1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/CodeGen/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/Diagnostic.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Basic/ConvertUTF.h"
32 #include "llvm/CallingConv.h"
33 #include "llvm/Module.h"
34 #include "llvm/Intrinsics.h"
35 #include "llvm/LLVMContext.h"
36 #include "llvm/ADT/Triple.h"
37 #include "llvm/Target/TargetData.h"
38 #include "llvm/Support/ErrorHandling.h"
39 using namespace clang;
40 using namespace CodeGen;
41 
42 
43 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
44                              llvm::Module &M, const llvm::TargetData &TD,
45                              Diagnostic &diags)
46   : BlockModule(C, M, TD, Types, *this), Context(C),
47     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
48     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
49     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
50     MangleCtx(C), VtableInfo(*this), Runtime(0),
51     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
52     VMContext(M.getContext()) {
53 
54   if (!Features.ObjC1)
55     Runtime = 0;
56   else if (!Features.NeXTRuntime)
57     Runtime = CreateGNUObjCRuntime(*this);
58   else if (Features.ObjCNonFragileABI)
59     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
60   else
61     Runtime = CreateMacObjCRuntime(*this);
62 
63   // If debug info generation is enabled, create the CGDebugInfo object.
64   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
65 }
66 
67 CodeGenModule::~CodeGenModule() {
68   delete Runtime;
69   delete DebugInfo;
70 }
71 
72 void CodeGenModule::createObjCRuntime() {
73   if (!Features.NeXTRuntime)
74     Runtime = CreateGNUObjCRuntime(*this);
75   else if (Features.ObjCNonFragileABI)
76     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
77   else
78     Runtime = CreateMacObjCRuntime(*this);
79 }
80 
81 void CodeGenModule::Release() {
82   EmitDeferred();
83   EmitCXXGlobalInitFunc();
84   if (Runtime)
85     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
86       AddGlobalCtor(ObjCInitFunction);
87   EmitCtorList(GlobalCtors, "llvm.global_ctors");
88   EmitCtorList(GlobalDtors, "llvm.global_dtors");
89   EmitAnnotations();
90   EmitLLVMUsed();
91 }
92 
93 bool CodeGenModule::isTargetDarwin() const {
94   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
95 }
96 
97 /// ErrorUnsupported - Print out an error that codegen doesn't support the
98 /// specified stmt yet.
99 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
100                                      bool OmitOnError) {
101   if (OmitOnError && getDiags().hasErrorOccurred())
102     return;
103   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
104                                                "cannot compile this %0 yet");
105   std::string Msg = Type;
106   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
107     << Msg << S->getSourceRange();
108 }
109 
110 /// ErrorUnsupported - Print out an error that codegen doesn't support the
111 /// specified decl yet.
112 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
113                                      bool OmitOnError) {
114   if (OmitOnError && getDiags().hasErrorOccurred())
115     return;
116   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
117                                                "cannot compile this %0 yet");
118   std::string Msg = Type;
119   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
120 }
121 
122 LangOptions::VisibilityMode
123 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
124   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
125     if (VD->getStorageClass() == VarDecl::PrivateExtern)
126       return LangOptions::Hidden;
127 
128   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
129     switch (attr->getVisibility()) {
130     default: assert(0 && "Unknown visibility!");
131     case VisibilityAttr::DefaultVisibility:
132       return LangOptions::Default;
133     case VisibilityAttr::HiddenVisibility:
134       return LangOptions::Hidden;
135     case VisibilityAttr::ProtectedVisibility:
136       return LangOptions::Protected;
137     }
138   }
139 
140   // This decl should have the same visibility as its parent.
141   if (const DeclContext *DC = D->getDeclContext())
142     return getDeclVisibilityMode(cast<Decl>(DC));
143 
144   return getLangOptions().getVisibilityMode();
145 }
146 
147 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
148                                         const Decl *D) const {
149   // Internal definitions always have default visibility.
150   if (GV->hasLocalLinkage()) {
151     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
152     return;
153   }
154 
155   switch (getDeclVisibilityMode(D)) {
156   default: assert(0 && "Unknown visibility!");
157   case LangOptions::Default:
158     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
159   case LangOptions::Hidden:
160     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
161   case LangOptions::Protected:
162     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
163   }
164 }
165 
166 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
167   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
168 
169   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
170     return getMangledCXXCtorName(D, GD.getCtorType());
171   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
172     return getMangledCXXDtorName(D, GD.getDtorType());
173 
174   return getMangledName(ND);
175 }
176 
177 /// \brief Retrieves the mangled name for the given declaration.
178 ///
179 /// If the given declaration requires a mangled name, returns an
180 /// const char* containing the mangled name.  Otherwise, returns
181 /// the unmangled name.
182 ///
183 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
184   if (!getMangleContext().shouldMangleDeclName(ND)) {
185     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
186     return ND->getNameAsCString();
187   }
188 
189   llvm::SmallString<256> Name;
190   getMangleContext().mangleName(ND, Name);
191   Name += '\0';
192   return UniqueMangledName(Name.begin(), Name.end());
193 }
194 
195 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
196                                              const char *NameEnd) {
197   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
198 
199   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
200 }
201 
202 /// AddGlobalCtor - Add a function to the list that will be called before
203 /// main() runs.
204 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
205   // FIXME: Type coercion of void()* types.
206   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
207 }
208 
209 /// AddGlobalDtor - Add a function to the list that will be called
210 /// when the module is unloaded.
211 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
212   // FIXME: Type coercion of void()* types.
213   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
214 }
215 
216 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
217   // Ctor function type is void()*.
218   llvm::FunctionType* CtorFTy =
219     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
220                             std::vector<const llvm::Type*>(),
221                             false);
222   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
223 
224   // Get the type of a ctor entry, { i32, void ()* }.
225   llvm::StructType* CtorStructTy =
226     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
227                           llvm::PointerType::getUnqual(CtorFTy), NULL);
228 
229   // Construct the constructor and destructor arrays.
230   std::vector<llvm::Constant*> Ctors;
231   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
232     std::vector<llvm::Constant*> S;
233     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
234                 I->second, false));
235     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
236     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
237   }
238 
239   if (!Ctors.empty()) {
240     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
241     new llvm::GlobalVariable(TheModule, AT, false,
242                              llvm::GlobalValue::AppendingLinkage,
243                              llvm::ConstantArray::get(AT, Ctors),
244                              GlobalName);
245   }
246 }
247 
248 void CodeGenModule::EmitAnnotations() {
249   if (Annotations.empty())
250     return;
251 
252   // Create a new global variable for the ConstantStruct in the Module.
253   llvm::Constant *Array =
254   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
255                                                 Annotations.size()),
256                            Annotations);
257   llvm::GlobalValue *gv =
258   new llvm::GlobalVariable(TheModule, Array->getType(), false,
259                            llvm::GlobalValue::AppendingLinkage, Array,
260                            "llvm.global.annotations");
261   gv->setSection("llvm.metadata");
262 }
263 
264 static CodeGenModule::GVALinkage
265 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
266                       const LangOptions &Features) {
267   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
268 
269   Linkage L = FD->getLinkage();
270   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
271       FD->getType()->getLinkage() == UniqueExternalLinkage)
272     L = UniqueExternalLinkage;
273 
274   switch (L) {
275   case NoLinkage:
276   case InternalLinkage:
277   case UniqueExternalLinkage:
278     return CodeGenModule::GVA_Internal;
279 
280   case ExternalLinkage:
281     switch (FD->getTemplateSpecializationKind()) {
282     case TSK_Undeclared:
283     case TSK_ExplicitSpecialization:
284       External = CodeGenModule::GVA_StrongExternal;
285       break;
286 
287     case TSK_ExplicitInstantiationDefinition:
288       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
289 
290     case TSK_ExplicitInstantiationDeclaration:
291     case TSK_ImplicitInstantiation:
292       External = CodeGenModule::GVA_TemplateInstantiation;
293       break;
294     }
295   }
296 
297   if (!FD->isInlined())
298     return External;
299 
300   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
301     // GNU or C99 inline semantics. Determine whether this symbol should be
302     // externally visible.
303     if (FD->isInlineDefinitionExternallyVisible())
304       return External;
305 
306     // C99 inline semantics, where the symbol is not externally visible.
307     return CodeGenModule::GVA_C99Inline;
308   }
309 
310   // C++0x [temp.explicit]p9:
311   //   [ Note: The intent is that an inline function that is the subject of
312   //   an explicit instantiation declaration will still be implicitly
313   //   instantiated when used so that the body can be considered for
314   //   inlining, but that no out-of-line copy of the inline function would be
315   //   generated in the translation unit. -- end note ]
316   if (FD->getTemplateSpecializationKind()
317                                        == TSK_ExplicitInstantiationDeclaration)
318     return CodeGenModule::GVA_C99Inline;
319 
320   return CodeGenModule::GVA_CXXInline;
321 }
322 
323 llvm::GlobalValue::LinkageTypes
324 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
325   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
326 
327   if (Linkage == GVA_Internal) {
328     return llvm::Function::InternalLinkage;
329   } else if (D->hasAttr<DLLExportAttr>()) {
330     return llvm::Function::DLLExportLinkage;
331   } else if (D->hasAttr<WeakAttr>()) {
332     return llvm::Function::WeakAnyLinkage;
333   } else if (Linkage == GVA_C99Inline) {
334     // In C99 mode, 'inline' functions are guaranteed to have a strong
335     // definition somewhere else, so we can use available_externally linkage.
336     return llvm::Function::AvailableExternallyLinkage;
337   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
338     // In C++, the compiler has to emit a definition in every translation unit
339     // that references the function.  We should use linkonce_odr because
340     // a) if all references in this translation unit are optimized away, we
341     // don't need to codegen it.  b) if the function persists, it needs to be
342     // merged with other definitions. c) C++ has the ODR, so we know the
343     // definition is dependable.
344     return llvm::Function::LinkOnceODRLinkage;
345   } else if (Linkage == GVA_ExplicitTemplateInstantiation) {
346     // An explicit instantiation of a template has weak linkage, since
347     // explicit instantiations can occur in multiple translation units
348     // and must all be equivalent. However, we are not allowed to
349     // throw away these explicit instantiations.
350     return llvm::Function::WeakODRLinkage;
351   } else {
352     assert(Linkage == GVA_StrongExternal);
353     // Otherwise, we have strong external linkage.
354     return llvm::Function::ExternalLinkage;
355   }
356 }
357 
358 
359 /// SetFunctionDefinitionAttributes - Set attributes for a global.
360 ///
361 /// FIXME: This is currently only done for aliases and functions, but not for
362 /// variables (these details are set in EmitGlobalVarDefinition for variables).
363 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
364                                                     llvm::GlobalValue *GV) {
365   GV->setLinkage(getFunctionLinkage(D));
366   SetCommonAttributes(D, GV);
367 }
368 
369 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
370                                               const CGFunctionInfo &Info,
371                                               llvm::Function *F) {
372   unsigned CallingConv;
373   AttributeListType AttributeList;
374   ConstructAttributeList(Info, D, AttributeList, CallingConv);
375   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
376                                           AttributeList.size()));
377   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
378 }
379 
380 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
381                                                            llvm::Function *F) {
382   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
383     F->addFnAttr(llvm::Attribute::NoUnwind);
384 
385   if (D->hasAttr<AlwaysInlineAttr>())
386     F->addFnAttr(llvm::Attribute::AlwaysInline);
387 
388   if (D->hasAttr<NoInlineAttr>())
389     F->addFnAttr(llvm::Attribute::NoInline);
390 
391   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
392     F->addFnAttr(llvm::Attribute::StackProtect);
393   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
394     F->addFnAttr(llvm::Attribute::StackProtectReq);
395 
396   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
397     unsigned width = Context.Target.getCharWidth();
398     F->setAlignment(AA->getAlignment() / width);
399     while ((AA = AA->getNext<AlignedAttr>()))
400       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
401   }
402   // C++ ABI requires 2-byte alignment for member functions.
403   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
404     F->setAlignment(2);
405 }
406 
407 void CodeGenModule::SetCommonAttributes(const Decl *D,
408                                         llvm::GlobalValue *GV) {
409   setGlobalVisibility(GV, D);
410 
411   if (D->hasAttr<UsedAttr>())
412     AddUsedGlobal(GV);
413 
414   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
415     GV->setSection(SA->getName());
416 
417   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
418 }
419 
420 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
421                                                   llvm::Function *F,
422                                                   const CGFunctionInfo &FI) {
423   SetLLVMFunctionAttributes(D, FI, F);
424   SetLLVMFunctionAttributesForDefinition(D, F);
425 
426   F->setLinkage(llvm::Function::InternalLinkage);
427 
428   SetCommonAttributes(D, F);
429 }
430 
431 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
432                                           llvm::Function *F,
433                                           bool IsIncompleteFunction) {
434   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
435 
436   if (!IsIncompleteFunction)
437     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
438 
439   // Only a few attributes are set on declarations; these may later be
440   // overridden by a definition.
441 
442   if (FD->hasAttr<DLLImportAttr>()) {
443     F->setLinkage(llvm::Function::DLLImportLinkage);
444   } else if (FD->hasAttr<WeakAttr>() ||
445              FD->hasAttr<WeakImportAttr>()) {
446     // "extern_weak" is overloaded in LLVM; we probably should have
447     // separate linkage types for this.
448     F->setLinkage(llvm::Function::ExternalWeakLinkage);
449   } else {
450     F->setLinkage(llvm::Function::ExternalLinkage);
451   }
452 
453   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
454     F->setSection(SA->getName());
455 }
456 
457 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
458   assert(!GV->isDeclaration() &&
459          "Only globals with definition can force usage.");
460   LLVMUsed.push_back(GV);
461 }
462 
463 void CodeGenModule::EmitLLVMUsed() {
464   // Don't create llvm.used if there is no need.
465   if (LLVMUsed.empty())
466     return;
467 
468   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
469 
470   // Convert LLVMUsed to what ConstantArray needs.
471   std::vector<llvm::Constant*> UsedArray;
472   UsedArray.resize(LLVMUsed.size());
473   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
474     UsedArray[i] =
475      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
476                                       i8PTy);
477   }
478 
479   if (UsedArray.empty())
480     return;
481   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
482 
483   llvm::GlobalVariable *GV =
484     new llvm::GlobalVariable(getModule(), ATy, false,
485                              llvm::GlobalValue::AppendingLinkage,
486                              llvm::ConstantArray::get(ATy, UsedArray),
487                              "llvm.used");
488 
489   GV->setSection("llvm.metadata");
490 }
491 
492 void CodeGenModule::EmitDeferred() {
493   // Emit code for any potentially referenced deferred decls.  Since a
494   // previously unused static decl may become used during the generation of code
495   // for a static function, iterate until no  changes are made.
496 
497   while (!DeferredDeclsToEmit.empty() || !DeferredVtables.empty()) {
498     if (!DeferredVtables.empty()) {
499       const CXXRecordDecl *RD = DeferredVtables.back();
500       DeferredVtables.pop_back();
501       getVtableInfo().GenerateClassData(getVtableLinkage(RD), RD);
502       continue;
503     }
504 
505     GlobalDecl D = DeferredDeclsToEmit.back();
506     DeferredDeclsToEmit.pop_back();
507 
508     // The mangled name for the decl must have been emitted in GlobalDeclMap.
509     // Look it up to see if it was defined with a stronger definition (e.g. an
510     // extern inline function with a strong function redefinition).  If so,
511     // just ignore the deferred decl.
512     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
513     assert(CGRef && "Deferred decl wasn't referenced?");
514 
515     if (!CGRef->isDeclaration())
516       continue;
517 
518     // Otherwise, emit the definition and move on to the next one.
519     EmitGlobalDefinition(D);
520   }
521 }
522 
523 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
524 /// annotation information for a given GlobalValue.  The annotation struct is
525 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
526 /// GlobalValue being annotated.  The second field is the constant string
527 /// created from the AnnotateAttr's annotation.  The third field is a constant
528 /// string containing the name of the translation unit.  The fourth field is
529 /// the line number in the file of the annotated value declaration.
530 ///
531 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
532 ///        appears to.
533 ///
534 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
535                                                 const AnnotateAttr *AA,
536                                                 unsigned LineNo) {
537   llvm::Module *M = &getModule();
538 
539   // get [N x i8] constants for the annotation string, and the filename string
540   // which are the 2nd and 3rd elements of the global annotation structure.
541   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
542   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
543                                                   AA->getAnnotation(), true);
544   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
545                                                   M->getModuleIdentifier(),
546                                                   true);
547 
548   // Get the two global values corresponding to the ConstantArrays we just
549   // created to hold the bytes of the strings.
550   llvm::GlobalValue *annoGV =
551     new llvm::GlobalVariable(*M, anno->getType(), false,
552                              llvm::GlobalValue::PrivateLinkage, anno,
553                              GV->getName());
554   // translation unit name string, emitted into the llvm.metadata section.
555   llvm::GlobalValue *unitGV =
556     new llvm::GlobalVariable(*M, unit->getType(), false,
557                              llvm::GlobalValue::PrivateLinkage, unit,
558                              ".str");
559 
560   // Create the ConstantStruct for the global annotation.
561   llvm::Constant *Fields[4] = {
562     llvm::ConstantExpr::getBitCast(GV, SBP),
563     llvm::ConstantExpr::getBitCast(annoGV, SBP),
564     llvm::ConstantExpr::getBitCast(unitGV, SBP),
565     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
566   };
567   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
568 }
569 
570 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
571   // Never defer when EmitAllDecls is specified or the decl has
572   // attribute used.
573   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
574     return false;
575 
576   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
577     // Constructors and destructors should never be deferred.
578     if (FD->hasAttr<ConstructorAttr>() ||
579         FD->hasAttr<DestructorAttr>())
580       return false;
581 
582     // The key function for a class must never be deferred.
583     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
584       const CXXRecordDecl *RD = MD->getParent();
585       if (MD->isOutOfLine() && RD->isDynamicClass()) {
586         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
587         if (KeyFunction &&
588             KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
589           return false;
590       }
591     }
592 
593     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
594 
595     // static, static inline, always_inline, and extern inline functions can
596     // always be deferred.  Normal inline functions can be deferred in C99/C++.
597     // Implicit template instantiations can also be deferred in C++.
598     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
599         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
600       return true;
601     return false;
602   }
603 
604   const VarDecl *VD = cast<VarDecl>(Global);
605   assert(VD->isFileVarDecl() && "Invalid decl");
606 
607   // We never want to defer structs that have non-trivial constructors or
608   // destructors.
609 
610   // FIXME: Handle references.
611   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
612     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
613       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
614         return false;
615     }
616   }
617 
618   // Static data may be deferred, but out-of-line static data members
619   // cannot be.
620   Linkage L = VD->getLinkage();
621   if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus &&
622       VD->getType()->getLinkage() == UniqueExternalLinkage)
623     L = UniqueExternalLinkage;
624 
625   switch (L) {
626   case NoLinkage:
627   case InternalLinkage:
628   case UniqueExternalLinkage:
629     // Initializer has side effects?
630     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
631       return false;
632     return !(VD->isStaticDataMember() && VD->isOutOfLine());
633 
634   case ExternalLinkage:
635     break;
636   }
637 
638   return false;
639 }
640 
641 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
642   const AliasAttr *AA = VD->getAttr<AliasAttr>();
643   assert(AA && "No alias?");
644 
645   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
646 
647   // Unique the name through the identifier table.
648   const char *AliaseeName =
649     getContext().Idents.get(AA->getAliasee()).getNameStart();
650 
651   // See if there is already something with the target's name in the module.
652   llvm::GlobalValue *Entry = GlobalDeclMap[AliaseeName];
653 
654   llvm::Constant *Aliasee;
655   if (isa<llvm::FunctionType>(DeclTy))
656     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
657   else
658     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
659                                     llvm::PointerType::getUnqual(DeclTy), 0);
660   if (!Entry) {
661     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
662     F->setLinkage(llvm::Function::ExternalWeakLinkage);
663     WeakRefReferences.insert(F);
664   }
665 
666   return Aliasee;
667 }
668 
669 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
670   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
671 
672   // Weak references don't produce any output by themselves.
673   if (Global->hasAttr<WeakRefAttr>())
674     return;
675 
676   // If this is an alias definition (which otherwise looks like a declaration)
677   // emit it now.
678   if (Global->hasAttr<AliasAttr>())
679     return EmitAliasDefinition(Global);
680 
681   // Ignore declarations, they will be emitted on their first use.
682   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
683     // Forward declarations are emitted lazily on first use.
684     if (!FD->isThisDeclarationADefinition())
685       return;
686   } else {
687     const VarDecl *VD = cast<VarDecl>(Global);
688     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
689 
690     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
691       return;
692   }
693 
694   // Defer code generation when possible if this is a static definition, inline
695   // function etc.  These we only want to emit if they are used.
696   if (MayDeferGeneration(Global)) {
697     // If the value has already been used, add it directly to the
698     // DeferredDeclsToEmit list.
699     const char *MangledName = getMangledName(GD);
700     if (GlobalDeclMap.count(MangledName))
701       DeferredDeclsToEmit.push_back(GD);
702     else {
703       // Otherwise, remember that we saw a deferred decl with this name.  The
704       // first use of the mangled name will cause it to move into
705       // DeferredDeclsToEmit.
706       DeferredDecls[MangledName] = GD;
707     }
708     return;
709   }
710 
711   // Otherwise emit the definition.
712   EmitGlobalDefinition(GD);
713 }
714 
715 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
716   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
717 
718   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
719                                  Context.getSourceManager(),
720                                  "Generating code for declaration");
721 
722   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
723     getVtableInfo().MaybeEmitVtable(GD);
724     if (MD->isVirtual() && MD->isOutOfLine() &&
725         (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) {
726       if (isa<CXXDestructorDecl>(D)) {
727         GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()),
728                            GD.getDtorType());
729         BuildThunksForVirtual(CanonGD);
730       } else {
731         BuildThunksForVirtual(MD->getCanonicalDecl());
732       }
733     }
734   }
735 
736   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
737     EmitCXXConstructor(CD, GD.getCtorType());
738   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
739     EmitCXXDestructor(DD, GD.getDtorType());
740   else if (isa<FunctionDecl>(D))
741     EmitGlobalFunctionDefinition(GD);
742   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
743     EmitGlobalVarDefinition(VD);
744   else {
745     assert(0 && "Invalid argument to EmitGlobalDefinition()");
746   }
747 }
748 
749 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
750 /// module, create and return an llvm Function with the specified type. If there
751 /// is something in the module with the specified name, return it potentially
752 /// bitcasted to the right type.
753 ///
754 /// If D is non-null, it specifies a decl that correspond to this.  This is used
755 /// to set the attributes on the function when it is first created.
756 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
757                                                        const llvm::Type *Ty,
758                                                        GlobalDecl D) {
759   // Lookup the entry, lazily creating it if necessary.
760   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
761   if (Entry) {
762     if (WeakRefReferences.count(Entry)) {
763       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
764       if (FD && !FD->hasAttr<WeakAttr>())
765 	Entry->setLinkage(llvm::Function::ExternalLinkage);
766 
767       WeakRefReferences.erase(Entry);
768     }
769 
770     if (Entry->getType()->getElementType() == Ty)
771       return Entry;
772 
773     // Make sure the result is of the correct type.
774     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
775     return llvm::ConstantExpr::getBitCast(Entry, PTy);
776   }
777 
778   // This function doesn't have a complete type (for example, the return
779   // type is an incomplete struct). Use a fake type instead, and make
780   // sure not to try to set attributes.
781   bool IsIncompleteFunction = false;
782   if (!isa<llvm::FunctionType>(Ty)) {
783     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
784                                  std::vector<const llvm::Type*>(), false);
785     IsIncompleteFunction = true;
786   }
787   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
788                                              llvm::Function::ExternalLinkage,
789                                              "", &getModule());
790   F->setName(MangledName);
791   if (D.getDecl())
792     SetFunctionAttributes(D, F, IsIncompleteFunction);
793   Entry = F;
794 
795   // This is the first use or definition of a mangled name.  If there is a
796   // deferred decl with this name, remember that we need to emit it at the end
797   // of the file.
798   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
799     DeferredDecls.find(MangledName);
800   if (DDI != DeferredDecls.end()) {
801     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
802     // list, and remove it from DeferredDecls (since we don't need it anymore).
803     DeferredDeclsToEmit.push_back(DDI->second);
804     DeferredDecls.erase(DDI);
805   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
806     // If this the first reference to a C++ inline function in a class, queue up
807     // the deferred function body for emission.  These are not seen as
808     // top-level declarations.
809     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
810       DeferredDeclsToEmit.push_back(D);
811     // A called constructor which has no definition or declaration need be
812     // synthesized.
813     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
814       if (CD->isImplicit()) {
815         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
816         DeferredDeclsToEmit.push_back(D);
817       }
818     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
819       if (DD->isImplicit()) {
820         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
821         DeferredDeclsToEmit.push_back(D);
822       }
823     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
824       if (MD->isCopyAssignment() && MD->isImplicit()) {
825         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
826         DeferredDeclsToEmit.push_back(D);
827       }
828     }
829   }
830 
831   return F;
832 }
833 
834 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
835 /// non-null, then this function will use the specified type if it has to
836 /// create it (this occurs when we see a definition of the function).
837 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
838                                                  const llvm::Type *Ty) {
839   // If there was no specific requested type, just convert it now.
840   if (!Ty)
841     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
842   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
843 }
844 
845 /// CreateRuntimeFunction - Create a new runtime function with the specified
846 /// type and name.
847 llvm::Constant *
848 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
849                                      const char *Name) {
850   // Convert Name to be a uniqued string from the IdentifierInfo table.
851   Name = getContext().Idents.get(Name).getNameStart();
852   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
853 }
854 
855 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
856   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
857     return false;
858   if (Context.getLangOptions().CPlusPlus &&
859       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
860     // FIXME: We should do something fancier here!
861     return false;
862   }
863   return true;
864 }
865 
866 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
867 /// create and return an llvm GlobalVariable with the specified type.  If there
868 /// is something in the module with the specified name, return it potentially
869 /// bitcasted to the right type.
870 ///
871 /// If D is non-null, it specifies a decl that correspond to this.  This is used
872 /// to set the attributes on the global when it is first created.
873 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
874                                                      const llvm::PointerType*Ty,
875                                                      const VarDecl *D) {
876   // Lookup the entry, lazily creating it if necessary.
877   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
878   if (Entry) {
879     if (WeakRefReferences.count(Entry)) {
880       if (D && !D->hasAttr<WeakAttr>())
881 	Entry->setLinkage(llvm::Function::ExternalLinkage);
882 
883       WeakRefReferences.erase(Entry);
884     }
885 
886     if (Entry->getType() == Ty)
887       return Entry;
888 
889     // Make sure the result is of the correct type.
890     return llvm::ConstantExpr::getBitCast(Entry, Ty);
891   }
892 
893   // This is the first use or definition of a mangled name.  If there is a
894   // deferred decl with this name, remember that we need to emit it at the end
895   // of the file.
896   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
897     DeferredDecls.find(MangledName);
898   if (DDI != DeferredDecls.end()) {
899     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
900     // list, and remove it from DeferredDecls (since we don't need it anymore).
901     DeferredDeclsToEmit.push_back(DDI->second);
902     DeferredDecls.erase(DDI);
903   }
904 
905   llvm::GlobalVariable *GV =
906     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
907                              llvm::GlobalValue::ExternalLinkage,
908                              0, "", 0,
909                              false, Ty->getAddressSpace());
910   GV->setName(MangledName);
911 
912   // Handle things which are present even on external declarations.
913   if (D) {
914     // FIXME: This code is overly simple and should be merged with other global
915     // handling.
916     GV->setConstant(DeclIsConstantGlobal(Context, D));
917 
918     // FIXME: Merge with other attribute handling code.
919     if (D->getStorageClass() == VarDecl::PrivateExtern)
920       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
921 
922     if (D->hasAttr<WeakAttr>() ||
923         D->hasAttr<WeakImportAttr>())
924       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
925 
926     GV->setThreadLocal(D->isThreadSpecified());
927   }
928 
929   return Entry = GV;
930 }
931 
932 
933 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
934 /// given global variable.  If Ty is non-null and if the global doesn't exist,
935 /// then it will be greated with the specified type instead of whatever the
936 /// normal requested type would be.
937 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
938                                                   const llvm::Type *Ty) {
939   assert(D->hasGlobalStorage() && "Not a global variable");
940   QualType ASTTy = D->getType();
941   if (Ty == 0)
942     Ty = getTypes().ConvertTypeForMem(ASTTy);
943 
944   const llvm::PointerType *PTy =
945     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
946   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
947 }
948 
949 /// CreateRuntimeVariable - Create a new runtime global variable with the
950 /// specified type and name.
951 llvm::Constant *
952 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
953                                      const char *Name) {
954   // Convert Name to be a uniqued string from the IdentifierInfo table.
955   Name = getContext().Idents.get(Name).getNameStart();
956   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
957 }
958 
959 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
960   assert(!D->getInit() && "Cannot emit definite definitions here!");
961 
962   if (MayDeferGeneration(D)) {
963     // If we have not seen a reference to this variable yet, place it
964     // into the deferred declarations table to be emitted if needed
965     // later.
966     const char *MangledName = getMangledName(D);
967     if (GlobalDeclMap.count(MangledName) == 0) {
968       DeferredDecls[MangledName] = D;
969       return;
970     }
971   }
972 
973   // The tentative definition is the only definition.
974   EmitGlobalVarDefinition(D);
975 }
976 
977 llvm::GlobalVariable::LinkageTypes
978 CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) {
979   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
980     return llvm::GlobalVariable::InternalLinkage;
981 
982   if (const CXXMethodDecl *KeyFunction
983                                     = RD->getASTContext().getKeyFunction(RD)) {
984     // If this class has a key function, use that to determine the linkage of
985     // the vtable.
986     const FunctionDecl *Def = 0;
987     if (KeyFunction->getBody(Def))
988       KeyFunction = cast<CXXMethodDecl>(Def);
989 
990     switch (KeyFunction->getTemplateSpecializationKind()) {
991       case TSK_Undeclared:
992       case TSK_ExplicitSpecialization:
993         if (KeyFunction->isInlined())
994           return llvm::GlobalVariable::WeakODRLinkage;
995 
996         return llvm::GlobalVariable::ExternalLinkage;
997 
998       case TSK_ImplicitInstantiation:
999       case TSK_ExplicitInstantiationDefinition:
1000         return llvm::GlobalVariable::WeakODRLinkage;
1001 
1002       case TSK_ExplicitInstantiationDeclaration:
1003         // FIXME: Use available_externally linkage. However, this currently
1004         // breaks LLVM's build due to undefined symbols.
1005         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1006         return llvm::GlobalVariable::WeakODRLinkage;
1007     }
1008   }
1009 
1010   switch (RD->getTemplateSpecializationKind()) {
1011   case TSK_Undeclared:
1012   case TSK_ExplicitSpecialization:
1013   case TSK_ImplicitInstantiation:
1014   case TSK_ExplicitInstantiationDefinition:
1015     return llvm::GlobalVariable::WeakODRLinkage;
1016 
1017   case TSK_ExplicitInstantiationDeclaration:
1018     // FIXME: Use available_externally linkage. However, this currently
1019     // breaks LLVM's build due to undefined symbols.
1020     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1021     return llvm::GlobalVariable::WeakODRLinkage;
1022   }
1023 
1024   // Silence GCC warning.
1025   return llvm::GlobalVariable::WeakODRLinkage;
1026 }
1027 
1028 static CodeGenModule::GVALinkage
1029 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
1030   // If this is a static data member, compute the kind of template
1031   // specialization. Otherwise, this variable is not part of a
1032   // template.
1033   TemplateSpecializationKind TSK = TSK_Undeclared;
1034   if (VD->isStaticDataMember())
1035     TSK = VD->getTemplateSpecializationKind();
1036 
1037   Linkage L = VD->getLinkage();
1038   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
1039       VD->getType()->getLinkage() == UniqueExternalLinkage)
1040     L = UniqueExternalLinkage;
1041 
1042   switch (L) {
1043   case NoLinkage:
1044   case InternalLinkage:
1045   case UniqueExternalLinkage:
1046     return CodeGenModule::GVA_Internal;
1047 
1048   case ExternalLinkage:
1049     switch (TSK) {
1050     case TSK_Undeclared:
1051     case TSK_ExplicitSpecialization:
1052       return CodeGenModule::GVA_StrongExternal;
1053 
1054     case TSK_ExplicitInstantiationDeclaration:
1055       llvm_unreachable("Variable should not be instantiated");
1056       // Fall through to treat this like any other instantiation.
1057 
1058     case TSK_ExplicitInstantiationDefinition:
1059       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
1060 
1061     case TSK_ImplicitInstantiation:
1062       return CodeGenModule::GVA_TemplateInstantiation;
1063     }
1064   }
1065 
1066   return CodeGenModule::GVA_StrongExternal;
1067 }
1068 
1069 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1070     return CharUnits::fromQuantity(
1071       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1072 }
1073 
1074 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1075   llvm::Constant *Init = 0;
1076   QualType ASTTy = D->getType();
1077   bool NonConstInit = false;
1078 
1079   const Expr *InitExpr = D->getAnyInitializer();
1080 
1081   if (!InitExpr) {
1082     // This is a tentative definition; tentative definitions are
1083     // implicitly initialized with { 0 }.
1084     //
1085     // Note that tentative definitions are only emitted at the end of
1086     // a translation unit, so they should never have incomplete
1087     // type. In addition, EmitTentativeDefinition makes sure that we
1088     // never attempt to emit a tentative definition if a real one
1089     // exists. A use may still exists, however, so we still may need
1090     // to do a RAUW.
1091     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1092     Init = EmitNullConstant(D->getType());
1093   } else {
1094     Init = EmitConstantExpr(InitExpr, D->getType());
1095 
1096     if (!Init) {
1097       QualType T = InitExpr->getType();
1098       if (getLangOptions().CPlusPlus) {
1099         EmitCXXGlobalVarDeclInitFunc(D);
1100         Init = EmitNullConstant(T);
1101         NonConstInit = true;
1102       } else {
1103         ErrorUnsupported(D, "static initializer");
1104         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1105       }
1106     }
1107   }
1108 
1109   const llvm::Type* InitType = Init->getType();
1110   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1111 
1112   // Strip off a bitcast if we got one back.
1113   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1114     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1115            // all zero index gep.
1116            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1117     Entry = CE->getOperand(0);
1118   }
1119 
1120   // Entry is now either a Function or GlobalVariable.
1121   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1122 
1123   // We have a definition after a declaration with the wrong type.
1124   // We must make a new GlobalVariable* and update everything that used OldGV
1125   // (a declaration or tentative definition) with the new GlobalVariable*
1126   // (which will be a definition).
1127   //
1128   // This happens if there is a prototype for a global (e.g.
1129   // "extern int x[];") and then a definition of a different type (e.g.
1130   // "int x[10];"). This also happens when an initializer has a different type
1131   // from the type of the global (this happens with unions).
1132   if (GV == 0 ||
1133       GV->getType()->getElementType() != InitType ||
1134       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1135 
1136     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
1137     GlobalDeclMap.erase(getMangledName(D));
1138 
1139     // Make a new global with the correct type, this is now guaranteed to work.
1140     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1141     GV->takeName(cast<llvm::GlobalValue>(Entry));
1142 
1143     // Replace all uses of the old global with the new global
1144     llvm::Constant *NewPtrForOldDecl =
1145         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1146     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1147 
1148     // Erase the old global, since it is no longer used.
1149     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1150   }
1151 
1152   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1153     SourceManager &SM = Context.getSourceManager();
1154     AddAnnotation(EmitAnnotateAttr(GV, AA,
1155                               SM.getInstantiationLineNumber(D->getLocation())));
1156   }
1157 
1158   GV->setInitializer(Init);
1159 
1160   // If it is safe to mark the global 'constant', do so now.
1161   GV->setConstant(false);
1162   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1163     GV->setConstant(true);
1164 
1165   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1166 
1167   // Set the llvm linkage type as appropriate.
1168   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1169   if (Linkage == GVA_Internal)
1170     GV->setLinkage(llvm::Function::InternalLinkage);
1171   else if (D->hasAttr<DLLImportAttr>())
1172     GV->setLinkage(llvm::Function::DLLImportLinkage);
1173   else if (D->hasAttr<DLLExportAttr>())
1174     GV->setLinkage(llvm::Function::DLLExportLinkage);
1175   else if (D->hasAttr<WeakAttr>()) {
1176     if (GV->isConstant())
1177       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1178     else
1179       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1180   } else if (Linkage == GVA_TemplateInstantiation ||
1181              Linkage == GVA_ExplicitTemplateInstantiation)
1182     // FIXME: It seems like we can provide more specific linkage here
1183     // (LinkOnceODR, WeakODR).
1184     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1185   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1186            !D->hasExternalStorage() && !D->getInit() &&
1187            !D->getAttr<SectionAttr>()) {
1188     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1189     // common vars aren't constant even if declared const.
1190     GV->setConstant(false);
1191   } else
1192     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1193 
1194   SetCommonAttributes(D, GV);
1195 
1196   // Emit global variable debug information.
1197   if (CGDebugInfo *DI = getDebugInfo()) {
1198     DI->setLocation(D->getLocation());
1199     DI->EmitGlobalVariable(GV, D);
1200   }
1201 }
1202 
1203 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1204 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1205 /// existing call uses of the old function in the module, this adjusts them to
1206 /// call the new function directly.
1207 ///
1208 /// This is not just a cleanup: the always_inline pass requires direct calls to
1209 /// functions to be able to inline them.  If there is a bitcast in the way, it
1210 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1211 /// run at -O0.
1212 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1213                                                       llvm::Function *NewFn) {
1214   // If we're redefining a global as a function, don't transform it.
1215   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1216   if (OldFn == 0) return;
1217 
1218   const llvm::Type *NewRetTy = NewFn->getReturnType();
1219   llvm::SmallVector<llvm::Value*, 4> ArgList;
1220 
1221   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1222        UI != E; ) {
1223     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1224     unsigned OpNo = UI.getOperandNo();
1225     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1226     if (!CI || OpNo != 0) continue;
1227 
1228     // If the return types don't match exactly, and if the call isn't dead, then
1229     // we can't transform this call.
1230     if (CI->getType() != NewRetTy && !CI->use_empty())
1231       continue;
1232 
1233     // If the function was passed too few arguments, don't transform.  If extra
1234     // arguments were passed, we silently drop them.  If any of the types
1235     // mismatch, we don't transform.
1236     unsigned ArgNo = 0;
1237     bool DontTransform = false;
1238     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1239          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1240       if (CI->getNumOperands()-1 == ArgNo ||
1241           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1242         DontTransform = true;
1243         break;
1244       }
1245     }
1246     if (DontTransform)
1247       continue;
1248 
1249     // Okay, we can transform this.  Create the new call instruction and copy
1250     // over the required information.
1251     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1252     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1253                                                      ArgList.end(), "", CI);
1254     ArgList.clear();
1255     if (!NewCall->getType()->isVoidTy())
1256       NewCall->takeName(CI);
1257     NewCall->setAttributes(CI->getAttributes());
1258     NewCall->setCallingConv(CI->getCallingConv());
1259 
1260     // Finally, remove the old call, replacing any uses with the new one.
1261     if (!CI->use_empty())
1262       CI->replaceAllUsesWith(NewCall);
1263 
1264     // Copy any custom metadata attached with CI.
1265     if (llvm::MDNode *DbgNode = CI->getMetadata("dbg"))
1266       NewCall->setMetadata("dbg", DbgNode);
1267     CI->eraseFromParent();
1268   }
1269 }
1270 
1271 
1272 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1273   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1274   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1275   getMangleContext().mangleInitDiscriminator();
1276   // Get or create the prototype for the function.
1277   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1278 
1279   // Strip off a bitcast if we got one back.
1280   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1281     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1282     Entry = CE->getOperand(0);
1283   }
1284 
1285 
1286   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1287     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1288 
1289     // If the types mismatch then we have to rewrite the definition.
1290     assert(OldFn->isDeclaration() &&
1291            "Shouldn't replace non-declaration");
1292 
1293     // F is the Function* for the one with the wrong type, we must make a new
1294     // Function* and update everything that used F (a declaration) with the new
1295     // Function* (which will be a definition).
1296     //
1297     // This happens if there is a prototype for a function
1298     // (e.g. "int f()") and then a definition of a different type
1299     // (e.g. "int f(int x)").  Start by making a new function of the
1300     // correct type, RAUW, then steal the name.
1301     GlobalDeclMap.erase(getMangledName(D));
1302     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1303     NewFn->takeName(OldFn);
1304 
1305     // If this is an implementation of a function without a prototype, try to
1306     // replace any existing uses of the function (which may be calls) with uses
1307     // of the new function
1308     if (D->getType()->isFunctionNoProtoType()) {
1309       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1310       OldFn->removeDeadConstantUsers();
1311     }
1312 
1313     // Replace uses of F with the Function we will endow with a body.
1314     if (!Entry->use_empty()) {
1315       llvm::Constant *NewPtrForOldDecl =
1316         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1317       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1318     }
1319 
1320     // Ok, delete the old function now, which is dead.
1321     OldFn->eraseFromParent();
1322 
1323     Entry = NewFn;
1324   }
1325 
1326   llvm::Function *Fn = cast<llvm::Function>(Entry);
1327 
1328   CodeGenFunction(*this).GenerateCode(D, Fn);
1329 
1330   SetFunctionDefinitionAttributes(D, Fn);
1331   SetLLVMFunctionAttributesForDefinition(D, Fn);
1332 
1333   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1334     AddGlobalCtor(Fn, CA->getPriority());
1335   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1336     AddGlobalDtor(Fn, DA->getPriority());
1337 }
1338 
1339 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1340   const AliasAttr *AA = D->getAttr<AliasAttr>();
1341   assert(AA && "Not an alias?");
1342 
1343   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1344 
1345   // Unique the name through the identifier table.
1346   const char *AliaseeName =
1347     getContext().Idents.get(AA->getAliasee()).getNameStart();
1348 
1349   // Create a reference to the named value.  This ensures that it is emitted
1350   // if a deferred decl.
1351   llvm::Constant *Aliasee;
1352   if (isa<llvm::FunctionType>(DeclTy))
1353     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1354   else
1355     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1356                                     llvm::PointerType::getUnqual(DeclTy), 0);
1357 
1358   // Create the new alias itself, but don't set a name yet.
1359   llvm::GlobalValue *GA =
1360     new llvm::GlobalAlias(Aliasee->getType(),
1361                           llvm::Function::ExternalLinkage,
1362                           "", Aliasee, &getModule());
1363 
1364   // See if there is already something with the alias' name in the module.
1365   const char *MangledName = getMangledName(D);
1366   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1367 
1368   if (Entry && !Entry->isDeclaration()) {
1369     // If there is a definition in the module, then it wins over the alias.
1370     // This is dubious, but allow it to be safe.  Just ignore the alias.
1371     GA->eraseFromParent();
1372     return;
1373   }
1374 
1375   if (Entry) {
1376     // If there is a declaration in the module, then we had an extern followed
1377     // by the alias, as in:
1378     //   extern int test6();
1379     //   ...
1380     //   int test6() __attribute__((alias("test7")));
1381     //
1382     // Remove it and replace uses of it with the alias.
1383 
1384     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1385                                                           Entry->getType()));
1386     Entry->eraseFromParent();
1387   }
1388 
1389   // Now we know that there is no conflict, set the name.
1390   Entry = GA;
1391   GA->setName(MangledName);
1392 
1393   // Set attributes which are particular to an alias; this is a
1394   // specialization of the attributes which may be set on a global
1395   // variable/function.
1396   if (D->hasAttr<DLLExportAttr>()) {
1397     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1398       // The dllexport attribute is ignored for undefined symbols.
1399       if (FD->getBody())
1400         GA->setLinkage(llvm::Function::DLLExportLinkage);
1401     } else {
1402       GA->setLinkage(llvm::Function::DLLExportLinkage);
1403     }
1404   } else if (D->hasAttr<WeakAttr>() ||
1405              D->hasAttr<WeakRefAttr>() ||
1406              D->hasAttr<WeakImportAttr>()) {
1407     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1408   }
1409 
1410   SetCommonAttributes(D, GA);
1411 }
1412 
1413 /// getBuiltinLibFunction - Given a builtin id for a function like
1414 /// "__builtin_fabsf", return a Function* for "fabsf".
1415 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1416                                                   unsigned BuiltinID) {
1417   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1418           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1419          "isn't a lib fn");
1420 
1421   // Get the name, skip over the __builtin_ prefix (if necessary).
1422   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1423   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1424     Name += 10;
1425 
1426   const llvm::FunctionType *Ty =
1427     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1428 
1429   // Unique the name through the identifier table.
1430   Name = getContext().Idents.get(Name).getNameStart();
1431   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1432 }
1433 
1434 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1435                                             unsigned NumTys) {
1436   return llvm::Intrinsic::getDeclaration(&getModule(),
1437                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1438 }
1439 
1440 llvm::Function *CodeGenModule::getMemCpyFn() {
1441   if (MemCpyFn) return MemCpyFn;
1442   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1443   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1444 }
1445 
1446 llvm::Function *CodeGenModule::getMemMoveFn() {
1447   if (MemMoveFn) return MemMoveFn;
1448   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1449   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1450 }
1451 
1452 llvm::Function *CodeGenModule::getMemSetFn() {
1453   if (MemSetFn) return MemSetFn;
1454   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1455   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1456 }
1457 
1458 static llvm::StringMapEntry<llvm::Constant*> &
1459 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1460                          const StringLiteral *Literal,
1461                          bool TargetIsLSB,
1462                          bool &IsUTF16,
1463                          unsigned &StringLength) {
1464   unsigned NumBytes = Literal->getByteLength();
1465 
1466   // Check for simple case.
1467   if (!Literal->containsNonAsciiOrNull()) {
1468     StringLength = NumBytes;
1469     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1470                                                 StringLength));
1471   }
1472 
1473   // Otherwise, convert the UTF8 literals into a byte string.
1474   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1475   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1476   UTF16 *ToPtr = &ToBuf[0];
1477 
1478   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1479                                                &ToPtr, ToPtr + NumBytes,
1480                                                strictConversion);
1481 
1482   // Check for conversion failure.
1483   if (Result != conversionOK) {
1484     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1485     // this duplicate code.
1486     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1487     StringLength = NumBytes;
1488     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1489                                                 StringLength));
1490   }
1491 
1492   // ConvertUTF8toUTF16 returns the length in ToPtr.
1493   StringLength = ToPtr - &ToBuf[0];
1494 
1495   // Render the UTF-16 string into a byte array and convert to the target byte
1496   // order.
1497   //
1498   // FIXME: This isn't something we should need to do here.
1499   llvm::SmallString<128> AsBytes;
1500   AsBytes.reserve(StringLength * 2);
1501   for (unsigned i = 0; i != StringLength; ++i) {
1502     unsigned short Val = ToBuf[i];
1503     if (TargetIsLSB) {
1504       AsBytes.push_back(Val & 0xFF);
1505       AsBytes.push_back(Val >> 8);
1506     } else {
1507       AsBytes.push_back(Val >> 8);
1508       AsBytes.push_back(Val & 0xFF);
1509     }
1510   }
1511   // Append one extra null character, the second is automatically added by our
1512   // caller.
1513   AsBytes.push_back(0);
1514 
1515   IsUTF16 = true;
1516   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1517 }
1518 
1519 llvm::Constant *
1520 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1521   unsigned StringLength = 0;
1522   bool isUTF16 = false;
1523   llvm::StringMapEntry<llvm::Constant*> &Entry =
1524     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1525                              getTargetData().isLittleEndian(),
1526                              isUTF16, StringLength);
1527 
1528   if (llvm::Constant *C = Entry.getValue())
1529     return C;
1530 
1531   llvm::Constant *Zero =
1532       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1533   llvm::Constant *Zeros[] = { Zero, Zero };
1534 
1535   // If we don't already have it, get __CFConstantStringClassReference.
1536   if (!CFConstantStringClassRef) {
1537     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1538     Ty = llvm::ArrayType::get(Ty, 0);
1539     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1540                                            "__CFConstantStringClassReference");
1541     // Decay array -> ptr
1542     CFConstantStringClassRef =
1543       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1544   }
1545 
1546   QualType CFTy = getContext().getCFConstantStringType();
1547 
1548   const llvm::StructType *STy =
1549     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1550 
1551   std::vector<llvm::Constant*> Fields(4);
1552 
1553   // Class pointer.
1554   Fields[0] = CFConstantStringClassRef;
1555 
1556   // Flags.
1557   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1558   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1559     llvm::ConstantInt::get(Ty, 0x07C8);
1560 
1561   // String pointer.
1562   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1563 
1564   llvm::GlobalValue::LinkageTypes Linkage;
1565   bool isConstant;
1566   if (isUTF16) {
1567     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1568     Linkage = llvm::GlobalValue::InternalLinkage;
1569     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1570     // does make plain ascii ones writable.
1571     isConstant = true;
1572   } else {
1573     Linkage = llvm::GlobalValue::PrivateLinkage;
1574     isConstant = !Features.WritableStrings;
1575   }
1576 
1577   llvm::GlobalVariable *GV =
1578     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1579                              ".str");
1580   if (isUTF16) {
1581     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1582     GV->setAlignment(Align.getQuantity());
1583   }
1584   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1585 
1586   // String length.
1587   Ty = getTypes().ConvertType(getContext().LongTy);
1588   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1589 
1590   // The struct.
1591   C = llvm::ConstantStruct::get(STy, Fields);
1592   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1593                                 llvm::GlobalVariable::PrivateLinkage, C,
1594                                 "_unnamed_cfstring_");
1595   if (const char *Sect = getContext().Target.getCFStringSection())
1596     GV->setSection(Sect);
1597   Entry.setValue(GV);
1598 
1599   return GV;
1600 }
1601 
1602 /// GetStringForStringLiteral - Return the appropriate bytes for a
1603 /// string literal, properly padded to match the literal type.
1604 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1605   const char *StrData = E->getStrData();
1606   unsigned Len = E->getByteLength();
1607 
1608   const ConstantArrayType *CAT =
1609     getContext().getAsConstantArrayType(E->getType());
1610   assert(CAT && "String isn't pointer or array!");
1611 
1612   // Resize the string to the right size.
1613   std::string Str(StrData, StrData+Len);
1614   uint64_t RealLen = CAT->getSize().getZExtValue();
1615 
1616   if (E->isWide())
1617     RealLen *= getContext().Target.getWCharWidth()/8;
1618 
1619   Str.resize(RealLen, '\0');
1620 
1621   return Str;
1622 }
1623 
1624 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1625 /// constant array for the given string literal.
1626 llvm::Constant *
1627 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1628   // FIXME: This can be more efficient.
1629   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1630   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1631   if (S->isWide()) {
1632     llvm::Type *DestTy =
1633         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1634     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1635   }
1636   return C;
1637 }
1638 
1639 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1640 /// array for the given ObjCEncodeExpr node.
1641 llvm::Constant *
1642 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1643   std::string Str;
1644   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1645 
1646   return GetAddrOfConstantCString(Str);
1647 }
1648 
1649 
1650 /// GenerateWritableString -- Creates storage for a string literal.
1651 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1652                                              bool constant,
1653                                              CodeGenModule &CGM,
1654                                              const char *GlobalName) {
1655   // Create Constant for this string literal. Don't add a '\0'.
1656   llvm::Constant *C =
1657       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1658 
1659   // Create a global variable for this string
1660   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1661                                   llvm::GlobalValue::PrivateLinkage,
1662                                   C, GlobalName);
1663 }
1664 
1665 /// GetAddrOfConstantString - Returns a pointer to a character array
1666 /// containing the literal. This contents are exactly that of the
1667 /// given string, i.e. it will not be null terminated automatically;
1668 /// see GetAddrOfConstantCString. Note that whether the result is
1669 /// actually a pointer to an LLVM constant depends on
1670 /// Feature.WriteableStrings.
1671 ///
1672 /// The result has pointer to array type.
1673 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1674                                                        const char *GlobalName) {
1675   bool IsConstant = !Features.WritableStrings;
1676 
1677   // Get the default prefix if a name wasn't specified.
1678   if (!GlobalName)
1679     GlobalName = ".str";
1680 
1681   // Don't share any string literals if strings aren't constant.
1682   if (!IsConstant)
1683     return GenerateStringLiteral(str, false, *this, GlobalName);
1684 
1685   llvm::StringMapEntry<llvm::Constant *> &Entry =
1686     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1687 
1688   if (Entry.getValue())
1689     return Entry.getValue();
1690 
1691   // Create a global variable for this.
1692   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1693   Entry.setValue(C);
1694   return C;
1695 }
1696 
1697 /// GetAddrOfConstantCString - Returns a pointer to a character
1698 /// array containing the literal and a terminating '\-'
1699 /// character. The result has pointer to array type.
1700 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1701                                                         const char *GlobalName){
1702   return GetAddrOfConstantString(str + '\0', GlobalName);
1703 }
1704 
1705 /// EmitObjCPropertyImplementations - Emit information for synthesized
1706 /// properties for an implementation.
1707 void CodeGenModule::EmitObjCPropertyImplementations(const
1708                                                     ObjCImplementationDecl *D) {
1709   for (ObjCImplementationDecl::propimpl_iterator
1710          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1711     ObjCPropertyImplDecl *PID = *i;
1712 
1713     // Dynamic is just for type-checking.
1714     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1715       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1716 
1717       // Determine which methods need to be implemented, some may have
1718       // been overridden. Note that ::isSynthesized is not the method
1719       // we want, that just indicates if the decl came from a
1720       // property. What we want to know is if the method is defined in
1721       // this implementation.
1722       if (!D->getInstanceMethod(PD->getGetterName()))
1723         CodeGenFunction(*this).GenerateObjCGetter(
1724                                  const_cast<ObjCImplementationDecl *>(D), PID);
1725       if (!PD->isReadOnly() &&
1726           !D->getInstanceMethod(PD->getSetterName()))
1727         CodeGenFunction(*this).GenerateObjCSetter(
1728                                  const_cast<ObjCImplementationDecl *>(D), PID);
1729     }
1730   }
1731 }
1732 
1733 /// EmitNamespace - Emit all declarations in a namespace.
1734 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1735   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1736        I != E; ++I)
1737     EmitTopLevelDecl(*I);
1738 }
1739 
1740 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1741 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1742   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1743       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1744     ErrorUnsupported(LSD, "linkage spec");
1745     return;
1746   }
1747 
1748   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1749        I != E; ++I)
1750     EmitTopLevelDecl(*I);
1751 }
1752 
1753 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1754 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1755   // If an error has occurred, stop code generation, but continue
1756   // parsing and semantic analysis (to ensure all warnings and errors
1757   // are emitted).
1758   if (Diags.hasErrorOccurred())
1759     return;
1760 
1761   // Ignore dependent declarations.
1762   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1763     return;
1764 
1765   switch (D->getKind()) {
1766   case Decl::CXXConversion:
1767   case Decl::CXXMethod:
1768   case Decl::Function:
1769     // Skip function templates
1770     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1771       return;
1772 
1773     EmitGlobal(cast<FunctionDecl>(D));
1774     break;
1775 
1776   case Decl::Var:
1777     EmitGlobal(cast<VarDecl>(D));
1778     break;
1779 
1780   // C++ Decls
1781   case Decl::Namespace:
1782     EmitNamespace(cast<NamespaceDecl>(D));
1783     break;
1784     // No code generation needed.
1785   case Decl::UsingShadow:
1786   case Decl::Using:
1787   case Decl::UsingDirective:
1788   case Decl::ClassTemplate:
1789   case Decl::FunctionTemplate:
1790   case Decl::NamespaceAlias:
1791     break;
1792   case Decl::CXXConstructor:
1793     // Skip function templates
1794     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1795       return;
1796 
1797     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1798     break;
1799   case Decl::CXXDestructor:
1800     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1801     break;
1802 
1803   case Decl::StaticAssert:
1804     // Nothing to do.
1805     break;
1806 
1807   // Objective-C Decls
1808 
1809   // Forward declarations, no (immediate) code generation.
1810   case Decl::ObjCClass:
1811   case Decl::ObjCForwardProtocol:
1812   case Decl::ObjCCategory:
1813   case Decl::ObjCInterface:
1814     break;
1815 
1816   case Decl::ObjCProtocol:
1817     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1818     break;
1819 
1820   case Decl::ObjCCategoryImpl:
1821     // Categories have properties but don't support synthesize so we
1822     // can ignore them here.
1823     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1824     break;
1825 
1826   case Decl::ObjCImplementation: {
1827     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1828     EmitObjCPropertyImplementations(OMD);
1829     Runtime->GenerateClass(OMD);
1830     break;
1831   }
1832   case Decl::ObjCMethod: {
1833     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1834     // If this is not a prototype, emit the body.
1835     if (OMD->getBody())
1836       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1837     break;
1838   }
1839   case Decl::ObjCCompatibleAlias:
1840     // compatibility-alias is a directive and has no code gen.
1841     break;
1842 
1843   case Decl::LinkageSpec:
1844     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1845     break;
1846 
1847   case Decl::FileScopeAsm: {
1848     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1849     llvm::StringRef AsmString = AD->getAsmString()->getString();
1850 
1851     const std::string &S = getModule().getModuleInlineAsm();
1852     if (S.empty())
1853       getModule().setModuleInlineAsm(AsmString);
1854     else
1855       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1856     break;
1857   }
1858 
1859   default:
1860     // Make sure we handled everything we should, every other kind is a
1861     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1862     // function. Need to recode Decl::Kind to do that easily.
1863     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1864   }
1865 }
1866