1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/CodeGen/CodeGenOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/Diagnostic.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Basic/ConvertUTF.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Module.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Target/TargetData.h" 33 #include "llvm/Support/ErrorHandling.h" 34 using namespace clang; 35 using namespace CodeGen; 36 37 38 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 39 llvm::Module &M, const llvm::TargetData &TD, 40 Diagnostic &diags) 41 : BlockModule(C, M, TD, Types, *this), Context(C), 42 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 43 TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C), 44 VtableInfo(*this), Runtime(0), 45 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 46 VMContext(M.getContext()) { 47 48 if (!Features.ObjC1) 49 Runtime = 0; 50 else if (!Features.NeXTRuntime) 51 Runtime = CreateGNUObjCRuntime(*this); 52 else if (Features.ObjCNonFragileABI) 53 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 54 else 55 Runtime = CreateMacObjCRuntime(*this); 56 57 // If debug info generation is enabled, create the CGDebugInfo object. 58 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(this) : 0; 59 } 60 61 CodeGenModule::~CodeGenModule() { 62 delete Runtime; 63 delete DebugInfo; 64 } 65 66 void CodeGenModule::Release() { 67 // We need to call this first because it can add deferred declarations. 68 EmitCXXGlobalInitFunc(); 69 70 EmitDeferred(); 71 if (Runtime) 72 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 73 AddGlobalCtor(ObjCInitFunction); 74 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 75 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 76 EmitAnnotations(); 77 EmitLLVMUsed(); 78 } 79 80 /// ErrorUnsupported - Print out an error that codegen doesn't support the 81 /// specified stmt yet. 82 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 83 bool OmitOnError) { 84 if (OmitOnError && getDiags().hasErrorOccurred()) 85 return; 86 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 87 "cannot compile this %0 yet"); 88 std::string Msg = Type; 89 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 90 << Msg << S->getSourceRange(); 91 } 92 93 /// ErrorUnsupported - Print out an error that codegen doesn't support the 94 /// specified decl yet. 95 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 96 bool OmitOnError) { 97 if (OmitOnError && getDiags().hasErrorOccurred()) 98 return; 99 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 100 "cannot compile this %0 yet"); 101 std::string Msg = Type; 102 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 103 } 104 105 LangOptions::VisibilityMode 106 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 107 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 108 if (VD->getStorageClass() == VarDecl::PrivateExtern) 109 return LangOptions::Hidden; 110 111 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 112 switch (attr->getVisibility()) { 113 default: assert(0 && "Unknown visibility!"); 114 case VisibilityAttr::DefaultVisibility: 115 return LangOptions::Default; 116 case VisibilityAttr::HiddenVisibility: 117 return LangOptions::Hidden; 118 case VisibilityAttr::ProtectedVisibility: 119 return LangOptions::Protected; 120 } 121 } 122 123 return getLangOptions().getVisibilityMode(); 124 } 125 126 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 127 const Decl *D) const { 128 // Internal definitions always have default visibility. 129 if (GV->hasLocalLinkage()) { 130 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 131 return; 132 } 133 134 switch (getDeclVisibilityMode(D)) { 135 default: assert(0 && "Unknown visibility!"); 136 case LangOptions::Default: 137 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 138 case LangOptions::Hidden: 139 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 140 case LangOptions::Protected: 141 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 142 } 143 } 144 145 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 146 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 147 148 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 149 return getMangledCXXCtorName(D, GD.getCtorType()); 150 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 151 return getMangledCXXDtorName(D, GD.getDtorType()); 152 153 return getMangledName(ND); 154 } 155 156 /// \brief Retrieves the mangled name for the given declaration. 157 /// 158 /// If the given declaration requires a mangled name, returns an 159 /// const char* containing the mangled name. Otherwise, returns 160 /// the unmangled name. 161 /// 162 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 163 // In C, functions with no attributes never need to be mangled. Fastpath them. 164 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 165 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 166 return ND->getNameAsCString(); 167 } 168 169 llvm::SmallString<256> Name; 170 llvm::raw_svector_ostream Out(Name); 171 if (!mangleName(getMangleContext(), ND, Out)) { 172 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 173 return ND->getNameAsCString(); 174 } 175 176 Name += '\0'; 177 return UniqueMangledName(Name.begin(), Name.end()); 178 } 179 180 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 181 const char *NameEnd) { 182 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 183 184 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 185 } 186 187 /// AddGlobalCtor - Add a function to the list that will be called before 188 /// main() runs. 189 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 190 // FIXME: Type coercion of void()* types. 191 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 192 } 193 194 /// AddGlobalDtor - Add a function to the list that will be called 195 /// when the module is unloaded. 196 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 197 // FIXME: Type coercion of void()* types. 198 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 199 } 200 201 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 202 // Ctor function type is void()*. 203 llvm::FunctionType* CtorFTy = 204 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 205 std::vector<const llvm::Type*>(), 206 false); 207 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 208 209 // Get the type of a ctor entry, { i32, void ()* }. 210 llvm::StructType* CtorStructTy = 211 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 212 llvm::PointerType::getUnqual(CtorFTy), NULL); 213 214 // Construct the constructor and destructor arrays. 215 std::vector<llvm::Constant*> Ctors; 216 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 217 std::vector<llvm::Constant*> S; 218 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 219 I->second, false)); 220 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 221 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 222 } 223 224 if (!Ctors.empty()) { 225 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 226 new llvm::GlobalVariable(TheModule, AT, false, 227 llvm::GlobalValue::AppendingLinkage, 228 llvm::ConstantArray::get(AT, Ctors), 229 GlobalName); 230 } 231 } 232 233 void CodeGenModule::EmitAnnotations() { 234 if (Annotations.empty()) 235 return; 236 237 // Create a new global variable for the ConstantStruct in the Module. 238 llvm::Constant *Array = 239 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 240 Annotations.size()), 241 Annotations); 242 llvm::GlobalValue *gv = 243 new llvm::GlobalVariable(TheModule, Array->getType(), false, 244 llvm::GlobalValue::AppendingLinkage, Array, 245 "llvm.global.annotations"); 246 gv->setSection("llvm.metadata"); 247 } 248 249 static CodeGenModule::GVALinkage 250 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 251 const LangOptions &Features) { 252 // Everything located semantically within an anonymous namespace is 253 // always internal. 254 if (FD->isInAnonymousNamespace()) 255 return CodeGenModule::GVA_Internal; 256 257 // "static" functions get internal linkage. 258 if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD)) 259 return CodeGenModule::GVA_Internal; 260 261 // The kind of external linkage this function will have, if it is not 262 // inline or static. 263 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 264 if (Context.getLangOptions().CPlusPlus && 265 FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 266 External = CodeGenModule::GVA_TemplateInstantiation; 267 268 if (!FD->isInlined()) 269 return External; 270 271 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 272 // GNU or C99 inline semantics. Determine whether this symbol should be 273 // externally visible. 274 if (FD->isInlineDefinitionExternallyVisible()) 275 return External; 276 277 // C99 inline semantics, where the symbol is not externally visible. 278 return CodeGenModule::GVA_C99Inline; 279 } 280 281 // C++0x [temp.explicit]p9: 282 // [ Note: The intent is that an inline function that is the subject of 283 // an explicit instantiation declaration will still be implicitly 284 // instantiated when used so that the body can be considered for 285 // inlining, but that no out-of-line copy of the inline function would be 286 // generated in the translation unit. -- end note ] 287 if (FD->getTemplateSpecializationKind() 288 == TSK_ExplicitInstantiationDeclaration) 289 return CodeGenModule::GVA_C99Inline; 290 291 return CodeGenModule::GVA_CXXInline; 292 } 293 294 /// SetFunctionDefinitionAttributes - Set attributes for a global. 295 /// 296 /// FIXME: This is currently only done for aliases and functions, but not for 297 /// variables (these details are set in EmitGlobalVarDefinition for variables). 298 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 299 llvm::GlobalValue *GV) { 300 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 301 302 if (Linkage == GVA_Internal) { 303 GV->setLinkage(llvm::Function::InternalLinkage); 304 } else if (D->hasAttr<DLLExportAttr>()) { 305 GV->setLinkage(llvm::Function::DLLExportLinkage); 306 } else if (D->hasAttr<WeakAttr>()) { 307 GV->setLinkage(llvm::Function::WeakAnyLinkage); 308 } else if (Linkage == GVA_C99Inline) { 309 // In C99 mode, 'inline' functions are guaranteed to have a strong 310 // definition somewhere else, so we can use available_externally linkage. 311 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 312 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 313 // In C++, the compiler has to emit a definition in every translation unit 314 // that references the function. We should use linkonce_odr because 315 // a) if all references in this translation unit are optimized away, we 316 // don't need to codegen it. b) if the function persists, it needs to be 317 // merged with other definitions. c) C++ has the ODR, so we know the 318 // definition is dependable. 319 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 320 } else { 321 assert(Linkage == GVA_StrongExternal); 322 // Otherwise, we have strong external linkage. 323 GV->setLinkage(llvm::Function::ExternalLinkage); 324 } 325 326 SetCommonAttributes(D, GV); 327 } 328 329 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 330 const CGFunctionInfo &Info, 331 llvm::Function *F) { 332 unsigned CallingConv; 333 AttributeListType AttributeList; 334 ConstructAttributeList(Info, D, AttributeList, CallingConv); 335 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 336 AttributeList.size())); 337 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 338 } 339 340 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 341 llvm::Function *F) { 342 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 343 F->addFnAttr(llvm::Attribute::NoUnwind); 344 345 if (D->hasAttr<AlwaysInlineAttr>()) 346 F->addFnAttr(llvm::Attribute::AlwaysInline); 347 348 if (D->hasAttr<NoInlineAttr>()) 349 F->addFnAttr(llvm::Attribute::NoInline); 350 351 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 352 F->addFnAttr(llvm::Attribute::StackProtect); 353 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 354 F->addFnAttr(llvm::Attribute::StackProtectReq); 355 356 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) 357 F->setAlignment(AA->getAlignment()/8); 358 // C++ ABI requires 2-byte alignment for member functions. 359 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 360 F->setAlignment(2); 361 } 362 363 void CodeGenModule::SetCommonAttributes(const Decl *D, 364 llvm::GlobalValue *GV) { 365 setGlobalVisibility(GV, D); 366 367 if (D->hasAttr<UsedAttr>()) 368 AddUsedGlobal(GV); 369 370 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 371 GV->setSection(SA->getName()); 372 } 373 374 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 375 llvm::Function *F, 376 const CGFunctionInfo &FI) { 377 SetLLVMFunctionAttributes(D, FI, F); 378 SetLLVMFunctionAttributesForDefinition(D, F); 379 380 F->setLinkage(llvm::Function::InternalLinkage); 381 382 SetCommonAttributes(D, F); 383 } 384 385 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 386 llvm::Function *F, 387 bool IsIncompleteFunction) { 388 if (!IsIncompleteFunction) 389 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 390 391 // Only a few attributes are set on declarations; these may later be 392 // overridden by a definition. 393 394 if (FD->hasAttr<DLLImportAttr>()) { 395 F->setLinkage(llvm::Function::DLLImportLinkage); 396 } else if (FD->hasAttr<WeakAttr>() || 397 FD->hasAttr<WeakImportAttr>()) { 398 // "extern_weak" is overloaded in LLVM; we probably should have 399 // separate linkage types for this. 400 F->setLinkage(llvm::Function::ExternalWeakLinkage); 401 } else { 402 F->setLinkage(llvm::Function::ExternalLinkage); 403 } 404 405 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 406 F->setSection(SA->getName()); 407 } 408 409 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 410 assert(!GV->isDeclaration() && 411 "Only globals with definition can force usage."); 412 LLVMUsed.push_back(GV); 413 } 414 415 void CodeGenModule::EmitLLVMUsed() { 416 // Don't create llvm.used if there is no need. 417 if (LLVMUsed.empty()) 418 return; 419 420 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 421 422 // Convert LLVMUsed to what ConstantArray needs. 423 std::vector<llvm::Constant*> UsedArray; 424 UsedArray.resize(LLVMUsed.size()); 425 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 426 UsedArray[i] = 427 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 428 i8PTy); 429 } 430 431 if (UsedArray.empty()) 432 return; 433 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 434 435 llvm::GlobalVariable *GV = 436 new llvm::GlobalVariable(getModule(), ATy, false, 437 llvm::GlobalValue::AppendingLinkage, 438 llvm::ConstantArray::get(ATy, UsedArray), 439 "llvm.used"); 440 441 GV->setSection("llvm.metadata"); 442 } 443 444 void CodeGenModule::EmitDeferred() { 445 // Emit code for any potentially referenced deferred decls. Since a 446 // previously unused static decl may become used during the generation of code 447 // for a static function, iterate until no changes are made. 448 while (!DeferredDeclsToEmit.empty()) { 449 GlobalDecl D = DeferredDeclsToEmit.back(); 450 DeferredDeclsToEmit.pop_back(); 451 452 // The mangled name for the decl must have been emitted in GlobalDeclMap. 453 // Look it up to see if it was defined with a stronger definition (e.g. an 454 // extern inline function with a strong function redefinition). If so, 455 // just ignore the deferred decl. 456 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 457 assert(CGRef && "Deferred decl wasn't referenced?"); 458 459 if (!CGRef->isDeclaration()) 460 continue; 461 462 // Otherwise, emit the definition and move on to the next one. 463 EmitGlobalDefinition(D); 464 } 465 } 466 467 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 468 /// annotation information for a given GlobalValue. The annotation struct is 469 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 470 /// GlobalValue being annotated. The second field is the constant string 471 /// created from the AnnotateAttr's annotation. The third field is a constant 472 /// string containing the name of the translation unit. The fourth field is 473 /// the line number in the file of the annotated value declaration. 474 /// 475 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 476 /// appears to. 477 /// 478 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 479 const AnnotateAttr *AA, 480 unsigned LineNo) { 481 llvm::Module *M = &getModule(); 482 483 // get [N x i8] constants for the annotation string, and the filename string 484 // which are the 2nd and 3rd elements of the global annotation structure. 485 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 486 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 487 AA->getAnnotation(), true); 488 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 489 M->getModuleIdentifier(), 490 true); 491 492 // Get the two global values corresponding to the ConstantArrays we just 493 // created to hold the bytes of the strings. 494 llvm::GlobalValue *annoGV = 495 new llvm::GlobalVariable(*M, anno->getType(), false, 496 llvm::GlobalValue::PrivateLinkage, anno, 497 GV->getName()); 498 // translation unit name string, emitted into the llvm.metadata section. 499 llvm::GlobalValue *unitGV = 500 new llvm::GlobalVariable(*M, unit->getType(), false, 501 llvm::GlobalValue::PrivateLinkage, unit, 502 ".str"); 503 504 // Create the ConstantStruct for the global annotation. 505 llvm::Constant *Fields[4] = { 506 llvm::ConstantExpr::getBitCast(GV, SBP), 507 llvm::ConstantExpr::getBitCast(annoGV, SBP), 508 llvm::ConstantExpr::getBitCast(unitGV, SBP), 509 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 510 }; 511 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 512 } 513 514 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 515 // Never defer when EmitAllDecls is specified or the decl has 516 // attribute used. 517 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 518 return false; 519 520 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 521 // Constructors and destructors should never be deferred. 522 if (FD->hasAttr<ConstructorAttr>() || 523 FD->hasAttr<DestructorAttr>()) 524 return false; 525 526 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 527 528 // static, static inline, always_inline, and extern inline functions can 529 // always be deferred. Normal inline functions can be deferred in C99/C++. 530 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 531 Linkage == GVA_CXXInline) 532 return true; 533 return false; 534 } 535 536 const VarDecl *VD = cast<VarDecl>(Global); 537 assert(VD->isFileVarDecl() && "Invalid decl"); 538 539 // We never want to defer structs that have non-trivial constructors or 540 // destructors. 541 542 // FIXME: Handle references. 543 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 544 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 545 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 546 return false; 547 } 548 } 549 550 // Static data may be deferred, but out-of-line static data members 551 // cannot be. 552 if (VD->isInAnonymousNamespace()) 553 return true; 554 if (VD->getStorageClass() == VarDecl::Static) { 555 // Initializer has side effects? 556 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 557 return false; 558 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 559 } 560 return false; 561 } 562 563 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 564 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 565 566 // If this is an alias definition (which otherwise looks like a declaration) 567 // emit it now. 568 if (Global->hasAttr<AliasAttr>()) 569 return EmitAliasDefinition(Global); 570 571 // Ignore declarations, they will be emitted on their first use. 572 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 573 // Forward declarations are emitted lazily on first use. 574 if (!FD->isThisDeclarationADefinition()) 575 return; 576 } else { 577 const VarDecl *VD = cast<VarDecl>(Global); 578 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 579 580 // In C++, if this is marked "extern", defer code generation. 581 if (getLangOptions().CPlusPlus && !VD->getInit() && 582 (VD->getStorageClass() == VarDecl::Extern || 583 VD->isExternC())) 584 return; 585 586 // In C, if this isn't a definition, defer code generation. 587 if (!getLangOptions().CPlusPlus && !VD->getInit()) 588 return; 589 } 590 591 // Defer code generation when possible if this is a static definition, inline 592 // function etc. These we only want to emit if they are used. 593 if (MayDeferGeneration(Global)) { 594 // If the value has already been used, add it directly to the 595 // DeferredDeclsToEmit list. 596 const char *MangledName = getMangledName(GD); 597 if (GlobalDeclMap.count(MangledName)) 598 DeferredDeclsToEmit.push_back(GD); 599 else { 600 // Otherwise, remember that we saw a deferred decl with this name. The 601 // first use of the mangled name will cause it to move into 602 // DeferredDeclsToEmit. 603 DeferredDecls[MangledName] = GD; 604 } 605 return; 606 } 607 608 // Otherwise emit the definition. 609 EmitGlobalDefinition(GD); 610 } 611 612 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 613 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 614 615 PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(), 616 Context.getSourceManager(), 617 "Generating code for declaration"); 618 619 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 620 const CXXRecordDecl *RD = MD->getParent(); 621 // We have to convert it to have a record layout. 622 Types.ConvertTagDeclType(RD); 623 const CGRecordLayout &CGLayout = Types.getCGRecordLayout(RD); 624 // A definition of a KeyFunction, generates all the class data, such 625 // as vtable, rtti and the VTT. 626 if (CGLayout.getKeyFunction() 627 && (CGLayout.getKeyFunction()->getCanonicalDecl() 628 == MD->getCanonicalDecl())) 629 getVtableInfo().GenerateClassData(RD); 630 } 631 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 632 EmitCXXConstructor(CD, GD.getCtorType()); 633 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 634 EmitCXXDestructor(DD, GD.getDtorType()); 635 else if (isa<FunctionDecl>(D)) 636 EmitGlobalFunctionDefinition(GD); 637 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 638 EmitGlobalVarDefinition(VD); 639 else { 640 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 641 } 642 } 643 644 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 645 /// module, create and return an llvm Function with the specified type. If there 646 /// is something in the module with the specified name, return it potentially 647 /// bitcasted to the right type. 648 /// 649 /// If D is non-null, it specifies a decl that correspond to this. This is used 650 /// to set the attributes on the function when it is first created. 651 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 652 const llvm::Type *Ty, 653 GlobalDecl D) { 654 // Lookup the entry, lazily creating it if necessary. 655 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 656 if (Entry) { 657 if (Entry->getType()->getElementType() == Ty) 658 return Entry; 659 660 // Make sure the result is of the correct type. 661 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 662 return llvm::ConstantExpr::getBitCast(Entry, PTy); 663 } 664 665 // This function doesn't have a complete type (for example, the return 666 // type is an incomplete struct). Use a fake type instead, and make 667 // sure not to try to set attributes. 668 bool IsIncompleteFunction = false; 669 if (!isa<llvm::FunctionType>(Ty)) { 670 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 671 std::vector<const llvm::Type*>(), false); 672 IsIncompleteFunction = true; 673 } 674 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 675 llvm::Function::ExternalLinkage, 676 "", &getModule()); 677 F->setName(MangledName); 678 if (D.getDecl()) 679 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 680 IsIncompleteFunction); 681 Entry = F; 682 683 // This is the first use or definition of a mangled name. If there is a 684 // deferred decl with this name, remember that we need to emit it at the end 685 // of the file. 686 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 687 DeferredDecls.find(MangledName); 688 if (DDI != DeferredDecls.end()) { 689 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 690 // list, and remove it from DeferredDecls (since we don't need it anymore). 691 DeferredDeclsToEmit.push_back(DDI->second); 692 DeferredDecls.erase(DDI); 693 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 694 // If this the first reference to a C++ inline function in a class, queue up 695 // the deferred function body for emission. These are not seen as 696 // top-level declarations. 697 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 698 DeferredDeclsToEmit.push_back(D); 699 // A called constructor which has no definition or declaration need be 700 // synthesized. 701 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 702 const CXXRecordDecl *ClassDecl = 703 cast<CXXRecordDecl>(CD->getDeclContext()); 704 if (CD->isCopyConstructor(getContext())) 705 DeferredCopyConstructorToEmit(D); 706 else if (!ClassDecl->hasUserDeclaredConstructor()) 707 DeferredDeclsToEmit.push_back(D); 708 } 709 else if (isa<CXXDestructorDecl>(FD)) 710 DeferredDestructorToEmit(D); 711 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 712 if (MD->isCopyAssignment()) 713 DeferredCopyAssignmentToEmit(D); 714 } 715 716 return F; 717 } 718 719 /// Defer definition of copy constructor(s) which need be implicitly defined. 720 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) { 721 const CXXConstructorDecl *CD = 722 cast<CXXConstructorDecl>(CopyCtorDecl.getDecl()); 723 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 724 if (ClassDecl->hasTrivialCopyConstructor() || 725 ClassDecl->hasUserDeclaredCopyConstructor()) 726 return; 727 728 // First make sure all direct base classes and virtual bases and non-static 729 // data mebers which need to have their copy constructors implicitly defined 730 // are defined. 12.8.p7 731 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 732 Base != ClassDecl->bases_end(); ++Base) { 733 CXXRecordDecl *BaseClassDecl 734 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 735 if (CXXConstructorDecl *BaseCopyCtor = 736 BaseClassDecl->getCopyConstructor(Context, 0)) 737 GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete); 738 } 739 740 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 741 FieldEnd = ClassDecl->field_end(); 742 Field != FieldEnd; ++Field) { 743 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 744 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 745 FieldType = Array->getElementType(); 746 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 747 if ((*Field)->isAnonymousStructOrUnion()) 748 continue; 749 CXXRecordDecl *FieldClassDecl 750 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 751 if (CXXConstructorDecl *FieldCopyCtor = 752 FieldClassDecl->getCopyConstructor(Context, 0)) 753 GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete); 754 } 755 } 756 DeferredDeclsToEmit.push_back(CopyCtorDecl); 757 } 758 759 /// Defer definition of copy assignments which need be implicitly defined. 760 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) { 761 const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl()); 762 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 763 764 if (ClassDecl->hasTrivialCopyAssignment() || 765 ClassDecl->hasUserDeclaredCopyAssignment()) 766 return; 767 768 // First make sure all direct base classes and virtual bases and non-static 769 // data mebers which need to have their copy assignments implicitly defined 770 // are defined. 12.8.p12 771 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 772 Base != ClassDecl->bases_end(); ++Base) { 773 CXXRecordDecl *BaseClassDecl 774 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 775 const CXXMethodDecl *MD = 0; 776 if (!BaseClassDecl->hasTrivialCopyAssignment() && 777 !BaseClassDecl->hasUserDeclaredCopyAssignment() && 778 BaseClassDecl->hasConstCopyAssignment(getContext(), MD)) 779 GetAddrOfFunction(MD, 0); 780 } 781 782 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 783 FieldEnd = ClassDecl->field_end(); 784 Field != FieldEnd; ++Field) { 785 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 786 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 787 FieldType = Array->getElementType(); 788 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 789 if ((*Field)->isAnonymousStructOrUnion()) 790 continue; 791 CXXRecordDecl *FieldClassDecl 792 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 793 const CXXMethodDecl *MD = 0; 794 if (!FieldClassDecl->hasTrivialCopyAssignment() && 795 !FieldClassDecl->hasUserDeclaredCopyAssignment() && 796 FieldClassDecl->hasConstCopyAssignment(getContext(), MD)) 797 GetAddrOfFunction(MD, 0); 798 } 799 } 800 DeferredDeclsToEmit.push_back(CopyAssignDecl); 801 } 802 803 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) { 804 const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl()); 805 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext()); 806 if (ClassDecl->hasTrivialDestructor() || 807 ClassDecl->hasUserDeclaredDestructor()) 808 return; 809 810 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 811 Base != ClassDecl->bases_end(); ++Base) { 812 CXXRecordDecl *BaseClassDecl 813 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 814 if (const CXXDestructorDecl *BaseDtor = 815 BaseClassDecl->getDestructor(Context)) 816 GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete); 817 } 818 819 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 820 FieldEnd = ClassDecl->field_end(); 821 Field != FieldEnd; ++Field) { 822 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 823 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 824 FieldType = Array->getElementType(); 825 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 826 if ((*Field)->isAnonymousStructOrUnion()) 827 continue; 828 CXXRecordDecl *FieldClassDecl 829 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 830 if (const CXXDestructorDecl *FieldDtor = 831 FieldClassDecl->getDestructor(Context)) 832 GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete); 833 } 834 } 835 DeferredDeclsToEmit.push_back(DtorDecl); 836 } 837 838 839 /// GetAddrOfFunction - Return the address of the given function. If Ty is 840 /// non-null, then this function will use the specified type if it has to 841 /// create it (this occurs when we see a definition of the function). 842 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 843 const llvm::Type *Ty) { 844 // If there was no specific requested type, just convert it now. 845 if (!Ty) 846 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 847 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 848 } 849 850 /// CreateRuntimeFunction - Create a new runtime function with the specified 851 /// type and name. 852 llvm::Constant * 853 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 854 const char *Name) { 855 // Convert Name to be a uniqued string from the IdentifierInfo table. 856 Name = getContext().Idents.get(Name).getNameStart(); 857 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 858 } 859 860 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 861 /// create and return an llvm GlobalVariable with the specified type. If there 862 /// is something in the module with the specified name, return it potentially 863 /// bitcasted to the right type. 864 /// 865 /// If D is non-null, it specifies a decl that correspond to this. This is used 866 /// to set the attributes on the global when it is first created. 867 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 868 const llvm::PointerType*Ty, 869 const VarDecl *D) { 870 // Lookup the entry, lazily creating it if necessary. 871 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 872 if (Entry) { 873 if (Entry->getType() == Ty) 874 return Entry; 875 876 // Make sure the result is of the correct type. 877 return llvm::ConstantExpr::getBitCast(Entry, Ty); 878 } 879 880 // This is the first use or definition of a mangled name. If there is a 881 // deferred decl with this name, remember that we need to emit it at the end 882 // of the file. 883 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 884 DeferredDecls.find(MangledName); 885 if (DDI != DeferredDecls.end()) { 886 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 887 // list, and remove it from DeferredDecls (since we don't need it anymore). 888 DeferredDeclsToEmit.push_back(DDI->second); 889 DeferredDecls.erase(DDI); 890 } 891 892 llvm::GlobalVariable *GV = 893 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 894 llvm::GlobalValue::ExternalLinkage, 895 0, "", 0, 896 false, Ty->getAddressSpace()); 897 GV->setName(MangledName); 898 899 // Handle things which are present even on external declarations. 900 if (D) { 901 // FIXME: This code is overly simple and should be merged with other global 902 // handling. 903 GV->setConstant(D->getType().isConstant(Context)); 904 905 // FIXME: Merge with other attribute handling code. 906 if (D->getStorageClass() == VarDecl::PrivateExtern) 907 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 908 909 if (D->hasAttr<WeakAttr>() || 910 D->hasAttr<WeakImportAttr>()) 911 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 912 913 GV->setThreadLocal(D->isThreadSpecified()); 914 } 915 916 return Entry = GV; 917 } 918 919 920 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 921 /// given global variable. If Ty is non-null and if the global doesn't exist, 922 /// then it will be greated with the specified type instead of whatever the 923 /// normal requested type would be. 924 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 925 const llvm::Type *Ty) { 926 assert(D->hasGlobalStorage() && "Not a global variable"); 927 QualType ASTTy = D->getType(); 928 if (Ty == 0) 929 Ty = getTypes().ConvertTypeForMem(ASTTy); 930 931 const llvm::PointerType *PTy = 932 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 933 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 934 } 935 936 /// CreateRuntimeVariable - Create a new runtime global variable with the 937 /// specified type and name. 938 llvm::Constant * 939 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 940 const char *Name) { 941 // Convert Name to be a uniqued string from the IdentifierInfo table. 942 Name = getContext().Idents.get(Name).getNameStart(); 943 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 944 } 945 946 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 947 assert(!D->getInit() && "Cannot emit definite definitions here!"); 948 949 if (MayDeferGeneration(D)) { 950 // If we have not seen a reference to this variable yet, place it 951 // into the deferred declarations table to be emitted if needed 952 // later. 953 const char *MangledName = getMangledName(D); 954 if (GlobalDeclMap.count(MangledName) == 0) { 955 DeferredDecls[MangledName] = D; 956 return; 957 } 958 } 959 960 // The tentative definition is the only definition. 961 EmitGlobalVarDefinition(D); 962 } 963 964 static CodeGenModule::GVALinkage 965 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 966 // Everything located semantically within an anonymous namespace is 967 // always internal. 968 if (VD->isInAnonymousNamespace()) 969 return CodeGenModule::GVA_Internal; 970 971 // Handle linkage for static data members. 972 if (VD->isStaticDataMember()) { 973 switch (VD->getTemplateSpecializationKind()) { 974 case TSK_Undeclared: 975 case TSK_ExplicitSpecialization: 976 case TSK_ExplicitInstantiationDefinition: 977 return CodeGenModule::GVA_StrongExternal; 978 979 case TSK_ExplicitInstantiationDeclaration: 980 llvm::llvm_unreachable("Variable should not be instantiated"); 981 // Fall through to treat this like any other instantiation. 982 983 case TSK_ImplicitInstantiation: 984 return CodeGenModule::GVA_TemplateInstantiation; 985 } 986 } 987 988 // Static variables get internal linkage. 989 if (VD->getStorageClass() == VarDecl::Static) 990 return CodeGenModule::GVA_Internal; 991 992 return CodeGenModule::GVA_StrongExternal; 993 } 994 995 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 996 llvm::Constant *Init = 0; 997 QualType ASTTy = D->getType(); 998 999 if (D->getInit() == 0) { 1000 // This is a tentative definition; tentative definitions are 1001 // implicitly initialized with { 0 }. 1002 // 1003 // Note that tentative definitions are only emitted at the end of 1004 // a translation unit, so they should never have incomplete 1005 // type. In addition, EmitTentativeDefinition makes sure that we 1006 // never attempt to emit a tentative definition if a real one 1007 // exists. A use may still exists, however, so we still may need 1008 // to do a RAUW. 1009 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1010 Init = EmitNullConstant(D->getType()); 1011 } else { 1012 Init = EmitConstantExpr(D->getInit(), D->getType()); 1013 1014 if (!Init) { 1015 QualType T = D->getInit()->getType(); 1016 if (getLangOptions().CPlusPlus) { 1017 CXXGlobalInits.push_back(D); 1018 Init = EmitNullConstant(T); 1019 } else { 1020 ErrorUnsupported(D, "static initializer"); 1021 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1022 } 1023 } 1024 } 1025 1026 const llvm::Type* InitType = Init->getType(); 1027 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1028 1029 // Strip off a bitcast if we got one back. 1030 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1031 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1032 // all zero index gep. 1033 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1034 Entry = CE->getOperand(0); 1035 } 1036 1037 // Entry is now either a Function or GlobalVariable. 1038 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1039 1040 // We have a definition after a declaration with the wrong type. 1041 // We must make a new GlobalVariable* and update everything that used OldGV 1042 // (a declaration or tentative definition) with the new GlobalVariable* 1043 // (which will be a definition). 1044 // 1045 // This happens if there is a prototype for a global (e.g. 1046 // "extern int x[];") and then a definition of a different type (e.g. 1047 // "int x[10];"). This also happens when an initializer has a different type 1048 // from the type of the global (this happens with unions). 1049 if (GV == 0 || 1050 GV->getType()->getElementType() != InitType || 1051 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1052 1053 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 1054 GlobalDeclMap.erase(getMangledName(D)); 1055 1056 // Make a new global with the correct type, this is now guaranteed to work. 1057 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1058 GV->takeName(cast<llvm::GlobalValue>(Entry)); 1059 1060 // Replace all uses of the old global with the new global 1061 llvm::Constant *NewPtrForOldDecl = 1062 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1063 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1064 1065 // Erase the old global, since it is no longer used. 1066 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1067 } 1068 1069 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1070 SourceManager &SM = Context.getSourceManager(); 1071 AddAnnotation(EmitAnnotateAttr(GV, AA, 1072 SM.getInstantiationLineNumber(D->getLocation()))); 1073 } 1074 1075 GV->setInitializer(Init); 1076 1077 // If it is safe to mark the global 'constant', do so now. 1078 GV->setConstant(false); 1079 if (D->getType().isConstant(Context)) { 1080 // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable 1081 // members, it cannot be declared "LLVM const". 1082 GV->setConstant(true); 1083 } 1084 1085 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 1086 1087 // Set the llvm linkage type as appropriate. 1088 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1089 if (Linkage == GVA_Internal) 1090 GV->setLinkage(llvm::Function::InternalLinkage); 1091 else if (D->hasAttr<DLLImportAttr>()) 1092 GV->setLinkage(llvm::Function::DLLImportLinkage); 1093 else if (D->hasAttr<DLLExportAttr>()) 1094 GV->setLinkage(llvm::Function::DLLExportLinkage); 1095 else if (D->hasAttr<WeakAttr>()) { 1096 if (GV->isConstant()) 1097 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1098 else 1099 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1100 } else if (Linkage == GVA_TemplateInstantiation) 1101 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1102 else if (!CodeGenOpts.NoCommon && 1103 !D->hasExternalStorage() && !D->getInit() && 1104 !D->getAttr<SectionAttr>()) { 1105 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1106 // common vars aren't constant even if declared const. 1107 GV->setConstant(false); 1108 } else 1109 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1110 1111 SetCommonAttributes(D, GV); 1112 1113 // Emit global variable debug information. 1114 if (CGDebugInfo *DI = getDebugInfo()) { 1115 DI->setLocation(D->getLocation()); 1116 DI->EmitGlobalVariable(GV, D); 1117 } 1118 } 1119 1120 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1121 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1122 /// existing call uses of the old function in the module, this adjusts them to 1123 /// call the new function directly. 1124 /// 1125 /// This is not just a cleanup: the always_inline pass requires direct calls to 1126 /// functions to be able to inline them. If there is a bitcast in the way, it 1127 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1128 /// run at -O0. 1129 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1130 llvm::Function *NewFn) { 1131 // If we're redefining a global as a function, don't transform it. 1132 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1133 if (OldFn == 0) return; 1134 1135 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1136 llvm::SmallVector<llvm::Value*, 4> ArgList; 1137 1138 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1139 UI != E; ) { 1140 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1141 unsigned OpNo = UI.getOperandNo(); 1142 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1143 if (!CI || OpNo != 0) continue; 1144 1145 // If the return types don't match exactly, and if the call isn't dead, then 1146 // we can't transform this call. 1147 if (CI->getType() != NewRetTy && !CI->use_empty()) 1148 continue; 1149 1150 // If the function was passed too few arguments, don't transform. If extra 1151 // arguments were passed, we silently drop them. If any of the types 1152 // mismatch, we don't transform. 1153 unsigned ArgNo = 0; 1154 bool DontTransform = false; 1155 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1156 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1157 if (CI->getNumOperands()-1 == ArgNo || 1158 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1159 DontTransform = true; 1160 break; 1161 } 1162 } 1163 if (DontTransform) 1164 continue; 1165 1166 // Okay, we can transform this. Create the new call instruction and copy 1167 // over the required information. 1168 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1169 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1170 ArgList.end(), "", CI); 1171 ArgList.clear(); 1172 if (!NewCall->getType()->isVoidTy()) 1173 NewCall->takeName(CI); 1174 NewCall->setAttributes(CI->getAttributes()); 1175 NewCall->setCallingConv(CI->getCallingConv()); 1176 1177 // Finally, remove the old call, replacing any uses with the new one. 1178 if (!CI->use_empty()) 1179 CI->replaceAllUsesWith(NewCall); 1180 1181 // Copy any custom metadata attached with CI. 1182 llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata(); 1183 TheMetadata.copyMD(CI, NewCall); 1184 1185 CI->eraseFromParent(); 1186 } 1187 } 1188 1189 1190 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1191 const llvm::FunctionType *Ty; 1192 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1193 1194 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1195 bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic(); 1196 1197 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1198 } else { 1199 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1200 1201 // As a special case, make sure that definitions of K&R function 1202 // "type foo()" aren't declared as varargs (which forces the backend 1203 // to do unnecessary work). 1204 if (D->getType()->isFunctionNoProtoType()) { 1205 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1206 // Due to stret, the lowered function could have arguments. 1207 // Just create the same type as was lowered by ConvertType 1208 // but strip off the varargs bit. 1209 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1210 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1211 } 1212 } 1213 1214 // Get or create the prototype for the function. 1215 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1216 1217 // Strip off a bitcast if we got one back. 1218 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1219 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1220 Entry = CE->getOperand(0); 1221 } 1222 1223 1224 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1225 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1226 1227 // If the types mismatch then we have to rewrite the definition. 1228 assert(OldFn->isDeclaration() && 1229 "Shouldn't replace non-declaration"); 1230 1231 // F is the Function* for the one with the wrong type, we must make a new 1232 // Function* and update everything that used F (a declaration) with the new 1233 // Function* (which will be a definition). 1234 // 1235 // This happens if there is a prototype for a function 1236 // (e.g. "int f()") and then a definition of a different type 1237 // (e.g. "int f(int x)"). Start by making a new function of the 1238 // correct type, RAUW, then steal the name. 1239 GlobalDeclMap.erase(getMangledName(D)); 1240 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1241 NewFn->takeName(OldFn); 1242 1243 // If this is an implementation of a function without a prototype, try to 1244 // replace any existing uses of the function (which may be calls) with uses 1245 // of the new function 1246 if (D->getType()->isFunctionNoProtoType()) { 1247 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1248 OldFn->removeDeadConstantUsers(); 1249 } 1250 1251 // Replace uses of F with the Function we will endow with a body. 1252 if (!Entry->use_empty()) { 1253 llvm::Constant *NewPtrForOldDecl = 1254 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1255 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1256 } 1257 1258 // Ok, delete the old function now, which is dead. 1259 OldFn->eraseFromParent(); 1260 1261 Entry = NewFn; 1262 } 1263 1264 llvm::Function *Fn = cast<llvm::Function>(Entry); 1265 1266 CodeGenFunction(*this).GenerateCode(D, Fn); 1267 1268 SetFunctionDefinitionAttributes(D, Fn); 1269 SetLLVMFunctionAttributesForDefinition(D, Fn); 1270 1271 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1272 AddGlobalCtor(Fn, CA->getPriority()); 1273 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1274 AddGlobalDtor(Fn, DA->getPriority()); 1275 } 1276 1277 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1278 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1279 assert(AA && "Not an alias?"); 1280 1281 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1282 1283 // Unique the name through the identifier table. 1284 const char *AliaseeName = AA->getAliasee().c_str(); 1285 AliaseeName = getContext().Idents.get(AliaseeName).getNameStart(); 1286 1287 // Create a reference to the named value. This ensures that it is emitted 1288 // if a deferred decl. 1289 llvm::Constant *Aliasee; 1290 if (isa<llvm::FunctionType>(DeclTy)) 1291 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1292 else 1293 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1294 llvm::PointerType::getUnqual(DeclTy), 0); 1295 1296 // Create the new alias itself, but don't set a name yet. 1297 llvm::GlobalValue *GA = 1298 new llvm::GlobalAlias(Aliasee->getType(), 1299 llvm::Function::ExternalLinkage, 1300 "", Aliasee, &getModule()); 1301 1302 // See if there is already something with the alias' name in the module. 1303 const char *MangledName = getMangledName(D); 1304 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1305 1306 if (Entry && !Entry->isDeclaration()) { 1307 // If there is a definition in the module, then it wins over the alias. 1308 // This is dubious, but allow it to be safe. Just ignore the alias. 1309 GA->eraseFromParent(); 1310 return; 1311 } 1312 1313 if (Entry) { 1314 // If there is a declaration in the module, then we had an extern followed 1315 // by the alias, as in: 1316 // extern int test6(); 1317 // ... 1318 // int test6() __attribute__((alias("test7"))); 1319 // 1320 // Remove it and replace uses of it with the alias. 1321 1322 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1323 Entry->getType())); 1324 Entry->eraseFromParent(); 1325 } 1326 1327 // Now we know that there is no conflict, set the name. 1328 Entry = GA; 1329 GA->setName(MangledName); 1330 1331 // Set attributes which are particular to an alias; this is a 1332 // specialization of the attributes which may be set on a global 1333 // variable/function. 1334 if (D->hasAttr<DLLExportAttr>()) { 1335 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1336 // The dllexport attribute is ignored for undefined symbols. 1337 if (FD->getBody()) 1338 GA->setLinkage(llvm::Function::DLLExportLinkage); 1339 } else { 1340 GA->setLinkage(llvm::Function::DLLExportLinkage); 1341 } 1342 } else if (D->hasAttr<WeakAttr>() || 1343 D->hasAttr<WeakImportAttr>()) { 1344 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1345 } 1346 1347 SetCommonAttributes(D, GA); 1348 } 1349 1350 /// getBuiltinLibFunction - Given a builtin id for a function like 1351 /// "__builtin_fabsf", return a Function* for "fabsf". 1352 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1353 unsigned BuiltinID) { 1354 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1355 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1356 "isn't a lib fn"); 1357 1358 // Get the name, skip over the __builtin_ prefix (if necessary). 1359 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1360 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1361 Name += 10; 1362 1363 // Get the type for the builtin. 1364 ASTContext::GetBuiltinTypeError Error; 1365 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1366 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1367 1368 const llvm::FunctionType *Ty = 1369 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1370 1371 // Unique the name through the identifier table. 1372 Name = getContext().Idents.get(Name).getNameStart(); 1373 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1374 } 1375 1376 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1377 unsigned NumTys) { 1378 return llvm::Intrinsic::getDeclaration(&getModule(), 1379 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1380 } 1381 1382 llvm::Function *CodeGenModule::getMemCpyFn() { 1383 if (MemCpyFn) return MemCpyFn; 1384 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1385 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1386 } 1387 1388 llvm::Function *CodeGenModule::getMemMoveFn() { 1389 if (MemMoveFn) return MemMoveFn; 1390 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1391 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1392 } 1393 1394 llvm::Function *CodeGenModule::getMemSetFn() { 1395 if (MemSetFn) return MemSetFn; 1396 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1397 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1398 } 1399 1400 static llvm::StringMapEntry<llvm::Constant*> & 1401 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1402 const StringLiteral *Literal, 1403 bool TargetIsLSB, 1404 bool &IsUTF16, 1405 unsigned &StringLength) { 1406 unsigned NumBytes = Literal->getByteLength(); 1407 1408 // Check for simple case. 1409 if (!Literal->containsNonAsciiOrNull()) { 1410 StringLength = NumBytes; 1411 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1412 StringLength)); 1413 } 1414 1415 // Otherwise, convert the UTF8 literals into a byte string. 1416 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1417 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1418 UTF16 *ToPtr = &ToBuf[0]; 1419 1420 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1421 &ToPtr, ToPtr + NumBytes, 1422 strictConversion); 1423 1424 // Check for conversion failure. 1425 if (Result != conversionOK) { 1426 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1427 // this duplicate code. 1428 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1429 StringLength = NumBytes; 1430 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1431 StringLength)); 1432 } 1433 1434 // ConvertUTF8toUTF16 returns the length in ToPtr. 1435 StringLength = ToPtr - &ToBuf[0]; 1436 1437 // Render the UTF-16 string into a byte array and convert to the target byte 1438 // order. 1439 // 1440 // FIXME: This isn't something we should need to do here. 1441 llvm::SmallString<128> AsBytes; 1442 AsBytes.reserve(StringLength * 2); 1443 for (unsigned i = 0; i != StringLength; ++i) { 1444 unsigned short Val = ToBuf[i]; 1445 if (TargetIsLSB) { 1446 AsBytes.push_back(Val & 0xFF); 1447 AsBytes.push_back(Val >> 8); 1448 } else { 1449 AsBytes.push_back(Val >> 8); 1450 AsBytes.push_back(Val & 0xFF); 1451 } 1452 } 1453 // Append one extra null character, the second is automatically added by our 1454 // caller. 1455 AsBytes.push_back(0); 1456 1457 IsUTF16 = true; 1458 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1459 } 1460 1461 llvm::Constant * 1462 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1463 unsigned StringLength = 0; 1464 bool isUTF16 = false; 1465 llvm::StringMapEntry<llvm::Constant*> &Entry = 1466 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1467 getTargetData().isLittleEndian(), 1468 isUTF16, StringLength); 1469 1470 if (llvm::Constant *C = Entry.getValue()) 1471 return C; 1472 1473 llvm::Constant *Zero = 1474 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1475 llvm::Constant *Zeros[] = { Zero, Zero }; 1476 1477 // If we don't already have it, get __CFConstantStringClassReference. 1478 if (!CFConstantStringClassRef) { 1479 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1480 Ty = llvm::ArrayType::get(Ty, 0); 1481 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1482 "__CFConstantStringClassReference"); 1483 // Decay array -> ptr 1484 CFConstantStringClassRef = 1485 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1486 } 1487 1488 QualType CFTy = getContext().getCFConstantStringType(); 1489 1490 const llvm::StructType *STy = 1491 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1492 1493 std::vector<llvm::Constant*> Fields(4); 1494 1495 // Class pointer. 1496 Fields[0] = CFConstantStringClassRef; 1497 1498 // Flags. 1499 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1500 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1501 llvm::ConstantInt::get(Ty, 0x07C8); 1502 1503 // String pointer. 1504 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1505 1506 const char *Sect = 0; 1507 llvm::GlobalValue::LinkageTypes Linkage; 1508 bool isConstant; 1509 if (isUTF16) { 1510 Sect = getContext().Target.getUnicodeStringSection(); 1511 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1512 Linkage = llvm::GlobalValue::InternalLinkage; 1513 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1514 // does make plain ascii ones writable. 1515 isConstant = true; 1516 } else { 1517 Linkage = llvm::GlobalValue::PrivateLinkage; 1518 isConstant = !Features.WritableStrings; 1519 } 1520 1521 llvm::GlobalVariable *GV = 1522 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1523 ".str"); 1524 if (Sect) 1525 GV->setSection(Sect); 1526 if (isUTF16) { 1527 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1528 GV->setAlignment(Align); 1529 } 1530 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1531 1532 // String length. 1533 Ty = getTypes().ConvertType(getContext().LongTy); 1534 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1535 1536 // The struct. 1537 C = llvm::ConstantStruct::get(STy, Fields); 1538 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1539 llvm::GlobalVariable::PrivateLinkage, C, 1540 "_unnamed_cfstring_"); 1541 if (const char *Sect = getContext().Target.getCFStringSection()) 1542 GV->setSection(Sect); 1543 Entry.setValue(GV); 1544 1545 return GV; 1546 } 1547 1548 /// GetStringForStringLiteral - Return the appropriate bytes for a 1549 /// string literal, properly padded to match the literal type. 1550 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1551 const char *StrData = E->getStrData(); 1552 unsigned Len = E->getByteLength(); 1553 1554 const ConstantArrayType *CAT = 1555 getContext().getAsConstantArrayType(E->getType()); 1556 assert(CAT && "String isn't pointer or array!"); 1557 1558 // Resize the string to the right size. 1559 std::string Str(StrData, StrData+Len); 1560 uint64_t RealLen = CAT->getSize().getZExtValue(); 1561 1562 if (E->isWide()) 1563 RealLen *= getContext().Target.getWCharWidth()/8; 1564 1565 Str.resize(RealLen, '\0'); 1566 1567 return Str; 1568 } 1569 1570 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1571 /// constant array for the given string literal. 1572 llvm::Constant * 1573 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1574 // FIXME: This can be more efficient. 1575 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1576 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1577 if (S->isWide()) { 1578 llvm::Type *DestTy = 1579 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1580 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1581 } 1582 return C; 1583 } 1584 1585 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1586 /// array for the given ObjCEncodeExpr node. 1587 llvm::Constant * 1588 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1589 std::string Str; 1590 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1591 1592 return GetAddrOfConstantCString(Str); 1593 } 1594 1595 1596 /// GenerateWritableString -- Creates storage for a string literal. 1597 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1598 bool constant, 1599 CodeGenModule &CGM, 1600 const char *GlobalName) { 1601 // Create Constant for this string literal. Don't add a '\0'. 1602 llvm::Constant *C = 1603 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1604 1605 // Create a global variable for this string 1606 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1607 llvm::GlobalValue::PrivateLinkage, 1608 C, GlobalName); 1609 } 1610 1611 /// GetAddrOfConstantString - Returns a pointer to a character array 1612 /// containing the literal. This contents are exactly that of the 1613 /// given string, i.e. it will not be null terminated automatically; 1614 /// see GetAddrOfConstantCString. Note that whether the result is 1615 /// actually a pointer to an LLVM constant depends on 1616 /// Feature.WriteableStrings. 1617 /// 1618 /// The result has pointer to array type. 1619 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1620 const char *GlobalName) { 1621 bool IsConstant = !Features.WritableStrings; 1622 1623 // Get the default prefix if a name wasn't specified. 1624 if (!GlobalName) 1625 GlobalName = ".str"; 1626 1627 // Don't share any string literals if strings aren't constant. 1628 if (!IsConstant) 1629 return GenerateStringLiteral(str, false, *this, GlobalName); 1630 1631 llvm::StringMapEntry<llvm::Constant *> &Entry = 1632 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1633 1634 if (Entry.getValue()) 1635 return Entry.getValue(); 1636 1637 // Create a global variable for this. 1638 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1639 Entry.setValue(C); 1640 return C; 1641 } 1642 1643 /// GetAddrOfConstantCString - Returns a pointer to a character 1644 /// array containing the literal and a terminating '\-' 1645 /// character. The result has pointer to array type. 1646 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1647 const char *GlobalName){ 1648 return GetAddrOfConstantString(str + '\0', GlobalName); 1649 } 1650 1651 /// EmitObjCPropertyImplementations - Emit information for synthesized 1652 /// properties for an implementation. 1653 void CodeGenModule::EmitObjCPropertyImplementations(const 1654 ObjCImplementationDecl *D) { 1655 for (ObjCImplementationDecl::propimpl_iterator 1656 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1657 ObjCPropertyImplDecl *PID = *i; 1658 1659 // Dynamic is just for type-checking. 1660 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1661 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1662 1663 // Determine which methods need to be implemented, some may have 1664 // been overridden. Note that ::isSynthesized is not the method 1665 // we want, that just indicates if the decl came from a 1666 // property. What we want to know is if the method is defined in 1667 // this implementation. 1668 if (!D->getInstanceMethod(PD->getGetterName())) 1669 CodeGenFunction(*this).GenerateObjCGetter( 1670 const_cast<ObjCImplementationDecl *>(D), PID); 1671 if (!PD->isReadOnly() && 1672 !D->getInstanceMethod(PD->getSetterName())) 1673 CodeGenFunction(*this).GenerateObjCSetter( 1674 const_cast<ObjCImplementationDecl *>(D), PID); 1675 } 1676 } 1677 } 1678 1679 /// EmitNamespace - Emit all declarations in a namespace. 1680 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1681 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1682 I != E; ++I) 1683 EmitTopLevelDecl(*I); 1684 } 1685 1686 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1687 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1688 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1689 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1690 ErrorUnsupported(LSD, "linkage spec"); 1691 return; 1692 } 1693 1694 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1695 I != E; ++I) 1696 EmitTopLevelDecl(*I); 1697 } 1698 1699 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1700 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1701 // If an error has occurred, stop code generation, but continue 1702 // parsing and semantic analysis (to ensure all warnings and errors 1703 // are emitted). 1704 if (Diags.hasErrorOccurred()) 1705 return; 1706 1707 // Ignore dependent declarations. 1708 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1709 return; 1710 1711 switch (D->getKind()) { 1712 case Decl::CXXConversion: 1713 case Decl::CXXMethod: 1714 case Decl::Function: 1715 // Skip function templates 1716 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1717 return; 1718 1719 EmitGlobal(cast<FunctionDecl>(D)); 1720 break; 1721 1722 case Decl::Var: 1723 EmitGlobal(cast<VarDecl>(D)); 1724 break; 1725 1726 // C++ Decls 1727 case Decl::Namespace: 1728 EmitNamespace(cast<NamespaceDecl>(D)); 1729 break; 1730 // No code generation needed. 1731 case Decl::UsingShadow: 1732 case Decl::Using: 1733 case Decl::UsingDirective: 1734 case Decl::ClassTemplate: 1735 case Decl::FunctionTemplate: 1736 case Decl::NamespaceAlias: 1737 break; 1738 case Decl::CXXConstructor: 1739 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1740 break; 1741 case Decl::CXXDestructor: 1742 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1743 break; 1744 1745 case Decl::StaticAssert: 1746 // Nothing to do. 1747 break; 1748 1749 // Objective-C Decls 1750 1751 // Forward declarations, no (immediate) code generation. 1752 case Decl::ObjCClass: 1753 case Decl::ObjCForwardProtocol: 1754 case Decl::ObjCCategory: 1755 case Decl::ObjCInterface: 1756 break; 1757 1758 case Decl::ObjCProtocol: 1759 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1760 break; 1761 1762 case Decl::ObjCCategoryImpl: 1763 // Categories have properties but don't support synthesize so we 1764 // can ignore them here. 1765 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1766 break; 1767 1768 case Decl::ObjCImplementation: { 1769 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1770 EmitObjCPropertyImplementations(OMD); 1771 Runtime->GenerateClass(OMD); 1772 break; 1773 } 1774 case Decl::ObjCMethod: { 1775 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1776 // If this is not a prototype, emit the body. 1777 if (OMD->getBody()) 1778 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1779 break; 1780 } 1781 case Decl::ObjCCompatibleAlias: 1782 // compatibility-alias is a directive and has no code gen. 1783 break; 1784 1785 case Decl::LinkageSpec: 1786 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1787 break; 1788 1789 case Decl::FileScopeAsm: { 1790 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1791 std::string AsmString(AD->getAsmString()->getStrData(), 1792 AD->getAsmString()->getByteLength()); 1793 1794 const std::string &S = getModule().getModuleInlineAsm(); 1795 if (S.empty()) 1796 getModule().setModuleInlineAsm(AsmString); 1797 else 1798 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1799 break; 1800 } 1801 1802 default: 1803 // Make sure we handled everything we should, every other kind is a 1804 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1805 // function. Need to recode Decl::Kind to do that easily. 1806 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1807 } 1808 } 1809