDeclsToEmit.empty()) { 453 GlobalDecl D = DeferredDeclsToEmit.back(); 454 DeferredDeclsToEmit.pop_back(); 455 456 // The mangled name for the decl must have been emitted in GlobalDeclMap. 457 // Look it up to see if it was defined with a stronger definition (e.g. an 458 // extern inline function with a strong function redefinition). If so, 459 // just ignore the deferred decl. 460 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 461 assert(CGRef && "Deferred decl wasn't referenced?"); 462 463 if (!CGRef->isDeclaration()) 464 continue; 465 466 // Otherwise, emit the definition and move on to the next one. 467 EmitGlobalDefinition(D); 468 } 469 } 470 471 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 472 /// annotation information for a given GlobalValue. The annotation struct is 473 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 474 /// GlobalValue being annotated. The second field is the constant string 475 /// created from the AnnotateAttr's annotation. The third field is a constant 476 /// string containing the name of the translation unit. The fourth field is 477 /// the line number in the file of the annotated value declaration. 478 /// 479 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 480 /// appears to. 481 /// 482 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 483 const AnnotateAttr *AA, 484 unsigned LineNo) { 485 llvm::Module *M = &getModule(); 486 487 // get [N x i8] constants for the annotation string, and the filename string 488 // which are the 2nd and 3rd elements of the global annotation structure. 489 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 490 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 491 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 492 true); 493 494 // Get the two global values corresponding to the ConstantArrays we just 495 // created to hold the bytes of the strings. 496 llvm::GlobalValue *annoGV = 497 new llvm::GlobalVariable(*M, anno->getType(), false, 498 llvm::GlobalValue::PrivateLinkage, anno, 499 GV->getName()); 500 // translation unit name string, emitted into the llvm.metadata section. 501 llvm::GlobalValue *unitGV = 502 new llvm::GlobalVariable(*M, unit->getType(), false, 503 llvm::GlobalValue::PrivateLinkage, unit, 504 ".str"); 505 506 // Create the ConstantStruct for the global annotation. 507 llvm::Constant *Fields[4] = { 508 llvm::ConstantExpr::getBitCast(GV, SBP), 509 llvm::ConstantExpr::getBitCast(annoGV, SBP), 510 llvm::ConstantExpr::getBitCast(unitGV, SBP), 511 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 512 }; 513 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 514 } 515 516 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 517 // Never defer when EmitAllDecls is specified or the decl has 518 // attribute used. 519 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 520 return false; 521 522 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 523 // Constructors and destructors should never be deferred. 524 if (FD->hasAttr<ConstructorAttr>() || 525 FD->hasAttr<DestructorAttr>()) 526 return false; 527 528 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 529 530 // static, static inline, always_inline, and extern inline functions can 531 // always be deferred. Normal inline functions can be deferred in C99/C++. 532 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 533 Linkage == GVA_CXXInline) 534 return true; 535 return false; 536 } 537 538 const VarDecl *VD = cast<VarDecl>(Global); 539 assert(VD->isFileVarDecl() && "Invalid decl"); 540 541 return VD->getStorageClass() == VarDecl::Static; 542 } 543 544 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 545 const ValueDecl *Global = GD.getDecl(); 546 547 // If this is an alias definition (which otherwise looks like a declaration) 548 // emit it now. 549 if (Global->hasAttr<AliasAttr>()) 550 return EmitAliasDefinition(Global); 551 552 // Ignore declarations, they will be emitted on their first use. 553 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 554 // Forward declarations are emitted lazily on first use. 555 if (!FD->isThisDeclarationADefinition()) 556 return; 557 } else { 558 const VarDecl *VD = cast<VarDecl>(Global); 559 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 560 561 // In C++, if this is marked "extern", defer code generation. 562 if (getLangOptions().CPlusPlus && !VD->getInit() && 563 (VD->getStorageClass() == VarDecl::Extern || 564 VD->isExternC(getContext()))) 565 return; 566 567 // In C, if this isn't a definition, defer code generation. 568 if (!getLangOptions().CPlusPlus && !VD->getInit()) 569 return; 570 } 571 572 // Defer code generation when possible if this is a static definition, inline 573 // function etc. These we only want to emit if they are used. 574 if (MayDeferGeneration(Global)) { 575 // If the value has already been used, add it directly to the 576 // DeferredDeclsToEmit list. 577 const char *MangledName = getMangledName(GD); 578 if (GlobalDeclMap.count(MangledName)) 579 DeferredDeclsToEmit.push_back(GD); 580 else { 581 // Otherwise, remember that we saw a deferred decl with this name. The 582 // first use of the mangled name will cause it to move into 583 // DeferredDeclsToEmit. 584 DeferredDecls[MangledName] = GD; 585 } 586 return; 587 } 588 589 // Otherwise emit the definition. 590 EmitGlobalDefinition(GD); 591 } 592 593 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 594 const ValueDecl *D = GD.getDecl(); 595 596 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 597 EmitCXXConstructor(CD, GD.getCtorType()); 598 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 599 EmitCXXDestructor(DD, GD.getDtorType()); 600 else if (isa<FunctionDecl>(D)) 601 EmitGlobalFunctionDefinition(GD); 602 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 603 EmitGlobalVarDefinition(VD); 604 else { 605 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 606 } 607 } 608 609 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 610 /// module, create and return an llvm Function with the specified type. If there 611 /// is something in the module with the specified name, return it potentially 612 /// bitcasted to the right type. 613 /// 614 /// If D is non-null, it specifies a decl that correspond to this. This is used 615 /// to set the attributes on the function when it is first created. 616 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 617 const llvm::Type *Ty, 618 GlobalDecl D) { 619 // Lookup the entry, lazily creating it if necessary. 620 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 621 if (Entry) { 622 if (Entry->getType()->getElementType() == Ty) 623 return Entry; 624 625 // Make sure the result is of the correct type. 626 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 627 return llvm::ConstantExpr::getBitCast(Entry, PTy); 628 } 629 630 // This is the first use or definition of a mangled name. If there is a 631 // deferred decl with this name, remember that we need to emit it at the end 632 // of the file. 633 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 634 DeferredDecls.find(MangledName); 635 if (DDI != DeferredDecls.end()) { 636 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 637 // list, and remove it from DeferredDecls (since we don't need it anymore). 638 DeferredDeclsToEmit.push_back(DDI->second); 639 DeferredDecls.erase(DDI); 640 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 641 // If this the first reference to a C++ inline function in a class, queue up 642 // the deferred function body for emission. These are not seen as 643 // top-level declarations. 644 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 645 DeferredDeclsToEmit.push_back(D); 646 // A called constructor which has no definition or declaration need be 647 // synthesized. 648 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 649 const CXXRecordDecl *ClassDecl = 650 cast<CXXRecordDecl>(CD->getDeclContext()); 651 if (CD->isCopyConstructor(getContext())) 652 DeferredCopyConstructorToEmit(D); 653 else if (!ClassDecl->hasUserDeclaredConstructor()) 654 DeferredDeclsToEmit.push_back(D); 655 } 656 } 657 658 // This function doesn't have a complete type (for example, the return 659 // type is an incomplete struct). Use a fake type instead, and make 660 // sure not to try to set attributes. 661 bool IsIncompleteFunction = false; 662 if (!isa<llvm::FunctionType>(Ty)) { 663 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 664 std::vector<const llvm::Type*>(), false); 665 IsIncompleteFunction = true; 666 } 667 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 668 llvm::Function::ExternalLinkage, 669 "", &getModule()); 670 F->setName(MangledName); 671 if (D.getDecl()) 672 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 673 IsIncompleteFunction); 674 Entry = F; 675 return F; 676 } 677 678 /// Defer definition of copy constructor(s) which need be implicitly defined. 679 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) { 680 const CXXConstructorDecl *CD = 681 cast<CXXConstructorDecl>(CopyCtorDecl.getDecl()); 682 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 683 if (ClassDecl->hasTrivialCopyConstructor() || 684 ClassDecl->hasUserDeclaredCopyConstructor()) 685 return; 686 687 // First make sure all direct base classes and virtual bases and non-static 688 // data mebers which need to have their copy constructors implicitly defined 689 // are defined. 12.8.p7 690 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 691 Base != ClassDecl->bases_end(); ++Base) { 692 CXXRecordDecl *BaseClassDecl 693 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 694 if (CXXConstructorDecl *BaseCopyCtor = 695 BaseClassDecl->getCopyConstructor(Context, 0)) 696 GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete); 697 } 698 699 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 700 FieldEnd = ClassDecl->field_end(); 701 Field != FieldEnd; ++Field) { 702 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 703 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 704 FieldType = Array->getElementType(); 705 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 706 if ((*Field)->isAnonymousStructOrUnion()) 707 continue; 708 CXXRecordDecl *FieldClassDecl 709 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 710 if (CXXConstructorDecl *FieldCopyCtor = 711 FieldClassDecl->getCopyConstructor(Context, 0)) 712 GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete); 713 } 714 } 715 DeferredDeclsToEmit.push_back(CopyCtorDecl); 716 717 } 718 719 /// GetAddrOfFunction - Return the address of the given function. If Ty is 720 /// non-null, then this function will use the specified type if it has to 721 /// create it (this occurs when we see a definition of the function). 722 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 723 const llvm::Type *Ty) { 724 // If there was no specific requested type, just convert it now. 725 if (!Ty) 726 Ty = getTypes().ConvertType(GD.getDecl()->getType()); 727 return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD); 728 } 729 730 /// CreateRuntimeFunction - Create a new runtime function with the specified 731 /// type and name. 732 llvm::Constant * 733 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 734 const char *Name) { 735 // Convert Name to be a uniqued string from the IdentifierInfo table. 736 Name = getContext().Idents.get(Name).getName(); 737 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 738 } 739 740 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 741 /// create and return an llvm GlobalVariable with the specified type. If there 742 /// is something in the module with the specified name, return it potentially 743 /// bitcasted to the right type. 744 /// 745 /// If D is non-null, it specifies a decl that correspond to this. This is used 746 /// to set the attributes on the global when it is first created. 747 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 748 const llvm::PointerType*Ty, 749 const VarDecl *D) { 750 // Lookup the entry, lazily creating it if necessary. 751 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 752 if (Entry) { 753 if (Entry->getType() == Ty) 754 return Entry; 755 756 // Make sure the result is of the correct type. 757 return llvm::ConstantExpr::getBitCast(Entry, Ty); 758 } 759 760 // This is the first use or definition of a mangled name. If there is a 761 // deferred decl with this name, remember that we need to emit it at the end 762 // of the file. 763 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 764 DeferredDecls.find(MangledName); 765 if (DDI != DeferredDecls.end()) { 766 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 767 // list, and remove it from DeferredDecls (since we don't need it anymore). 768 DeferredDeclsToEmit.push_back(DDI->second); 769 DeferredDecls.erase(DDI); 770 } 771 772 llvm::GlobalVariable *GV = 773 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 774 llvm::GlobalValue::ExternalLinkage, 775 0, "", 0, 776 false, Ty->getAddressSpace()); 777 GV->setName(MangledName); 778 779 // Handle things which are present even on external declarations. 780 if (D) { 781 // FIXME: This code is overly simple and should be merged with other global 782 // handling. 783 GV->setConstant(D->getType().isConstant(Context)); 784 785 // FIXME: Merge with other attribute handling code. 786 if (D->getStorageClass() == VarDecl::PrivateExtern) 787 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 788 789 if (D->hasAttr<WeakAttr>() || 790 D->hasAttr<WeakImportAttr>()) 791 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 792 793 GV->setThreadLocal(D->isThreadSpecified()); 794 } 795 796 return Entry = GV; 797 } 798 799 800 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 801 /// given global variable. If Ty is non-null and if the global doesn't exist, 802 /// then it will be greated with the specified type instead of whatever the 803 /// normal requested type would be. 804 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 805 const llvm::Type *Ty) { 806 assert(D->hasGlobalStorage() && "Not a global variable"); 807 QualType ASTTy = D->getType(); 808 if (Ty == 0) 809 Ty = getTypes().ConvertTypeForMem(ASTTy); 810 811 const llvm::PointerType *PTy = 812 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 813 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 814 } 815 816 /// CreateRuntimeVariable - Create a new runtime global variable with the 817 /// specified type and name. 818 llvm::Constant * 819 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 820 const char *Name) { 821 // Convert Name to be a uniqued string from the IdentifierInfo table. 822 Name = getContext().Idents.get(Name).getName(); 823 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 824 } 825 826 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 827 assert(!D->getInit() && "Cannot emit definite definitions here!"); 828 829 if (MayDeferGeneration(D)) { 830 // If we have not seen a reference to this variable yet, place it 831 // into the deferred declarations table to be emitted if needed 832 // later. 833 const char *MangledName = getMangledName(D); 834 if (GlobalDeclMap.count(MangledName) == 0) { 835 DeferredDecls[MangledName] = GlobalDecl(D); 836 return; 837 } 838 } 839 840 // The tentative definition is the only definition. 841 EmitGlobalVarDefinition(D); 842 } 843 844 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 845 llvm::Constant *Init = 0; 846 QualType ASTTy = D->getType(); 847 848 if (D->getInit() == 0) { 849 // This is a tentative definition; tentative definitions are 850 // implicitly initialized with { 0 }. 851 // 852 // Note that tentative definitions are only emitted at the end of 853 // a translation unit, so they should never have incomplete 854 // type. In addition, EmitTentativeDefinition makes sure that we 855 // never attempt to emit a tentative definition if a real one 856 // exists. A use may still exists, however, so we still may need 857 // to do a RAUW. 858 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 859 Init = EmitNullConstant(D->getType()); 860 } else { 861 Init = EmitConstantExpr(D->getInit(), D->getType()); 862 863 if (!Init) { 864 QualType T = D->getInit()->getType(); 865 if (getLangOptions().CPlusPlus) { 866 CXXGlobalInits.push_back(D); 867 Init = EmitNullConstant(T); 868 } else { 869 ErrorUnsupported(D, "static initializer"); 870 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 871 } 872 } 873 } 874 875 const llvm::Type* InitType = Init->getType(); 876 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 877 878 // Strip off a bitcast if we got one back. 879 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 880 assert(CE->getOpcode() == llvm::Instruction::BitCast || 881 // all zero index gep. 882 CE->getOpcode() == llvm::Instruction::GetElementPtr); 883 Entry = CE->getOperand(0); 884 } 885 886 // Entry is now either a Function or GlobalVariable. 887 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 888 889 // We have a definition after a declaration with the wrong type. 890 // We must make a new GlobalVariable* and update everything that used OldGV 891 // (a declaration or tentative definition) with the new GlobalVariable* 892 // (which will be a definition). 893 // 894 // This happens if there is a prototype for a global (e.g. 895 // "extern int x[];") and then a definition of a different type (e.g. 896 // "int x[10];"). This also happens when an initializer has a different type 897 // from the type of the global (this happens with unions). 898 if (GV == 0 || 899 GV->getType()->getElementType() != InitType || 900 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 901 902 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 903 GlobalDeclMap.erase(getMangledName(D)); 904 905 // Make a new global with the correct type, this is now guaranteed to work. 906 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 907 GV->takeName(cast<llvm::GlobalValue>(Entry)); 908 909 // Replace all uses of the old global with the new global 910 llvm::Constant *NewPtrForOldDecl = 911 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 912 Entry->replaceAllUsesWith(NewPtrForOldDecl); 913 914 // Erase the old global, since it is no longer used. 915 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 916 } 917 918 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 919 SourceManager &SM = Context.getSourceManager(); 920 AddAnnotation(EmitAnnotateAttr(GV, AA, 921 SM.getInstantiationLineNumber(D->getLocation()))); 922 } 923 924 GV->setInitializer(Init); 925 926 // If it is safe to mark the global 'constant', do so now. 927 GV->setConstant(false); 928 if (D->getType().isConstant(Context)) { 929 // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable 930 // members, it cannot be declared "LLVM const". 931 GV->setConstant(true); 932 } 933 934 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 935 936 // Set the llvm linkage type as appropriate. 937 if (D->getStorageClass() == VarDecl::Static) 938 GV->setLinkage(llvm::Function::InternalLinkage); 939 else if (D->hasAttr<DLLImportAttr>()) 940 GV->setLinkage(llvm::Function::DLLImportLinkage); 941 else if (D->hasAttr<DLLExportAttr>()) 942 GV->setLinkage(llvm::Function::DLLExportLinkage); 943 else if (D->hasAttr<WeakAttr>()) { 944 if (GV->isConstant()) 945 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 946 else 947 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 948 } else if (!CompileOpts.NoCommon && 949 !D->hasExternalStorage() && !D->getInit() && 950 !D->getAttr<SectionAttr>()) { 951 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 952 // common vars aren't constant even if declared const. 953 GV->setConstant(false); 954 } else 955 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 956 957 SetCommonAttributes(D, GV); 958 959 // Emit global variable debug information. 960 if (CGDebugInfo *DI = getDebugInfo()) { 961 DI->setLocation(D->getLocation()); 962 DI->EmitGlobalVariable(GV, D); 963 } 964 } 965 966 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 967 /// implement a function with no prototype, e.g. "int foo() {}". If there are 968 /// existing call uses of the old function in the module, this adjusts them to 969 /// call the new function directly. 970 /// 971 /// This is not just a cleanup: the always_inline pass requires direct calls to 972 /// functions to be able to inline them. If there is a bitcast in the way, it 973 /// won't inline them. Instcombine normally deletes these calls, but it isn't 974 /// run at -O0. 975 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 976 llvm::Function *NewFn) { 977 // If we're redefining a global as a function, don't transform it. 978 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 979 if (OldFn == 0) return; 980 981 const llvm::Type *NewRetTy = NewFn->getReturnType(); 982 llvm::SmallVector<llvm::Value*, 4> ArgList; 983 984 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 985 UI != E; ) { 986 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 987 unsigned OpNo = UI.getOperandNo(); 988 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 989 if (!CI || OpNo != 0) continue; 990 991 // If the return types don't match exactly, and if the call isn't dead, then 992 // we can't transform this call. 993 if (CI->getType() != NewRetTy && !CI->use_empty()) 994 continue; 995 996 // If the function was passed too few arguments, don't transform. If extra 997 // arguments were passed, we silently drop them. If any of the types 998 // mismatch, we don't transform. 999 unsigned ArgNo = 0; 1000 bool DontTransform = false; 1001 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1002 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1003 if (CI->getNumOperands()-1 == ArgNo || 1004 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1005 DontTransform = true; 1006 break; 1007 } 1008 } 1009 if (DontTransform) 1010 continue; 1011 1012 // Okay, we can transform this. Create the new call instruction and copy 1013 // over the required information. 1014 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1015 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1016 ArgList.end(), "", CI); 1017 ArgList.clear(); 1018 if (NewCall->getType() != llvm::Type::VoidTy) 1019 NewCall->takeName(CI); 1020 NewCall->setCallingConv(CI->getCallingConv()); 1021 NewCall->setAttributes(CI->getAttributes()); 1022 1023 // Finally, remove the old call, replacing any uses with the new one. 1024 if (!CI->use_empty()) 1025 CI->replaceAllUsesWith(NewCall); 1026 CI->eraseFromParent(); 1027 } 1028 } 1029 1030 1031 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1032 const llvm::FunctionType *Ty; 1033 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1034 1035 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1036 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 1037 1038 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1039 } else { 1040 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1041 1042 // As a special case, make sure that definitions of K&R function 1043 // "type foo()" aren't declared as varargs (which forces the backend 1044 // to do unnecessary work). 1045 if (D->getType()->isFunctionNoProtoType()) { 1046 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1047 // Due to stret, the lowered function could have arguments. 1048 // Just create the same type as was lowered by ConvertType 1049 // but strip off the varargs bit. 1050 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1051 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1052 } 1053 } 1054 1055 // Get or create the prototype for the function. 1056 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1057 1058 // Strip off a bitcast if we got one back. 1059 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1060 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1061 Entry = CE->getOperand(0); 1062 } 1063 1064 1065 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1066 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1067 1068 // If the types mismatch then we have to rewrite the definition. 1069 assert(OldFn->isDeclaration() && 1070 "Shouldn't replace non-declaration"); 1071 1072 // F is the Function* for the one with the wrong type, we must make a new 1073 // Function* and update everything that used F (a declaration) with the new 1074 // Function* (which will be a definition). 1075 // 1076 // This happens if there is a prototype for a function 1077 // (e.g. "int f()") and then a definition of a different type 1078 // (e.g. "int f(int x)"). Start by making a new function of the 1079 // correct type, RAUW, then steal the name. 1080 GlobalDeclMap.erase(getMangledName(D)); 1081 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1082 NewFn->takeName(OldFn); 1083 1084 // If this is an implementation of a function without a prototype, try to 1085 // replace any existing uses of the function (which may be calls) with uses 1086 // of the new function 1087 if (D->getType()->isFunctionNoProtoType()) { 1088 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1089 OldFn->removeDeadConstantUsers(); 1090 } 1091 1092 // Replace uses of F with the Function we will endow with a body. 1093 if (!Entry->use_empty()) { 1094 llvm::Constant *NewPtrForOldDecl = 1095 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1096 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1097 } 1098 1099 // Ok, delete the old function now, which is dead. 1100 OldFn->eraseFromParent(); 1101 1102 Entry = NewFn; 1103 } 1104 1105 llvm::Function *Fn = cast<llvm::Function>(Entry); 1106 1107 CodeGenFunction(*this).GenerateCode(D, Fn); 1108 1109 SetFunctionDefinitionAttributes(D, Fn); 1110 SetLLVMFunctionAttributesForDefinition(D, Fn); 1111 1112 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1113 AddGlobalCtor(Fn, CA->getPriority()); 1114 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1115 AddGlobalDtor(Fn, DA->getPriority()); 1116 } 1117 1118 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1119 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1120 assert(AA && "Not an alias?"); 1121 1122 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1123 1124 // Unique the name through the identifier table. 1125 const char *AliaseeName = AA->getAliasee().c_str(); 1126 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 1127 1128 // Create a reference to the named value. This ensures that it is emitted 1129 // if a deferred decl. 1130 llvm::Constant *Aliasee; 1131 if (isa<llvm::FunctionType>(DeclTy)) 1132 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1133 else 1134 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1135 llvm::PointerType::getUnqual(DeclTy), 0); 1136 1137 // Create the new alias itself, but don't set a name yet. 1138 llvm::GlobalValue *GA = 1139 new llvm::GlobalAlias(Aliasee->getType(), 1140 llvm::Function::ExternalLinkage, 1141 "", Aliasee, &getModule()); 1142 1143 // See if there is already something with the alias' name in the module. 1144 const char *MangledName = getMangledName(D); 1145 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1146 1147 if (Entry && !Entry->isDeclaration()) { 1148 // If there is a definition in the module, then it wins over the alias. 1149 // This is dubious, but allow it to be safe. Just ignore the alias. 1150 GA->eraseFromParent(); 1151 return; 1152 } 1153 1154 if (Entry) { 1155 // If there is a declaration in the module, then we had an extern followed 1156 // by the alias, as in: 1157 // extern int test6(); 1158 // ... 1159 // int test6() __attribute__((alias("test7"))); 1160 // 1161 // Remove it and replace uses of it with the alias. 1162 1163 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1164 Entry->getType())); 1165 Entry->eraseFromParent(); 1166 } 1167 1168 // Now we know that there is no conflict, set the name. 1169 Entry = GA; 1170 GA->setName(MangledName); 1171 1172 // Set attributes which are particular to an alias; this is a 1173 // specialization of the attributes which may be set on a global 1174 // variable/function. 1175 if (D->hasAttr<DLLExportAttr>()) { 1176 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1177 // The dllexport attribute is ignored for undefined symbols. 1178 if (FD->getBody()) 1179 GA->setLinkage(llvm::Function::DLLExportLinkage); 1180 } else { 1181 GA->setLinkage(llvm::Function::DLLExportLinkage); 1182 } 1183 } else if (D->hasAttr<WeakAttr>() || 1184 D->hasAttr<WeakImportAttr>()) { 1185 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1186 } 1187 1188 SetCommonAttributes(D, GA); 1189 } 1190 1191 /// getBuiltinLibFunction - Given a builtin id for a function like 1192 /// "__builtin_fabsf", return a Function* for "fabsf". 1193 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 1194 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1195 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1196 "isn't a lib fn"); 1197 1198 // Get the name, skip over the __builtin_ prefix (if necessary). 1199 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1200 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1201 Name += 10; 1202 1203 // Get the type for the builtin. 1204 ASTContext::GetBuiltinTypeError Error; 1205 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1206 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1207 1208 const llvm::FunctionType *Ty = 1209 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1210 1211 // Unique the name through the identifier table. 1212 Name = getContext().Idents.get(Name).getName(); 1213 // FIXME: param attributes for sext/zext etc. 1214 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl()); 1215 } 1216 1217 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1218 unsigned NumTys) { 1219 return llvm::Intrinsic::getDeclaration(&getModule(), 1220 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1221 } 1222 1223 llvm::Function *CodeGenModule::getMemCpyFn() { 1224 if (MemCpyFn) return MemCpyFn; 1225 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1226 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1227 } 1228 1229 llvm::Function *CodeGenModule::getMemMoveFn() { 1230 if (MemMoveFn) return MemMoveFn; 1231 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1232 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1233 } 1234 1235 llvm::Function *CodeGenModule::getMemSetFn() { 1236 if (MemSetFn) return MemSetFn; 1237 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1238 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1239 } 1240 1241 static void appendFieldAndPadding(CodeGenModule &CGM, 1242 std::vector<llvm::Constant*>& Fields, 1243 FieldDecl *FieldD, FieldDecl *NextFieldD, 1244 llvm::Constant* Field, 1245 RecordDecl* RD, const llvm::StructType *STy) { 1246 // Append the field. 1247 Fields.push_back(Field); 1248 1249 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1250 1251 int NextStructFieldNo; 1252 if (!NextFieldD) { 1253 NextStructFieldNo = STy->getNumElements(); 1254 } else { 1255 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1256 } 1257 1258 // Append padding 1259 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1260 llvm::Constant *C = 1261 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1262 1263 Fields.push_back(C); 1264 } 1265 } 1266 1267 static llvm::StringMapEntry<llvm::Constant*> & 1268 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1269 const StringLiteral *Literal, 1270 bool TargetIsLSB, 1271 bool &IsUTF16, 1272 unsigned &StringLength) { 1273 unsigned NumBytes = Literal->getByteLength(); 1274 1275 // Check for simple case. 1276 if (!Literal->containsNonAsciiOrNull()) { 1277 StringLength = NumBytes; 1278 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1279 StringLength)); 1280 } 1281 1282 // Otherwise, convert the UTF8 literals into a byte string. 1283 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1284 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1285 UTF16 *ToPtr = &ToBuf[0]; 1286 1287 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1288 &ToPtr, ToPtr + NumBytes, 1289 strictConversion); 1290 1291 // Check for conversion failure. 1292 if (Result != conversionOK) { 1293 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1294 // this duplicate code. 1295 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1296 StringLength = NumBytes; 1297 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1298 StringLength)); 1299 } 1300 1301 // ConvertUTF8toUTF16 returns the length in ToPtr. 1302 StringLength = ToPtr - &ToBuf[0]; 1303 1304 // Render the UTF-16 string into a byte array and convert to the target byte 1305 // order. 1306 // 1307 // FIXME: This isn't something we should need to do here. 1308 llvm::SmallString<128> AsBytes; 1309 AsBytes.reserve(StringLength * 2); 1310 for (unsigned i = 0; i != StringLength; ++i) { 1311 unsigned short Val = ToBuf[i]; 1312 if (TargetIsLSB) { 1313 AsBytes.push_back(Val & 0xFF); 1314 AsBytes.push_back(Val >> 8); 1315 } else { 1316 AsBytes.push_back(Val >> 8); 1317 AsBytes.push_back(Val & 0xFF); 1318 } 1319 } 1320 // Append one extra null character, the second is automatically added by our 1321 // caller. 1322 AsBytes.push_back(0); 1323 1324 IsUTF16 = true; 1325 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1326 } 1327 1328 llvm::Constant * 1329 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1330 unsigned StringLength = 0; 1331 bool isUTF16 = false; 1332 llvm::StringMapEntry<llvm::Constant*> &Entry = 1333 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1334 getTargetData().isLittleEndian(), 1335 isUTF16, StringLength); 1336 1337 if (llvm::Constant *C = Entry.getValue()) 1338 return C; 1339 1340 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1341 llvm::Constant *Zeros[] = { Zero, Zero }; 1342 1343 // If we don't already have it, get __CFConstantStringClassReference. 1344 if (!CFConstantStringClassRef) { 1345 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1346 Ty = llvm::ArrayType::get(Ty, 0); 1347 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1348 "__CFConstantStringClassReference"); 1349 // Decay array -> ptr 1350 CFConstantStringClassRef = 1351 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1352 } 1353 1354 QualType CFTy = getContext().getCFConstantStringType(); 1355 RecordDecl *CFRD = CFTy->getAs<RecordType>()->getDecl(); 1356 1357 const llvm::StructType *STy = 1358 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1359 1360 std::vector<llvm::Constant*> Fields; 1361 RecordDecl::field_iterator Field = CFRD->field_begin(); 1362 1363 // Class pointer. 1364 FieldDecl *CurField = *Field++; 1365 FieldDecl *NextField = *Field++; 1366 appendFieldAndPadding(*this, Fields, CurField, NextField, 1367 CFConstantStringClassRef, CFRD, STy); 1368 1369 // Flags. 1370 CurField = NextField; 1371 NextField = *Field++; 1372 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1373 appendFieldAndPadding(*this, Fields, CurField, NextField, 1374 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1375 : llvm::ConstantInt::get(Ty, 0x07C8), 1376 CFRD, STy); 1377 1378 // String pointer. 1379 CurField = NextField; 1380 NextField = *Field++; 1381 llvm::Constant *C = llvm::ConstantArray::get(Entry.getKey().str()); 1382 1383 const char *Sect, *Prefix; 1384 bool isConstant; 1385 llvm::GlobalValue::LinkageTypes Linkage; 1386 if (isUTF16) { 1387 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1388 Sect = getContext().Target.getUnicodeStringSection(); 1389 // FIXME: why do utf strings get "l" labels instead of "L" labels? 1390 Linkage = llvm::GlobalValue::InternalLinkage; 1391 // FIXME: Why does GCC not set constant here? 1392 isConstant = false; 1393 } else { 1394 Prefix = ".str"; 1395 Sect = getContext().Target.getCFStringDataSection(); 1396 Linkage = llvm::GlobalValue::PrivateLinkage; 1397 // FIXME: -fwritable-strings should probably affect this, but we 1398 // are following gcc here. 1399 isConstant = true; 1400 } 1401 llvm::GlobalVariable *GV = 1402 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 1403 Linkage, C, Prefix); 1404 if (Sect) 1405 GV->setSection(Sect); 1406 if (isUTF16) { 1407 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1408 GV->setAlignment(Align); 1409 } 1410 appendFieldAndPadding(*this, Fields, CurField, NextField, 1411 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1412 CFRD, STy); 1413 1414 // String length. 1415 CurField = NextField; 1416 NextField = 0; 1417 Ty = getTypes().ConvertType(getContext().LongTy); 1418 appendFieldAndPadding(*this, Fields, CurField, NextField, 1419 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1420 1421 // The struct. 1422 C = llvm::ConstantStruct::get(STy, Fields); 1423 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1424 llvm::GlobalVariable::PrivateLinkage, C, 1425 "_unnamed_cfstring_"); 1426 if (const char *Sect = getContext().Target.getCFStringSection()) 1427 GV->setSection(Sect); 1428 Entry.setValue(GV); 1429 1430 return GV; 1431 } 1432 1433 /// GetStringForStringLiteral - Return the appropriate bytes for a 1434 /// string literal, properly padded to match the literal type. 1435 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1436 const char *StrData = E->getStrData(); 1437 unsigned Len = E->getByteLength(); 1438 1439 const ConstantArrayType *CAT = 1440 getContext().getAsConstantArrayType(E->getType()); 1441 assert(CAT && "String isn't pointer or array!"); 1442 1443 // Resize the string to the right size. 1444 std::string Str(StrData, StrData+Len); 1445 uint64_t RealLen = CAT->getSize().getZExtValue(); 1446 1447 if (E->isWide()) 1448 RealLen *= getContext().Target.getWCharWidth()/8; 1449 1450 Str.resize(RealLen, '\0'); 1451 1452 return Str; 1453 } 1454 1455 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1456 /// constant array for the given string literal. 1457 llvm::Constant * 1458 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1459 // FIXME: This can be more efficient. 1460 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1461 } 1462 1463 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1464 /// array for the given ObjCEncodeExpr node. 1465 llvm::Constant * 1466 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1467 std::string Str; 1468 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1469 1470 return GetAddrOfConstantCString(Str); 1471 } 1472 1473 1474 /// GenerateWritableString -- Creates storage for a string literal. 1475 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1476 bool constant, 1477 CodeGenModule &CGM, 1478 const char *GlobalName) { 1479 // Create Constant for this string literal. Don't add a '\0'. 1480 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1481 1482 // Create a global variable for this string 1483 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1484 llvm::GlobalValue::PrivateLinkage, 1485 C, GlobalName); 1486 } 1487 1488 /// GetAddrOfConstantString - Returns a pointer to a character array 1489 /// containing the literal. This contents are exactly that of the 1490 /// given string, i.e. it will not be null terminated automatically; 1491 /// see GetAddrOfConstantCString. Note that whether the result is 1492 /// actually a pointer to an LLVM constant depends on 1493 /// Feature.WriteableStrings. 1494 /// 1495 /// The result has pointer to array type. 1496 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1497 const char *GlobalName) { 1498 bool IsConstant = !Features.WritableStrings; 1499 1500 // Get the default prefix if a name wasn't specified. 1501 if (!GlobalName) 1502 GlobalName = ".str"; 1503 1504 // Don't share any string literals if strings aren't constant. 1505 if (!IsConstant) 1506 return GenerateStringLiteral(str, false, *this, GlobalName); 1507 1508 llvm::StringMapEntry<llvm::Constant *> &Entry = 1509 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1510 1511 if (Entry.getValue()) 1512 return Entry.getValue(); 1513 1514 // Create a global variable for this. 1515 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1516 Entry.setValue(C); 1517 return C; 1518 } 1519 1520 /// GetAddrOfConstantCString - Returns a pointer to a character 1521 /// array containing the literal and a terminating '\-' 1522 /// character. The result has pointer to array type. 1523 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1524 const char *GlobalName){ 1525 return GetAddrOfConstantString(str + '\0', GlobalName); 1526 } 1527 1528 /// EmitObjCPropertyImplementations - Emit information for synthesized 1529 /// properties for an implementation. 1530 void CodeGenModule::EmitObjCPropertyImplementations(const 1531 ObjCImplementationDecl *D) { 1532 for (ObjCImplementationDecl::propimpl_iterator 1533 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1534 ObjCPropertyImplDecl *PID = *i; 1535 1536 // Dynamic is just for type-checking. 1537 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1538 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1539 1540 // Determine which methods need to be implemented, some may have 1541 // been overridden. Note that ::isSynthesized is not the method 1542 // we want, that just indicates if the decl came from a 1543 // property. What we want to know is if the method is defined in 1544 // this implementation. 1545 if (!D->getInstanceMethod(PD->getGetterName())) 1546 CodeGenFunction(*this).GenerateObjCGetter( 1547 const_cast<ObjCImplementationDecl *>(D), PID); 1548 if (!PD->isReadOnly() && 1549 !D->getInstanceMethod(PD->getSetterName())) 1550 CodeGenFunction(*this).GenerateObjCSetter( 1551 const_cast<ObjCImplementationDecl *>(D), PID); 1552 } 1553 } 1554 } 1555 1556 /// EmitNamespace - Emit all declarations in a namespace. 1557 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1558 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1559 I != E; ++I) 1560 EmitTopLevelDecl(*I); 1561 } 1562 1563 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1564 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1565 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1566 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1567 ErrorUnsupported(LSD, "linkage spec"); 1568 return; 1569 } 1570 1571 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1572 I != E; ++I) 1573 EmitTopLevelDecl(*I); 1574 } 1575 1576 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1577 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1578 // If an error has occurred, stop code generation, but continue 1579 // parsing and semantic analysis (to ensure all warnings and errors 1580 // are emitted). 1581 if (Diags.hasErrorOccurred()) 1582 return; 1583 1584 // Ignore dependent declarations. 1585 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1586 return; 1587 1588 switch (D->getKind()) { 1589 case Decl::CXXMethod: 1590 case Decl::Function: 1591 // Skip function templates 1592 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1593 return; 1594 1595 // Fall through 1596 1597 case Decl::Var: 1598 EmitGlobal(GlobalDecl(cast<ValueDecl>(D))); 1599 break; 1600 1601 // C++ Decls 1602 case Decl::Namespace: 1603 EmitNamespace(cast<NamespaceDecl>(D)); 1604 break; 1605 // No code generation needed. 1606 case Decl::Using: 1607 case Decl::ClassTemplate: 1608 case Decl::FunctionTemplate: 1609 break; 1610 case Decl::CXXConstructor: 1611 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1612 break; 1613 case Decl::CXXDestructor: 1614 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1615 break; 1616 1617 case Decl::StaticAssert: 1618 // Nothing to do. 1619 break; 1620 1621 // Objective-C Decls 1622 1623 // Forward declarations, no (immediate) code generation. 1624 case Decl::ObjCClass: 1625 case Decl::ObjCForwardProtocol: 1626 case Decl::ObjCCategory: 1627 case Decl::ObjCInterface: 1628 break; 1629 1630 case Decl::ObjCProtocol: 1631 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1632 break; 1633 1634 case Decl::ObjCCategoryImpl: 1635 // Categories have properties but don't support synthesize so we 1636 // can ignore them here. 1637 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1638 break; 1639 1640 case Decl::ObjCImplementation: { 1641 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1642 EmitObjCPropertyImplementations(OMD); 1643 Runtime->GenerateClass(OMD); 1644 break; 1645 } 1646 case Decl::ObjCMethod: { 1647 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1648 // If this is not a prototype, emit the body. 1649 if (OMD->getBody()) 1650 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1651 break; 1652 } 1653 case Decl::ObjCCompatibleAlias: 1654 // compatibility-alias is a directive and has no code gen. 1655 break; 1656 1657 case Decl::LinkageSpec: 1658 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1659 break; 1660 1661 case Decl::FileScopeAsm: { 1662 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1663 std::string AsmString(AD->getAsmString()->getStrData(), 1664 AD->getAsmString()->getByteLength()); 1665 1666 const std::string &S = getModule().getModuleInlineAsm(); 1667 if (S.empty()) 1668 getModule().setModuleInlineAsm(AsmString); 1669 else 1670 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1671 break; 1672 } 1673 1674 default: 1675 // Make sure we handled everything we should, every other kind is a 1676 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1677 // function. Need to recode Decl::Kind to do that easily. 1678 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1679 } 1680 } 1681