1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/CodeGen/CodeGenOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/Basic/Builtins.h" 26 #include "clang/Basic/Diagnostic.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Basic/ConvertUTF.h" 30 #include "llvm/CallingConv.h" 31 #include "llvm/Module.h" 32 #include "llvm/Intrinsics.h" 33 #include "llvm/Target/TargetData.h" 34 #include "llvm/Support/ErrorHandling.h" 35 using namespace clang; 36 using namespace CodeGen; 37 38 39 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 40 llvm::Module &M, const llvm::TargetData &TD, 41 Diagnostic &diags) 42 : BlockModule(C, M, TD, Types, *this), Context(C), 43 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 44 TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C), 45 VtableInfo(*this), Runtime(0), 46 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 47 VMContext(M.getContext()) { 48 49 if (!Features.ObjC1) 50 Runtime = 0; 51 else if (!Features.NeXTRuntime) 52 Runtime = CreateGNUObjCRuntime(*this); 53 else if (Features.ObjCNonFragileABI) 54 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 55 else 56 Runtime = CreateMacObjCRuntime(*this); 57 58 // If debug info generation is enabled, create the CGDebugInfo object. 59 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(this) : 0; 60 } 61 62 CodeGenModule::~CodeGenModule() { 63 delete Runtime; 64 delete DebugInfo; 65 } 66 67 void CodeGenModule::Release() { 68 // We need to call this first because it can add deferred declarations. 69 EmitCXXGlobalInitFunc(); 70 71 EmitDeferred(); 72 if (Runtime) 73 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 74 AddGlobalCtor(ObjCInitFunction); 75 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 76 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 77 EmitAnnotations(); 78 EmitLLVMUsed(); 79 } 80 81 /// ErrorUnsupported - Print out an error that codegen doesn't support the 82 /// specified stmt yet. 83 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 84 bool OmitOnError) { 85 if (OmitOnError && getDiags().hasErrorOccurred()) 86 return; 87 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 88 "cannot compile this %0 yet"); 89 std::string Msg = Type; 90 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 91 << Msg << S->getSourceRange(); 92 } 93 94 /// ErrorUnsupported - Print out an error that codegen doesn't support the 95 /// specified decl yet. 96 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 97 bool OmitOnError) { 98 if (OmitOnError && getDiags().hasErrorOccurred()) 99 return; 100 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 101 "cannot compile this %0 yet"); 102 std::string Msg = Type; 103 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 104 } 105 106 LangOptions::VisibilityMode 107 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 108 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 109 if (VD->getStorageClass() == VarDecl::PrivateExtern) 110 return LangOptions::Hidden; 111 112 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 113 switch (attr->getVisibility()) { 114 default: assert(0 && "Unknown visibility!"); 115 case VisibilityAttr::DefaultVisibility: 116 return LangOptions::Default; 117 case VisibilityAttr::HiddenVisibility: 118 return LangOptions::Hidden; 119 case VisibilityAttr::ProtectedVisibility: 120 return LangOptions::Protected; 121 } 122 } 123 124 return getLangOptions().getVisibilityMode(); 125 } 126 127 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 128 const Decl *D) const { 129 // Internal definitions always have default visibility. 130 if (GV->hasLocalLinkage()) { 131 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 132 return; 133 } 134 135 switch (getDeclVisibilityMode(D)) { 136 default: assert(0 && "Unknown visibility!"); 137 case LangOptions::Default: 138 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 139 case LangOptions::Hidden: 140 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 141 case LangOptions::Protected: 142 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 143 } 144 } 145 146 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 147 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 148 149 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 150 return getMangledCXXCtorName(D, GD.getCtorType()); 151 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 152 return getMangledCXXDtorName(D, GD.getDtorType()); 153 154 return getMangledName(ND); 155 } 156 157 /// \brief Retrieves the mangled name for the given declaration. 158 /// 159 /// If the given declaration requires a mangled name, returns an 160 /// const char* containing the mangled name. Otherwise, returns 161 /// the unmangled name. 162 /// 163 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 164 if (!getMangleContext().shouldMangleDeclName(ND)) { 165 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 166 return ND->getNameAsCString(); 167 } 168 169 llvm::SmallString<256> Name; 170 getMangleContext().mangleName(ND, Name); 171 Name += '\0'; 172 return UniqueMangledName(Name.begin(), Name.end()); 173 } 174 175 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 176 const char *NameEnd) { 177 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 178 179 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 180 } 181 182 /// AddGlobalCtor - Add a function to the list that will be called before 183 /// main() runs. 184 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 185 // FIXME: Type coercion of void()* types. 186 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 187 } 188 189 /// AddGlobalDtor - Add a function to the list that will be called 190 /// when the module is unloaded. 191 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 192 // FIXME: Type coercion of void()* types. 193 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 194 } 195 196 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 197 // Ctor function type is void()*. 198 llvm::FunctionType* CtorFTy = 199 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 200 std::vector<const llvm::Type*>(), 201 false); 202 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 203 204 // Get the type of a ctor entry, { i32, void ()* }. 205 llvm::StructType* CtorStructTy = 206 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 207 llvm::PointerType::getUnqual(CtorFTy), NULL); 208 209 // Construct the constructor and destructor arrays. 210 std::vector<llvm::Constant*> Ctors; 211 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 212 std::vector<llvm::Constant*> S; 213 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 214 I->second, false)); 215 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 216 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 217 } 218 219 if (!Ctors.empty()) { 220 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 221 new llvm::GlobalVariable(TheModule, AT, false, 222 llvm::GlobalValue::AppendingLinkage, 223 llvm::ConstantArray::get(AT, Ctors), 224 GlobalName); 225 } 226 } 227 228 void CodeGenModule::EmitAnnotations() { 229 if (Annotations.empty()) 230 return; 231 232 // Create a new global variable for the ConstantStruct in the Module. 233 llvm::Constant *Array = 234 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 235 Annotations.size()), 236 Annotations); 237 llvm::GlobalValue *gv = 238 new llvm::GlobalVariable(TheModule, Array->getType(), false, 239 llvm::GlobalValue::AppendingLinkage, Array, 240 "llvm.global.annotations"); 241 gv->setSection("llvm.metadata"); 242 } 243 244 static CodeGenModule::GVALinkage 245 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 246 const LangOptions &Features) { 247 // Everything located semantically within an anonymous namespace is 248 // always internal. 249 if (FD->isInAnonymousNamespace()) 250 return CodeGenModule::GVA_Internal; 251 252 // "static" functions get internal linkage. 253 if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD)) 254 return CodeGenModule::GVA_Internal; 255 256 // The kind of external linkage this function will have, if it is not 257 // inline or static. 258 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 259 if (Context.getLangOptions().CPlusPlus && 260 FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 261 External = CodeGenModule::GVA_TemplateInstantiation; 262 263 if (!FD->isInlined()) 264 return External; 265 266 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 267 // GNU or C99 inline semantics. Determine whether this symbol should be 268 // externally visible. 269 if (FD->isInlineDefinitionExternallyVisible()) 270 return External; 271 272 // C99 inline semantics, where the symbol is not externally visible. 273 return CodeGenModule::GVA_C99Inline; 274 } 275 276 // C++0x [temp.explicit]p9: 277 // [ Note: The intent is that an inline function that is the subject of 278 // an explicit instantiation declaration will still be implicitly 279 // instantiated when used so that the body can be considered for 280 // inlining, but that no out-of-line copy of the inline function would be 281 // generated in the translation unit. -- end note ] 282 if (FD->getTemplateSpecializationKind() 283 == TSK_ExplicitInstantiationDeclaration) 284 return CodeGenModule::GVA_C99Inline; 285 286 return CodeGenModule::GVA_CXXInline; 287 } 288 289 /// SetFunctionDefinitionAttributes - Set attributes for a global. 290 /// 291 /// FIXME: This is currently only done for aliases and functions, but not for 292 /// variables (these details are set in EmitGlobalVarDefinition for variables). 293 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 294 llvm::GlobalValue *GV) { 295 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 296 297 if (Linkage == GVA_Internal) { 298 GV->setLinkage(llvm::Function::InternalLinkage); 299 } else if (D->hasAttr<DLLExportAttr>()) { 300 GV->setLinkage(llvm::Function::DLLExportLinkage); 301 } else if (D->hasAttr<WeakAttr>()) { 302 GV->setLinkage(llvm::Function::WeakAnyLinkage); 303 } else if (Linkage == GVA_C99Inline) { 304 // In C99 mode, 'inline' functions are guaranteed to have a strong 305 // definition somewhere else, so we can use available_externally linkage. 306 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 307 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 308 // In C++, the compiler has to emit a definition in every translation unit 309 // that references the function. We should use linkonce_odr because 310 // a) if all references in this translation unit are optimized away, we 311 // don't need to codegen it. b) if the function persists, it needs to be 312 // merged with other definitions. c) C++ has the ODR, so we know the 313 // definition is dependable. 314 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 315 } else { 316 assert(Linkage == GVA_StrongExternal); 317 // Otherwise, we have strong external linkage. 318 GV->setLinkage(llvm::Function::ExternalLinkage); 319 } 320 321 SetCommonAttributes(D, GV); 322 } 323 324 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 325 const CGFunctionInfo &Info, 326 llvm::Function *F) { 327 unsigned CallingConv; 328 AttributeListType AttributeList; 329 ConstructAttributeList(Info, D, AttributeList, CallingConv); 330 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 331 AttributeList.size())); 332 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 333 } 334 335 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 336 llvm::Function *F) { 337 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 338 F->addFnAttr(llvm::Attribute::NoUnwind); 339 340 if (D->hasAttr<AlwaysInlineAttr>()) 341 F->addFnAttr(llvm::Attribute::AlwaysInline); 342 343 if (D->hasAttr<NoInlineAttr>()) 344 F->addFnAttr(llvm::Attribute::NoInline); 345 346 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 347 F->addFnAttr(llvm::Attribute::StackProtect); 348 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 349 F->addFnAttr(llvm::Attribute::StackProtectReq); 350 351 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 352 unsigned width = Context.Target.getCharWidth(); 353 F->setAlignment(AA->getAlignment() / width); 354 while ((AA = AA->getNext<AlignedAttr>())) 355 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 356 } 357 // C++ ABI requires 2-byte alignment for member functions. 358 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 359 F->setAlignment(2); 360 } 361 362 void CodeGenModule::SetCommonAttributes(const Decl *D, 363 llvm::GlobalValue *GV) { 364 setGlobalVisibility(GV, D); 365 366 if (D->hasAttr<UsedAttr>()) 367 AddUsedGlobal(GV); 368 369 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 370 GV->setSection(SA->getName()); 371 } 372 373 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 374 llvm::Function *F, 375 const CGFunctionInfo &FI) { 376 SetLLVMFunctionAttributes(D, FI, F); 377 SetLLVMFunctionAttributesForDefinition(D, F); 378 379 F->setLinkage(llvm::Function::InternalLinkage); 380 381 SetCommonAttributes(D, F); 382 } 383 384 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 385 llvm::Function *F, 386 bool IsIncompleteFunction) { 387 if (!IsIncompleteFunction) 388 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 389 390 // Only a few attributes are set on declarations; these may later be 391 // overridden by a definition. 392 393 if (FD->hasAttr<DLLImportAttr>()) { 394 F->setLinkage(llvm::Function::DLLImportLinkage); 395 } else if (FD->hasAttr<WeakAttr>() || 396 FD->hasAttr<WeakImportAttr>()) { 397 // "extern_weak" is overloaded in LLVM; we probably should have 398 // separate linkage types for this. 399 F->setLinkage(llvm::Function::ExternalWeakLinkage); 400 } else { 401 F->setLinkage(llvm::Function::ExternalLinkage); 402 } 403 404 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 405 F->setSection(SA->getName()); 406 } 407 408 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 409 assert(!GV->isDeclaration() && 410 "Only globals with definition can force usage."); 411 LLVMUsed.push_back(GV); 412 } 413 414 void CodeGenModule::EmitLLVMUsed() { 415 // Don't create llvm.used if there is no need. 416 if (LLVMUsed.empty()) 417 return; 418 419 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 420 421 // Convert LLVMUsed to what ConstantArray needs. 422 std::vector<llvm::Constant*> UsedArray; 423 UsedArray.resize(LLVMUsed.size()); 424 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 425 UsedArray[i] = 426 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 427 i8PTy); 428 } 429 430 if (UsedArray.empty()) 431 return; 432 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 433 434 llvm::GlobalVariable *GV = 435 new llvm::GlobalVariable(getModule(), ATy, false, 436 llvm::GlobalValue::AppendingLinkage, 437 llvm::ConstantArray::get(ATy, UsedArray), 438 "llvm.used"); 439 440 GV->setSection("llvm.metadata"); 441 } 442 443 void CodeGenModule::EmitDeferred() { 444 // Emit code for any potentially referenced deferred decls. Since a 445 // previously unused static decl may become used during the generation of code 446 // for a static function, iterate until no changes are made. 447 while (!DeferredDeclsToEmit.empty()) { 448 GlobalDecl D = DeferredDeclsToEmit.back(); 449 DeferredDeclsToEmit.pop_back(); 450 451 // The mangled name for the decl must have been emitted in GlobalDeclMap. 452 // Look it up to see if it was defined with a stronger definition (e.g. an 453 // extern inline function with a strong function redefinition). If so, 454 // just ignore the deferred decl. 455 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 456 assert(CGRef && "Deferred decl wasn't referenced?"); 457 458 if (!CGRef->isDeclaration()) 459 continue; 460 461 // Otherwise, emit the definition and move on to the next one. 462 EmitGlobalDefinition(D); 463 } 464 } 465 466 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 467 /// annotation information for a given GlobalValue. The annotation struct is 468 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 469 /// GlobalValue being annotated. The second field is the constant string 470 /// created from the AnnotateAttr's annotation. The third field is a constant 471 /// string containing the name of the translation unit. The fourth field is 472 /// the line number in the file of the annotated value declaration. 473 /// 474 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 475 /// appears to. 476 /// 477 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 478 const AnnotateAttr *AA, 479 unsigned LineNo) { 480 llvm::Module *M = &getModule(); 481 482 // get [N x i8] constants for the annotation string, and the filename string 483 // which are the 2nd and 3rd elements of the global annotation structure. 484 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 485 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 486 AA->getAnnotation(), true); 487 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 488 M->getModuleIdentifier(), 489 true); 490 491 // Get the two global values corresponding to the ConstantArrays we just 492 // created to hold the bytes of the strings. 493 llvm::GlobalValue *annoGV = 494 new llvm::GlobalVariable(*M, anno->getType(), false, 495 llvm::GlobalValue::PrivateLinkage, anno, 496 GV->getName()); 497 // translation unit name string, emitted into the llvm.metadata section. 498 llvm::GlobalValue *unitGV = 499 new llvm::GlobalVariable(*M, unit->getType(), false, 500 llvm::GlobalValue::PrivateLinkage, unit, 501 ".str"); 502 503 // Create the ConstantStruct for the global annotation. 504 llvm::Constant *Fields[4] = { 505 llvm::ConstantExpr::getBitCast(GV, SBP), 506 llvm::ConstantExpr::getBitCast(annoGV, SBP), 507 llvm::ConstantExpr::getBitCast(unitGV, SBP), 508 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 509 }; 510 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 511 } 512 513 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 514 // Never defer when EmitAllDecls is specified or the decl has 515 // attribute used. 516 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 517 return false; 518 519 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 520 // Constructors and destructors should never be deferred. 521 if (FD->hasAttr<ConstructorAttr>() || 522 FD->hasAttr<DestructorAttr>()) 523 return false; 524 525 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 526 527 // static, static inline, always_inline, and extern inline functions can 528 // always be deferred. Normal inline functions can be deferred in C99/C++. 529 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 530 Linkage == GVA_CXXInline) 531 return true; 532 return false; 533 } 534 535 const VarDecl *VD = cast<VarDecl>(Global); 536 assert(VD->isFileVarDecl() && "Invalid decl"); 537 538 // We never want to defer structs that have non-trivial constructors or 539 // destructors. 540 541 // FIXME: Handle references. 542 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 543 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 544 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 545 return false; 546 } 547 } 548 549 // Static data may be deferred, but out-of-line static data members 550 // cannot be. 551 if (VD->isInAnonymousNamespace()) 552 return true; 553 if (VD->getLinkage() == VarDecl::InternalLinkage) { 554 // Initializer has side effects? 555 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 556 return false; 557 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 558 } 559 return false; 560 } 561 562 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 563 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 564 565 // If this is an alias definition (which otherwise looks like a declaration) 566 // emit it now. 567 if (Global->hasAttr<AliasAttr>()) 568 return EmitAliasDefinition(Global); 569 570 // Ignore declarations, they will be emitted on their first use. 571 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 572 // Forward declarations are emitted lazily on first use. 573 if (!FD->isThisDeclarationADefinition()) 574 return; 575 } else { 576 const VarDecl *VD = cast<VarDecl>(Global); 577 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 578 579 // In C++, if this is marked "extern", defer code generation. 580 if (getLangOptions().CPlusPlus && !VD->getInit() && 581 (VD->getStorageClass() == VarDecl::Extern || 582 VD->isExternC())) 583 return; 584 585 // In C, if this isn't a definition, defer code generation. 586 if (!getLangOptions().CPlusPlus && !VD->getInit()) 587 return; 588 } 589 590 // Defer code generation when possible if this is a static definition, inline 591 // function etc. These we only want to emit if they are used. 592 if (MayDeferGeneration(Global)) { 593 // If the value has already been used, add it directly to the 594 // DeferredDeclsToEmit list. 595 const char *MangledName = getMangledName(GD); 596 if (GlobalDeclMap.count(MangledName)) 597 DeferredDeclsToEmit.push_back(GD); 598 else { 599 // Otherwise, remember that we saw a deferred decl with this name. The 600 // first use of the mangled name will cause it to move into 601 // DeferredDeclsToEmit. 602 DeferredDecls[MangledName] = GD; 603 } 604 return; 605 } 606 607 // Otherwise emit the definition. 608 EmitGlobalDefinition(GD); 609 } 610 611 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 612 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 613 614 PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(), 615 Context.getSourceManager(), 616 "Generating code for declaration"); 617 618 if (isa<CXXMethodDecl>(D)) 619 getVtableInfo().MaybeEmitVtable(GD); 620 621 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 622 EmitCXXConstructor(CD, GD.getCtorType()); 623 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 624 EmitCXXDestructor(DD, GD.getDtorType()); 625 else if (isa<FunctionDecl>(D)) 626 EmitGlobalFunctionDefinition(GD); 627 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 628 EmitGlobalVarDefinition(VD); 629 else { 630 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 631 } 632 } 633 634 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 635 /// module, create and return an llvm Function with the specified type. If there 636 /// is something in the module with the specified name, return it potentially 637 /// bitcasted to the right type. 638 /// 639 /// If D is non-null, it specifies a decl that correspond to this. This is used 640 /// to set the attributes on the function when it is first created. 641 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 642 const llvm::Type *Ty, 643 GlobalDecl D) { 644 // Lookup the entry, lazily creating it if necessary. 645 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 646 if (Entry) { 647 if (Entry->getType()->getElementType() == Ty) 648 return Entry; 649 650 // Make sure the result is of the correct type. 651 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 652 return llvm::ConstantExpr::getBitCast(Entry, PTy); 653 } 654 655 // This function doesn't have a complete type (for example, the return 656 // type is an incomplete struct). Use a fake type instead, and make 657 // sure not to try to set attributes. 658 bool IsIncompleteFunction = false; 659 if (!isa<llvm::FunctionType>(Ty)) { 660 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 661 std::vector<const llvm::Type*>(), false); 662 IsIncompleteFunction = true; 663 } 664 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 665 llvm::Function::ExternalLinkage, 666 "", &getModule()); 667 F->setName(MangledName); 668 if (D.getDecl()) 669 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 670 IsIncompleteFunction); 671 Entry = F; 672 673 // This is the first use or definition of a mangled name. If there is a 674 // deferred decl with this name, remember that we need to emit it at the end 675 // of the file. 676 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 677 DeferredDecls.find(MangledName); 678 if (DDI != DeferredDecls.end()) { 679 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 680 // list, and remove it from DeferredDecls (since we don't need it anymore). 681 DeferredDeclsToEmit.push_back(DDI->second); 682 DeferredDecls.erase(DDI); 683 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 684 // If this the first reference to a C++ inline function in a class, queue up 685 // the deferred function body for emission. These are not seen as 686 // top-level declarations. 687 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 688 DeferredDeclsToEmit.push_back(D); 689 // A called constructor which has no definition or declaration need be 690 // synthesized. 691 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 692 if (CD->isImplicit()) 693 DeferredDeclsToEmit.push_back(D); 694 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 695 if (DD->isImplicit()) 696 DeferredDeclsToEmit.push_back(D); 697 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 698 if (MD->isCopyAssignment() && MD->isImplicit()) 699 DeferredDeclsToEmit.push_back(D); 700 } 701 } 702 703 return F; 704 } 705 706 /// GetAddrOfFunction - Return the address of the given function. If Ty is 707 /// non-null, then this function will use the specified type if it has to 708 /// create it (this occurs when we see a definition of the function). 709 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 710 const llvm::Type *Ty) { 711 // If there was no specific requested type, just convert it now. 712 if (!Ty) 713 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 714 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 715 } 716 717 /// CreateRuntimeFunction - Create a new runtime function with the specified 718 /// type and name. 719 llvm::Constant * 720 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 721 const char *Name) { 722 // Convert Name to be a uniqued string from the IdentifierInfo table. 723 Name = getContext().Idents.get(Name).getNameStart(); 724 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 725 } 726 727 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 728 /// create and return an llvm GlobalVariable with the specified type. If there 729 /// is something in the module with the specified name, return it potentially 730 /// bitcasted to the right type. 731 /// 732 /// If D is non-null, it specifies a decl that correspond to this. This is used 733 /// to set the attributes on the global when it is first created. 734 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 735 const llvm::PointerType*Ty, 736 const VarDecl *D) { 737 // Lookup the entry, lazily creating it if necessary. 738 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 739 if (Entry) { 740 if (Entry->getType() == Ty) 741 return Entry; 742 743 // Make sure the result is of the correct type. 744 return llvm::ConstantExpr::getBitCast(Entry, Ty); 745 } 746 747 // This is the first use or definition of a mangled name. If there is a 748 // deferred decl with this name, remember that we need to emit it at the end 749 // of the file. 750 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 751 DeferredDecls.find(MangledName); 752 if (DDI != DeferredDecls.end()) { 753 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 754 // list, and remove it from DeferredDecls (since we don't need it anymore). 755 DeferredDeclsToEmit.push_back(DDI->second); 756 DeferredDecls.erase(DDI); 757 } 758 759 llvm::GlobalVariable *GV = 760 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 761 llvm::GlobalValue::ExternalLinkage, 762 0, "", 0, 763 false, Ty->getAddressSpace()); 764 GV->setName(MangledName); 765 766 // Handle things which are present even on external declarations. 767 if (D) { 768 // FIXME: This code is overly simple and should be merged with other global 769 // handling. 770 GV->setConstant(D->getType().isConstant(Context)); 771 772 // FIXME: Merge with other attribute handling code. 773 if (D->getStorageClass() == VarDecl::PrivateExtern) 774 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 775 776 if (D->hasAttr<WeakAttr>() || 777 D->hasAttr<WeakImportAttr>()) 778 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 779 780 GV->setThreadLocal(D->isThreadSpecified()); 781 } 782 783 return Entry = GV; 784 } 785 786 787 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 788 /// given global variable. If Ty is non-null and if the global doesn't exist, 789 /// then it will be greated with the specified type instead of whatever the 790 /// normal requested type would be. 791 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 792 const llvm::Type *Ty) { 793 assert(D->hasGlobalStorage() && "Not a global variable"); 794 QualType ASTTy = D->getType(); 795 if (Ty == 0) 796 Ty = getTypes().ConvertTypeForMem(ASTTy); 797 798 const llvm::PointerType *PTy = 799 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 800 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 801 } 802 803 /// CreateRuntimeVariable - Create a new runtime global variable with the 804 /// specified type and name. 805 llvm::Constant * 806 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 807 const char *Name) { 808 // Convert Name to be a uniqued string from the IdentifierInfo table. 809 Name = getContext().Idents.get(Name).getNameStart(); 810 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 811 } 812 813 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 814 assert(!D->getInit() && "Cannot emit definite definitions here!"); 815 816 if (MayDeferGeneration(D)) { 817 // If we have not seen a reference to this variable yet, place it 818 // into the deferred declarations table to be emitted if needed 819 // later. 820 const char *MangledName = getMangledName(D); 821 if (GlobalDeclMap.count(MangledName) == 0) { 822 DeferredDecls[MangledName] = D; 823 return; 824 } 825 } 826 827 // The tentative definition is the only definition. 828 EmitGlobalVarDefinition(D); 829 } 830 831 static CodeGenModule::GVALinkage 832 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 833 // Everything located semantically within an anonymous namespace is 834 // always internal. 835 if (VD->isInAnonymousNamespace()) 836 return CodeGenModule::GVA_Internal; 837 838 // Handle linkage for static data members. 839 if (VD->isStaticDataMember()) { 840 switch (VD->getTemplateSpecializationKind()) { 841 case TSK_Undeclared: 842 case TSK_ExplicitSpecialization: 843 case TSK_ExplicitInstantiationDefinition: 844 return CodeGenModule::GVA_StrongExternal; 845 846 case TSK_ExplicitInstantiationDeclaration: 847 llvm::llvm_unreachable("Variable should not be instantiated"); 848 // Fall through to treat this like any other instantiation. 849 850 case TSK_ImplicitInstantiation: 851 return CodeGenModule::GVA_TemplateInstantiation; 852 } 853 } 854 855 if (VD->getLinkage() == VarDecl::InternalLinkage) 856 return CodeGenModule::GVA_Internal; 857 858 return CodeGenModule::GVA_StrongExternal; 859 } 860 861 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 862 llvm::Constant *Init = 0; 863 QualType ASTTy = D->getType(); 864 865 if (D->getInit() == 0) { 866 // This is a tentative definition; tentative definitions are 867 // implicitly initialized with { 0 }. 868 // 869 // Note that tentative definitions are only emitted at the end of 870 // a translation unit, so they should never have incomplete 871 // type. In addition, EmitTentativeDefinition makes sure that we 872 // never attempt to emit a tentative definition if a real one 873 // exists. A use may still exists, however, so we still may need 874 // to do a RAUW. 875 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 876 Init = EmitNullConstant(D->getType()); 877 } else { 878 Init = EmitConstantExpr(D->getInit(), D->getType()); 879 880 if (!Init) { 881 QualType T = D->getInit()->getType(); 882 if (getLangOptions().CPlusPlus) { 883 CXXGlobalInits.push_back(D); 884 Init = EmitNullConstant(T); 885 } else { 886 ErrorUnsupported(D, "static initializer"); 887 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 888 } 889 } 890 } 891 892 const llvm::Type* InitType = Init->getType(); 893 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 894 895 // Strip off a bitcast if we got one back. 896 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 897 assert(CE->getOpcode() == llvm::Instruction::BitCast || 898 // all zero index gep. 899 CE->getOpcode() == llvm::Instruction::GetElementPtr); 900 Entry = CE->getOperand(0); 901 } 902 903 // Entry is now either a Function or GlobalVariable. 904 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 905 906 // We have a definition after a declaration with the wrong type. 907 // We must make a new GlobalVariable* and update everything that used OldGV 908 // (a declaration or tentative definition) with the new GlobalVariable* 909 // (which will be a definition). 910 // 911 // This happens if there is a prototype for a global (e.g. 912 // "extern int x[];") and then a definition of a different type (e.g. 913 // "int x[10];"). This also happens when an initializer has a different type 914 // from the type of the global (this happens with unions). 915 if (GV == 0 || 916 GV->getType()->getElementType() != InitType || 917 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 918 919 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 920 GlobalDeclMap.erase(getMangledName(D)); 921 922 // Make a new global with the correct type, this is now guaranteed to work. 923 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 924 GV->takeName(cast<llvm::GlobalValue>(Entry)); 925 926 // Replace all uses of the old global with the new global 927 llvm::Constant *NewPtrForOldDecl = 928 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 929 Entry->replaceAllUsesWith(NewPtrForOldDecl); 930 931 // Erase the old global, since it is no longer used. 932 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 933 } 934 935 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 936 SourceManager &SM = Context.getSourceManager(); 937 AddAnnotation(EmitAnnotateAttr(GV, AA, 938 SM.getInstantiationLineNumber(D->getLocation()))); 939 } 940 941 GV->setInitializer(Init); 942 943 // If it is safe to mark the global 'constant', do so now. 944 GV->setConstant(false); 945 if (D->getType().isConstant(Context)) { 946 // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable 947 // members, it cannot be declared "LLVM const". 948 GV->setConstant(true); 949 } 950 951 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 952 953 // Set the llvm linkage type as appropriate. 954 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 955 if (Linkage == GVA_Internal) 956 GV->setLinkage(llvm::Function::InternalLinkage); 957 else if (D->hasAttr<DLLImportAttr>()) 958 GV->setLinkage(llvm::Function::DLLImportLinkage); 959 else if (D->hasAttr<DLLExportAttr>()) 960 GV->setLinkage(llvm::Function::DLLExportLinkage); 961 else if (D->hasAttr<WeakAttr>()) { 962 if (GV->isConstant()) 963 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 964 else 965 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 966 } else if (Linkage == GVA_TemplateInstantiation) 967 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 968 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 969 !D->hasExternalStorage() && !D->getInit() && 970 !D->getAttr<SectionAttr>()) { 971 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 972 // common vars aren't constant even if declared const. 973 GV->setConstant(false); 974 } else 975 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 976 977 SetCommonAttributes(D, GV); 978 979 // Emit global variable debug information. 980 if (CGDebugInfo *DI = getDebugInfo()) { 981 DI->setLocation(D->getLocation()); 982 DI->EmitGlobalVariable(GV, D); 983 } 984 } 985 986 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 987 /// implement a function with no prototype, e.g. "int foo() {}". If there are 988 /// existing call uses of the old function in the module, this adjusts them to 989 /// call the new function directly. 990 /// 991 /// This is not just a cleanup: the always_inline pass requires direct calls to 992 /// functions to be able to inline them. If there is a bitcast in the way, it 993 /// won't inline them. Instcombine normally deletes these calls, but it isn't 994 /// run at -O0. 995 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 996 llvm::Function *NewFn) { 997 // If we're redefining a global as a function, don't transform it. 998 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 999 if (OldFn == 0) return; 1000 1001 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1002 llvm::SmallVector<llvm::Value*, 4> ArgList; 1003 1004 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1005 UI != E; ) { 1006 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1007 unsigned OpNo = UI.getOperandNo(); 1008 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1009 if (!CI || OpNo != 0) continue; 1010 1011 // If the return types don't match exactly, and if the call isn't dead, then 1012 // we can't transform this call. 1013 if (CI->getType() != NewRetTy && !CI->use_empty()) 1014 continue; 1015 1016 // If the function was passed too few arguments, don't transform. If extra 1017 // arguments were passed, we silently drop them. If any of the types 1018 // mismatch, we don't transform. 1019 unsigned ArgNo = 0; 1020 bool DontTransform = false; 1021 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1022 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1023 if (CI->getNumOperands()-1 == ArgNo || 1024 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1025 DontTransform = true; 1026 break; 1027 } 1028 } 1029 if (DontTransform) 1030 continue; 1031 1032 // Okay, we can transform this. Create the new call instruction and copy 1033 // over the required information. 1034 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1035 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1036 ArgList.end(), "", CI); 1037 ArgList.clear(); 1038 if (!NewCall->getType()->isVoidTy()) 1039 NewCall->takeName(CI); 1040 NewCall->setAttributes(CI->getAttributes()); 1041 NewCall->setCallingConv(CI->getCallingConv()); 1042 1043 // Finally, remove the old call, replacing any uses with the new one. 1044 if (!CI->use_empty()) 1045 CI->replaceAllUsesWith(NewCall); 1046 1047 // Copy any custom metadata attached with CI. 1048 llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata(); 1049 TheMetadata.copyMD(CI, NewCall); 1050 1051 CI->eraseFromParent(); 1052 } 1053 } 1054 1055 1056 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1057 const llvm::FunctionType *Ty; 1058 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1059 1060 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1061 bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic(); 1062 1063 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1064 } else { 1065 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1066 1067 // As a special case, make sure that definitions of K&R function 1068 // "type foo()" aren't declared as varargs (which forces the backend 1069 // to do unnecessary work). 1070 if (D->getType()->isFunctionNoProtoType()) { 1071 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1072 // Due to stret, the lowered function could have arguments. 1073 // Just create the same type as was lowered by ConvertType 1074 // but strip off the varargs bit. 1075 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1076 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1077 } 1078 } 1079 1080 // Get or create the prototype for the function. 1081 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1082 1083 // Strip off a bitcast if we got one back. 1084 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1085 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1086 Entry = CE->getOperand(0); 1087 } 1088 1089 1090 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1091 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1092 1093 // If the types mismatch then we have to rewrite the definition. 1094 assert(OldFn->isDeclaration() && 1095 "Shouldn't replace non-declaration"); 1096 1097 // F is the Function* for the one with the wrong type, we must make a new 1098 // Function* and update everything that used F (a declaration) with the new 1099 // Function* (which will be a definition). 1100 // 1101 // This happens if there is a prototype for a function 1102 // (e.g. "int f()") and then a definition of a different type 1103 // (e.g. "int f(int x)"). Start by making a new function of the 1104 // correct type, RAUW, then steal the name. 1105 GlobalDeclMap.erase(getMangledName(D)); 1106 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1107 NewFn->takeName(OldFn); 1108 1109 // If this is an implementation of a function without a prototype, try to 1110 // replace any existing uses of the function (which may be calls) with uses 1111 // of the new function 1112 if (D->getType()->isFunctionNoProtoType()) { 1113 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1114 OldFn->removeDeadConstantUsers(); 1115 } 1116 1117 // Replace uses of F with the Function we will endow with a body. 1118 if (!Entry->use_empty()) { 1119 llvm::Constant *NewPtrForOldDecl = 1120 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1121 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1122 } 1123 1124 // Ok, delete the old function now, which is dead. 1125 OldFn->eraseFromParent(); 1126 1127 Entry = NewFn; 1128 } 1129 1130 llvm::Function *Fn = cast<llvm::Function>(Entry); 1131 1132 CodeGenFunction(*this).GenerateCode(D, Fn); 1133 1134 SetFunctionDefinitionAttributes(D, Fn); 1135 SetLLVMFunctionAttributesForDefinition(D, Fn); 1136 1137 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1138 AddGlobalCtor(Fn, CA->getPriority()); 1139 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1140 AddGlobalDtor(Fn, DA->getPriority()); 1141 } 1142 1143 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1144 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1145 assert(AA && "Not an alias?"); 1146 1147 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1148 1149 // Unique the name through the identifier table. 1150 const char *AliaseeName = AA->getAliasee().c_str(); 1151 AliaseeName = getContext().Idents.get(AliaseeName).getNameStart(); 1152 1153 // Create a reference to the named value. This ensures that it is emitted 1154 // if a deferred decl. 1155 llvm::Constant *Aliasee; 1156 if (isa<llvm::FunctionType>(DeclTy)) 1157 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1158 else 1159 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1160 llvm::PointerType::getUnqual(DeclTy), 0); 1161 1162 // Create the new alias itself, but don't set a name yet. 1163 llvm::GlobalValue *GA = 1164 new llvm::GlobalAlias(Aliasee->getType(), 1165 llvm::Function::ExternalLinkage, 1166 "", Aliasee, &getModule()); 1167 1168 // See if there is already something with the alias' name in the module. 1169 const char *MangledName = getMangledName(D); 1170 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1171 1172 if (Entry && !Entry->isDeclaration()) { 1173 // If there is a definition in the module, then it wins over the alias. 1174 // This is dubious, but allow it to be safe. Just ignore the alias. 1175 GA->eraseFromParent(); 1176 return; 1177 } 1178 1179 if (Entry) { 1180 // If there is a declaration in the module, then we had an extern followed 1181 // by the alias, as in: 1182 // extern int test6(); 1183 // ... 1184 // int test6() __attribute__((alias("test7"))); 1185 // 1186 // Remove it and replace uses of it with the alias. 1187 1188 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1189 Entry->getType())); 1190 Entry->eraseFromParent(); 1191 } 1192 1193 // Now we know that there is no conflict, set the name. 1194 Entry = GA; 1195 GA->setName(MangledName); 1196 1197 // Set attributes which are particular to an alias; this is a 1198 // specialization of the attributes which may be set on a global 1199 // variable/function. 1200 if (D->hasAttr<DLLExportAttr>()) { 1201 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1202 // The dllexport attribute is ignored for undefined symbols. 1203 if (FD->getBody()) 1204 GA->setLinkage(llvm::Function::DLLExportLinkage); 1205 } else { 1206 GA->setLinkage(llvm::Function::DLLExportLinkage); 1207 } 1208 } else if (D->hasAttr<WeakAttr>() || 1209 D->hasAttr<WeakImportAttr>()) { 1210 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1211 } 1212 1213 SetCommonAttributes(D, GA); 1214 } 1215 1216 /// getBuiltinLibFunction - Given a builtin id for a function like 1217 /// "__builtin_fabsf", return a Function* for "fabsf". 1218 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1219 unsigned BuiltinID) { 1220 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1221 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1222 "isn't a lib fn"); 1223 1224 // Get the name, skip over the __builtin_ prefix (if necessary). 1225 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1226 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1227 Name += 10; 1228 1229 // Get the type for the builtin. 1230 ASTContext::GetBuiltinTypeError Error; 1231 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1232 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1233 1234 const llvm::FunctionType *Ty = 1235 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1236 1237 // Unique the name through the identifier table. 1238 Name = getContext().Idents.get(Name).getNameStart(); 1239 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1240 } 1241 1242 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1243 unsigned NumTys) { 1244 return llvm::Intrinsic::getDeclaration(&getModule(), 1245 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1246 } 1247 1248 llvm::Function *CodeGenModule::getMemCpyFn() { 1249 if (MemCpyFn) return MemCpyFn; 1250 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1251 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1252 } 1253 1254 llvm::Function *CodeGenModule::getMemMoveFn() { 1255 if (MemMoveFn) return MemMoveFn; 1256 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1257 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1258 } 1259 1260 llvm::Function *CodeGenModule::getMemSetFn() { 1261 if (MemSetFn) return MemSetFn; 1262 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1263 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1264 } 1265 1266 static llvm::StringMapEntry<llvm::Constant*> & 1267 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1268 const StringLiteral *Literal, 1269 bool TargetIsLSB, 1270 bool &IsUTF16, 1271 unsigned &StringLength) { 1272 unsigned NumBytes = Literal->getByteLength(); 1273 1274 // Check for simple case. 1275 if (!Literal->containsNonAsciiOrNull()) { 1276 StringLength = NumBytes; 1277 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1278 StringLength)); 1279 } 1280 1281 // Otherwise, convert the UTF8 literals into a byte string. 1282 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1283 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1284 UTF16 *ToPtr = &ToBuf[0]; 1285 1286 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1287 &ToPtr, ToPtr + NumBytes, 1288 strictConversion); 1289 1290 // Check for conversion failure. 1291 if (Result != conversionOK) { 1292 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1293 // this duplicate code. 1294 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1295 StringLength = NumBytes; 1296 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1297 StringLength)); 1298 } 1299 1300 // ConvertUTF8toUTF16 returns the length in ToPtr. 1301 StringLength = ToPtr - &ToBuf[0]; 1302 1303 // Render the UTF-16 string into a byte array and convert to the target byte 1304 // order. 1305 // 1306 // FIXME: This isn't something we should need to do here. 1307 llvm::SmallString<128> AsBytes; 1308 AsBytes.reserve(StringLength * 2); 1309 for (unsigned i = 0; i != StringLength; ++i) { 1310 unsigned short Val = ToBuf[i]; 1311 if (TargetIsLSB) { 1312 AsBytes.push_back(Val & 0xFF); 1313 AsBytes.push_back(Val >> 8); 1314 } else { 1315 AsBytes.push_back(Val >> 8); 1316 AsBytes.push_back(Val & 0xFF); 1317 } 1318 } 1319 // Append one extra null character, the second is automatically added by our 1320 // caller. 1321 AsBytes.push_back(0); 1322 1323 IsUTF16 = true; 1324 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1325 } 1326 1327 llvm::Constant * 1328 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1329 unsigned StringLength = 0; 1330 bool isUTF16 = false; 1331 llvm::StringMapEntry<llvm::Constant*> &Entry = 1332 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1333 getTargetData().isLittleEndian(), 1334 isUTF16, StringLength); 1335 1336 if (llvm::Constant *C = Entry.getValue()) 1337 return C; 1338 1339 llvm::Constant *Zero = 1340 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1341 llvm::Constant *Zeros[] = { Zero, Zero }; 1342 1343 // If we don't already have it, get __CFConstantStringClassReference. 1344 if (!CFConstantStringClassRef) { 1345 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1346 Ty = llvm::ArrayType::get(Ty, 0); 1347 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1348 "__CFConstantStringClassReference"); 1349 // Decay array -> ptr 1350 CFConstantStringClassRef = 1351 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1352 } 1353 1354 QualType CFTy = getContext().getCFConstantStringType(); 1355 1356 const llvm::StructType *STy = 1357 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1358 1359 std::vector<llvm::Constant*> Fields(4); 1360 1361 // Class pointer. 1362 Fields[0] = CFConstantStringClassRef; 1363 1364 // Flags. 1365 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1366 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1367 llvm::ConstantInt::get(Ty, 0x07C8); 1368 1369 // String pointer. 1370 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1371 1372 const char *Sect = 0; 1373 llvm::GlobalValue::LinkageTypes Linkage; 1374 bool isConstant; 1375 if (isUTF16) { 1376 Sect = getContext().Target.getUnicodeStringSection(); 1377 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1378 Linkage = llvm::GlobalValue::InternalLinkage; 1379 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1380 // does make plain ascii ones writable. 1381 isConstant = true; 1382 } else { 1383 Linkage = llvm::GlobalValue::PrivateLinkage; 1384 isConstant = !Features.WritableStrings; 1385 } 1386 1387 llvm::GlobalVariable *GV = 1388 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1389 ".str"); 1390 if (Sect) 1391 GV->setSection(Sect); 1392 if (isUTF16) { 1393 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1394 GV->setAlignment(Align); 1395 } 1396 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1397 1398 // String length. 1399 Ty = getTypes().ConvertType(getContext().LongTy); 1400 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1401 1402 // The struct. 1403 C = llvm::ConstantStruct::get(STy, Fields); 1404 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1405 llvm::GlobalVariable::PrivateLinkage, C, 1406 "_unnamed_cfstring_"); 1407 if (const char *Sect = getContext().Target.getCFStringSection()) 1408 GV->setSection(Sect); 1409 Entry.setValue(GV); 1410 1411 return GV; 1412 } 1413 1414 /// GetStringForStringLiteral - Return the appropriate bytes for a 1415 /// string literal, properly padded to match the literal type. 1416 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1417 const char *StrData = E->getStrData(); 1418 unsigned Len = E->getByteLength(); 1419 1420 const ConstantArrayType *CAT = 1421 getContext().getAsConstantArrayType(E->getType()); 1422 assert(CAT && "String isn't pointer or array!"); 1423 1424 // Resize the string to the right size. 1425 std::string Str(StrData, StrData+Len); 1426 uint64_t RealLen = CAT->getSize().getZExtValue(); 1427 1428 if (E->isWide()) 1429 RealLen *= getContext().Target.getWCharWidth()/8; 1430 1431 Str.resize(RealLen, '\0'); 1432 1433 return Str; 1434 } 1435 1436 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1437 /// constant array for the given string literal. 1438 llvm::Constant * 1439 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1440 // FIXME: This can be more efficient. 1441 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1442 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1443 if (S->isWide()) { 1444 llvm::Type *DestTy = 1445 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1446 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1447 } 1448 return C; 1449 } 1450 1451 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1452 /// array for the given ObjCEncodeExpr node. 1453 llvm::Constant * 1454 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1455 std::string Str; 1456 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1457 1458 return GetAddrOfConstantCString(Str); 1459 } 1460 1461 1462 /// GenerateWritableString -- Creates storage for a string literal. 1463 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1464 bool constant, 1465 CodeGenModule &CGM, 1466 const char *GlobalName) { 1467 // Create Constant for this string literal. Don't add a '\0'. 1468 llvm::Constant *C = 1469 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1470 1471 // Create a global variable for this string 1472 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1473 llvm::GlobalValue::PrivateLinkage, 1474 C, GlobalName); 1475 } 1476 1477 /// GetAddrOfConstantString - Returns a pointer to a character array 1478 /// containing the literal. This contents are exactly that of the 1479 /// given string, i.e. it will not be null terminated automatically; 1480 /// see GetAddrOfConstantCString. Note that whether the result is 1481 /// actually a pointer to an LLVM constant depends on 1482 /// Feature.WriteableStrings. 1483 /// 1484 /// The result has pointer to array type. 1485 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1486 const char *GlobalName) { 1487 bool IsConstant = !Features.WritableStrings; 1488 1489 // Get the default prefix if a name wasn't specified. 1490 if (!GlobalName) 1491 GlobalName = ".str"; 1492 1493 // Don't share any string literals if strings aren't constant. 1494 if (!IsConstant) 1495 return GenerateStringLiteral(str, false, *this, GlobalName); 1496 1497 llvm::StringMapEntry<llvm::Constant *> &Entry = 1498 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1499 1500 if (Entry.getValue()) 1501 return Entry.getValue(); 1502 1503 // Create a global variable for this. 1504 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1505 Entry.setValue(C); 1506 return C; 1507 } 1508 1509 /// GetAddrOfConstantCString - Returns a pointer to a character 1510 /// array containing the literal and a terminating '\-' 1511 /// character. The result has pointer to array type. 1512 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1513 const char *GlobalName){ 1514 return GetAddrOfConstantString(str + '\0', GlobalName); 1515 } 1516 1517 /// EmitObjCPropertyImplementations - Emit information for synthesized 1518 /// properties for an implementation. 1519 void CodeGenModule::EmitObjCPropertyImplementations(const 1520 ObjCImplementationDecl *D) { 1521 for (ObjCImplementationDecl::propimpl_iterator 1522 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1523 ObjCPropertyImplDecl *PID = *i; 1524 1525 // Dynamic is just for type-checking. 1526 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1527 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1528 1529 // Determine which methods need to be implemented, some may have 1530 // been overridden. Note that ::isSynthesized is not the method 1531 // we want, that just indicates if the decl came from a 1532 // property. What we want to know is if the method is defined in 1533 // this implementation. 1534 if (!D->getInstanceMethod(PD->getGetterName())) 1535 CodeGenFunction(*this).GenerateObjCGetter( 1536 const_cast<ObjCImplementationDecl *>(D), PID); 1537 if (!PD->isReadOnly() && 1538 !D->getInstanceMethod(PD->getSetterName())) 1539 CodeGenFunction(*this).GenerateObjCSetter( 1540 const_cast<ObjCImplementationDecl *>(D), PID); 1541 } 1542 } 1543 } 1544 1545 /// EmitNamespace - Emit all declarations in a namespace. 1546 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1547 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1548 I != E; ++I) 1549 EmitTopLevelDecl(*I); 1550 } 1551 1552 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1553 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1554 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1555 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1556 ErrorUnsupported(LSD, "linkage spec"); 1557 return; 1558 } 1559 1560 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1561 I != E; ++I) 1562 EmitTopLevelDecl(*I); 1563 } 1564 1565 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1566 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1567 // If an error has occurred, stop code generation, but continue 1568 // parsing and semantic analysis (to ensure all warnings and errors 1569 // are emitted). 1570 if (Diags.hasErrorOccurred()) 1571 return; 1572 1573 // Ignore dependent declarations. 1574 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1575 return; 1576 1577 switch (D->getKind()) { 1578 case Decl::CXXConversion: 1579 case Decl::CXXMethod: 1580 case Decl::Function: 1581 // Skip function templates 1582 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1583 return; 1584 1585 EmitGlobal(cast<FunctionDecl>(D)); 1586 break; 1587 1588 case Decl::Var: 1589 EmitGlobal(cast<VarDecl>(D)); 1590 break; 1591 1592 // C++ Decls 1593 case Decl::Namespace: 1594 EmitNamespace(cast<NamespaceDecl>(D)); 1595 break; 1596 // No code generation needed. 1597 case Decl::UsingShadow: 1598 case Decl::Using: 1599 case Decl::UsingDirective: 1600 case Decl::ClassTemplate: 1601 case Decl::FunctionTemplate: 1602 case Decl::NamespaceAlias: 1603 break; 1604 case Decl::CXXConstructor: 1605 // Skip function templates 1606 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1607 return; 1608 1609 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1610 break; 1611 case Decl::CXXDestructor: 1612 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1613 break; 1614 1615 case Decl::StaticAssert: 1616 // Nothing to do. 1617 break; 1618 1619 // Objective-C Decls 1620 1621 // Forward declarations, no (immediate) code generation. 1622 case Decl::ObjCClass: 1623 case Decl::ObjCForwardProtocol: 1624 case Decl::ObjCCategory: 1625 case Decl::ObjCInterface: 1626 break; 1627 1628 case Decl::ObjCProtocol: 1629 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1630 break; 1631 1632 case Decl::ObjCCategoryImpl: 1633 // Categories have properties but don't support synthesize so we 1634 // can ignore them here. 1635 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1636 break; 1637 1638 case Decl::ObjCImplementation: { 1639 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1640 EmitObjCPropertyImplementations(OMD); 1641 Runtime->GenerateClass(OMD); 1642 break; 1643 } 1644 case Decl::ObjCMethod: { 1645 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1646 // If this is not a prototype, emit the body. 1647 if (OMD->getBody()) 1648 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1649 break; 1650 } 1651 case Decl::ObjCCompatibleAlias: 1652 // compatibility-alias is a directive and has no code gen. 1653 break; 1654 1655 case Decl::LinkageSpec: 1656 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1657 break; 1658 1659 case Decl::FileScopeAsm: { 1660 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1661 std::string AsmString(AD->getAsmString()->getStrData(), 1662 AD->getAsmString()->getByteLength()); 1663 1664 const std::string &S = getModule().getModuleInlineAsm(); 1665 if (S.empty()) 1666 getModule().setModuleInlineAsm(AsmString); 1667 else 1668 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1669 break; 1670 } 1671 1672 default: 1673 // Make sure we handled everything we should, every other kind is a 1674 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1675 // function. Need to recode Decl::Kind to do that easily. 1676 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1677 } 1678 } 1679