1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeNVPTX.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/CodeGen/ConstantInitBuilder.h"
46 #include "clang/Frontend/FrontendDiagnostic.h"
47 #include "llvm/ADT/StringSwitch.h"
48 #include "llvm/ADT/Triple.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ProfileSummary.h"
56 #include "llvm/ProfileData/InstrProfReader.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/ConvertUTF.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MD5.h"
61 #include "llvm/Support/TimeProfiler.h"
62 
63 using namespace clang;
64 using namespace CodeGen;
65 
66 static llvm::cl::opt<bool> LimitedCoverage(
67     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
68     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
69     llvm::cl::init(false));
70 
71 static const char AnnotationSection[] = "llvm.metadata";
72 
73 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
74   switch (CGM.getTarget().getCXXABI().getKind()) {
75   case TargetCXXABI::GenericAArch64:
76   case TargetCXXABI::GenericARM:
77   case TargetCXXABI::iOS:
78   case TargetCXXABI::iOS64:
79   case TargetCXXABI::WatchOS:
80   case TargetCXXABI::GenericMIPS:
81   case TargetCXXABI::GenericItanium:
82   case TargetCXXABI::WebAssembly:
83     return CreateItaniumCXXABI(CGM);
84   case TargetCXXABI::Microsoft:
85     return CreateMicrosoftCXXABI(CGM);
86   }
87 
88   llvm_unreachable("invalid C++ ABI kind");
89 }
90 
91 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
92                              const PreprocessorOptions &PPO,
93                              const CodeGenOptions &CGO, llvm::Module &M,
94                              DiagnosticsEngine &diags,
95                              CoverageSourceInfo *CoverageInfo)
96     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
97       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
98       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
99       VMContext(M.getContext()), Types(*this), VTables(*this),
100       SanitizerMD(new SanitizerMetadata(*this)) {
101 
102   // Initialize the type cache.
103   llvm::LLVMContext &LLVMContext = M.getContext();
104   VoidTy = llvm::Type::getVoidTy(LLVMContext);
105   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
106   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
107   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
108   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
109   HalfTy = llvm::Type::getHalfTy(LLVMContext);
110   FloatTy = llvm::Type::getFloatTy(LLVMContext);
111   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
112   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
113   PointerAlignInBytes =
114     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
115   SizeSizeInBytes =
116     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
117   IntAlignInBytes =
118     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
119   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
120   IntPtrTy = llvm::IntegerType::get(LLVMContext,
121     C.getTargetInfo().getMaxPointerWidth());
122   Int8PtrTy = Int8Ty->getPointerTo(0);
123   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
124   AllocaInt8PtrTy = Int8Ty->getPointerTo(
125       M.getDataLayout().getAllocaAddrSpace());
126   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
127 
128   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
129 
130   if (LangOpts.ObjC)
131     createObjCRuntime();
132   if (LangOpts.OpenCL)
133     createOpenCLRuntime();
134   if (LangOpts.OpenMP)
135     createOpenMPRuntime();
136   if (LangOpts.CUDA)
137     createCUDARuntime();
138 
139   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
140   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
141       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
142     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
143                                getCXXABI().getMangleContext()));
144 
145   // If debug info or coverage generation is enabled, create the CGDebugInfo
146   // object.
147   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
148       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
149     DebugInfo.reset(new CGDebugInfo(*this));
150 
151   Block.GlobalUniqueCount = 0;
152 
153   if (C.getLangOpts().ObjC)
154     ObjCData.reset(new ObjCEntrypoints());
155 
156   if (CodeGenOpts.hasProfileClangUse()) {
157     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
158         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
159     if (auto E = ReaderOrErr.takeError()) {
160       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
161                                               "Could not read profile %0: %1");
162       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
163         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
164                                   << EI.message();
165       });
166     } else
167       PGOReader = std::move(ReaderOrErr.get());
168   }
169 
170   // If coverage mapping generation is enabled, create the
171   // CoverageMappingModuleGen object.
172   if (CodeGenOpts.CoverageMapping)
173     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
174 }
175 
176 CodeGenModule::~CodeGenModule() {}
177 
178 void CodeGenModule::createObjCRuntime() {
179   // This is just isGNUFamily(), but we want to force implementors of
180   // new ABIs to decide how best to do this.
181   switch (LangOpts.ObjCRuntime.getKind()) {
182   case ObjCRuntime::GNUstep:
183   case ObjCRuntime::GCC:
184   case ObjCRuntime::ObjFW:
185     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
186     return;
187 
188   case ObjCRuntime::FragileMacOSX:
189   case ObjCRuntime::MacOSX:
190   case ObjCRuntime::iOS:
191   case ObjCRuntime::WatchOS:
192     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
193     return;
194   }
195   llvm_unreachable("bad runtime kind");
196 }
197 
198 void CodeGenModule::createOpenCLRuntime() {
199   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
200 }
201 
202 void CodeGenModule::createOpenMPRuntime() {
203   // Select a specialized code generation class based on the target, if any.
204   // If it does not exist use the default implementation.
205   switch (getTriple().getArch()) {
206   case llvm::Triple::nvptx:
207   case llvm::Triple::nvptx64:
208     assert(getLangOpts().OpenMPIsDevice &&
209            "OpenMP NVPTX is only prepared to deal with device code.");
210     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
211     break;
212   default:
213     if (LangOpts.OpenMPSimd)
214       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
215     else
216       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
217     break;
218   }
219 }
220 
221 void CodeGenModule::createCUDARuntime() {
222   CUDARuntime.reset(CreateNVCUDARuntime(*this));
223 }
224 
225 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
226   Replacements[Name] = C;
227 }
228 
229 void CodeGenModule::applyReplacements() {
230   for (auto &I : Replacements) {
231     StringRef MangledName = I.first();
232     llvm::Constant *Replacement = I.second;
233     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
234     if (!Entry)
235       continue;
236     auto *OldF = cast<llvm::Function>(Entry);
237     auto *NewF = dyn_cast<llvm::Function>(Replacement);
238     if (!NewF) {
239       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
240         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
241       } else {
242         auto *CE = cast<llvm::ConstantExpr>(Replacement);
243         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
244                CE->getOpcode() == llvm::Instruction::GetElementPtr);
245         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
246       }
247     }
248 
249     // Replace old with new, but keep the old order.
250     OldF->replaceAllUsesWith(Replacement);
251     if (NewF) {
252       NewF->removeFromParent();
253       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
254                                                        NewF);
255     }
256     OldF->eraseFromParent();
257   }
258 }
259 
260 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
261   GlobalValReplacements.push_back(std::make_pair(GV, C));
262 }
263 
264 void CodeGenModule::applyGlobalValReplacements() {
265   for (auto &I : GlobalValReplacements) {
266     llvm::GlobalValue *GV = I.first;
267     llvm::Constant *C = I.second;
268 
269     GV->replaceAllUsesWith(C);
270     GV->eraseFromParent();
271   }
272 }
273 
274 // This is only used in aliases that we created and we know they have a
275 // linear structure.
276 static const llvm::GlobalObject *getAliasedGlobal(
277     const llvm::GlobalIndirectSymbol &GIS) {
278   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
279   const llvm::Constant *C = &GIS;
280   for (;;) {
281     C = C->stripPointerCasts();
282     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
283       return GO;
284     // stripPointerCasts will not walk over weak aliases.
285     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
286     if (!GIS2)
287       return nullptr;
288     if (!Visited.insert(GIS2).second)
289       return nullptr;
290     C = GIS2->getIndirectSymbol();
291   }
292 }
293 
294 void CodeGenModule::checkAliases() {
295   // Check if the constructed aliases are well formed. It is really unfortunate
296   // that we have to do this in CodeGen, but we only construct mangled names
297   // and aliases during codegen.
298   bool Error = false;
299   DiagnosticsEngine &Diags = getDiags();
300   for (const GlobalDecl &GD : Aliases) {
301     const auto *D = cast<ValueDecl>(GD.getDecl());
302     SourceLocation Location;
303     bool IsIFunc = D->hasAttr<IFuncAttr>();
304     if (const Attr *A = D->getDefiningAttr())
305       Location = A->getLocation();
306     else
307       llvm_unreachable("Not an alias or ifunc?");
308     StringRef MangledName = getMangledName(GD);
309     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
310     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
311     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
312     if (!GV) {
313       Error = true;
314       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
315     } else if (GV->isDeclaration()) {
316       Error = true;
317       Diags.Report(Location, diag::err_alias_to_undefined)
318           << IsIFunc << IsIFunc;
319     } else if (IsIFunc) {
320       // Check resolver function type.
321       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
322           GV->getType()->getPointerElementType());
323       assert(FTy);
324       if (!FTy->getReturnType()->isPointerTy())
325         Diags.Report(Location, diag::err_ifunc_resolver_return);
326     }
327 
328     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
329     llvm::GlobalValue *AliaseeGV;
330     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
331       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
332     else
333       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
334 
335     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
336       StringRef AliasSection = SA->getName();
337       if (AliasSection != AliaseeGV->getSection())
338         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
339             << AliasSection << IsIFunc << IsIFunc;
340     }
341 
342     // We have to handle alias to weak aliases in here. LLVM itself disallows
343     // this since the object semantics would not match the IL one. For
344     // compatibility with gcc we implement it by just pointing the alias
345     // to its aliasee's aliasee. We also warn, since the user is probably
346     // expecting the link to be weak.
347     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
348       if (GA->isInterposable()) {
349         Diags.Report(Location, diag::warn_alias_to_weak_alias)
350             << GV->getName() << GA->getName() << IsIFunc;
351         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
352             GA->getIndirectSymbol(), Alias->getType());
353         Alias->setIndirectSymbol(Aliasee);
354       }
355     }
356   }
357   if (!Error)
358     return;
359 
360   for (const GlobalDecl &GD : Aliases) {
361     StringRef MangledName = getMangledName(GD);
362     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
363     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
364     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
365     Alias->eraseFromParent();
366   }
367 }
368 
369 void CodeGenModule::clear() {
370   DeferredDeclsToEmit.clear();
371   if (OpenMPRuntime)
372     OpenMPRuntime->clear();
373 }
374 
375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
376                                        StringRef MainFile) {
377   if (!hasDiagnostics())
378     return;
379   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
380     if (MainFile.empty())
381       MainFile = "<stdin>";
382     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
383   } else {
384     if (Mismatched > 0)
385       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
386 
387     if (Missing > 0)
388       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
389   }
390 }
391 
392 void CodeGenModule::Release() {
393   EmitDeferred();
394   EmitVTablesOpportunistically();
395   applyGlobalValReplacements();
396   applyReplacements();
397   checkAliases();
398   emitMultiVersionFunctions();
399   EmitCXXGlobalInitFunc();
400   EmitCXXGlobalDtorFunc();
401   registerGlobalDtorsWithAtExit();
402   EmitCXXThreadLocalInitFunc();
403   if (ObjCRuntime)
404     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
405       AddGlobalCtor(ObjCInitFunction);
406   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
407       CUDARuntime) {
408     if (llvm::Function *CudaCtorFunction =
409             CUDARuntime->makeModuleCtorFunction())
410       AddGlobalCtor(CudaCtorFunction);
411   }
412   if (OpenMPRuntime) {
413     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
414             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
415       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
416     }
417     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
418     OpenMPRuntime->clear();
419   }
420   if (PGOReader) {
421     getModule().setProfileSummary(
422         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
423         llvm::ProfileSummary::PSK_Instr);
424     if (PGOStats.hasDiagnostics())
425       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
426   }
427   EmitCtorList(GlobalCtors, "llvm.global_ctors");
428   EmitCtorList(GlobalDtors, "llvm.global_dtors");
429   EmitGlobalAnnotations();
430   EmitStaticExternCAliases();
431   EmitDeferredUnusedCoverageMappings();
432   if (CoverageMapping)
433     CoverageMapping->emit();
434   if (CodeGenOpts.SanitizeCfiCrossDso) {
435     CodeGenFunction(*this).EmitCfiCheckFail();
436     CodeGenFunction(*this).EmitCfiCheckStub();
437   }
438   emitAtAvailableLinkGuard();
439   emitLLVMUsed();
440   if (SanStats)
441     SanStats->finish();
442 
443   if (CodeGenOpts.Autolink &&
444       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
445     EmitModuleLinkOptions();
446   }
447 
448   // On ELF we pass the dependent library specifiers directly to the linker
449   // without manipulating them. This is in contrast to other platforms where
450   // they are mapped to a specific linker option by the compiler. This
451   // difference is a result of the greater variety of ELF linkers and the fact
452   // that ELF linkers tend to handle libraries in a more complicated fashion
453   // than on other platforms. This forces us to defer handling the dependent
454   // libs to the linker.
455   //
456   // CUDA/HIP device and host libraries are different. Currently there is no
457   // way to differentiate dependent libraries for host or device. Existing
458   // usage of #pragma comment(lib, *) is intended for host libraries on
459   // Windows. Therefore emit llvm.dependent-libraries only for host.
460   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
461     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
462     for (auto *MD : ELFDependentLibraries)
463       NMD->addOperand(MD);
464   }
465 
466   // Record mregparm value now so it is visible through rest of codegen.
467   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
468     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
469                               CodeGenOpts.NumRegisterParameters);
470 
471   if (CodeGenOpts.DwarfVersion) {
472     // We actually want the latest version when there are conflicts.
473     // We can change from Warning to Latest if such mode is supported.
474     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
475                               CodeGenOpts.DwarfVersion);
476   }
477   if (CodeGenOpts.EmitCodeView) {
478     // Indicate that we want CodeView in the metadata.
479     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
480   }
481   if (CodeGenOpts.CodeViewGHash) {
482     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
483   }
484   if (CodeGenOpts.ControlFlowGuard) {
485     // Function ID tables and checks for Control Flow Guard (cfguard=2).
486     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
487   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
488     // Function ID tables for Control Flow Guard (cfguard=1).
489     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
490   }
491   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
492     // We don't support LTO with 2 with different StrictVTablePointers
493     // FIXME: we could support it by stripping all the information introduced
494     // by StrictVTablePointers.
495 
496     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
497 
498     llvm::Metadata *Ops[2] = {
499               llvm::MDString::get(VMContext, "StrictVTablePointers"),
500               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
501                   llvm::Type::getInt32Ty(VMContext), 1))};
502 
503     getModule().addModuleFlag(llvm::Module::Require,
504                               "StrictVTablePointersRequirement",
505                               llvm::MDNode::get(VMContext, Ops));
506   }
507   if (DebugInfo)
508     // We support a single version in the linked module. The LLVM
509     // parser will drop debug info with a different version number
510     // (and warn about it, too).
511     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
512                               llvm::DEBUG_METADATA_VERSION);
513 
514   // We need to record the widths of enums and wchar_t, so that we can generate
515   // the correct build attributes in the ARM backend. wchar_size is also used by
516   // TargetLibraryInfo.
517   uint64_t WCharWidth =
518       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
519   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
520 
521   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
522   if (   Arch == llvm::Triple::arm
523       || Arch == llvm::Triple::armeb
524       || Arch == llvm::Triple::thumb
525       || Arch == llvm::Triple::thumbeb) {
526     // The minimum width of an enum in bytes
527     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
528     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
529   }
530 
531   if (CodeGenOpts.SanitizeCfiCrossDso) {
532     // Indicate that we want cross-DSO control flow integrity checks.
533     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
534   }
535 
536   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
537     getModule().addModuleFlag(llvm::Module::Override,
538                               "CFI Canonical Jump Tables",
539                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
540   }
541 
542   if (CodeGenOpts.CFProtectionReturn &&
543       Target.checkCFProtectionReturnSupported(getDiags())) {
544     // Indicate that we want to instrument return control flow protection.
545     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
546                               1);
547   }
548 
549   if (CodeGenOpts.CFProtectionBranch &&
550       Target.checkCFProtectionBranchSupported(getDiags())) {
551     // Indicate that we want to instrument branch control flow protection.
552     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
553                               1);
554   }
555 
556   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
557     // Indicate whether __nvvm_reflect should be configured to flush denormal
558     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
559     // property.)
560     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
561                               CodeGenOpts.FlushDenorm ? 1 : 0);
562   }
563 
564   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
565   if (LangOpts.OpenCL) {
566     EmitOpenCLMetadata();
567     // Emit SPIR version.
568     if (getTriple().isSPIR()) {
569       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
570       // opencl.spir.version named metadata.
571       // C++ is backwards compatible with OpenCL v2.0.
572       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
573       llvm::Metadata *SPIRVerElts[] = {
574           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
575               Int32Ty, Version / 100)),
576           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
577               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
578       llvm::NamedMDNode *SPIRVerMD =
579           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
580       llvm::LLVMContext &Ctx = TheModule.getContext();
581       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
582     }
583   }
584 
585   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
586     assert(PLevel < 3 && "Invalid PIC Level");
587     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
588     if (Context.getLangOpts().PIE)
589       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
590   }
591 
592   if (getCodeGenOpts().CodeModel.size() > 0) {
593     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
594                   .Case("tiny", llvm::CodeModel::Tiny)
595                   .Case("small", llvm::CodeModel::Small)
596                   .Case("kernel", llvm::CodeModel::Kernel)
597                   .Case("medium", llvm::CodeModel::Medium)
598                   .Case("large", llvm::CodeModel::Large)
599                   .Default(~0u);
600     if (CM != ~0u) {
601       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
602       getModule().setCodeModel(codeModel);
603     }
604   }
605 
606   if (CodeGenOpts.NoPLT)
607     getModule().setRtLibUseGOT();
608 
609   SimplifyPersonality();
610 
611   if (getCodeGenOpts().EmitDeclMetadata)
612     EmitDeclMetadata();
613 
614   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
615     EmitCoverageFile();
616 
617   if (DebugInfo)
618     DebugInfo->finalize();
619 
620   if (getCodeGenOpts().EmitVersionIdentMetadata)
621     EmitVersionIdentMetadata();
622 
623   if (!getCodeGenOpts().RecordCommandLine.empty())
624     EmitCommandLineMetadata();
625 
626   EmitTargetMetadata();
627 }
628 
629 void CodeGenModule::EmitOpenCLMetadata() {
630   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
631   // opencl.ocl.version named metadata node.
632   // C++ is backwards compatible with OpenCL v2.0.
633   // FIXME: We might need to add CXX version at some point too?
634   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
635   llvm::Metadata *OCLVerElts[] = {
636       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
637           Int32Ty, Version / 100)),
638       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
639           Int32Ty, (Version % 100) / 10))};
640   llvm::NamedMDNode *OCLVerMD =
641       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
642   llvm::LLVMContext &Ctx = TheModule.getContext();
643   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
644 }
645 
646 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
647   // Make sure that this type is translated.
648   Types.UpdateCompletedType(TD);
649 }
650 
651 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
652   // Make sure that this type is translated.
653   Types.RefreshTypeCacheForClass(RD);
654 }
655 
656 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
657   if (!TBAA)
658     return nullptr;
659   return TBAA->getTypeInfo(QTy);
660 }
661 
662 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
663   if (!TBAA)
664     return TBAAAccessInfo();
665   return TBAA->getAccessInfo(AccessType);
666 }
667 
668 TBAAAccessInfo
669 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
670   if (!TBAA)
671     return TBAAAccessInfo();
672   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
673 }
674 
675 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
676   if (!TBAA)
677     return nullptr;
678   return TBAA->getTBAAStructInfo(QTy);
679 }
680 
681 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
682   if (!TBAA)
683     return nullptr;
684   return TBAA->getBaseTypeInfo(QTy);
685 }
686 
687 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
688   if (!TBAA)
689     return nullptr;
690   return TBAA->getAccessTagInfo(Info);
691 }
692 
693 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
694                                                    TBAAAccessInfo TargetInfo) {
695   if (!TBAA)
696     return TBAAAccessInfo();
697   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
698 }
699 
700 TBAAAccessInfo
701 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
702                                                    TBAAAccessInfo InfoB) {
703   if (!TBAA)
704     return TBAAAccessInfo();
705   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
706 }
707 
708 TBAAAccessInfo
709 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
710                                               TBAAAccessInfo SrcInfo) {
711   if (!TBAA)
712     return TBAAAccessInfo();
713   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
714 }
715 
716 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
717                                                 TBAAAccessInfo TBAAInfo) {
718   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
719     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
720 }
721 
722 void CodeGenModule::DecorateInstructionWithInvariantGroup(
723     llvm::Instruction *I, const CXXRecordDecl *RD) {
724   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
725                  llvm::MDNode::get(getLLVMContext(), {}));
726 }
727 
728 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
729   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
730   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
731 }
732 
733 /// ErrorUnsupported - Print out an error that codegen doesn't support the
734 /// specified stmt yet.
735 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
736   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
737                                                "cannot compile this %0 yet");
738   std::string Msg = Type;
739   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
740       << Msg << S->getSourceRange();
741 }
742 
743 /// ErrorUnsupported - Print out an error that codegen doesn't support the
744 /// specified decl yet.
745 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
746   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
747                                                "cannot compile this %0 yet");
748   std::string Msg = Type;
749   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
750 }
751 
752 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
753   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
754 }
755 
756 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
757                                         const NamedDecl *D) const {
758   if (GV->hasDLLImportStorageClass())
759     return;
760   // Internal definitions always have default visibility.
761   if (GV->hasLocalLinkage()) {
762     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
763     return;
764   }
765   if (!D)
766     return;
767   // Set visibility for definitions, and for declarations if requested globally
768   // or set explicitly.
769   LinkageInfo LV = D->getLinkageAndVisibility();
770   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
771       !GV->isDeclarationForLinker())
772     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
773 }
774 
775 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
776                                  llvm::GlobalValue *GV) {
777   if (GV->hasLocalLinkage())
778     return true;
779 
780   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
781     return true;
782 
783   // DLLImport explicitly marks the GV as external.
784   if (GV->hasDLLImportStorageClass())
785     return false;
786 
787   const llvm::Triple &TT = CGM.getTriple();
788   if (TT.isWindowsGNUEnvironment()) {
789     // In MinGW, variables without DLLImport can still be automatically
790     // imported from a DLL by the linker; don't mark variables that
791     // potentially could come from another DLL as DSO local.
792     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
793         !GV->isThreadLocal())
794       return false;
795   }
796 
797   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
798   // remain unresolved in the link, they can be resolved to zero, which is
799   // outside the current DSO.
800   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
801     return false;
802 
803   // Every other GV is local on COFF.
804   // Make an exception for windows OS in the triple: Some firmware builds use
805   // *-win32-macho triples. This (accidentally?) produced windows relocations
806   // without GOT tables in older clang versions; Keep this behaviour.
807   // FIXME: even thread local variables?
808   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
809     return true;
810 
811   // Only handle COFF and ELF for now.
812   if (!TT.isOSBinFormatELF())
813     return false;
814 
815   // If this is not an executable, don't assume anything is local.
816   const auto &CGOpts = CGM.getCodeGenOpts();
817   llvm::Reloc::Model RM = CGOpts.RelocationModel;
818   const auto &LOpts = CGM.getLangOpts();
819   if (RM != llvm::Reloc::Static && !LOpts.PIE && !LOpts.OpenMPIsDevice)
820     return false;
821 
822   // A definition cannot be preempted from an executable.
823   if (!GV->isDeclarationForLinker())
824     return true;
825 
826   // Most PIC code sequences that assume that a symbol is local cannot produce a
827   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
828   // depended, it seems worth it to handle it here.
829   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
830     return false;
831 
832   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
833   llvm::Triple::ArchType Arch = TT.getArch();
834   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
835       Arch == llvm::Triple::ppc64le)
836     return false;
837 
838   // If we can use copy relocations we can assume it is local.
839   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
840     if (!Var->isThreadLocal() &&
841         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
842       return true;
843 
844   // If we can use a plt entry as the symbol address we can assume it
845   // is local.
846   // FIXME: This should work for PIE, but the gold linker doesn't support it.
847   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
848     return true;
849 
850   // Otherwise don't assue it is local.
851   return false;
852 }
853 
854 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
855   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
856 }
857 
858 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
859                                           GlobalDecl GD) const {
860   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
861   // C++ destructors have a few C++ ABI specific special cases.
862   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
863     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
864     return;
865   }
866   setDLLImportDLLExport(GV, D);
867 }
868 
869 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
870                                           const NamedDecl *D) const {
871   if (D && D->isExternallyVisible()) {
872     if (D->hasAttr<DLLImportAttr>())
873       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
874     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
875       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
876   }
877 }
878 
879 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
880                                     GlobalDecl GD) const {
881   setDLLImportDLLExport(GV, GD);
882   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
883 }
884 
885 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
886                                     const NamedDecl *D) const {
887   setDLLImportDLLExport(GV, D);
888   setGVPropertiesAux(GV, D);
889 }
890 
891 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
892                                        const NamedDecl *D) const {
893   setGlobalVisibility(GV, D);
894   setDSOLocal(GV);
895   GV->setPartition(CodeGenOpts.SymbolPartition);
896 }
897 
898 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
899   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
900       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
901       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
902       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
903       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
904 }
905 
906 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
907     CodeGenOptions::TLSModel M) {
908   switch (M) {
909   case CodeGenOptions::GeneralDynamicTLSModel:
910     return llvm::GlobalVariable::GeneralDynamicTLSModel;
911   case CodeGenOptions::LocalDynamicTLSModel:
912     return llvm::GlobalVariable::LocalDynamicTLSModel;
913   case CodeGenOptions::InitialExecTLSModel:
914     return llvm::GlobalVariable::InitialExecTLSModel;
915   case CodeGenOptions::LocalExecTLSModel:
916     return llvm::GlobalVariable::LocalExecTLSModel;
917   }
918   llvm_unreachable("Invalid TLS model!");
919 }
920 
921 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
922   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
923 
924   llvm::GlobalValue::ThreadLocalMode TLM;
925   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
926 
927   // Override the TLS model if it is explicitly specified.
928   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
929     TLM = GetLLVMTLSModel(Attr->getModel());
930   }
931 
932   GV->setThreadLocalMode(TLM);
933 }
934 
935 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
936                                           StringRef Name) {
937   const TargetInfo &Target = CGM.getTarget();
938   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
939 }
940 
941 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
942                                                  const CPUSpecificAttr *Attr,
943                                                  unsigned CPUIndex,
944                                                  raw_ostream &Out) {
945   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
946   // supported.
947   if (Attr)
948     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
949   else if (CGM.getTarget().supportsIFunc())
950     Out << ".resolver";
951 }
952 
953 static void AppendTargetMangling(const CodeGenModule &CGM,
954                                  const TargetAttr *Attr, raw_ostream &Out) {
955   if (Attr->isDefaultVersion())
956     return;
957 
958   Out << '.';
959   const TargetInfo &Target = CGM.getTarget();
960   TargetAttr::ParsedTargetAttr Info =
961       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
962         // Multiversioning doesn't allow "no-${feature}", so we can
963         // only have "+" prefixes here.
964         assert(LHS.startswith("+") && RHS.startswith("+") &&
965                "Features should always have a prefix.");
966         return Target.multiVersionSortPriority(LHS.substr(1)) >
967                Target.multiVersionSortPriority(RHS.substr(1));
968       });
969 
970   bool IsFirst = true;
971 
972   if (!Info.Architecture.empty()) {
973     IsFirst = false;
974     Out << "arch_" << Info.Architecture;
975   }
976 
977   for (StringRef Feat : Info.Features) {
978     if (!IsFirst)
979       Out << '_';
980     IsFirst = false;
981     Out << Feat.substr(1);
982   }
983 }
984 
985 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
986                                       const NamedDecl *ND,
987                                       bool OmitMultiVersionMangling = false) {
988   SmallString<256> Buffer;
989   llvm::raw_svector_ostream Out(Buffer);
990   MangleContext &MC = CGM.getCXXABI().getMangleContext();
991   if (MC.shouldMangleDeclName(ND)) {
992     llvm::raw_svector_ostream Out(Buffer);
993     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
994       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
995     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
996       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
997     else
998       MC.mangleName(ND, Out);
999   } else {
1000     IdentifierInfo *II = ND->getIdentifier();
1001     assert(II && "Attempt to mangle unnamed decl.");
1002     const auto *FD = dyn_cast<FunctionDecl>(ND);
1003 
1004     if (FD &&
1005         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1006       llvm::raw_svector_ostream Out(Buffer);
1007       Out << "__regcall3__" << II->getName();
1008     } else {
1009       Out << II->getName();
1010     }
1011   }
1012 
1013   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1014     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1015       switch (FD->getMultiVersionKind()) {
1016       case MultiVersionKind::CPUDispatch:
1017       case MultiVersionKind::CPUSpecific:
1018         AppendCPUSpecificCPUDispatchMangling(CGM,
1019                                              FD->getAttr<CPUSpecificAttr>(),
1020                                              GD.getMultiVersionIndex(), Out);
1021         break;
1022       case MultiVersionKind::Target:
1023         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1024         break;
1025       case MultiVersionKind::None:
1026         llvm_unreachable("None multiversion type isn't valid here");
1027       }
1028     }
1029 
1030   return Out.str();
1031 }
1032 
1033 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1034                                             const FunctionDecl *FD) {
1035   if (!FD->isMultiVersion())
1036     return;
1037 
1038   // Get the name of what this would be without the 'target' attribute.  This
1039   // allows us to lookup the version that was emitted when this wasn't a
1040   // multiversion function.
1041   std::string NonTargetName =
1042       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1043   GlobalDecl OtherGD;
1044   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1045     assert(OtherGD.getCanonicalDecl()
1046                .getDecl()
1047                ->getAsFunction()
1048                ->isMultiVersion() &&
1049            "Other GD should now be a multiversioned function");
1050     // OtherFD is the version of this function that was mangled BEFORE
1051     // becoming a MultiVersion function.  It potentially needs to be updated.
1052     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1053                                       .getDecl()
1054                                       ->getAsFunction()
1055                                       ->getMostRecentDecl();
1056     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1057     // This is so that if the initial version was already the 'default'
1058     // version, we don't try to update it.
1059     if (OtherName != NonTargetName) {
1060       // Remove instead of erase, since others may have stored the StringRef
1061       // to this.
1062       const auto ExistingRecord = Manglings.find(NonTargetName);
1063       if (ExistingRecord != std::end(Manglings))
1064         Manglings.remove(&(*ExistingRecord));
1065       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1066       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1067       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1068         Entry->setName(OtherName);
1069     }
1070   }
1071 }
1072 
1073 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1074   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1075 
1076   // Some ABIs don't have constructor variants.  Make sure that base and
1077   // complete constructors get mangled the same.
1078   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1079     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1080       CXXCtorType OrigCtorType = GD.getCtorType();
1081       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1082       if (OrigCtorType == Ctor_Base)
1083         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1084     }
1085   }
1086 
1087   auto FoundName = MangledDeclNames.find(CanonicalGD);
1088   if (FoundName != MangledDeclNames.end())
1089     return FoundName->second;
1090 
1091   // Keep the first result in the case of a mangling collision.
1092   const auto *ND = cast<NamedDecl>(GD.getDecl());
1093   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1094 
1095   // Adjust kernel stub mangling as we may need to be able to differentiate
1096   // them from the kernel itself (e.g., for HIP).
1097   if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
1098     if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>())
1099       MangledName = getCUDARuntime().getDeviceStubName(MangledName);
1100 
1101   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1102   return MangledDeclNames[CanonicalGD] = Result.first->first();
1103 }
1104 
1105 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1106                                              const BlockDecl *BD) {
1107   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1108   const Decl *D = GD.getDecl();
1109 
1110   SmallString<256> Buffer;
1111   llvm::raw_svector_ostream Out(Buffer);
1112   if (!D)
1113     MangleCtx.mangleGlobalBlock(BD,
1114       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1115   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1116     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1117   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1118     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1119   else
1120     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1121 
1122   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1123   return Result.first->first();
1124 }
1125 
1126 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1127   return getModule().getNamedValue(Name);
1128 }
1129 
1130 /// AddGlobalCtor - Add a function to the list that will be called before
1131 /// main() runs.
1132 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1133                                   llvm::Constant *AssociatedData) {
1134   // FIXME: Type coercion of void()* types.
1135   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1136 }
1137 
1138 /// AddGlobalDtor - Add a function to the list that will be called
1139 /// when the module is unloaded.
1140 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1141   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1142     DtorsUsingAtExit[Priority].push_back(Dtor);
1143     return;
1144   }
1145 
1146   // FIXME: Type coercion of void()* types.
1147   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1148 }
1149 
1150 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1151   if (Fns.empty()) return;
1152 
1153   // Ctor function type is void()*.
1154   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1155   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1156       TheModule.getDataLayout().getProgramAddressSpace());
1157 
1158   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1159   llvm::StructType *CtorStructTy = llvm::StructType::get(
1160       Int32Ty, CtorPFTy, VoidPtrTy);
1161 
1162   // Construct the constructor and destructor arrays.
1163   ConstantInitBuilder builder(*this);
1164   auto ctors = builder.beginArray(CtorStructTy);
1165   for (const auto &I : Fns) {
1166     auto ctor = ctors.beginStruct(CtorStructTy);
1167     ctor.addInt(Int32Ty, I.Priority);
1168     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1169     if (I.AssociatedData)
1170       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1171     else
1172       ctor.addNullPointer(VoidPtrTy);
1173     ctor.finishAndAddTo(ctors);
1174   }
1175 
1176   auto list =
1177     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1178                                 /*constant*/ false,
1179                                 llvm::GlobalValue::AppendingLinkage);
1180 
1181   // The LTO linker doesn't seem to like it when we set an alignment
1182   // on appending variables.  Take it off as a workaround.
1183   list->setAlignment(llvm::None);
1184 
1185   Fns.clear();
1186 }
1187 
1188 llvm::GlobalValue::LinkageTypes
1189 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1190   const auto *D = cast<FunctionDecl>(GD.getDecl());
1191 
1192   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1193 
1194   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1195     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1196 
1197   if (isa<CXXConstructorDecl>(D) &&
1198       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1199       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1200     // Our approach to inheriting constructors is fundamentally different from
1201     // that used by the MS ABI, so keep our inheriting constructor thunks
1202     // internal rather than trying to pick an unambiguous mangling for them.
1203     return llvm::GlobalValue::InternalLinkage;
1204   }
1205 
1206   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1207 }
1208 
1209 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1210   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1211   if (!MDS) return nullptr;
1212 
1213   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1214 }
1215 
1216 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1217                                               const CGFunctionInfo &Info,
1218                                               llvm::Function *F) {
1219   unsigned CallingConv;
1220   llvm::AttributeList PAL;
1221   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1222   F->setAttributes(PAL);
1223   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1224 }
1225 
1226 static void removeImageAccessQualifier(std::string& TyName) {
1227   std::string ReadOnlyQual("__read_only");
1228   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1229   if (ReadOnlyPos != std::string::npos)
1230     // "+ 1" for the space after access qualifier.
1231     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1232   else {
1233     std::string WriteOnlyQual("__write_only");
1234     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1235     if (WriteOnlyPos != std::string::npos)
1236       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1237     else {
1238       std::string ReadWriteQual("__read_write");
1239       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1240       if (ReadWritePos != std::string::npos)
1241         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1242     }
1243   }
1244 }
1245 
1246 // Returns the address space id that should be produced to the
1247 // kernel_arg_addr_space metadata. This is always fixed to the ids
1248 // as specified in the SPIR 2.0 specification in order to differentiate
1249 // for example in clGetKernelArgInfo() implementation between the address
1250 // spaces with targets without unique mapping to the OpenCL address spaces
1251 // (basically all single AS CPUs).
1252 static unsigned ArgInfoAddressSpace(LangAS AS) {
1253   switch (AS) {
1254   case LangAS::opencl_global:   return 1;
1255   case LangAS::opencl_constant: return 2;
1256   case LangAS::opencl_local:    return 3;
1257   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
1258   default:
1259     return 0; // Assume private.
1260   }
1261 }
1262 
1263 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1264                                          const FunctionDecl *FD,
1265                                          CodeGenFunction *CGF) {
1266   assert(((FD && CGF) || (!FD && !CGF)) &&
1267          "Incorrect use - FD and CGF should either be both null or not!");
1268   // Create MDNodes that represent the kernel arg metadata.
1269   // Each MDNode is a list in the form of "key", N number of values which is
1270   // the same number of values as their are kernel arguments.
1271 
1272   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1273 
1274   // MDNode for the kernel argument address space qualifiers.
1275   SmallVector<llvm::Metadata *, 8> addressQuals;
1276 
1277   // MDNode for the kernel argument access qualifiers (images only).
1278   SmallVector<llvm::Metadata *, 8> accessQuals;
1279 
1280   // MDNode for the kernel argument type names.
1281   SmallVector<llvm::Metadata *, 8> argTypeNames;
1282 
1283   // MDNode for the kernel argument base type names.
1284   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1285 
1286   // MDNode for the kernel argument type qualifiers.
1287   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1288 
1289   // MDNode for the kernel argument names.
1290   SmallVector<llvm::Metadata *, 8> argNames;
1291 
1292   if (FD && CGF)
1293     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1294       const ParmVarDecl *parm = FD->getParamDecl(i);
1295       QualType ty = parm->getType();
1296       std::string typeQuals;
1297 
1298       if (ty->isPointerType()) {
1299         QualType pointeeTy = ty->getPointeeType();
1300 
1301         // Get address qualifier.
1302         addressQuals.push_back(
1303             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1304                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1305 
1306         // Get argument type name.
1307         std::string typeName =
1308             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1309 
1310         // Turn "unsigned type" to "utype"
1311         std::string::size_type pos = typeName.find("unsigned");
1312         if (pointeeTy.isCanonical() && pos != std::string::npos)
1313           typeName.erase(pos + 1, 8);
1314 
1315         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1316 
1317         std::string baseTypeName =
1318             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1319                 Policy) +
1320             "*";
1321 
1322         // Turn "unsigned type" to "utype"
1323         pos = baseTypeName.find("unsigned");
1324         if (pos != std::string::npos)
1325           baseTypeName.erase(pos + 1, 8);
1326 
1327         argBaseTypeNames.push_back(
1328             llvm::MDString::get(VMContext, baseTypeName));
1329 
1330         // Get argument type qualifiers:
1331         if (ty.isRestrictQualified())
1332           typeQuals = "restrict";
1333         if (pointeeTy.isConstQualified() ||
1334             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1335           typeQuals += typeQuals.empty() ? "const" : " const";
1336         if (pointeeTy.isVolatileQualified())
1337           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1338       } else {
1339         uint32_t AddrSpc = 0;
1340         bool isPipe = ty->isPipeType();
1341         if (ty->isImageType() || isPipe)
1342           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1343 
1344         addressQuals.push_back(
1345             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1346 
1347         // Get argument type name.
1348         std::string typeName;
1349         if (isPipe)
1350           typeName = ty.getCanonicalType()
1351                          ->getAs<PipeType>()
1352                          ->getElementType()
1353                          .getAsString(Policy);
1354         else
1355           typeName = ty.getUnqualifiedType().getAsString(Policy);
1356 
1357         // Turn "unsigned type" to "utype"
1358         std::string::size_type pos = typeName.find("unsigned");
1359         if (ty.isCanonical() && pos != std::string::npos)
1360           typeName.erase(pos + 1, 8);
1361 
1362         std::string baseTypeName;
1363         if (isPipe)
1364           baseTypeName = ty.getCanonicalType()
1365                              ->getAs<PipeType>()
1366                              ->getElementType()
1367                              .getCanonicalType()
1368                              .getAsString(Policy);
1369         else
1370           baseTypeName =
1371               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1372 
1373         // Remove access qualifiers on images
1374         // (as they are inseparable from type in clang implementation,
1375         // but OpenCL spec provides a special query to get access qualifier
1376         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1377         if (ty->isImageType()) {
1378           removeImageAccessQualifier(typeName);
1379           removeImageAccessQualifier(baseTypeName);
1380         }
1381 
1382         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1383 
1384         // Turn "unsigned type" to "utype"
1385         pos = baseTypeName.find("unsigned");
1386         if (pos != std::string::npos)
1387           baseTypeName.erase(pos + 1, 8);
1388 
1389         argBaseTypeNames.push_back(
1390             llvm::MDString::get(VMContext, baseTypeName));
1391 
1392         if (isPipe)
1393           typeQuals = "pipe";
1394       }
1395 
1396       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1397 
1398       // Get image and pipe access qualifier:
1399       if (ty->isImageType() || ty->isPipeType()) {
1400         const Decl *PDecl = parm;
1401         if (auto *TD = dyn_cast<TypedefType>(ty))
1402           PDecl = TD->getDecl();
1403         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1404         if (A && A->isWriteOnly())
1405           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1406         else if (A && A->isReadWrite())
1407           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1408         else
1409           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1410       } else
1411         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1412 
1413       // Get argument name.
1414       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1415     }
1416 
1417   Fn->setMetadata("kernel_arg_addr_space",
1418                   llvm::MDNode::get(VMContext, addressQuals));
1419   Fn->setMetadata("kernel_arg_access_qual",
1420                   llvm::MDNode::get(VMContext, accessQuals));
1421   Fn->setMetadata("kernel_arg_type",
1422                   llvm::MDNode::get(VMContext, argTypeNames));
1423   Fn->setMetadata("kernel_arg_base_type",
1424                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1425   Fn->setMetadata("kernel_arg_type_qual",
1426                   llvm::MDNode::get(VMContext, argTypeQuals));
1427   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1428     Fn->setMetadata("kernel_arg_name",
1429                     llvm::MDNode::get(VMContext, argNames));
1430 }
1431 
1432 /// Determines whether the language options require us to model
1433 /// unwind exceptions.  We treat -fexceptions as mandating this
1434 /// except under the fragile ObjC ABI with only ObjC exceptions
1435 /// enabled.  This means, for example, that C with -fexceptions
1436 /// enables this.
1437 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1438   // If exceptions are completely disabled, obviously this is false.
1439   if (!LangOpts.Exceptions) return false;
1440 
1441   // If C++ exceptions are enabled, this is true.
1442   if (LangOpts.CXXExceptions) return true;
1443 
1444   // If ObjC exceptions are enabled, this depends on the ABI.
1445   if (LangOpts.ObjCExceptions) {
1446     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1447   }
1448 
1449   return true;
1450 }
1451 
1452 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1453                                                       const CXXMethodDecl *MD) {
1454   // Check that the type metadata can ever actually be used by a call.
1455   if (!CGM.getCodeGenOpts().LTOUnit ||
1456       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1457     return false;
1458 
1459   // Only functions whose address can be taken with a member function pointer
1460   // need this sort of type metadata.
1461   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1462          !isa<CXXDestructorDecl>(MD);
1463 }
1464 
1465 std::vector<const CXXRecordDecl *>
1466 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1467   llvm::SetVector<const CXXRecordDecl *> MostBases;
1468 
1469   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1470   CollectMostBases = [&](const CXXRecordDecl *RD) {
1471     if (RD->getNumBases() == 0)
1472       MostBases.insert(RD);
1473     for (const CXXBaseSpecifier &B : RD->bases())
1474       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1475   };
1476   CollectMostBases(RD);
1477   return MostBases.takeVector();
1478 }
1479 
1480 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1481                                                            llvm::Function *F) {
1482   llvm::AttrBuilder B;
1483 
1484   if (CodeGenOpts.UnwindTables)
1485     B.addAttribute(llvm::Attribute::UWTable);
1486 
1487   if (!hasUnwindExceptions(LangOpts))
1488     B.addAttribute(llvm::Attribute::NoUnwind);
1489 
1490   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1491     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1492       B.addAttribute(llvm::Attribute::StackProtect);
1493     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1494       B.addAttribute(llvm::Attribute::StackProtectStrong);
1495     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1496       B.addAttribute(llvm::Attribute::StackProtectReq);
1497   }
1498 
1499   if (!D) {
1500     // If we don't have a declaration to control inlining, the function isn't
1501     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1502     // disabled, mark the function as noinline.
1503     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1504         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1505       B.addAttribute(llvm::Attribute::NoInline);
1506 
1507     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1508     return;
1509   }
1510 
1511   // Track whether we need to add the optnone LLVM attribute,
1512   // starting with the default for this optimization level.
1513   bool ShouldAddOptNone =
1514       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1515   // We can't add optnone in the following cases, it won't pass the verifier.
1516   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1517   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1518   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1519 
1520   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1521     B.addAttribute(llvm::Attribute::OptimizeNone);
1522 
1523     // OptimizeNone implies noinline; we should not be inlining such functions.
1524     B.addAttribute(llvm::Attribute::NoInline);
1525     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1526            "OptimizeNone and AlwaysInline on same function!");
1527 
1528     // We still need to handle naked functions even though optnone subsumes
1529     // much of their semantics.
1530     if (D->hasAttr<NakedAttr>())
1531       B.addAttribute(llvm::Attribute::Naked);
1532 
1533     // OptimizeNone wins over OptimizeForSize and MinSize.
1534     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1535     F->removeFnAttr(llvm::Attribute::MinSize);
1536   } else if (D->hasAttr<NakedAttr>()) {
1537     // Naked implies noinline: we should not be inlining such functions.
1538     B.addAttribute(llvm::Attribute::Naked);
1539     B.addAttribute(llvm::Attribute::NoInline);
1540   } else if (D->hasAttr<NoDuplicateAttr>()) {
1541     B.addAttribute(llvm::Attribute::NoDuplicate);
1542   } else if (D->hasAttr<NoInlineAttr>()) {
1543     B.addAttribute(llvm::Attribute::NoInline);
1544   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1545              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1546     // (noinline wins over always_inline, and we can't specify both in IR)
1547     B.addAttribute(llvm::Attribute::AlwaysInline);
1548   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1549     // If we're not inlining, then force everything that isn't always_inline to
1550     // carry an explicit noinline attribute.
1551     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1552       B.addAttribute(llvm::Attribute::NoInline);
1553   } else {
1554     // Otherwise, propagate the inline hint attribute and potentially use its
1555     // absence to mark things as noinline.
1556     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1557       // Search function and template pattern redeclarations for inline.
1558       auto CheckForInline = [](const FunctionDecl *FD) {
1559         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1560           return Redecl->isInlineSpecified();
1561         };
1562         if (any_of(FD->redecls(), CheckRedeclForInline))
1563           return true;
1564         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1565         if (!Pattern)
1566           return false;
1567         return any_of(Pattern->redecls(), CheckRedeclForInline);
1568       };
1569       if (CheckForInline(FD)) {
1570         B.addAttribute(llvm::Attribute::InlineHint);
1571       } else if (CodeGenOpts.getInlining() ==
1572                      CodeGenOptions::OnlyHintInlining &&
1573                  !FD->isInlined() &&
1574                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1575         B.addAttribute(llvm::Attribute::NoInline);
1576       }
1577     }
1578   }
1579 
1580   // Add other optimization related attributes if we are optimizing this
1581   // function.
1582   if (!D->hasAttr<OptimizeNoneAttr>()) {
1583     if (D->hasAttr<ColdAttr>()) {
1584       if (!ShouldAddOptNone)
1585         B.addAttribute(llvm::Attribute::OptimizeForSize);
1586       B.addAttribute(llvm::Attribute::Cold);
1587     }
1588 
1589     if (D->hasAttr<MinSizeAttr>())
1590       B.addAttribute(llvm::Attribute::MinSize);
1591   }
1592 
1593   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1594 
1595   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1596   if (alignment)
1597     F->setAlignment(llvm::Align(alignment));
1598 
1599   if (!D->hasAttr<AlignedAttr>())
1600     if (LangOpts.FunctionAlignment)
1601       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1602 
1603   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1604   // reserve a bit for differentiating between virtual and non-virtual member
1605   // functions. If the current target's C++ ABI requires this and this is a
1606   // member function, set its alignment accordingly.
1607   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1608     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1609       F->setAlignment(llvm::Align(2));
1610   }
1611 
1612   // In the cross-dso CFI mode with canonical jump tables, we want !type
1613   // attributes on definitions only.
1614   if (CodeGenOpts.SanitizeCfiCrossDso &&
1615       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1616     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1617       // Skip available_externally functions. They won't be codegen'ed in the
1618       // current module anyway.
1619       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1620         CreateFunctionTypeMetadataForIcall(FD, F);
1621     }
1622   }
1623 
1624   // Emit type metadata on member functions for member function pointer checks.
1625   // These are only ever necessary on definitions; we're guaranteed that the
1626   // definition will be present in the LTO unit as a result of LTO visibility.
1627   auto *MD = dyn_cast<CXXMethodDecl>(D);
1628   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1629     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1630       llvm::Metadata *Id =
1631           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1632               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1633       F->addTypeMetadata(0, Id);
1634     }
1635   }
1636 }
1637 
1638 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1639   const Decl *D = GD.getDecl();
1640   if (dyn_cast_or_null<NamedDecl>(D))
1641     setGVProperties(GV, GD);
1642   else
1643     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1644 
1645   if (D && D->hasAttr<UsedAttr>())
1646     addUsedGlobal(GV);
1647 
1648   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1649     const auto *VD = cast<VarDecl>(D);
1650     if (VD->getType().isConstQualified() &&
1651         VD->getStorageDuration() == SD_Static)
1652       addUsedGlobal(GV);
1653   }
1654 }
1655 
1656 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1657                                                 llvm::AttrBuilder &Attrs) {
1658   // Add target-cpu and target-features attributes to functions. If
1659   // we have a decl for the function and it has a target attribute then
1660   // parse that and add it to the feature set.
1661   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1662   std::vector<std::string> Features;
1663   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1664   FD = FD ? FD->getMostRecentDecl() : FD;
1665   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1666   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1667   bool AddedAttr = false;
1668   if (TD || SD) {
1669     llvm::StringMap<bool> FeatureMap;
1670     getFunctionFeatureMap(FeatureMap, GD);
1671 
1672     // Produce the canonical string for this set of features.
1673     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1674       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1675 
1676     // Now add the target-cpu and target-features to the function.
1677     // While we populated the feature map above, we still need to
1678     // get and parse the target attribute so we can get the cpu for
1679     // the function.
1680     if (TD) {
1681       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1682       if (ParsedAttr.Architecture != "" &&
1683           getTarget().isValidCPUName(ParsedAttr.Architecture))
1684         TargetCPU = ParsedAttr.Architecture;
1685     }
1686   } else {
1687     // Otherwise just add the existing target cpu and target features to the
1688     // function.
1689     Features = getTarget().getTargetOpts().Features;
1690   }
1691 
1692   if (TargetCPU != "") {
1693     Attrs.addAttribute("target-cpu", TargetCPU);
1694     AddedAttr = true;
1695   }
1696   if (!Features.empty()) {
1697     llvm::sort(Features);
1698     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1699     AddedAttr = true;
1700   }
1701 
1702   return AddedAttr;
1703 }
1704 
1705 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1706                                           llvm::GlobalObject *GO) {
1707   const Decl *D = GD.getDecl();
1708   SetCommonAttributes(GD, GO);
1709 
1710   if (D) {
1711     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1712       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1713         GV->addAttribute("bss-section", SA->getName());
1714       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1715         GV->addAttribute("data-section", SA->getName());
1716       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1717         GV->addAttribute("rodata-section", SA->getName());
1718       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1719         GV->addAttribute("relro-section", SA->getName());
1720     }
1721 
1722     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1723       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1724         if (!D->getAttr<SectionAttr>())
1725           F->addFnAttr("implicit-section-name", SA->getName());
1726 
1727       llvm::AttrBuilder Attrs;
1728       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1729         // We know that GetCPUAndFeaturesAttributes will always have the
1730         // newest set, since it has the newest possible FunctionDecl, so the
1731         // new ones should replace the old.
1732         F->removeFnAttr("target-cpu");
1733         F->removeFnAttr("target-features");
1734         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1735       }
1736     }
1737 
1738     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1739       GO->setSection(CSA->getName());
1740     else if (const auto *SA = D->getAttr<SectionAttr>())
1741       GO->setSection(SA->getName());
1742   }
1743 
1744   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1745 }
1746 
1747 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1748                                                   llvm::Function *F,
1749                                                   const CGFunctionInfo &FI) {
1750   const Decl *D = GD.getDecl();
1751   SetLLVMFunctionAttributes(GD, FI, F);
1752   SetLLVMFunctionAttributesForDefinition(D, F);
1753 
1754   F->setLinkage(llvm::Function::InternalLinkage);
1755 
1756   setNonAliasAttributes(GD, F);
1757 }
1758 
1759 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1760   // Set linkage and visibility in case we never see a definition.
1761   LinkageInfo LV = ND->getLinkageAndVisibility();
1762   // Don't set internal linkage on declarations.
1763   // "extern_weak" is overloaded in LLVM; we probably should have
1764   // separate linkage types for this.
1765   if (isExternallyVisible(LV.getLinkage()) &&
1766       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1767     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1768 }
1769 
1770 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1771                                                        llvm::Function *F) {
1772   // Only if we are checking indirect calls.
1773   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1774     return;
1775 
1776   // Non-static class methods are handled via vtable or member function pointer
1777   // checks elsewhere.
1778   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1779     return;
1780 
1781   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1782   F->addTypeMetadata(0, MD);
1783   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1784 
1785   // Emit a hash-based bit set entry for cross-DSO calls.
1786   if (CodeGenOpts.SanitizeCfiCrossDso)
1787     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1788       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1789 }
1790 
1791 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1792                                           bool IsIncompleteFunction,
1793                                           bool IsThunk) {
1794 
1795   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1796     // If this is an intrinsic function, set the function's attributes
1797     // to the intrinsic's attributes.
1798     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1799     return;
1800   }
1801 
1802   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1803 
1804   if (!IsIncompleteFunction)
1805     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1806 
1807   // Add the Returned attribute for "this", except for iOS 5 and earlier
1808   // where substantial code, including the libstdc++ dylib, was compiled with
1809   // GCC and does not actually return "this".
1810   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1811       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1812     assert(!F->arg_empty() &&
1813            F->arg_begin()->getType()
1814              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1815            "unexpected this return");
1816     F->addAttribute(1, llvm::Attribute::Returned);
1817   }
1818 
1819   // Only a few attributes are set on declarations; these may later be
1820   // overridden by a definition.
1821 
1822   setLinkageForGV(F, FD);
1823   setGVProperties(F, FD);
1824 
1825   // Setup target-specific attributes.
1826   if (!IsIncompleteFunction && F->isDeclaration())
1827     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1828 
1829   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1830     F->setSection(CSA->getName());
1831   else if (const auto *SA = FD->getAttr<SectionAttr>())
1832      F->setSection(SA->getName());
1833 
1834   if (FD->isReplaceableGlobalAllocationFunction()) {
1835     // A replaceable global allocation function does not act like a builtin by
1836     // default, only if it is invoked by a new-expression or delete-expression.
1837     F->addAttribute(llvm::AttributeList::FunctionIndex,
1838                     llvm::Attribute::NoBuiltin);
1839 
1840     // A sane operator new returns a non-aliasing pointer.
1841     // FIXME: Also add NonNull attribute to the return value
1842     // for the non-nothrow forms?
1843     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1844     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1845         (Kind == OO_New || Kind == OO_Array_New))
1846       F->addAttribute(llvm::AttributeList::ReturnIndex,
1847                       llvm::Attribute::NoAlias);
1848   }
1849 
1850   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1851     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1852   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1853     if (MD->isVirtual())
1854       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1855 
1856   // Don't emit entries for function declarations in the cross-DSO mode. This
1857   // is handled with better precision by the receiving DSO. But if jump tables
1858   // are non-canonical then we need type metadata in order to produce the local
1859   // jump table.
1860   if (!CodeGenOpts.SanitizeCfiCrossDso ||
1861       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1862     CreateFunctionTypeMetadataForIcall(FD, F);
1863 
1864   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1865     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1866 
1867   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1868     // Annotate the callback behavior as metadata:
1869     //  - The callback callee (as argument number).
1870     //  - The callback payloads (as argument numbers).
1871     llvm::LLVMContext &Ctx = F->getContext();
1872     llvm::MDBuilder MDB(Ctx);
1873 
1874     // The payload indices are all but the first one in the encoding. The first
1875     // identifies the callback callee.
1876     int CalleeIdx = *CB->encoding_begin();
1877     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1878     F->addMetadata(llvm::LLVMContext::MD_callback,
1879                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1880                                                CalleeIdx, PayloadIndices,
1881                                                /* VarArgsArePassed */ false)}));
1882   }
1883 }
1884 
1885 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1886   assert(!GV->isDeclaration() &&
1887          "Only globals with definition can force usage.");
1888   LLVMUsed.emplace_back(GV);
1889 }
1890 
1891 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1892   assert(!GV->isDeclaration() &&
1893          "Only globals with definition can force usage.");
1894   LLVMCompilerUsed.emplace_back(GV);
1895 }
1896 
1897 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1898                      std::vector<llvm::WeakTrackingVH> &List) {
1899   // Don't create llvm.used if there is no need.
1900   if (List.empty())
1901     return;
1902 
1903   // Convert List to what ConstantArray needs.
1904   SmallVector<llvm::Constant*, 8> UsedArray;
1905   UsedArray.resize(List.size());
1906   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1907     UsedArray[i] =
1908         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1909             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1910   }
1911 
1912   if (UsedArray.empty())
1913     return;
1914   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1915 
1916   auto *GV = new llvm::GlobalVariable(
1917       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1918       llvm::ConstantArray::get(ATy, UsedArray), Name);
1919 
1920   GV->setSection("llvm.metadata");
1921 }
1922 
1923 void CodeGenModule::emitLLVMUsed() {
1924   emitUsed(*this, "llvm.used", LLVMUsed);
1925   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1926 }
1927 
1928 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1929   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1930   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1931 }
1932 
1933 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1934   llvm::SmallString<32> Opt;
1935   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1936   if (Opt.empty())
1937     return;
1938   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1939   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1940 }
1941 
1942 void CodeGenModule::AddDependentLib(StringRef Lib) {
1943   auto &C = getLLVMContext();
1944   if (getTarget().getTriple().isOSBinFormatELF()) {
1945       ELFDependentLibraries.push_back(
1946         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
1947     return;
1948   }
1949 
1950   llvm::SmallString<24> Opt;
1951   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1952   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1953   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
1954 }
1955 
1956 /// Add link options implied by the given module, including modules
1957 /// it depends on, using a postorder walk.
1958 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1959                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1960                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1961   // Import this module's parent.
1962   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1963     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1964   }
1965 
1966   // Import this module's dependencies.
1967   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1968     if (Visited.insert(Mod->Imports[I - 1]).second)
1969       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1970   }
1971 
1972   // Add linker options to link against the libraries/frameworks
1973   // described by this module.
1974   llvm::LLVMContext &Context = CGM.getLLVMContext();
1975   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
1976 
1977   // For modules that use export_as for linking, use that module
1978   // name instead.
1979   if (Mod->UseExportAsModuleLinkName)
1980     return;
1981 
1982   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1983     // Link against a framework.  Frameworks are currently Darwin only, so we
1984     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1985     if (Mod->LinkLibraries[I-1].IsFramework) {
1986       llvm::Metadata *Args[2] = {
1987           llvm::MDString::get(Context, "-framework"),
1988           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1989 
1990       Metadata.push_back(llvm::MDNode::get(Context, Args));
1991       continue;
1992     }
1993 
1994     // Link against a library.
1995     if (IsELF) {
1996       llvm::Metadata *Args[2] = {
1997           llvm::MDString::get(Context, "lib"),
1998           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
1999       };
2000       Metadata.push_back(llvm::MDNode::get(Context, Args));
2001     } else {
2002       llvm::SmallString<24> Opt;
2003       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2004           Mod->LinkLibraries[I - 1].Library, Opt);
2005       auto *OptString = llvm::MDString::get(Context, Opt);
2006       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2007     }
2008   }
2009 }
2010 
2011 void CodeGenModule::EmitModuleLinkOptions() {
2012   // Collect the set of all of the modules we want to visit to emit link
2013   // options, which is essentially the imported modules and all of their
2014   // non-explicit child modules.
2015   llvm::SetVector<clang::Module *> LinkModules;
2016   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2017   SmallVector<clang::Module *, 16> Stack;
2018 
2019   // Seed the stack with imported modules.
2020   for (Module *M : ImportedModules) {
2021     // Do not add any link flags when an implementation TU of a module imports
2022     // a header of that same module.
2023     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2024         !getLangOpts().isCompilingModule())
2025       continue;
2026     if (Visited.insert(M).second)
2027       Stack.push_back(M);
2028   }
2029 
2030   // Find all of the modules to import, making a little effort to prune
2031   // non-leaf modules.
2032   while (!Stack.empty()) {
2033     clang::Module *Mod = Stack.pop_back_val();
2034 
2035     bool AnyChildren = false;
2036 
2037     // Visit the submodules of this module.
2038     for (const auto &SM : Mod->submodules()) {
2039       // Skip explicit children; they need to be explicitly imported to be
2040       // linked against.
2041       if (SM->IsExplicit)
2042         continue;
2043 
2044       if (Visited.insert(SM).second) {
2045         Stack.push_back(SM);
2046         AnyChildren = true;
2047       }
2048     }
2049 
2050     // We didn't find any children, so add this module to the list of
2051     // modules to link against.
2052     if (!AnyChildren) {
2053       LinkModules.insert(Mod);
2054     }
2055   }
2056 
2057   // Add link options for all of the imported modules in reverse topological
2058   // order.  We don't do anything to try to order import link flags with respect
2059   // to linker options inserted by things like #pragma comment().
2060   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2061   Visited.clear();
2062   for (Module *M : LinkModules)
2063     if (Visited.insert(M).second)
2064       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2065   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2066   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2067 
2068   // Add the linker options metadata flag.
2069   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2070   for (auto *MD : LinkerOptionsMetadata)
2071     NMD->addOperand(MD);
2072 }
2073 
2074 void CodeGenModule::EmitDeferred() {
2075   // Emit deferred declare target declarations.
2076   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2077     getOpenMPRuntime().emitDeferredTargetDecls();
2078 
2079   // Emit code for any potentially referenced deferred decls.  Since a
2080   // previously unused static decl may become used during the generation of code
2081   // for a static function, iterate until no changes are made.
2082 
2083   if (!DeferredVTables.empty()) {
2084     EmitDeferredVTables();
2085 
2086     // Emitting a vtable doesn't directly cause more vtables to
2087     // become deferred, although it can cause functions to be
2088     // emitted that then need those vtables.
2089     assert(DeferredVTables.empty());
2090   }
2091 
2092   // Stop if we're out of both deferred vtables and deferred declarations.
2093   if (DeferredDeclsToEmit.empty())
2094     return;
2095 
2096   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2097   // work, it will not interfere with this.
2098   std::vector<GlobalDecl> CurDeclsToEmit;
2099   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2100 
2101   for (GlobalDecl &D : CurDeclsToEmit) {
2102     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2103     // to get GlobalValue with exactly the type we need, not something that
2104     // might had been created for another decl with the same mangled name but
2105     // different type.
2106     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2107         GetAddrOfGlobal(D, ForDefinition));
2108 
2109     // In case of different address spaces, we may still get a cast, even with
2110     // IsForDefinition equal to true. Query mangled names table to get
2111     // GlobalValue.
2112     if (!GV)
2113       GV = GetGlobalValue(getMangledName(D));
2114 
2115     // Make sure GetGlobalValue returned non-null.
2116     assert(GV);
2117 
2118     // Check to see if we've already emitted this.  This is necessary
2119     // for a couple of reasons: first, decls can end up in the
2120     // deferred-decls queue multiple times, and second, decls can end
2121     // up with definitions in unusual ways (e.g. by an extern inline
2122     // function acquiring a strong function redefinition).  Just
2123     // ignore these cases.
2124     if (!GV->isDeclaration())
2125       continue;
2126 
2127     // If this is OpenMP, check if it is legal to emit this global normally.
2128     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2129       continue;
2130 
2131     // Otherwise, emit the definition and move on to the next one.
2132     EmitGlobalDefinition(D, GV);
2133 
2134     // If we found out that we need to emit more decls, do that recursively.
2135     // This has the advantage that the decls are emitted in a DFS and related
2136     // ones are close together, which is convenient for testing.
2137     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2138       EmitDeferred();
2139       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2140     }
2141   }
2142 }
2143 
2144 void CodeGenModule::EmitVTablesOpportunistically() {
2145   // Try to emit external vtables as available_externally if they have emitted
2146   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2147   // is not allowed to create new references to things that need to be emitted
2148   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2149 
2150   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2151          && "Only emit opportunistic vtables with optimizations");
2152 
2153   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2154     assert(getVTables().isVTableExternal(RD) &&
2155            "This queue should only contain external vtables");
2156     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2157       VTables.GenerateClassData(RD);
2158   }
2159   OpportunisticVTables.clear();
2160 }
2161 
2162 void CodeGenModule::EmitGlobalAnnotations() {
2163   if (Annotations.empty())
2164     return;
2165 
2166   // Create a new global variable for the ConstantStruct in the Module.
2167   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2168     Annotations[0]->getType(), Annotations.size()), Annotations);
2169   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2170                                       llvm::GlobalValue::AppendingLinkage,
2171                                       Array, "llvm.global.annotations");
2172   gv->setSection(AnnotationSection);
2173 }
2174 
2175 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2176   llvm::Constant *&AStr = AnnotationStrings[Str];
2177   if (AStr)
2178     return AStr;
2179 
2180   // Not found yet, create a new global.
2181   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2182   auto *gv =
2183       new llvm::GlobalVariable(getModule(), s->getType(), true,
2184                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2185   gv->setSection(AnnotationSection);
2186   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2187   AStr = gv;
2188   return gv;
2189 }
2190 
2191 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2192   SourceManager &SM = getContext().getSourceManager();
2193   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2194   if (PLoc.isValid())
2195     return EmitAnnotationString(PLoc.getFilename());
2196   return EmitAnnotationString(SM.getBufferName(Loc));
2197 }
2198 
2199 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2200   SourceManager &SM = getContext().getSourceManager();
2201   PresumedLoc PLoc = SM.getPresumedLoc(L);
2202   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2203     SM.getExpansionLineNumber(L);
2204   return llvm::ConstantInt::get(Int32Ty, LineNo);
2205 }
2206 
2207 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2208                                                 const AnnotateAttr *AA,
2209                                                 SourceLocation L) {
2210   // Get the globals for file name, annotation, and the line number.
2211   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2212                  *UnitGV = EmitAnnotationUnit(L),
2213                  *LineNoCst = EmitAnnotationLineNo(L);
2214 
2215   // Create the ConstantStruct for the global annotation.
2216   llvm::Constant *Fields[4] = {
2217     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
2218     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2219     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2220     LineNoCst
2221   };
2222   return llvm::ConstantStruct::getAnon(Fields);
2223 }
2224 
2225 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2226                                          llvm::GlobalValue *GV) {
2227   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2228   // Get the struct elements for these annotations.
2229   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2230     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2231 }
2232 
2233 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2234                                            llvm::Function *Fn,
2235                                            SourceLocation Loc) const {
2236   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2237   // Blacklist by function name.
2238   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2239     return true;
2240   // Blacklist by location.
2241   if (Loc.isValid())
2242     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2243   // If location is unknown, this may be a compiler-generated function. Assume
2244   // it's located in the main file.
2245   auto &SM = Context.getSourceManager();
2246   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2247     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2248   }
2249   return false;
2250 }
2251 
2252 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2253                                            SourceLocation Loc, QualType Ty,
2254                                            StringRef Category) const {
2255   // For now globals can be blacklisted only in ASan and KASan.
2256   const SanitizerMask EnabledAsanMask =
2257       LangOpts.Sanitize.Mask &
2258       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2259        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2260        SanitizerKind::MemTag);
2261   if (!EnabledAsanMask)
2262     return false;
2263   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2264   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2265     return true;
2266   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2267     return true;
2268   // Check global type.
2269   if (!Ty.isNull()) {
2270     // Drill down the array types: if global variable of a fixed type is
2271     // blacklisted, we also don't instrument arrays of them.
2272     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2273       Ty = AT->getElementType();
2274     Ty = Ty.getCanonicalType().getUnqualifiedType();
2275     // We allow to blacklist only record types (classes, structs etc.)
2276     if (Ty->isRecordType()) {
2277       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2278       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2279         return true;
2280     }
2281   }
2282   return false;
2283 }
2284 
2285 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2286                                    StringRef Category) const {
2287   const auto &XRayFilter = getContext().getXRayFilter();
2288   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2289   auto Attr = ImbueAttr::NONE;
2290   if (Loc.isValid())
2291     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2292   if (Attr == ImbueAttr::NONE)
2293     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2294   switch (Attr) {
2295   case ImbueAttr::NONE:
2296     return false;
2297   case ImbueAttr::ALWAYS:
2298     Fn->addFnAttr("function-instrument", "xray-always");
2299     break;
2300   case ImbueAttr::ALWAYS_ARG1:
2301     Fn->addFnAttr("function-instrument", "xray-always");
2302     Fn->addFnAttr("xray-log-args", "1");
2303     break;
2304   case ImbueAttr::NEVER:
2305     Fn->addFnAttr("function-instrument", "xray-never");
2306     break;
2307   }
2308   return true;
2309 }
2310 
2311 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2312   // Never defer when EmitAllDecls is specified.
2313   if (LangOpts.EmitAllDecls)
2314     return true;
2315 
2316   if (CodeGenOpts.KeepStaticConsts) {
2317     const auto *VD = dyn_cast<VarDecl>(Global);
2318     if (VD && VD->getType().isConstQualified() &&
2319         VD->getStorageDuration() == SD_Static)
2320       return true;
2321   }
2322 
2323   return getContext().DeclMustBeEmitted(Global);
2324 }
2325 
2326 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2327   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2328     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2329       // Implicit template instantiations may change linkage if they are later
2330       // explicitly instantiated, so they should not be emitted eagerly.
2331       return false;
2332     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2333     // not emit them eagerly unless we sure that the function must be emitted on
2334     // the host.
2335     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2336         !LangOpts.OpenMPIsDevice &&
2337         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2338         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2339       return false;
2340   }
2341   if (const auto *VD = dyn_cast<VarDecl>(Global))
2342     if (Context.getInlineVariableDefinitionKind(VD) ==
2343         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2344       // A definition of an inline constexpr static data member may change
2345       // linkage later if it's redeclared outside the class.
2346       return false;
2347   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2348   // codegen for global variables, because they may be marked as threadprivate.
2349   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2350       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2351       !isTypeConstant(Global->getType(), false) &&
2352       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2353     return false;
2354 
2355   return true;
2356 }
2357 
2358 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2359     const CXXUuidofExpr* E) {
2360   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2361   // well-formed.
2362   StringRef Uuid = E->getUuidStr();
2363   std::string Name = "_GUID_" + Uuid.lower();
2364   std::replace(Name.begin(), Name.end(), '-', '_');
2365 
2366   // The UUID descriptor should be pointer aligned.
2367   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2368 
2369   // Look for an existing global.
2370   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2371     return ConstantAddress(GV, Alignment);
2372 
2373   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2374   assert(Init && "failed to initialize as constant");
2375 
2376   auto *GV = new llvm::GlobalVariable(
2377       getModule(), Init->getType(),
2378       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2379   if (supportsCOMDAT())
2380     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2381   setDSOLocal(GV);
2382   return ConstantAddress(GV, Alignment);
2383 }
2384 
2385 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2386   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2387   assert(AA && "No alias?");
2388 
2389   CharUnits Alignment = getContext().getDeclAlign(VD);
2390   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2391 
2392   // See if there is already something with the target's name in the module.
2393   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2394   if (Entry) {
2395     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2396     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2397     return ConstantAddress(Ptr, Alignment);
2398   }
2399 
2400   llvm::Constant *Aliasee;
2401   if (isa<llvm::FunctionType>(DeclTy))
2402     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2403                                       GlobalDecl(cast<FunctionDecl>(VD)),
2404                                       /*ForVTable=*/false);
2405   else
2406     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2407                                     llvm::PointerType::getUnqual(DeclTy),
2408                                     nullptr);
2409 
2410   auto *F = cast<llvm::GlobalValue>(Aliasee);
2411   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2412   WeakRefReferences.insert(F);
2413 
2414   return ConstantAddress(Aliasee, Alignment);
2415 }
2416 
2417 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2418   const auto *Global = cast<ValueDecl>(GD.getDecl());
2419 
2420   // Weak references don't produce any output by themselves.
2421   if (Global->hasAttr<WeakRefAttr>())
2422     return;
2423 
2424   // If this is an alias definition (which otherwise looks like a declaration)
2425   // emit it now.
2426   if (Global->hasAttr<AliasAttr>())
2427     return EmitAliasDefinition(GD);
2428 
2429   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2430   if (Global->hasAttr<IFuncAttr>())
2431     return emitIFuncDefinition(GD);
2432 
2433   // If this is a cpu_dispatch multiversion function, emit the resolver.
2434   if (Global->hasAttr<CPUDispatchAttr>())
2435     return emitCPUDispatchDefinition(GD);
2436 
2437   // If this is CUDA, be selective about which declarations we emit.
2438   if (LangOpts.CUDA) {
2439     if (LangOpts.CUDAIsDevice) {
2440       if (!Global->hasAttr<CUDADeviceAttr>() &&
2441           !Global->hasAttr<CUDAGlobalAttr>() &&
2442           !Global->hasAttr<CUDAConstantAttr>() &&
2443           !Global->hasAttr<CUDASharedAttr>() &&
2444           !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>()))
2445         return;
2446     } else {
2447       // We need to emit host-side 'shadows' for all global
2448       // device-side variables because the CUDA runtime needs their
2449       // size and host-side address in order to provide access to
2450       // their device-side incarnations.
2451 
2452       // So device-only functions are the only things we skip.
2453       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2454           Global->hasAttr<CUDADeviceAttr>())
2455         return;
2456 
2457       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2458              "Expected Variable or Function");
2459     }
2460   }
2461 
2462   if (LangOpts.OpenMP) {
2463     // If this is OpenMP, check if it is legal to emit this global normally.
2464     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2465       return;
2466     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2467       if (MustBeEmitted(Global))
2468         EmitOMPDeclareReduction(DRD);
2469       return;
2470     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2471       if (MustBeEmitted(Global))
2472         EmitOMPDeclareMapper(DMD);
2473       return;
2474     }
2475   }
2476 
2477   // Ignore declarations, they will be emitted on their first use.
2478   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2479     // Forward declarations are emitted lazily on first use.
2480     if (!FD->doesThisDeclarationHaveABody()) {
2481       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2482         return;
2483 
2484       StringRef MangledName = getMangledName(GD);
2485 
2486       // Compute the function info and LLVM type.
2487       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2488       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2489 
2490       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2491                               /*DontDefer=*/false);
2492       return;
2493     }
2494   } else {
2495     const auto *VD = cast<VarDecl>(Global);
2496     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2497     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2498         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2499       if (LangOpts.OpenMP) {
2500         // Emit declaration of the must-be-emitted declare target variable.
2501         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2502                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2503           bool UnifiedMemoryEnabled =
2504               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2505           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2506               !UnifiedMemoryEnabled) {
2507             (void)GetAddrOfGlobalVar(VD);
2508           } else {
2509             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2510                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2511                      UnifiedMemoryEnabled)) &&
2512                    "Link clause or to clause with unified memory expected.");
2513             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2514           }
2515 
2516           return;
2517         }
2518       }
2519       // If this declaration may have caused an inline variable definition to
2520       // change linkage, make sure that it's emitted.
2521       if (Context.getInlineVariableDefinitionKind(VD) ==
2522           ASTContext::InlineVariableDefinitionKind::Strong)
2523         GetAddrOfGlobalVar(VD);
2524       return;
2525     }
2526   }
2527 
2528   // Defer code generation to first use when possible, e.g. if this is an inline
2529   // function. If the global must always be emitted, do it eagerly if possible
2530   // to benefit from cache locality.
2531   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2532     // Emit the definition if it can't be deferred.
2533     EmitGlobalDefinition(GD);
2534     return;
2535   }
2536 
2537     // Check if this must be emitted as declare variant.
2538   if (LangOpts.OpenMP && isa<FunctionDecl>(Global) && OpenMPRuntime &&
2539       OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/false))
2540     return;
2541 
2542   // If we're deferring emission of a C++ variable with an
2543   // initializer, remember the order in which it appeared in the file.
2544   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2545       cast<VarDecl>(Global)->hasInit()) {
2546     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2547     CXXGlobalInits.push_back(nullptr);
2548   }
2549 
2550   StringRef MangledName = getMangledName(GD);
2551   if (GetGlobalValue(MangledName) != nullptr) {
2552     // The value has already been used and should therefore be emitted.
2553     addDeferredDeclToEmit(GD);
2554   } else if (MustBeEmitted(Global)) {
2555     // The value must be emitted, but cannot be emitted eagerly.
2556     assert(!MayBeEmittedEagerly(Global));
2557     addDeferredDeclToEmit(GD);
2558   } else {
2559     // Otherwise, remember that we saw a deferred decl with this name.  The
2560     // first use of the mangled name will cause it to move into
2561     // DeferredDeclsToEmit.
2562     DeferredDecls[MangledName] = GD;
2563   }
2564 }
2565 
2566 // Check if T is a class type with a destructor that's not dllimport.
2567 static bool HasNonDllImportDtor(QualType T) {
2568   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2569     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2570       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2571         return true;
2572 
2573   return false;
2574 }
2575 
2576 namespace {
2577   struct FunctionIsDirectlyRecursive
2578       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2579     const StringRef Name;
2580     const Builtin::Context &BI;
2581     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2582         : Name(N), BI(C) {}
2583 
2584     bool VisitCallExpr(const CallExpr *E) {
2585       const FunctionDecl *FD = E->getDirectCallee();
2586       if (!FD)
2587         return false;
2588       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2589       if (Attr && Name == Attr->getLabel())
2590         return true;
2591       unsigned BuiltinID = FD->getBuiltinID();
2592       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2593         return false;
2594       StringRef BuiltinName = BI.getName(BuiltinID);
2595       if (BuiltinName.startswith("__builtin_") &&
2596           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2597         return true;
2598       }
2599       return false;
2600     }
2601 
2602     bool VisitStmt(const Stmt *S) {
2603       for (const Stmt *Child : S->children())
2604         if (Child && this->Visit(Child))
2605           return true;
2606       return false;
2607     }
2608   };
2609 
2610   // Make sure we're not referencing non-imported vars or functions.
2611   struct DLLImportFunctionVisitor
2612       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2613     bool SafeToInline = true;
2614 
2615     bool shouldVisitImplicitCode() const { return true; }
2616 
2617     bool VisitVarDecl(VarDecl *VD) {
2618       if (VD->getTLSKind()) {
2619         // A thread-local variable cannot be imported.
2620         SafeToInline = false;
2621         return SafeToInline;
2622       }
2623 
2624       // A variable definition might imply a destructor call.
2625       if (VD->isThisDeclarationADefinition())
2626         SafeToInline = !HasNonDllImportDtor(VD->getType());
2627 
2628       return SafeToInline;
2629     }
2630 
2631     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2632       if (const auto *D = E->getTemporary()->getDestructor())
2633         SafeToInline = D->hasAttr<DLLImportAttr>();
2634       return SafeToInline;
2635     }
2636 
2637     bool VisitDeclRefExpr(DeclRefExpr *E) {
2638       ValueDecl *VD = E->getDecl();
2639       if (isa<FunctionDecl>(VD))
2640         SafeToInline = VD->hasAttr<DLLImportAttr>();
2641       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2642         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2643       return SafeToInline;
2644     }
2645 
2646     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2647       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2648       return SafeToInline;
2649     }
2650 
2651     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2652       CXXMethodDecl *M = E->getMethodDecl();
2653       if (!M) {
2654         // Call through a pointer to member function. This is safe to inline.
2655         SafeToInline = true;
2656       } else {
2657         SafeToInline = M->hasAttr<DLLImportAttr>();
2658       }
2659       return SafeToInline;
2660     }
2661 
2662     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2663       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2664       return SafeToInline;
2665     }
2666 
2667     bool VisitCXXNewExpr(CXXNewExpr *E) {
2668       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2669       return SafeToInline;
2670     }
2671   };
2672 }
2673 
2674 // isTriviallyRecursive - Check if this function calls another
2675 // decl that, because of the asm attribute or the other decl being a builtin,
2676 // ends up pointing to itself.
2677 bool
2678 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2679   StringRef Name;
2680   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2681     // asm labels are a special kind of mangling we have to support.
2682     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2683     if (!Attr)
2684       return false;
2685     Name = Attr->getLabel();
2686   } else {
2687     Name = FD->getName();
2688   }
2689 
2690   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2691   const Stmt *Body = FD->getBody();
2692   return Body ? Walker.Visit(Body) : false;
2693 }
2694 
2695 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2696   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2697     return true;
2698   const auto *F = cast<FunctionDecl>(GD.getDecl());
2699   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2700     return false;
2701 
2702   if (F->hasAttr<DLLImportAttr>()) {
2703     // Check whether it would be safe to inline this dllimport function.
2704     DLLImportFunctionVisitor Visitor;
2705     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2706     if (!Visitor.SafeToInline)
2707       return false;
2708 
2709     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2710       // Implicit destructor invocations aren't captured in the AST, so the
2711       // check above can't see them. Check for them manually here.
2712       for (const Decl *Member : Dtor->getParent()->decls())
2713         if (isa<FieldDecl>(Member))
2714           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2715             return false;
2716       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2717         if (HasNonDllImportDtor(B.getType()))
2718           return false;
2719     }
2720   }
2721 
2722   // PR9614. Avoid cases where the source code is lying to us. An available
2723   // externally function should have an equivalent function somewhere else,
2724   // but a function that calls itself is clearly not equivalent to the real
2725   // implementation.
2726   // This happens in glibc's btowc and in some configure checks.
2727   return !isTriviallyRecursive(F);
2728 }
2729 
2730 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2731   return CodeGenOpts.OptimizationLevel > 0;
2732 }
2733 
2734 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2735                                                        llvm::GlobalValue *GV) {
2736   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2737 
2738   if (FD->isCPUSpecificMultiVersion()) {
2739     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2740     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2741       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2742     // Requires multiple emits.
2743   } else
2744     EmitGlobalFunctionDefinition(GD, GV);
2745 }
2746 
2747 void CodeGenModule::emitOpenMPDeviceFunctionRedefinition(
2748     GlobalDecl OldGD, GlobalDecl NewGD, llvm::GlobalValue *GV) {
2749   assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2750          OpenMPRuntime && "Expected OpenMP device mode.");
2751   const auto *D = cast<FunctionDecl>(OldGD.getDecl());
2752 
2753   // Compute the function info and LLVM type.
2754   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(OldGD);
2755   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2756 
2757   // Get or create the prototype for the function.
2758   if (!GV || (GV->getType()->getElementType() != Ty)) {
2759     GV = cast<llvm::GlobalValue>(GetOrCreateLLVMFunction(
2760         getMangledName(OldGD), Ty, GlobalDecl(), /*ForVTable=*/false,
2761         /*DontDefer=*/true, /*IsThunk=*/false, llvm::AttributeList(),
2762         ForDefinition));
2763     SetFunctionAttributes(OldGD, cast<llvm::Function>(GV),
2764                           /*IsIncompleteFunction=*/false,
2765                           /*IsThunk=*/false);
2766   }
2767   // We need to set linkage and visibility on the function before
2768   // generating code for it because various parts of IR generation
2769   // want to propagate this information down (e.g. to local static
2770   // declarations).
2771   auto *Fn = cast<llvm::Function>(GV);
2772   setFunctionLinkage(OldGD, Fn);
2773 
2774   // FIXME: this is redundant with part of
2775   // setFunctionDefinitionAttributes
2776   setGVProperties(Fn, OldGD);
2777 
2778   MaybeHandleStaticInExternC(D, Fn);
2779 
2780   maybeSetTrivialComdat(*D, *Fn);
2781 
2782   CodeGenFunction(*this).GenerateCode(NewGD, Fn, FI);
2783 
2784   setNonAliasAttributes(OldGD, Fn);
2785   SetLLVMFunctionAttributesForDefinition(D, Fn);
2786 
2787   if (D->hasAttr<AnnotateAttr>())
2788     AddGlobalAnnotations(D, Fn);
2789 }
2790 
2791 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2792   const auto *D = cast<ValueDecl>(GD.getDecl());
2793 
2794   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2795                                  Context.getSourceManager(),
2796                                  "Generating code for declaration");
2797 
2798   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2799     // At -O0, don't generate IR for functions with available_externally
2800     // linkage.
2801     if (!shouldEmitFunction(GD))
2802       return;
2803 
2804     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2805       std::string Name;
2806       llvm::raw_string_ostream OS(Name);
2807       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2808                                /*Qualified=*/true);
2809       return Name;
2810     });
2811 
2812     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2813       // Make sure to emit the definition(s) before we emit the thunks.
2814       // This is necessary for the generation of certain thunks.
2815       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2816         ABI->emitCXXStructor(GD);
2817       else if (FD->isMultiVersion())
2818         EmitMultiVersionFunctionDefinition(GD, GV);
2819       else
2820         EmitGlobalFunctionDefinition(GD, GV);
2821 
2822       if (Method->isVirtual())
2823         getVTables().EmitThunks(GD);
2824 
2825       return;
2826     }
2827 
2828     if (FD->isMultiVersion())
2829       return EmitMultiVersionFunctionDefinition(GD, GV);
2830     return EmitGlobalFunctionDefinition(GD, GV);
2831   }
2832 
2833   if (const auto *VD = dyn_cast<VarDecl>(D))
2834     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2835 
2836   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2837 }
2838 
2839 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2840                                                       llvm::Function *NewFn);
2841 
2842 static unsigned
2843 TargetMVPriority(const TargetInfo &TI,
2844                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2845   unsigned Priority = 0;
2846   for (StringRef Feat : RO.Conditions.Features)
2847     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2848 
2849   if (!RO.Conditions.Architecture.empty())
2850     Priority = std::max(
2851         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2852   return Priority;
2853 }
2854 
2855 void CodeGenModule::emitMultiVersionFunctions() {
2856   for (GlobalDecl GD : MultiVersionFuncs) {
2857     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2858     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2859     getContext().forEachMultiversionedFunctionVersion(
2860         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2861           GlobalDecl CurGD{
2862               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2863           StringRef MangledName = getMangledName(CurGD);
2864           llvm::Constant *Func = GetGlobalValue(MangledName);
2865           if (!Func) {
2866             if (CurFD->isDefined()) {
2867               EmitGlobalFunctionDefinition(CurGD, nullptr);
2868               Func = GetGlobalValue(MangledName);
2869             } else {
2870               const CGFunctionInfo &FI =
2871                   getTypes().arrangeGlobalDeclaration(GD);
2872               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2873               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2874                                        /*DontDefer=*/false, ForDefinition);
2875             }
2876             assert(Func && "This should have just been created");
2877           }
2878 
2879           const auto *TA = CurFD->getAttr<TargetAttr>();
2880           llvm::SmallVector<StringRef, 8> Feats;
2881           TA->getAddedFeatures(Feats);
2882 
2883           Options.emplace_back(cast<llvm::Function>(Func),
2884                                TA->getArchitecture(), Feats);
2885         });
2886 
2887     llvm::Function *ResolverFunc;
2888     const TargetInfo &TI = getTarget();
2889 
2890     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
2891       ResolverFunc = cast<llvm::Function>(
2892           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2893       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2894     } else {
2895       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2896     }
2897 
2898     if (supportsCOMDAT())
2899       ResolverFunc->setComdat(
2900           getModule().getOrInsertComdat(ResolverFunc->getName()));
2901 
2902     llvm::stable_sort(
2903         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2904                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
2905           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2906         });
2907     CodeGenFunction CGF(*this);
2908     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2909   }
2910 }
2911 
2912 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2913   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2914   assert(FD && "Not a FunctionDecl?");
2915   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2916   assert(DD && "Not a cpu_dispatch Function?");
2917   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2918 
2919   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2920     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2921     DeclTy = getTypes().GetFunctionType(FInfo);
2922   }
2923 
2924   StringRef ResolverName = getMangledName(GD);
2925 
2926   llvm::Type *ResolverType;
2927   GlobalDecl ResolverGD;
2928   if (getTarget().supportsIFunc())
2929     ResolverType = llvm::FunctionType::get(
2930         llvm::PointerType::get(DeclTy,
2931                                Context.getTargetAddressSpace(FD->getType())),
2932         false);
2933   else {
2934     ResolverType = DeclTy;
2935     ResolverGD = GD;
2936   }
2937 
2938   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2939       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2940   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2941   if (supportsCOMDAT())
2942     ResolverFunc->setComdat(
2943         getModule().getOrInsertComdat(ResolverFunc->getName()));
2944 
2945   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2946   const TargetInfo &Target = getTarget();
2947   unsigned Index = 0;
2948   for (const IdentifierInfo *II : DD->cpus()) {
2949     // Get the name of the target function so we can look it up/create it.
2950     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2951                               getCPUSpecificMangling(*this, II->getName());
2952 
2953     llvm::Constant *Func = GetGlobalValue(MangledName);
2954 
2955     if (!Func) {
2956       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2957       if (ExistingDecl.getDecl() &&
2958           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2959         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2960         Func = GetGlobalValue(MangledName);
2961       } else {
2962         if (!ExistingDecl.getDecl())
2963           ExistingDecl = GD.getWithMultiVersionIndex(Index);
2964 
2965       Func = GetOrCreateLLVMFunction(
2966           MangledName, DeclTy, ExistingDecl,
2967           /*ForVTable=*/false, /*DontDefer=*/true,
2968           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2969       }
2970     }
2971 
2972     llvm::SmallVector<StringRef, 32> Features;
2973     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2974     llvm::transform(Features, Features.begin(),
2975                     [](StringRef Str) { return Str.substr(1); });
2976     Features.erase(std::remove_if(
2977         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2978           return !Target.validateCpuSupports(Feat);
2979         }), Features.end());
2980     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
2981     ++Index;
2982   }
2983 
2984   llvm::sort(
2985       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2986                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
2987         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
2988                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
2989       });
2990 
2991   // If the list contains multiple 'default' versions, such as when it contains
2992   // 'pentium' and 'generic', don't emit the call to the generic one (since we
2993   // always run on at least a 'pentium'). We do this by deleting the 'least
2994   // advanced' (read, lowest mangling letter).
2995   while (Options.size() > 1 &&
2996          CodeGenFunction::GetX86CpuSupportsMask(
2997              (Options.end() - 2)->Conditions.Features) == 0) {
2998     StringRef LHSName = (Options.end() - 2)->Function->getName();
2999     StringRef RHSName = (Options.end() - 1)->Function->getName();
3000     if (LHSName.compare(RHSName) < 0)
3001       Options.erase(Options.end() - 2);
3002     else
3003       Options.erase(Options.end() - 1);
3004   }
3005 
3006   CodeGenFunction CGF(*this);
3007   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3008 
3009   if (getTarget().supportsIFunc()) {
3010     std::string AliasName = getMangledNameImpl(
3011         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3012     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3013     if (!AliasFunc) {
3014       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3015           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3016           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3017       auto *GA = llvm::GlobalAlias::create(
3018          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3019       GA->setLinkage(llvm::Function::WeakODRLinkage);
3020       SetCommonAttributes(GD, GA);
3021     }
3022   }
3023 }
3024 
3025 /// If a dispatcher for the specified mangled name is not in the module, create
3026 /// and return an llvm Function with the specified type.
3027 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3028     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3029   std::string MangledName =
3030       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3031 
3032   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3033   // a separate resolver).
3034   std::string ResolverName = MangledName;
3035   if (getTarget().supportsIFunc())
3036     ResolverName += ".ifunc";
3037   else if (FD->isTargetMultiVersion())
3038     ResolverName += ".resolver";
3039 
3040   // If this already exists, just return that one.
3041   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3042     return ResolverGV;
3043 
3044   // Since this is the first time we've created this IFunc, make sure
3045   // that we put this multiversioned function into the list to be
3046   // replaced later if necessary (target multiversioning only).
3047   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3048     MultiVersionFuncs.push_back(GD);
3049 
3050   if (getTarget().supportsIFunc()) {
3051     llvm::Type *ResolverType = llvm::FunctionType::get(
3052         llvm::PointerType::get(
3053             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3054         false);
3055     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3056         MangledName + ".resolver", ResolverType, GlobalDecl{},
3057         /*ForVTable=*/false);
3058     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3059         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3060     GIF->setName(ResolverName);
3061     SetCommonAttributes(FD, GIF);
3062 
3063     return GIF;
3064   }
3065 
3066   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3067       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3068   assert(isa<llvm::GlobalValue>(Resolver) &&
3069          "Resolver should be created for the first time");
3070   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3071   return Resolver;
3072 }
3073 
3074 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3075 /// module, create and return an llvm Function with the specified type. If there
3076 /// is something in the module with the specified name, return it potentially
3077 /// bitcasted to the right type.
3078 ///
3079 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3080 /// to set the attributes on the function when it is first created.
3081 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3082     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3083     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3084     ForDefinition_t IsForDefinition) {
3085   const Decl *D = GD.getDecl();
3086 
3087   // Any attempts to use a MultiVersion function should result in retrieving
3088   // the iFunc instead. Name Mangling will handle the rest of the changes.
3089   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3090     // For the device mark the function as one that should be emitted.
3091     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3092         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3093         !DontDefer && !IsForDefinition) {
3094       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3095         GlobalDecl GDDef;
3096         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3097           GDDef = GlobalDecl(CD, GD.getCtorType());
3098         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3099           GDDef = GlobalDecl(DD, GD.getDtorType());
3100         else
3101           GDDef = GlobalDecl(FDDef);
3102         EmitGlobal(GDDef);
3103       }
3104     }
3105     // Check if this must be emitted as declare variant and emit reference to
3106     // the the declare variant function.
3107     if (LangOpts.OpenMP && OpenMPRuntime)
3108       (void)OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true);
3109 
3110     if (FD->isMultiVersion()) {
3111       const auto *TA = FD->getAttr<TargetAttr>();
3112       if (TA && TA->isDefaultVersion())
3113         UpdateMultiVersionNames(GD, FD);
3114       if (!IsForDefinition)
3115         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3116     }
3117   }
3118 
3119   // Lookup the entry, lazily creating it if necessary.
3120   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3121   if (Entry) {
3122     if (WeakRefReferences.erase(Entry)) {
3123       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3124       if (FD && !FD->hasAttr<WeakAttr>())
3125         Entry->setLinkage(llvm::Function::ExternalLinkage);
3126     }
3127 
3128     // Handle dropped DLL attributes.
3129     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3130       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3131       setDSOLocal(Entry);
3132     }
3133 
3134     // If there are two attempts to define the same mangled name, issue an
3135     // error.
3136     if (IsForDefinition && !Entry->isDeclaration()) {
3137       GlobalDecl OtherGD;
3138       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3139       // to make sure that we issue an error only once.
3140       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3141           (GD.getCanonicalDecl().getDecl() !=
3142            OtherGD.getCanonicalDecl().getDecl()) &&
3143           DiagnosedConflictingDefinitions.insert(GD).second) {
3144         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3145             << MangledName;
3146         getDiags().Report(OtherGD.getDecl()->getLocation(),
3147                           diag::note_previous_definition);
3148       }
3149     }
3150 
3151     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3152         (Entry->getType()->getElementType() == Ty)) {
3153       return Entry;
3154     }
3155 
3156     // Make sure the result is of the correct type.
3157     // (If function is requested for a definition, we always need to create a new
3158     // function, not just return a bitcast.)
3159     if (!IsForDefinition)
3160       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3161   }
3162 
3163   // This function doesn't have a complete type (for example, the return
3164   // type is an incomplete struct). Use a fake type instead, and make
3165   // sure not to try to set attributes.
3166   bool IsIncompleteFunction = false;
3167 
3168   llvm::FunctionType *FTy;
3169   if (isa<llvm::FunctionType>(Ty)) {
3170     FTy = cast<llvm::FunctionType>(Ty);
3171   } else {
3172     FTy = llvm::FunctionType::get(VoidTy, false);
3173     IsIncompleteFunction = true;
3174   }
3175 
3176   llvm::Function *F =
3177       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3178                              Entry ? StringRef() : MangledName, &getModule());
3179 
3180   // If we already created a function with the same mangled name (but different
3181   // type) before, take its name and add it to the list of functions to be
3182   // replaced with F at the end of CodeGen.
3183   //
3184   // This happens if there is a prototype for a function (e.g. "int f()") and
3185   // then a definition of a different type (e.g. "int f(int x)").
3186   if (Entry) {
3187     F->takeName(Entry);
3188 
3189     // This might be an implementation of a function without a prototype, in
3190     // which case, try to do special replacement of calls which match the new
3191     // prototype.  The really key thing here is that we also potentially drop
3192     // arguments from the call site so as to make a direct call, which makes the
3193     // inliner happier and suppresses a number of optimizer warnings (!) about
3194     // dropping arguments.
3195     if (!Entry->use_empty()) {
3196       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3197       Entry->removeDeadConstantUsers();
3198     }
3199 
3200     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3201         F, Entry->getType()->getElementType()->getPointerTo());
3202     addGlobalValReplacement(Entry, BC);
3203   }
3204 
3205   assert(F->getName() == MangledName && "name was uniqued!");
3206   if (D)
3207     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3208   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3209     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3210     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3211   }
3212 
3213   if (!DontDefer) {
3214     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3215     // each other bottoming out with the base dtor.  Therefore we emit non-base
3216     // dtors on usage, even if there is no dtor definition in the TU.
3217     if (D && isa<CXXDestructorDecl>(D) &&
3218         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3219                                            GD.getDtorType()))
3220       addDeferredDeclToEmit(GD);
3221 
3222     // This is the first use or definition of a mangled name.  If there is a
3223     // deferred decl with this name, remember that we need to emit it at the end
3224     // of the file.
3225     auto DDI = DeferredDecls.find(MangledName);
3226     if (DDI != DeferredDecls.end()) {
3227       // Move the potentially referenced deferred decl to the
3228       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3229       // don't need it anymore).
3230       addDeferredDeclToEmit(DDI->second);
3231       DeferredDecls.erase(DDI);
3232 
3233       // Otherwise, there are cases we have to worry about where we're
3234       // using a declaration for which we must emit a definition but where
3235       // we might not find a top-level definition:
3236       //   - member functions defined inline in their classes
3237       //   - friend functions defined inline in some class
3238       //   - special member functions with implicit definitions
3239       // If we ever change our AST traversal to walk into class methods,
3240       // this will be unnecessary.
3241       //
3242       // We also don't emit a definition for a function if it's going to be an
3243       // entry in a vtable, unless it's already marked as used.
3244     } else if (getLangOpts().CPlusPlus && D) {
3245       // Look for a declaration that's lexically in a record.
3246       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3247            FD = FD->getPreviousDecl()) {
3248         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3249           if (FD->doesThisDeclarationHaveABody()) {
3250             addDeferredDeclToEmit(GD.getWithDecl(FD));
3251             break;
3252           }
3253         }
3254       }
3255     }
3256   }
3257 
3258   // Make sure the result is of the requested type.
3259   if (!IsIncompleteFunction) {
3260     assert(F->getType()->getElementType() == Ty);
3261     return F;
3262   }
3263 
3264   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3265   return llvm::ConstantExpr::getBitCast(F, PTy);
3266 }
3267 
3268 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3269 /// non-null, then this function will use the specified type if it has to
3270 /// create it (this occurs when we see a definition of the function).
3271 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3272                                                  llvm::Type *Ty,
3273                                                  bool ForVTable,
3274                                                  bool DontDefer,
3275                                               ForDefinition_t IsForDefinition) {
3276   // If there was no specific requested type, just convert it now.
3277   if (!Ty) {
3278     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3279     Ty = getTypes().ConvertType(FD->getType());
3280   }
3281 
3282   // Devirtualized destructor calls may come through here instead of via
3283   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3284   // of the complete destructor when necessary.
3285   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3286     if (getTarget().getCXXABI().isMicrosoft() &&
3287         GD.getDtorType() == Dtor_Complete &&
3288         DD->getParent()->getNumVBases() == 0)
3289       GD = GlobalDecl(DD, Dtor_Base);
3290   }
3291 
3292   StringRef MangledName = getMangledName(GD);
3293   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3294                                  /*IsThunk=*/false, llvm::AttributeList(),
3295                                  IsForDefinition);
3296 }
3297 
3298 static const FunctionDecl *
3299 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3300   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3301   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3302 
3303   IdentifierInfo &CII = C.Idents.get(Name);
3304   for (const auto &Result : DC->lookup(&CII))
3305     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3306       return FD;
3307 
3308   if (!C.getLangOpts().CPlusPlus)
3309     return nullptr;
3310 
3311   // Demangle the premangled name from getTerminateFn()
3312   IdentifierInfo &CXXII =
3313       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3314           ? C.Idents.get("terminate")
3315           : C.Idents.get(Name);
3316 
3317   for (const auto &N : {"__cxxabiv1", "std"}) {
3318     IdentifierInfo &NS = C.Idents.get(N);
3319     for (const auto &Result : DC->lookup(&NS)) {
3320       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3321       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3322         for (const auto &Result : LSD->lookup(&NS))
3323           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3324             break;
3325 
3326       if (ND)
3327         for (const auto &Result : ND->lookup(&CXXII))
3328           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3329             return FD;
3330     }
3331   }
3332 
3333   return nullptr;
3334 }
3335 
3336 /// CreateRuntimeFunction - Create a new runtime function with the specified
3337 /// type and name.
3338 llvm::FunctionCallee
3339 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3340                                      llvm::AttributeList ExtraAttrs, bool Local,
3341                                      bool AssumeConvergent) {
3342   if (AssumeConvergent) {
3343     ExtraAttrs =
3344         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3345                                 llvm::Attribute::Convergent);
3346   }
3347 
3348   llvm::Constant *C =
3349       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3350                               /*DontDefer=*/false, /*IsThunk=*/false,
3351                               ExtraAttrs);
3352 
3353   if (auto *F = dyn_cast<llvm::Function>(C)) {
3354     if (F->empty()) {
3355       F->setCallingConv(getRuntimeCC());
3356 
3357       // In Windows Itanium environments, try to mark runtime functions
3358       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3359       // will link their standard library statically or dynamically. Marking
3360       // functions imported when they are not imported can cause linker errors
3361       // and warnings.
3362       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3363           !getCodeGenOpts().LTOVisibilityPublicStd) {
3364         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3365         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3366           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3367           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3368         }
3369       }
3370       setDSOLocal(F);
3371     }
3372   }
3373 
3374   return {FTy, C};
3375 }
3376 
3377 /// isTypeConstant - Determine whether an object of this type can be emitted
3378 /// as a constant.
3379 ///
3380 /// If ExcludeCtor is true, the duration when the object's constructor runs
3381 /// will not be considered. The caller will need to verify that the object is
3382 /// not written to during its construction.
3383 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3384   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3385     return false;
3386 
3387   if (Context.getLangOpts().CPlusPlus) {
3388     if (const CXXRecordDecl *Record
3389           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3390       return ExcludeCtor && !Record->hasMutableFields() &&
3391              Record->hasTrivialDestructor();
3392   }
3393 
3394   return true;
3395 }
3396 
3397 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3398 /// create and return an llvm GlobalVariable with the specified type.  If there
3399 /// is something in the module with the specified name, return it potentially
3400 /// bitcasted to the right type.
3401 ///
3402 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3403 /// to set the attributes on the global when it is first created.
3404 ///
3405 /// If IsForDefinition is true, it is guaranteed that an actual global with
3406 /// type Ty will be returned, not conversion of a variable with the same
3407 /// mangled name but some other type.
3408 llvm::Constant *
3409 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3410                                      llvm::PointerType *Ty,
3411                                      const VarDecl *D,
3412                                      ForDefinition_t IsForDefinition) {
3413   // Lookup the entry, lazily creating it if necessary.
3414   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3415   if (Entry) {
3416     if (WeakRefReferences.erase(Entry)) {
3417       if (D && !D->hasAttr<WeakAttr>())
3418         Entry->setLinkage(llvm::Function::ExternalLinkage);
3419     }
3420 
3421     // Handle dropped DLL attributes.
3422     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3423       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3424 
3425     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3426       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3427 
3428     if (Entry->getType() == Ty)
3429       return Entry;
3430 
3431     // If there are two attempts to define the same mangled name, issue an
3432     // error.
3433     if (IsForDefinition && !Entry->isDeclaration()) {
3434       GlobalDecl OtherGD;
3435       const VarDecl *OtherD;
3436 
3437       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3438       // to make sure that we issue an error only once.
3439       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3440           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3441           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3442           OtherD->hasInit() &&
3443           DiagnosedConflictingDefinitions.insert(D).second) {
3444         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3445             << MangledName;
3446         getDiags().Report(OtherGD.getDecl()->getLocation(),
3447                           diag::note_previous_definition);
3448       }
3449     }
3450 
3451     // Make sure the result is of the correct type.
3452     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3453       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3454 
3455     // (If global is requested for a definition, we always need to create a new
3456     // global, not just return a bitcast.)
3457     if (!IsForDefinition)
3458       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3459   }
3460 
3461   auto AddrSpace = GetGlobalVarAddressSpace(D);
3462   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3463 
3464   auto *GV = new llvm::GlobalVariable(
3465       getModule(), Ty->getElementType(), false,
3466       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3467       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3468 
3469   // If we already created a global with the same mangled name (but different
3470   // type) before, take its name and remove it from its parent.
3471   if (Entry) {
3472     GV->takeName(Entry);
3473 
3474     if (!Entry->use_empty()) {
3475       llvm::Constant *NewPtrForOldDecl =
3476           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3477       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3478     }
3479 
3480     Entry->eraseFromParent();
3481   }
3482 
3483   // This is the first use or definition of a mangled name.  If there is a
3484   // deferred decl with this name, remember that we need to emit it at the end
3485   // of the file.
3486   auto DDI = DeferredDecls.find(MangledName);
3487   if (DDI != DeferredDecls.end()) {
3488     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3489     // list, and remove it from DeferredDecls (since we don't need it anymore).
3490     addDeferredDeclToEmit(DDI->second);
3491     DeferredDecls.erase(DDI);
3492   }
3493 
3494   // Handle things which are present even on external declarations.
3495   if (D) {
3496     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3497       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3498 
3499     // FIXME: This code is overly simple and should be merged with other global
3500     // handling.
3501     GV->setConstant(isTypeConstant(D->getType(), false));
3502 
3503     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3504 
3505     setLinkageForGV(GV, D);
3506 
3507     if (D->getTLSKind()) {
3508       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3509         CXXThreadLocals.push_back(D);
3510       setTLSMode(GV, *D);
3511     }
3512 
3513     setGVProperties(GV, D);
3514 
3515     // If required by the ABI, treat declarations of static data members with
3516     // inline initializers as definitions.
3517     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3518       EmitGlobalVarDefinition(D);
3519     }
3520 
3521     // Emit section information for extern variables.
3522     if (D->hasExternalStorage()) {
3523       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3524         GV->setSection(SA->getName());
3525     }
3526 
3527     // Handle XCore specific ABI requirements.
3528     if (getTriple().getArch() == llvm::Triple::xcore &&
3529         D->getLanguageLinkage() == CLanguageLinkage &&
3530         D->getType().isConstant(Context) &&
3531         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3532       GV->setSection(".cp.rodata");
3533 
3534     // Check if we a have a const declaration with an initializer, we may be
3535     // able to emit it as available_externally to expose it's value to the
3536     // optimizer.
3537     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3538         D->getType().isConstQualified() && !GV->hasInitializer() &&
3539         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3540       const auto *Record =
3541           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3542       bool HasMutableFields = Record && Record->hasMutableFields();
3543       if (!HasMutableFields) {
3544         const VarDecl *InitDecl;
3545         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3546         if (InitExpr) {
3547           ConstantEmitter emitter(*this);
3548           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3549           if (Init) {
3550             auto *InitType = Init->getType();
3551             if (GV->getType()->getElementType() != InitType) {
3552               // The type of the initializer does not match the definition.
3553               // This happens when an initializer has a different type from
3554               // the type of the global (because of padding at the end of a
3555               // structure for instance).
3556               GV->setName(StringRef());
3557               // Make a new global with the correct type, this is now guaranteed
3558               // to work.
3559               auto *NewGV = cast<llvm::GlobalVariable>(
3560                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3561                       ->stripPointerCasts());
3562 
3563               // Erase the old global, since it is no longer used.
3564               GV->eraseFromParent();
3565               GV = NewGV;
3566             } else {
3567               GV->setInitializer(Init);
3568               GV->setConstant(true);
3569               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3570             }
3571             emitter.finalize(GV);
3572           }
3573         }
3574       }
3575     }
3576   }
3577 
3578   if (GV->isDeclaration())
3579     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3580 
3581   LangAS ExpectedAS =
3582       D ? D->getType().getAddressSpace()
3583         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3584   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3585          Ty->getPointerAddressSpace());
3586   if (AddrSpace != ExpectedAS)
3587     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3588                                                        ExpectedAS, Ty);
3589 
3590   return GV;
3591 }
3592 
3593 llvm::Constant *
3594 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3595                                ForDefinition_t IsForDefinition) {
3596   const Decl *D = GD.getDecl();
3597   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3598     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3599                                 /*DontDefer=*/false, IsForDefinition);
3600   else if (isa<CXXMethodDecl>(D)) {
3601     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3602         cast<CXXMethodDecl>(D));
3603     auto Ty = getTypes().GetFunctionType(*FInfo);
3604     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3605                              IsForDefinition);
3606   } else if (isa<FunctionDecl>(D)) {
3607     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3608     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3609     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3610                              IsForDefinition);
3611   } else
3612     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3613                               IsForDefinition);
3614 }
3615 
3616 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3617     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3618     unsigned Alignment) {
3619   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3620   llvm::GlobalVariable *OldGV = nullptr;
3621 
3622   if (GV) {
3623     // Check if the variable has the right type.
3624     if (GV->getType()->getElementType() == Ty)
3625       return GV;
3626 
3627     // Because C++ name mangling, the only way we can end up with an already
3628     // existing global with the same name is if it has been declared extern "C".
3629     assert(GV->isDeclaration() && "Declaration has wrong type!");
3630     OldGV = GV;
3631   }
3632 
3633   // Create a new variable.
3634   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3635                                 Linkage, nullptr, Name);
3636 
3637   if (OldGV) {
3638     // Replace occurrences of the old variable if needed.
3639     GV->takeName(OldGV);
3640 
3641     if (!OldGV->use_empty()) {
3642       llvm::Constant *NewPtrForOldDecl =
3643       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3644       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3645     }
3646 
3647     OldGV->eraseFromParent();
3648   }
3649 
3650   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3651       !GV->hasAvailableExternallyLinkage())
3652     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3653 
3654   GV->setAlignment(llvm::MaybeAlign(Alignment));
3655 
3656   return GV;
3657 }
3658 
3659 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3660 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3661 /// then it will be created with the specified type instead of whatever the
3662 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3663 /// that an actual global with type Ty will be returned, not conversion of a
3664 /// variable with the same mangled name but some other type.
3665 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3666                                                   llvm::Type *Ty,
3667                                            ForDefinition_t IsForDefinition) {
3668   assert(D->hasGlobalStorage() && "Not a global variable");
3669   QualType ASTTy = D->getType();
3670   if (!Ty)
3671     Ty = getTypes().ConvertTypeForMem(ASTTy);
3672 
3673   llvm::PointerType *PTy =
3674     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3675 
3676   StringRef MangledName = getMangledName(D);
3677   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3678 }
3679 
3680 /// CreateRuntimeVariable - Create a new runtime global variable with the
3681 /// specified type and name.
3682 llvm::Constant *
3683 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3684                                      StringRef Name) {
3685   auto PtrTy =
3686       getContext().getLangOpts().OpenCL
3687           ? llvm::PointerType::get(
3688                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3689           : llvm::PointerType::getUnqual(Ty);
3690   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3691   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3692   return Ret;
3693 }
3694 
3695 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3696   assert(!D->getInit() && "Cannot emit definite definitions here!");
3697 
3698   StringRef MangledName = getMangledName(D);
3699   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3700 
3701   // We already have a definition, not declaration, with the same mangled name.
3702   // Emitting of declaration is not required (and actually overwrites emitted
3703   // definition).
3704   if (GV && !GV->isDeclaration())
3705     return;
3706 
3707   // If we have not seen a reference to this variable yet, place it into the
3708   // deferred declarations table to be emitted if needed later.
3709   if (!MustBeEmitted(D) && !GV) {
3710       DeferredDecls[MangledName] = D;
3711       return;
3712   }
3713 
3714   // The tentative definition is the only definition.
3715   EmitGlobalVarDefinition(D);
3716 }
3717 
3718 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3719   return Context.toCharUnitsFromBits(
3720       getDataLayout().getTypeStoreSizeInBits(Ty));
3721 }
3722 
3723 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3724   LangAS AddrSpace = LangAS::Default;
3725   if (LangOpts.OpenCL) {
3726     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3727     assert(AddrSpace == LangAS::opencl_global ||
3728            AddrSpace == LangAS::opencl_constant ||
3729            AddrSpace == LangAS::opencl_local ||
3730            AddrSpace >= LangAS::FirstTargetAddressSpace);
3731     return AddrSpace;
3732   }
3733 
3734   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3735     if (D && D->hasAttr<CUDAConstantAttr>())
3736       return LangAS::cuda_constant;
3737     else if (D && D->hasAttr<CUDASharedAttr>())
3738       return LangAS::cuda_shared;
3739     else if (D && D->hasAttr<CUDADeviceAttr>())
3740       return LangAS::cuda_device;
3741     else if (D && D->getType().isConstQualified())
3742       return LangAS::cuda_constant;
3743     else
3744       return LangAS::cuda_device;
3745   }
3746 
3747   if (LangOpts.OpenMP) {
3748     LangAS AS;
3749     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3750       return AS;
3751   }
3752   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3753 }
3754 
3755 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3756   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3757   if (LangOpts.OpenCL)
3758     return LangAS::opencl_constant;
3759   if (auto AS = getTarget().getConstantAddressSpace())
3760     return AS.getValue();
3761   return LangAS::Default;
3762 }
3763 
3764 // In address space agnostic languages, string literals are in default address
3765 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3766 // emitted in constant address space in LLVM IR. To be consistent with other
3767 // parts of AST, string literal global variables in constant address space
3768 // need to be casted to default address space before being put into address
3769 // map and referenced by other part of CodeGen.
3770 // In OpenCL, string literals are in constant address space in AST, therefore
3771 // they should not be casted to default address space.
3772 static llvm::Constant *
3773 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3774                                        llvm::GlobalVariable *GV) {
3775   llvm::Constant *Cast = GV;
3776   if (!CGM.getLangOpts().OpenCL) {
3777     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3778       if (AS != LangAS::Default)
3779         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3780             CGM, GV, AS.getValue(), LangAS::Default,
3781             GV->getValueType()->getPointerTo(
3782                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3783     }
3784   }
3785   return Cast;
3786 }
3787 
3788 template<typename SomeDecl>
3789 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3790                                                llvm::GlobalValue *GV) {
3791   if (!getLangOpts().CPlusPlus)
3792     return;
3793 
3794   // Must have 'used' attribute, or else inline assembly can't rely on
3795   // the name existing.
3796   if (!D->template hasAttr<UsedAttr>())
3797     return;
3798 
3799   // Must have internal linkage and an ordinary name.
3800   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3801     return;
3802 
3803   // Must be in an extern "C" context. Entities declared directly within
3804   // a record are not extern "C" even if the record is in such a context.
3805   const SomeDecl *First = D->getFirstDecl();
3806   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3807     return;
3808 
3809   // OK, this is an internal linkage entity inside an extern "C" linkage
3810   // specification. Make a note of that so we can give it the "expected"
3811   // mangled name if nothing else is using that name.
3812   std::pair<StaticExternCMap::iterator, bool> R =
3813       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3814 
3815   // If we have multiple internal linkage entities with the same name
3816   // in extern "C" regions, none of them gets that name.
3817   if (!R.second)
3818     R.first->second = nullptr;
3819 }
3820 
3821 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3822   if (!CGM.supportsCOMDAT())
3823     return false;
3824 
3825   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3826   // them being "merged" by the COMDAT Folding linker optimization.
3827   if (D.hasAttr<CUDAGlobalAttr>())
3828     return false;
3829 
3830   if (D.hasAttr<SelectAnyAttr>())
3831     return true;
3832 
3833   GVALinkage Linkage;
3834   if (auto *VD = dyn_cast<VarDecl>(&D))
3835     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3836   else
3837     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3838 
3839   switch (Linkage) {
3840   case GVA_Internal:
3841   case GVA_AvailableExternally:
3842   case GVA_StrongExternal:
3843     return false;
3844   case GVA_DiscardableODR:
3845   case GVA_StrongODR:
3846     return true;
3847   }
3848   llvm_unreachable("No such linkage");
3849 }
3850 
3851 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3852                                           llvm::GlobalObject &GO) {
3853   if (!shouldBeInCOMDAT(*this, D))
3854     return;
3855   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3856 }
3857 
3858 /// Pass IsTentative as true if you want to create a tentative definition.
3859 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3860                                             bool IsTentative) {
3861   // OpenCL global variables of sampler type are translated to function calls,
3862   // therefore no need to be translated.
3863   QualType ASTTy = D->getType();
3864   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3865     return;
3866 
3867   // If this is OpenMP device, check if it is legal to emit this global
3868   // normally.
3869   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3870       OpenMPRuntime->emitTargetGlobalVariable(D))
3871     return;
3872 
3873   llvm::Constant *Init = nullptr;
3874   bool NeedsGlobalCtor = false;
3875   bool NeedsGlobalDtor =
3876       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
3877 
3878   const VarDecl *InitDecl;
3879   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3880 
3881   Optional<ConstantEmitter> emitter;
3882 
3883   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3884   // as part of their declaration."  Sema has already checked for
3885   // error cases, so we just need to set Init to UndefValue.
3886   bool IsCUDASharedVar =
3887       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3888   // Shadows of initialized device-side global variables are also left
3889   // undefined.
3890   bool IsCUDAShadowVar =
3891       !getLangOpts().CUDAIsDevice &&
3892       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3893        D->hasAttr<CUDASharedAttr>());
3894   // HIP pinned shadow of initialized host-side global variables are also
3895   // left undefined.
3896   bool IsHIPPinnedShadowVar =
3897       getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>();
3898   if (getLangOpts().CUDA &&
3899       (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar))
3900     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3901   else if (!InitExpr) {
3902     // This is a tentative definition; tentative definitions are
3903     // implicitly initialized with { 0 }.
3904     //
3905     // Note that tentative definitions are only emitted at the end of
3906     // a translation unit, so they should never have incomplete
3907     // type. In addition, EmitTentativeDefinition makes sure that we
3908     // never attempt to emit a tentative definition if a real one
3909     // exists. A use may still exists, however, so we still may need
3910     // to do a RAUW.
3911     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3912     Init = EmitNullConstant(D->getType());
3913   } else {
3914     initializedGlobalDecl = GlobalDecl(D);
3915     emitter.emplace(*this);
3916     Init = emitter->tryEmitForInitializer(*InitDecl);
3917 
3918     if (!Init) {
3919       QualType T = InitExpr->getType();
3920       if (D->getType()->isReferenceType())
3921         T = D->getType();
3922 
3923       if (getLangOpts().CPlusPlus) {
3924         Init = EmitNullConstant(T);
3925         NeedsGlobalCtor = true;
3926       } else {
3927         ErrorUnsupported(D, "static initializer");
3928         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3929       }
3930     } else {
3931       // We don't need an initializer, so remove the entry for the delayed
3932       // initializer position (just in case this entry was delayed) if we
3933       // also don't need to register a destructor.
3934       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3935         DelayedCXXInitPosition.erase(D);
3936     }
3937   }
3938 
3939   llvm::Type* InitType = Init->getType();
3940   llvm::Constant *Entry =
3941       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3942 
3943   // Strip off pointer casts if we got them.
3944   Entry = Entry->stripPointerCasts();
3945 
3946   // Entry is now either a Function or GlobalVariable.
3947   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3948 
3949   // We have a definition after a declaration with the wrong type.
3950   // We must make a new GlobalVariable* and update everything that used OldGV
3951   // (a declaration or tentative definition) with the new GlobalVariable*
3952   // (which will be a definition).
3953   //
3954   // This happens if there is a prototype for a global (e.g.
3955   // "extern int x[];") and then a definition of a different type (e.g.
3956   // "int x[10];"). This also happens when an initializer has a different type
3957   // from the type of the global (this happens with unions).
3958   if (!GV || GV->getType()->getElementType() != InitType ||
3959       GV->getType()->getAddressSpace() !=
3960           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3961 
3962     // Move the old entry aside so that we'll create a new one.
3963     Entry->setName(StringRef());
3964 
3965     // Make a new global with the correct type, this is now guaranteed to work.
3966     GV = cast<llvm::GlobalVariable>(
3967         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
3968             ->stripPointerCasts());
3969 
3970     // Replace all uses of the old global with the new global
3971     llvm::Constant *NewPtrForOldDecl =
3972         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3973     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3974 
3975     // Erase the old global, since it is no longer used.
3976     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3977   }
3978 
3979   MaybeHandleStaticInExternC(D, GV);
3980 
3981   if (D->hasAttr<AnnotateAttr>())
3982     AddGlobalAnnotations(D, GV);
3983 
3984   // Set the llvm linkage type as appropriate.
3985   llvm::GlobalValue::LinkageTypes Linkage =
3986       getLLVMLinkageVarDefinition(D, GV->isConstant());
3987 
3988   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3989   // the device. [...]"
3990   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3991   // __device__, declares a variable that: [...]
3992   // Is accessible from all the threads within the grid and from the host
3993   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3994   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3995   if (GV && LangOpts.CUDA) {
3996     if (LangOpts.CUDAIsDevice) {
3997       if (Linkage != llvm::GlobalValue::InternalLinkage &&
3998           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
3999         GV->setExternallyInitialized(true);
4000     } else {
4001       // Host-side shadows of external declarations of device-side
4002       // global variables become internal definitions. These have to
4003       // be internal in order to prevent name conflicts with global
4004       // host variables with the same name in a different TUs.
4005       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4006           D->hasAttr<HIPPinnedShadowAttr>()) {
4007         Linkage = llvm::GlobalValue::InternalLinkage;
4008 
4009         // Shadow variables and their properties must be registered
4010         // with CUDA runtime.
4011         unsigned Flags = 0;
4012         if (!D->hasDefinition())
4013           Flags |= CGCUDARuntime::ExternDeviceVar;
4014         if (D->hasAttr<CUDAConstantAttr>())
4015           Flags |= CGCUDARuntime::ConstantDeviceVar;
4016         // Extern global variables will be registered in the TU where they are
4017         // defined.
4018         if (!D->hasExternalStorage())
4019           getCUDARuntime().registerDeviceVar(D, *GV, Flags);
4020       } else if (D->hasAttr<CUDASharedAttr>())
4021         // __shared__ variables are odd. Shadows do get created, but
4022         // they are not registered with the CUDA runtime, so they
4023         // can't really be used to access their device-side
4024         // counterparts. It's not clear yet whether it's nvcc's bug or
4025         // a feature, but we've got to do the same for compatibility.
4026         Linkage = llvm::GlobalValue::InternalLinkage;
4027     }
4028   }
4029 
4030   if (!IsHIPPinnedShadowVar)
4031     GV->setInitializer(Init);
4032   if (emitter) emitter->finalize(GV);
4033 
4034   // If it is safe to mark the global 'constant', do so now.
4035   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4036                   isTypeConstant(D->getType(), true));
4037 
4038   // If it is in a read-only section, mark it 'constant'.
4039   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4040     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4041     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4042       GV->setConstant(true);
4043   }
4044 
4045   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4046 
4047   // On Darwin, if the normal linkage of a C++ thread_local variable is
4048   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
4049   // copies within a linkage unit; otherwise, the backing variable has
4050   // internal linkage and all accesses should just be calls to the
4051   // Itanium-specified entry point, which has the normal linkage of the
4052   // variable. This is to preserve the ability to change the implementation
4053   // behind the scenes.
4054   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
4055       Context.getTargetInfo().getTriple().isOSDarwin() &&
4056       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
4057       !llvm::GlobalVariable::isWeakLinkage(Linkage))
4058     Linkage = llvm::GlobalValue::InternalLinkage;
4059 
4060   GV->setLinkage(Linkage);
4061   if (D->hasAttr<DLLImportAttr>())
4062     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4063   else if (D->hasAttr<DLLExportAttr>())
4064     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4065   else
4066     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4067 
4068   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4069     // common vars aren't constant even if declared const.
4070     GV->setConstant(false);
4071     // Tentative definition of global variables may be initialized with
4072     // non-zero null pointers. In this case they should have weak linkage
4073     // since common linkage must have zero initializer and must not have
4074     // explicit section therefore cannot have non-zero initial value.
4075     if (!GV->getInitializer()->isNullValue())
4076       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4077   }
4078 
4079   setNonAliasAttributes(D, GV);
4080 
4081   if (D->getTLSKind() && !GV->isThreadLocal()) {
4082     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4083       CXXThreadLocals.push_back(D);
4084     setTLSMode(GV, *D);
4085   }
4086 
4087   maybeSetTrivialComdat(*D, *GV);
4088 
4089   // Emit the initializer function if necessary.
4090   if (NeedsGlobalCtor || NeedsGlobalDtor)
4091     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4092 
4093   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4094 
4095   // Emit global variable debug information.
4096   if (CGDebugInfo *DI = getModuleDebugInfo())
4097     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4098       DI->EmitGlobalVariable(GV, D);
4099 }
4100 
4101 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4102                                       CodeGenModule &CGM, const VarDecl *D,
4103                                       bool NoCommon) {
4104   // Don't give variables common linkage if -fno-common was specified unless it
4105   // was overridden by a NoCommon attribute.
4106   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4107     return true;
4108 
4109   // C11 6.9.2/2:
4110   //   A declaration of an identifier for an object that has file scope without
4111   //   an initializer, and without a storage-class specifier or with the
4112   //   storage-class specifier static, constitutes a tentative definition.
4113   if (D->getInit() || D->hasExternalStorage())
4114     return true;
4115 
4116   // A variable cannot be both common and exist in a section.
4117   if (D->hasAttr<SectionAttr>())
4118     return true;
4119 
4120   // A variable cannot be both common and exist in a section.
4121   // We don't try to determine which is the right section in the front-end.
4122   // If no specialized section name is applicable, it will resort to default.
4123   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4124       D->hasAttr<PragmaClangDataSectionAttr>() ||
4125       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4126       D->hasAttr<PragmaClangRodataSectionAttr>())
4127     return true;
4128 
4129   // Thread local vars aren't considered common linkage.
4130   if (D->getTLSKind())
4131     return true;
4132 
4133   // Tentative definitions marked with WeakImportAttr are true definitions.
4134   if (D->hasAttr<WeakImportAttr>())
4135     return true;
4136 
4137   // A variable cannot be both common and exist in a comdat.
4138   if (shouldBeInCOMDAT(CGM, *D))
4139     return true;
4140 
4141   // Declarations with a required alignment do not have common linkage in MSVC
4142   // mode.
4143   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4144     if (D->hasAttr<AlignedAttr>())
4145       return true;
4146     QualType VarType = D->getType();
4147     if (Context.isAlignmentRequired(VarType))
4148       return true;
4149 
4150     if (const auto *RT = VarType->getAs<RecordType>()) {
4151       const RecordDecl *RD = RT->getDecl();
4152       for (const FieldDecl *FD : RD->fields()) {
4153         if (FD->isBitField())
4154           continue;
4155         if (FD->hasAttr<AlignedAttr>())
4156           return true;
4157         if (Context.isAlignmentRequired(FD->getType()))
4158           return true;
4159       }
4160     }
4161   }
4162 
4163   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4164   // common symbols, so symbols with greater alignment requirements cannot be
4165   // common.
4166   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4167   // alignments for common symbols via the aligncomm directive, so this
4168   // restriction only applies to MSVC environments.
4169   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4170       Context.getTypeAlignIfKnown(D->getType()) >
4171           Context.toBits(CharUnits::fromQuantity(32)))
4172     return true;
4173 
4174   return false;
4175 }
4176 
4177 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4178     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4179   if (Linkage == GVA_Internal)
4180     return llvm::Function::InternalLinkage;
4181 
4182   if (D->hasAttr<WeakAttr>()) {
4183     if (IsConstantVariable)
4184       return llvm::GlobalVariable::WeakODRLinkage;
4185     else
4186       return llvm::GlobalVariable::WeakAnyLinkage;
4187   }
4188 
4189   if (const auto *FD = D->getAsFunction())
4190     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4191       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4192 
4193   // We are guaranteed to have a strong definition somewhere else,
4194   // so we can use available_externally linkage.
4195   if (Linkage == GVA_AvailableExternally)
4196     return llvm::GlobalValue::AvailableExternallyLinkage;
4197 
4198   // Note that Apple's kernel linker doesn't support symbol
4199   // coalescing, so we need to avoid linkonce and weak linkages there.
4200   // Normally, this means we just map to internal, but for explicit
4201   // instantiations we'll map to external.
4202 
4203   // In C++, the compiler has to emit a definition in every translation unit
4204   // that references the function.  We should use linkonce_odr because
4205   // a) if all references in this translation unit are optimized away, we
4206   // don't need to codegen it.  b) if the function persists, it needs to be
4207   // merged with other definitions. c) C++ has the ODR, so we know the
4208   // definition is dependable.
4209   if (Linkage == GVA_DiscardableODR)
4210     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4211                                             : llvm::Function::InternalLinkage;
4212 
4213   // An explicit instantiation of a template has weak linkage, since
4214   // explicit instantiations can occur in multiple translation units
4215   // and must all be equivalent. However, we are not allowed to
4216   // throw away these explicit instantiations.
4217   //
4218   // We don't currently support CUDA device code spread out across multiple TUs,
4219   // so say that CUDA templates are either external (for kernels) or internal.
4220   // This lets llvm perform aggressive inter-procedural optimizations.
4221   if (Linkage == GVA_StrongODR) {
4222     if (Context.getLangOpts().AppleKext)
4223       return llvm::Function::ExternalLinkage;
4224     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4225       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4226                                           : llvm::Function::InternalLinkage;
4227     return llvm::Function::WeakODRLinkage;
4228   }
4229 
4230   // C++ doesn't have tentative definitions and thus cannot have common
4231   // linkage.
4232   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4233       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4234                                  CodeGenOpts.NoCommon))
4235     return llvm::GlobalVariable::CommonLinkage;
4236 
4237   // selectany symbols are externally visible, so use weak instead of
4238   // linkonce.  MSVC optimizes away references to const selectany globals, so
4239   // all definitions should be the same and ODR linkage should be used.
4240   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4241   if (D->hasAttr<SelectAnyAttr>())
4242     return llvm::GlobalVariable::WeakODRLinkage;
4243 
4244   // Otherwise, we have strong external linkage.
4245   assert(Linkage == GVA_StrongExternal);
4246   return llvm::GlobalVariable::ExternalLinkage;
4247 }
4248 
4249 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4250     const VarDecl *VD, bool IsConstant) {
4251   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4252   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4253 }
4254 
4255 /// Replace the uses of a function that was declared with a non-proto type.
4256 /// We want to silently drop extra arguments from call sites
4257 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4258                                           llvm::Function *newFn) {
4259   // Fast path.
4260   if (old->use_empty()) return;
4261 
4262   llvm::Type *newRetTy = newFn->getReturnType();
4263   SmallVector<llvm::Value*, 4> newArgs;
4264   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4265 
4266   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4267          ui != ue; ) {
4268     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4269     llvm::User *user = use->getUser();
4270 
4271     // Recognize and replace uses of bitcasts.  Most calls to
4272     // unprototyped functions will use bitcasts.
4273     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4274       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4275         replaceUsesOfNonProtoConstant(bitcast, newFn);
4276       continue;
4277     }
4278 
4279     // Recognize calls to the function.
4280     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4281     if (!callSite) continue;
4282     if (!callSite->isCallee(&*use))
4283       continue;
4284 
4285     // If the return types don't match exactly, then we can't
4286     // transform this call unless it's dead.
4287     if (callSite->getType() != newRetTy && !callSite->use_empty())
4288       continue;
4289 
4290     // Get the call site's attribute list.
4291     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4292     llvm::AttributeList oldAttrs = callSite->getAttributes();
4293 
4294     // If the function was passed too few arguments, don't transform.
4295     unsigned newNumArgs = newFn->arg_size();
4296     if (callSite->arg_size() < newNumArgs)
4297       continue;
4298 
4299     // If extra arguments were passed, we silently drop them.
4300     // If any of the types mismatch, we don't transform.
4301     unsigned argNo = 0;
4302     bool dontTransform = false;
4303     for (llvm::Argument &A : newFn->args()) {
4304       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4305         dontTransform = true;
4306         break;
4307       }
4308 
4309       // Add any parameter attributes.
4310       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4311       argNo++;
4312     }
4313     if (dontTransform)
4314       continue;
4315 
4316     // Okay, we can transform this.  Create the new call instruction and copy
4317     // over the required information.
4318     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4319 
4320     // Copy over any operand bundles.
4321     callSite->getOperandBundlesAsDefs(newBundles);
4322 
4323     llvm::CallBase *newCall;
4324     if (dyn_cast<llvm::CallInst>(callSite)) {
4325       newCall =
4326           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4327     } else {
4328       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4329       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4330                                          oldInvoke->getUnwindDest(), newArgs,
4331                                          newBundles, "", callSite);
4332     }
4333     newArgs.clear(); // for the next iteration
4334 
4335     if (!newCall->getType()->isVoidTy())
4336       newCall->takeName(callSite);
4337     newCall->setAttributes(llvm::AttributeList::get(
4338         newFn->getContext(), oldAttrs.getFnAttributes(),
4339         oldAttrs.getRetAttributes(), newArgAttrs));
4340     newCall->setCallingConv(callSite->getCallingConv());
4341 
4342     // Finally, remove the old call, replacing any uses with the new one.
4343     if (!callSite->use_empty())
4344       callSite->replaceAllUsesWith(newCall);
4345 
4346     // Copy debug location attached to CI.
4347     if (callSite->getDebugLoc())
4348       newCall->setDebugLoc(callSite->getDebugLoc());
4349 
4350     callSite->eraseFromParent();
4351   }
4352 }
4353 
4354 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4355 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4356 /// existing call uses of the old function in the module, this adjusts them to
4357 /// call the new function directly.
4358 ///
4359 /// This is not just a cleanup: the always_inline pass requires direct calls to
4360 /// functions to be able to inline them.  If there is a bitcast in the way, it
4361 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4362 /// run at -O0.
4363 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4364                                                       llvm::Function *NewFn) {
4365   // If we're redefining a global as a function, don't transform it.
4366   if (!isa<llvm::Function>(Old)) return;
4367 
4368   replaceUsesOfNonProtoConstant(Old, NewFn);
4369 }
4370 
4371 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4372   auto DK = VD->isThisDeclarationADefinition();
4373   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4374     return;
4375 
4376   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4377   // If we have a definition, this might be a deferred decl. If the
4378   // instantiation is explicit, make sure we emit it at the end.
4379   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4380     GetAddrOfGlobalVar(VD);
4381 
4382   EmitTopLevelDecl(VD);
4383 }
4384 
4385 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4386                                                  llvm::GlobalValue *GV) {
4387   // Check if this must be emitted as declare variant.
4388   if (LangOpts.OpenMP && OpenMPRuntime &&
4389       OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true))
4390     return;
4391 
4392   const auto *D = cast<FunctionDecl>(GD.getDecl());
4393 
4394   // Compute the function info and LLVM type.
4395   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4396   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4397 
4398   // Get or create the prototype for the function.
4399   if (!GV || (GV->getType()->getElementType() != Ty))
4400     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4401                                                    /*DontDefer=*/true,
4402                                                    ForDefinition));
4403 
4404   // Already emitted.
4405   if (!GV->isDeclaration())
4406     return;
4407 
4408   // We need to set linkage and visibility on the function before
4409   // generating code for it because various parts of IR generation
4410   // want to propagate this information down (e.g. to local static
4411   // declarations).
4412   auto *Fn = cast<llvm::Function>(GV);
4413   setFunctionLinkage(GD, Fn);
4414 
4415   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4416   setGVProperties(Fn, GD);
4417 
4418   MaybeHandleStaticInExternC(D, Fn);
4419 
4420 
4421   maybeSetTrivialComdat(*D, *Fn);
4422 
4423   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4424 
4425   setNonAliasAttributes(GD, Fn);
4426   SetLLVMFunctionAttributesForDefinition(D, Fn);
4427 
4428   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4429     AddGlobalCtor(Fn, CA->getPriority());
4430   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4431     AddGlobalDtor(Fn, DA->getPriority());
4432   if (D->hasAttr<AnnotateAttr>())
4433     AddGlobalAnnotations(D, Fn);
4434 }
4435 
4436 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4437   const auto *D = cast<ValueDecl>(GD.getDecl());
4438   const AliasAttr *AA = D->getAttr<AliasAttr>();
4439   assert(AA && "Not an alias?");
4440 
4441   StringRef MangledName = getMangledName(GD);
4442 
4443   if (AA->getAliasee() == MangledName) {
4444     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4445     return;
4446   }
4447 
4448   // If there is a definition in the module, then it wins over the alias.
4449   // This is dubious, but allow it to be safe.  Just ignore the alias.
4450   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4451   if (Entry && !Entry->isDeclaration())
4452     return;
4453 
4454   Aliases.push_back(GD);
4455 
4456   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4457 
4458   // Create a reference to the named value.  This ensures that it is emitted
4459   // if a deferred decl.
4460   llvm::Constant *Aliasee;
4461   llvm::GlobalValue::LinkageTypes LT;
4462   if (isa<llvm::FunctionType>(DeclTy)) {
4463     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4464                                       /*ForVTable=*/false);
4465     LT = getFunctionLinkage(GD);
4466   } else {
4467     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4468                                     llvm::PointerType::getUnqual(DeclTy),
4469                                     /*D=*/nullptr);
4470     LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4471                                      D->getType().isConstQualified());
4472   }
4473 
4474   // Create the new alias itself, but don't set a name yet.
4475   auto *GA =
4476       llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule());
4477 
4478   if (Entry) {
4479     if (GA->getAliasee() == Entry) {
4480       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4481       return;
4482     }
4483 
4484     assert(Entry->isDeclaration());
4485 
4486     // If there is a declaration in the module, then we had an extern followed
4487     // by the alias, as in:
4488     //   extern int test6();
4489     //   ...
4490     //   int test6() __attribute__((alias("test7")));
4491     //
4492     // Remove it and replace uses of it with the alias.
4493     GA->takeName(Entry);
4494 
4495     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4496                                                           Entry->getType()));
4497     Entry->eraseFromParent();
4498   } else {
4499     GA->setName(MangledName);
4500   }
4501 
4502   // Set attributes which are particular to an alias; this is a
4503   // specialization of the attributes which may be set on a global
4504   // variable/function.
4505   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4506       D->isWeakImported()) {
4507     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4508   }
4509 
4510   if (const auto *VD = dyn_cast<VarDecl>(D))
4511     if (VD->getTLSKind())
4512       setTLSMode(GA, *VD);
4513 
4514   SetCommonAttributes(GD, GA);
4515 }
4516 
4517 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4518   const auto *D = cast<ValueDecl>(GD.getDecl());
4519   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4520   assert(IFA && "Not an ifunc?");
4521 
4522   StringRef MangledName = getMangledName(GD);
4523 
4524   if (IFA->getResolver() == MangledName) {
4525     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4526     return;
4527   }
4528 
4529   // Report an error if some definition overrides ifunc.
4530   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4531   if (Entry && !Entry->isDeclaration()) {
4532     GlobalDecl OtherGD;
4533     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4534         DiagnosedConflictingDefinitions.insert(GD).second) {
4535       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4536           << MangledName;
4537       Diags.Report(OtherGD.getDecl()->getLocation(),
4538                    diag::note_previous_definition);
4539     }
4540     return;
4541   }
4542 
4543   Aliases.push_back(GD);
4544 
4545   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4546   llvm::Constant *Resolver =
4547       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4548                               /*ForVTable=*/false);
4549   llvm::GlobalIFunc *GIF =
4550       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4551                                 "", Resolver, &getModule());
4552   if (Entry) {
4553     if (GIF->getResolver() == Entry) {
4554       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4555       return;
4556     }
4557     assert(Entry->isDeclaration());
4558 
4559     // If there is a declaration in the module, then we had an extern followed
4560     // by the ifunc, as in:
4561     //   extern int test();
4562     //   ...
4563     //   int test() __attribute__((ifunc("resolver")));
4564     //
4565     // Remove it and replace uses of it with the ifunc.
4566     GIF->takeName(Entry);
4567 
4568     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4569                                                           Entry->getType()));
4570     Entry->eraseFromParent();
4571   } else
4572     GIF->setName(MangledName);
4573 
4574   SetCommonAttributes(GD, GIF);
4575 }
4576 
4577 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4578                                             ArrayRef<llvm::Type*> Tys) {
4579   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4580                                          Tys);
4581 }
4582 
4583 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4584 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4585                          const StringLiteral *Literal, bool TargetIsLSB,
4586                          bool &IsUTF16, unsigned &StringLength) {
4587   StringRef String = Literal->getString();
4588   unsigned NumBytes = String.size();
4589 
4590   // Check for simple case.
4591   if (!Literal->containsNonAsciiOrNull()) {
4592     StringLength = NumBytes;
4593     return *Map.insert(std::make_pair(String, nullptr)).first;
4594   }
4595 
4596   // Otherwise, convert the UTF8 literals into a string of shorts.
4597   IsUTF16 = true;
4598 
4599   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4600   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4601   llvm::UTF16 *ToPtr = &ToBuf[0];
4602 
4603   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4604                                  ToPtr + NumBytes, llvm::strictConversion);
4605 
4606   // ConvertUTF8toUTF16 returns the length in ToPtr.
4607   StringLength = ToPtr - &ToBuf[0];
4608 
4609   // Add an explicit null.
4610   *ToPtr = 0;
4611   return *Map.insert(std::make_pair(
4612                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4613                                    (StringLength + 1) * 2),
4614                          nullptr)).first;
4615 }
4616 
4617 ConstantAddress
4618 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4619   unsigned StringLength = 0;
4620   bool isUTF16 = false;
4621   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4622       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4623                                getDataLayout().isLittleEndian(), isUTF16,
4624                                StringLength);
4625 
4626   if (auto *C = Entry.second)
4627     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4628 
4629   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4630   llvm::Constant *Zeros[] = { Zero, Zero };
4631 
4632   const ASTContext &Context = getContext();
4633   const llvm::Triple &Triple = getTriple();
4634 
4635   const auto CFRuntime = getLangOpts().CFRuntime;
4636   const bool IsSwiftABI =
4637       static_cast<unsigned>(CFRuntime) >=
4638       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4639   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4640 
4641   // If we don't already have it, get __CFConstantStringClassReference.
4642   if (!CFConstantStringClassRef) {
4643     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4644     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4645     Ty = llvm::ArrayType::get(Ty, 0);
4646 
4647     switch (CFRuntime) {
4648     default: break;
4649     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4650     case LangOptions::CoreFoundationABI::Swift5_0:
4651       CFConstantStringClassName =
4652           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4653                               : "$s10Foundation19_NSCFConstantStringCN";
4654       Ty = IntPtrTy;
4655       break;
4656     case LangOptions::CoreFoundationABI::Swift4_2:
4657       CFConstantStringClassName =
4658           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4659                               : "$S10Foundation19_NSCFConstantStringCN";
4660       Ty = IntPtrTy;
4661       break;
4662     case LangOptions::CoreFoundationABI::Swift4_1:
4663       CFConstantStringClassName =
4664           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4665                               : "__T010Foundation19_NSCFConstantStringCN";
4666       Ty = IntPtrTy;
4667       break;
4668     }
4669 
4670     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4671 
4672     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4673       llvm::GlobalValue *GV = nullptr;
4674 
4675       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4676         IdentifierInfo &II = Context.Idents.get(GV->getName());
4677         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4678         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4679 
4680         const VarDecl *VD = nullptr;
4681         for (const auto &Result : DC->lookup(&II))
4682           if ((VD = dyn_cast<VarDecl>(Result)))
4683             break;
4684 
4685         if (Triple.isOSBinFormatELF()) {
4686           if (!VD)
4687             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4688         } else {
4689           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4690           if (!VD || !VD->hasAttr<DLLExportAttr>())
4691             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4692           else
4693             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4694         }
4695 
4696         setDSOLocal(GV);
4697       }
4698     }
4699 
4700     // Decay array -> ptr
4701     CFConstantStringClassRef =
4702         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4703                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4704   }
4705 
4706   QualType CFTy = Context.getCFConstantStringType();
4707 
4708   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4709 
4710   ConstantInitBuilder Builder(*this);
4711   auto Fields = Builder.beginStruct(STy);
4712 
4713   // Class pointer.
4714   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4715 
4716   // Flags.
4717   if (IsSwiftABI) {
4718     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4719     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4720   } else {
4721     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4722   }
4723 
4724   // String pointer.
4725   llvm::Constant *C = nullptr;
4726   if (isUTF16) {
4727     auto Arr = llvm::makeArrayRef(
4728         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4729         Entry.first().size() / 2);
4730     C = llvm::ConstantDataArray::get(VMContext, Arr);
4731   } else {
4732     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4733   }
4734 
4735   // Note: -fwritable-strings doesn't make the backing store strings of
4736   // CFStrings writable. (See <rdar://problem/10657500>)
4737   auto *GV =
4738       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4739                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4740   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4741   // Don't enforce the target's minimum global alignment, since the only use
4742   // of the string is via this class initializer.
4743   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4744                             : Context.getTypeAlignInChars(Context.CharTy);
4745   GV->setAlignment(Align.getAsAlign());
4746 
4747   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4748   // Without it LLVM can merge the string with a non unnamed_addr one during
4749   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4750   if (Triple.isOSBinFormatMachO())
4751     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4752                            : "__TEXT,__cstring,cstring_literals");
4753   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4754   // the static linker to adjust permissions to read-only later on.
4755   else if (Triple.isOSBinFormatELF())
4756     GV->setSection(".rodata");
4757 
4758   // String.
4759   llvm::Constant *Str =
4760       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4761 
4762   if (isUTF16)
4763     // Cast the UTF16 string to the correct type.
4764     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4765   Fields.add(Str);
4766 
4767   // String length.
4768   llvm::IntegerType *LengthTy =
4769       llvm::IntegerType::get(getModule().getContext(),
4770                              Context.getTargetInfo().getLongWidth());
4771   if (IsSwiftABI) {
4772     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4773         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4774       LengthTy = Int32Ty;
4775     else
4776       LengthTy = IntPtrTy;
4777   }
4778   Fields.addInt(LengthTy, StringLength);
4779 
4780   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4781   // properly aligned on 32-bit platforms.
4782   CharUnits Alignment =
4783       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4784 
4785   // The struct.
4786   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4787                                     /*isConstant=*/false,
4788                                     llvm::GlobalVariable::PrivateLinkage);
4789   GV->addAttribute("objc_arc_inert");
4790   switch (Triple.getObjectFormat()) {
4791   case llvm::Triple::UnknownObjectFormat:
4792     llvm_unreachable("unknown file format");
4793   case llvm::Triple::XCOFF:
4794     llvm_unreachable("XCOFF is not yet implemented");
4795   case llvm::Triple::COFF:
4796   case llvm::Triple::ELF:
4797   case llvm::Triple::Wasm:
4798     GV->setSection("cfstring");
4799     break;
4800   case llvm::Triple::MachO:
4801     GV->setSection("__DATA,__cfstring");
4802     break;
4803   }
4804   Entry.second = GV;
4805 
4806   return ConstantAddress(GV, Alignment);
4807 }
4808 
4809 bool CodeGenModule::getExpressionLocationsEnabled() const {
4810   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4811 }
4812 
4813 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4814   if (ObjCFastEnumerationStateType.isNull()) {
4815     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4816     D->startDefinition();
4817 
4818     QualType FieldTypes[] = {
4819       Context.UnsignedLongTy,
4820       Context.getPointerType(Context.getObjCIdType()),
4821       Context.getPointerType(Context.UnsignedLongTy),
4822       Context.getConstantArrayType(Context.UnsignedLongTy,
4823                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
4824     };
4825 
4826     for (size_t i = 0; i < 4; ++i) {
4827       FieldDecl *Field = FieldDecl::Create(Context,
4828                                            D,
4829                                            SourceLocation(),
4830                                            SourceLocation(), nullptr,
4831                                            FieldTypes[i], /*TInfo=*/nullptr,
4832                                            /*BitWidth=*/nullptr,
4833                                            /*Mutable=*/false,
4834                                            ICIS_NoInit);
4835       Field->setAccess(AS_public);
4836       D->addDecl(Field);
4837     }
4838 
4839     D->completeDefinition();
4840     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4841   }
4842 
4843   return ObjCFastEnumerationStateType;
4844 }
4845 
4846 llvm::Constant *
4847 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4848   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4849 
4850   // Don't emit it as the address of the string, emit the string data itself
4851   // as an inline array.
4852   if (E->getCharByteWidth() == 1) {
4853     SmallString<64> Str(E->getString());
4854 
4855     // Resize the string to the right size, which is indicated by its type.
4856     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4857     Str.resize(CAT->getSize().getZExtValue());
4858     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4859   }
4860 
4861   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4862   llvm::Type *ElemTy = AType->getElementType();
4863   unsigned NumElements = AType->getNumElements();
4864 
4865   // Wide strings have either 2-byte or 4-byte elements.
4866   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4867     SmallVector<uint16_t, 32> Elements;
4868     Elements.reserve(NumElements);
4869 
4870     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4871       Elements.push_back(E->getCodeUnit(i));
4872     Elements.resize(NumElements);
4873     return llvm::ConstantDataArray::get(VMContext, Elements);
4874   }
4875 
4876   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4877   SmallVector<uint32_t, 32> Elements;
4878   Elements.reserve(NumElements);
4879 
4880   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4881     Elements.push_back(E->getCodeUnit(i));
4882   Elements.resize(NumElements);
4883   return llvm::ConstantDataArray::get(VMContext, Elements);
4884 }
4885 
4886 static llvm::GlobalVariable *
4887 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4888                       CodeGenModule &CGM, StringRef GlobalName,
4889                       CharUnits Alignment) {
4890   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4891       CGM.getStringLiteralAddressSpace());
4892 
4893   llvm::Module &M = CGM.getModule();
4894   // Create a global variable for this string
4895   auto *GV = new llvm::GlobalVariable(
4896       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4897       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4898   GV->setAlignment(Alignment.getAsAlign());
4899   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4900   if (GV->isWeakForLinker()) {
4901     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4902     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4903   }
4904   CGM.setDSOLocal(GV);
4905 
4906   return GV;
4907 }
4908 
4909 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4910 /// constant array for the given string literal.
4911 ConstantAddress
4912 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4913                                                   StringRef Name) {
4914   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4915 
4916   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4917   llvm::GlobalVariable **Entry = nullptr;
4918   if (!LangOpts.WritableStrings) {
4919     Entry = &ConstantStringMap[C];
4920     if (auto GV = *Entry) {
4921       if (Alignment.getQuantity() > GV->getAlignment())
4922         GV->setAlignment(Alignment.getAsAlign());
4923       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4924                              Alignment);
4925     }
4926   }
4927 
4928   SmallString<256> MangledNameBuffer;
4929   StringRef GlobalVariableName;
4930   llvm::GlobalValue::LinkageTypes LT;
4931 
4932   // Mangle the string literal if that's how the ABI merges duplicate strings.
4933   // Don't do it if they are writable, since we don't want writes in one TU to
4934   // affect strings in another.
4935   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4936       !LangOpts.WritableStrings) {
4937     llvm::raw_svector_ostream Out(MangledNameBuffer);
4938     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4939     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4940     GlobalVariableName = MangledNameBuffer;
4941   } else {
4942     LT = llvm::GlobalValue::PrivateLinkage;
4943     GlobalVariableName = Name;
4944   }
4945 
4946   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4947   if (Entry)
4948     *Entry = GV;
4949 
4950   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4951                                   QualType());
4952 
4953   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4954                          Alignment);
4955 }
4956 
4957 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4958 /// array for the given ObjCEncodeExpr node.
4959 ConstantAddress
4960 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4961   std::string Str;
4962   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4963 
4964   return GetAddrOfConstantCString(Str);
4965 }
4966 
4967 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4968 /// the literal and a terminating '\0' character.
4969 /// The result has pointer to array type.
4970 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4971     const std::string &Str, const char *GlobalName) {
4972   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4973   CharUnits Alignment =
4974     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4975 
4976   llvm::Constant *C =
4977       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4978 
4979   // Don't share any string literals if strings aren't constant.
4980   llvm::GlobalVariable **Entry = nullptr;
4981   if (!LangOpts.WritableStrings) {
4982     Entry = &ConstantStringMap[C];
4983     if (auto GV = *Entry) {
4984       if (Alignment.getQuantity() > GV->getAlignment())
4985         GV->setAlignment(Alignment.getAsAlign());
4986       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4987                              Alignment);
4988     }
4989   }
4990 
4991   // Get the default prefix if a name wasn't specified.
4992   if (!GlobalName)
4993     GlobalName = ".str";
4994   // Create a global variable for this.
4995   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4996                                   GlobalName, Alignment);
4997   if (Entry)
4998     *Entry = GV;
4999 
5000   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5001                          Alignment);
5002 }
5003 
5004 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5005     const MaterializeTemporaryExpr *E, const Expr *Init) {
5006   assert((E->getStorageDuration() == SD_Static ||
5007           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5008   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5009 
5010   // If we're not materializing a subobject of the temporary, keep the
5011   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5012   QualType MaterializedType = Init->getType();
5013   if (Init == E->GetTemporaryExpr())
5014     MaterializedType = E->getType();
5015 
5016   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5017 
5018   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5019     return ConstantAddress(Slot, Align);
5020 
5021   // FIXME: If an externally-visible declaration extends multiple temporaries,
5022   // we need to give each temporary the same name in every translation unit (and
5023   // we also need to make the temporaries externally-visible).
5024   SmallString<256> Name;
5025   llvm::raw_svector_ostream Out(Name);
5026   getCXXABI().getMangleContext().mangleReferenceTemporary(
5027       VD, E->getManglingNumber(), Out);
5028 
5029   APValue *Value = nullptr;
5030   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5031     // If the initializer of the extending declaration is a constant
5032     // initializer, we should have a cached constant initializer for this
5033     // temporary. Note that this might have a different value from the value
5034     // computed by evaluating the initializer if the surrounding constant
5035     // expression modifies the temporary.
5036     Value = getContext().getMaterializedTemporaryValue(E, false);
5037   }
5038 
5039   // Try evaluating it now, it might have a constant initializer.
5040   Expr::EvalResult EvalResult;
5041   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5042       !EvalResult.hasSideEffects())
5043     Value = &EvalResult.Val;
5044 
5045   LangAS AddrSpace =
5046       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5047 
5048   Optional<ConstantEmitter> emitter;
5049   llvm::Constant *InitialValue = nullptr;
5050   bool Constant = false;
5051   llvm::Type *Type;
5052   if (Value) {
5053     // The temporary has a constant initializer, use it.
5054     emitter.emplace(*this);
5055     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5056                                                MaterializedType);
5057     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5058     Type = InitialValue->getType();
5059   } else {
5060     // No initializer, the initialization will be provided when we
5061     // initialize the declaration which performed lifetime extension.
5062     Type = getTypes().ConvertTypeForMem(MaterializedType);
5063   }
5064 
5065   // Create a global variable for this lifetime-extended temporary.
5066   llvm::GlobalValue::LinkageTypes Linkage =
5067       getLLVMLinkageVarDefinition(VD, Constant);
5068   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5069     const VarDecl *InitVD;
5070     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5071         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5072       // Temporaries defined inside a class get linkonce_odr linkage because the
5073       // class can be defined in multiple translation units.
5074       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5075     } else {
5076       // There is no need for this temporary to have external linkage if the
5077       // VarDecl has external linkage.
5078       Linkage = llvm::GlobalVariable::InternalLinkage;
5079     }
5080   }
5081   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5082   auto *GV = new llvm::GlobalVariable(
5083       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5084       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5085   if (emitter) emitter->finalize(GV);
5086   setGVProperties(GV, VD);
5087   GV->setAlignment(Align.getAsAlign());
5088   if (supportsCOMDAT() && GV->isWeakForLinker())
5089     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5090   if (VD->getTLSKind())
5091     setTLSMode(GV, *VD);
5092   llvm::Constant *CV = GV;
5093   if (AddrSpace != LangAS::Default)
5094     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5095         *this, GV, AddrSpace, LangAS::Default,
5096         Type->getPointerTo(
5097             getContext().getTargetAddressSpace(LangAS::Default)));
5098   MaterializedGlobalTemporaryMap[E] = CV;
5099   return ConstantAddress(CV, Align);
5100 }
5101 
5102 /// EmitObjCPropertyImplementations - Emit information for synthesized
5103 /// properties for an implementation.
5104 void CodeGenModule::EmitObjCPropertyImplementations(const
5105                                                     ObjCImplementationDecl *D) {
5106   for (const auto *PID : D->property_impls()) {
5107     // Dynamic is just for type-checking.
5108     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5109       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5110 
5111       // Determine which methods need to be implemented, some may have
5112       // been overridden. Note that ::isPropertyAccessor is not the method
5113       // we want, that just indicates if the decl came from a
5114       // property. What we want to know is if the method is defined in
5115       // this implementation.
5116       auto *Getter = PID->getGetterMethodDecl();
5117       if (!Getter || Getter->isSynthesizedAccessorStub())
5118         CodeGenFunction(*this).GenerateObjCGetter(
5119             const_cast<ObjCImplementationDecl *>(D), PID);
5120       auto *Setter = PID->getSetterMethodDecl();
5121       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5122         CodeGenFunction(*this).GenerateObjCSetter(
5123                                  const_cast<ObjCImplementationDecl *>(D), PID);
5124     }
5125   }
5126 }
5127 
5128 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5129   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5130   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5131        ivar; ivar = ivar->getNextIvar())
5132     if (ivar->getType().isDestructedType())
5133       return true;
5134 
5135   return false;
5136 }
5137 
5138 static bool AllTrivialInitializers(CodeGenModule &CGM,
5139                                    ObjCImplementationDecl *D) {
5140   CodeGenFunction CGF(CGM);
5141   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5142        E = D->init_end(); B != E; ++B) {
5143     CXXCtorInitializer *CtorInitExp = *B;
5144     Expr *Init = CtorInitExp->getInit();
5145     if (!CGF.isTrivialInitializer(Init))
5146       return false;
5147   }
5148   return true;
5149 }
5150 
5151 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5152 /// for an implementation.
5153 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5154   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5155   if (needsDestructMethod(D)) {
5156     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5157     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5158     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5159         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5160         getContext().VoidTy, nullptr, D,
5161         /*isInstance=*/true, /*isVariadic=*/false,
5162         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5163         /*isImplicitlyDeclared=*/true,
5164         /*isDefined=*/false, ObjCMethodDecl::Required);
5165     D->addInstanceMethod(DTORMethod);
5166     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5167     D->setHasDestructors(true);
5168   }
5169 
5170   // If the implementation doesn't have any ivar initializers, we don't need
5171   // a .cxx_construct.
5172   if (D->getNumIvarInitializers() == 0 ||
5173       AllTrivialInitializers(*this, D))
5174     return;
5175 
5176   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5177   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5178   // The constructor returns 'self'.
5179   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5180       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5181       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5182       /*isVariadic=*/false,
5183       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5184       /*isImplicitlyDeclared=*/true,
5185       /*isDefined=*/false, ObjCMethodDecl::Required);
5186   D->addInstanceMethod(CTORMethod);
5187   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5188   D->setHasNonZeroConstructors(true);
5189 }
5190 
5191 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5192 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5193   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5194       LSD->getLanguage() != LinkageSpecDecl::lang_cxx &&
5195       LSD->getLanguage() != LinkageSpecDecl::lang_cxx_11 &&
5196       LSD->getLanguage() != LinkageSpecDecl::lang_cxx_14) {
5197     ErrorUnsupported(LSD, "linkage spec");
5198     return;
5199   }
5200 
5201   EmitDeclContext(LSD);
5202 }
5203 
5204 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5205   for (auto *I : DC->decls()) {
5206     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5207     // are themselves considered "top-level", so EmitTopLevelDecl on an
5208     // ObjCImplDecl does not recursively visit them. We need to do that in
5209     // case they're nested inside another construct (LinkageSpecDecl /
5210     // ExportDecl) that does stop them from being considered "top-level".
5211     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5212       for (auto *M : OID->methods())
5213         EmitTopLevelDecl(M);
5214     }
5215 
5216     EmitTopLevelDecl(I);
5217   }
5218 }
5219 
5220 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5221 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5222   // Ignore dependent declarations.
5223   if (D->isTemplated())
5224     return;
5225 
5226   switch (D->getKind()) {
5227   case Decl::CXXConversion:
5228   case Decl::CXXMethod:
5229   case Decl::Function:
5230     EmitGlobal(cast<FunctionDecl>(D));
5231     // Always provide some coverage mapping
5232     // even for the functions that aren't emitted.
5233     AddDeferredUnusedCoverageMapping(D);
5234     break;
5235 
5236   case Decl::CXXDeductionGuide:
5237     // Function-like, but does not result in code emission.
5238     break;
5239 
5240   case Decl::Var:
5241   case Decl::Decomposition:
5242   case Decl::VarTemplateSpecialization:
5243     EmitGlobal(cast<VarDecl>(D));
5244     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5245       for (auto *B : DD->bindings())
5246         if (auto *HD = B->getHoldingVar())
5247           EmitGlobal(HD);
5248     break;
5249 
5250   // Indirect fields from global anonymous structs and unions can be
5251   // ignored; only the actual variable requires IR gen support.
5252   case Decl::IndirectField:
5253     break;
5254 
5255   // C++ Decls
5256   case Decl::Namespace:
5257     EmitDeclContext(cast<NamespaceDecl>(D));
5258     break;
5259   case Decl::ClassTemplateSpecialization: {
5260     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5261     if (DebugInfo &&
5262         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
5263         Spec->hasDefinition())
5264       DebugInfo->completeTemplateDefinition(*Spec);
5265   } LLVM_FALLTHROUGH;
5266   case Decl::CXXRecord:
5267     if (DebugInfo) {
5268       if (auto *ES = D->getASTContext().getExternalSource())
5269         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5270           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
5271     }
5272     // Emit any static data members, they may be definitions.
5273     for (auto *I : cast<CXXRecordDecl>(D)->decls())
5274       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5275         EmitTopLevelDecl(I);
5276     break;
5277     // No code generation needed.
5278   case Decl::UsingShadow:
5279   case Decl::ClassTemplate:
5280   case Decl::VarTemplate:
5281   case Decl::Concept:
5282   case Decl::VarTemplatePartialSpecialization:
5283   case Decl::FunctionTemplate:
5284   case Decl::TypeAliasTemplate:
5285   case Decl::Block:
5286   case Decl::Empty:
5287   case Decl::Binding:
5288     break;
5289   case Decl::Using:          // using X; [C++]
5290     if (CGDebugInfo *DI = getModuleDebugInfo())
5291         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5292     return;
5293   case Decl::NamespaceAlias:
5294     if (CGDebugInfo *DI = getModuleDebugInfo())
5295         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5296     return;
5297   case Decl::UsingDirective: // using namespace X; [C++]
5298     if (CGDebugInfo *DI = getModuleDebugInfo())
5299       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5300     return;
5301   case Decl::CXXConstructor:
5302     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5303     break;
5304   case Decl::CXXDestructor:
5305     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5306     break;
5307 
5308   case Decl::StaticAssert:
5309     // Nothing to do.
5310     break;
5311 
5312   // Objective-C Decls
5313 
5314   // Forward declarations, no (immediate) code generation.
5315   case Decl::ObjCInterface:
5316   case Decl::ObjCCategory:
5317     break;
5318 
5319   case Decl::ObjCProtocol: {
5320     auto *Proto = cast<ObjCProtocolDecl>(D);
5321     if (Proto->isThisDeclarationADefinition())
5322       ObjCRuntime->GenerateProtocol(Proto);
5323     break;
5324   }
5325 
5326   case Decl::ObjCCategoryImpl:
5327     // Categories have properties but don't support synthesize so we
5328     // can ignore them here.
5329     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5330     break;
5331 
5332   case Decl::ObjCImplementation: {
5333     auto *OMD = cast<ObjCImplementationDecl>(D);
5334     EmitObjCPropertyImplementations(OMD);
5335     EmitObjCIvarInitializations(OMD);
5336     ObjCRuntime->GenerateClass(OMD);
5337     // Emit global variable debug information.
5338     if (CGDebugInfo *DI = getModuleDebugInfo())
5339       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
5340         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5341             OMD->getClassInterface()), OMD->getLocation());
5342     break;
5343   }
5344   case Decl::ObjCMethod: {
5345     auto *OMD = cast<ObjCMethodDecl>(D);
5346     // If this is not a prototype, emit the body.
5347     if (OMD->getBody())
5348       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5349     break;
5350   }
5351   case Decl::ObjCCompatibleAlias:
5352     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5353     break;
5354 
5355   case Decl::PragmaComment: {
5356     const auto *PCD = cast<PragmaCommentDecl>(D);
5357     switch (PCD->getCommentKind()) {
5358     case PCK_Unknown:
5359       llvm_unreachable("unexpected pragma comment kind");
5360     case PCK_Linker:
5361       AppendLinkerOptions(PCD->getArg());
5362       break;
5363     case PCK_Lib:
5364         AddDependentLib(PCD->getArg());
5365       break;
5366     case PCK_Compiler:
5367     case PCK_ExeStr:
5368     case PCK_User:
5369       break; // We ignore all of these.
5370     }
5371     break;
5372   }
5373 
5374   case Decl::PragmaDetectMismatch: {
5375     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5376     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5377     break;
5378   }
5379 
5380   case Decl::LinkageSpec:
5381     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5382     break;
5383 
5384   case Decl::FileScopeAsm: {
5385     // File-scope asm is ignored during device-side CUDA compilation.
5386     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5387       break;
5388     // File-scope asm is ignored during device-side OpenMP compilation.
5389     if (LangOpts.OpenMPIsDevice)
5390       break;
5391     auto *AD = cast<FileScopeAsmDecl>(D);
5392     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5393     break;
5394   }
5395 
5396   case Decl::Import: {
5397     auto *Import = cast<ImportDecl>(D);
5398 
5399     // If we've already imported this module, we're done.
5400     if (!ImportedModules.insert(Import->getImportedModule()))
5401       break;
5402 
5403     // Emit debug information for direct imports.
5404     if (!Import->getImportedOwningModule()) {
5405       if (CGDebugInfo *DI = getModuleDebugInfo())
5406         DI->EmitImportDecl(*Import);
5407     }
5408 
5409     // Find all of the submodules and emit the module initializers.
5410     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5411     SmallVector<clang::Module *, 16> Stack;
5412     Visited.insert(Import->getImportedModule());
5413     Stack.push_back(Import->getImportedModule());
5414 
5415     while (!Stack.empty()) {
5416       clang::Module *Mod = Stack.pop_back_val();
5417       if (!EmittedModuleInitializers.insert(Mod).second)
5418         continue;
5419 
5420       for (auto *D : Context.getModuleInitializers(Mod))
5421         EmitTopLevelDecl(D);
5422 
5423       // Visit the submodules of this module.
5424       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5425                                              SubEnd = Mod->submodule_end();
5426            Sub != SubEnd; ++Sub) {
5427         // Skip explicit children; they need to be explicitly imported to emit
5428         // the initializers.
5429         if ((*Sub)->IsExplicit)
5430           continue;
5431 
5432         if (Visited.insert(*Sub).second)
5433           Stack.push_back(*Sub);
5434       }
5435     }
5436     break;
5437   }
5438 
5439   case Decl::Export:
5440     EmitDeclContext(cast<ExportDecl>(D));
5441     break;
5442 
5443   case Decl::OMPThreadPrivate:
5444     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5445     break;
5446 
5447   case Decl::OMPAllocate:
5448     break;
5449 
5450   case Decl::OMPDeclareReduction:
5451     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5452     break;
5453 
5454   case Decl::OMPDeclareMapper:
5455     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5456     break;
5457 
5458   case Decl::OMPRequires:
5459     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5460     break;
5461 
5462   default:
5463     // Make sure we handled everything we should, every other kind is a
5464     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5465     // function. Need to recode Decl::Kind to do that easily.
5466     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5467     break;
5468   }
5469 }
5470 
5471 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5472   // Do we need to generate coverage mapping?
5473   if (!CodeGenOpts.CoverageMapping)
5474     return;
5475   switch (D->getKind()) {
5476   case Decl::CXXConversion:
5477   case Decl::CXXMethod:
5478   case Decl::Function:
5479   case Decl::ObjCMethod:
5480   case Decl::CXXConstructor:
5481   case Decl::CXXDestructor: {
5482     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5483       return;
5484     SourceManager &SM = getContext().getSourceManager();
5485     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5486       return;
5487     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5488     if (I == DeferredEmptyCoverageMappingDecls.end())
5489       DeferredEmptyCoverageMappingDecls[D] = true;
5490     break;
5491   }
5492   default:
5493     break;
5494   };
5495 }
5496 
5497 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5498   // Do we need to generate coverage mapping?
5499   if (!CodeGenOpts.CoverageMapping)
5500     return;
5501   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5502     if (Fn->isTemplateInstantiation())
5503       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5504   }
5505   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5506   if (I == DeferredEmptyCoverageMappingDecls.end())
5507     DeferredEmptyCoverageMappingDecls[D] = false;
5508   else
5509     I->second = false;
5510 }
5511 
5512 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5513   // We call takeVector() here to avoid use-after-free.
5514   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5515   // we deserialize function bodies to emit coverage info for them, and that
5516   // deserializes more declarations. How should we handle that case?
5517   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5518     if (!Entry.second)
5519       continue;
5520     const Decl *D = Entry.first;
5521     switch (D->getKind()) {
5522     case Decl::CXXConversion:
5523     case Decl::CXXMethod:
5524     case Decl::Function:
5525     case Decl::ObjCMethod: {
5526       CodeGenPGO PGO(*this);
5527       GlobalDecl GD(cast<FunctionDecl>(D));
5528       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5529                                   getFunctionLinkage(GD));
5530       break;
5531     }
5532     case Decl::CXXConstructor: {
5533       CodeGenPGO PGO(*this);
5534       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5535       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5536                                   getFunctionLinkage(GD));
5537       break;
5538     }
5539     case Decl::CXXDestructor: {
5540       CodeGenPGO PGO(*this);
5541       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5542       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5543                                   getFunctionLinkage(GD));
5544       break;
5545     }
5546     default:
5547       break;
5548     };
5549   }
5550 }
5551 
5552 /// Turns the given pointer into a constant.
5553 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5554                                           const void *Ptr) {
5555   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5556   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5557   return llvm::ConstantInt::get(i64, PtrInt);
5558 }
5559 
5560 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5561                                    llvm::NamedMDNode *&GlobalMetadata,
5562                                    GlobalDecl D,
5563                                    llvm::GlobalValue *Addr) {
5564   if (!GlobalMetadata)
5565     GlobalMetadata =
5566       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5567 
5568   // TODO: should we report variant information for ctors/dtors?
5569   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5570                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5571                                CGM.getLLVMContext(), D.getDecl()))};
5572   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5573 }
5574 
5575 /// For each function which is declared within an extern "C" region and marked
5576 /// as 'used', but has internal linkage, create an alias from the unmangled
5577 /// name to the mangled name if possible. People expect to be able to refer
5578 /// to such functions with an unmangled name from inline assembly within the
5579 /// same translation unit.
5580 void CodeGenModule::EmitStaticExternCAliases() {
5581   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5582     return;
5583   for (auto &I : StaticExternCValues) {
5584     IdentifierInfo *Name = I.first;
5585     llvm::GlobalValue *Val = I.second;
5586     if (Val && !getModule().getNamedValue(Name->getName()))
5587       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5588   }
5589 }
5590 
5591 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5592                                              GlobalDecl &Result) const {
5593   auto Res = Manglings.find(MangledName);
5594   if (Res == Manglings.end())
5595     return false;
5596   Result = Res->getValue();
5597   return true;
5598 }
5599 
5600 /// Emits metadata nodes associating all the global values in the
5601 /// current module with the Decls they came from.  This is useful for
5602 /// projects using IR gen as a subroutine.
5603 ///
5604 /// Since there's currently no way to associate an MDNode directly
5605 /// with an llvm::GlobalValue, we create a global named metadata
5606 /// with the name 'clang.global.decl.ptrs'.
5607 void CodeGenModule::EmitDeclMetadata() {
5608   llvm::NamedMDNode *GlobalMetadata = nullptr;
5609 
5610   for (auto &I : MangledDeclNames) {
5611     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5612     // Some mangled names don't necessarily have an associated GlobalValue
5613     // in this module, e.g. if we mangled it for DebugInfo.
5614     if (Addr)
5615       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5616   }
5617 }
5618 
5619 /// Emits metadata nodes for all the local variables in the current
5620 /// function.
5621 void CodeGenFunction::EmitDeclMetadata() {
5622   if (LocalDeclMap.empty()) return;
5623 
5624   llvm::LLVMContext &Context = getLLVMContext();
5625 
5626   // Find the unique metadata ID for this name.
5627   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5628 
5629   llvm::NamedMDNode *GlobalMetadata = nullptr;
5630 
5631   for (auto &I : LocalDeclMap) {
5632     const Decl *D = I.first;
5633     llvm::Value *Addr = I.second.getPointer();
5634     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5635       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5636       Alloca->setMetadata(
5637           DeclPtrKind, llvm::MDNode::get(
5638                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5639     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5640       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5641       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5642     }
5643   }
5644 }
5645 
5646 void CodeGenModule::EmitVersionIdentMetadata() {
5647   llvm::NamedMDNode *IdentMetadata =
5648     TheModule.getOrInsertNamedMetadata("llvm.ident");
5649   std::string Version = getClangFullVersion();
5650   llvm::LLVMContext &Ctx = TheModule.getContext();
5651 
5652   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5653   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5654 }
5655 
5656 void CodeGenModule::EmitCommandLineMetadata() {
5657   llvm::NamedMDNode *CommandLineMetadata =
5658     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5659   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5660   llvm::LLVMContext &Ctx = TheModule.getContext();
5661 
5662   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5663   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5664 }
5665 
5666 void CodeGenModule::EmitTargetMetadata() {
5667   // Warning, new MangledDeclNames may be appended within this loop.
5668   // We rely on MapVector insertions adding new elements to the end
5669   // of the container.
5670   // FIXME: Move this loop into the one target that needs it, and only
5671   // loop over those declarations for which we couldn't emit the target
5672   // metadata when we emitted the declaration.
5673   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5674     auto Val = *(MangledDeclNames.begin() + I);
5675     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5676     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5677     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5678   }
5679 }
5680 
5681 void CodeGenModule::EmitCoverageFile() {
5682   if (getCodeGenOpts().CoverageDataFile.empty() &&
5683       getCodeGenOpts().CoverageNotesFile.empty())
5684     return;
5685 
5686   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5687   if (!CUNode)
5688     return;
5689 
5690   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5691   llvm::LLVMContext &Ctx = TheModule.getContext();
5692   auto *CoverageDataFile =
5693       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5694   auto *CoverageNotesFile =
5695       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5696   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5697     llvm::MDNode *CU = CUNode->getOperand(i);
5698     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5699     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5700   }
5701 }
5702 
5703 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5704   // Sema has checked that all uuid strings are of the form
5705   // "12345678-1234-1234-1234-1234567890ab".
5706   assert(Uuid.size() == 36);
5707   for (unsigned i = 0; i < 36; ++i) {
5708     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5709     else                                         assert(isHexDigit(Uuid[i]));
5710   }
5711 
5712   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5713   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5714 
5715   llvm::Constant *Field3[8];
5716   for (unsigned Idx = 0; Idx < 8; ++Idx)
5717     Field3[Idx] = llvm::ConstantInt::get(
5718         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5719 
5720   llvm::Constant *Fields[4] = {
5721     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5722     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5723     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5724     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5725   };
5726 
5727   return llvm::ConstantStruct::getAnon(Fields);
5728 }
5729 
5730 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5731                                                        bool ForEH) {
5732   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5733   // FIXME: should we even be calling this method if RTTI is disabled
5734   // and it's not for EH?
5735   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5736     return llvm::Constant::getNullValue(Int8PtrTy);
5737 
5738   if (ForEH && Ty->isObjCObjectPointerType() &&
5739       LangOpts.ObjCRuntime.isGNUFamily())
5740     return ObjCRuntime->GetEHType(Ty);
5741 
5742   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5743 }
5744 
5745 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5746   // Do not emit threadprivates in simd-only mode.
5747   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5748     return;
5749   for (auto RefExpr : D->varlists()) {
5750     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5751     bool PerformInit =
5752         VD->getAnyInitializer() &&
5753         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5754                                                         /*ForRef=*/false);
5755 
5756     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5757     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5758             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5759       CXXGlobalInits.push_back(InitFunction);
5760   }
5761 }
5762 
5763 llvm::Metadata *
5764 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5765                                             StringRef Suffix) {
5766   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5767   if (InternalId)
5768     return InternalId;
5769 
5770   if (isExternallyVisible(T->getLinkage())) {
5771     std::string OutName;
5772     llvm::raw_string_ostream Out(OutName);
5773     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5774     Out << Suffix;
5775 
5776     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5777   } else {
5778     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5779                                            llvm::ArrayRef<llvm::Metadata *>());
5780   }
5781 
5782   return InternalId;
5783 }
5784 
5785 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5786   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5787 }
5788 
5789 llvm::Metadata *
5790 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5791   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5792 }
5793 
5794 // Generalize pointer types to a void pointer with the qualifiers of the
5795 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5796 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5797 // 'void *'.
5798 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5799   if (!Ty->isPointerType())
5800     return Ty;
5801 
5802   return Ctx.getPointerType(
5803       QualType(Ctx.VoidTy).withCVRQualifiers(
5804           Ty->getPointeeType().getCVRQualifiers()));
5805 }
5806 
5807 // Apply type generalization to a FunctionType's return and argument types
5808 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5809   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5810     SmallVector<QualType, 8> GeneralizedParams;
5811     for (auto &Param : FnType->param_types())
5812       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5813 
5814     return Ctx.getFunctionType(
5815         GeneralizeType(Ctx, FnType->getReturnType()),
5816         GeneralizedParams, FnType->getExtProtoInfo());
5817   }
5818 
5819   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5820     return Ctx.getFunctionNoProtoType(
5821         GeneralizeType(Ctx, FnType->getReturnType()));
5822 
5823   llvm_unreachable("Encountered unknown FunctionType");
5824 }
5825 
5826 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5827   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5828                                       GeneralizedMetadataIdMap, ".generalized");
5829 }
5830 
5831 /// Returns whether this module needs the "all-vtables" type identifier.
5832 bool CodeGenModule::NeedAllVtablesTypeId() const {
5833   // Returns true if at least one of vtable-based CFI checkers is enabled and
5834   // is not in the trapping mode.
5835   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5836            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5837           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5838            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5839           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5840            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5841           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5842            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5843 }
5844 
5845 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5846                                           CharUnits Offset,
5847                                           const CXXRecordDecl *RD) {
5848   llvm::Metadata *MD =
5849       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5850   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5851 
5852   if (CodeGenOpts.SanitizeCfiCrossDso)
5853     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5854       VTable->addTypeMetadata(Offset.getQuantity(),
5855                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5856 
5857   if (NeedAllVtablesTypeId()) {
5858     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5859     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5860   }
5861 }
5862 
5863 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5864   assert(TD != nullptr);
5865   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5866 
5867   ParsedAttr.Features.erase(
5868       llvm::remove_if(ParsedAttr.Features,
5869                       [&](const std::string &Feat) {
5870                         return !Target.isValidFeatureName(
5871                             StringRef{Feat}.substr(1));
5872                       }),
5873       ParsedAttr.Features.end());
5874   return ParsedAttr;
5875 }
5876 
5877 
5878 // Fills in the supplied string map with the set of target features for the
5879 // passed in function.
5880 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5881                                           GlobalDecl GD) {
5882   StringRef TargetCPU = Target.getTargetOpts().CPU;
5883   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
5884   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5885     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5886 
5887     // Make a copy of the features as passed on the command line into the
5888     // beginning of the additional features from the function to override.
5889     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5890                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5891                             Target.getTargetOpts().FeaturesAsWritten.end());
5892 
5893     if (ParsedAttr.Architecture != "" &&
5894         Target.isValidCPUName(ParsedAttr.Architecture))
5895       TargetCPU = ParsedAttr.Architecture;
5896 
5897     // Now populate the feature map, first with the TargetCPU which is either
5898     // the default or a new one from the target attribute string. Then we'll use
5899     // the passed in features (FeaturesAsWritten) along with the new ones from
5900     // the attribute.
5901     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5902                           ParsedAttr.Features);
5903   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5904     llvm::SmallVector<StringRef, 32> FeaturesTmp;
5905     Target.getCPUSpecificCPUDispatchFeatures(
5906         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
5907     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5908     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5909   } else {
5910     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5911                           Target.getTargetOpts().Features);
5912   }
5913 }
5914 
5915 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5916   if (!SanStats)
5917     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
5918 
5919   return *SanStats;
5920 }
5921 llvm::Value *
5922 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5923                                                   CodeGenFunction &CGF) {
5924   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5925   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5926   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5927   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5928                                 "__translate_sampler_initializer"),
5929                                 {C});
5930 }
5931