1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "CodeGenTBAA.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/Basic/Builtins.h" 37 #include "clang/Basic/CharInfo.h" 38 #include "clang/Basic/Diagnostic.h" 39 #include "clang/Basic/Module.h" 40 #include "clang/Basic/SourceManager.h" 41 #include "clang/Basic/TargetInfo.h" 42 #include "clang/Basic/Version.h" 43 #include "clang/Frontend/CodeGenOptions.h" 44 #include "clang/Sema/SemaDiagnostic.h" 45 #include "llvm/ADT/APSInt.h" 46 #include "llvm/ADT/Triple.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/CallingConv.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/ProfileData/InstrProfReader.h" 54 #include "llvm/Support/ConvertUTF.h" 55 #include "llvm/Support/ErrorHandling.h" 56 57 using namespace clang; 58 using namespace CodeGen; 59 60 static const char AnnotationSection[] = "llvm.metadata"; 61 62 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 63 switch (CGM.getTarget().getCXXABI().getKind()) { 64 case TargetCXXABI::GenericAArch64: 65 case TargetCXXABI::GenericARM: 66 case TargetCXXABI::iOS: 67 case TargetCXXABI::iOS64: 68 case TargetCXXABI::GenericMIPS: 69 case TargetCXXABI::GenericItanium: 70 case TargetCXXABI::WebAssembly: 71 return CreateItaniumCXXABI(CGM); 72 case TargetCXXABI::Microsoft: 73 return CreateMicrosoftCXXABI(CGM); 74 } 75 76 llvm_unreachable("invalid C++ ABI kind"); 77 } 78 79 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 80 const PreprocessorOptions &PPO, 81 const CodeGenOptions &CGO, llvm::Module &M, 82 DiagnosticsEngine &diags, 83 CoverageSourceInfo *CoverageInfo) 84 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 85 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 86 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 87 VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr), 88 Types(*this), VTables(*this), ObjCRuntime(nullptr), 89 OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr), 90 DebugInfo(nullptr), ObjCData(nullptr), 91 NoObjCARCExceptionsMetadata(nullptr), PGOReader(nullptr), 92 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 93 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 94 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 95 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 96 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 97 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 FloatTy = llvm::Type::getFloatTy(LLVMContext); 107 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 108 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 109 PointerAlignInBytes = 110 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 111 IntAlignInBytes = 112 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 113 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 114 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 115 Int8PtrTy = Int8Ty->getPointerTo(0); 116 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 117 118 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 119 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 120 121 if (LangOpts.ObjC1) 122 createObjCRuntime(); 123 if (LangOpts.OpenCL) 124 createOpenCLRuntime(); 125 if (LangOpts.OpenMP) 126 createOpenMPRuntime(); 127 if (LangOpts.CUDA) 128 createCUDARuntime(); 129 130 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 131 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 132 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 133 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 134 getCXXABI().getMangleContext()); 135 136 // If debug info or coverage generation is enabled, create the CGDebugInfo 137 // object. 138 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 139 CodeGenOpts.EmitGcovArcs || 140 CodeGenOpts.EmitGcovNotes) 141 DebugInfo = new CGDebugInfo(*this); 142 143 Block.GlobalUniqueCount = 0; 144 145 if (C.getLangOpts().ObjC1) 146 ObjCData = new ObjCEntrypoints(); 147 148 if (!CodeGenOpts.InstrProfileInput.empty()) { 149 auto ReaderOrErr = 150 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 151 if (std::error_code EC = ReaderOrErr.getError()) { 152 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 153 "Could not read profile %0: %1"); 154 getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput 155 << EC.message(); 156 } else 157 PGOReader = std::move(ReaderOrErr.get()); 158 } 159 160 // If coverage mapping generation is enabled, create the 161 // CoverageMappingModuleGen object. 162 if (CodeGenOpts.CoverageMapping) 163 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 164 } 165 166 CodeGenModule::~CodeGenModule() { 167 delete ObjCRuntime; 168 delete OpenCLRuntime; 169 delete OpenMPRuntime; 170 delete CUDARuntime; 171 delete TheTargetCodeGenInfo; 172 delete TBAA; 173 delete DebugInfo; 174 delete ObjCData; 175 } 176 177 void CodeGenModule::createObjCRuntime() { 178 // This is just isGNUFamily(), but we want to force implementors of 179 // new ABIs to decide how best to do this. 180 switch (LangOpts.ObjCRuntime.getKind()) { 181 case ObjCRuntime::GNUstep: 182 case ObjCRuntime::GCC: 183 case ObjCRuntime::ObjFW: 184 ObjCRuntime = CreateGNUObjCRuntime(*this); 185 return; 186 187 case ObjCRuntime::FragileMacOSX: 188 case ObjCRuntime::MacOSX: 189 case ObjCRuntime::iOS: 190 ObjCRuntime = CreateMacObjCRuntime(*this); 191 return; 192 } 193 llvm_unreachable("bad runtime kind"); 194 } 195 196 void CodeGenModule::createOpenCLRuntime() { 197 OpenCLRuntime = new CGOpenCLRuntime(*this); 198 } 199 200 void CodeGenModule::createOpenMPRuntime() { 201 OpenMPRuntime = new CGOpenMPRuntime(*this); 202 } 203 204 void CodeGenModule::createCUDARuntime() { 205 CUDARuntime = CreateNVCUDARuntime(*this); 206 } 207 208 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 209 Replacements[Name] = C; 210 } 211 212 void CodeGenModule::applyReplacements() { 213 for (auto &I : Replacements) { 214 StringRef MangledName = I.first(); 215 llvm::Constant *Replacement = I.second; 216 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 217 if (!Entry) 218 continue; 219 auto *OldF = cast<llvm::Function>(Entry); 220 auto *NewF = dyn_cast<llvm::Function>(Replacement); 221 if (!NewF) { 222 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 223 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 224 } else { 225 auto *CE = cast<llvm::ConstantExpr>(Replacement); 226 assert(CE->getOpcode() == llvm::Instruction::BitCast || 227 CE->getOpcode() == llvm::Instruction::GetElementPtr); 228 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 229 } 230 } 231 232 // Replace old with new, but keep the old order. 233 OldF->replaceAllUsesWith(Replacement); 234 if (NewF) { 235 NewF->removeFromParent(); 236 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 237 } 238 OldF->eraseFromParent(); 239 } 240 } 241 242 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 243 GlobalValReplacements.push_back(std::make_pair(GV, C)); 244 } 245 246 void CodeGenModule::applyGlobalValReplacements() { 247 for (auto &I : GlobalValReplacements) { 248 llvm::GlobalValue *GV = I.first; 249 llvm::Constant *C = I.second; 250 251 GV->replaceAllUsesWith(C); 252 GV->eraseFromParent(); 253 } 254 } 255 256 // This is only used in aliases that we created and we know they have a 257 // linear structure. 258 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 259 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 260 const llvm::Constant *C = &GA; 261 for (;;) { 262 C = C->stripPointerCasts(); 263 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 264 return GO; 265 // stripPointerCasts will not walk over weak aliases. 266 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 267 if (!GA2) 268 return nullptr; 269 if (!Visited.insert(GA2).second) 270 return nullptr; 271 C = GA2->getAliasee(); 272 } 273 } 274 275 void CodeGenModule::checkAliases() { 276 // Check if the constructed aliases are well formed. It is really unfortunate 277 // that we have to do this in CodeGen, but we only construct mangled names 278 // and aliases during codegen. 279 bool Error = false; 280 DiagnosticsEngine &Diags = getDiags(); 281 for (const GlobalDecl &GD : Aliases) { 282 const auto *D = cast<ValueDecl>(GD.getDecl()); 283 const AliasAttr *AA = D->getAttr<AliasAttr>(); 284 StringRef MangledName = getMangledName(GD); 285 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 286 auto *Alias = cast<llvm::GlobalAlias>(Entry); 287 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 288 if (!GV) { 289 Error = true; 290 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 291 } else if (GV->isDeclaration()) { 292 Error = true; 293 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 294 } 295 296 llvm::Constant *Aliasee = Alias->getAliasee(); 297 llvm::GlobalValue *AliaseeGV; 298 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 299 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 300 else 301 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 302 303 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 304 StringRef AliasSection = SA->getName(); 305 if (AliasSection != AliaseeGV->getSection()) 306 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 307 << AliasSection; 308 } 309 310 // We have to handle alias to weak aliases in here. LLVM itself disallows 311 // this since the object semantics would not match the IL one. For 312 // compatibility with gcc we implement it by just pointing the alias 313 // to its aliasee's aliasee. We also warn, since the user is probably 314 // expecting the link to be weak. 315 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 316 if (GA->mayBeOverridden()) { 317 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 318 << GV->getName() << GA->getName(); 319 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 320 GA->getAliasee(), Alias->getType()); 321 Alias->setAliasee(Aliasee); 322 } 323 } 324 } 325 if (!Error) 326 return; 327 328 for (const GlobalDecl &GD : Aliases) { 329 StringRef MangledName = getMangledName(GD); 330 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 331 auto *Alias = cast<llvm::GlobalAlias>(Entry); 332 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 333 Alias->eraseFromParent(); 334 } 335 } 336 337 void CodeGenModule::clear() { 338 DeferredDeclsToEmit.clear(); 339 if (OpenMPRuntime) 340 OpenMPRuntime->clear(); 341 } 342 343 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 344 StringRef MainFile) { 345 if (!hasDiagnostics()) 346 return; 347 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 348 if (MainFile.empty()) 349 MainFile = "<stdin>"; 350 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 351 } else 352 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 353 << Mismatched; 354 } 355 356 void CodeGenModule::Release() { 357 EmitDeferred(); 358 applyGlobalValReplacements(); 359 applyReplacements(); 360 checkAliases(); 361 EmitCXXGlobalInitFunc(); 362 EmitCXXGlobalDtorFunc(); 363 EmitCXXThreadLocalInitFunc(); 364 if (ObjCRuntime) 365 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 366 AddGlobalCtor(ObjCInitFunction); 367 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 368 CUDARuntime) { 369 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 370 AddGlobalCtor(CudaCtorFunction); 371 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 372 AddGlobalDtor(CudaDtorFunction); 373 } 374 if (PGOReader && PGOStats.hasDiagnostics()) 375 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 376 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 377 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 378 EmitGlobalAnnotations(); 379 EmitStaticExternCAliases(); 380 EmitDeferredUnusedCoverageMappings(); 381 if (CoverageMapping) 382 CoverageMapping->emit(); 383 emitLLVMUsed(); 384 385 if (CodeGenOpts.Autolink && 386 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 387 EmitModuleLinkOptions(); 388 } 389 if (CodeGenOpts.DwarfVersion) { 390 // We actually want the latest version when there are conflicts. 391 // We can change from Warning to Latest if such mode is supported. 392 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 393 CodeGenOpts.DwarfVersion); 394 } 395 if (CodeGenOpts.EmitCodeView) { 396 // Indicate that we want CodeView in the metadata. 397 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 398 } 399 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 400 // We don't support LTO with 2 with different StrictVTablePointers 401 // FIXME: we could support it by stripping all the information introduced 402 // by StrictVTablePointers. 403 404 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 405 406 llvm::Metadata *Ops[2] = { 407 llvm::MDString::get(VMContext, "StrictVTablePointers"), 408 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 409 llvm::Type::getInt32Ty(VMContext), 1))}; 410 411 getModule().addModuleFlag(llvm::Module::Require, 412 "StrictVTablePointersRequirement", 413 llvm::MDNode::get(VMContext, Ops)); 414 } 415 if (DebugInfo) 416 // We support a single version in the linked module. The LLVM 417 // parser will drop debug info with a different version number 418 // (and warn about it, too). 419 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 420 llvm::DEBUG_METADATA_VERSION); 421 422 // We need to record the widths of enums and wchar_t, so that we can generate 423 // the correct build attributes in the ARM backend. 424 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 425 if ( Arch == llvm::Triple::arm 426 || Arch == llvm::Triple::armeb 427 || Arch == llvm::Triple::thumb 428 || Arch == llvm::Triple::thumbeb) { 429 // Width of wchar_t in bytes 430 uint64_t WCharWidth = 431 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 432 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 433 434 // The minimum width of an enum in bytes 435 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 436 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 437 } 438 439 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 440 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 441 switch (PLevel) { 442 case 0: break; 443 case 1: PL = llvm::PICLevel::Small; break; 444 case 2: PL = llvm::PICLevel::Large; break; 445 default: llvm_unreachable("Invalid PIC Level"); 446 } 447 448 getModule().setPICLevel(PL); 449 } 450 451 SimplifyPersonality(); 452 453 if (getCodeGenOpts().EmitDeclMetadata) 454 EmitDeclMetadata(); 455 456 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 457 EmitCoverageFile(); 458 459 if (DebugInfo) 460 DebugInfo->finalize(); 461 462 EmitVersionIdentMetadata(); 463 464 EmitTargetMetadata(); 465 } 466 467 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 468 // Make sure that this type is translated. 469 Types.UpdateCompletedType(TD); 470 } 471 472 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 473 if (!TBAA) 474 return nullptr; 475 return TBAA->getTBAAInfo(QTy); 476 } 477 478 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 479 if (!TBAA) 480 return nullptr; 481 return TBAA->getTBAAInfoForVTablePtr(); 482 } 483 484 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 485 if (!TBAA) 486 return nullptr; 487 return TBAA->getTBAAStructInfo(QTy); 488 } 489 490 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 491 llvm::MDNode *AccessN, 492 uint64_t O) { 493 if (!TBAA) 494 return nullptr; 495 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 496 } 497 498 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 499 /// and struct-path aware TBAA, the tag has the same format: 500 /// base type, access type and offset. 501 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 502 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 503 llvm::MDNode *TBAAInfo, 504 bool ConvertTypeToTag) { 505 if (ConvertTypeToTag && TBAA) 506 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 507 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 508 else 509 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 510 } 511 512 void CodeGenModule::DecorateInstructionWithInvariantGroup( 513 llvm::Instruction *I, const CXXRecordDecl *RD) { 514 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 515 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 516 // Check if we have to wrap MDString in MDNode. 517 if (!MetaDataNode) 518 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 519 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 520 } 521 522 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 523 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 524 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 525 } 526 527 /// ErrorUnsupported - Print out an error that codegen doesn't support the 528 /// specified stmt yet. 529 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 530 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 531 "cannot compile this %0 yet"); 532 std::string Msg = Type; 533 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 534 << Msg << S->getSourceRange(); 535 } 536 537 /// ErrorUnsupported - Print out an error that codegen doesn't support the 538 /// specified decl yet. 539 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 540 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 541 "cannot compile this %0 yet"); 542 std::string Msg = Type; 543 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 544 } 545 546 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 547 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 548 } 549 550 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 551 const NamedDecl *D) const { 552 // Internal definitions always have default visibility. 553 if (GV->hasLocalLinkage()) { 554 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 555 return; 556 } 557 558 // Set visibility for definitions. 559 LinkageInfo LV = D->getLinkageAndVisibility(); 560 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 561 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 562 } 563 564 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 565 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 566 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 567 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 568 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 569 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 570 } 571 572 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 573 CodeGenOptions::TLSModel M) { 574 switch (M) { 575 case CodeGenOptions::GeneralDynamicTLSModel: 576 return llvm::GlobalVariable::GeneralDynamicTLSModel; 577 case CodeGenOptions::LocalDynamicTLSModel: 578 return llvm::GlobalVariable::LocalDynamicTLSModel; 579 case CodeGenOptions::InitialExecTLSModel: 580 return llvm::GlobalVariable::InitialExecTLSModel; 581 case CodeGenOptions::LocalExecTLSModel: 582 return llvm::GlobalVariable::LocalExecTLSModel; 583 } 584 llvm_unreachable("Invalid TLS model!"); 585 } 586 587 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 588 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 589 590 llvm::GlobalValue::ThreadLocalMode TLM; 591 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 592 593 // Override the TLS model if it is explicitly specified. 594 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 595 TLM = GetLLVMTLSModel(Attr->getModel()); 596 } 597 598 GV->setThreadLocalMode(TLM); 599 } 600 601 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 602 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 603 if (!FoundStr.empty()) 604 return FoundStr; 605 606 const auto *ND = cast<NamedDecl>(GD.getDecl()); 607 SmallString<256> Buffer; 608 StringRef Str; 609 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 610 llvm::raw_svector_ostream Out(Buffer); 611 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 612 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 613 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 614 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 615 else 616 getCXXABI().getMangleContext().mangleName(ND, Out); 617 Str = Out.str(); 618 } else { 619 IdentifierInfo *II = ND->getIdentifier(); 620 assert(II && "Attempt to mangle unnamed decl."); 621 Str = II->getName(); 622 } 623 624 // Keep the first result in the case of a mangling collision. 625 auto Result = Manglings.insert(std::make_pair(Str, GD)); 626 return FoundStr = Result.first->first(); 627 } 628 629 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 630 const BlockDecl *BD) { 631 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 632 const Decl *D = GD.getDecl(); 633 634 SmallString<256> Buffer; 635 llvm::raw_svector_ostream Out(Buffer); 636 if (!D) 637 MangleCtx.mangleGlobalBlock(BD, 638 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 639 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 640 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 641 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 642 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 643 else 644 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 645 646 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 647 return Result.first->first(); 648 } 649 650 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 651 return getModule().getNamedValue(Name); 652 } 653 654 /// AddGlobalCtor - Add a function to the list that will be called before 655 /// main() runs. 656 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 657 llvm::Constant *AssociatedData) { 658 // FIXME: Type coercion of void()* types. 659 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 660 } 661 662 /// AddGlobalDtor - Add a function to the list that will be called 663 /// when the module is unloaded. 664 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 665 // FIXME: Type coercion of void()* types. 666 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 667 } 668 669 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 670 // Ctor function type is void()*. 671 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 672 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 673 674 // Get the type of a ctor entry, { i32, void ()*, i8* }. 675 llvm::StructType *CtorStructTy = llvm::StructType::get( 676 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 677 678 // Construct the constructor and destructor arrays. 679 SmallVector<llvm::Constant *, 8> Ctors; 680 for (const auto &I : Fns) { 681 llvm::Constant *S[] = { 682 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 683 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 684 (I.AssociatedData 685 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 686 : llvm::Constant::getNullValue(VoidPtrTy))}; 687 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 688 } 689 690 if (!Ctors.empty()) { 691 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 692 new llvm::GlobalVariable(TheModule, AT, false, 693 llvm::GlobalValue::AppendingLinkage, 694 llvm::ConstantArray::get(AT, Ctors), 695 GlobalName); 696 } 697 } 698 699 llvm::GlobalValue::LinkageTypes 700 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 701 const auto *D = cast<FunctionDecl>(GD.getDecl()); 702 703 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 704 705 if (isa<CXXDestructorDecl>(D) && 706 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 707 GD.getDtorType())) { 708 // Destructor variants in the Microsoft C++ ABI are always internal or 709 // linkonce_odr thunks emitted on an as-needed basis. 710 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 711 : llvm::GlobalValue::LinkOnceODRLinkage; 712 } 713 714 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 715 } 716 717 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 718 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 719 720 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 721 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 722 // Don't dllexport/import destructor thunks. 723 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 724 return; 725 } 726 } 727 728 if (FD->hasAttr<DLLImportAttr>()) 729 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 730 else if (FD->hasAttr<DLLExportAttr>()) 731 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 732 else 733 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 734 } 735 736 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 737 llvm::Function *F) { 738 setNonAliasAttributes(D, F); 739 } 740 741 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 742 const CGFunctionInfo &Info, 743 llvm::Function *F) { 744 unsigned CallingConv; 745 AttributeListType AttributeList; 746 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 747 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 748 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 749 } 750 751 /// Determines whether the language options require us to model 752 /// unwind exceptions. We treat -fexceptions as mandating this 753 /// except under the fragile ObjC ABI with only ObjC exceptions 754 /// enabled. This means, for example, that C with -fexceptions 755 /// enables this. 756 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 757 // If exceptions are completely disabled, obviously this is false. 758 if (!LangOpts.Exceptions) return false; 759 760 // If C++ exceptions are enabled, this is true. 761 if (LangOpts.CXXExceptions) return true; 762 763 // If ObjC exceptions are enabled, this depends on the ABI. 764 if (LangOpts.ObjCExceptions) { 765 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 766 } 767 768 return true; 769 } 770 771 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 772 llvm::Function *F) { 773 llvm::AttrBuilder B; 774 775 if (CodeGenOpts.UnwindTables) 776 B.addAttribute(llvm::Attribute::UWTable); 777 778 if (!hasUnwindExceptions(LangOpts)) 779 B.addAttribute(llvm::Attribute::NoUnwind); 780 781 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 782 B.addAttribute(llvm::Attribute::StackProtect); 783 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 784 B.addAttribute(llvm::Attribute::StackProtectStrong); 785 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 786 B.addAttribute(llvm::Attribute::StackProtectReq); 787 788 if (!D) { 789 F->addAttributes(llvm::AttributeSet::FunctionIndex, 790 llvm::AttributeSet::get( 791 F->getContext(), 792 llvm::AttributeSet::FunctionIndex, B)); 793 return; 794 } 795 796 if (D->hasAttr<NakedAttr>()) { 797 // Naked implies noinline: we should not be inlining such functions. 798 B.addAttribute(llvm::Attribute::Naked); 799 B.addAttribute(llvm::Attribute::NoInline); 800 } else if (D->hasAttr<NoDuplicateAttr>()) { 801 B.addAttribute(llvm::Attribute::NoDuplicate); 802 } else if (D->hasAttr<NoInlineAttr>()) { 803 B.addAttribute(llvm::Attribute::NoInline); 804 } else if (D->hasAttr<AlwaysInlineAttr>() && 805 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 806 llvm::Attribute::NoInline)) { 807 // (noinline wins over always_inline, and we can't specify both in IR) 808 B.addAttribute(llvm::Attribute::AlwaysInline); 809 } 810 811 if (D->hasAttr<ColdAttr>()) { 812 if (!D->hasAttr<OptimizeNoneAttr>()) 813 B.addAttribute(llvm::Attribute::OptimizeForSize); 814 B.addAttribute(llvm::Attribute::Cold); 815 } 816 817 if (D->hasAttr<MinSizeAttr>()) 818 B.addAttribute(llvm::Attribute::MinSize); 819 820 F->addAttributes(llvm::AttributeSet::FunctionIndex, 821 llvm::AttributeSet::get( 822 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 823 824 if (D->hasAttr<OptimizeNoneAttr>()) { 825 // OptimizeNone implies noinline; we should not be inlining such functions. 826 F->addFnAttr(llvm::Attribute::OptimizeNone); 827 F->addFnAttr(llvm::Attribute::NoInline); 828 829 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 830 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 831 F->removeFnAttr(llvm::Attribute::MinSize); 832 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 833 "OptimizeNone and AlwaysInline on same function!"); 834 835 // Attribute 'inlinehint' has no effect on 'optnone' functions. 836 // Explicitly remove it from the set of function attributes. 837 F->removeFnAttr(llvm::Attribute::InlineHint); 838 } 839 840 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 841 F->setUnnamedAddr(true); 842 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 843 if (MD->isVirtual()) 844 F->setUnnamedAddr(true); 845 846 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 847 if (alignment) 848 F->setAlignment(alignment); 849 850 // Some C++ ABIs require 2-byte alignment for member functions, in order to 851 // reserve a bit for differentiating between virtual and non-virtual member 852 // functions. If the current target's C++ ABI requires this and this is a 853 // member function, set its alignment accordingly. 854 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 855 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 856 F->setAlignment(2); 857 } 858 } 859 860 void CodeGenModule::SetCommonAttributes(const Decl *D, 861 llvm::GlobalValue *GV) { 862 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 863 setGlobalVisibility(GV, ND); 864 else 865 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 866 867 if (D && D->hasAttr<UsedAttr>()) 868 addUsedGlobal(GV); 869 } 870 871 void CodeGenModule::setAliasAttributes(const Decl *D, 872 llvm::GlobalValue *GV) { 873 SetCommonAttributes(D, GV); 874 875 // Process the dllexport attribute based on whether the original definition 876 // (not necessarily the aliasee) was exported. 877 if (D->hasAttr<DLLExportAttr>()) 878 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 879 } 880 881 void CodeGenModule::setNonAliasAttributes(const Decl *D, 882 llvm::GlobalObject *GO) { 883 SetCommonAttributes(D, GO); 884 885 if (D) 886 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 887 GO->setSection(SA->getName()); 888 889 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 890 } 891 892 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 893 llvm::Function *F, 894 const CGFunctionInfo &FI) { 895 SetLLVMFunctionAttributes(D, FI, F); 896 SetLLVMFunctionAttributesForDefinition(D, F); 897 898 F->setLinkage(llvm::Function::InternalLinkage); 899 900 setNonAliasAttributes(D, F); 901 } 902 903 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 904 const NamedDecl *ND) { 905 // Set linkage and visibility in case we never see a definition. 906 LinkageInfo LV = ND->getLinkageAndVisibility(); 907 if (LV.getLinkage() != ExternalLinkage) { 908 // Don't set internal linkage on declarations. 909 } else { 910 if (ND->hasAttr<DLLImportAttr>()) { 911 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 912 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 913 } else if (ND->hasAttr<DLLExportAttr>()) { 914 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 915 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 916 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 917 // "extern_weak" is overloaded in LLVM; we probably should have 918 // separate linkage types for this. 919 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 920 } 921 922 // Set visibility on a declaration only if it's explicit. 923 if (LV.isVisibilityExplicit()) 924 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 925 } 926 } 927 928 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 929 bool IsIncompleteFunction, 930 bool IsThunk) { 931 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 932 // If this is an intrinsic function, set the function's attributes 933 // to the intrinsic's attributes. 934 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 935 return; 936 } 937 938 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 939 940 if (!IsIncompleteFunction) 941 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 942 943 // Add the Returned attribute for "this", except for iOS 5 and earlier 944 // where substantial code, including the libstdc++ dylib, was compiled with 945 // GCC and does not actually return "this". 946 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 947 !(getTarget().getTriple().isiOS() && 948 getTarget().getTriple().isOSVersionLT(6))) { 949 assert(!F->arg_empty() && 950 F->arg_begin()->getType() 951 ->canLosslesslyBitCastTo(F->getReturnType()) && 952 "unexpected this return"); 953 F->addAttribute(1, llvm::Attribute::Returned); 954 } 955 956 // Only a few attributes are set on declarations; these may later be 957 // overridden by a definition. 958 959 setLinkageAndVisibilityForGV(F, FD); 960 961 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 962 F->setSection(SA->getName()); 963 964 // A replaceable global allocation function does not act like a builtin by 965 // default, only if it is invoked by a new-expression or delete-expression. 966 if (FD->isReplaceableGlobalAllocationFunction()) 967 F->addAttribute(llvm::AttributeSet::FunctionIndex, 968 llvm::Attribute::NoBuiltin); 969 970 // If we are checking indirect calls and this is not a non-static member 971 // function, emit a bit set entry for the function type. 972 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall) && 973 !(isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())) { 974 llvm::NamedMDNode *BitsetsMD = 975 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 976 977 llvm::Metadata *BitsetOps[] = { 978 CreateMetadataIdentifierForType(FD->getType()), 979 llvm::ConstantAsMetadata::get(F), 980 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 981 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 982 } 983 } 984 985 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 986 assert(!GV->isDeclaration() && 987 "Only globals with definition can force usage."); 988 LLVMUsed.emplace_back(GV); 989 } 990 991 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 992 assert(!GV->isDeclaration() && 993 "Only globals with definition can force usage."); 994 LLVMCompilerUsed.emplace_back(GV); 995 } 996 997 static void emitUsed(CodeGenModule &CGM, StringRef Name, 998 std::vector<llvm::WeakVH> &List) { 999 // Don't create llvm.used if there is no need. 1000 if (List.empty()) 1001 return; 1002 1003 // Convert List to what ConstantArray needs. 1004 SmallVector<llvm::Constant*, 8> UsedArray; 1005 UsedArray.resize(List.size()); 1006 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1007 UsedArray[i] = 1008 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1009 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1010 } 1011 1012 if (UsedArray.empty()) 1013 return; 1014 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1015 1016 auto *GV = new llvm::GlobalVariable( 1017 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1018 llvm::ConstantArray::get(ATy, UsedArray), Name); 1019 1020 GV->setSection("llvm.metadata"); 1021 } 1022 1023 void CodeGenModule::emitLLVMUsed() { 1024 emitUsed(*this, "llvm.used", LLVMUsed); 1025 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1026 } 1027 1028 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1029 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1030 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1031 } 1032 1033 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1034 llvm::SmallString<32> Opt; 1035 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1036 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1037 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1038 } 1039 1040 void CodeGenModule::AddDependentLib(StringRef Lib) { 1041 llvm::SmallString<24> Opt; 1042 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1043 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1044 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1045 } 1046 1047 /// \brief Add link options implied by the given module, including modules 1048 /// it depends on, using a postorder walk. 1049 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1050 SmallVectorImpl<llvm::Metadata *> &Metadata, 1051 llvm::SmallPtrSet<Module *, 16> &Visited) { 1052 // Import this module's parent. 1053 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1054 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1055 } 1056 1057 // Import this module's dependencies. 1058 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1059 if (Visited.insert(Mod->Imports[I - 1]).second) 1060 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1061 } 1062 1063 // Add linker options to link against the libraries/frameworks 1064 // described by this module. 1065 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1066 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1067 // Link against a framework. Frameworks are currently Darwin only, so we 1068 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1069 if (Mod->LinkLibraries[I-1].IsFramework) { 1070 llvm::Metadata *Args[2] = { 1071 llvm::MDString::get(Context, "-framework"), 1072 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1073 1074 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1075 continue; 1076 } 1077 1078 // Link against a library. 1079 llvm::SmallString<24> Opt; 1080 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1081 Mod->LinkLibraries[I-1].Library, Opt); 1082 auto *OptString = llvm::MDString::get(Context, Opt); 1083 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1084 } 1085 } 1086 1087 void CodeGenModule::EmitModuleLinkOptions() { 1088 // Collect the set of all of the modules we want to visit to emit link 1089 // options, which is essentially the imported modules and all of their 1090 // non-explicit child modules. 1091 llvm::SetVector<clang::Module *> LinkModules; 1092 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1093 SmallVector<clang::Module *, 16> Stack; 1094 1095 // Seed the stack with imported modules. 1096 for (Module *M : ImportedModules) 1097 if (Visited.insert(M).second) 1098 Stack.push_back(M); 1099 1100 // Find all of the modules to import, making a little effort to prune 1101 // non-leaf modules. 1102 while (!Stack.empty()) { 1103 clang::Module *Mod = Stack.pop_back_val(); 1104 1105 bool AnyChildren = false; 1106 1107 // Visit the submodules of this module. 1108 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1109 SubEnd = Mod->submodule_end(); 1110 Sub != SubEnd; ++Sub) { 1111 // Skip explicit children; they need to be explicitly imported to be 1112 // linked against. 1113 if ((*Sub)->IsExplicit) 1114 continue; 1115 1116 if (Visited.insert(*Sub).second) { 1117 Stack.push_back(*Sub); 1118 AnyChildren = true; 1119 } 1120 } 1121 1122 // We didn't find any children, so add this module to the list of 1123 // modules to link against. 1124 if (!AnyChildren) { 1125 LinkModules.insert(Mod); 1126 } 1127 } 1128 1129 // Add link options for all of the imported modules in reverse topological 1130 // order. We don't do anything to try to order import link flags with respect 1131 // to linker options inserted by things like #pragma comment(). 1132 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1133 Visited.clear(); 1134 for (Module *M : LinkModules) 1135 if (Visited.insert(M).second) 1136 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1137 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1138 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1139 1140 // Add the linker options metadata flag. 1141 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1142 llvm::MDNode::get(getLLVMContext(), 1143 LinkerOptionsMetadata)); 1144 } 1145 1146 void CodeGenModule::EmitDeferred() { 1147 // Emit code for any potentially referenced deferred decls. Since a 1148 // previously unused static decl may become used during the generation of code 1149 // for a static function, iterate until no changes are made. 1150 1151 if (!DeferredVTables.empty()) { 1152 EmitDeferredVTables(); 1153 1154 // Emitting a v-table doesn't directly cause more v-tables to 1155 // become deferred, although it can cause functions to be 1156 // emitted that then need those v-tables. 1157 assert(DeferredVTables.empty()); 1158 } 1159 1160 // Stop if we're out of both deferred v-tables and deferred declarations. 1161 if (DeferredDeclsToEmit.empty()) 1162 return; 1163 1164 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1165 // work, it will not interfere with this. 1166 std::vector<DeferredGlobal> CurDeclsToEmit; 1167 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1168 1169 for (DeferredGlobal &G : CurDeclsToEmit) { 1170 GlobalDecl D = G.GD; 1171 llvm::GlobalValue *GV = G.GV; 1172 G.GV = nullptr; 1173 1174 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1175 // to get GlobalValue with exactly the type we need, not something that 1176 // might had been created for another decl with the same mangled name but 1177 // different type. 1178 // FIXME: Support for variables is not implemented yet. 1179 if (isa<FunctionDecl>(D.getDecl())) 1180 GV = cast<llvm::GlobalValue>(GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1181 else 1182 if (!GV) 1183 GV = GetGlobalValue(getMangledName(D)); 1184 1185 // Check to see if we've already emitted this. This is necessary 1186 // for a couple of reasons: first, decls can end up in the 1187 // deferred-decls queue multiple times, and second, decls can end 1188 // up with definitions in unusual ways (e.g. by an extern inline 1189 // function acquiring a strong function redefinition). Just 1190 // ignore these cases. 1191 if (GV && !GV->isDeclaration()) 1192 continue; 1193 1194 // Otherwise, emit the definition and move on to the next one. 1195 EmitGlobalDefinition(D, GV); 1196 1197 // If we found out that we need to emit more decls, do that recursively. 1198 // This has the advantage that the decls are emitted in a DFS and related 1199 // ones are close together, which is convenient for testing. 1200 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1201 EmitDeferred(); 1202 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1203 } 1204 } 1205 } 1206 1207 void CodeGenModule::EmitGlobalAnnotations() { 1208 if (Annotations.empty()) 1209 return; 1210 1211 // Create a new global variable for the ConstantStruct in the Module. 1212 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1213 Annotations[0]->getType(), Annotations.size()), Annotations); 1214 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1215 llvm::GlobalValue::AppendingLinkage, 1216 Array, "llvm.global.annotations"); 1217 gv->setSection(AnnotationSection); 1218 } 1219 1220 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1221 llvm::Constant *&AStr = AnnotationStrings[Str]; 1222 if (AStr) 1223 return AStr; 1224 1225 // Not found yet, create a new global. 1226 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1227 auto *gv = 1228 new llvm::GlobalVariable(getModule(), s->getType(), true, 1229 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1230 gv->setSection(AnnotationSection); 1231 gv->setUnnamedAddr(true); 1232 AStr = gv; 1233 return gv; 1234 } 1235 1236 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1237 SourceManager &SM = getContext().getSourceManager(); 1238 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1239 if (PLoc.isValid()) 1240 return EmitAnnotationString(PLoc.getFilename()); 1241 return EmitAnnotationString(SM.getBufferName(Loc)); 1242 } 1243 1244 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1245 SourceManager &SM = getContext().getSourceManager(); 1246 PresumedLoc PLoc = SM.getPresumedLoc(L); 1247 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1248 SM.getExpansionLineNumber(L); 1249 return llvm::ConstantInt::get(Int32Ty, LineNo); 1250 } 1251 1252 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1253 const AnnotateAttr *AA, 1254 SourceLocation L) { 1255 // Get the globals for file name, annotation, and the line number. 1256 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1257 *UnitGV = EmitAnnotationUnit(L), 1258 *LineNoCst = EmitAnnotationLineNo(L); 1259 1260 // Create the ConstantStruct for the global annotation. 1261 llvm::Constant *Fields[4] = { 1262 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1263 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1264 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1265 LineNoCst 1266 }; 1267 return llvm::ConstantStruct::getAnon(Fields); 1268 } 1269 1270 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1271 llvm::GlobalValue *GV) { 1272 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1273 // Get the struct elements for these annotations. 1274 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1275 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1276 } 1277 1278 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1279 SourceLocation Loc) const { 1280 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1281 // Blacklist by function name. 1282 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1283 return true; 1284 // Blacklist by location. 1285 if (Loc.isValid()) 1286 return SanitizerBL.isBlacklistedLocation(Loc); 1287 // If location is unknown, this may be a compiler-generated function. Assume 1288 // it's located in the main file. 1289 auto &SM = Context.getSourceManager(); 1290 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1291 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1292 } 1293 return false; 1294 } 1295 1296 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1297 SourceLocation Loc, QualType Ty, 1298 StringRef Category) const { 1299 // For now globals can be blacklisted only in ASan and KASan. 1300 if (!LangOpts.Sanitize.hasOneOf( 1301 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1302 return false; 1303 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1304 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1305 return true; 1306 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1307 return true; 1308 // Check global type. 1309 if (!Ty.isNull()) { 1310 // Drill down the array types: if global variable of a fixed type is 1311 // blacklisted, we also don't instrument arrays of them. 1312 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1313 Ty = AT->getElementType(); 1314 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1315 // We allow to blacklist only record types (classes, structs etc.) 1316 if (Ty->isRecordType()) { 1317 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1318 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1319 return true; 1320 } 1321 } 1322 return false; 1323 } 1324 1325 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1326 // Never defer when EmitAllDecls is specified. 1327 if (LangOpts.EmitAllDecls) 1328 return true; 1329 1330 return getContext().DeclMustBeEmitted(Global); 1331 } 1332 1333 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1334 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1335 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1336 // Implicit template instantiations may change linkage if they are later 1337 // explicitly instantiated, so they should not be emitted eagerly. 1338 return false; 1339 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1340 // codegen for global variables, because they may be marked as threadprivate. 1341 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1342 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1343 return false; 1344 1345 return true; 1346 } 1347 1348 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1349 const CXXUuidofExpr* E) { 1350 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1351 // well-formed. 1352 StringRef Uuid = E->getUuidAsStringRef(Context); 1353 std::string Name = "_GUID_" + Uuid.lower(); 1354 std::replace(Name.begin(), Name.end(), '-', '_'); 1355 1356 // Contains a 32-bit field. 1357 CharUnits Alignment = CharUnits::fromQuantity(4); 1358 1359 // Look for an existing global. 1360 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1361 return ConstantAddress(GV, Alignment); 1362 1363 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1364 assert(Init && "failed to initialize as constant"); 1365 1366 auto *GV = new llvm::GlobalVariable( 1367 getModule(), Init->getType(), 1368 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1369 if (supportsCOMDAT()) 1370 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1371 return ConstantAddress(GV, Alignment); 1372 } 1373 1374 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1375 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1376 assert(AA && "No alias?"); 1377 1378 CharUnits Alignment = getContext().getDeclAlign(VD); 1379 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1380 1381 // See if there is already something with the target's name in the module. 1382 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1383 if (Entry) { 1384 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1385 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1386 return ConstantAddress(Ptr, Alignment); 1387 } 1388 1389 llvm::Constant *Aliasee; 1390 if (isa<llvm::FunctionType>(DeclTy)) 1391 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1392 GlobalDecl(cast<FunctionDecl>(VD)), 1393 /*ForVTable=*/false); 1394 else 1395 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1396 llvm::PointerType::getUnqual(DeclTy), 1397 nullptr); 1398 1399 auto *F = cast<llvm::GlobalValue>(Aliasee); 1400 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1401 WeakRefReferences.insert(F); 1402 1403 return ConstantAddress(Aliasee, Alignment); 1404 } 1405 1406 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1407 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1408 1409 // Weak references don't produce any output by themselves. 1410 if (Global->hasAttr<WeakRefAttr>()) 1411 return; 1412 1413 // If this is an alias definition (which otherwise looks like a declaration) 1414 // emit it now. 1415 if (Global->hasAttr<AliasAttr>()) 1416 return EmitAliasDefinition(GD); 1417 1418 // If this is CUDA, be selective about which declarations we emit. 1419 if (LangOpts.CUDA) { 1420 if (LangOpts.CUDAIsDevice) { 1421 if (!Global->hasAttr<CUDADeviceAttr>() && 1422 !Global->hasAttr<CUDAGlobalAttr>() && 1423 !Global->hasAttr<CUDAConstantAttr>() && 1424 !Global->hasAttr<CUDASharedAttr>()) 1425 return; 1426 } else { 1427 if (!Global->hasAttr<CUDAHostAttr>() && ( 1428 Global->hasAttr<CUDADeviceAttr>() || 1429 Global->hasAttr<CUDAConstantAttr>() || 1430 Global->hasAttr<CUDASharedAttr>())) 1431 return; 1432 } 1433 } 1434 1435 // Ignore declarations, they will be emitted on their first use. 1436 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1437 // Forward declarations are emitted lazily on first use. 1438 if (!FD->doesThisDeclarationHaveABody()) { 1439 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1440 return; 1441 1442 StringRef MangledName = getMangledName(GD); 1443 1444 // Compute the function info and LLVM type. 1445 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1446 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1447 1448 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1449 /*DontDefer=*/false); 1450 return; 1451 } 1452 } else { 1453 const auto *VD = cast<VarDecl>(Global); 1454 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1455 1456 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1457 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1458 return; 1459 } 1460 1461 // Defer code generation to first use when possible, e.g. if this is an inline 1462 // function. If the global must always be emitted, do it eagerly if possible 1463 // to benefit from cache locality. 1464 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1465 // Emit the definition if it can't be deferred. 1466 EmitGlobalDefinition(GD); 1467 return; 1468 } 1469 1470 // If we're deferring emission of a C++ variable with an 1471 // initializer, remember the order in which it appeared in the file. 1472 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1473 cast<VarDecl>(Global)->hasInit()) { 1474 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1475 CXXGlobalInits.push_back(nullptr); 1476 } 1477 1478 StringRef MangledName = getMangledName(GD); 1479 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1480 // The value has already been used and should therefore be emitted. 1481 addDeferredDeclToEmit(GV, GD); 1482 } else if (MustBeEmitted(Global)) { 1483 // The value must be emitted, but cannot be emitted eagerly. 1484 assert(!MayBeEmittedEagerly(Global)); 1485 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1486 } else { 1487 // Otherwise, remember that we saw a deferred decl with this name. The 1488 // first use of the mangled name will cause it to move into 1489 // DeferredDeclsToEmit. 1490 DeferredDecls[MangledName] = GD; 1491 } 1492 } 1493 1494 namespace { 1495 struct FunctionIsDirectlyRecursive : 1496 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1497 const StringRef Name; 1498 const Builtin::Context &BI; 1499 bool Result; 1500 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1501 Name(N), BI(C), Result(false) { 1502 } 1503 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1504 1505 bool TraverseCallExpr(CallExpr *E) { 1506 const FunctionDecl *FD = E->getDirectCallee(); 1507 if (!FD) 1508 return true; 1509 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1510 if (Attr && Name == Attr->getLabel()) { 1511 Result = true; 1512 return false; 1513 } 1514 unsigned BuiltinID = FD->getBuiltinID(); 1515 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1516 return true; 1517 StringRef BuiltinName = BI.getName(BuiltinID); 1518 if (BuiltinName.startswith("__builtin_") && 1519 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1520 Result = true; 1521 return false; 1522 } 1523 return true; 1524 } 1525 }; 1526 1527 struct DLLImportFunctionVisitor 1528 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1529 bool SafeToInline = true; 1530 1531 bool VisitVarDecl(VarDecl *VD) { 1532 // A thread-local variable cannot be imported. 1533 SafeToInline = !VD->getTLSKind(); 1534 return SafeToInline; 1535 } 1536 1537 // Make sure we're not referencing non-imported vars or functions. 1538 bool VisitDeclRefExpr(DeclRefExpr *E) { 1539 ValueDecl *VD = E->getDecl(); 1540 if (isa<FunctionDecl>(VD)) 1541 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1542 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1543 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1544 return SafeToInline; 1545 } 1546 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1547 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1548 return SafeToInline; 1549 } 1550 bool VisitCXXNewExpr(CXXNewExpr *E) { 1551 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1552 return SafeToInline; 1553 } 1554 }; 1555 } 1556 1557 // isTriviallyRecursive - Check if this function calls another 1558 // decl that, because of the asm attribute or the other decl being a builtin, 1559 // ends up pointing to itself. 1560 bool 1561 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1562 StringRef Name; 1563 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1564 // asm labels are a special kind of mangling we have to support. 1565 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1566 if (!Attr) 1567 return false; 1568 Name = Attr->getLabel(); 1569 } else { 1570 Name = FD->getName(); 1571 } 1572 1573 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1574 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1575 return Walker.Result; 1576 } 1577 1578 bool 1579 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1580 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1581 return true; 1582 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1583 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1584 return false; 1585 1586 if (F->hasAttr<DLLImportAttr>()) { 1587 // Check whether it would be safe to inline this dllimport function. 1588 DLLImportFunctionVisitor Visitor; 1589 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1590 if (!Visitor.SafeToInline) 1591 return false; 1592 } 1593 1594 // PR9614. Avoid cases where the source code is lying to us. An available 1595 // externally function should have an equivalent function somewhere else, 1596 // but a function that calls itself is clearly not equivalent to the real 1597 // implementation. 1598 // This happens in glibc's btowc and in some configure checks. 1599 return !isTriviallyRecursive(F); 1600 } 1601 1602 /// If the type for the method's class was generated by 1603 /// CGDebugInfo::createContextChain(), the cache contains only a 1604 /// limited DIType without any declarations. Since EmitFunctionStart() 1605 /// needs to find the canonical declaration for each method, we need 1606 /// to construct the complete type prior to emitting the method. 1607 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1608 if (!D->isInstance()) 1609 return; 1610 1611 if (CGDebugInfo *DI = getModuleDebugInfo()) 1612 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1613 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1614 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1615 } 1616 } 1617 1618 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1619 const auto *D = cast<ValueDecl>(GD.getDecl()); 1620 1621 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1622 Context.getSourceManager(), 1623 "Generating code for declaration"); 1624 1625 if (isa<FunctionDecl>(D)) { 1626 // At -O0, don't generate IR for functions with available_externally 1627 // linkage. 1628 if (!shouldEmitFunction(GD)) 1629 return; 1630 1631 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1632 CompleteDIClassType(Method); 1633 // Make sure to emit the definition(s) before we emit the thunks. 1634 // This is necessary for the generation of certain thunks. 1635 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1636 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1637 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1638 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1639 else 1640 EmitGlobalFunctionDefinition(GD, GV); 1641 1642 if (Method->isVirtual()) 1643 getVTables().EmitThunks(GD); 1644 1645 return; 1646 } 1647 1648 return EmitGlobalFunctionDefinition(GD, GV); 1649 } 1650 1651 if (const auto *VD = dyn_cast<VarDecl>(D)) 1652 return EmitGlobalVarDefinition(VD); 1653 1654 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1655 } 1656 1657 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1658 llvm::Function *NewFn); 1659 1660 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1661 /// module, create and return an llvm Function with the specified type. If there 1662 /// is something in the module with the specified name, return it potentially 1663 /// bitcasted to the right type. 1664 /// 1665 /// If D is non-null, it specifies a decl that correspond to this. This is used 1666 /// to set the attributes on the function when it is first created. 1667 llvm::Constant * 1668 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1669 llvm::Type *Ty, 1670 GlobalDecl GD, bool ForVTable, 1671 bool DontDefer, bool IsThunk, 1672 llvm::AttributeSet ExtraAttrs, 1673 bool IsForDefinition) { 1674 const Decl *D = GD.getDecl(); 1675 1676 // Lookup the entry, lazily creating it if necessary. 1677 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1678 if (Entry) { 1679 if (WeakRefReferences.erase(Entry)) { 1680 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1681 if (FD && !FD->hasAttr<WeakAttr>()) 1682 Entry->setLinkage(llvm::Function::ExternalLinkage); 1683 } 1684 1685 // Handle dropped DLL attributes. 1686 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1687 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1688 1689 // If there are two attempts to define the same mangled name, issue an 1690 // error. 1691 if (IsForDefinition && !Entry->isDeclaration()) { 1692 GlobalDecl OtherGD; 1693 // Check that GD is not yet in ExplicitDefinitions is required to make 1694 // sure that we issue an error only once. 1695 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1696 (GD.getCanonicalDecl().getDecl() != 1697 OtherGD.getCanonicalDecl().getDecl()) && 1698 DiagnosedConflictingDefinitions.insert(GD).second) { 1699 getDiags().Report(D->getLocation(), 1700 diag::err_duplicate_mangled_name); 1701 getDiags().Report(OtherGD.getDecl()->getLocation(), 1702 diag::note_previous_definition); 1703 } 1704 } 1705 1706 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1707 (Entry->getType()->getElementType() == Ty)) { 1708 return Entry; 1709 } 1710 1711 // Make sure the result is of the correct type. 1712 // (If function is requested for a definition, we always need to create a new 1713 // function, not just return a bitcast.) 1714 if (!IsForDefinition) 1715 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1716 } 1717 1718 // This function doesn't have a complete type (for example, the return 1719 // type is an incomplete struct). Use a fake type instead, and make 1720 // sure not to try to set attributes. 1721 bool IsIncompleteFunction = false; 1722 1723 llvm::FunctionType *FTy; 1724 if (isa<llvm::FunctionType>(Ty)) { 1725 FTy = cast<llvm::FunctionType>(Ty); 1726 } else { 1727 FTy = llvm::FunctionType::get(VoidTy, false); 1728 IsIncompleteFunction = true; 1729 } 1730 1731 llvm::Function *F = 1732 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1733 Entry ? StringRef() : MangledName, &getModule()); 1734 1735 // If we already created a function with the same mangled name (but different 1736 // type) before, take its name and add it to the list of functions to be 1737 // replaced with F at the end of CodeGen. 1738 // 1739 // This happens if there is a prototype for a function (e.g. "int f()") and 1740 // then a definition of a different type (e.g. "int f(int x)"). 1741 if (Entry) { 1742 F->takeName(Entry); 1743 1744 // This might be an implementation of a function without a prototype, in 1745 // which case, try to do special replacement of calls which match the new 1746 // prototype. The really key thing here is that we also potentially drop 1747 // arguments from the call site so as to make a direct call, which makes the 1748 // inliner happier and suppresses a number of optimizer warnings (!) about 1749 // dropping arguments. 1750 if (!Entry->use_empty()) { 1751 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1752 Entry->removeDeadConstantUsers(); 1753 } 1754 1755 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1756 F, Entry->getType()->getElementType()->getPointerTo()); 1757 addGlobalValReplacement(Entry, BC); 1758 } 1759 1760 assert(F->getName() == MangledName && "name was uniqued!"); 1761 if (D) 1762 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1763 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1764 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1765 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1766 llvm::AttributeSet::get(VMContext, 1767 llvm::AttributeSet::FunctionIndex, 1768 B)); 1769 } 1770 1771 if (!DontDefer) { 1772 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1773 // each other bottoming out with the base dtor. Therefore we emit non-base 1774 // dtors on usage, even if there is no dtor definition in the TU. 1775 if (D && isa<CXXDestructorDecl>(D) && 1776 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1777 GD.getDtorType())) 1778 addDeferredDeclToEmit(F, GD); 1779 1780 // This is the first use or definition of a mangled name. If there is a 1781 // deferred decl with this name, remember that we need to emit it at the end 1782 // of the file. 1783 auto DDI = DeferredDecls.find(MangledName); 1784 if (DDI != DeferredDecls.end()) { 1785 // Move the potentially referenced deferred decl to the 1786 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1787 // don't need it anymore). 1788 addDeferredDeclToEmit(F, DDI->second); 1789 DeferredDecls.erase(DDI); 1790 1791 // Otherwise, there are cases we have to worry about where we're 1792 // using a declaration for which we must emit a definition but where 1793 // we might not find a top-level definition: 1794 // - member functions defined inline in their classes 1795 // - friend functions defined inline in some class 1796 // - special member functions with implicit definitions 1797 // If we ever change our AST traversal to walk into class methods, 1798 // this will be unnecessary. 1799 // 1800 // We also don't emit a definition for a function if it's going to be an 1801 // entry in a vtable, unless it's already marked as used. 1802 } else if (getLangOpts().CPlusPlus && D) { 1803 // Look for a declaration that's lexically in a record. 1804 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1805 FD = FD->getPreviousDecl()) { 1806 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1807 if (FD->doesThisDeclarationHaveABody()) { 1808 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1809 break; 1810 } 1811 } 1812 } 1813 } 1814 } 1815 1816 // Make sure the result is of the requested type. 1817 if (!IsIncompleteFunction) { 1818 assert(F->getType()->getElementType() == Ty); 1819 return F; 1820 } 1821 1822 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1823 return llvm::ConstantExpr::getBitCast(F, PTy); 1824 } 1825 1826 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1827 /// non-null, then this function will use the specified type if it has to 1828 /// create it (this occurs when we see a definition of the function). 1829 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1830 llvm::Type *Ty, 1831 bool ForVTable, 1832 bool DontDefer, 1833 bool IsForDefinition) { 1834 // If there was no specific requested type, just convert it now. 1835 if (!Ty) 1836 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1837 1838 StringRef MangledName = getMangledName(GD); 1839 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 1840 /*IsThunk=*/false, llvm::AttributeSet(), 1841 IsForDefinition); 1842 } 1843 1844 /// CreateRuntimeFunction - Create a new runtime function with the specified 1845 /// type and name. 1846 llvm::Constant * 1847 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1848 StringRef Name, 1849 llvm::AttributeSet ExtraAttrs) { 1850 llvm::Constant *C = 1851 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1852 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1853 if (auto *F = dyn_cast<llvm::Function>(C)) 1854 if (F->empty()) 1855 F->setCallingConv(getRuntimeCC()); 1856 return C; 1857 } 1858 1859 /// CreateBuiltinFunction - Create a new builtin function with the specified 1860 /// type and name. 1861 llvm::Constant * 1862 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1863 StringRef Name, 1864 llvm::AttributeSet ExtraAttrs) { 1865 llvm::Constant *C = 1866 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1867 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1868 if (auto *F = dyn_cast<llvm::Function>(C)) 1869 if (F->empty()) 1870 F->setCallingConv(getBuiltinCC()); 1871 return C; 1872 } 1873 1874 /// isTypeConstant - Determine whether an object of this type can be emitted 1875 /// as a constant. 1876 /// 1877 /// If ExcludeCtor is true, the duration when the object's constructor runs 1878 /// will not be considered. The caller will need to verify that the object is 1879 /// not written to during its construction. 1880 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1881 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1882 return false; 1883 1884 if (Context.getLangOpts().CPlusPlus) { 1885 if (const CXXRecordDecl *Record 1886 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1887 return ExcludeCtor && !Record->hasMutableFields() && 1888 Record->hasTrivialDestructor(); 1889 } 1890 1891 return true; 1892 } 1893 1894 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1895 /// create and return an llvm GlobalVariable with the specified type. If there 1896 /// is something in the module with the specified name, return it potentially 1897 /// bitcasted to the right type. 1898 /// 1899 /// If D is non-null, it specifies a decl that correspond to this. This is used 1900 /// to set the attributes on the global when it is first created. 1901 llvm::Constant * 1902 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1903 llvm::PointerType *Ty, 1904 const VarDecl *D) { 1905 // Lookup the entry, lazily creating it if necessary. 1906 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1907 if (Entry) { 1908 if (WeakRefReferences.erase(Entry)) { 1909 if (D && !D->hasAttr<WeakAttr>()) 1910 Entry->setLinkage(llvm::Function::ExternalLinkage); 1911 } 1912 1913 // Handle dropped DLL attributes. 1914 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1915 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1916 1917 if (Entry->getType() == Ty) 1918 return Entry; 1919 1920 // Make sure the result is of the correct type. 1921 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1922 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1923 1924 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1925 } 1926 1927 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1928 auto *GV = new llvm::GlobalVariable( 1929 getModule(), Ty->getElementType(), false, 1930 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1931 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1932 1933 // This is the first use or definition of a mangled name. If there is a 1934 // deferred decl with this name, remember that we need to emit it at the end 1935 // of the file. 1936 auto DDI = DeferredDecls.find(MangledName); 1937 if (DDI != DeferredDecls.end()) { 1938 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1939 // list, and remove it from DeferredDecls (since we don't need it anymore). 1940 addDeferredDeclToEmit(GV, DDI->second); 1941 DeferredDecls.erase(DDI); 1942 } 1943 1944 // Handle things which are present even on external declarations. 1945 if (D) { 1946 // FIXME: This code is overly simple and should be merged with other global 1947 // handling. 1948 GV->setConstant(isTypeConstant(D->getType(), false)); 1949 1950 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1951 1952 setLinkageAndVisibilityForGV(GV, D); 1953 1954 if (D->getTLSKind()) { 1955 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1956 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1957 setTLSMode(GV, *D); 1958 } 1959 1960 // If required by the ABI, treat declarations of static data members with 1961 // inline initializers as definitions. 1962 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1963 EmitGlobalVarDefinition(D); 1964 } 1965 1966 // Handle XCore specific ABI requirements. 1967 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1968 D->getLanguageLinkage() == CLanguageLinkage && 1969 D->getType().isConstant(Context) && 1970 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1971 GV->setSection(".cp.rodata"); 1972 } 1973 1974 if (AddrSpace != Ty->getAddressSpace()) 1975 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1976 1977 return GV; 1978 } 1979 1980 llvm::Constant * 1981 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 1982 bool IsForDefinition) { 1983 if (isa<CXXConstructorDecl>(GD.getDecl())) 1984 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 1985 getFromCtorType(GD.getCtorType()), 1986 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 1987 /*DontDefer=*/false, IsForDefinition); 1988 else if (isa<CXXDestructorDecl>(GD.getDecl())) 1989 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 1990 getFromDtorType(GD.getDtorType()), 1991 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 1992 /*DontDefer=*/false, IsForDefinition); 1993 else if (isa<CXXMethodDecl>(GD.getDecl())) { 1994 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 1995 cast<CXXMethodDecl>(GD.getDecl())); 1996 auto Ty = getTypes().GetFunctionType(*FInfo); 1997 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 1998 IsForDefinition); 1999 } else if (isa<FunctionDecl>(GD.getDecl())) { 2000 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2001 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2002 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2003 IsForDefinition); 2004 } else 2005 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl())); 2006 } 2007 2008 llvm::GlobalVariable * 2009 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2010 llvm::Type *Ty, 2011 llvm::GlobalValue::LinkageTypes Linkage) { 2012 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2013 llvm::GlobalVariable *OldGV = nullptr; 2014 2015 if (GV) { 2016 // Check if the variable has the right type. 2017 if (GV->getType()->getElementType() == Ty) 2018 return GV; 2019 2020 // Because C++ name mangling, the only way we can end up with an already 2021 // existing global with the same name is if it has been declared extern "C". 2022 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2023 OldGV = GV; 2024 } 2025 2026 // Create a new variable. 2027 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2028 Linkage, nullptr, Name); 2029 2030 if (OldGV) { 2031 // Replace occurrences of the old variable if needed. 2032 GV->takeName(OldGV); 2033 2034 if (!OldGV->use_empty()) { 2035 llvm::Constant *NewPtrForOldDecl = 2036 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2037 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2038 } 2039 2040 OldGV->eraseFromParent(); 2041 } 2042 2043 if (supportsCOMDAT() && GV->isWeakForLinker() && 2044 !GV->hasAvailableExternallyLinkage()) 2045 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2046 2047 return GV; 2048 } 2049 2050 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2051 /// given global variable. If Ty is non-null and if the global doesn't exist, 2052 /// then it will be created with the specified type instead of whatever the 2053 /// normal requested type would be. 2054 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2055 llvm::Type *Ty) { 2056 assert(D->hasGlobalStorage() && "Not a global variable"); 2057 QualType ASTTy = D->getType(); 2058 if (!Ty) 2059 Ty = getTypes().ConvertTypeForMem(ASTTy); 2060 2061 llvm::PointerType *PTy = 2062 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2063 2064 StringRef MangledName = getMangledName(D); 2065 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 2066 } 2067 2068 /// CreateRuntimeVariable - Create a new runtime global variable with the 2069 /// specified type and name. 2070 llvm::Constant * 2071 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2072 StringRef Name) { 2073 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2074 } 2075 2076 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2077 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2078 2079 if (!MustBeEmitted(D)) { 2080 // If we have not seen a reference to this variable yet, place it 2081 // into the deferred declarations table to be emitted if needed 2082 // later. 2083 StringRef MangledName = getMangledName(D); 2084 if (!GetGlobalValue(MangledName)) { 2085 DeferredDecls[MangledName] = D; 2086 return; 2087 } 2088 } 2089 2090 // The tentative definition is the only definition. 2091 EmitGlobalVarDefinition(D); 2092 } 2093 2094 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2095 return Context.toCharUnitsFromBits( 2096 getDataLayout().getTypeStoreSizeInBits(Ty)); 2097 } 2098 2099 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2100 unsigned AddrSpace) { 2101 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2102 if (D->hasAttr<CUDAConstantAttr>()) 2103 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2104 else if (D->hasAttr<CUDASharedAttr>()) 2105 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2106 else 2107 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2108 } 2109 2110 return AddrSpace; 2111 } 2112 2113 template<typename SomeDecl> 2114 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2115 llvm::GlobalValue *GV) { 2116 if (!getLangOpts().CPlusPlus) 2117 return; 2118 2119 // Must have 'used' attribute, or else inline assembly can't rely on 2120 // the name existing. 2121 if (!D->template hasAttr<UsedAttr>()) 2122 return; 2123 2124 // Must have internal linkage and an ordinary name. 2125 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2126 return; 2127 2128 // Must be in an extern "C" context. Entities declared directly within 2129 // a record are not extern "C" even if the record is in such a context. 2130 const SomeDecl *First = D->getFirstDecl(); 2131 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2132 return; 2133 2134 // OK, this is an internal linkage entity inside an extern "C" linkage 2135 // specification. Make a note of that so we can give it the "expected" 2136 // mangled name if nothing else is using that name. 2137 std::pair<StaticExternCMap::iterator, bool> R = 2138 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2139 2140 // If we have multiple internal linkage entities with the same name 2141 // in extern "C" regions, none of them gets that name. 2142 if (!R.second) 2143 R.first->second = nullptr; 2144 } 2145 2146 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2147 if (!CGM.supportsCOMDAT()) 2148 return false; 2149 2150 if (D.hasAttr<SelectAnyAttr>()) 2151 return true; 2152 2153 GVALinkage Linkage; 2154 if (auto *VD = dyn_cast<VarDecl>(&D)) 2155 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2156 else 2157 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2158 2159 switch (Linkage) { 2160 case GVA_Internal: 2161 case GVA_AvailableExternally: 2162 case GVA_StrongExternal: 2163 return false; 2164 case GVA_DiscardableODR: 2165 case GVA_StrongODR: 2166 return true; 2167 } 2168 llvm_unreachable("No such linkage"); 2169 } 2170 2171 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2172 llvm::GlobalObject &GO) { 2173 if (!shouldBeInCOMDAT(*this, D)) 2174 return; 2175 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2176 } 2177 2178 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 2179 llvm::Constant *Init = nullptr; 2180 QualType ASTTy = D->getType(); 2181 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2182 bool NeedsGlobalCtor = false; 2183 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2184 2185 const VarDecl *InitDecl; 2186 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2187 2188 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization as part 2189 // of their declaration." 2190 if (getLangOpts().CPlusPlus && getLangOpts().CUDAIsDevice 2191 && D->hasAttr<CUDASharedAttr>()) { 2192 if (InitExpr) { 2193 const auto *C = dyn_cast<CXXConstructExpr>(InitExpr); 2194 if (C == nullptr || !C->getConstructor()->hasTrivialBody()) 2195 Error(D->getLocation(), 2196 "__shared__ variable cannot have an initialization."); 2197 } 2198 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2199 } else if (!InitExpr) { 2200 // This is a tentative definition; tentative definitions are 2201 // implicitly initialized with { 0 }. 2202 // 2203 // Note that tentative definitions are only emitted at the end of 2204 // a translation unit, so they should never have incomplete 2205 // type. In addition, EmitTentativeDefinition makes sure that we 2206 // never attempt to emit a tentative definition if a real one 2207 // exists. A use may still exists, however, so we still may need 2208 // to do a RAUW. 2209 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2210 Init = EmitNullConstant(D->getType()); 2211 } else { 2212 initializedGlobalDecl = GlobalDecl(D); 2213 Init = EmitConstantInit(*InitDecl); 2214 2215 if (!Init) { 2216 QualType T = InitExpr->getType(); 2217 if (D->getType()->isReferenceType()) 2218 T = D->getType(); 2219 2220 if (getLangOpts().CPlusPlus) { 2221 Init = EmitNullConstant(T); 2222 NeedsGlobalCtor = true; 2223 } else { 2224 ErrorUnsupported(D, "static initializer"); 2225 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2226 } 2227 } else { 2228 // We don't need an initializer, so remove the entry for the delayed 2229 // initializer position (just in case this entry was delayed) if we 2230 // also don't need to register a destructor. 2231 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2232 DelayedCXXInitPosition.erase(D); 2233 } 2234 } 2235 2236 llvm::Type* InitType = Init->getType(); 2237 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 2238 2239 // Strip off a bitcast if we got one back. 2240 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2241 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2242 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2243 // All zero index gep. 2244 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2245 Entry = CE->getOperand(0); 2246 } 2247 2248 // Entry is now either a Function or GlobalVariable. 2249 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2250 2251 // We have a definition after a declaration with the wrong type. 2252 // We must make a new GlobalVariable* and update everything that used OldGV 2253 // (a declaration or tentative definition) with the new GlobalVariable* 2254 // (which will be a definition). 2255 // 2256 // This happens if there is a prototype for a global (e.g. 2257 // "extern int x[];") and then a definition of a different type (e.g. 2258 // "int x[10];"). This also happens when an initializer has a different type 2259 // from the type of the global (this happens with unions). 2260 if (!GV || 2261 GV->getType()->getElementType() != InitType || 2262 GV->getType()->getAddressSpace() != 2263 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2264 2265 // Move the old entry aside so that we'll create a new one. 2266 Entry->setName(StringRef()); 2267 2268 // Make a new global with the correct type, this is now guaranteed to work. 2269 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2270 2271 // Replace all uses of the old global with the new global 2272 llvm::Constant *NewPtrForOldDecl = 2273 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2274 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2275 2276 // Erase the old global, since it is no longer used. 2277 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2278 } 2279 2280 MaybeHandleStaticInExternC(D, GV); 2281 2282 if (D->hasAttr<AnnotateAttr>()) 2283 AddGlobalAnnotations(D, GV); 2284 2285 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2286 // the device. [...]" 2287 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2288 // __device__, declares a variable that: [...] 2289 // Is accessible from all the threads within the grid and from the host 2290 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2291 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2292 if (GV && LangOpts.CUDA && LangOpts.CUDAIsDevice && 2293 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>())) { 2294 GV->setExternallyInitialized(true); 2295 } 2296 GV->setInitializer(Init); 2297 2298 // If it is safe to mark the global 'constant', do so now. 2299 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2300 isTypeConstant(D->getType(), true)); 2301 2302 // If it is in a read-only section, mark it 'constant'. 2303 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2304 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2305 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2306 GV->setConstant(true); 2307 } 2308 2309 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2310 2311 // Set the llvm linkage type as appropriate. 2312 llvm::GlobalValue::LinkageTypes Linkage = 2313 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2314 2315 // On Darwin, the backing variable for a C++11 thread_local variable always 2316 // has internal linkage; all accesses should just be calls to the 2317 // Itanium-specified entry point, which has the normal linkage of the 2318 // variable. 2319 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2320 Context.getTargetInfo().getTriple().isMacOSX()) 2321 Linkage = llvm::GlobalValue::InternalLinkage; 2322 2323 GV->setLinkage(Linkage); 2324 if (D->hasAttr<DLLImportAttr>()) 2325 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2326 else if (D->hasAttr<DLLExportAttr>()) 2327 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2328 else 2329 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2330 2331 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2332 // common vars aren't constant even if declared const. 2333 GV->setConstant(false); 2334 2335 setNonAliasAttributes(D, GV); 2336 2337 if (D->getTLSKind() && !GV->isThreadLocal()) { 2338 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2339 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2340 setTLSMode(GV, *D); 2341 } 2342 2343 maybeSetTrivialComdat(*D, *GV); 2344 2345 // Emit the initializer function if necessary. 2346 if (NeedsGlobalCtor || NeedsGlobalDtor) 2347 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2348 2349 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2350 2351 // Emit global variable debug information. 2352 if (CGDebugInfo *DI = getModuleDebugInfo()) 2353 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2354 DI->EmitGlobalVariable(GV, D); 2355 } 2356 2357 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2358 CodeGenModule &CGM, const VarDecl *D, 2359 bool NoCommon) { 2360 // Don't give variables common linkage if -fno-common was specified unless it 2361 // was overridden by a NoCommon attribute. 2362 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2363 return true; 2364 2365 // C11 6.9.2/2: 2366 // A declaration of an identifier for an object that has file scope without 2367 // an initializer, and without a storage-class specifier or with the 2368 // storage-class specifier static, constitutes a tentative definition. 2369 if (D->getInit() || D->hasExternalStorage()) 2370 return true; 2371 2372 // A variable cannot be both common and exist in a section. 2373 if (D->hasAttr<SectionAttr>()) 2374 return true; 2375 2376 // Thread local vars aren't considered common linkage. 2377 if (D->getTLSKind()) 2378 return true; 2379 2380 // Tentative definitions marked with WeakImportAttr are true definitions. 2381 if (D->hasAttr<WeakImportAttr>()) 2382 return true; 2383 2384 // A variable cannot be both common and exist in a comdat. 2385 if (shouldBeInCOMDAT(CGM, *D)) 2386 return true; 2387 2388 // Declarations with a required alignment do not have common linakge in MSVC 2389 // mode. 2390 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2391 if (D->hasAttr<AlignedAttr>()) 2392 return true; 2393 QualType VarType = D->getType(); 2394 if (Context.isAlignmentRequired(VarType)) 2395 return true; 2396 2397 if (const auto *RT = VarType->getAs<RecordType>()) { 2398 const RecordDecl *RD = RT->getDecl(); 2399 for (const FieldDecl *FD : RD->fields()) { 2400 if (FD->isBitField()) 2401 continue; 2402 if (FD->hasAttr<AlignedAttr>()) 2403 return true; 2404 if (Context.isAlignmentRequired(FD->getType())) 2405 return true; 2406 } 2407 } 2408 } 2409 2410 return false; 2411 } 2412 2413 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2414 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2415 if (Linkage == GVA_Internal) 2416 return llvm::Function::InternalLinkage; 2417 2418 if (D->hasAttr<WeakAttr>()) { 2419 if (IsConstantVariable) 2420 return llvm::GlobalVariable::WeakODRLinkage; 2421 else 2422 return llvm::GlobalVariable::WeakAnyLinkage; 2423 } 2424 2425 // We are guaranteed to have a strong definition somewhere else, 2426 // so we can use available_externally linkage. 2427 if (Linkage == GVA_AvailableExternally) 2428 return llvm::Function::AvailableExternallyLinkage; 2429 2430 // Note that Apple's kernel linker doesn't support symbol 2431 // coalescing, so we need to avoid linkonce and weak linkages there. 2432 // Normally, this means we just map to internal, but for explicit 2433 // instantiations we'll map to external. 2434 2435 // In C++, the compiler has to emit a definition in every translation unit 2436 // that references the function. We should use linkonce_odr because 2437 // a) if all references in this translation unit are optimized away, we 2438 // don't need to codegen it. b) if the function persists, it needs to be 2439 // merged with other definitions. c) C++ has the ODR, so we know the 2440 // definition is dependable. 2441 if (Linkage == GVA_DiscardableODR) 2442 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2443 : llvm::Function::InternalLinkage; 2444 2445 // An explicit instantiation of a template has weak linkage, since 2446 // explicit instantiations can occur in multiple translation units 2447 // and must all be equivalent. However, we are not allowed to 2448 // throw away these explicit instantiations. 2449 if (Linkage == GVA_StrongODR) 2450 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2451 : llvm::Function::ExternalLinkage; 2452 2453 // C++ doesn't have tentative definitions and thus cannot have common 2454 // linkage. 2455 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2456 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2457 CodeGenOpts.NoCommon)) 2458 return llvm::GlobalVariable::CommonLinkage; 2459 2460 // selectany symbols are externally visible, so use weak instead of 2461 // linkonce. MSVC optimizes away references to const selectany globals, so 2462 // all definitions should be the same and ODR linkage should be used. 2463 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2464 if (D->hasAttr<SelectAnyAttr>()) 2465 return llvm::GlobalVariable::WeakODRLinkage; 2466 2467 // Otherwise, we have strong external linkage. 2468 assert(Linkage == GVA_StrongExternal); 2469 return llvm::GlobalVariable::ExternalLinkage; 2470 } 2471 2472 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2473 const VarDecl *VD, bool IsConstant) { 2474 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2475 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2476 } 2477 2478 /// Replace the uses of a function that was declared with a non-proto type. 2479 /// We want to silently drop extra arguments from call sites 2480 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2481 llvm::Function *newFn) { 2482 // Fast path. 2483 if (old->use_empty()) return; 2484 2485 llvm::Type *newRetTy = newFn->getReturnType(); 2486 SmallVector<llvm::Value*, 4> newArgs; 2487 2488 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2489 ui != ue; ) { 2490 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2491 llvm::User *user = use->getUser(); 2492 2493 // Recognize and replace uses of bitcasts. Most calls to 2494 // unprototyped functions will use bitcasts. 2495 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2496 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2497 replaceUsesOfNonProtoConstant(bitcast, newFn); 2498 continue; 2499 } 2500 2501 // Recognize calls to the function. 2502 llvm::CallSite callSite(user); 2503 if (!callSite) continue; 2504 if (!callSite.isCallee(&*use)) continue; 2505 2506 // If the return types don't match exactly, then we can't 2507 // transform this call unless it's dead. 2508 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2509 continue; 2510 2511 // Get the call site's attribute list. 2512 SmallVector<llvm::AttributeSet, 8> newAttrs; 2513 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2514 2515 // Collect any return attributes from the call. 2516 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2517 newAttrs.push_back( 2518 llvm::AttributeSet::get(newFn->getContext(), 2519 oldAttrs.getRetAttributes())); 2520 2521 // If the function was passed too few arguments, don't transform. 2522 unsigned newNumArgs = newFn->arg_size(); 2523 if (callSite.arg_size() < newNumArgs) continue; 2524 2525 // If extra arguments were passed, we silently drop them. 2526 // If any of the types mismatch, we don't transform. 2527 unsigned argNo = 0; 2528 bool dontTransform = false; 2529 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2530 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2531 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2532 dontTransform = true; 2533 break; 2534 } 2535 2536 // Add any parameter attributes. 2537 if (oldAttrs.hasAttributes(argNo + 1)) 2538 newAttrs. 2539 push_back(llvm:: 2540 AttributeSet::get(newFn->getContext(), 2541 oldAttrs.getParamAttributes(argNo + 1))); 2542 } 2543 if (dontTransform) 2544 continue; 2545 2546 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2547 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2548 oldAttrs.getFnAttributes())); 2549 2550 // Okay, we can transform this. Create the new call instruction and copy 2551 // over the required information. 2552 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2553 2554 llvm::CallSite newCall; 2555 if (callSite.isCall()) { 2556 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2557 callSite.getInstruction()); 2558 } else { 2559 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2560 newCall = llvm::InvokeInst::Create(newFn, 2561 oldInvoke->getNormalDest(), 2562 oldInvoke->getUnwindDest(), 2563 newArgs, "", 2564 callSite.getInstruction()); 2565 } 2566 newArgs.clear(); // for the next iteration 2567 2568 if (!newCall->getType()->isVoidTy()) 2569 newCall->takeName(callSite.getInstruction()); 2570 newCall.setAttributes( 2571 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2572 newCall.setCallingConv(callSite.getCallingConv()); 2573 2574 // Finally, remove the old call, replacing any uses with the new one. 2575 if (!callSite->use_empty()) 2576 callSite->replaceAllUsesWith(newCall.getInstruction()); 2577 2578 // Copy debug location attached to CI. 2579 if (callSite->getDebugLoc()) 2580 newCall->setDebugLoc(callSite->getDebugLoc()); 2581 callSite->eraseFromParent(); 2582 } 2583 } 2584 2585 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2586 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2587 /// existing call uses of the old function in the module, this adjusts them to 2588 /// call the new function directly. 2589 /// 2590 /// This is not just a cleanup: the always_inline pass requires direct calls to 2591 /// functions to be able to inline them. If there is a bitcast in the way, it 2592 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2593 /// run at -O0. 2594 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2595 llvm::Function *NewFn) { 2596 // If we're redefining a global as a function, don't transform it. 2597 if (!isa<llvm::Function>(Old)) return; 2598 2599 replaceUsesOfNonProtoConstant(Old, NewFn); 2600 } 2601 2602 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2603 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2604 // If we have a definition, this might be a deferred decl. If the 2605 // instantiation is explicit, make sure we emit it at the end. 2606 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2607 GetAddrOfGlobalVar(VD); 2608 2609 EmitTopLevelDecl(VD); 2610 } 2611 2612 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2613 llvm::GlobalValue *GV) { 2614 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2615 2616 // Compute the function info and LLVM type. 2617 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2618 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2619 2620 // Get or create the prototype for the function. 2621 if (!GV || (GV->getType()->getElementType() != Ty)) 2622 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2623 /*DontDefer=*/true, 2624 /*IsForDefinition=*/true)); 2625 2626 // Already emitted. 2627 if (!GV->isDeclaration()) 2628 return; 2629 2630 // We need to set linkage and visibility on the function before 2631 // generating code for it because various parts of IR generation 2632 // want to propagate this information down (e.g. to local static 2633 // declarations). 2634 auto *Fn = cast<llvm::Function>(GV); 2635 setFunctionLinkage(GD, Fn); 2636 setFunctionDLLStorageClass(GD, Fn); 2637 2638 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2639 setGlobalVisibility(Fn, D); 2640 2641 MaybeHandleStaticInExternC(D, Fn); 2642 2643 maybeSetTrivialComdat(*D, *Fn); 2644 2645 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2646 2647 setFunctionDefinitionAttributes(D, Fn); 2648 SetLLVMFunctionAttributesForDefinition(D, Fn); 2649 2650 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2651 AddGlobalCtor(Fn, CA->getPriority()); 2652 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2653 AddGlobalDtor(Fn, DA->getPriority()); 2654 if (D->hasAttr<AnnotateAttr>()) 2655 AddGlobalAnnotations(D, Fn); 2656 } 2657 2658 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2659 const auto *D = cast<ValueDecl>(GD.getDecl()); 2660 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2661 assert(AA && "Not an alias?"); 2662 2663 StringRef MangledName = getMangledName(GD); 2664 2665 if (AA->getAliasee() == MangledName) { 2666 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2667 return; 2668 } 2669 2670 // If there is a definition in the module, then it wins over the alias. 2671 // This is dubious, but allow it to be safe. Just ignore the alias. 2672 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2673 if (Entry && !Entry->isDeclaration()) 2674 return; 2675 2676 Aliases.push_back(GD); 2677 2678 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2679 2680 // Create a reference to the named value. This ensures that it is emitted 2681 // if a deferred decl. 2682 llvm::Constant *Aliasee; 2683 if (isa<llvm::FunctionType>(DeclTy)) 2684 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2685 /*ForVTable=*/false); 2686 else 2687 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2688 llvm::PointerType::getUnqual(DeclTy), 2689 /*D=*/nullptr); 2690 2691 // Create the new alias itself, but don't set a name yet. 2692 auto *GA = llvm::GlobalAlias::create( 2693 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2694 2695 if (Entry) { 2696 if (GA->getAliasee() == Entry) { 2697 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2698 return; 2699 } 2700 2701 assert(Entry->isDeclaration()); 2702 2703 // If there is a declaration in the module, then we had an extern followed 2704 // by the alias, as in: 2705 // extern int test6(); 2706 // ... 2707 // int test6() __attribute__((alias("test7"))); 2708 // 2709 // Remove it and replace uses of it with the alias. 2710 GA->takeName(Entry); 2711 2712 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2713 Entry->getType())); 2714 Entry->eraseFromParent(); 2715 } else { 2716 GA->setName(MangledName); 2717 } 2718 2719 // Set attributes which are particular to an alias; this is a 2720 // specialization of the attributes which may be set on a global 2721 // variable/function. 2722 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2723 D->isWeakImported()) { 2724 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2725 } 2726 2727 if (const auto *VD = dyn_cast<VarDecl>(D)) 2728 if (VD->getTLSKind()) 2729 setTLSMode(GA, *VD); 2730 2731 setAliasAttributes(D, GA); 2732 } 2733 2734 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2735 ArrayRef<llvm::Type*> Tys) { 2736 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2737 Tys); 2738 } 2739 2740 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2741 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2742 const StringLiteral *Literal, bool TargetIsLSB, 2743 bool &IsUTF16, unsigned &StringLength) { 2744 StringRef String = Literal->getString(); 2745 unsigned NumBytes = String.size(); 2746 2747 // Check for simple case. 2748 if (!Literal->containsNonAsciiOrNull()) { 2749 StringLength = NumBytes; 2750 return *Map.insert(std::make_pair(String, nullptr)).first; 2751 } 2752 2753 // Otherwise, convert the UTF8 literals into a string of shorts. 2754 IsUTF16 = true; 2755 2756 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2757 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2758 UTF16 *ToPtr = &ToBuf[0]; 2759 2760 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2761 &ToPtr, ToPtr + NumBytes, 2762 strictConversion); 2763 2764 // ConvertUTF8toUTF16 returns the length in ToPtr. 2765 StringLength = ToPtr - &ToBuf[0]; 2766 2767 // Add an explicit null. 2768 *ToPtr = 0; 2769 return *Map.insert(std::make_pair( 2770 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2771 (StringLength + 1) * 2), 2772 nullptr)).first; 2773 } 2774 2775 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2776 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2777 const StringLiteral *Literal, unsigned &StringLength) { 2778 StringRef String = Literal->getString(); 2779 StringLength = String.size(); 2780 return *Map.insert(std::make_pair(String, nullptr)).first; 2781 } 2782 2783 ConstantAddress 2784 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2785 unsigned StringLength = 0; 2786 bool isUTF16 = false; 2787 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2788 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2789 getDataLayout().isLittleEndian(), isUTF16, 2790 StringLength); 2791 2792 if (auto *C = Entry.second) 2793 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2794 2795 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2796 llvm::Constant *Zeros[] = { Zero, Zero }; 2797 llvm::Value *V; 2798 2799 // If we don't already have it, get __CFConstantStringClassReference. 2800 if (!CFConstantStringClassRef) { 2801 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2802 Ty = llvm::ArrayType::get(Ty, 0); 2803 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2804 "__CFConstantStringClassReference"); 2805 // Decay array -> ptr 2806 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2807 CFConstantStringClassRef = V; 2808 } 2809 else 2810 V = CFConstantStringClassRef; 2811 2812 QualType CFTy = getContext().getCFConstantStringType(); 2813 2814 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2815 2816 llvm::Constant *Fields[4]; 2817 2818 // Class pointer. 2819 Fields[0] = cast<llvm::ConstantExpr>(V); 2820 2821 // Flags. 2822 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2823 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2824 llvm::ConstantInt::get(Ty, 0x07C8); 2825 2826 // String pointer. 2827 llvm::Constant *C = nullptr; 2828 if (isUTF16) { 2829 auto Arr = llvm::makeArrayRef( 2830 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2831 Entry.first().size() / 2); 2832 C = llvm::ConstantDataArray::get(VMContext, Arr); 2833 } else { 2834 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2835 } 2836 2837 // Note: -fwritable-strings doesn't make the backing store strings of 2838 // CFStrings writable. (See <rdar://problem/10657500>) 2839 auto *GV = 2840 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2841 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2842 GV->setUnnamedAddr(true); 2843 // Don't enforce the target's minimum global alignment, since the only use 2844 // of the string is via this class initializer. 2845 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2846 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2847 // that changes the section it ends in, which surprises ld64. 2848 if (isUTF16) { 2849 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2850 GV->setAlignment(Align.getQuantity()); 2851 GV->setSection("__TEXT,__ustring"); 2852 } else { 2853 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2854 GV->setAlignment(Align.getQuantity()); 2855 GV->setSection("__TEXT,__cstring,cstring_literals"); 2856 } 2857 2858 // String. 2859 Fields[2] = 2860 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2861 2862 if (isUTF16) 2863 // Cast the UTF16 string to the correct type. 2864 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2865 2866 // String length. 2867 Ty = getTypes().ConvertType(getContext().LongTy); 2868 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2869 2870 CharUnits Alignment = getPointerAlign(); 2871 2872 // The struct. 2873 C = llvm::ConstantStruct::get(STy, Fields); 2874 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2875 llvm::GlobalVariable::PrivateLinkage, C, 2876 "_unnamed_cfstring_"); 2877 GV->setSection("__DATA,__cfstring"); 2878 GV->setAlignment(Alignment.getQuantity()); 2879 Entry.second = GV; 2880 2881 return ConstantAddress(GV, Alignment); 2882 } 2883 2884 ConstantAddress 2885 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2886 unsigned StringLength = 0; 2887 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2888 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2889 2890 if (auto *C = Entry.second) 2891 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2892 2893 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2894 llvm::Constant *Zeros[] = { Zero, Zero }; 2895 llvm::Value *V; 2896 // If we don't already have it, get _NSConstantStringClassReference. 2897 if (!ConstantStringClassRef) { 2898 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2899 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2900 llvm::Constant *GV; 2901 if (LangOpts.ObjCRuntime.isNonFragile()) { 2902 std::string str = 2903 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2904 : "OBJC_CLASS_$_" + StringClass; 2905 GV = getObjCRuntime().GetClassGlobal(str); 2906 // Make sure the result is of the correct type. 2907 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2908 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2909 ConstantStringClassRef = V; 2910 } else { 2911 std::string str = 2912 StringClass.empty() ? "_NSConstantStringClassReference" 2913 : "_" + StringClass + "ClassReference"; 2914 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2915 GV = CreateRuntimeVariable(PTy, str); 2916 // Decay array -> ptr 2917 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 2918 ConstantStringClassRef = V; 2919 } 2920 } else 2921 V = ConstantStringClassRef; 2922 2923 if (!NSConstantStringType) { 2924 // Construct the type for a constant NSString. 2925 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2926 D->startDefinition(); 2927 2928 QualType FieldTypes[3]; 2929 2930 // const int *isa; 2931 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2932 // const char *str; 2933 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2934 // unsigned int length; 2935 FieldTypes[2] = Context.UnsignedIntTy; 2936 2937 // Create fields 2938 for (unsigned i = 0; i < 3; ++i) { 2939 FieldDecl *Field = FieldDecl::Create(Context, D, 2940 SourceLocation(), 2941 SourceLocation(), nullptr, 2942 FieldTypes[i], /*TInfo=*/nullptr, 2943 /*BitWidth=*/nullptr, 2944 /*Mutable=*/false, 2945 ICIS_NoInit); 2946 Field->setAccess(AS_public); 2947 D->addDecl(Field); 2948 } 2949 2950 D->completeDefinition(); 2951 QualType NSTy = Context.getTagDeclType(D); 2952 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2953 } 2954 2955 llvm::Constant *Fields[3]; 2956 2957 // Class pointer. 2958 Fields[0] = cast<llvm::ConstantExpr>(V); 2959 2960 // String pointer. 2961 llvm::Constant *C = 2962 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2963 2964 llvm::GlobalValue::LinkageTypes Linkage; 2965 bool isConstant; 2966 Linkage = llvm::GlobalValue::PrivateLinkage; 2967 isConstant = !LangOpts.WritableStrings; 2968 2969 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2970 Linkage, C, ".str"); 2971 GV->setUnnamedAddr(true); 2972 // Don't enforce the target's minimum global alignment, since the only use 2973 // of the string is via this class initializer. 2974 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2975 GV->setAlignment(Align.getQuantity()); 2976 Fields[1] = 2977 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2978 2979 // String length. 2980 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2981 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2982 2983 // The struct. 2984 CharUnits Alignment = getPointerAlign(); 2985 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2986 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2987 llvm::GlobalVariable::PrivateLinkage, C, 2988 "_unnamed_nsstring_"); 2989 GV->setAlignment(Alignment.getQuantity()); 2990 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2991 const char *NSStringNonFragileABISection = 2992 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2993 // FIXME. Fix section. 2994 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2995 ? NSStringNonFragileABISection 2996 : NSStringSection); 2997 Entry.second = GV; 2998 2999 return ConstantAddress(GV, Alignment); 3000 } 3001 3002 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3003 if (ObjCFastEnumerationStateType.isNull()) { 3004 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3005 D->startDefinition(); 3006 3007 QualType FieldTypes[] = { 3008 Context.UnsignedLongTy, 3009 Context.getPointerType(Context.getObjCIdType()), 3010 Context.getPointerType(Context.UnsignedLongTy), 3011 Context.getConstantArrayType(Context.UnsignedLongTy, 3012 llvm::APInt(32, 5), ArrayType::Normal, 0) 3013 }; 3014 3015 for (size_t i = 0; i < 4; ++i) { 3016 FieldDecl *Field = FieldDecl::Create(Context, 3017 D, 3018 SourceLocation(), 3019 SourceLocation(), nullptr, 3020 FieldTypes[i], /*TInfo=*/nullptr, 3021 /*BitWidth=*/nullptr, 3022 /*Mutable=*/false, 3023 ICIS_NoInit); 3024 Field->setAccess(AS_public); 3025 D->addDecl(Field); 3026 } 3027 3028 D->completeDefinition(); 3029 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3030 } 3031 3032 return ObjCFastEnumerationStateType; 3033 } 3034 3035 llvm::Constant * 3036 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3037 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3038 3039 // Don't emit it as the address of the string, emit the string data itself 3040 // as an inline array. 3041 if (E->getCharByteWidth() == 1) { 3042 SmallString<64> Str(E->getString()); 3043 3044 // Resize the string to the right size, which is indicated by its type. 3045 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3046 Str.resize(CAT->getSize().getZExtValue()); 3047 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3048 } 3049 3050 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3051 llvm::Type *ElemTy = AType->getElementType(); 3052 unsigned NumElements = AType->getNumElements(); 3053 3054 // Wide strings have either 2-byte or 4-byte elements. 3055 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3056 SmallVector<uint16_t, 32> Elements; 3057 Elements.reserve(NumElements); 3058 3059 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3060 Elements.push_back(E->getCodeUnit(i)); 3061 Elements.resize(NumElements); 3062 return llvm::ConstantDataArray::get(VMContext, Elements); 3063 } 3064 3065 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3066 SmallVector<uint32_t, 32> Elements; 3067 Elements.reserve(NumElements); 3068 3069 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3070 Elements.push_back(E->getCodeUnit(i)); 3071 Elements.resize(NumElements); 3072 return llvm::ConstantDataArray::get(VMContext, Elements); 3073 } 3074 3075 static llvm::GlobalVariable * 3076 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3077 CodeGenModule &CGM, StringRef GlobalName, 3078 CharUnits Alignment) { 3079 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3080 unsigned AddrSpace = 0; 3081 if (CGM.getLangOpts().OpenCL) 3082 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3083 3084 llvm::Module &M = CGM.getModule(); 3085 // Create a global variable for this string 3086 auto *GV = new llvm::GlobalVariable( 3087 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3088 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3089 GV->setAlignment(Alignment.getQuantity()); 3090 GV->setUnnamedAddr(true); 3091 if (GV->isWeakForLinker()) { 3092 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3093 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3094 } 3095 3096 return GV; 3097 } 3098 3099 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3100 /// constant array for the given string literal. 3101 ConstantAddress 3102 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3103 StringRef Name) { 3104 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3105 3106 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3107 llvm::GlobalVariable **Entry = nullptr; 3108 if (!LangOpts.WritableStrings) { 3109 Entry = &ConstantStringMap[C]; 3110 if (auto GV = *Entry) { 3111 if (Alignment.getQuantity() > GV->getAlignment()) 3112 GV->setAlignment(Alignment.getQuantity()); 3113 return ConstantAddress(GV, Alignment); 3114 } 3115 } 3116 3117 SmallString<256> MangledNameBuffer; 3118 StringRef GlobalVariableName; 3119 llvm::GlobalValue::LinkageTypes LT; 3120 3121 // Mangle the string literal if the ABI allows for it. However, we cannot 3122 // do this if we are compiling with ASan or -fwritable-strings because they 3123 // rely on strings having normal linkage. 3124 if (!LangOpts.WritableStrings && 3125 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3126 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3127 llvm::raw_svector_ostream Out(MangledNameBuffer); 3128 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3129 3130 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3131 GlobalVariableName = MangledNameBuffer; 3132 } else { 3133 LT = llvm::GlobalValue::PrivateLinkage; 3134 GlobalVariableName = Name; 3135 } 3136 3137 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3138 if (Entry) 3139 *Entry = GV; 3140 3141 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3142 QualType()); 3143 return ConstantAddress(GV, Alignment); 3144 } 3145 3146 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3147 /// array for the given ObjCEncodeExpr node. 3148 ConstantAddress 3149 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3150 std::string Str; 3151 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3152 3153 return GetAddrOfConstantCString(Str); 3154 } 3155 3156 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3157 /// the literal and a terminating '\0' character. 3158 /// The result has pointer to array type. 3159 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3160 const std::string &Str, const char *GlobalName) { 3161 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3162 CharUnits Alignment = 3163 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3164 3165 llvm::Constant *C = 3166 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3167 3168 // Don't share any string literals if strings aren't constant. 3169 llvm::GlobalVariable **Entry = nullptr; 3170 if (!LangOpts.WritableStrings) { 3171 Entry = &ConstantStringMap[C]; 3172 if (auto GV = *Entry) { 3173 if (Alignment.getQuantity() > GV->getAlignment()) 3174 GV->setAlignment(Alignment.getQuantity()); 3175 return ConstantAddress(GV, Alignment); 3176 } 3177 } 3178 3179 // Get the default prefix if a name wasn't specified. 3180 if (!GlobalName) 3181 GlobalName = ".str"; 3182 // Create a global variable for this. 3183 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3184 GlobalName, Alignment); 3185 if (Entry) 3186 *Entry = GV; 3187 return ConstantAddress(GV, Alignment); 3188 } 3189 3190 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3191 const MaterializeTemporaryExpr *E, const Expr *Init) { 3192 assert((E->getStorageDuration() == SD_Static || 3193 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3194 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3195 3196 // If we're not materializing a subobject of the temporary, keep the 3197 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3198 QualType MaterializedType = Init->getType(); 3199 if (Init == E->GetTemporaryExpr()) 3200 MaterializedType = E->getType(); 3201 3202 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3203 3204 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3205 return ConstantAddress(Slot, Align); 3206 3207 // FIXME: If an externally-visible declaration extends multiple temporaries, 3208 // we need to give each temporary the same name in every translation unit (and 3209 // we also need to make the temporaries externally-visible). 3210 SmallString<256> Name; 3211 llvm::raw_svector_ostream Out(Name); 3212 getCXXABI().getMangleContext().mangleReferenceTemporary( 3213 VD, E->getManglingNumber(), Out); 3214 3215 APValue *Value = nullptr; 3216 if (E->getStorageDuration() == SD_Static) { 3217 // We might have a cached constant initializer for this temporary. Note 3218 // that this might have a different value from the value computed by 3219 // evaluating the initializer if the surrounding constant expression 3220 // modifies the temporary. 3221 Value = getContext().getMaterializedTemporaryValue(E, false); 3222 if (Value && Value->isUninit()) 3223 Value = nullptr; 3224 } 3225 3226 // Try evaluating it now, it might have a constant initializer. 3227 Expr::EvalResult EvalResult; 3228 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3229 !EvalResult.hasSideEffects()) 3230 Value = &EvalResult.Val; 3231 3232 llvm::Constant *InitialValue = nullptr; 3233 bool Constant = false; 3234 llvm::Type *Type; 3235 if (Value) { 3236 // The temporary has a constant initializer, use it. 3237 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3238 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3239 Type = InitialValue->getType(); 3240 } else { 3241 // No initializer, the initialization will be provided when we 3242 // initialize the declaration which performed lifetime extension. 3243 Type = getTypes().ConvertTypeForMem(MaterializedType); 3244 } 3245 3246 // Create a global variable for this lifetime-extended temporary. 3247 llvm::GlobalValue::LinkageTypes Linkage = 3248 getLLVMLinkageVarDefinition(VD, Constant); 3249 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3250 const VarDecl *InitVD; 3251 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3252 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3253 // Temporaries defined inside a class get linkonce_odr linkage because the 3254 // class can be defined in multipe translation units. 3255 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3256 } else { 3257 // There is no need for this temporary to have external linkage if the 3258 // VarDecl has external linkage. 3259 Linkage = llvm::GlobalVariable::InternalLinkage; 3260 } 3261 } 3262 unsigned AddrSpace = GetGlobalVarAddressSpace( 3263 VD, getContext().getTargetAddressSpace(MaterializedType)); 3264 auto *GV = new llvm::GlobalVariable( 3265 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3266 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3267 AddrSpace); 3268 setGlobalVisibility(GV, VD); 3269 GV->setAlignment(Align.getQuantity()); 3270 if (supportsCOMDAT() && GV->isWeakForLinker()) 3271 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3272 if (VD->getTLSKind()) 3273 setTLSMode(GV, *VD); 3274 MaterializedGlobalTemporaryMap[E] = GV; 3275 return ConstantAddress(GV, Align); 3276 } 3277 3278 /// EmitObjCPropertyImplementations - Emit information for synthesized 3279 /// properties for an implementation. 3280 void CodeGenModule::EmitObjCPropertyImplementations(const 3281 ObjCImplementationDecl *D) { 3282 for (const auto *PID : D->property_impls()) { 3283 // Dynamic is just for type-checking. 3284 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3285 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3286 3287 // Determine which methods need to be implemented, some may have 3288 // been overridden. Note that ::isPropertyAccessor is not the method 3289 // we want, that just indicates if the decl came from a 3290 // property. What we want to know is if the method is defined in 3291 // this implementation. 3292 if (!D->getInstanceMethod(PD->getGetterName())) 3293 CodeGenFunction(*this).GenerateObjCGetter( 3294 const_cast<ObjCImplementationDecl *>(D), PID); 3295 if (!PD->isReadOnly() && 3296 !D->getInstanceMethod(PD->getSetterName())) 3297 CodeGenFunction(*this).GenerateObjCSetter( 3298 const_cast<ObjCImplementationDecl *>(D), PID); 3299 } 3300 } 3301 } 3302 3303 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3304 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3305 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3306 ivar; ivar = ivar->getNextIvar()) 3307 if (ivar->getType().isDestructedType()) 3308 return true; 3309 3310 return false; 3311 } 3312 3313 static bool AllTrivialInitializers(CodeGenModule &CGM, 3314 ObjCImplementationDecl *D) { 3315 CodeGenFunction CGF(CGM); 3316 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3317 E = D->init_end(); B != E; ++B) { 3318 CXXCtorInitializer *CtorInitExp = *B; 3319 Expr *Init = CtorInitExp->getInit(); 3320 if (!CGF.isTrivialInitializer(Init)) 3321 return false; 3322 } 3323 return true; 3324 } 3325 3326 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3327 /// for an implementation. 3328 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3329 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3330 if (needsDestructMethod(D)) { 3331 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3332 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3333 ObjCMethodDecl *DTORMethod = 3334 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3335 cxxSelector, getContext().VoidTy, nullptr, D, 3336 /*isInstance=*/true, /*isVariadic=*/false, 3337 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3338 /*isDefined=*/false, ObjCMethodDecl::Required); 3339 D->addInstanceMethod(DTORMethod); 3340 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3341 D->setHasDestructors(true); 3342 } 3343 3344 // If the implementation doesn't have any ivar initializers, we don't need 3345 // a .cxx_construct. 3346 if (D->getNumIvarInitializers() == 0 || 3347 AllTrivialInitializers(*this, D)) 3348 return; 3349 3350 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3351 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3352 // The constructor returns 'self'. 3353 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3354 D->getLocation(), 3355 D->getLocation(), 3356 cxxSelector, 3357 getContext().getObjCIdType(), 3358 nullptr, D, /*isInstance=*/true, 3359 /*isVariadic=*/false, 3360 /*isPropertyAccessor=*/true, 3361 /*isImplicitlyDeclared=*/true, 3362 /*isDefined=*/false, 3363 ObjCMethodDecl::Required); 3364 D->addInstanceMethod(CTORMethod); 3365 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3366 D->setHasNonZeroConstructors(true); 3367 } 3368 3369 /// EmitNamespace - Emit all declarations in a namespace. 3370 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3371 for (auto *I : ND->decls()) { 3372 if (const auto *VD = dyn_cast<VarDecl>(I)) 3373 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3374 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3375 continue; 3376 EmitTopLevelDecl(I); 3377 } 3378 } 3379 3380 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3381 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3382 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3383 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3384 ErrorUnsupported(LSD, "linkage spec"); 3385 return; 3386 } 3387 3388 for (auto *I : LSD->decls()) { 3389 // Meta-data for ObjC class includes references to implemented methods. 3390 // Generate class's method definitions first. 3391 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3392 for (auto *M : OID->methods()) 3393 EmitTopLevelDecl(M); 3394 } 3395 EmitTopLevelDecl(I); 3396 } 3397 } 3398 3399 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3400 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3401 // Ignore dependent declarations. 3402 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3403 return; 3404 3405 switch (D->getKind()) { 3406 case Decl::CXXConversion: 3407 case Decl::CXXMethod: 3408 case Decl::Function: 3409 // Skip function templates 3410 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3411 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3412 return; 3413 3414 EmitGlobal(cast<FunctionDecl>(D)); 3415 // Always provide some coverage mapping 3416 // even for the functions that aren't emitted. 3417 AddDeferredUnusedCoverageMapping(D); 3418 break; 3419 3420 case Decl::Var: 3421 // Skip variable templates 3422 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3423 return; 3424 case Decl::VarTemplateSpecialization: 3425 EmitGlobal(cast<VarDecl>(D)); 3426 break; 3427 3428 // Indirect fields from global anonymous structs and unions can be 3429 // ignored; only the actual variable requires IR gen support. 3430 case Decl::IndirectField: 3431 break; 3432 3433 // C++ Decls 3434 case Decl::Namespace: 3435 EmitNamespace(cast<NamespaceDecl>(D)); 3436 break; 3437 // No code generation needed. 3438 case Decl::UsingShadow: 3439 case Decl::ClassTemplate: 3440 case Decl::VarTemplate: 3441 case Decl::VarTemplatePartialSpecialization: 3442 case Decl::FunctionTemplate: 3443 case Decl::TypeAliasTemplate: 3444 case Decl::Block: 3445 case Decl::Empty: 3446 break; 3447 case Decl::Using: // using X; [C++] 3448 if (CGDebugInfo *DI = getModuleDebugInfo()) 3449 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3450 return; 3451 case Decl::NamespaceAlias: 3452 if (CGDebugInfo *DI = getModuleDebugInfo()) 3453 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3454 return; 3455 case Decl::UsingDirective: // using namespace X; [C++] 3456 if (CGDebugInfo *DI = getModuleDebugInfo()) 3457 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3458 return; 3459 case Decl::CXXConstructor: 3460 // Skip function templates 3461 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3462 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3463 return; 3464 3465 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3466 break; 3467 case Decl::CXXDestructor: 3468 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3469 return; 3470 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3471 break; 3472 3473 case Decl::StaticAssert: 3474 // Nothing to do. 3475 break; 3476 3477 // Objective-C Decls 3478 3479 // Forward declarations, no (immediate) code generation. 3480 case Decl::ObjCInterface: 3481 case Decl::ObjCCategory: 3482 break; 3483 3484 case Decl::ObjCProtocol: { 3485 auto *Proto = cast<ObjCProtocolDecl>(D); 3486 if (Proto->isThisDeclarationADefinition()) 3487 ObjCRuntime->GenerateProtocol(Proto); 3488 break; 3489 } 3490 3491 case Decl::ObjCCategoryImpl: 3492 // Categories have properties but don't support synthesize so we 3493 // can ignore them here. 3494 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3495 break; 3496 3497 case Decl::ObjCImplementation: { 3498 auto *OMD = cast<ObjCImplementationDecl>(D); 3499 EmitObjCPropertyImplementations(OMD); 3500 EmitObjCIvarInitializations(OMD); 3501 ObjCRuntime->GenerateClass(OMD); 3502 // Emit global variable debug information. 3503 if (CGDebugInfo *DI = getModuleDebugInfo()) 3504 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3505 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3506 OMD->getClassInterface()), OMD->getLocation()); 3507 break; 3508 } 3509 case Decl::ObjCMethod: { 3510 auto *OMD = cast<ObjCMethodDecl>(D); 3511 // If this is not a prototype, emit the body. 3512 if (OMD->getBody()) 3513 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3514 break; 3515 } 3516 case Decl::ObjCCompatibleAlias: 3517 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3518 break; 3519 3520 case Decl::LinkageSpec: 3521 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3522 break; 3523 3524 case Decl::FileScopeAsm: { 3525 // File-scope asm is ignored during device-side CUDA compilation. 3526 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3527 break; 3528 auto *AD = cast<FileScopeAsmDecl>(D); 3529 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3530 break; 3531 } 3532 3533 case Decl::Import: { 3534 auto *Import = cast<ImportDecl>(D); 3535 3536 // Ignore import declarations that come from imported modules. 3537 if (Import->getImportedOwningModule()) 3538 break; 3539 if (CGDebugInfo *DI = getModuleDebugInfo()) 3540 DI->EmitImportDecl(*Import); 3541 3542 ImportedModules.insert(Import->getImportedModule()); 3543 break; 3544 } 3545 3546 case Decl::OMPThreadPrivate: 3547 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3548 break; 3549 3550 case Decl::ClassTemplateSpecialization: { 3551 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3552 if (DebugInfo && 3553 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3554 Spec->hasDefinition()) 3555 DebugInfo->completeTemplateDefinition(*Spec); 3556 break; 3557 } 3558 3559 default: 3560 // Make sure we handled everything we should, every other kind is a 3561 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3562 // function. Need to recode Decl::Kind to do that easily. 3563 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3564 break; 3565 } 3566 } 3567 3568 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3569 // Do we need to generate coverage mapping? 3570 if (!CodeGenOpts.CoverageMapping) 3571 return; 3572 switch (D->getKind()) { 3573 case Decl::CXXConversion: 3574 case Decl::CXXMethod: 3575 case Decl::Function: 3576 case Decl::ObjCMethod: 3577 case Decl::CXXConstructor: 3578 case Decl::CXXDestructor: { 3579 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3580 return; 3581 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3582 if (I == DeferredEmptyCoverageMappingDecls.end()) 3583 DeferredEmptyCoverageMappingDecls[D] = true; 3584 break; 3585 } 3586 default: 3587 break; 3588 }; 3589 } 3590 3591 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3592 // Do we need to generate coverage mapping? 3593 if (!CodeGenOpts.CoverageMapping) 3594 return; 3595 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3596 if (Fn->isTemplateInstantiation()) 3597 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3598 } 3599 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3600 if (I == DeferredEmptyCoverageMappingDecls.end()) 3601 DeferredEmptyCoverageMappingDecls[D] = false; 3602 else 3603 I->second = false; 3604 } 3605 3606 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3607 std::vector<const Decl *> DeferredDecls; 3608 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3609 if (!I.second) 3610 continue; 3611 DeferredDecls.push_back(I.first); 3612 } 3613 // Sort the declarations by their location to make sure that the tests get a 3614 // predictable order for the coverage mapping for the unused declarations. 3615 if (CodeGenOpts.DumpCoverageMapping) 3616 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3617 [] (const Decl *LHS, const Decl *RHS) { 3618 return LHS->getLocStart() < RHS->getLocStart(); 3619 }); 3620 for (const auto *D : DeferredDecls) { 3621 switch (D->getKind()) { 3622 case Decl::CXXConversion: 3623 case Decl::CXXMethod: 3624 case Decl::Function: 3625 case Decl::ObjCMethod: { 3626 CodeGenPGO PGO(*this); 3627 GlobalDecl GD(cast<FunctionDecl>(D)); 3628 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3629 getFunctionLinkage(GD)); 3630 break; 3631 } 3632 case Decl::CXXConstructor: { 3633 CodeGenPGO PGO(*this); 3634 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3635 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3636 getFunctionLinkage(GD)); 3637 break; 3638 } 3639 case Decl::CXXDestructor: { 3640 CodeGenPGO PGO(*this); 3641 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3642 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3643 getFunctionLinkage(GD)); 3644 break; 3645 } 3646 default: 3647 break; 3648 }; 3649 } 3650 } 3651 3652 /// Turns the given pointer into a constant. 3653 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3654 const void *Ptr) { 3655 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3656 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3657 return llvm::ConstantInt::get(i64, PtrInt); 3658 } 3659 3660 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3661 llvm::NamedMDNode *&GlobalMetadata, 3662 GlobalDecl D, 3663 llvm::GlobalValue *Addr) { 3664 if (!GlobalMetadata) 3665 GlobalMetadata = 3666 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3667 3668 // TODO: should we report variant information for ctors/dtors? 3669 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3670 llvm::ConstantAsMetadata::get(GetPointerConstant( 3671 CGM.getLLVMContext(), D.getDecl()))}; 3672 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3673 } 3674 3675 /// For each function which is declared within an extern "C" region and marked 3676 /// as 'used', but has internal linkage, create an alias from the unmangled 3677 /// name to the mangled name if possible. People expect to be able to refer 3678 /// to such functions with an unmangled name from inline assembly within the 3679 /// same translation unit. 3680 void CodeGenModule::EmitStaticExternCAliases() { 3681 for (auto &I : StaticExternCValues) { 3682 IdentifierInfo *Name = I.first; 3683 llvm::GlobalValue *Val = I.second; 3684 if (Val && !getModule().getNamedValue(Name->getName())) 3685 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3686 } 3687 } 3688 3689 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3690 GlobalDecl &Result) const { 3691 auto Res = Manglings.find(MangledName); 3692 if (Res == Manglings.end()) 3693 return false; 3694 Result = Res->getValue(); 3695 return true; 3696 } 3697 3698 /// Emits metadata nodes associating all the global values in the 3699 /// current module with the Decls they came from. This is useful for 3700 /// projects using IR gen as a subroutine. 3701 /// 3702 /// Since there's currently no way to associate an MDNode directly 3703 /// with an llvm::GlobalValue, we create a global named metadata 3704 /// with the name 'clang.global.decl.ptrs'. 3705 void CodeGenModule::EmitDeclMetadata() { 3706 llvm::NamedMDNode *GlobalMetadata = nullptr; 3707 3708 // StaticLocalDeclMap 3709 for (auto &I : MangledDeclNames) { 3710 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3711 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3712 } 3713 } 3714 3715 /// Emits metadata nodes for all the local variables in the current 3716 /// function. 3717 void CodeGenFunction::EmitDeclMetadata() { 3718 if (LocalDeclMap.empty()) return; 3719 3720 llvm::LLVMContext &Context = getLLVMContext(); 3721 3722 // Find the unique metadata ID for this name. 3723 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3724 3725 llvm::NamedMDNode *GlobalMetadata = nullptr; 3726 3727 for (auto &I : LocalDeclMap) { 3728 const Decl *D = I.first; 3729 llvm::Value *Addr = I.second.getPointer(); 3730 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3731 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3732 Alloca->setMetadata( 3733 DeclPtrKind, llvm::MDNode::get( 3734 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3735 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3736 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3737 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3738 } 3739 } 3740 } 3741 3742 void CodeGenModule::EmitVersionIdentMetadata() { 3743 llvm::NamedMDNode *IdentMetadata = 3744 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3745 std::string Version = getClangFullVersion(); 3746 llvm::LLVMContext &Ctx = TheModule.getContext(); 3747 3748 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3749 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3750 } 3751 3752 void CodeGenModule::EmitTargetMetadata() { 3753 // Warning, new MangledDeclNames may be appended within this loop. 3754 // We rely on MapVector insertions adding new elements to the end 3755 // of the container. 3756 // FIXME: Move this loop into the one target that needs it, and only 3757 // loop over those declarations for which we couldn't emit the target 3758 // metadata when we emitted the declaration. 3759 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3760 auto Val = *(MangledDeclNames.begin() + I); 3761 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3762 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3763 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3764 } 3765 } 3766 3767 void CodeGenModule::EmitCoverageFile() { 3768 if (!getCodeGenOpts().CoverageFile.empty()) { 3769 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3770 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3771 llvm::LLVMContext &Ctx = TheModule.getContext(); 3772 llvm::MDString *CoverageFile = 3773 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3774 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3775 llvm::MDNode *CU = CUNode->getOperand(i); 3776 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3777 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3778 } 3779 } 3780 } 3781 } 3782 3783 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3784 // Sema has checked that all uuid strings are of the form 3785 // "12345678-1234-1234-1234-1234567890ab". 3786 assert(Uuid.size() == 36); 3787 for (unsigned i = 0; i < 36; ++i) { 3788 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3789 else assert(isHexDigit(Uuid[i])); 3790 } 3791 3792 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3793 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3794 3795 llvm::Constant *Field3[8]; 3796 for (unsigned Idx = 0; Idx < 8; ++Idx) 3797 Field3[Idx] = llvm::ConstantInt::get( 3798 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3799 3800 llvm::Constant *Fields[4] = { 3801 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3802 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3803 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3804 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3805 }; 3806 3807 return llvm::ConstantStruct::getAnon(Fields); 3808 } 3809 3810 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3811 bool ForEH) { 3812 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3813 // FIXME: should we even be calling this method if RTTI is disabled 3814 // and it's not for EH? 3815 if (!ForEH && !getLangOpts().RTTI) 3816 return llvm::Constant::getNullValue(Int8PtrTy); 3817 3818 if (ForEH && Ty->isObjCObjectPointerType() && 3819 LangOpts.ObjCRuntime.isGNUFamily()) 3820 return ObjCRuntime->GetEHType(Ty); 3821 3822 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3823 } 3824 3825 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3826 for (auto RefExpr : D->varlists()) { 3827 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3828 bool PerformInit = 3829 VD->getAnyInitializer() && 3830 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3831 /*ForRef=*/false); 3832 3833 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 3834 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 3835 VD, Addr, RefExpr->getLocStart(), PerformInit)) 3836 CXXGlobalInits.push_back(InitFunction); 3837 } 3838 } 3839 3840 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 3841 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 3842 if (InternalId) 3843 return InternalId; 3844 3845 if (isExternallyVisible(T->getLinkage())) { 3846 std::string OutName; 3847 llvm::raw_string_ostream Out(OutName); 3848 getCXXABI().getMangleContext().mangleTypeName(T, Out); 3849 3850 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 3851 } else { 3852 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 3853 llvm::ArrayRef<llvm::Metadata *>()); 3854 } 3855 3856 return InternalId; 3857 } 3858 3859 llvm::MDTuple *CodeGenModule::CreateVTableBitSetEntry( 3860 llvm::GlobalVariable *VTable, CharUnits Offset, const CXXRecordDecl *RD) { 3861 llvm::Metadata *BitsetOps[] = { 3862 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)), 3863 llvm::ConstantAsMetadata::get(VTable), 3864 llvm::ConstantAsMetadata::get( 3865 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 3866 return llvm::MDTuple::get(getLLVMContext(), BitsetOps); 3867 } 3868