1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/CodeGen/CodeGenOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/Basic/Diagnostic.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Basic/ConvertUTF.h"
30 #include "llvm/CallingConv.h"
31 #include "llvm/Module.h"
32 #include "llvm/Intrinsics.h"
33 #include "llvm/Target/TargetData.h"
34 #include "llvm/Support/ErrorHandling.h"
35 using namespace clang;
36 using namespace CodeGen;
37 
38 
39 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
40                              llvm::Module &M, const llvm::TargetData &TD,
41                              Diagnostic &diags)
42   : BlockModule(C, M, TD, Types, *this), Context(C),
43     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
44     TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C),
45     VtableInfo(*this), Runtime(0),
46     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
47     VMContext(M.getContext()) {
48 
49   if (!Features.ObjC1)
50     Runtime = 0;
51   else if (!Features.NeXTRuntime)
52     Runtime = CreateGNUObjCRuntime(*this);
53   else if (Features.ObjCNonFragileABI)
54     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
55   else
56     Runtime = CreateMacObjCRuntime(*this);
57 
58   // If debug info generation is enabled, create the CGDebugInfo object.
59   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
60 }
61 
62 CodeGenModule::~CodeGenModule() {
63   delete Runtime;
64   delete DebugInfo;
65 }
66 
67 void CodeGenModule::Release() {
68   // We need to call this first because it can add deferred declarations.
69   EmitCXXGlobalInitFunc();
70 
71   EmitDeferred();
72   if (Runtime)
73     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
74       AddGlobalCtor(ObjCInitFunction);
75   EmitCtorList(GlobalCtors, "llvm.global_ctors");
76   EmitCtorList(GlobalDtors, "llvm.global_dtors");
77   EmitAnnotations();
78   EmitLLVMUsed();
79 }
80 
81 /// ErrorUnsupported - Print out an error that codegen doesn't support the
82 /// specified stmt yet.
83 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
84                                      bool OmitOnError) {
85   if (OmitOnError && getDiags().hasErrorOccurred())
86     return;
87   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
88                                                "cannot compile this %0 yet");
89   std::string Msg = Type;
90   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
91     << Msg << S->getSourceRange();
92 }
93 
94 /// ErrorUnsupported - Print out an error that codegen doesn't support the
95 /// specified decl yet.
96 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
97                                      bool OmitOnError) {
98   if (OmitOnError && getDiags().hasErrorOccurred())
99     return;
100   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
101                                                "cannot compile this %0 yet");
102   std::string Msg = Type;
103   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
104 }
105 
106 LangOptions::VisibilityMode
107 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
108   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
109     if (VD->getStorageClass() == VarDecl::PrivateExtern)
110       return LangOptions::Hidden;
111 
112   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
113     switch (attr->getVisibility()) {
114     default: assert(0 && "Unknown visibility!");
115     case VisibilityAttr::DefaultVisibility:
116       return LangOptions::Default;
117     case VisibilityAttr::HiddenVisibility:
118       return LangOptions::Hidden;
119     case VisibilityAttr::ProtectedVisibility:
120       return LangOptions::Protected;
121     }
122   }
123 
124   return getLangOptions().getVisibilityMode();
125 }
126 
127 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
128                                         const Decl *D) const {
129   // Internal definitions always have default visibility.
130   if (GV->hasLocalLinkage()) {
131     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
132     return;
133   }
134 
135   switch (getDeclVisibilityMode(D)) {
136   default: assert(0 && "Unknown visibility!");
137   case LangOptions::Default:
138     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
139   case LangOptions::Hidden:
140     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
141   case LangOptions::Protected:
142     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
143   }
144 }
145 
146 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
147   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
148 
149   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
150     return getMangledCXXCtorName(D, GD.getCtorType());
151   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
152     return getMangledCXXDtorName(D, GD.getDtorType());
153 
154   return getMangledName(ND);
155 }
156 
157 /// \brief Retrieves the mangled name for the given declaration.
158 ///
159 /// If the given declaration requires a mangled name, returns an
160 /// const char* containing the mangled name.  Otherwise, returns
161 /// the unmangled name.
162 ///
163 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
164   if (!getMangleContext().shouldMangleDeclName(ND)) {
165     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
166     return ND->getNameAsCString();
167   }
168 
169   llvm::SmallString<256> Name;
170   getMangleContext().mangleName(ND, Name);
171   Name += '\0';
172   return UniqueMangledName(Name.begin(), Name.end());
173 }
174 
175 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
176                                              const char *NameEnd) {
177   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
178 
179   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
180 }
181 
182 /// AddGlobalCtor - Add a function to the list that will be called before
183 /// main() runs.
184 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
185   // FIXME: Type coercion of void()* types.
186   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
187 }
188 
189 /// AddGlobalDtor - Add a function to the list that will be called
190 /// when the module is unloaded.
191 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
192   // FIXME: Type coercion of void()* types.
193   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
194 }
195 
196 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
197   // Ctor function type is void()*.
198   llvm::FunctionType* CtorFTy =
199     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
200                             std::vector<const llvm::Type*>(),
201                             false);
202   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
203 
204   // Get the type of a ctor entry, { i32, void ()* }.
205   llvm::StructType* CtorStructTy =
206     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
207                           llvm::PointerType::getUnqual(CtorFTy), NULL);
208 
209   // Construct the constructor and destructor arrays.
210   std::vector<llvm::Constant*> Ctors;
211   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
212     std::vector<llvm::Constant*> S;
213     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
214                 I->second, false));
215     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
216     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
217   }
218 
219   if (!Ctors.empty()) {
220     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
221     new llvm::GlobalVariable(TheModule, AT, false,
222                              llvm::GlobalValue::AppendingLinkage,
223                              llvm::ConstantArray::get(AT, Ctors),
224                              GlobalName);
225   }
226 }
227 
228 void CodeGenModule::EmitAnnotations() {
229   if (Annotations.empty())
230     return;
231 
232   // Create a new global variable for the ConstantStruct in the Module.
233   llvm::Constant *Array =
234   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
235                                                 Annotations.size()),
236                            Annotations);
237   llvm::GlobalValue *gv =
238   new llvm::GlobalVariable(TheModule, Array->getType(), false,
239                            llvm::GlobalValue::AppendingLinkage, Array,
240                            "llvm.global.annotations");
241   gv->setSection("llvm.metadata");
242 }
243 
244 static CodeGenModule::GVALinkage
245 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
246                       const LangOptions &Features) {
247   // Everything located semantically within an anonymous namespace is
248   // always internal.
249   if (FD->isInAnonymousNamespace())
250     return CodeGenModule::GVA_Internal;
251 
252   // "static" functions get internal linkage.
253   if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD))
254     return CodeGenModule::GVA_Internal;
255 
256   // The kind of external linkage this function will have, if it is not
257   // inline or static.
258   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
259   if (Context.getLangOptions().CPlusPlus) {
260     TemplateSpecializationKind TSK = FD->getTemplateSpecializationKind();
261 
262     if (TSK == TSK_ExplicitInstantiationDefinition) {
263       // If a function has been explicitly instantiated, then it should
264       // always have strong external linkage.
265       return CodeGenModule::GVA_StrongExternal;
266     }
267 
268     if (TSK == TSK_ImplicitInstantiation)
269       External = CodeGenModule::GVA_TemplateInstantiation;
270   }
271 
272   if (!FD->isInlined())
273     return External;
274 
275   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
276     // GNU or C99 inline semantics. Determine whether this symbol should be
277     // externally visible.
278     if (FD->isInlineDefinitionExternallyVisible())
279       return External;
280 
281     // C99 inline semantics, where the symbol is not externally visible.
282     return CodeGenModule::GVA_C99Inline;
283   }
284 
285   // C++0x [temp.explicit]p9:
286   //   [ Note: The intent is that an inline function that is the subject of
287   //   an explicit instantiation declaration will still be implicitly
288   //   instantiated when used so that the body can be considered for
289   //   inlining, but that no out-of-line copy of the inline function would be
290   //   generated in the translation unit. -- end note ]
291   if (FD->getTemplateSpecializationKind()
292                                        == TSK_ExplicitInstantiationDeclaration)
293     return CodeGenModule::GVA_C99Inline;
294 
295   return CodeGenModule::GVA_CXXInline;
296 }
297 
298 /// SetFunctionDefinitionAttributes - Set attributes for a global.
299 ///
300 /// FIXME: This is currently only done for aliases and functions, but not for
301 /// variables (these details are set in EmitGlobalVarDefinition for variables).
302 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
303                                                     llvm::GlobalValue *GV) {
304   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
305 
306   if (Linkage == GVA_Internal) {
307     GV->setLinkage(llvm::Function::InternalLinkage);
308   } else if (D->hasAttr<DLLExportAttr>()) {
309     GV->setLinkage(llvm::Function::DLLExportLinkage);
310   } else if (D->hasAttr<WeakAttr>()) {
311     GV->setLinkage(llvm::Function::WeakAnyLinkage);
312   } else if (Linkage == GVA_C99Inline) {
313     // In C99 mode, 'inline' functions are guaranteed to have a strong
314     // definition somewhere else, so we can use available_externally linkage.
315     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
316   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
317     // In C++, the compiler has to emit a definition in every translation unit
318     // that references the function.  We should use linkonce_odr because
319     // a) if all references in this translation unit are optimized away, we
320     // don't need to codegen it.  b) if the function persists, it needs to be
321     // merged with other definitions. c) C++ has the ODR, so we know the
322     // definition is dependable.
323     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
324   } else {
325     assert(Linkage == GVA_StrongExternal);
326     // Otherwise, we have strong external linkage.
327     GV->setLinkage(llvm::Function::ExternalLinkage);
328   }
329 
330   SetCommonAttributes(D, GV);
331 }
332 
333 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
334                                               const CGFunctionInfo &Info,
335                                               llvm::Function *F) {
336   unsigned CallingConv;
337   AttributeListType AttributeList;
338   ConstructAttributeList(Info, D, AttributeList, CallingConv);
339   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
340                                           AttributeList.size()));
341   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
342 }
343 
344 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
345                                                            llvm::Function *F) {
346   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
347     F->addFnAttr(llvm::Attribute::NoUnwind);
348 
349   if (D->hasAttr<AlwaysInlineAttr>())
350     F->addFnAttr(llvm::Attribute::AlwaysInline);
351 
352   if (D->hasAttr<NoInlineAttr>())
353     F->addFnAttr(llvm::Attribute::NoInline);
354 
355   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
356     F->addFnAttr(llvm::Attribute::StackProtect);
357   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
358     F->addFnAttr(llvm::Attribute::StackProtectReq);
359 
360   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
361     unsigned width = Context.Target.getCharWidth();
362     F->setAlignment(AA->getAlignment() / width);
363     while ((AA = AA->getNext<AlignedAttr>()))
364       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
365   }
366   // C++ ABI requires 2-byte alignment for member functions.
367   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
368     F->setAlignment(2);
369 }
370 
371 void CodeGenModule::SetCommonAttributes(const Decl *D,
372                                         llvm::GlobalValue *GV) {
373   setGlobalVisibility(GV, D);
374 
375   if (D->hasAttr<UsedAttr>())
376     AddUsedGlobal(GV);
377 
378   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
379     GV->setSection(SA->getName());
380 }
381 
382 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
383                                                   llvm::Function *F,
384                                                   const CGFunctionInfo &FI) {
385   SetLLVMFunctionAttributes(D, FI, F);
386   SetLLVMFunctionAttributesForDefinition(D, F);
387 
388   F->setLinkage(llvm::Function::InternalLinkage);
389 
390   SetCommonAttributes(D, F);
391 }
392 
393 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
394                                           llvm::Function *F,
395                                           bool IsIncompleteFunction) {
396   if (!IsIncompleteFunction)
397     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
398 
399   // Only a few attributes are set on declarations; these may later be
400   // overridden by a definition.
401 
402   if (FD->hasAttr<DLLImportAttr>()) {
403     F->setLinkage(llvm::Function::DLLImportLinkage);
404   } else if (FD->hasAttr<WeakAttr>() ||
405              FD->hasAttr<WeakImportAttr>()) {
406     // "extern_weak" is overloaded in LLVM; we probably should have
407     // separate linkage types for this.
408     F->setLinkage(llvm::Function::ExternalWeakLinkage);
409   } else {
410     F->setLinkage(llvm::Function::ExternalLinkage);
411   }
412 
413   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
414     F->setSection(SA->getName());
415 }
416 
417 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
418   assert(!GV->isDeclaration() &&
419          "Only globals with definition can force usage.");
420   LLVMUsed.push_back(GV);
421 }
422 
423 void CodeGenModule::EmitLLVMUsed() {
424   // Don't create llvm.used if there is no need.
425   if (LLVMUsed.empty())
426     return;
427 
428   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
429 
430   // Convert LLVMUsed to what ConstantArray needs.
431   std::vector<llvm::Constant*> UsedArray;
432   UsedArray.resize(LLVMUsed.size());
433   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
434     UsedArray[i] =
435      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
436                                       i8PTy);
437   }
438 
439   if (UsedArray.empty())
440     return;
441   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
442 
443   llvm::GlobalVariable *GV =
444     new llvm::GlobalVariable(getModule(), ATy, false,
445                              llvm::GlobalValue::AppendingLinkage,
446                              llvm::ConstantArray::get(ATy, UsedArray),
447                              "llvm.used");
448 
449   GV->setSection("llvm.metadata");
450 }
451 
452 void CodeGenModule::EmitDeferred() {
453   // Emit code for any potentially referenced deferred decls.  Since a
454   // previously unused static decl may become used during the generation of code
455   // for a static function, iterate until no  changes are made.
456   while (!DeferredDeclsToEmit.empty()) {
457     GlobalDecl D = DeferredDeclsToEmit.back();
458     DeferredDeclsToEmit.pop_back();
459 
460     // The mangled name for the decl must have been emitted in GlobalDeclMap.
461     // Look it up to see if it was defined with a stronger definition (e.g. an
462     // extern inline function with a strong function redefinition).  If so,
463     // just ignore the deferred decl.
464     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
465     assert(CGRef && "Deferred decl wasn't referenced?");
466 
467     if (!CGRef->isDeclaration())
468       continue;
469 
470     // Otherwise, emit the definition and move on to the next one.
471     EmitGlobalDefinition(D);
472   }
473 }
474 
475 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
476 /// annotation information for a given GlobalValue.  The annotation struct is
477 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
478 /// GlobalValue being annotated.  The second field is the constant string
479 /// created from the AnnotateAttr's annotation.  The third field is a constant
480 /// string containing the name of the translation unit.  The fourth field is
481 /// the line number in the file of the annotated value declaration.
482 ///
483 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
484 ///        appears to.
485 ///
486 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
487                                                 const AnnotateAttr *AA,
488                                                 unsigned LineNo) {
489   llvm::Module *M = &getModule();
490 
491   // get [N x i8] constants for the annotation string, and the filename string
492   // which are the 2nd and 3rd elements of the global annotation structure.
493   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
494   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
495                                                   AA->getAnnotation(), true);
496   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
497                                                   M->getModuleIdentifier(),
498                                                   true);
499 
500   // Get the two global values corresponding to the ConstantArrays we just
501   // created to hold the bytes of the strings.
502   llvm::GlobalValue *annoGV =
503     new llvm::GlobalVariable(*M, anno->getType(), false,
504                              llvm::GlobalValue::PrivateLinkage, anno,
505                              GV->getName());
506   // translation unit name string, emitted into the llvm.metadata section.
507   llvm::GlobalValue *unitGV =
508     new llvm::GlobalVariable(*M, unit->getType(), false,
509                              llvm::GlobalValue::PrivateLinkage, unit,
510                              ".str");
511 
512   // Create the ConstantStruct for the global annotation.
513   llvm::Constant *Fields[4] = {
514     llvm::ConstantExpr::getBitCast(GV, SBP),
515     llvm::ConstantExpr::getBitCast(annoGV, SBP),
516     llvm::ConstantExpr::getBitCast(unitGV, SBP),
517     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
518   };
519   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
520 }
521 
522 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
523   // Never defer when EmitAllDecls is specified or the decl has
524   // attribute used.
525   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
526     return false;
527 
528   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
529     // Constructors and destructors should never be deferred.
530     if (FD->hasAttr<ConstructorAttr>() ||
531         FD->hasAttr<DestructorAttr>())
532       return false;
533 
534     // The key function for a class must never be deferred.
535     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
536       const CXXRecordDecl *RD = MD->getParent();
537       if (MD->isOutOfLine() && RD->isDynamicClass()) {
538         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
539         if (KeyFunction == MD->getCanonicalDecl())
540           return false;
541       }
542     }
543 
544     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
545 
546     // static, static inline, always_inline, and extern inline functions can
547     // always be deferred.  Normal inline functions can be deferred in C99/C++.
548     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
549         Linkage == GVA_CXXInline)
550       return true;
551     return false;
552   }
553 
554   const VarDecl *VD = cast<VarDecl>(Global);
555   assert(VD->isFileVarDecl() && "Invalid decl");
556 
557   // We never want to defer structs that have non-trivial constructors or
558   // destructors.
559 
560   // FIXME: Handle references.
561   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
562     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
563       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
564         return false;
565     }
566   }
567 
568   // Static data may be deferred, but out-of-line static data members
569   // cannot be.
570   if (VD->isInAnonymousNamespace())
571     return true;
572   if (VD->getLinkage() == VarDecl::InternalLinkage) {
573     // Initializer has side effects?
574     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
575       return false;
576     return !(VD->isStaticDataMember() && VD->isOutOfLine());
577   }
578   return false;
579 }
580 
581 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
582   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
583 
584   // If this is an alias definition (which otherwise looks like a declaration)
585   // emit it now.
586   if (Global->hasAttr<AliasAttr>())
587     return EmitAliasDefinition(Global);
588 
589   // Ignore declarations, they will be emitted on their first use.
590   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
591     // Forward declarations are emitted lazily on first use.
592     if (!FD->isThisDeclarationADefinition())
593       return;
594   } else {
595     const VarDecl *VD = cast<VarDecl>(Global);
596     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
597 
598     if (getLangOptions().CPlusPlus && !VD->getInit()) {
599       // In C++, if this is marked "extern", defer code generation.
600       if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC())
601         return;
602 
603       // If this is a declaration of an explicit specialization of a static
604       // data member in a class template, don't emit it.
605       if (VD->isStaticDataMember() &&
606           VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
607         return;
608     }
609 
610     // In C, if this isn't a definition, defer code generation.
611     if (!getLangOptions().CPlusPlus && !VD->getInit())
612       return;
613   }
614 
615   // Defer code generation when possible if this is a static definition, inline
616   // function etc.  These we only want to emit if they are used.
617   if (MayDeferGeneration(Global)) {
618     // If the value has already been used, add it directly to the
619     // DeferredDeclsToEmit list.
620     const char *MangledName = getMangledName(GD);
621     if (GlobalDeclMap.count(MangledName))
622       DeferredDeclsToEmit.push_back(GD);
623     else {
624       // Otherwise, remember that we saw a deferred decl with this name.  The
625       // first use of the mangled name will cause it to move into
626       // DeferredDeclsToEmit.
627       DeferredDecls[MangledName] = GD;
628     }
629     return;
630   }
631 
632   // Otherwise emit the definition.
633   EmitGlobalDefinition(GD);
634 }
635 
636 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
637   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
638 
639   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
640                                  Context.getSourceManager(),
641                                  "Generating code for declaration");
642 
643   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
644     getVtableInfo().MaybeEmitVtable(GD);
645     if (MD->isVirtual() && MD->isOutOfLine() &&
646         (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) {
647       if (isa<CXXDestructorDecl>(D)) {
648         GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()),
649                            GD.getDtorType());
650         BuildThunksForVirtual(CanonGD);
651       } else {
652         BuildThunksForVirtual(MD->getCanonicalDecl());
653       }
654     }
655   }
656 
657   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
658     EmitCXXConstructor(CD, GD.getCtorType());
659   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
660     EmitCXXDestructor(DD, GD.getDtorType());
661   else if (isa<FunctionDecl>(D))
662     EmitGlobalFunctionDefinition(GD);
663   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
664     EmitGlobalVarDefinition(VD);
665   else {
666     assert(0 && "Invalid argument to EmitGlobalDefinition()");
667   }
668 }
669 
670 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
671 /// module, create and return an llvm Function with the specified type. If there
672 /// is something in the module with the specified name, return it potentially
673 /// bitcasted to the right type.
674 ///
675 /// If D is non-null, it specifies a decl that correspond to this.  This is used
676 /// to set the attributes on the function when it is first created.
677 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
678                                                        const llvm::Type *Ty,
679                                                        GlobalDecl D) {
680   // Lookup the entry, lazily creating it if necessary.
681   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
682   if (Entry) {
683     if (Entry->getType()->getElementType() == Ty)
684       return Entry;
685 
686     // Make sure the result is of the correct type.
687     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
688     return llvm::ConstantExpr::getBitCast(Entry, PTy);
689   }
690 
691   // This function doesn't have a complete type (for example, the return
692   // type is an incomplete struct). Use a fake type instead, and make
693   // sure not to try to set attributes.
694   bool IsIncompleteFunction = false;
695   if (!isa<llvm::FunctionType>(Ty)) {
696     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
697                                  std::vector<const llvm::Type*>(), false);
698     IsIncompleteFunction = true;
699   }
700   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
701                                              llvm::Function::ExternalLinkage,
702                                              "", &getModule());
703   F->setName(MangledName);
704   if (D.getDecl())
705     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
706                           IsIncompleteFunction);
707   Entry = F;
708 
709   // This is the first use or definition of a mangled name.  If there is a
710   // deferred decl with this name, remember that we need to emit it at the end
711   // of the file.
712   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
713     DeferredDecls.find(MangledName);
714   if (DDI != DeferredDecls.end()) {
715     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
716     // list, and remove it from DeferredDecls (since we don't need it anymore).
717     DeferredDeclsToEmit.push_back(DDI->second);
718     DeferredDecls.erase(DDI);
719   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
720     // If this the first reference to a C++ inline function in a class, queue up
721     // the deferred function body for emission.  These are not seen as
722     // top-level declarations.
723     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
724       DeferredDeclsToEmit.push_back(D);
725     // A called constructor which has no definition or declaration need be
726     // synthesized.
727     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
728       if (CD->isImplicit())
729         DeferredDeclsToEmit.push_back(D);
730     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
731       if (DD->isImplicit())
732         DeferredDeclsToEmit.push_back(D);
733     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
734       if (MD->isCopyAssignment() && MD->isImplicit())
735         DeferredDeclsToEmit.push_back(D);
736     }
737   }
738 
739   return F;
740 }
741 
742 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
743 /// non-null, then this function will use the specified type if it has to
744 /// create it (this occurs when we see a definition of the function).
745 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
746                                                  const llvm::Type *Ty) {
747   // If there was no specific requested type, just convert it now.
748   if (!Ty)
749     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
750   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
751 }
752 
753 /// CreateRuntimeFunction - Create a new runtime function with the specified
754 /// type and name.
755 llvm::Constant *
756 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
757                                      const char *Name) {
758   // Convert Name to be a uniqued string from the IdentifierInfo table.
759   Name = getContext().Idents.get(Name).getNameStart();
760   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
761 }
762 
763 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
764   if (!D->getType().isConstant(Context))
765     return false;
766   if (Context.getLangOptions().CPlusPlus &&
767       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
768     // FIXME: We should do something fancier here!
769     return false;
770   }
771   return true;
772 }
773 
774 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
775 /// create and return an llvm GlobalVariable with the specified type.  If there
776 /// is something in the module with the specified name, return it potentially
777 /// bitcasted to the right type.
778 ///
779 /// If D is non-null, it specifies a decl that correspond to this.  This is used
780 /// to set the attributes on the global when it is first created.
781 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
782                                                      const llvm::PointerType*Ty,
783                                                      const VarDecl *D) {
784   // Lookup the entry, lazily creating it if necessary.
785   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
786   if (Entry) {
787     if (Entry->getType() == Ty)
788       return Entry;
789 
790     // Make sure the result is of the correct type.
791     return llvm::ConstantExpr::getBitCast(Entry, Ty);
792   }
793 
794   // This is the first use or definition of a mangled name.  If there is a
795   // deferred decl with this name, remember that we need to emit it at the end
796   // of the file.
797   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
798     DeferredDecls.find(MangledName);
799   if (DDI != DeferredDecls.end()) {
800     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
801     // list, and remove it from DeferredDecls (since we don't need it anymore).
802     DeferredDeclsToEmit.push_back(DDI->second);
803     DeferredDecls.erase(DDI);
804   }
805 
806   llvm::GlobalVariable *GV =
807     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
808                              llvm::GlobalValue::ExternalLinkage,
809                              0, "", 0,
810                              false, Ty->getAddressSpace());
811   GV->setName(MangledName);
812 
813   // Handle things which are present even on external declarations.
814   if (D) {
815     // FIXME: This code is overly simple and should be merged with other global
816     // handling.
817     GV->setConstant(DeclIsConstantGlobal(Context, D));
818 
819     // FIXME: Merge with other attribute handling code.
820     if (D->getStorageClass() == VarDecl::PrivateExtern)
821       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
822 
823     if (D->hasAttr<WeakAttr>() ||
824         D->hasAttr<WeakImportAttr>())
825       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
826 
827     GV->setThreadLocal(D->isThreadSpecified());
828   }
829 
830   return Entry = GV;
831 }
832 
833 
834 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
835 /// given global variable.  If Ty is non-null and if the global doesn't exist,
836 /// then it will be greated with the specified type instead of whatever the
837 /// normal requested type would be.
838 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
839                                                   const llvm::Type *Ty) {
840   assert(D->hasGlobalStorage() && "Not a global variable");
841   QualType ASTTy = D->getType();
842   if (Ty == 0)
843     Ty = getTypes().ConvertTypeForMem(ASTTy);
844 
845   const llvm::PointerType *PTy =
846     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
847   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
848 }
849 
850 /// CreateRuntimeVariable - Create a new runtime global variable with the
851 /// specified type and name.
852 llvm::Constant *
853 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
854                                      const char *Name) {
855   // Convert Name to be a uniqued string from the IdentifierInfo table.
856   Name = getContext().Idents.get(Name).getNameStart();
857   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
858 }
859 
860 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
861   assert(!D->getInit() && "Cannot emit definite definitions here!");
862 
863   if (MayDeferGeneration(D)) {
864     // If we have not seen a reference to this variable yet, place it
865     // into the deferred declarations table to be emitted if needed
866     // later.
867     const char *MangledName = getMangledName(D);
868     if (GlobalDeclMap.count(MangledName) == 0) {
869       DeferredDecls[MangledName] = D;
870       return;
871     }
872   }
873 
874   // The tentative definition is the only definition.
875   EmitGlobalVarDefinition(D);
876 }
877 
878 static CodeGenModule::GVALinkage
879 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
880   // Everything located semantically within an anonymous namespace is
881   // always internal.
882   if (VD->isInAnonymousNamespace())
883     return CodeGenModule::GVA_Internal;
884 
885   // Handle linkage for static data members.
886   if (VD->isStaticDataMember()) {
887     switch (VD->getTemplateSpecializationKind()) {
888     case TSK_Undeclared:
889     case TSK_ExplicitSpecialization:
890     case TSK_ExplicitInstantiationDefinition:
891       return CodeGenModule::GVA_StrongExternal;
892 
893     case TSK_ExplicitInstantiationDeclaration:
894       llvm::llvm_unreachable("Variable should not be instantiated");
895       // Fall through to treat this like any other instantiation.
896 
897     case TSK_ImplicitInstantiation:
898       return CodeGenModule::GVA_TemplateInstantiation;
899     }
900   }
901 
902   if (VD->getLinkage() == VarDecl::InternalLinkage)
903     return CodeGenModule::GVA_Internal;
904 
905   return CodeGenModule::GVA_StrongExternal;
906 }
907 
908 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
909   llvm::Constant *Init = 0;
910   QualType ASTTy = D->getType();
911 
912   if (D->getInit() == 0) {
913     // This is a tentative definition; tentative definitions are
914     // implicitly initialized with { 0 }.
915     //
916     // Note that tentative definitions are only emitted at the end of
917     // a translation unit, so they should never have incomplete
918     // type. In addition, EmitTentativeDefinition makes sure that we
919     // never attempt to emit a tentative definition if a real one
920     // exists. A use may still exists, however, so we still may need
921     // to do a RAUW.
922     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
923     Init = EmitNullConstant(D->getType());
924   } else {
925     Init = EmitConstantExpr(D->getInit(), D->getType());
926 
927     if (!Init) {
928       QualType T = D->getInit()->getType();
929       if (getLangOptions().CPlusPlus) {
930         CXXGlobalInits.push_back(D);
931         Init = EmitNullConstant(T);
932       } else {
933         ErrorUnsupported(D, "static initializer");
934         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
935       }
936     }
937   }
938 
939   const llvm::Type* InitType = Init->getType();
940   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
941 
942   // Strip off a bitcast if we got one back.
943   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
944     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
945            // all zero index gep.
946            CE->getOpcode() == llvm::Instruction::GetElementPtr);
947     Entry = CE->getOperand(0);
948   }
949 
950   // Entry is now either a Function or GlobalVariable.
951   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
952 
953   // We have a definition after a declaration with the wrong type.
954   // We must make a new GlobalVariable* and update everything that used OldGV
955   // (a declaration or tentative definition) with the new GlobalVariable*
956   // (which will be a definition).
957   //
958   // This happens if there is a prototype for a global (e.g.
959   // "extern int x[];") and then a definition of a different type (e.g.
960   // "int x[10];"). This also happens when an initializer has a different type
961   // from the type of the global (this happens with unions).
962   if (GV == 0 ||
963       GV->getType()->getElementType() != InitType ||
964       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
965 
966     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
967     GlobalDeclMap.erase(getMangledName(D));
968 
969     // Make a new global with the correct type, this is now guaranteed to work.
970     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
971     GV->takeName(cast<llvm::GlobalValue>(Entry));
972 
973     // Replace all uses of the old global with the new global
974     llvm::Constant *NewPtrForOldDecl =
975         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
976     Entry->replaceAllUsesWith(NewPtrForOldDecl);
977 
978     // Erase the old global, since it is no longer used.
979     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
980   }
981 
982   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
983     SourceManager &SM = Context.getSourceManager();
984     AddAnnotation(EmitAnnotateAttr(GV, AA,
985                               SM.getInstantiationLineNumber(D->getLocation())));
986   }
987 
988   GV->setInitializer(Init);
989 
990   // If it is safe to mark the global 'constant', do so now.
991   GV->setConstant(false);
992   if (DeclIsConstantGlobal(Context, D))
993     GV->setConstant(true);
994 
995   GV->setAlignment(getContext().getDeclAlignInBytes(D));
996 
997   // Set the llvm linkage type as appropriate.
998   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
999   if (Linkage == GVA_Internal)
1000     GV->setLinkage(llvm::Function::InternalLinkage);
1001   else if (D->hasAttr<DLLImportAttr>())
1002     GV->setLinkage(llvm::Function::DLLImportLinkage);
1003   else if (D->hasAttr<DLLExportAttr>())
1004     GV->setLinkage(llvm::Function::DLLExportLinkage);
1005   else if (D->hasAttr<WeakAttr>()) {
1006     if (GV->isConstant())
1007       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1008     else
1009       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1010   } else if (Linkage == GVA_TemplateInstantiation)
1011     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1012   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1013            !D->hasExternalStorage() && !D->getInit() &&
1014            !D->getAttr<SectionAttr>()) {
1015     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1016     // common vars aren't constant even if declared const.
1017     GV->setConstant(false);
1018   } else
1019     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1020 
1021   SetCommonAttributes(D, GV);
1022 
1023   // Emit global variable debug information.
1024   if (CGDebugInfo *DI = getDebugInfo()) {
1025     DI->setLocation(D->getLocation());
1026     DI->EmitGlobalVariable(GV, D);
1027   }
1028 }
1029 
1030 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1031 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1032 /// existing call uses of the old function in the module, this adjusts them to
1033 /// call the new function directly.
1034 ///
1035 /// This is not just a cleanup: the always_inline pass requires direct calls to
1036 /// functions to be able to inline them.  If there is a bitcast in the way, it
1037 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1038 /// run at -O0.
1039 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1040                                                       llvm::Function *NewFn) {
1041   // If we're redefining a global as a function, don't transform it.
1042   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1043   if (OldFn == 0) return;
1044 
1045   const llvm::Type *NewRetTy = NewFn->getReturnType();
1046   llvm::SmallVector<llvm::Value*, 4> ArgList;
1047 
1048   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1049        UI != E; ) {
1050     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1051     unsigned OpNo = UI.getOperandNo();
1052     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1053     if (!CI || OpNo != 0) continue;
1054 
1055     // If the return types don't match exactly, and if the call isn't dead, then
1056     // we can't transform this call.
1057     if (CI->getType() != NewRetTy && !CI->use_empty())
1058       continue;
1059 
1060     // If the function was passed too few arguments, don't transform.  If extra
1061     // arguments were passed, we silently drop them.  If any of the types
1062     // mismatch, we don't transform.
1063     unsigned ArgNo = 0;
1064     bool DontTransform = false;
1065     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1066          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1067       if (CI->getNumOperands()-1 == ArgNo ||
1068           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1069         DontTransform = true;
1070         break;
1071       }
1072     }
1073     if (DontTransform)
1074       continue;
1075 
1076     // Okay, we can transform this.  Create the new call instruction and copy
1077     // over the required information.
1078     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1079     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1080                                                      ArgList.end(), "", CI);
1081     ArgList.clear();
1082     if (!NewCall->getType()->isVoidTy())
1083       NewCall->takeName(CI);
1084     NewCall->setAttributes(CI->getAttributes());
1085     NewCall->setCallingConv(CI->getCallingConv());
1086 
1087     // Finally, remove the old call, replacing any uses with the new one.
1088     if (!CI->use_empty())
1089       CI->replaceAllUsesWith(NewCall);
1090 
1091     // Copy any custom metadata attached with CI.
1092     llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata();
1093     TheMetadata.copyMD(CI, NewCall);
1094 
1095     CI->eraseFromParent();
1096   }
1097 }
1098 
1099 
1100 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1101   const llvm::FunctionType *Ty;
1102   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1103 
1104   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1105     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1106 
1107     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1108   } else {
1109     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1110 
1111     // As a special case, make sure that definitions of K&R function
1112     // "type foo()" aren't declared as varargs (which forces the backend
1113     // to do unnecessary work).
1114     if (D->getType()->isFunctionNoProtoType()) {
1115       assert(Ty->isVarArg() && "Didn't lower type as expected");
1116       // Due to stret, the lowered function could have arguments.
1117       // Just create the same type as was lowered by ConvertType
1118       // but strip off the varargs bit.
1119       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1120       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1121     }
1122   }
1123 
1124   // Get or create the prototype for the function.
1125   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1126 
1127   // Strip off a bitcast if we got one back.
1128   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1129     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1130     Entry = CE->getOperand(0);
1131   }
1132 
1133 
1134   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1135     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1136 
1137     // If the types mismatch then we have to rewrite the definition.
1138     assert(OldFn->isDeclaration() &&
1139            "Shouldn't replace non-declaration");
1140 
1141     // F is the Function* for the one with the wrong type, we must make a new
1142     // Function* and update everything that used F (a declaration) with the new
1143     // Function* (which will be a definition).
1144     //
1145     // This happens if there is a prototype for a function
1146     // (e.g. "int f()") and then a definition of a different type
1147     // (e.g. "int f(int x)").  Start by making a new function of the
1148     // correct type, RAUW, then steal the name.
1149     GlobalDeclMap.erase(getMangledName(D));
1150     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1151     NewFn->takeName(OldFn);
1152 
1153     // If this is an implementation of a function without a prototype, try to
1154     // replace any existing uses of the function (which may be calls) with uses
1155     // of the new function
1156     if (D->getType()->isFunctionNoProtoType()) {
1157       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1158       OldFn->removeDeadConstantUsers();
1159     }
1160 
1161     // Replace uses of F with the Function we will endow with a body.
1162     if (!Entry->use_empty()) {
1163       llvm::Constant *NewPtrForOldDecl =
1164         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1165       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1166     }
1167 
1168     // Ok, delete the old function now, which is dead.
1169     OldFn->eraseFromParent();
1170 
1171     Entry = NewFn;
1172   }
1173 
1174   llvm::Function *Fn = cast<llvm::Function>(Entry);
1175 
1176   CodeGenFunction(*this).GenerateCode(D, Fn);
1177 
1178   SetFunctionDefinitionAttributes(D, Fn);
1179   SetLLVMFunctionAttributesForDefinition(D, Fn);
1180 
1181   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1182     AddGlobalCtor(Fn, CA->getPriority());
1183   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1184     AddGlobalDtor(Fn, DA->getPriority());
1185 }
1186 
1187 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1188   const AliasAttr *AA = D->getAttr<AliasAttr>();
1189   assert(AA && "Not an alias?");
1190 
1191   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1192 
1193   // Unique the name through the identifier table.
1194   const char *AliaseeName = AA->getAliasee().c_str();
1195   AliaseeName = getContext().Idents.get(AliaseeName).getNameStart();
1196 
1197   // Create a reference to the named value.  This ensures that it is emitted
1198   // if a deferred decl.
1199   llvm::Constant *Aliasee;
1200   if (isa<llvm::FunctionType>(DeclTy))
1201     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1202   else
1203     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1204                                     llvm::PointerType::getUnqual(DeclTy), 0);
1205 
1206   // Create the new alias itself, but don't set a name yet.
1207   llvm::GlobalValue *GA =
1208     new llvm::GlobalAlias(Aliasee->getType(),
1209                           llvm::Function::ExternalLinkage,
1210                           "", Aliasee, &getModule());
1211 
1212   // See if there is already something with the alias' name in the module.
1213   const char *MangledName = getMangledName(D);
1214   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1215 
1216   if (Entry && !Entry->isDeclaration()) {
1217     // If there is a definition in the module, then it wins over the alias.
1218     // This is dubious, but allow it to be safe.  Just ignore the alias.
1219     GA->eraseFromParent();
1220     return;
1221   }
1222 
1223   if (Entry) {
1224     // If there is a declaration in the module, then we had an extern followed
1225     // by the alias, as in:
1226     //   extern int test6();
1227     //   ...
1228     //   int test6() __attribute__((alias("test7")));
1229     //
1230     // Remove it and replace uses of it with the alias.
1231 
1232     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1233                                                           Entry->getType()));
1234     Entry->eraseFromParent();
1235   }
1236 
1237   // Now we know that there is no conflict, set the name.
1238   Entry = GA;
1239   GA->setName(MangledName);
1240 
1241   // Set attributes which are particular to an alias; this is a
1242   // specialization of the attributes which may be set on a global
1243   // variable/function.
1244   if (D->hasAttr<DLLExportAttr>()) {
1245     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1246       // The dllexport attribute is ignored for undefined symbols.
1247       if (FD->getBody())
1248         GA->setLinkage(llvm::Function::DLLExportLinkage);
1249     } else {
1250       GA->setLinkage(llvm::Function::DLLExportLinkage);
1251     }
1252   } else if (D->hasAttr<WeakAttr>() ||
1253              D->hasAttr<WeakImportAttr>()) {
1254     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1255   }
1256 
1257   SetCommonAttributes(D, GA);
1258 }
1259 
1260 /// getBuiltinLibFunction - Given a builtin id for a function like
1261 /// "__builtin_fabsf", return a Function* for "fabsf".
1262 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1263                                                   unsigned BuiltinID) {
1264   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1265           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1266          "isn't a lib fn");
1267 
1268   // Get the name, skip over the __builtin_ prefix (if necessary).
1269   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1270   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1271     Name += 10;
1272 
1273   const llvm::FunctionType *Ty =
1274     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1275 
1276   // Unique the name through the identifier table.
1277   Name = getContext().Idents.get(Name).getNameStart();
1278   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1279 }
1280 
1281 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1282                                             unsigned NumTys) {
1283   return llvm::Intrinsic::getDeclaration(&getModule(),
1284                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1285 }
1286 
1287 llvm::Function *CodeGenModule::getMemCpyFn() {
1288   if (MemCpyFn) return MemCpyFn;
1289   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1290   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1291 }
1292 
1293 llvm::Function *CodeGenModule::getMemMoveFn() {
1294   if (MemMoveFn) return MemMoveFn;
1295   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1296   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1297 }
1298 
1299 llvm::Function *CodeGenModule::getMemSetFn() {
1300   if (MemSetFn) return MemSetFn;
1301   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1302   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1303 }
1304 
1305 static llvm::StringMapEntry<llvm::Constant*> &
1306 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1307                          const StringLiteral *Literal,
1308                          bool TargetIsLSB,
1309                          bool &IsUTF16,
1310                          unsigned &StringLength) {
1311   unsigned NumBytes = Literal->getByteLength();
1312 
1313   // Check for simple case.
1314   if (!Literal->containsNonAsciiOrNull()) {
1315     StringLength = NumBytes;
1316     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1317                                                 StringLength));
1318   }
1319 
1320   // Otherwise, convert the UTF8 literals into a byte string.
1321   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1322   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1323   UTF16 *ToPtr = &ToBuf[0];
1324 
1325   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1326                                                &ToPtr, ToPtr + NumBytes,
1327                                                strictConversion);
1328 
1329   // Check for conversion failure.
1330   if (Result != conversionOK) {
1331     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1332     // this duplicate code.
1333     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1334     StringLength = NumBytes;
1335     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1336                                                 StringLength));
1337   }
1338 
1339   // ConvertUTF8toUTF16 returns the length in ToPtr.
1340   StringLength = ToPtr - &ToBuf[0];
1341 
1342   // Render the UTF-16 string into a byte array and convert to the target byte
1343   // order.
1344   //
1345   // FIXME: This isn't something we should need to do here.
1346   llvm::SmallString<128> AsBytes;
1347   AsBytes.reserve(StringLength * 2);
1348   for (unsigned i = 0; i != StringLength; ++i) {
1349     unsigned short Val = ToBuf[i];
1350     if (TargetIsLSB) {
1351       AsBytes.push_back(Val & 0xFF);
1352       AsBytes.push_back(Val >> 8);
1353     } else {
1354       AsBytes.push_back(Val >> 8);
1355       AsBytes.push_back(Val & 0xFF);
1356     }
1357   }
1358   // Append one extra null character, the second is automatically added by our
1359   // caller.
1360   AsBytes.push_back(0);
1361 
1362   IsUTF16 = true;
1363   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1364 }
1365 
1366 llvm::Constant *
1367 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1368   unsigned StringLength = 0;
1369   bool isUTF16 = false;
1370   llvm::StringMapEntry<llvm::Constant*> &Entry =
1371     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1372                              getTargetData().isLittleEndian(),
1373                              isUTF16, StringLength);
1374 
1375   if (llvm::Constant *C = Entry.getValue())
1376     return C;
1377 
1378   llvm::Constant *Zero =
1379       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1380   llvm::Constant *Zeros[] = { Zero, Zero };
1381 
1382   // If we don't already have it, get __CFConstantStringClassReference.
1383   if (!CFConstantStringClassRef) {
1384     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1385     Ty = llvm::ArrayType::get(Ty, 0);
1386     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1387                                            "__CFConstantStringClassReference");
1388     // Decay array -> ptr
1389     CFConstantStringClassRef =
1390       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1391   }
1392 
1393   QualType CFTy = getContext().getCFConstantStringType();
1394 
1395   const llvm::StructType *STy =
1396     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1397 
1398   std::vector<llvm::Constant*> Fields(4);
1399 
1400   // Class pointer.
1401   Fields[0] = CFConstantStringClassRef;
1402 
1403   // Flags.
1404   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1405   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1406     llvm::ConstantInt::get(Ty, 0x07C8);
1407 
1408   // String pointer.
1409   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1410 
1411   const char *Sect = 0;
1412   llvm::GlobalValue::LinkageTypes Linkage;
1413   bool isConstant;
1414   if (isUTF16) {
1415     Sect = getContext().Target.getUnicodeStringSection();
1416     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1417     Linkage = llvm::GlobalValue::InternalLinkage;
1418     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1419     // does make plain ascii ones writable.
1420     isConstant = true;
1421   } else {
1422     Linkage = llvm::GlobalValue::PrivateLinkage;
1423     isConstant = !Features.WritableStrings;
1424   }
1425 
1426   llvm::GlobalVariable *GV =
1427     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1428                              ".str");
1429   if (Sect)
1430     GV->setSection(Sect);
1431   if (isUTF16) {
1432     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1433     GV->setAlignment(Align);
1434   }
1435   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1436 
1437   // String length.
1438   Ty = getTypes().ConvertType(getContext().LongTy);
1439   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1440 
1441   // The struct.
1442   C = llvm::ConstantStruct::get(STy, Fields);
1443   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1444                                 llvm::GlobalVariable::PrivateLinkage, C,
1445                                 "_unnamed_cfstring_");
1446   if (const char *Sect = getContext().Target.getCFStringSection())
1447     GV->setSection(Sect);
1448   Entry.setValue(GV);
1449 
1450   return GV;
1451 }
1452 
1453 /// GetStringForStringLiteral - Return the appropriate bytes for a
1454 /// string literal, properly padded to match the literal type.
1455 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1456   const char *StrData = E->getStrData();
1457   unsigned Len = E->getByteLength();
1458 
1459   const ConstantArrayType *CAT =
1460     getContext().getAsConstantArrayType(E->getType());
1461   assert(CAT && "String isn't pointer or array!");
1462 
1463   // Resize the string to the right size.
1464   std::string Str(StrData, StrData+Len);
1465   uint64_t RealLen = CAT->getSize().getZExtValue();
1466 
1467   if (E->isWide())
1468     RealLen *= getContext().Target.getWCharWidth()/8;
1469 
1470   Str.resize(RealLen, '\0');
1471 
1472   return Str;
1473 }
1474 
1475 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1476 /// constant array for the given string literal.
1477 llvm::Constant *
1478 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1479   // FIXME: This can be more efficient.
1480   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1481   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1482   if (S->isWide()) {
1483     llvm::Type *DestTy =
1484         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1485     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1486   }
1487   return C;
1488 }
1489 
1490 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1491 /// array for the given ObjCEncodeExpr node.
1492 llvm::Constant *
1493 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1494   std::string Str;
1495   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1496 
1497   return GetAddrOfConstantCString(Str);
1498 }
1499 
1500 
1501 /// GenerateWritableString -- Creates storage for a string literal.
1502 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1503                                              bool constant,
1504                                              CodeGenModule &CGM,
1505                                              const char *GlobalName) {
1506   // Create Constant for this string literal. Don't add a '\0'.
1507   llvm::Constant *C =
1508       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1509 
1510   // Create a global variable for this string
1511   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1512                                   llvm::GlobalValue::PrivateLinkage,
1513                                   C, GlobalName);
1514 }
1515 
1516 /// GetAddrOfConstantString - Returns a pointer to a character array
1517 /// containing the literal. This contents are exactly that of the
1518 /// given string, i.e. it will not be null terminated automatically;
1519 /// see GetAddrOfConstantCString. Note that whether the result is
1520 /// actually a pointer to an LLVM constant depends on
1521 /// Feature.WriteableStrings.
1522 ///
1523 /// The result has pointer to array type.
1524 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1525                                                        const char *GlobalName) {
1526   bool IsConstant = !Features.WritableStrings;
1527 
1528   // Get the default prefix if a name wasn't specified.
1529   if (!GlobalName)
1530     GlobalName = ".str";
1531 
1532   // Don't share any string literals if strings aren't constant.
1533   if (!IsConstant)
1534     return GenerateStringLiteral(str, false, *this, GlobalName);
1535 
1536   llvm::StringMapEntry<llvm::Constant *> &Entry =
1537     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1538 
1539   if (Entry.getValue())
1540     return Entry.getValue();
1541 
1542   // Create a global variable for this.
1543   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1544   Entry.setValue(C);
1545   return C;
1546 }
1547 
1548 /// GetAddrOfConstantCString - Returns a pointer to a character
1549 /// array containing the literal and a terminating '\-'
1550 /// character. The result has pointer to array type.
1551 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1552                                                         const char *GlobalName){
1553   return GetAddrOfConstantString(str + '\0', GlobalName);
1554 }
1555 
1556 /// EmitObjCPropertyImplementations - Emit information for synthesized
1557 /// properties for an implementation.
1558 void CodeGenModule::EmitObjCPropertyImplementations(const
1559                                                     ObjCImplementationDecl *D) {
1560   for (ObjCImplementationDecl::propimpl_iterator
1561          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1562     ObjCPropertyImplDecl *PID = *i;
1563 
1564     // Dynamic is just for type-checking.
1565     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1566       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1567 
1568       // Determine which methods need to be implemented, some may have
1569       // been overridden. Note that ::isSynthesized is not the method
1570       // we want, that just indicates if the decl came from a
1571       // property. What we want to know is if the method is defined in
1572       // this implementation.
1573       if (!D->getInstanceMethod(PD->getGetterName()))
1574         CodeGenFunction(*this).GenerateObjCGetter(
1575                                  const_cast<ObjCImplementationDecl *>(D), PID);
1576       if (!PD->isReadOnly() &&
1577           !D->getInstanceMethod(PD->getSetterName()))
1578         CodeGenFunction(*this).GenerateObjCSetter(
1579                                  const_cast<ObjCImplementationDecl *>(D), PID);
1580     }
1581   }
1582 }
1583 
1584 /// EmitNamespace - Emit all declarations in a namespace.
1585 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1586   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1587        I != E; ++I)
1588     EmitTopLevelDecl(*I);
1589 }
1590 
1591 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1592 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1593   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1594       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1595     ErrorUnsupported(LSD, "linkage spec");
1596     return;
1597   }
1598 
1599   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1600        I != E; ++I)
1601     EmitTopLevelDecl(*I);
1602 }
1603 
1604 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1605 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1606   // If an error has occurred, stop code generation, but continue
1607   // parsing and semantic analysis (to ensure all warnings and errors
1608   // are emitted).
1609   if (Diags.hasErrorOccurred())
1610     return;
1611 
1612   // Ignore dependent declarations.
1613   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1614     return;
1615 
1616   switch (D->getKind()) {
1617   case Decl::CXXConversion:
1618   case Decl::CXXMethod:
1619   case Decl::Function:
1620     // Skip function templates
1621     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1622       return;
1623 
1624     EmitGlobal(cast<FunctionDecl>(D));
1625     break;
1626 
1627   case Decl::Var:
1628     EmitGlobal(cast<VarDecl>(D));
1629     break;
1630 
1631   // C++ Decls
1632   case Decl::Namespace:
1633     EmitNamespace(cast<NamespaceDecl>(D));
1634     break;
1635     // No code generation needed.
1636   case Decl::UsingShadow:
1637   case Decl::Using:
1638   case Decl::UsingDirective:
1639   case Decl::ClassTemplate:
1640   case Decl::FunctionTemplate:
1641   case Decl::NamespaceAlias:
1642     break;
1643   case Decl::CXXConstructor:
1644     // Skip function templates
1645     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1646       return;
1647 
1648     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1649     break;
1650   case Decl::CXXDestructor:
1651     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1652     break;
1653 
1654   case Decl::StaticAssert:
1655     // Nothing to do.
1656     break;
1657 
1658   // Objective-C Decls
1659 
1660   // Forward declarations, no (immediate) code generation.
1661   case Decl::ObjCClass:
1662   case Decl::ObjCForwardProtocol:
1663   case Decl::ObjCCategory:
1664   case Decl::ObjCInterface:
1665     break;
1666 
1667   case Decl::ObjCProtocol:
1668     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1669     break;
1670 
1671   case Decl::ObjCCategoryImpl:
1672     // Categories have properties but don't support synthesize so we
1673     // can ignore them here.
1674     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1675     break;
1676 
1677   case Decl::ObjCImplementation: {
1678     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1679     EmitObjCPropertyImplementations(OMD);
1680     Runtime->GenerateClass(OMD);
1681     break;
1682   }
1683   case Decl::ObjCMethod: {
1684     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1685     // If this is not a prototype, emit the body.
1686     if (OMD->getBody())
1687       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1688     break;
1689   }
1690   case Decl::ObjCCompatibleAlias:
1691     // compatibility-alias is a directive and has no code gen.
1692     break;
1693 
1694   case Decl::LinkageSpec:
1695     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1696     break;
1697 
1698   case Decl::FileScopeAsm: {
1699     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1700     llvm::StringRef AsmString = AD->getAsmString()->getString();
1701 
1702     const std::string &S = getModule().getModuleInlineAsm();
1703     if (S.empty())
1704       getModule().setModuleInlineAsm(AsmString);
1705     else
1706       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1707     break;
1708   }
1709 
1710   default:
1711     // Make sure we handled everything we should, every other kind is a
1712     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1713     // function. Need to recode Decl::Kind to do that easily.
1714     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1715   }
1716 }
1717