1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/CodeGen/CodeGenOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/Basic/Diagnostic.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Basic/ConvertUTF.h"
30 #include "llvm/CallingConv.h"
31 #include "llvm/Module.h"
32 #include "llvm/Intrinsics.h"
33 #include "llvm/Target/TargetData.h"
34 #include "llvm/Support/ErrorHandling.h"
35 using namespace clang;
36 using namespace CodeGen;
37 
38 
39 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
40                              llvm::Module &M, const llvm::TargetData &TD,
41                              Diagnostic &diags)
42   : BlockModule(C, M, TD, Types, *this), Context(C),
43     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
44     TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C),
45     VtableInfo(*this), Runtime(0),
46     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
47     VMContext(M.getContext()) {
48 
49   if (!Features.ObjC1)
50     Runtime = 0;
51   else if (!Features.NeXTRuntime)
52     Runtime = CreateGNUObjCRuntime(*this);
53   else if (Features.ObjCNonFragileABI)
54     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
55   else
56     Runtime = CreateMacObjCRuntime(*this);
57 
58   // If debug info generation is enabled, create the CGDebugInfo object.
59   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(this) : 0;
60 }
61 
62 CodeGenModule::~CodeGenModule() {
63   delete Runtime;
64   delete DebugInfo;
65 }
66 
67 void CodeGenModule::Release() {
68   // We need to call this first because it can add deferred declarations.
69   EmitCXXGlobalInitFunc();
70 
71   EmitDeferred();
72   if (Runtime)
73     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
74       AddGlobalCtor(ObjCInitFunction);
75   EmitCtorList(GlobalCtors, "llvm.global_ctors");
76   EmitCtorList(GlobalDtors, "llvm.global_dtors");
77   EmitAnnotations();
78   EmitLLVMUsed();
79 }
80 
81 /// ErrorUnsupported - Print out an error that codegen doesn't support the
82 /// specified stmt yet.
83 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
84                                      bool OmitOnError) {
85   if (OmitOnError && getDiags().hasErrorOccurred())
86     return;
87   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
88                                                "cannot compile this %0 yet");
89   std::string Msg = Type;
90   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
91     << Msg << S->getSourceRange();
92 }
93 
94 /// ErrorUnsupported - Print out an error that codegen doesn't support the
95 /// specified decl yet.
96 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
97                                      bool OmitOnError) {
98   if (OmitOnError && getDiags().hasErrorOccurred())
99     return;
100   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
101                                                "cannot compile this %0 yet");
102   std::string Msg = Type;
103   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
104 }
105 
106 LangOptions::VisibilityMode
107 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
108   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
109     if (VD->getStorageClass() == VarDecl::PrivateExtern)
110       return LangOptions::Hidden;
111 
112   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
113     switch (attr->getVisibility()) {
114     default: assert(0 && "Unknown visibility!");
115     case VisibilityAttr::DefaultVisibility:
116       return LangOptions::Default;
117     case VisibilityAttr::HiddenVisibility:
118       return LangOptions::Hidden;
119     case VisibilityAttr::ProtectedVisibility:
120       return LangOptions::Protected;
121     }
122   }
123 
124   return getLangOptions().getVisibilityMode();
125 }
126 
127 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
128                                         const Decl *D) const {
129   // Internal definitions always have default visibility.
130   if (GV->hasLocalLinkage()) {
131     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
132     return;
133   }
134 
135   switch (getDeclVisibilityMode(D)) {
136   default: assert(0 && "Unknown visibility!");
137   case LangOptions::Default:
138     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
139   case LangOptions::Hidden:
140     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
141   case LangOptions::Protected:
142     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
143   }
144 }
145 
146 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
147   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
148 
149   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
150     return getMangledCXXCtorName(D, GD.getCtorType());
151   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
152     return getMangledCXXDtorName(D, GD.getDtorType());
153 
154   return getMangledName(ND);
155 }
156 
157 /// \brief Retrieves the mangled name for the given declaration.
158 ///
159 /// If the given declaration requires a mangled name, returns an
160 /// const char* containing the mangled name.  Otherwise, returns
161 /// the unmangled name.
162 ///
163 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
164   if (!getMangleContext().shouldMangleDeclName(ND)) {
165     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
166     return ND->getNameAsCString();
167   }
168 
169   llvm::SmallString<256> Name;
170   getMangleContext().mangleName(ND, Name);
171   Name += '\0';
172   return UniqueMangledName(Name.begin(), Name.end());
173 }
174 
175 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
176                                              const char *NameEnd) {
177   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
178 
179   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
180 }
181 
182 /// AddGlobalCtor - Add a function to the list that will be called before
183 /// main() runs.
184 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
185   // FIXME: Type coercion of void()* types.
186   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
187 }
188 
189 /// AddGlobalDtor - Add a function to the list that will be called
190 /// when the module is unloaded.
191 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
192   // FIXME: Type coercion of void()* types.
193   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
194 }
195 
196 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
197   // Ctor function type is void()*.
198   llvm::FunctionType* CtorFTy =
199     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
200                             std::vector<const llvm::Type*>(),
201                             false);
202   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
203 
204   // Get the type of a ctor entry, { i32, void ()* }.
205   llvm::StructType* CtorStructTy =
206     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
207                           llvm::PointerType::getUnqual(CtorFTy), NULL);
208 
209   // Construct the constructor and destructor arrays.
210   std::vector<llvm::Constant*> Ctors;
211   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
212     std::vector<llvm::Constant*> S;
213     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
214                 I->second, false));
215     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
216     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
217   }
218 
219   if (!Ctors.empty()) {
220     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
221     new llvm::GlobalVariable(TheModule, AT, false,
222                              llvm::GlobalValue::AppendingLinkage,
223                              llvm::ConstantArray::get(AT, Ctors),
224                              GlobalName);
225   }
226 }
227 
228 void CodeGenModule::EmitAnnotations() {
229   if (Annotations.empty())
230     return;
231 
232   // Create a new global variable for the ConstantStruct in the Module.
233   llvm::Constant *Array =
234   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
235                                                 Annotations.size()),
236                            Annotations);
237   llvm::GlobalValue *gv =
238   new llvm::GlobalVariable(TheModule, Array->getType(), false,
239                            llvm::GlobalValue::AppendingLinkage, Array,
240                            "llvm.global.annotations");
241   gv->setSection("llvm.metadata");
242 }
243 
244 static CodeGenModule::GVALinkage
245 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
246                       const LangOptions &Features) {
247   // Everything located semantically within an anonymous namespace is
248   // always internal.
249   if (FD->isInAnonymousNamespace())
250     return CodeGenModule::GVA_Internal;
251 
252   // "static" functions get internal linkage.
253   if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD))
254     return CodeGenModule::GVA_Internal;
255 
256   // The kind of external linkage this function will have, if it is not
257   // inline or static.
258   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
259   if (Context.getLangOptions().CPlusPlus &&
260       FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
261     External = CodeGenModule::GVA_TemplateInstantiation;
262 
263   if (!FD->isInlined())
264     return External;
265 
266   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
267     // GNU or C99 inline semantics. Determine whether this symbol should be
268     // externally visible.
269     if (FD->isInlineDefinitionExternallyVisible())
270       return External;
271 
272     // C99 inline semantics, where the symbol is not externally visible.
273     return CodeGenModule::GVA_C99Inline;
274   }
275 
276   // C++0x [temp.explicit]p9:
277   //   [ Note: The intent is that an inline function that is the subject of
278   //   an explicit instantiation declaration will still be implicitly
279   //   instantiated when used so that the body can be considered for
280   //   inlining, but that no out-of-line copy of the inline function would be
281   //   generated in the translation unit. -- end note ]
282   if (FD->getTemplateSpecializationKind()
283                                        == TSK_ExplicitInstantiationDeclaration)
284     return CodeGenModule::GVA_C99Inline;
285 
286   return CodeGenModule::GVA_CXXInline;
287 }
288 
289 /// SetFunctionDefinitionAttributes - Set attributes for a global.
290 ///
291 /// FIXME: This is currently only done for aliases and functions, but not for
292 /// variables (these details are set in EmitGlobalVarDefinition for variables).
293 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
294                                                     llvm::GlobalValue *GV) {
295   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
296 
297   if (Linkage == GVA_Internal) {
298     GV->setLinkage(llvm::Function::InternalLinkage);
299   } else if (D->hasAttr<DLLExportAttr>()) {
300     GV->setLinkage(llvm::Function::DLLExportLinkage);
301   } else if (D->hasAttr<WeakAttr>()) {
302     GV->setLinkage(llvm::Function::WeakAnyLinkage);
303   } else if (Linkage == GVA_C99Inline) {
304     // In C99 mode, 'inline' functions are guaranteed to have a strong
305     // definition somewhere else, so we can use available_externally linkage.
306     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
307   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
308     // In C++, the compiler has to emit a definition in every translation unit
309     // that references the function.  We should use linkonce_odr because
310     // a) if all references in this translation unit are optimized away, we
311     // don't need to codegen it.  b) if the function persists, it needs to be
312     // merged with other definitions. c) C++ has the ODR, so we know the
313     // definition is dependable.
314     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
315   } else {
316     assert(Linkage == GVA_StrongExternal);
317     // Otherwise, we have strong external linkage.
318     GV->setLinkage(llvm::Function::ExternalLinkage);
319   }
320 
321   SetCommonAttributes(D, GV);
322 }
323 
324 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
325                                               const CGFunctionInfo &Info,
326                                               llvm::Function *F) {
327   unsigned CallingConv;
328   AttributeListType AttributeList;
329   ConstructAttributeList(Info, D, AttributeList, CallingConv);
330   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
331                                           AttributeList.size()));
332   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
333 }
334 
335 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
336                                                            llvm::Function *F) {
337   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
338     F->addFnAttr(llvm::Attribute::NoUnwind);
339 
340   if (D->hasAttr<AlwaysInlineAttr>())
341     F->addFnAttr(llvm::Attribute::AlwaysInline);
342 
343   if (D->hasAttr<NoInlineAttr>())
344     F->addFnAttr(llvm::Attribute::NoInline);
345 
346   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
347     F->addFnAttr(llvm::Attribute::StackProtect);
348   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
349     F->addFnAttr(llvm::Attribute::StackProtectReq);
350 
351   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
352     unsigned width = Context.Target.getCharWidth();
353     F->setAlignment(AA->getAlignment() / width);
354     while ((AA = AA->getNext<AlignedAttr>()))
355       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
356   }
357   // C++ ABI requires 2-byte alignment for member functions.
358   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
359     F->setAlignment(2);
360 }
361 
362 void CodeGenModule::SetCommonAttributes(const Decl *D,
363                                         llvm::GlobalValue *GV) {
364   setGlobalVisibility(GV, D);
365 
366   if (D->hasAttr<UsedAttr>())
367     AddUsedGlobal(GV);
368 
369   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
370     GV->setSection(SA->getName());
371 }
372 
373 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
374                                                   llvm::Function *F,
375                                                   const CGFunctionInfo &FI) {
376   SetLLVMFunctionAttributes(D, FI, F);
377   SetLLVMFunctionAttributesForDefinition(D, F);
378 
379   F->setLinkage(llvm::Function::InternalLinkage);
380 
381   SetCommonAttributes(D, F);
382 }
383 
384 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
385                                           llvm::Function *F,
386                                           bool IsIncompleteFunction) {
387   if (!IsIncompleteFunction)
388     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
389 
390   // Only a few attributes are set on declarations; these may later be
391   // overridden by a definition.
392 
393   if (FD->hasAttr<DLLImportAttr>()) {
394     F->setLinkage(llvm::Function::DLLImportLinkage);
395   } else if (FD->hasAttr<WeakAttr>() ||
396              FD->hasAttr<WeakImportAttr>()) {
397     // "extern_weak" is overloaded in LLVM; we probably should have
398     // separate linkage types for this.
399     F->setLinkage(llvm::Function::ExternalWeakLinkage);
400   } else {
401     F->setLinkage(llvm::Function::ExternalLinkage);
402   }
403 
404   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
405     F->setSection(SA->getName());
406 }
407 
408 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
409   assert(!GV->isDeclaration() &&
410          "Only globals with definition can force usage.");
411   LLVMUsed.push_back(GV);
412 }
413 
414 void CodeGenModule::EmitLLVMUsed() {
415   // Don't create llvm.used if there is no need.
416   if (LLVMUsed.empty())
417     return;
418 
419   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
420 
421   // Convert LLVMUsed to what ConstantArray needs.
422   std::vector<llvm::Constant*> UsedArray;
423   UsedArray.resize(LLVMUsed.size());
424   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
425     UsedArray[i] =
426      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
427                                       i8PTy);
428   }
429 
430   if (UsedArray.empty())
431     return;
432   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
433 
434   llvm::GlobalVariable *GV =
435     new llvm::GlobalVariable(getModule(), ATy, false,
436                              llvm::GlobalValue::AppendingLinkage,
437                              llvm::ConstantArray::get(ATy, UsedArray),
438                              "llvm.used");
439 
440   GV->setSection("llvm.metadata");
441 }
442 
443 void CodeGenModule::EmitDeferred() {
444   // Emit code for any potentially referenced deferred decls.  Since a
445   // previously unused static decl may become used during the generation of code
446   // for a static function, iterate until no  changes are made.
447   while (!DeferredDeclsToEmit.empty()) {
448     GlobalDecl D = DeferredDeclsToEmit.back();
449     DeferredDeclsToEmit.pop_back();
450 
451     // The mangled name for the decl must have been emitted in GlobalDeclMap.
452     // Look it up to see if it was defined with a stronger definition (e.g. an
453     // extern inline function with a strong function redefinition).  If so,
454     // just ignore the deferred decl.
455     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
456     assert(CGRef && "Deferred decl wasn't referenced?");
457 
458     if (!CGRef->isDeclaration())
459       continue;
460 
461     // Otherwise, emit the definition and move on to the next one.
462     EmitGlobalDefinition(D);
463   }
464 }
465 
466 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
467 /// annotation information for a given GlobalValue.  The annotation struct is
468 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
469 /// GlobalValue being annotated.  The second field is the constant string
470 /// created from the AnnotateAttr's annotation.  The third field is a constant
471 /// string containing the name of the translation unit.  The fourth field is
472 /// the line number in the file of the annotated value declaration.
473 ///
474 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
475 ///        appears to.
476 ///
477 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
478                                                 const AnnotateAttr *AA,
479                                                 unsigned LineNo) {
480   llvm::Module *M = &getModule();
481 
482   // get [N x i8] constants for the annotation string, and the filename string
483   // which are the 2nd and 3rd elements of the global annotation structure.
484   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
485   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
486                                                   AA->getAnnotation(), true);
487   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
488                                                   M->getModuleIdentifier(),
489                                                   true);
490 
491   // Get the two global values corresponding to the ConstantArrays we just
492   // created to hold the bytes of the strings.
493   llvm::GlobalValue *annoGV =
494     new llvm::GlobalVariable(*M, anno->getType(), false,
495                              llvm::GlobalValue::PrivateLinkage, anno,
496                              GV->getName());
497   // translation unit name string, emitted into the llvm.metadata section.
498   llvm::GlobalValue *unitGV =
499     new llvm::GlobalVariable(*M, unit->getType(), false,
500                              llvm::GlobalValue::PrivateLinkage, unit,
501                              ".str");
502 
503   // Create the ConstantStruct for the global annotation.
504   llvm::Constant *Fields[4] = {
505     llvm::ConstantExpr::getBitCast(GV, SBP),
506     llvm::ConstantExpr::getBitCast(annoGV, SBP),
507     llvm::ConstantExpr::getBitCast(unitGV, SBP),
508     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
509   };
510   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
511 }
512 
513 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
514   // Never defer when EmitAllDecls is specified or the decl has
515   // attribute used.
516   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
517     return false;
518 
519   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
520     // Constructors and destructors should never be deferred.
521     if (FD->hasAttr<ConstructorAttr>() ||
522         FD->hasAttr<DestructorAttr>())
523       return false;
524 
525     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
526 
527     // static, static inline, always_inline, and extern inline functions can
528     // always be deferred.  Normal inline functions can be deferred in C99/C++.
529     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
530         Linkage == GVA_CXXInline)
531       return true;
532     return false;
533   }
534 
535   const VarDecl *VD = cast<VarDecl>(Global);
536   assert(VD->isFileVarDecl() && "Invalid decl");
537 
538   // We never want to defer structs that have non-trivial constructors or
539   // destructors.
540 
541   // FIXME: Handle references.
542   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
543     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
544       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
545         return false;
546     }
547   }
548 
549   // Static data may be deferred, but out-of-line static data members
550   // cannot be.
551   if (VD->isInAnonymousNamespace())
552     return true;
553   if (VD->getLinkage() == VarDecl::InternalLinkage) {
554     // Initializer has side effects?
555     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
556       return false;
557     return !(VD->isStaticDataMember() && VD->isOutOfLine());
558   }
559   return false;
560 }
561 
562 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
563   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
564 
565   // If this is an alias definition (which otherwise looks like a declaration)
566   // emit it now.
567   if (Global->hasAttr<AliasAttr>())
568     return EmitAliasDefinition(Global);
569 
570   // Ignore declarations, they will be emitted on their first use.
571   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
572     // Forward declarations are emitted lazily on first use.
573     if (!FD->isThisDeclarationADefinition())
574       return;
575   } else {
576     const VarDecl *VD = cast<VarDecl>(Global);
577     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
578 
579     // In C++, if this is marked "extern", defer code generation.
580     if (getLangOptions().CPlusPlus && !VD->getInit() &&
581         (VD->getStorageClass() == VarDecl::Extern ||
582          VD->isExternC()))
583       return;
584 
585     // In C, if this isn't a definition, defer code generation.
586     if (!getLangOptions().CPlusPlus && !VD->getInit())
587       return;
588   }
589 
590   // Defer code generation when possible if this is a static definition, inline
591   // function etc.  These we only want to emit if they are used.
592   if (MayDeferGeneration(Global)) {
593     // If the value has already been used, add it directly to the
594     // DeferredDeclsToEmit list.
595     const char *MangledName = getMangledName(GD);
596     if (GlobalDeclMap.count(MangledName))
597       DeferredDeclsToEmit.push_back(GD);
598     else {
599       // Otherwise, remember that we saw a deferred decl with this name.  The
600       // first use of the mangled name will cause it to move into
601       // DeferredDeclsToEmit.
602       DeferredDecls[MangledName] = GD;
603     }
604     return;
605   }
606 
607   // Otherwise emit the definition.
608   EmitGlobalDefinition(GD);
609 }
610 
611 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
612   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
613 
614   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
615                                  Context.getSourceManager(),
616                                  "Generating code for declaration");
617 
618   if (isa<CXXMethodDecl>(D))
619     getVtableInfo().MaybeEmitVtable(GD);
620 
621   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
622     EmitCXXConstructor(CD, GD.getCtorType());
623   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
624     EmitCXXDestructor(DD, GD.getDtorType());
625   else if (isa<FunctionDecl>(D))
626     EmitGlobalFunctionDefinition(GD);
627   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
628     EmitGlobalVarDefinition(VD);
629   else {
630     assert(0 && "Invalid argument to EmitGlobalDefinition()");
631   }
632 }
633 
634 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
635 /// module, create and return an llvm Function with the specified type. If there
636 /// is something in the module with the specified name, return it potentially
637 /// bitcasted to the right type.
638 ///
639 /// If D is non-null, it specifies a decl that correspond to this.  This is used
640 /// to set the attributes on the function when it is first created.
641 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
642                                                        const llvm::Type *Ty,
643                                                        GlobalDecl D) {
644   // Lookup the entry, lazily creating it if necessary.
645   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
646   if (Entry) {
647     if (Entry->getType()->getElementType() == Ty)
648       return Entry;
649 
650     // Make sure the result is of the correct type.
651     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
652     return llvm::ConstantExpr::getBitCast(Entry, PTy);
653   }
654 
655   // This function doesn't have a complete type (for example, the return
656   // type is an incomplete struct). Use a fake type instead, and make
657   // sure not to try to set attributes.
658   bool IsIncompleteFunction = false;
659   if (!isa<llvm::FunctionType>(Ty)) {
660     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
661                                  std::vector<const llvm::Type*>(), false);
662     IsIncompleteFunction = true;
663   }
664   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
665                                              llvm::Function::ExternalLinkage,
666                                              "", &getModule());
667   F->setName(MangledName);
668   if (D.getDecl())
669     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
670                           IsIncompleteFunction);
671   Entry = F;
672 
673   // This is the first use or definition of a mangled name.  If there is a
674   // deferred decl with this name, remember that we need to emit it at the end
675   // of the file.
676   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
677     DeferredDecls.find(MangledName);
678   if (DDI != DeferredDecls.end()) {
679     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
680     // list, and remove it from DeferredDecls (since we don't need it anymore).
681     DeferredDeclsToEmit.push_back(DDI->second);
682     DeferredDecls.erase(DDI);
683   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
684     // If this the first reference to a C++ inline function in a class, queue up
685     // the deferred function body for emission.  These are not seen as
686     // top-level declarations.
687     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
688       DeferredDeclsToEmit.push_back(D);
689     // A called constructor which has no definition or declaration need be
690     // synthesized.
691     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
692       if (CD->isImplicit())
693         DeferredDeclsToEmit.push_back(D);
694     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
695       if (DD->isImplicit())
696         DeferredDeclsToEmit.push_back(D);
697     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
698       if (MD->isCopyAssignment() && MD->isImplicit())
699         DeferredDeclsToEmit.push_back(D);
700     }
701   }
702 
703   return F;
704 }
705 
706 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
707 /// non-null, then this function will use the specified type if it has to
708 /// create it (this occurs when we see a definition of the function).
709 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
710                                                  const llvm::Type *Ty) {
711   // If there was no specific requested type, just convert it now.
712   if (!Ty)
713     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
714   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
715 }
716 
717 /// CreateRuntimeFunction - Create a new runtime function with the specified
718 /// type and name.
719 llvm::Constant *
720 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
721                                      const char *Name) {
722   // Convert Name to be a uniqued string from the IdentifierInfo table.
723   Name = getContext().Idents.get(Name).getNameStart();
724   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
725 }
726 
727 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
728 /// create and return an llvm GlobalVariable with the specified type.  If there
729 /// is something in the module with the specified name, return it potentially
730 /// bitcasted to the right type.
731 ///
732 /// If D is non-null, it specifies a decl that correspond to this.  This is used
733 /// to set the attributes on the global when it is first created.
734 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
735                                                      const llvm::PointerType*Ty,
736                                                      const VarDecl *D) {
737   // Lookup the entry, lazily creating it if necessary.
738   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
739   if (Entry) {
740     if (Entry->getType() == Ty)
741       return Entry;
742 
743     // Make sure the result is of the correct type.
744     return llvm::ConstantExpr::getBitCast(Entry, Ty);
745   }
746 
747   // This is the first use or definition of a mangled name.  If there is a
748   // deferred decl with this name, remember that we need to emit it at the end
749   // of the file.
750   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
751     DeferredDecls.find(MangledName);
752   if (DDI != DeferredDecls.end()) {
753     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
754     // list, and remove it from DeferredDecls (since we don't need it anymore).
755     DeferredDeclsToEmit.push_back(DDI->second);
756     DeferredDecls.erase(DDI);
757   }
758 
759   llvm::GlobalVariable *GV =
760     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
761                              llvm::GlobalValue::ExternalLinkage,
762                              0, "", 0,
763                              false, Ty->getAddressSpace());
764   GV->setName(MangledName);
765 
766   // Handle things which are present even on external declarations.
767   if (D) {
768     // FIXME: This code is overly simple and should be merged with other global
769     // handling.
770     GV->setConstant(D->getType().isConstant(Context));
771 
772     // FIXME: Merge with other attribute handling code.
773     if (D->getStorageClass() == VarDecl::PrivateExtern)
774       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
775 
776     if (D->hasAttr<WeakAttr>() ||
777         D->hasAttr<WeakImportAttr>())
778       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
779 
780     GV->setThreadLocal(D->isThreadSpecified());
781   }
782 
783   return Entry = GV;
784 }
785 
786 
787 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
788 /// given global variable.  If Ty is non-null and if the global doesn't exist,
789 /// then it will be greated with the specified type instead of whatever the
790 /// normal requested type would be.
791 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
792                                                   const llvm::Type *Ty) {
793   assert(D->hasGlobalStorage() && "Not a global variable");
794   QualType ASTTy = D->getType();
795   if (Ty == 0)
796     Ty = getTypes().ConvertTypeForMem(ASTTy);
797 
798   const llvm::PointerType *PTy =
799     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
800   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
801 }
802 
803 /// CreateRuntimeVariable - Create a new runtime global variable with the
804 /// specified type and name.
805 llvm::Constant *
806 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
807                                      const char *Name) {
808   // Convert Name to be a uniqued string from the IdentifierInfo table.
809   Name = getContext().Idents.get(Name).getNameStart();
810   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
811 }
812 
813 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
814   assert(!D->getInit() && "Cannot emit definite definitions here!");
815 
816   if (MayDeferGeneration(D)) {
817     // If we have not seen a reference to this variable yet, place it
818     // into the deferred declarations table to be emitted if needed
819     // later.
820     const char *MangledName = getMangledName(D);
821     if (GlobalDeclMap.count(MangledName) == 0) {
822       DeferredDecls[MangledName] = D;
823       return;
824     }
825   }
826 
827   // The tentative definition is the only definition.
828   EmitGlobalVarDefinition(D);
829 }
830 
831 static CodeGenModule::GVALinkage
832 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
833   // Everything located semantically within an anonymous namespace is
834   // always internal.
835   if (VD->isInAnonymousNamespace())
836     return CodeGenModule::GVA_Internal;
837 
838   // Handle linkage for static data members.
839   if (VD->isStaticDataMember()) {
840     switch (VD->getTemplateSpecializationKind()) {
841     case TSK_Undeclared:
842     case TSK_ExplicitSpecialization:
843     case TSK_ExplicitInstantiationDefinition:
844       return CodeGenModule::GVA_StrongExternal;
845 
846     case TSK_ExplicitInstantiationDeclaration:
847       llvm::llvm_unreachable("Variable should not be instantiated");
848       // Fall through to treat this like any other instantiation.
849 
850     case TSK_ImplicitInstantiation:
851       return CodeGenModule::GVA_TemplateInstantiation;
852     }
853   }
854 
855   if (VD->getLinkage() == VarDecl::InternalLinkage)
856     return CodeGenModule::GVA_Internal;
857 
858   return CodeGenModule::GVA_StrongExternal;
859 }
860 
861 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
862   llvm::Constant *Init = 0;
863   QualType ASTTy = D->getType();
864 
865   if (D->getInit() == 0) {
866     // This is a tentative definition; tentative definitions are
867     // implicitly initialized with { 0 }.
868     //
869     // Note that tentative definitions are only emitted at the end of
870     // a translation unit, so they should never have incomplete
871     // type. In addition, EmitTentativeDefinition makes sure that we
872     // never attempt to emit a tentative definition if a real one
873     // exists. A use may still exists, however, so we still may need
874     // to do a RAUW.
875     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
876     Init = EmitNullConstant(D->getType());
877   } else {
878     Init = EmitConstantExpr(D->getInit(), D->getType());
879 
880     if (!Init) {
881       QualType T = D->getInit()->getType();
882       if (getLangOptions().CPlusPlus) {
883         CXXGlobalInits.push_back(D);
884         Init = EmitNullConstant(T);
885       } else {
886         ErrorUnsupported(D, "static initializer");
887         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
888       }
889     }
890   }
891 
892   const llvm::Type* InitType = Init->getType();
893   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
894 
895   // Strip off a bitcast if we got one back.
896   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
897     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
898            // all zero index gep.
899            CE->getOpcode() == llvm::Instruction::GetElementPtr);
900     Entry = CE->getOperand(0);
901   }
902 
903   // Entry is now either a Function or GlobalVariable.
904   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
905 
906   // We have a definition after a declaration with the wrong type.
907   // We must make a new GlobalVariable* and update everything that used OldGV
908   // (a declaration or tentative definition) with the new GlobalVariable*
909   // (which will be a definition).
910   //
911   // This happens if there is a prototype for a global (e.g.
912   // "extern int x[];") and then a definition of a different type (e.g.
913   // "int x[10];"). This also happens when an initializer has a different type
914   // from the type of the global (this happens with unions).
915   if (GV == 0 ||
916       GV->getType()->getElementType() != InitType ||
917       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
918 
919     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
920     GlobalDeclMap.erase(getMangledName(D));
921 
922     // Make a new global with the correct type, this is now guaranteed to work.
923     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
924     GV->takeName(cast<llvm::GlobalValue>(Entry));
925 
926     // Replace all uses of the old global with the new global
927     llvm::Constant *NewPtrForOldDecl =
928         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
929     Entry->replaceAllUsesWith(NewPtrForOldDecl);
930 
931     // Erase the old global, since it is no longer used.
932     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
933   }
934 
935   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
936     SourceManager &SM = Context.getSourceManager();
937     AddAnnotation(EmitAnnotateAttr(GV, AA,
938                               SM.getInstantiationLineNumber(D->getLocation())));
939   }
940 
941   GV->setInitializer(Init);
942 
943   // If it is safe to mark the global 'constant', do so now.
944   GV->setConstant(false);
945   if (D->getType().isConstant(Context)) {
946     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
947     // members, it cannot be declared "LLVM const".
948     GV->setConstant(true);
949   }
950 
951   GV->setAlignment(getContext().getDeclAlignInBytes(D));
952 
953   // Set the llvm linkage type as appropriate.
954   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
955   if (Linkage == GVA_Internal)
956     GV->setLinkage(llvm::Function::InternalLinkage);
957   else if (D->hasAttr<DLLImportAttr>())
958     GV->setLinkage(llvm::Function::DLLImportLinkage);
959   else if (D->hasAttr<DLLExportAttr>())
960     GV->setLinkage(llvm::Function::DLLExportLinkage);
961   else if (D->hasAttr<WeakAttr>()) {
962     if (GV->isConstant())
963       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
964     else
965       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
966   } else if (Linkage == GVA_TemplateInstantiation)
967     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
968   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
969            !D->hasExternalStorage() && !D->getInit() &&
970            !D->getAttr<SectionAttr>()) {
971     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
972     // common vars aren't constant even if declared const.
973     GV->setConstant(false);
974   } else
975     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
976 
977   SetCommonAttributes(D, GV);
978 
979   // Emit global variable debug information.
980   if (CGDebugInfo *DI = getDebugInfo()) {
981     DI->setLocation(D->getLocation());
982     DI->EmitGlobalVariable(GV, D);
983   }
984 }
985 
986 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
987 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
988 /// existing call uses of the old function in the module, this adjusts them to
989 /// call the new function directly.
990 ///
991 /// This is not just a cleanup: the always_inline pass requires direct calls to
992 /// functions to be able to inline them.  If there is a bitcast in the way, it
993 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
994 /// run at -O0.
995 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
996                                                       llvm::Function *NewFn) {
997   // If we're redefining a global as a function, don't transform it.
998   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
999   if (OldFn == 0) return;
1000 
1001   const llvm::Type *NewRetTy = NewFn->getReturnType();
1002   llvm::SmallVector<llvm::Value*, 4> ArgList;
1003 
1004   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1005        UI != E; ) {
1006     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1007     unsigned OpNo = UI.getOperandNo();
1008     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1009     if (!CI || OpNo != 0) continue;
1010 
1011     // If the return types don't match exactly, and if the call isn't dead, then
1012     // we can't transform this call.
1013     if (CI->getType() != NewRetTy && !CI->use_empty())
1014       continue;
1015 
1016     // If the function was passed too few arguments, don't transform.  If extra
1017     // arguments were passed, we silently drop them.  If any of the types
1018     // mismatch, we don't transform.
1019     unsigned ArgNo = 0;
1020     bool DontTransform = false;
1021     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1022          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1023       if (CI->getNumOperands()-1 == ArgNo ||
1024           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1025         DontTransform = true;
1026         break;
1027       }
1028     }
1029     if (DontTransform)
1030       continue;
1031 
1032     // Okay, we can transform this.  Create the new call instruction and copy
1033     // over the required information.
1034     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1035     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1036                                                      ArgList.end(), "", CI);
1037     ArgList.clear();
1038     if (!NewCall->getType()->isVoidTy())
1039       NewCall->takeName(CI);
1040     NewCall->setAttributes(CI->getAttributes());
1041     NewCall->setCallingConv(CI->getCallingConv());
1042 
1043     // Finally, remove the old call, replacing any uses with the new one.
1044     if (!CI->use_empty())
1045       CI->replaceAllUsesWith(NewCall);
1046 
1047     // Copy any custom metadata attached with CI.
1048     llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata();
1049     TheMetadata.copyMD(CI, NewCall);
1050 
1051     CI->eraseFromParent();
1052   }
1053 }
1054 
1055 
1056 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1057   const llvm::FunctionType *Ty;
1058   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1059 
1060   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1061     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1062 
1063     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1064   } else {
1065     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1066 
1067     // As a special case, make sure that definitions of K&R function
1068     // "type foo()" aren't declared as varargs (which forces the backend
1069     // to do unnecessary work).
1070     if (D->getType()->isFunctionNoProtoType()) {
1071       assert(Ty->isVarArg() && "Didn't lower type as expected");
1072       // Due to stret, the lowered function could have arguments.
1073       // Just create the same type as was lowered by ConvertType
1074       // but strip off the varargs bit.
1075       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1076       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1077     }
1078   }
1079 
1080   // Get or create the prototype for the function.
1081   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1082 
1083   // Strip off a bitcast if we got one back.
1084   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1085     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1086     Entry = CE->getOperand(0);
1087   }
1088 
1089 
1090   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1091     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1092 
1093     // If the types mismatch then we have to rewrite the definition.
1094     assert(OldFn->isDeclaration() &&
1095            "Shouldn't replace non-declaration");
1096 
1097     // F is the Function* for the one with the wrong type, we must make a new
1098     // Function* and update everything that used F (a declaration) with the new
1099     // Function* (which will be a definition).
1100     //
1101     // This happens if there is a prototype for a function
1102     // (e.g. "int f()") and then a definition of a different type
1103     // (e.g. "int f(int x)").  Start by making a new function of the
1104     // correct type, RAUW, then steal the name.
1105     GlobalDeclMap.erase(getMangledName(D));
1106     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1107     NewFn->takeName(OldFn);
1108 
1109     // If this is an implementation of a function without a prototype, try to
1110     // replace any existing uses of the function (which may be calls) with uses
1111     // of the new function
1112     if (D->getType()->isFunctionNoProtoType()) {
1113       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1114       OldFn->removeDeadConstantUsers();
1115     }
1116 
1117     // Replace uses of F with the Function we will endow with a body.
1118     if (!Entry->use_empty()) {
1119       llvm::Constant *NewPtrForOldDecl =
1120         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1121       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1122     }
1123 
1124     // Ok, delete the old function now, which is dead.
1125     OldFn->eraseFromParent();
1126 
1127     Entry = NewFn;
1128   }
1129 
1130   llvm::Function *Fn = cast<llvm::Function>(Entry);
1131 
1132   CodeGenFunction(*this).GenerateCode(D, Fn);
1133 
1134   SetFunctionDefinitionAttributes(D, Fn);
1135   SetLLVMFunctionAttributesForDefinition(D, Fn);
1136 
1137   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1138     AddGlobalCtor(Fn, CA->getPriority());
1139   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1140     AddGlobalDtor(Fn, DA->getPriority());
1141 }
1142 
1143 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1144   const AliasAttr *AA = D->getAttr<AliasAttr>();
1145   assert(AA && "Not an alias?");
1146 
1147   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1148 
1149   // Unique the name through the identifier table.
1150   const char *AliaseeName = AA->getAliasee().c_str();
1151   AliaseeName = getContext().Idents.get(AliaseeName).getNameStart();
1152 
1153   // Create a reference to the named value.  This ensures that it is emitted
1154   // if a deferred decl.
1155   llvm::Constant *Aliasee;
1156   if (isa<llvm::FunctionType>(DeclTy))
1157     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1158   else
1159     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1160                                     llvm::PointerType::getUnqual(DeclTy), 0);
1161 
1162   // Create the new alias itself, but don't set a name yet.
1163   llvm::GlobalValue *GA =
1164     new llvm::GlobalAlias(Aliasee->getType(),
1165                           llvm::Function::ExternalLinkage,
1166                           "", Aliasee, &getModule());
1167 
1168   // See if there is already something with the alias' name in the module.
1169   const char *MangledName = getMangledName(D);
1170   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1171 
1172   if (Entry && !Entry->isDeclaration()) {
1173     // If there is a definition in the module, then it wins over the alias.
1174     // This is dubious, but allow it to be safe.  Just ignore the alias.
1175     GA->eraseFromParent();
1176     return;
1177   }
1178 
1179   if (Entry) {
1180     // If there is a declaration in the module, then we had an extern followed
1181     // by the alias, as in:
1182     //   extern int test6();
1183     //   ...
1184     //   int test6() __attribute__((alias("test7")));
1185     //
1186     // Remove it and replace uses of it with the alias.
1187 
1188     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1189                                                           Entry->getType()));
1190     Entry->eraseFromParent();
1191   }
1192 
1193   // Now we know that there is no conflict, set the name.
1194   Entry = GA;
1195   GA->setName(MangledName);
1196 
1197   // Set attributes which are particular to an alias; this is a
1198   // specialization of the attributes which may be set on a global
1199   // variable/function.
1200   if (D->hasAttr<DLLExportAttr>()) {
1201     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1202       // The dllexport attribute is ignored for undefined symbols.
1203       if (FD->getBody())
1204         GA->setLinkage(llvm::Function::DLLExportLinkage);
1205     } else {
1206       GA->setLinkage(llvm::Function::DLLExportLinkage);
1207     }
1208   } else if (D->hasAttr<WeakAttr>() ||
1209              D->hasAttr<WeakImportAttr>()) {
1210     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1211   }
1212 
1213   SetCommonAttributes(D, GA);
1214 }
1215 
1216 /// getBuiltinLibFunction - Given a builtin id for a function like
1217 /// "__builtin_fabsf", return a Function* for "fabsf".
1218 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1219                                                   unsigned BuiltinID) {
1220   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1221           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1222          "isn't a lib fn");
1223 
1224   // Get the name, skip over the __builtin_ prefix (if necessary).
1225   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1226   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1227     Name += 10;
1228 
1229   // Get the type for the builtin.
1230   ASTContext::GetBuiltinTypeError Error;
1231   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1232   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1233 
1234   const llvm::FunctionType *Ty =
1235     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1236 
1237   // Unique the name through the identifier table.
1238   Name = getContext().Idents.get(Name).getNameStart();
1239   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1240 }
1241 
1242 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1243                                             unsigned NumTys) {
1244   return llvm::Intrinsic::getDeclaration(&getModule(),
1245                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1246 }
1247 
1248 llvm::Function *CodeGenModule::getMemCpyFn() {
1249   if (MemCpyFn) return MemCpyFn;
1250   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1251   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1252 }
1253 
1254 llvm::Function *CodeGenModule::getMemMoveFn() {
1255   if (MemMoveFn) return MemMoveFn;
1256   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1257   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1258 }
1259 
1260 llvm::Function *CodeGenModule::getMemSetFn() {
1261   if (MemSetFn) return MemSetFn;
1262   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1263   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1264 }
1265 
1266 static llvm::StringMapEntry<llvm::Constant*> &
1267 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1268                          const StringLiteral *Literal,
1269                          bool TargetIsLSB,
1270                          bool &IsUTF16,
1271                          unsigned &StringLength) {
1272   unsigned NumBytes = Literal->getByteLength();
1273 
1274   // Check for simple case.
1275   if (!Literal->containsNonAsciiOrNull()) {
1276     StringLength = NumBytes;
1277     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1278                                                 StringLength));
1279   }
1280 
1281   // Otherwise, convert the UTF8 literals into a byte string.
1282   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1283   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1284   UTF16 *ToPtr = &ToBuf[0];
1285 
1286   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1287                                                &ToPtr, ToPtr + NumBytes,
1288                                                strictConversion);
1289 
1290   // Check for conversion failure.
1291   if (Result != conversionOK) {
1292     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1293     // this duplicate code.
1294     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1295     StringLength = NumBytes;
1296     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1297                                                 StringLength));
1298   }
1299 
1300   // ConvertUTF8toUTF16 returns the length in ToPtr.
1301   StringLength = ToPtr - &ToBuf[0];
1302 
1303   // Render the UTF-16 string into a byte array and convert to the target byte
1304   // order.
1305   //
1306   // FIXME: This isn't something we should need to do here.
1307   llvm::SmallString<128> AsBytes;
1308   AsBytes.reserve(StringLength * 2);
1309   for (unsigned i = 0; i != StringLength; ++i) {
1310     unsigned short Val = ToBuf[i];
1311     if (TargetIsLSB) {
1312       AsBytes.push_back(Val & 0xFF);
1313       AsBytes.push_back(Val >> 8);
1314     } else {
1315       AsBytes.push_back(Val >> 8);
1316       AsBytes.push_back(Val & 0xFF);
1317     }
1318   }
1319   // Append one extra null character, the second is automatically added by our
1320   // caller.
1321   AsBytes.push_back(0);
1322 
1323   IsUTF16 = true;
1324   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1325 }
1326 
1327 llvm::Constant *
1328 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1329   unsigned StringLength = 0;
1330   bool isUTF16 = false;
1331   llvm::StringMapEntry<llvm::Constant*> &Entry =
1332     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1333                              getTargetData().isLittleEndian(),
1334                              isUTF16, StringLength);
1335 
1336   if (llvm::Constant *C = Entry.getValue())
1337     return C;
1338 
1339   llvm::Constant *Zero =
1340       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1341   llvm::Constant *Zeros[] = { Zero, Zero };
1342 
1343   // If we don't already have it, get __CFConstantStringClassReference.
1344   if (!CFConstantStringClassRef) {
1345     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1346     Ty = llvm::ArrayType::get(Ty, 0);
1347     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1348                                            "__CFConstantStringClassReference");
1349     // Decay array -> ptr
1350     CFConstantStringClassRef =
1351       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1352   }
1353 
1354   QualType CFTy = getContext().getCFConstantStringType();
1355 
1356   const llvm::StructType *STy =
1357     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1358 
1359   std::vector<llvm::Constant*> Fields(4);
1360 
1361   // Class pointer.
1362   Fields[0] = CFConstantStringClassRef;
1363 
1364   // Flags.
1365   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1366   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1367     llvm::ConstantInt::get(Ty, 0x07C8);
1368 
1369   // String pointer.
1370   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1371 
1372   const char *Sect = 0;
1373   llvm::GlobalValue::LinkageTypes Linkage;
1374   bool isConstant;
1375   if (isUTF16) {
1376     Sect = getContext().Target.getUnicodeStringSection();
1377     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1378     Linkage = llvm::GlobalValue::InternalLinkage;
1379     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1380     // does make plain ascii ones writable.
1381     isConstant = true;
1382   } else {
1383     Linkage = llvm::GlobalValue::PrivateLinkage;
1384     isConstant = !Features.WritableStrings;
1385   }
1386 
1387   llvm::GlobalVariable *GV =
1388     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1389                              ".str");
1390   if (Sect)
1391     GV->setSection(Sect);
1392   if (isUTF16) {
1393     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1394     GV->setAlignment(Align);
1395   }
1396   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1397 
1398   // String length.
1399   Ty = getTypes().ConvertType(getContext().LongTy);
1400   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1401 
1402   // The struct.
1403   C = llvm::ConstantStruct::get(STy, Fields);
1404   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1405                                 llvm::GlobalVariable::PrivateLinkage, C,
1406                                 "_unnamed_cfstring_");
1407   if (const char *Sect = getContext().Target.getCFStringSection())
1408     GV->setSection(Sect);
1409   Entry.setValue(GV);
1410 
1411   return GV;
1412 }
1413 
1414 /// GetStringForStringLiteral - Return the appropriate bytes for a
1415 /// string literal, properly padded to match the literal type.
1416 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1417   const char *StrData = E->getStrData();
1418   unsigned Len = E->getByteLength();
1419 
1420   const ConstantArrayType *CAT =
1421     getContext().getAsConstantArrayType(E->getType());
1422   assert(CAT && "String isn't pointer or array!");
1423 
1424   // Resize the string to the right size.
1425   std::string Str(StrData, StrData+Len);
1426   uint64_t RealLen = CAT->getSize().getZExtValue();
1427 
1428   if (E->isWide())
1429     RealLen *= getContext().Target.getWCharWidth()/8;
1430 
1431   Str.resize(RealLen, '\0');
1432 
1433   return Str;
1434 }
1435 
1436 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1437 /// constant array for the given string literal.
1438 llvm::Constant *
1439 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1440   // FIXME: This can be more efficient.
1441   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1442   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1443   if (S->isWide()) {
1444     llvm::Type *DestTy =
1445         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1446     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1447   }
1448   return C;
1449 }
1450 
1451 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1452 /// array for the given ObjCEncodeExpr node.
1453 llvm::Constant *
1454 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1455   std::string Str;
1456   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1457 
1458   return GetAddrOfConstantCString(Str);
1459 }
1460 
1461 
1462 /// GenerateWritableString -- Creates storage for a string literal.
1463 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1464                                              bool constant,
1465                                              CodeGenModule &CGM,
1466                                              const char *GlobalName) {
1467   // Create Constant for this string literal. Don't add a '\0'.
1468   llvm::Constant *C =
1469       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1470 
1471   // Create a global variable for this string
1472   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1473                                   llvm::GlobalValue::PrivateLinkage,
1474                                   C, GlobalName);
1475 }
1476 
1477 /// GetAddrOfConstantString - Returns a pointer to a character array
1478 /// containing the literal. This contents are exactly that of the
1479 /// given string, i.e. it will not be null terminated automatically;
1480 /// see GetAddrOfConstantCString. Note that whether the result is
1481 /// actually a pointer to an LLVM constant depends on
1482 /// Feature.WriteableStrings.
1483 ///
1484 /// The result has pointer to array type.
1485 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1486                                                        const char *GlobalName) {
1487   bool IsConstant = !Features.WritableStrings;
1488 
1489   // Get the default prefix if a name wasn't specified.
1490   if (!GlobalName)
1491     GlobalName = ".str";
1492 
1493   // Don't share any string literals if strings aren't constant.
1494   if (!IsConstant)
1495     return GenerateStringLiteral(str, false, *this, GlobalName);
1496 
1497   llvm::StringMapEntry<llvm::Constant *> &Entry =
1498     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1499 
1500   if (Entry.getValue())
1501     return Entry.getValue();
1502 
1503   // Create a global variable for this.
1504   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1505   Entry.setValue(C);
1506   return C;
1507 }
1508 
1509 /// GetAddrOfConstantCString - Returns a pointer to a character
1510 /// array containing the literal and a terminating '\-'
1511 /// character. The result has pointer to array type.
1512 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1513                                                         const char *GlobalName){
1514   return GetAddrOfConstantString(str + '\0', GlobalName);
1515 }
1516 
1517 /// EmitObjCPropertyImplementations - Emit information for synthesized
1518 /// properties for an implementation.
1519 void CodeGenModule::EmitObjCPropertyImplementations(const
1520                                                     ObjCImplementationDecl *D) {
1521   for (ObjCImplementationDecl::propimpl_iterator
1522          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1523     ObjCPropertyImplDecl *PID = *i;
1524 
1525     // Dynamic is just for type-checking.
1526     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1527       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1528 
1529       // Determine which methods need to be implemented, some may have
1530       // been overridden. Note that ::isSynthesized is not the method
1531       // we want, that just indicates if the decl came from a
1532       // property. What we want to know is if the method is defined in
1533       // this implementation.
1534       if (!D->getInstanceMethod(PD->getGetterName()))
1535         CodeGenFunction(*this).GenerateObjCGetter(
1536                                  const_cast<ObjCImplementationDecl *>(D), PID);
1537       if (!PD->isReadOnly() &&
1538           !D->getInstanceMethod(PD->getSetterName()))
1539         CodeGenFunction(*this).GenerateObjCSetter(
1540                                  const_cast<ObjCImplementationDecl *>(D), PID);
1541     }
1542   }
1543 }
1544 
1545 /// EmitNamespace - Emit all declarations in a namespace.
1546 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1547   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1548        I != E; ++I)
1549     EmitTopLevelDecl(*I);
1550 }
1551 
1552 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1553 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1554   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1555       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1556     ErrorUnsupported(LSD, "linkage spec");
1557     return;
1558   }
1559 
1560   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1561        I != E; ++I)
1562     EmitTopLevelDecl(*I);
1563 }
1564 
1565 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1566 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1567   // If an error has occurred, stop code generation, but continue
1568   // parsing and semantic analysis (to ensure all warnings and errors
1569   // are emitted).
1570   if (Diags.hasErrorOccurred())
1571     return;
1572 
1573   // Ignore dependent declarations.
1574   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1575     return;
1576 
1577   switch (D->getKind()) {
1578   case Decl::CXXConversion:
1579   case Decl::CXXMethod:
1580   case Decl::Function:
1581     // Skip function templates
1582     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1583       return;
1584 
1585     EmitGlobal(cast<FunctionDecl>(D));
1586     break;
1587 
1588   case Decl::Var:
1589     EmitGlobal(cast<VarDecl>(D));
1590     break;
1591 
1592   // C++ Decls
1593   case Decl::Namespace:
1594     EmitNamespace(cast<NamespaceDecl>(D));
1595     break;
1596     // No code generation needed.
1597   case Decl::UsingShadow:
1598   case Decl::Using:
1599   case Decl::UsingDirective:
1600   case Decl::ClassTemplate:
1601   case Decl::FunctionTemplate:
1602   case Decl::NamespaceAlias:
1603     break;
1604   case Decl::CXXConstructor:
1605     // Skip function templates
1606     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1607       return;
1608 
1609     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1610     break;
1611   case Decl::CXXDestructor:
1612     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1613     break;
1614 
1615   case Decl::StaticAssert:
1616     // Nothing to do.
1617     break;
1618 
1619   // Objective-C Decls
1620 
1621   // Forward declarations, no (immediate) code generation.
1622   case Decl::ObjCClass:
1623   case Decl::ObjCForwardProtocol:
1624   case Decl::ObjCCategory:
1625   case Decl::ObjCInterface:
1626     break;
1627 
1628   case Decl::ObjCProtocol:
1629     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1630     break;
1631 
1632   case Decl::ObjCCategoryImpl:
1633     // Categories have properties but don't support synthesize so we
1634     // can ignore them here.
1635     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1636     break;
1637 
1638   case Decl::ObjCImplementation: {
1639     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1640     EmitObjCPropertyImplementations(OMD);
1641     Runtime->GenerateClass(OMD);
1642     break;
1643   }
1644   case Decl::ObjCMethod: {
1645     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1646     // If this is not a prototype, emit the body.
1647     if (OMD->getBody())
1648       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1649     break;
1650   }
1651   case Decl::ObjCCompatibleAlias:
1652     // compatibility-alias is a directive and has no code gen.
1653     break;
1654 
1655   case Decl::LinkageSpec:
1656     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1657     break;
1658 
1659   case Decl::FileScopeAsm: {
1660     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1661     std::string AsmString(AD->getAsmString()->getStrData(),
1662                           AD->getAsmString()->getByteLength());
1663 
1664     const std::string &S = getModule().getModuleInlineAsm();
1665     if (S.empty())
1666       getModule().setModuleInlineAsm(AsmString);
1667     else
1668       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1669     break;
1670   }
1671 
1672   default:
1673     // Make sure we handled everything we should, every other kind is a
1674     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1675     // function. Need to recode Decl::Kind to do that easily.
1676     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1677   }
1678 }
1679