1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/Mangler.h"
41 #include "llvm/Target/TargetData.h"
42 #include "llvm/Support/CallSite.h"
43 #include "llvm/Support/ErrorHandling.h"
44 using namespace clang;
45 using namespace CodeGen;
46 
47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
48   switch (CGM.getContext().Target.getCXXABI()) {
49   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
50   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
51   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
52   }
53 
54   llvm_unreachable("invalid C++ ABI kind");
55   return *CreateItaniumCXXABI(CGM);
56 }
57 
58 
59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
60                              llvm::Module &M, const llvm::TargetData &TD,
61                              Diagnostic &diags)
62   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64     ABI(createCXXABI(*this)),
65     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66     TBAA(0),
67     VTables(*this), Runtime(0),
68     CFConstantStringClassRef(0), ConstantStringClassRef(0),
69     VMContext(M.getContext()),
70     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73     BlockObjectAssign(0), BlockObjectDispose(0),
74     BlockDescriptorType(0), GenericBlockLiteralType(0) {
75   if (!Features.ObjC1)
76     Runtime = 0;
77   else if (!Features.NeXTRuntime)
78     Runtime = CreateGNUObjCRuntime(*this);
79   else if (Features.ObjCNonFragileABI)
80     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
81   else
82     Runtime = CreateMacObjCRuntime(*this);
83 
84   // Enable TBAA unless it's suppressed.
85   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
86     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
87                            ABI.getMangleContext());
88 
89   // If debug info generation is enabled, create the CGDebugInfo object.
90   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
91 
92   Block.GlobalUniqueCount = 0;
93   Int8PtrTy = llvm::Type::getInt8PtrTy(M.getContext());
94 }
95 
96 CodeGenModule::~CodeGenModule() {
97   delete Runtime;
98   delete &ABI;
99   delete TBAA;
100   delete DebugInfo;
101 }
102 
103 void CodeGenModule::createObjCRuntime() {
104   if (!Features.NeXTRuntime)
105     Runtime = CreateGNUObjCRuntime(*this);
106   else if (Features.ObjCNonFragileABI)
107     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
108   else
109     Runtime = CreateMacObjCRuntime(*this);
110 }
111 
112 void CodeGenModule::Release() {
113   EmitDeferred();
114   EmitCXXGlobalInitFunc();
115   EmitCXXGlobalDtorFunc();
116   if (Runtime)
117     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
118       AddGlobalCtor(ObjCInitFunction);
119   EmitCtorList(GlobalCtors, "llvm.global_ctors");
120   EmitCtorList(GlobalDtors, "llvm.global_dtors");
121   EmitAnnotations();
122   EmitLLVMUsed();
123 
124   SimplifyPersonality();
125 
126   if (getCodeGenOpts().EmitDeclMetadata)
127     EmitDeclMetadata();
128 }
129 
130 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
131   if (!TBAA)
132     return 0;
133   return TBAA->getTBAAInfo(QTy);
134 }
135 
136 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
137                                         llvm::MDNode *TBAAInfo) {
138   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
139 }
140 
141 bool CodeGenModule::isTargetDarwin() const {
142   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
143 }
144 
145 /// ErrorUnsupported - Print out an error that codegen doesn't support the
146 /// specified stmt yet.
147 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
148                                      bool OmitOnError) {
149   if (OmitOnError && getDiags().hasErrorOccurred())
150     return;
151   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
152                                                "cannot compile this %0 yet");
153   std::string Msg = Type;
154   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
155     << Msg << S->getSourceRange();
156 }
157 
158 /// ErrorUnsupported - Print out an error that codegen doesn't support the
159 /// specified decl yet.
160 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
161                                      bool OmitOnError) {
162   if (OmitOnError && getDiags().hasErrorOccurred())
163     return;
164   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
165                                                "cannot compile this %0 yet");
166   std::string Msg = Type;
167   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
168 }
169 
170 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
171                                         const NamedDecl *D) const {
172   // Internal definitions always have default visibility.
173   if (GV->hasLocalLinkage()) {
174     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
175     return;
176   }
177 
178   // Set visibility for definitions.
179   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
180   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
181     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
182 }
183 
184 /// Set the symbol visibility of type information (vtable and RTTI)
185 /// associated with the given type.
186 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
187                                       const CXXRecordDecl *RD,
188                                       TypeVisibilityKind TVK) const {
189   setGlobalVisibility(GV, RD);
190 
191   if (!CodeGenOpts.HiddenWeakVTables)
192     return;
193 
194   // We never want to drop the visibility for RTTI names.
195   if (TVK == TVK_ForRTTIName)
196     return;
197 
198   // We want to drop the visibility to hidden for weak type symbols.
199   // This isn't possible if there might be unresolved references
200   // elsewhere that rely on this symbol being visible.
201 
202   // This should be kept roughly in sync with setThunkVisibility
203   // in CGVTables.cpp.
204 
205   // Preconditions.
206   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
207       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
208     return;
209 
210   // Don't override an explicit visibility attribute.
211   if (RD->hasAttr<VisibilityAttr>())
212     return;
213 
214   switch (RD->getTemplateSpecializationKind()) {
215   // We have to disable the optimization if this is an EI definition
216   // because there might be EI declarations in other shared objects.
217   case TSK_ExplicitInstantiationDefinition:
218   case TSK_ExplicitInstantiationDeclaration:
219     return;
220 
221   // Every use of a non-template class's type information has to emit it.
222   case TSK_Undeclared:
223     break;
224 
225   // In theory, implicit instantiations can ignore the possibility of
226   // an explicit instantiation declaration because there necessarily
227   // must be an EI definition somewhere with default visibility.  In
228   // practice, it's possible to have an explicit instantiation for
229   // an arbitrary template class, and linkers aren't necessarily able
230   // to deal with mixed-visibility symbols.
231   case TSK_ExplicitSpecialization:
232   case TSK_ImplicitInstantiation:
233     if (!CodeGenOpts.HiddenWeakTemplateVTables)
234       return;
235     break;
236   }
237 
238   // If there's a key function, there may be translation units
239   // that don't have the key function's definition.  But ignore
240   // this if we're emitting RTTI under -fno-rtti.
241   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
242     if (Context.getKeyFunction(RD))
243       return;
244   }
245 
246   // Otherwise, drop the visibility to hidden.
247   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
248   GV->setUnnamedAddr(true);
249 }
250 
251 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
252   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
253 
254   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
255   if (!Str.empty())
256     return Str;
257 
258   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
259     IdentifierInfo *II = ND->getIdentifier();
260     assert(II && "Attempt to mangle unnamed decl.");
261 
262     Str = II->getName();
263     return Str;
264   }
265 
266   llvm::SmallString<256> Buffer;
267   llvm::raw_svector_ostream Out(Buffer);
268   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
269     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
270   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
271     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
272   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
273     getCXXABI().getMangleContext().mangleBlock(BD, Out);
274   else
275     getCXXABI().getMangleContext().mangleName(ND, Out);
276 
277   // Allocate space for the mangled name.
278   Out.flush();
279   size_t Length = Buffer.size();
280   char *Name = MangledNamesAllocator.Allocate<char>(Length);
281   std::copy(Buffer.begin(), Buffer.end(), Name);
282 
283   Str = llvm::StringRef(Name, Length);
284 
285   return Str;
286 }
287 
288 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
289                                         const BlockDecl *BD) {
290   MangleContext &MangleCtx = getCXXABI().getMangleContext();
291   const Decl *D = GD.getDecl();
292   llvm::raw_svector_ostream Out(Buffer.getBuffer());
293   if (D == 0)
294     MangleCtx.mangleGlobalBlock(BD, Out);
295   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
296     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
297   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
298     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
299   else
300     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
301 }
302 
303 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
304   return getModule().getNamedValue(Name);
305 }
306 
307 /// AddGlobalCtor - Add a function to the list that will be called before
308 /// main() runs.
309 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
310   // FIXME: Type coercion of void()* types.
311   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
312 }
313 
314 /// AddGlobalDtor - Add a function to the list that will be called
315 /// when the module is unloaded.
316 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
317   // FIXME: Type coercion of void()* types.
318   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
319 }
320 
321 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
322   // Ctor function type is void()*.
323   llvm::FunctionType* CtorFTy =
324     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
325   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
326 
327   // Get the type of a ctor entry, { i32, void ()* }.
328   llvm::StructType* CtorStructTy =
329     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
330                           llvm::PointerType::getUnqual(CtorFTy), NULL);
331 
332   // Construct the constructor and destructor arrays.
333   std::vector<llvm::Constant*> Ctors;
334   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
335     std::vector<llvm::Constant*> S;
336     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
337                 I->second, false));
338     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
339     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
340   }
341 
342   if (!Ctors.empty()) {
343     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
344     new llvm::GlobalVariable(TheModule, AT, false,
345                              llvm::GlobalValue::AppendingLinkage,
346                              llvm::ConstantArray::get(AT, Ctors),
347                              GlobalName);
348   }
349 }
350 
351 void CodeGenModule::EmitAnnotations() {
352   if (Annotations.empty())
353     return;
354 
355   // Create a new global variable for the ConstantStruct in the Module.
356   llvm::Constant *Array =
357   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
358                                                 Annotations.size()),
359                            Annotations);
360   llvm::GlobalValue *gv =
361   new llvm::GlobalVariable(TheModule, Array->getType(), false,
362                            llvm::GlobalValue::AppendingLinkage, Array,
363                            "llvm.global.annotations");
364   gv->setSection("llvm.metadata");
365 }
366 
367 llvm::GlobalValue::LinkageTypes
368 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
369   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
370 
371   if (Linkage == GVA_Internal)
372     return llvm::Function::InternalLinkage;
373 
374   if (D->hasAttr<DLLExportAttr>())
375     return llvm::Function::DLLExportLinkage;
376 
377   if (D->hasAttr<WeakAttr>())
378     return llvm::Function::WeakAnyLinkage;
379 
380   // In C99 mode, 'inline' functions are guaranteed to have a strong
381   // definition somewhere else, so we can use available_externally linkage.
382   if (Linkage == GVA_C99Inline)
383     return llvm::Function::AvailableExternallyLinkage;
384 
385   // In C++, the compiler has to emit a definition in every translation unit
386   // that references the function.  We should use linkonce_odr because
387   // a) if all references in this translation unit are optimized away, we
388   // don't need to codegen it.  b) if the function persists, it needs to be
389   // merged with other definitions. c) C++ has the ODR, so we know the
390   // definition is dependable.
391   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
392     return !Context.getLangOptions().AppleKext
393              ? llvm::Function::LinkOnceODRLinkage
394              : llvm::Function::InternalLinkage;
395 
396   // An explicit instantiation of a template has weak linkage, since
397   // explicit instantiations can occur in multiple translation units
398   // and must all be equivalent. However, we are not allowed to
399   // throw away these explicit instantiations.
400   if (Linkage == GVA_ExplicitTemplateInstantiation)
401     return !Context.getLangOptions().AppleKext
402              ? llvm::Function::WeakODRLinkage
403              : llvm::Function::InternalLinkage;
404 
405   // Otherwise, we have strong external linkage.
406   assert(Linkage == GVA_StrongExternal);
407   return llvm::Function::ExternalLinkage;
408 }
409 
410 
411 /// SetFunctionDefinitionAttributes - Set attributes for a global.
412 ///
413 /// FIXME: This is currently only done for aliases and functions, but not for
414 /// variables (these details are set in EmitGlobalVarDefinition for variables).
415 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
416                                                     llvm::GlobalValue *GV) {
417   SetCommonAttributes(D, GV);
418 }
419 
420 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
421                                               const CGFunctionInfo &Info,
422                                               llvm::Function *F) {
423   unsigned CallingConv;
424   AttributeListType AttributeList;
425   ConstructAttributeList(Info, D, AttributeList, CallingConv);
426   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
427                                           AttributeList.size()));
428   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
429 }
430 
431 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
432                                                            llvm::Function *F) {
433   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
434     F->addFnAttr(llvm::Attribute::NoUnwind);
435 
436   if (D->hasAttr<AlwaysInlineAttr>())
437     F->addFnAttr(llvm::Attribute::AlwaysInline);
438 
439   if (D->hasAttr<NakedAttr>())
440     F->addFnAttr(llvm::Attribute::Naked);
441 
442   if (D->hasAttr<NoInlineAttr>())
443     F->addFnAttr(llvm::Attribute::NoInline);
444 
445   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
446     F->setUnnamedAddr(true);
447 
448   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
449     F->addFnAttr(llvm::Attribute::StackProtect);
450   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
451     F->addFnAttr(llvm::Attribute::StackProtectReq);
452 
453   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
454   if (alignment)
455     F->setAlignment(alignment);
456 
457   // C++ ABI requires 2-byte alignment for member functions.
458   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
459     F->setAlignment(2);
460 }
461 
462 void CodeGenModule::SetCommonAttributes(const Decl *D,
463                                         llvm::GlobalValue *GV) {
464   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
465     setGlobalVisibility(GV, ND);
466   else
467     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
468 
469   if (D->hasAttr<UsedAttr>())
470     AddUsedGlobal(GV);
471 
472   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
473     GV->setSection(SA->getName());
474 
475   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
476 }
477 
478 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
479                                                   llvm::Function *F,
480                                                   const CGFunctionInfo &FI) {
481   SetLLVMFunctionAttributes(D, FI, F);
482   SetLLVMFunctionAttributesForDefinition(D, F);
483 
484   F->setLinkage(llvm::Function::InternalLinkage);
485 
486   SetCommonAttributes(D, F);
487 }
488 
489 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
490                                           llvm::Function *F,
491                                           bool IsIncompleteFunction) {
492   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
493 
494   if (!IsIncompleteFunction)
495     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
496 
497   // Only a few attributes are set on declarations; these may later be
498   // overridden by a definition.
499 
500   if (FD->hasAttr<DLLImportAttr>()) {
501     F->setLinkage(llvm::Function::DLLImportLinkage);
502   } else if (FD->hasAttr<WeakAttr>() ||
503              FD->hasAttr<WeakImportAttr>()) {
504     // "extern_weak" is overloaded in LLVM; we probably should have
505     // separate linkage types for this.
506     F->setLinkage(llvm::Function::ExternalWeakLinkage);
507   } else {
508     F->setLinkage(llvm::Function::ExternalLinkage);
509 
510     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
511     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
512       F->setVisibility(GetLLVMVisibility(LV.visibility()));
513     }
514   }
515 
516   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
517     F->setSection(SA->getName());
518 }
519 
520 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
521   assert(!GV->isDeclaration() &&
522          "Only globals with definition can force usage.");
523   LLVMUsed.push_back(GV);
524 }
525 
526 void CodeGenModule::EmitLLVMUsed() {
527   // Don't create llvm.used if there is no need.
528   if (LLVMUsed.empty())
529     return;
530 
531   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
532 
533   // Convert LLVMUsed to what ConstantArray needs.
534   std::vector<llvm::Constant*> UsedArray;
535   UsedArray.resize(LLVMUsed.size());
536   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
537     UsedArray[i] =
538      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
539                                       i8PTy);
540   }
541 
542   if (UsedArray.empty())
543     return;
544   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
545 
546   llvm::GlobalVariable *GV =
547     new llvm::GlobalVariable(getModule(), ATy, false,
548                              llvm::GlobalValue::AppendingLinkage,
549                              llvm::ConstantArray::get(ATy, UsedArray),
550                              "llvm.used");
551 
552   GV->setSection("llvm.metadata");
553 }
554 
555 void CodeGenModule::EmitDeferred() {
556   // Emit code for any potentially referenced deferred decls.  Since a
557   // previously unused static decl may become used during the generation of code
558   // for a static function, iterate until no  changes are made.
559 
560   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
561     if (!DeferredVTables.empty()) {
562       const CXXRecordDecl *RD = DeferredVTables.back();
563       DeferredVTables.pop_back();
564       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
565       continue;
566     }
567 
568     GlobalDecl D = DeferredDeclsToEmit.back();
569     DeferredDeclsToEmit.pop_back();
570 
571     // Check to see if we've already emitted this.  This is necessary
572     // for a couple of reasons: first, decls can end up in the
573     // deferred-decls queue multiple times, and second, decls can end
574     // up with definitions in unusual ways (e.g. by an extern inline
575     // function acquiring a strong function redefinition).  Just
576     // ignore these cases.
577     //
578     // TODO: That said, looking this up multiple times is very wasteful.
579     llvm::StringRef Name = getMangledName(D);
580     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
581     assert(CGRef && "Deferred decl wasn't referenced?");
582 
583     if (!CGRef->isDeclaration())
584       continue;
585 
586     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
587     // purposes an alias counts as a definition.
588     if (isa<llvm::GlobalAlias>(CGRef))
589       continue;
590 
591     // Otherwise, emit the definition and move on to the next one.
592     EmitGlobalDefinition(D);
593   }
594 }
595 
596 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
597 /// annotation information for a given GlobalValue.  The annotation struct is
598 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
599 /// GlobalValue being annotated.  The second field is the constant string
600 /// created from the AnnotateAttr's annotation.  The third field is a constant
601 /// string containing the name of the translation unit.  The fourth field is
602 /// the line number in the file of the annotated value declaration.
603 ///
604 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
605 ///        appears to.
606 ///
607 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
608                                                 const AnnotateAttr *AA,
609                                                 unsigned LineNo) {
610   llvm::Module *M = &getModule();
611 
612   // get [N x i8] constants for the annotation string, and the filename string
613   // which are the 2nd and 3rd elements of the global annotation structure.
614   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
615   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
616                                                   AA->getAnnotation(), true);
617   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
618                                                   M->getModuleIdentifier(),
619                                                   true);
620 
621   // Get the two global values corresponding to the ConstantArrays we just
622   // created to hold the bytes of the strings.
623   llvm::GlobalValue *annoGV =
624     new llvm::GlobalVariable(*M, anno->getType(), false,
625                              llvm::GlobalValue::PrivateLinkage, anno,
626                              GV->getName());
627   // translation unit name string, emitted into the llvm.metadata section.
628   llvm::GlobalValue *unitGV =
629     new llvm::GlobalVariable(*M, unit->getType(), false,
630                              llvm::GlobalValue::PrivateLinkage, unit,
631                              ".str");
632   unitGV->setUnnamedAddr(true);
633 
634   // Create the ConstantStruct for the global annotation.
635   llvm::Constant *Fields[4] = {
636     llvm::ConstantExpr::getBitCast(GV, SBP),
637     llvm::ConstantExpr::getBitCast(annoGV, SBP),
638     llvm::ConstantExpr::getBitCast(unitGV, SBP),
639     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
640   };
641   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
642 }
643 
644 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
645   // Never defer when EmitAllDecls is specified.
646   if (Features.EmitAllDecls)
647     return false;
648 
649   return !getContext().DeclMustBeEmitted(Global);
650 }
651 
652 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
653   const AliasAttr *AA = VD->getAttr<AliasAttr>();
654   assert(AA && "No alias?");
655 
656   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
657 
658   // See if there is already something with the target's name in the module.
659   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
660 
661   llvm::Constant *Aliasee;
662   if (isa<llvm::FunctionType>(DeclTy))
663     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
664                                       /*ForVTable=*/false);
665   else
666     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
667                                     llvm::PointerType::getUnqual(DeclTy), 0);
668   if (!Entry) {
669     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
670     F->setLinkage(llvm::Function::ExternalWeakLinkage);
671     WeakRefReferences.insert(F);
672   }
673 
674   return Aliasee;
675 }
676 
677 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
678   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
679 
680   // Weak references don't produce any output by themselves.
681   if (Global->hasAttr<WeakRefAttr>())
682     return;
683 
684   // If this is an alias definition (which otherwise looks like a declaration)
685   // emit it now.
686   if (Global->hasAttr<AliasAttr>())
687     return EmitAliasDefinition(GD);
688 
689   // Ignore declarations, they will be emitted on their first use.
690   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
691     if (FD->getIdentifier()) {
692       llvm::StringRef Name = FD->getName();
693       if (Name == "_Block_object_assign") {
694         BlockObjectAssignDecl = FD;
695       } else if (Name == "_Block_object_dispose") {
696         BlockObjectDisposeDecl = FD;
697       }
698     }
699 
700     // Forward declarations are emitted lazily on first use.
701     if (!FD->isThisDeclarationADefinition())
702       return;
703   } else {
704     const VarDecl *VD = cast<VarDecl>(Global);
705     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
706 
707     if (VD->getIdentifier()) {
708       llvm::StringRef Name = VD->getName();
709       if (Name == "_NSConcreteGlobalBlock") {
710         NSConcreteGlobalBlockDecl = VD;
711       } else if (Name == "_NSConcreteStackBlock") {
712         NSConcreteStackBlockDecl = VD;
713       }
714     }
715 
716 
717     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
718       return;
719   }
720 
721   // Defer code generation when possible if this is a static definition, inline
722   // function etc.  These we only want to emit if they are used.
723   if (!MayDeferGeneration(Global)) {
724     // Emit the definition if it can't be deferred.
725     EmitGlobalDefinition(GD);
726     return;
727   }
728 
729   // If we're deferring emission of a C++ variable with an
730   // initializer, remember the order in which it appeared in the file.
731   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
732       cast<VarDecl>(Global)->hasInit()) {
733     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
734     CXXGlobalInits.push_back(0);
735   }
736 
737   // If the value has already been used, add it directly to the
738   // DeferredDeclsToEmit list.
739   llvm::StringRef MangledName = getMangledName(GD);
740   if (GetGlobalValue(MangledName))
741     DeferredDeclsToEmit.push_back(GD);
742   else {
743     // Otherwise, remember that we saw a deferred decl with this name.  The
744     // first use of the mangled name will cause it to move into
745     // DeferredDeclsToEmit.
746     DeferredDecls[MangledName] = GD;
747   }
748 }
749 
750 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
751   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
752 
753   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
754                                  Context.getSourceManager(),
755                                  "Generating code for declaration");
756 
757   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
758     // At -O0, don't generate IR for functions with available_externally
759     // linkage.
760     if (CodeGenOpts.OptimizationLevel == 0 &&
761         !Function->hasAttr<AlwaysInlineAttr>() &&
762         getFunctionLinkage(Function)
763                                   == llvm::Function::AvailableExternallyLinkage)
764       return;
765 
766     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
767       if (Method->isVirtual())
768         getVTables().EmitThunks(GD);
769 
770       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
771         return EmitCXXConstructor(CD, GD.getCtorType());
772 
773       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
774         return EmitCXXDestructor(DD, GD.getDtorType());
775     }
776 
777     return EmitGlobalFunctionDefinition(GD);
778   }
779 
780   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
781     return EmitGlobalVarDefinition(VD);
782 
783   assert(0 && "Invalid argument to EmitGlobalDefinition()");
784 }
785 
786 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
787 /// module, create and return an llvm Function with the specified type. If there
788 /// is something in the module with the specified name, return it potentially
789 /// bitcasted to the right type.
790 ///
791 /// If D is non-null, it specifies a decl that correspond to this.  This is used
792 /// to set the attributes on the function when it is first created.
793 llvm::Constant *
794 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
795                                        const llvm::Type *Ty,
796                                        GlobalDecl D, bool ForVTable) {
797   // Lookup the entry, lazily creating it if necessary.
798   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
799   if (Entry) {
800     if (WeakRefReferences.count(Entry)) {
801       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
802       if (FD && !FD->hasAttr<WeakAttr>())
803         Entry->setLinkage(llvm::Function::ExternalLinkage);
804 
805       WeakRefReferences.erase(Entry);
806     }
807 
808     if (Entry->getType()->getElementType() == Ty)
809       return Entry;
810 
811     // Make sure the result is of the correct type.
812     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
813     return llvm::ConstantExpr::getBitCast(Entry, PTy);
814   }
815 
816   // This function doesn't have a complete type (for example, the return
817   // type is an incomplete struct). Use a fake type instead, and make
818   // sure not to try to set attributes.
819   bool IsIncompleteFunction = false;
820 
821   const llvm::FunctionType *FTy;
822   if (isa<llvm::FunctionType>(Ty)) {
823     FTy = cast<llvm::FunctionType>(Ty);
824   } else {
825     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
826     IsIncompleteFunction = true;
827   }
828 
829   llvm::Function *F = llvm::Function::Create(FTy,
830                                              llvm::Function::ExternalLinkage,
831                                              MangledName, &getModule());
832   assert(F->getName() == MangledName && "name was uniqued!");
833   if (D.getDecl())
834     SetFunctionAttributes(D, F, IsIncompleteFunction);
835 
836   // This is the first use or definition of a mangled name.  If there is a
837   // deferred decl with this name, remember that we need to emit it at the end
838   // of the file.
839   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
840   if (DDI != DeferredDecls.end()) {
841     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
842     // list, and remove it from DeferredDecls (since we don't need it anymore).
843     DeferredDeclsToEmit.push_back(DDI->second);
844     DeferredDecls.erase(DDI);
845 
846   // Otherwise, there are cases we have to worry about where we're
847   // using a declaration for which we must emit a definition but where
848   // we might not find a top-level definition:
849   //   - member functions defined inline in their classes
850   //   - friend functions defined inline in some class
851   //   - special member functions with implicit definitions
852   // If we ever change our AST traversal to walk into class methods,
853   // this will be unnecessary.
854   //
855   // We also don't emit a definition for a function if it's going to be an entry
856   // in a vtable, unless it's already marked as used.
857   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
858     // Look for a declaration that's lexically in a record.
859     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
860     do {
861       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
862         if (FD->isImplicit() && !ForVTable) {
863           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
864           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
865           break;
866         } else if (FD->isThisDeclarationADefinition()) {
867           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
868           break;
869         }
870       }
871       FD = FD->getPreviousDeclaration();
872     } while (FD);
873   }
874 
875   // Make sure the result is of the requested type.
876   if (!IsIncompleteFunction) {
877     assert(F->getType()->getElementType() == Ty);
878     return F;
879   }
880 
881   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
882   return llvm::ConstantExpr::getBitCast(F, PTy);
883 }
884 
885 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
886 /// non-null, then this function will use the specified type if it has to
887 /// create it (this occurs when we see a definition of the function).
888 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
889                                                  const llvm::Type *Ty,
890                                                  bool ForVTable) {
891   // If there was no specific requested type, just convert it now.
892   if (!Ty)
893     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
894 
895   llvm::StringRef MangledName = getMangledName(GD);
896   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
897 }
898 
899 /// CreateRuntimeFunction - Create a new runtime function with the specified
900 /// type and name.
901 llvm::Constant *
902 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
903                                      llvm::StringRef Name) {
904   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false);
905 }
906 
907 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
908   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
909     return false;
910   if (Context.getLangOptions().CPlusPlus &&
911       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
912     // FIXME: We should do something fancier here!
913     return false;
914   }
915   return true;
916 }
917 
918 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
919 /// create and return an llvm GlobalVariable with the specified type.  If there
920 /// is something in the module with the specified name, return it potentially
921 /// bitcasted to the right type.
922 ///
923 /// If D is non-null, it specifies a decl that correspond to this.  This is used
924 /// to set the attributes on the global when it is first created.
925 llvm::Constant *
926 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
927                                      const llvm::PointerType *Ty,
928                                      const VarDecl *D,
929                                      bool UnnamedAddr) {
930   // Lookup the entry, lazily creating it if necessary.
931   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
932   if (Entry) {
933     if (WeakRefReferences.count(Entry)) {
934       if (D && !D->hasAttr<WeakAttr>())
935         Entry->setLinkage(llvm::Function::ExternalLinkage);
936 
937       WeakRefReferences.erase(Entry);
938     }
939 
940     if (UnnamedAddr)
941       Entry->setUnnamedAddr(true);
942 
943     if (Entry->getType() == Ty)
944       return Entry;
945 
946     // Make sure the result is of the correct type.
947     return llvm::ConstantExpr::getBitCast(Entry, Ty);
948   }
949 
950   // This is the first use or definition of a mangled name.  If there is a
951   // deferred decl with this name, remember that we need to emit it at the end
952   // of the file.
953   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
954   if (DDI != DeferredDecls.end()) {
955     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
956     // list, and remove it from DeferredDecls (since we don't need it anymore).
957     DeferredDeclsToEmit.push_back(DDI->second);
958     DeferredDecls.erase(DDI);
959   }
960 
961   llvm::GlobalVariable *GV =
962     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
963                              llvm::GlobalValue::ExternalLinkage,
964                              0, MangledName, 0,
965                              false, Ty->getAddressSpace());
966 
967   // Handle things which are present even on external declarations.
968   if (D) {
969     // FIXME: This code is overly simple and should be merged with other global
970     // handling.
971     GV->setConstant(DeclIsConstantGlobal(Context, D));
972 
973     // Set linkage and visibility in case we never see a definition.
974     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
975     if (LV.linkage() != ExternalLinkage) {
976       GV->setLinkage(llvm::GlobalValue::InternalLinkage);
977     } else {
978       if (D->hasAttr<DLLImportAttr>())
979         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
980       else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
981         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
982 
983       // Set visibility on a declaration only if it's explicit.
984       if (LV.visibilityExplicit())
985         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
986     }
987 
988     GV->setThreadLocal(D->isThreadSpecified());
989   }
990 
991   return GV;
992 }
993 
994 
995 llvm::GlobalVariable *
996 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
997                                       const llvm::Type *Ty,
998                                       llvm::GlobalValue::LinkageTypes Linkage) {
999   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1000   llvm::GlobalVariable *OldGV = 0;
1001 
1002 
1003   if (GV) {
1004     // Check if the variable has the right type.
1005     if (GV->getType()->getElementType() == Ty)
1006       return GV;
1007 
1008     // Because C++ name mangling, the only way we can end up with an already
1009     // existing global with the same name is if it has been declared extern "C".
1010       assert(GV->isDeclaration() && "Declaration has wrong type!");
1011     OldGV = GV;
1012   }
1013 
1014   // Create a new variable.
1015   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1016                                 Linkage, 0, Name);
1017 
1018   if (OldGV) {
1019     // Replace occurrences of the old variable if needed.
1020     GV->takeName(OldGV);
1021 
1022     if (!OldGV->use_empty()) {
1023       llvm::Constant *NewPtrForOldDecl =
1024       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1025       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1026     }
1027 
1028     OldGV->eraseFromParent();
1029   }
1030 
1031   return GV;
1032 }
1033 
1034 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1035 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1036 /// then it will be greated with the specified type instead of whatever the
1037 /// normal requested type would be.
1038 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1039                                                   const llvm::Type *Ty) {
1040   assert(D->hasGlobalStorage() && "Not a global variable");
1041   QualType ASTTy = D->getType();
1042   if (Ty == 0)
1043     Ty = getTypes().ConvertTypeForMem(ASTTy);
1044 
1045   const llvm::PointerType *PTy =
1046     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
1047 
1048   llvm::StringRef MangledName = getMangledName(D);
1049   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1050 }
1051 
1052 /// CreateRuntimeVariable - Create a new runtime global variable with the
1053 /// specified type and name.
1054 llvm::Constant *
1055 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1056                                      llvm::StringRef Name) {
1057   return GetOrCreateLLVMGlobal(Name,  llvm::PointerType::getUnqual(Ty), 0,
1058                                true);
1059 }
1060 
1061 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1062   assert(!D->getInit() && "Cannot emit definite definitions here!");
1063 
1064   if (MayDeferGeneration(D)) {
1065     // If we have not seen a reference to this variable yet, place it
1066     // into the deferred declarations table to be emitted if needed
1067     // later.
1068     llvm::StringRef MangledName = getMangledName(D);
1069     if (!GetGlobalValue(MangledName)) {
1070       DeferredDecls[MangledName] = D;
1071       return;
1072     }
1073   }
1074 
1075   // The tentative definition is the only definition.
1076   EmitGlobalVarDefinition(D);
1077 }
1078 
1079 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1080   if (DefinitionRequired)
1081     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1082 }
1083 
1084 llvm::GlobalVariable::LinkageTypes
1085 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1086   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1087     return llvm::GlobalVariable::InternalLinkage;
1088 
1089   if (const CXXMethodDecl *KeyFunction
1090                                     = RD->getASTContext().getKeyFunction(RD)) {
1091     // If this class has a key function, use that to determine the linkage of
1092     // the vtable.
1093     const FunctionDecl *Def = 0;
1094     if (KeyFunction->hasBody(Def))
1095       KeyFunction = cast<CXXMethodDecl>(Def);
1096 
1097     switch (KeyFunction->getTemplateSpecializationKind()) {
1098       case TSK_Undeclared:
1099       case TSK_ExplicitSpecialization:
1100         // When compiling with optimizations turned on, we emit all vtables,
1101         // even if the key function is not defined in the current translation
1102         // unit. If this is the case, use available_externally linkage.
1103         if (!Def && CodeGenOpts.OptimizationLevel)
1104           return llvm::GlobalVariable::AvailableExternallyLinkage;
1105 
1106         if (KeyFunction->isInlined())
1107           return !Context.getLangOptions().AppleKext ?
1108                    llvm::GlobalVariable::LinkOnceODRLinkage :
1109                    llvm::Function::InternalLinkage;
1110 
1111         return llvm::GlobalVariable::ExternalLinkage;
1112 
1113       case TSK_ImplicitInstantiation:
1114         return !Context.getLangOptions().AppleKext ?
1115                  llvm::GlobalVariable::LinkOnceODRLinkage :
1116                  llvm::Function::InternalLinkage;
1117 
1118       case TSK_ExplicitInstantiationDefinition:
1119         return !Context.getLangOptions().AppleKext ?
1120                  llvm::GlobalVariable::WeakODRLinkage :
1121                  llvm::Function::InternalLinkage;
1122 
1123       case TSK_ExplicitInstantiationDeclaration:
1124         // FIXME: Use available_externally linkage. However, this currently
1125         // breaks LLVM's build due to undefined symbols.
1126         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1127         return !Context.getLangOptions().AppleKext ?
1128                  llvm::GlobalVariable::LinkOnceODRLinkage :
1129                  llvm::Function::InternalLinkage;
1130     }
1131   }
1132 
1133   if (Context.getLangOptions().AppleKext)
1134     return llvm::Function::InternalLinkage;
1135 
1136   switch (RD->getTemplateSpecializationKind()) {
1137   case TSK_Undeclared:
1138   case TSK_ExplicitSpecialization:
1139   case TSK_ImplicitInstantiation:
1140     // FIXME: Use available_externally linkage. However, this currently
1141     // breaks LLVM's build due to undefined symbols.
1142     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1143   case TSK_ExplicitInstantiationDeclaration:
1144     return llvm::GlobalVariable::LinkOnceODRLinkage;
1145 
1146   case TSK_ExplicitInstantiationDefinition:
1147       return llvm::GlobalVariable::WeakODRLinkage;
1148   }
1149 
1150   // Silence GCC warning.
1151   return llvm::GlobalVariable::LinkOnceODRLinkage;
1152 }
1153 
1154 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1155     return Context.toCharUnitsFromBits(
1156       TheTargetData.getTypeStoreSizeInBits(Ty));
1157 }
1158 
1159 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1160   llvm::Constant *Init = 0;
1161   QualType ASTTy = D->getType();
1162   bool NonConstInit = false;
1163 
1164   const Expr *InitExpr = D->getAnyInitializer();
1165 
1166   if (!InitExpr) {
1167     // This is a tentative definition; tentative definitions are
1168     // implicitly initialized with { 0 }.
1169     //
1170     // Note that tentative definitions are only emitted at the end of
1171     // a translation unit, so they should never have incomplete
1172     // type. In addition, EmitTentativeDefinition makes sure that we
1173     // never attempt to emit a tentative definition if a real one
1174     // exists. A use may still exists, however, so we still may need
1175     // to do a RAUW.
1176     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1177     Init = EmitNullConstant(D->getType());
1178   } else {
1179     Init = EmitConstantExpr(InitExpr, D->getType());
1180     if (!Init) {
1181       QualType T = InitExpr->getType();
1182       if (D->getType()->isReferenceType())
1183         T = D->getType();
1184 
1185       if (getLangOptions().CPlusPlus) {
1186         Init = EmitNullConstant(T);
1187         NonConstInit = true;
1188       } else {
1189         ErrorUnsupported(D, "static initializer");
1190         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1191       }
1192     } else {
1193       // We don't need an initializer, so remove the entry for the delayed
1194       // initializer position (just in case this entry was delayed).
1195       if (getLangOptions().CPlusPlus)
1196         DelayedCXXInitPosition.erase(D);
1197     }
1198   }
1199 
1200   const llvm::Type* InitType = Init->getType();
1201   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1202 
1203   // Strip off a bitcast if we got one back.
1204   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1205     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1206            // all zero index gep.
1207            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1208     Entry = CE->getOperand(0);
1209   }
1210 
1211   // Entry is now either a Function or GlobalVariable.
1212   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1213 
1214   // We have a definition after a declaration with the wrong type.
1215   // We must make a new GlobalVariable* and update everything that used OldGV
1216   // (a declaration or tentative definition) with the new GlobalVariable*
1217   // (which will be a definition).
1218   //
1219   // This happens if there is a prototype for a global (e.g.
1220   // "extern int x[];") and then a definition of a different type (e.g.
1221   // "int x[10];"). This also happens when an initializer has a different type
1222   // from the type of the global (this happens with unions).
1223   if (GV == 0 ||
1224       GV->getType()->getElementType() != InitType ||
1225       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1226 
1227     // Move the old entry aside so that we'll create a new one.
1228     Entry->setName(llvm::StringRef());
1229 
1230     // Make a new global with the correct type, this is now guaranteed to work.
1231     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1232 
1233     // Replace all uses of the old global with the new global
1234     llvm::Constant *NewPtrForOldDecl =
1235         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1236     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1237 
1238     // Erase the old global, since it is no longer used.
1239     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1240   }
1241 
1242   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1243     SourceManager &SM = Context.getSourceManager();
1244     AddAnnotation(EmitAnnotateAttr(GV, AA,
1245                               SM.getInstantiationLineNumber(D->getLocation())));
1246   }
1247 
1248   GV->setInitializer(Init);
1249 
1250   // If it is safe to mark the global 'constant', do so now.
1251   GV->setConstant(false);
1252   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1253     GV->setConstant(true);
1254 
1255   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1256 
1257   // Set the llvm linkage type as appropriate.
1258   llvm::GlobalValue::LinkageTypes Linkage =
1259     GetLLVMLinkageVarDefinition(D, GV);
1260   GV->setLinkage(Linkage);
1261   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1262     // common vars aren't constant even if declared const.
1263     GV->setConstant(false);
1264 
1265   SetCommonAttributes(D, GV);
1266 
1267   // Emit the initializer function if necessary.
1268   if (NonConstInit)
1269     EmitCXXGlobalVarDeclInitFunc(D, GV);
1270 
1271   // Emit global variable debug information.
1272   if (CGDebugInfo *DI = getDebugInfo()) {
1273     DI->setLocation(D->getLocation());
1274     DI->EmitGlobalVariable(GV, D);
1275   }
1276 }
1277 
1278 llvm::GlobalValue::LinkageTypes
1279 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1280                                            llvm::GlobalVariable *GV) {
1281   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1282   if (Linkage == GVA_Internal)
1283     return llvm::Function::InternalLinkage;
1284   else if (D->hasAttr<DLLImportAttr>())
1285     return llvm::Function::DLLImportLinkage;
1286   else if (D->hasAttr<DLLExportAttr>())
1287     return llvm::Function::DLLExportLinkage;
1288   else if (D->hasAttr<WeakAttr>()) {
1289     if (GV->isConstant())
1290       return llvm::GlobalVariable::WeakODRLinkage;
1291     else
1292       return llvm::GlobalVariable::WeakAnyLinkage;
1293   } else if (Linkage == GVA_TemplateInstantiation ||
1294              Linkage == GVA_ExplicitTemplateInstantiation)
1295     // FIXME: It seems like we can provide more specific linkage here
1296     // (LinkOnceODR, WeakODR).
1297     return llvm::GlobalVariable::WeakAnyLinkage;
1298   else if (!getLangOptions().CPlusPlus &&
1299            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1300              D->getAttr<CommonAttr>()) &&
1301            !D->hasExternalStorage() && !D->getInit() &&
1302            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1303     // Thread local vars aren't considered common linkage.
1304     return llvm::GlobalVariable::CommonLinkage;
1305   }
1306   return llvm::GlobalVariable::ExternalLinkage;
1307 }
1308 
1309 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1310 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1311 /// existing call uses of the old function in the module, this adjusts them to
1312 /// call the new function directly.
1313 ///
1314 /// This is not just a cleanup: the always_inline pass requires direct calls to
1315 /// functions to be able to inline them.  If there is a bitcast in the way, it
1316 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1317 /// run at -O0.
1318 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1319                                                       llvm::Function *NewFn) {
1320   // If we're redefining a global as a function, don't transform it.
1321   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1322   if (OldFn == 0) return;
1323 
1324   const llvm::Type *NewRetTy = NewFn->getReturnType();
1325   llvm::SmallVector<llvm::Value*, 4> ArgList;
1326 
1327   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1328        UI != E; ) {
1329     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1330     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1331     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1332     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1333     llvm::CallSite CS(CI);
1334     if (!CI || !CS.isCallee(I)) continue;
1335 
1336     // If the return types don't match exactly, and if the call isn't dead, then
1337     // we can't transform this call.
1338     if (CI->getType() != NewRetTy && !CI->use_empty())
1339       continue;
1340 
1341     // If the function was passed too few arguments, don't transform.  If extra
1342     // arguments were passed, we silently drop them.  If any of the types
1343     // mismatch, we don't transform.
1344     unsigned ArgNo = 0;
1345     bool DontTransform = false;
1346     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1347          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1348       if (CS.arg_size() == ArgNo ||
1349           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1350         DontTransform = true;
1351         break;
1352       }
1353     }
1354     if (DontTransform)
1355       continue;
1356 
1357     // Okay, we can transform this.  Create the new call instruction and copy
1358     // over the required information.
1359     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1360     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1361                                                      ArgList.end(), "", CI);
1362     ArgList.clear();
1363     if (!NewCall->getType()->isVoidTy())
1364       NewCall->takeName(CI);
1365     NewCall->setAttributes(CI->getAttributes());
1366     NewCall->setCallingConv(CI->getCallingConv());
1367 
1368     // Finally, remove the old call, replacing any uses with the new one.
1369     if (!CI->use_empty())
1370       CI->replaceAllUsesWith(NewCall);
1371 
1372     // Copy debug location attached to CI.
1373     if (!CI->getDebugLoc().isUnknown())
1374       NewCall->setDebugLoc(CI->getDebugLoc());
1375     CI->eraseFromParent();
1376   }
1377 }
1378 
1379 
1380 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1381   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1382   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1383   // Get or create the prototype for the function.
1384   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1385 
1386   // Strip off a bitcast if we got one back.
1387   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1388     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1389     Entry = CE->getOperand(0);
1390   }
1391 
1392 
1393   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1394     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1395 
1396     // If the types mismatch then we have to rewrite the definition.
1397     assert(OldFn->isDeclaration() &&
1398            "Shouldn't replace non-declaration");
1399 
1400     // F is the Function* for the one with the wrong type, we must make a new
1401     // Function* and update everything that used F (a declaration) with the new
1402     // Function* (which will be a definition).
1403     //
1404     // This happens if there is a prototype for a function
1405     // (e.g. "int f()") and then a definition of a different type
1406     // (e.g. "int f(int x)").  Move the old function aside so that it
1407     // doesn't interfere with GetAddrOfFunction.
1408     OldFn->setName(llvm::StringRef());
1409     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1410 
1411     // If this is an implementation of a function without a prototype, try to
1412     // replace any existing uses of the function (which may be calls) with uses
1413     // of the new function
1414     if (D->getType()->isFunctionNoProtoType()) {
1415       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1416       OldFn->removeDeadConstantUsers();
1417     }
1418 
1419     // Replace uses of F with the Function we will endow with a body.
1420     if (!Entry->use_empty()) {
1421       llvm::Constant *NewPtrForOldDecl =
1422         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1423       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1424     }
1425 
1426     // Ok, delete the old function now, which is dead.
1427     OldFn->eraseFromParent();
1428 
1429     Entry = NewFn;
1430   }
1431 
1432   // We need to set linkage and visibility on the function before
1433   // generating code for it because various parts of IR generation
1434   // want to propagate this information down (e.g. to local static
1435   // declarations).
1436   llvm::Function *Fn = cast<llvm::Function>(Entry);
1437   setFunctionLinkage(D, Fn);
1438 
1439   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1440   setGlobalVisibility(Fn, D);
1441 
1442   CodeGenFunction(*this).GenerateCode(D, Fn);
1443 
1444   SetFunctionDefinitionAttributes(D, Fn);
1445   SetLLVMFunctionAttributesForDefinition(D, Fn);
1446 
1447   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1448     AddGlobalCtor(Fn, CA->getPriority());
1449   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1450     AddGlobalDtor(Fn, DA->getPriority());
1451 }
1452 
1453 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1454   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1455   const AliasAttr *AA = D->getAttr<AliasAttr>();
1456   assert(AA && "Not an alias?");
1457 
1458   llvm::StringRef MangledName = getMangledName(GD);
1459 
1460   // If there is a definition in the module, then it wins over the alias.
1461   // This is dubious, but allow it to be safe.  Just ignore the alias.
1462   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1463   if (Entry && !Entry->isDeclaration())
1464     return;
1465 
1466   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1467 
1468   // Create a reference to the named value.  This ensures that it is emitted
1469   // if a deferred decl.
1470   llvm::Constant *Aliasee;
1471   if (isa<llvm::FunctionType>(DeclTy))
1472     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1473                                       /*ForVTable=*/false);
1474   else
1475     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1476                                     llvm::PointerType::getUnqual(DeclTy), 0);
1477 
1478   // Create the new alias itself, but don't set a name yet.
1479   llvm::GlobalValue *GA =
1480     new llvm::GlobalAlias(Aliasee->getType(),
1481                           llvm::Function::ExternalLinkage,
1482                           "", Aliasee, &getModule());
1483 
1484   if (Entry) {
1485     assert(Entry->isDeclaration());
1486 
1487     // If there is a declaration in the module, then we had an extern followed
1488     // by the alias, as in:
1489     //   extern int test6();
1490     //   ...
1491     //   int test6() __attribute__((alias("test7")));
1492     //
1493     // Remove it and replace uses of it with the alias.
1494     GA->takeName(Entry);
1495 
1496     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1497                                                           Entry->getType()));
1498     Entry->eraseFromParent();
1499   } else {
1500     GA->setName(MangledName);
1501   }
1502 
1503   // Set attributes which are particular to an alias; this is a
1504   // specialization of the attributes which may be set on a global
1505   // variable/function.
1506   if (D->hasAttr<DLLExportAttr>()) {
1507     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1508       // The dllexport attribute is ignored for undefined symbols.
1509       if (FD->hasBody())
1510         GA->setLinkage(llvm::Function::DLLExportLinkage);
1511     } else {
1512       GA->setLinkage(llvm::Function::DLLExportLinkage);
1513     }
1514   } else if (D->hasAttr<WeakAttr>() ||
1515              D->hasAttr<WeakRefAttr>() ||
1516              D->hasAttr<WeakImportAttr>()) {
1517     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1518   }
1519 
1520   SetCommonAttributes(D, GA);
1521 }
1522 
1523 /// getBuiltinLibFunction - Given a builtin id for a function like
1524 /// "__builtin_fabsf", return a Function* for "fabsf".
1525 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1526                                                   unsigned BuiltinID) {
1527   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1528           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1529          "isn't a lib fn");
1530 
1531   // Get the name, skip over the __builtin_ prefix (if necessary).
1532   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1533   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1534     Name += 10;
1535 
1536   const llvm::FunctionType *Ty =
1537     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1538 
1539   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false);
1540 }
1541 
1542 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1543                                             unsigned NumTys) {
1544   return llvm::Intrinsic::getDeclaration(&getModule(),
1545                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1546 }
1547 
1548 static llvm::StringMapEntry<llvm::Constant*> &
1549 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1550                          const StringLiteral *Literal,
1551                          bool TargetIsLSB,
1552                          bool &IsUTF16,
1553                          unsigned &StringLength) {
1554   llvm::StringRef String = Literal->getString();
1555   unsigned NumBytes = String.size();
1556 
1557   // Check for simple case.
1558   if (!Literal->containsNonAsciiOrNull()) {
1559     StringLength = NumBytes;
1560     return Map.GetOrCreateValue(String);
1561   }
1562 
1563   // Otherwise, convert the UTF8 literals into a byte string.
1564   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1565   const UTF8 *FromPtr = (UTF8 *)String.data();
1566   UTF16 *ToPtr = &ToBuf[0];
1567 
1568   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1569                            &ToPtr, ToPtr + NumBytes,
1570                            strictConversion);
1571 
1572   // ConvertUTF8toUTF16 returns the length in ToPtr.
1573   StringLength = ToPtr - &ToBuf[0];
1574 
1575   // Render the UTF-16 string into a byte array and convert to the target byte
1576   // order.
1577   //
1578   // FIXME: This isn't something we should need to do here.
1579   llvm::SmallString<128> AsBytes;
1580   AsBytes.reserve(StringLength * 2);
1581   for (unsigned i = 0; i != StringLength; ++i) {
1582     unsigned short Val = ToBuf[i];
1583     if (TargetIsLSB) {
1584       AsBytes.push_back(Val & 0xFF);
1585       AsBytes.push_back(Val >> 8);
1586     } else {
1587       AsBytes.push_back(Val >> 8);
1588       AsBytes.push_back(Val & 0xFF);
1589     }
1590   }
1591   // Append one extra null character, the second is automatically added by our
1592   // caller.
1593   AsBytes.push_back(0);
1594 
1595   IsUTF16 = true;
1596   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1597 }
1598 
1599 llvm::Constant *
1600 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1601   unsigned StringLength = 0;
1602   bool isUTF16 = false;
1603   llvm::StringMapEntry<llvm::Constant*> &Entry =
1604     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1605                              getTargetData().isLittleEndian(),
1606                              isUTF16, StringLength);
1607 
1608   if (llvm::Constant *C = Entry.getValue())
1609     return C;
1610 
1611   llvm::Constant *Zero =
1612       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1613   llvm::Constant *Zeros[] = { Zero, Zero };
1614 
1615   // If we don't already have it, get __CFConstantStringClassReference.
1616   if (!CFConstantStringClassRef) {
1617     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1618     Ty = llvm::ArrayType::get(Ty, 0);
1619     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1620                                            "__CFConstantStringClassReference");
1621     // Decay array -> ptr
1622     CFConstantStringClassRef =
1623       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1624   }
1625 
1626   QualType CFTy = getContext().getCFConstantStringType();
1627 
1628   const llvm::StructType *STy =
1629     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1630 
1631   std::vector<llvm::Constant*> Fields(4);
1632 
1633   // Class pointer.
1634   Fields[0] = CFConstantStringClassRef;
1635 
1636   // Flags.
1637   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1638   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1639     llvm::ConstantInt::get(Ty, 0x07C8);
1640 
1641   // String pointer.
1642   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1643 
1644   llvm::GlobalValue::LinkageTypes Linkage;
1645   bool isConstant;
1646   if (isUTF16) {
1647     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1648     Linkage = llvm::GlobalValue::InternalLinkage;
1649     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1650     // does make plain ascii ones writable.
1651     isConstant = true;
1652   } else {
1653     Linkage = llvm::GlobalValue::PrivateLinkage;
1654     isConstant = !Features.WritableStrings;
1655   }
1656 
1657   llvm::GlobalVariable *GV =
1658     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1659                              ".str");
1660   GV->setUnnamedAddr(true);
1661   if (isUTF16) {
1662     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1663     GV->setAlignment(Align.getQuantity());
1664   }
1665   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1666 
1667   // String length.
1668   Ty = getTypes().ConvertType(getContext().LongTy);
1669   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1670 
1671   // The struct.
1672   C = llvm::ConstantStruct::get(STy, Fields);
1673   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1674                                 llvm::GlobalVariable::PrivateLinkage, C,
1675                                 "_unnamed_cfstring_");
1676   if (const char *Sect = getContext().Target.getCFStringSection())
1677     GV->setSection(Sect);
1678   Entry.setValue(GV);
1679 
1680   return GV;
1681 }
1682 
1683 llvm::Constant *
1684 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1685   unsigned StringLength = 0;
1686   bool isUTF16 = false;
1687   llvm::StringMapEntry<llvm::Constant*> &Entry =
1688     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1689                              getTargetData().isLittleEndian(),
1690                              isUTF16, StringLength);
1691 
1692   if (llvm::Constant *C = Entry.getValue())
1693     return C;
1694 
1695   llvm::Constant *Zero =
1696   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1697   llvm::Constant *Zeros[] = { Zero, Zero };
1698 
1699   // If we don't already have it, get _NSConstantStringClassReference.
1700   if (!ConstantStringClassRef) {
1701     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1702     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1703     Ty = llvm::ArrayType::get(Ty, 0);
1704     llvm::Constant *GV;
1705     if (StringClass.empty())
1706       GV = CreateRuntimeVariable(Ty,
1707                                  Features.ObjCNonFragileABI ?
1708                                  "OBJC_CLASS_$_NSConstantString" :
1709                                  "_NSConstantStringClassReference");
1710     else {
1711       std::string str;
1712       if (Features.ObjCNonFragileABI)
1713         str = "OBJC_CLASS_$_" + StringClass;
1714       else
1715         str = "_" + StringClass + "ClassReference";
1716       GV = CreateRuntimeVariable(Ty, str);
1717     }
1718     // Decay array -> ptr
1719     ConstantStringClassRef =
1720     llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1721   }
1722 
1723   QualType NSTy = getContext().getNSConstantStringType();
1724 
1725   const llvm::StructType *STy =
1726   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1727 
1728   std::vector<llvm::Constant*> Fields(3);
1729 
1730   // Class pointer.
1731   Fields[0] = ConstantStringClassRef;
1732 
1733   // String pointer.
1734   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1735 
1736   llvm::GlobalValue::LinkageTypes Linkage;
1737   bool isConstant;
1738   if (isUTF16) {
1739     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1740     Linkage = llvm::GlobalValue::InternalLinkage;
1741     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1742     // does make plain ascii ones writable.
1743     isConstant = true;
1744   } else {
1745     Linkage = llvm::GlobalValue::PrivateLinkage;
1746     isConstant = !Features.WritableStrings;
1747   }
1748 
1749   llvm::GlobalVariable *GV =
1750   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1751                            ".str");
1752   GV->setUnnamedAddr(true);
1753   if (isUTF16) {
1754     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1755     GV->setAlignment(Align.getQuantity());
1756   }
1757   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1758 
1759   // String length.
1760   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1761   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1762 
1763   // The struct.
1764   C = llvm::ConstantStruct::get(STy, Fields);
1765   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1766                                 llvm::GlobalVariable::PrivateLinkage, C,
1767                                 "_unnamed_nsstring_");
1768   // FIXME. Fix section.
1769   if (const char *Sect =
1770         Features.ObjCNonFragileABI
1771           ? getContext().Target.getNSStringNonFragileABISection()
1772           : getContext().Target.getNSStringSection())
1773     GV->setSection(Sect);
1774   Entry.setValue(GV);
1775 
1776   return GV;
1777 }
1778 
1779 /// GetStringForStringLiteral - Return the appropriate bytes for a
1780 /// string literal, properly padded to match the literal type.
1781 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1782   const ASTContext &Context = getContext();
1783   const ConstantArrayType *CAT =
1784     Context.getAsConstantArrayType(E->getType());
1785   assert(CAT && "String isn't pointer or array!");
1786 
1787   // Resize the string to the right size.
1788   uint64_t RealLen = CAT->getSize().getZExtValue();
1789 
1790   if (E->isWide())
1791     RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1792 
1793   std::string Str = E->getString().str();
1794   Str.resize(RealLen, '\0');
1795 
1796   return Str;
1797 }
1798 
1799 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1800 /// constant array for the given string literal.
1801 llvm::Constant *
1802 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1803   // FIXME: This can be more efficient.
1804   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1805   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1806   if (S->isWide()) {
1807     llvm::Type *DestTy =
1808         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1809     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1810   }
1811   return C;
1812 }
1813 
1814 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1815 /// array for the given ObjCEncodeExpr node.
1816 llvm::Constant *
1817 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1818   std::string Str;
1819   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1820 
1821   return GetAddrOfConstantCString(Str);
1822 }
1823 
1824 
1825 /// GenerateWritableString -- Creates storage for a string literal.
1826 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1827                                              bool constant,
1828                                              CodeGenModule &CGM,
1829                                              const char *GlobalName) {
1830   // Create Constant for this string literal. Don't add a '\0'.
1831   llvm::Constant *C =
1832       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1833 
1834   // Create a global variable for this string
1835   llvm::GlobalVariable *GV =
1836     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1837                              llvm::GlobalValue::PrivateLinkage,
1838                              C, GlobalName);
1839   GV->setUnnamedAddr(true);
1840   return GV;
1841 }
1842 
1843 /// GetAddrOfConstantString - Returns a pointer to a character array
1844 /// containing the literal. This contents are exactly that of the
1845 /// given string, i.e. it will not be null terminated automatically;
1846 /// see GetAddrOfConstantCString. Note that whether the result is
1847 /// actually a pointer to an LLVM constant depends on
1848 /// Feature.WriteableStrings.
1849 ///
1850 /// The result has pointer to array type.
1851 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1852                                                        const char *GlobalName) {
1853   bool IsConstant = !Features.WritableStrings;
1854 
1855   // Get the default prefix if a name wasn't specified.
1856   if (!GlobalName)
1857     GlobalName = ".str";
1858 
1859   // Don't share any string literals if strings aren't constant.
1860   if (!IsConstant)
1861     return GenerateStringLiteral(str, false, *this, GlobalName);
1862 
1863   llvm::StringMapEntry<llvm::Constant *> &Entry =
1864     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1865 
1866   if (Entry.getValue())
1867     return Entry.getValue();
1868 
1869   // Create a global variable for this.
1870   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1871   Entry.setValue(C);
1872   return C;
1873 }
1874 
1875 /// GetAddrOfConstantCString - Returns a pointer to a character
1876 /// array containing the literal and a terminating '\-'
1877 /// character. The result has pointer to array type.
1878 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1879                                                         const char *GlobalName){
1880   return GetAddrOfConstantString(str + '\0', GlobalName);
1881 }
1882 
1883 /// EmitObjCPropertyImplementations - Emit information for synthesized
1884 /// properties for an implementation.
1885 void CodeGenModule::EmitObjCPropertyImplementations(const
1886                                                     ObjCImplementationDecl *D) {
1887   for (ObjCImplementationDecl::propimpl_iterator
1888          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1889     ObjCPropertyImplDecl *PID = *i;
1890 
1891     // Dynamic is just for type-checking.
1892     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1893       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1894 
1895       // Determine which methods need to be implemented, some may have
1896       // been overridden. Note that ::isSynthesized is not the method
1897       // we want, that just indicates if the decl came from a
1898       // property. What we want to know is if the method is defined in
1899       // this implementation.
1900       if (!D->getInstanceMethod(PD->getGetterName()))
1901         CodeGenFunction(*this).GenerateObjCGetter(
1902                                  const_cast<ObjCImplementationDecl *>(D), PID);
1903       if (!PD->isReadOnly() &&
1904           !D->getInstanceMethod(PD->getSetterName()))
1905         CodeGenFunction(*this).GenerateObjCSetter(
1906                                  const_cast<ObjCImplementationDecl *>(D), PID);
1907     }
1908   }
1909 }
1910 
1911 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1912 /// for an implementation.
1913 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1914   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1915     return;
1916   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1917   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1918   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1919   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1920   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1921                                                   D->getLocation(),
1922                                                   D->getLocation(), cxxSelector,
1923                                                   getContext().VoidTy, 0,
1924                                                   DC, true, false, true, false,
1925                                                   ObjCMethodDecl::Required);
1926   D->addInstanceMethod(DTORMethod);
1927   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1928 
1929   II = &getContext().Idents.get(".cxx_construct");
1930   cxxSelector = getContext().Selectors.getSelector(0, &II);
1931   // The constructor returns 'self'.
1932   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1933                                                 D->getLocation(),
1934                                                 D->getLocation(), cxxSelector,
1935                                                 getContext().getObjCIdType(), 0,
1936                                                 DC, true, false, true, false,
1937                                                 ObjCMethodDecl::Required);
1938   D->addInstanceMethod(CTORMethod);
1939   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1940 
1941 
1942 }
1943 
1944 /// EmitNamespace - Emit all declarations in a namespace.
1945 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1946   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1947        I != E; ++I)
1948     EmitTopLevelDecl(*I);
1949 }
1950 
1951 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1952 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1953   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1954       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1955     ErrorUnsupported(LSD, "linkage spec");
1956     return;
1957   }
1958 
1959   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1960        I != E; ++I)
1961     EmitTopLevelDecl(*I);
1962 }
1963 
1964 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1965 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1966   // If an error has occurred, stop code generation, but continue
1967   // parsing and semantic analysis (to ensure all warnings and errors
1968   // are emitted).
1969   if (Diags.hasErrorOccurred())
1970     return;
1971 
1972   // Ignore dependent declarations.
1973   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1974     return;
1975 
1976   switch (D->getKind()) {
1977   case Decl::CXXConversion:
1978   case Decl::CXXMethod:
1979   case Decl::Function:
1980     // Skip function templates
1981     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1982       return;
1983 
1984     EmitGlobal(cast<FunctionDecl>(D));
1985     break;
1986 
1987   case Decl::Var:
1988     EmitGlobal(cast<VarDecl>(D));
1989     break;
1990 
1991   // C++ Decls
1992   case Decl::Namespace:
1993     EmitNamespace(cast<NamespaceDecl>(D));
1994     break;
1995     // No code generation needed.
1996   case Decl::UsingShadow:
1997   case Decl::Using:
1998   case Decl::UsingDirective:
1999   case Decl::ClassTemplate:
2000   case Decl::FunctionTemplate:
2001   case Decl::NamespaceAlias:
2002     break;
2003   case Decl::CXXConstructor:
2004     // Skip function templates
2005     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
2006       return;
2007 
2008     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2009     break;
2010   case Decl::CXXDestructor:
2011     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2012     break;
2013 
2014   case Decl::StaticAssert:
2015     // Nothing to do.
2016     break;
2017 
2018   // Objective-C Decls
2019 
2020   // Forward declarations, no (immediate) code generation.
2021   case Decl::ObjCClass:
2022   case Decl::ObjCForwardProtocol:
2023   case Decl::ObjCInterface:
2024     break;
2025 
2026     case Decl::ObjCCategory: {
2027       ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2028       if (CD->IsClassExtension() && CD->hasSynthBitfield())
2029         Context.ResetObjCLayout(CD->getClassInterface());
2030       break;
2031     }
2032 
2033 
2034   case Decl::ObjCProtocol:
2035     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2036     break;
2037 
2038   case Decl::ObjCCategoryImpl:
2039     // Categories have properties but don't support synthesize so we
2040     // can ignore them here.
2041     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2042     break;
2043 
2044   case Decl::ObjCImplementation: {
2045     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2046     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2047       Context.ResetObjCLayout(OMD->getClassInterface());
2048     EmitObjCPropertyImplementations(OMD);
2049     EmitObjCIvarInitializations(OMD);
2050     Runtime->GenerateClass(OMD);
2051     break;
2052   }
2053   case Decl::ObjCMethod: {
2054     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2055     // If this is not a prototype, emit the body.
2056     if (OMD->getBody())
2057       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2058     break;
2059   }
2060   case Decl::ObjCCompatibleAlias:
2061     // compatibility-alias is a directive and has no code gen.
2062     break;
2063 
2064   case Decl::LinkageSpec:
2065     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2066     break;
2067 
2068   case Decl::FileScopeAsm: {
2069     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2070     llvm::StringRef AsmString = AD->getAsmString()->getString();
2071 
2072     const std::string &S = getModule().getModuleInlineAsm();
2073     if (S.empty())
2074       getModule().setModuleInlineAsm(AsmString);
2075     else
2076       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2077     break;
2078   }
2079 
2080   default:
2081     // Make sure we handled everything we should, every other kind is a
2082     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2083     // function. Need to recode Decl::Kind to do that easily.
2084     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2085   }
2086 }
2087 
2088 /// Turns the given pointer into a constant.
2089 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2090                                           const void *Ptr) {
2091   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2092   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2093   return llvm::ConstantInt::get(i64, PtrInt);
2094 }
2095 
2096 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2097                                    llvm::NamedMDNode *&GlobalMetadata,
2098                                    GlobalDecl D,
2099                                    llvm::GlobalValue *Addr) {
2100   if (!GlobalMetadata)
2101     GlobalMetadata =
2102       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2103 
2104   // TODO: should we report variant information for ctors/dtors?
2105   llvm::Value *Ops[] = {
2106     Addr,
2107     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2108   };
2109   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2110 }
2111 
2112 /// Emits metadata nodes associating all the global values in the
2113 /// current module with the Decls they came from.  This is useful for
2114 /// projects using IR gen as a subroutine.
2115 ///
2116 /// Since there's currently no way to associate an MDNode directly
2117 /// with an llvm::GlobalValue, we create a global named metadata
2118 /// with the name 'clang.global.decl.ptrs'.
2119 void CodeGenModule::EmitDeclMetadata() {
2120   llvm::NamedMDNode *GlobalMetadata = 0;
2121 
2122   // StaticLocalDeclMap
2123   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2124          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2125        I != E; ++I) {
2126     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2127     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2128   }
2129 }
2130 
2131 /// Emits metadata nodes for all the local variables in the current
2132 /// function.
2133 void CodeGenFunction::EmitDeclMetadata() {
2134   if (LocalDeclMap.empty()) return;
2135 
2136   llvm::LLVMContext &Context = getLLVMContext();
2137 
2138   // Find the unique metadata ID for this name.
2139   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2140 
2141   llvm::NamedMDNode *GlobalMetadata = 0;
2142 
2143   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2144          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2145     const Decl *D = I->first;
2146     llvm::Value *Addr = I->second;
2147 
2148     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2149       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2150       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2151     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2152       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2153       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2154     }
2155   }
2156 }
2157 
2158 ///@name Custom Runtime Function Interfaces
2159 ///@{
2160 //
2161 // FIXME: These can be eliminated once we can have clients just get the required
2162 // AST nodes from the builtin tables.
2163 
2164 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2165   if (BlockObjectDispose)
2166     return BlockObjectDispose;
2167 
2168   // If we saw an explicit decl, use that.
2169   if (BlockObjectDisposeDecl) {
2170     return BlockObjectDispose = GetAddrOfFunction(
2171       BlockObjectDisposeDecl,
2172       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2173   }
2174 
2175   // Otherwise construct the function by hand.
2176   const llvm::FunctionType *FTy;
2177   std::vector<const llvm::Type*> ArgTys;
2178   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2179   ArgTys.push_back(Int8PtrTy);
2180   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2181   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2182   return BlockObjectDispose =
2183     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2184 }
2185 
2186 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2187   if (BlockObjectAssign)
2188     return BlockObjectAssign;
2189 
2190   // If we saw an explicit decl, use that.
2191   if (BlockObjectAssignDecl) {
2192     return BlockObjectAssign = GetAddrOfFunction(
2193       BlockObjectAssignDecl,
2194       getTypes().GetFunctionType(BlockObjectAssignDecl));
2195   }
2196 
2197   // Otherwise construct the function by hand.
2198   const llvm::FunctionType *FTy;
2199   std::vector<const llvm::Type*> ArgTys;
2200   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2201   ArgTys.push_back(Int8PtrTy);
2202   ArgTys.push_back(Int8PtrTy);
2203   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2204   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2205   return BlockObjectAssign =
2206     CreateRuntimeFunction(FTy, "_Block_object_assign");
2207 }
2208 
2209 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2210   if (NSConcreteGlobalBlock)
2211     return NSConcreteGlobalBlock;
2212 
2213   // If we saw an explicit decl, use that.
2214   if (NSConcreteGlobalBlockDecl) {
2215     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2216       NSConcreteGlobalBlockDecl,
2217       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2218   }
2219 
2220   // Otherwise construct the variable by hand.
2221   return NSConcreteGlobalBlock =
2222     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock");
2223 }
2224 
2225 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2226   if (NSConcreteStackBlock)
2227     return NSConcreteStackBlock;
2228 
2229   // If we saw an explicit decl, use that.
2230   if (NSConcreteStackBlockDecl) {
2231     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2232       NSConcreteStackBlockDecl,
2233       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2234   }
2235 
2236   // Otherwise construct the variable by hand.
2237   return NSConcreteStackBlock =
2238     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock");
2239 }
2240 
2241 ///@}
2242