1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/CodeGen/CodeGenOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/Basic/Builtins.h" 26 #include "clang/Basic/Diagnostic.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Basic/ConvertUTF.h" 30 #include "llvm/CallingConv.h" 31 #include "llvm/Module.h" 32 #include "llvm/Intrinsics.h" 33 #include "llvm/LLVMContext.h" 34 #include "llvm/Target/TargetData.h" 35 #include "llvm/Support/ErrorHandling.h" 36 using namespace clang; 37 using namespace CodeGen; 38 39 40 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 41 llvm::Module &M, const llvm::TargetData &TD, 42 Diagnostic &diags) 43 : BlockModule(C, M, TD, Types, *this), Context(C), 44 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 45 TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C), 46 VtableInfo(*this), Runtime(0), 47 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 48 VMContext(M.getContext()) { 49 50 if (!Features.ObjC1) 51 Runtime = 0; 52 else if (!Features.NeXTRuntime) 53 Runtime = CreateGNUObjCRuntime(*this); 54 else if (Features.ObjCNonFragileABI) 55 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 56 else 57 Runtime = CreateMacObjCRuntime(*this); 58 59 // If debug info generation is enabled, create the CGDebugInfo object. 60 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 61 } 62 63 CodeGenModule::~CodeGenModule() { 64 delete Runtime; 65 delete DebugInfo; 66 } 67 68 void CodeGenModule::Release() { 69 // We need to call this first because it can add deferred declarations. 70 EmitCXXGlobalInitFunc(); 71 72 EmitDeferred(); 73 if (Runtime) 74 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 75 AddGlobalCtor(ObjCInitFunction); 76 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 77 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 78 EmitAnnotations(); 79 EmitLLVMUsed(); 80 } 81 82 /// ErrorUnsupported - Print out an error that codegen doesn't support the 83 /// specified stmt yet. 84 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 85 bool OmitOnError) { 86 if (OmitOnError && getDiags().hasErrorOccurred()) 87 return; 88 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 89 "cannot compile this %0 yet"); 90 std::string Msg = Type; 91 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 92 << Msg << S->getSourceRange(); 93 } 94 95 /// ErrorUnsupported - Print out an error that codegen doesn't support the 96 /// specified decl yet. 97 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 98 bool OmitOnError) { 99 if (OmitOnError && getDiags().hasErrorOccurred()) 100 return; 101 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 102 "cannot compile this %0 yet"); 103 std::string Msg = Type; 104 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 105 } 106 107 LangOptions::VisibilityMode 108 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 109 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 110 if (VD->getStorageClass() == VarDecl::PrivateExtern) 111 return LangOptions::Hidden; 112 113 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 114 switch (attr->getVisibility()) { 115 default: assert(0 && "Unknown visibility!"); 116 case VisibilityAttr::DefaultVisibility: 117 return LangOptions::Default; 118 case VisibilityAttr::HiddenVisibility: 119 return LangOptions::Hidden; 120 case VisibilityAttr::ProtectedVisibility: 121 return LangOptions::Protected; 122 } 123 } 124 125 return getLangOptions().getVisibilityMode(); 126 } 127 128 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 129 const Decl *D) const { 130 // Internal definitions always have default visibility. 131 if (GV->hasLocalLinkage()) { 132 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 133 return; 134 } 135 136 switch (getDeclVisibilityMode(D)) { 137 default: assert(0 && "Unknown visibility!"); 138 case LangOptions::Default: 139 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 140 case LangOptions::Hidden: 141 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 142 case LangOptions::Protected: 143 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 144 } 145 } 146 147 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 148 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 149 150 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 151 return getMangledCXXCtorName(D, GD.getCtorType()); 152 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 153 return getMangledCXXDtorName(D, GD.getDtorType()); 154 155 return getMangledName(ND); 156 } 157 158 /// \brief Retrieves the mangled name for the given declaration. 159 /// 160 /// If the given declaration requires a mangled name, returns an 161 /// const char* containing the mangled name. Otherwise, returns 162 /// the unmangled name. 163 /// 164 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 165 if (!getMangleContext().shouldMangleDeclName(ND)) { 166 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 167 return ND->getNameAsCString(); 168 } 169 170 llvm::SmallString<256> Name; 171 getMangleContext().mangleName(ND, Name); 172 Name += '\0'; 173 return UniqueMangledName(Name.begin(), Name.end()); 174 } 175 176 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 177 const char *NameEnd) { 178 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 179 180 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 181 } 182 183 /// AddGlobalCtor - Add a function to the list that will be called before 184 /// main() runs. 185 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 186 // FIXME: Type coercion of void()* types. 187 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 188 } 189 190 /// AddGlobalDtor - Add a function to the list that will be called 191 /// when the module is unloaded. 192 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 193 // FIXME: Type coercion of void()* types. 194 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 195 } 196 197 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 198 // Ctor function type is void()*. 199 llvm::FunctionType* CtorFTy = 200 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 201 std::vector<const llvm::Type*>(), 202 false); 203 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 204 205 // Get the type of a ctor entry, { i32, void ()* }. 206 llvm::StructType* CtorStructTy = 207 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 208 llvm::PointerType::getUnqual(CtorFTy), NULL); 209 210 // Construct the constructor and destructor arrays. 211 std::vector<llvm::Constant*> Ctors; 212 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 213 std::vector<llvm::Constant*> S; 214 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 215 I->second, false)); 216 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 217 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 218 } 219 220 if (!Ctors.empty()) { 221 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 222 new llvm::GlobalVariable(TheModule, AT, false, 223 llvm::GlobalValue::AppendingLinkage, 224 llvm::ConstantArray::get(AT, Ctors), 225 GlobalName); 226 } 227 } 228 229 void CodeGenModule::EmitAnnotations() { 230 if (Annotations.empty()) 231 return; 232 233 // Create a new global variable for the ConstantStruct in the Module. 234 llvm::Constant *Array = 235 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 236 Annotations.size()), 237 Annotations); 238 llvm::GlobalValue *gv = 239 new llvm::GlobalVariable(TheModule, Array->getType(), false, 240 llvm::GlobalValue::AppendingLinkage, Array, 241 "llvm.global.annotations"); 242 gv->setSection("llvm.metadata"); 243 } 244 245 static CodeGenModule::GVALinkage 246 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 247 const LangOptions &Features) { 248 // Everything located semantically within an anonymous namespace is 249 // always internal. 250 if (FD->isInAnonymousNamespace()) 251 return CodeGenModule::GVA_Internal; 252 253 // "static" functions get internal linkage. 254 if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD)) 255 return CodeGenModule::GVA_Internal; 256 257 // The kind of external linkage this function will have, if it is not 258 // inline or static. 259 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 260 if (Context.getLangOptions().CPlusPlus) { 261 TemplateSpecializationKind TSK = FD->getTemplateSpecializationKind(); 262 263 if (TSK == TSK_ExplicitInstantiationDefinition) { 264 // If a function has been explicitly instantiated, then it should 265 // always have strong external linkage. 266 return CodeGenModule::GVA_StrongExternal; 267 } 268 269 if (TSK == TSK_ImplicitInstantiation) 270 External = CodeGenModule::GVA_TemplateInstantiation; 271 } 272 273 if (!FD->isInlined()) 274 return External; 275 276 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 277 // GNU or C99 inline semantics. Determine whether this symbol should be 278 // externally visible. 279 if (FD->isInlineDefinitionExternallyVisible()) 280 return External; 281 282 // C99 inline semantics, where the symbol is not externally visible. 283 return CodeGenModule::GVA_C99Inline; 284 } 285 286 // C++0x [temp.explicit]p9: 287 // [ Note: The intent is that an inline function that is the subject of 288 // an explicit instantiation declaration will still be implicitly 289 // instantiated when used so that the body can be considered for 290 // inlining, but that no out-of-line copy of the inline function would be 291 // generated in the translation unit. -- end note ] 292 if (FD->getTemplateSpecializationKind() 293 == TSK_ExplicitInstantiationDeclaration) 294 return CodeGenModule::GVA_C99Inline; 295 296 return CodeGenModule::GVA_CXXInline; 297 } 298 299 /// SetFunctionDefinitionAttributes - Set attributes for a global. 300 /// 301 /// FIXME: This is currently only done for aliases and functions, but not for 302 /// variables (these details are set in EmitGlobalVarDefinition for variables). 303 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 304 llvm::GlobalValue *GV) { 305 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 306 307 if (Linkage == GVA_Internal) { 308 GV->setLinkage(llvm::Function::InternalLinkage); 309 } else if (D->hasAttr<DLLExportAttr>()) { 310 GV->setLinkage(llvm::Function::DLLExportLinkage); 311 } else if (D->hasAttr<WeakAttr>()) { 312 GV->setLinkage(llvm::Function::WeakAnyLinkage); 313 } else if (Linkage == GVA_C99Inline) { 314 // In C99 mode, 'inline' functions are guaranteed to have a strong 315 // definition somewhere else, so we can use available_externally linkage. 316 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 317 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 318 // In C++, the compiler has to emit a definition in every translation unit 319 // that references the function. We should use linkonce_odr because 320 // a) if all references in this translation unit are optimized away, we 321 // don't need to codegen it. b) if the function persists, it needs to be 322 // merged with other definitions. c) C++ has the ODR, so we know the 323 // definition is dependable. 324 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 325 } else { 326 assert(Linkage == GVA_StrongExternal); 327 // Otherwise, we have strong external linkage. 328 GV->setLinkage(llvm::Function::ExternalLinkage); 329 } 330 331 SetCommonAttributes(D, GV); 332 } 333 334 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 335 const CGFunctionInfo &Info, 336 llvm::Function *F) { 337 unsigned CallingConv; 338 AttributeListType AttributeList; 339 ConstructAttributeList(Info, D, AttributeList, CallingConv); 340 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 341 AttributeList.size())); 342 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 343 } 344 345 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 346 llvm::Function *F) { 347 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 348 F->addFnAttr(llvm::Attribute::NoUnwind); 349 350 if (D->hasAttr<AlwaysInlineAttr>()) 351 F->addFnAttr(llvm::Attribute::AlwaysInline); 352 353 if (D->hasAttr<NoInlineAttr>()) 354 F->addFnAttr(llvm::Attribute::NoInline); 355 356 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 357 F->addFnAttr(llvm::Attribute::StackProtect); 358 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 359 F->addFnAttr(llvm::Attribute::StackProtectReq); 360 361 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 362 unsigned width = Context.Target.getCharWidth(); 363 F->setAlignment(AA->getAlignment() / width); 364 while ((AA = AA->getNext<AlignedAttr>())) 365 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 366 } 367 // C++ ABI requires 2-byte alignment for member functions. 368 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 369 F->setAlignment(2); 370 } 371 372 void CodeGenModule::SetCommonAttributes(const Decl *D, 373 llvm::GlobalValue *GV) { 374 setGlobalVisibility(GV, D); 375 376 if (D->hasAttr<UsedAttr>()) 377 AddUsedGlobal(GV); 378 379 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 380 GV->setSection(SA->getName()); 381 } 382 383 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 384 llvm::Function *F, 385 const CGFunctionInfo &FI) { 386 SetLLVMFunctionAttributes(D, FI, F); 387 SetLLVMFunctionAttributesForDefinition(D, F); 388 389 F->setLinkage(llvm::Function::InternalLinkage); 390 391 SetCommonAttributes(D, F); 392 } 393 394 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 395 llvm::Function *F, 396 bool IsIncompleteFunction) { 397 if (!IsIncompleteFunction) 398 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 399 400 // Only a few attributes are set on declarations; these may later be 401 // overridden by a definition. 402 403 if (FD->hasAttr<DLLImportAttr>()) { 404 F->setLinkage(llvm::Function::DLLImportLinkage); 405 } else if (FD->hasAttr<WeakAttr>() || 406 FD->hasAttr<WeakImportAttr>()) { 407 // "extern_weak" is overloaded in LLVM; we probably should have 408 // separate linkage types for this. 409 F->setLinkage(llvm::Function::ExternalWeakLinkage); 410 } else { 411 F->setLinkage(llvm::Function::ExternalLinkage); 412 } 413 414 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 415 F->setSection(SA->getName()); 416 } 417 418 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 419 assert(!GV->isDeclaration() && 420 "Only globals with definition can force usage."); 421 LLVMUsed.push_back(GV); 422 } 423 424 void CodeGenModule::EmitLLVMUsed() { 425 // Don't create llvm.used if there is no need. 426 if (LLVMUsed.empty()) 427 return; 428 429 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 430 431 // Convert LLVMUsed to what ConstantArray needs. 432 std::vector<llvm::Constant*> UsedArray; 433 UsedArray.resize(LLVMUsed.size()); 434 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 435 UsedArray[i] = 436 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 437 i8PTy); 438 } 439 440 if (UsedArray.empty()) 441 return; 442 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 443 444 llvm::GlobalVariable *GV = 445 new llvm::GlobalVariable(getModule(), ATy, false, 446 llvm::GlobalValue::AppendingLinkage, 447 llvm::ConstantArray::get(ATy, UsedArray), 448 "llvm.used"); 449 450 GV->setSection("llvm.metadata"); 451 } 452 453 void CodeGenModule::EmitDeferred() { 454 // Emit code for any potentially referenced deferred decls. Since a 455 // previously unused static decl may become used during the generation of code 456 // for a static function, iterate until no changes are made. 457 while (!DeferredDeclsToEmit.empty()) { 458 GlobalDecl D = DeferredDeclsToEmit.back(); 459 DeferredDeclsToEmit.pop_back(); 460 461 // The mangled name for the decl must have been emitted in GlobalDeclMap. 462 // Look it up to see if it was defined with a stronger definition (e.g. an 463 // extern inline function with a strong function redefinition). If so, 464 // just ignore the deferred decl. 465 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 466 assert(CGRef && "Deferred decl wasn't referenced?"); 467 468 if (!CGRef->isDeclaration()) 469 continue; 470 471 // Skip available externally functions at -O0 472 // FIXME: these aren't instantiated yet, so we can't yet do this. 473 if (0 && getCodeGenOpts().OptimizationLevel == 0) 474 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D.getDecl())) { 475 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 476 477 if (Linkage == GVA_C99Inline) 478 continue; 479 } 480 481 // Otherwise, emit the definition and move on to the next one. 482 EmitGlobalDefinition(D); 483 } 484 } 485 486 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 487 /// annotation information for a given GlobalValue. The annotation struct is 488 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 489 /// GlobalValue being annotated. The second field is the constant string 490 /// created from the AnnotateAttr's annotation. The third field is a constant 491 /// string containing the name of the translation unit. The fourth field is 492 /// the line number in the file of the annotated value declaration. 493 /// 494 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 495 /// appears to. 496 /// 497 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 498 const AnnotateAttr *AA, 499 unsigned LineNo) { 500 llvm::Module *M = &getModule(); 501 502 // get [N x i8] constants for the annotation string, and the filename string 503 // which are the 2nd and 3rd elements of the global annotation structure. 504 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 505 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 506 AA->getAnnotation(), true); 507 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 508 M->getModuleIdentifier(), 509 true); 510 511 // Get the two global values corresponding to the ConstantArrays we just 512 // created to hold the bytes of the strings. 513 llvm::GlobalValue *annoGV = 514 new llvm::GlobalVariable(*M, anno->getType(), false, 515 llvm::GlobalValue::PrivateLinkage, anno, 516 GV->getName()); 517 // translation unit name string, emitted into the llvm.metadata section. 518 llvm::GlobalValue *unitGV = 519 new llvm::GlobalVariable(*M, unit->getType(), false, 520 llvm::GlobalValue::PrivateLinkage, unit, 521 ".str"); 522 523 // Create the ConstantStruct for the global annotation. 524 llvm::Constant *Fields[4] = { 525 llvm::ConstantExpr::getBitCast(GV, SBP), 526 llvm::ConstantExpr::getBitCast(annoGV, SBP), 527 llvm::ConstantExpr::getBitCast(unitGV, SBP), 528 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 529 }; 530 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 531 } 532 533 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 534 // Never defer when EmitAllDecls is specified or the decl has 535 // attribute used. 536 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 537 return false; 538 539 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 540 // Constructors and destructors should never be deferred. 541 if (FD->hasAttr<ConstructorAttr>() || 542 FD->hasAttr<DestructorAttr>()) 543 return false; 544 545 // The key function for a class must never be deferred. 546 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 547 const CXXRecordDecl *RD = MD->getParent(); 548 if (MD->isOutOfLine() && RD->isDynamicClass()) { 549 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 550 if (KeyFunction && 551 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 552 return false; 553 } 554 } 555 556 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 557 558 // static, static inline, always_inline, and extern inline functions can 559 // always be deferred. Normal inline functions can be deferred in C99/C++. 560 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 561 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 562 return true; 563 return false; 564 } 565 566 const VarDecl *VD = cast<VarDecl>(Global); 567 assert(VD->isFileVarDecl() && "Invalid decl"); 568 569 // We never want to defer structs that have non-trivial constructors or 570 // destructors. 571 572 // FIXME: Handle references. 573 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 574 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 575 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 576 return false; 577 } 578 } 579 580 // Static data may be deferred, but out-of-line static data members 581 // cannot be. 582 if (VD->isInAnonymousNamespace()) 583 return true; 584 if (VD->getLinkage() == VarDecl::InternalLinkage) { 585 // Initializer has side effects? 586 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 587 return false; 588 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 589 } 590 return false; 591 } 592 593 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 594 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 595 596 // If this is an alias definition (which otherwise looks like a declaration) 597 // emit it now. 598 if (Global->hasAttr<AliasAttr>()) 599 return EmitAliasDefinition(Global); 600 601 // Ignore declarations, they will be emitted on their first use. 602 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 603 // Forward declarations are emitted lazily on first use. 604 if (!FD->isThisDeclarationADefinition()) 605 return; 606 } else { 607 const VarDecl *VD = cast<VarDecl>(Global); 608 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 609 610 if (getLangOptions().CPlusPlus && !VD->getInit()) { 611 // In C++, if this is marked "extern", defer code generation. 612 if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC()) 613 return; 614 615 // If this is a declaration of an explicit specialization of a static 616 // data member in a class template, don't emit it. 617 if (VD->isStaticDataMember() && 618 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 619 return; 620 } 621 622 // In C, if this isn't a definition, defer code generation. 623 if (!getLangOptions().CPlusPlus && !VD->getInit()) 624 return; 625 } 626 627 // Defer code generation when possible if this is a static definition, inline 628 // function etc. These we only want to emit if they are used. 629 if (MayDeferGeneration(Global)) { 630 // If the value has already been used, add it directly to the 631 // DeferredDeclsToEmit list. 632 const char *MangledName = getMangledName(GD); 633 if (GlobalDeclMap.count(MangledName)) 634 DeferredDeclsToEmit.push_back(GD); 635 else { 636 // Otherwise, remember that we saw a deferred decl with this name. The 637 // first use of the mangled name will cause it to move into 638 // DeferredDeclsToEmit. 639 DeferredDecls[MangledName] = GD; 640 } 641 return; 642 } 643 644 // Otherwise emit the definition. 645 EmitGlobalDefinition(GD); 646 } 647 648 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 649 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 650 651 PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(), 652 Context.getSourceManager(), 653 "Generating code for declaration"); 654 655 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 656 getVtableInfo().MaybeEmitVtable(GD); 657 if (MD->isVirtual() && MD->isOutOfLine() && 658 (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) { 659 if (isa<CXXDestructorDecl>(D)) { 660 GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()), 661 GD.getDtorType()); 662 BuildThunksForVirtual(CanonGD); 663 } else { 664 BuildThunksForVirtual(MD->getCanonicalDecl()); 665 } 666 } 667 } 668 669 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 670 EmitCXXConstructor(CD, GD.getCtorType()); 671 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 672 EmitCXXDestructor(DD, GD.getDtorType()); 673 else if (isa<FunctionDecl>(D)) 674 EmitGlobalFunctionDefinition(GD); 675 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 676 EmitGlobalVarDefinition(VD); 677 else { 678 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 679 } 680 } 681 682 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 683 /// module, create and return an llvm Function with the specified type. If there 684 /// is something in the module with the specified name, return it potentially 685 /// bitcasted to the right type. 686 /// 687 /// If D is non-null, it specifies a decl that correspond to this. This is used 688 /// to set the attributes on the function when it is first created. 689 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 690 const llvm::Type *Ty, 691 GlobalDecl D) { 692 // Lookup the entry, lazily creating it if necessary. 693 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 694 if (Entry) { 695 if (Entry->getType()->getElementType() == Ty) 696 return Entry; 697 698 // Make sure the result is of the correct type. 699 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 700 return llvm::ConstantExpr::getBitCast(Entry, PTy); 701 } 702 703 // This function doesn't have a complete type (for example, the return 704 // type is an incomplete struct). Use a fake type instead, and make 705 // sure not to try to set attributes. 706 bool IsIncompleteFunction = false; 707 if (!isa<llvm::FunctionType>(Ty)) { 708 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 709 std::vector<const llvm::Type*>(), false); 710 IsIncompleteFunction = true; 711 } 712 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 713 llvm::Function::ExternalLinkage, 714 "", &getModule()); 715 F->setName(MangledName); 716 if (D.getDecl()) 717 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 718 IsIncompleteFunction); 719 Entry = F; 720 721 // This is the first use or definition of a mangled name. If there is a 722 // deferred decl with this name, remember that we need to emit it at the end 723 // of the file. 724 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 725 DeferredDecls.find(MangledName); 726 if (DDI != DeferredDecls.end()) { 727 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 728 // list, and remove it from DeferredDecls (since we don't need it anymore). 729 DeferredDeclsToEmit.push_back(DDI->second); 730 DeferredDecls.erase(DDI); 731 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 732 // If this the first reference to a C++ inline function in a class, queue up 733 // the deferred function body for emission. These are not seen as 734 // top-level declarations. 735 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 736 DeferredDeclsToEmit.push_back(D); 737 // A called constructor which has no definition or declaration need be 738 // synthesized. 739 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 740 if (CD->isImplicit()) 741 DeferredDeclsToEmit.push_back(D); 742 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 743 if (DD->isImplicit()) 744 DeferredDeclsToEmit.push_back(D); 745 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 746 if (MD->isCopyAssignment() && MD->isImplicit()) 747 DeferredDeclsToEmit.push_back(D); 748 } 749 } 750 751 return F; 752 } 753 754 /// GetAddrOfFunction - Return the address of the given function. If Ty is 755 /// non-null, then this function will use the specified type if it has to 756 /// create it (this occurs when we see a definition of the function). 757 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 758 const llvm::Type *Ty) { 759 // If there was no specific requested type, just convert it now. 760 if (!Ty) 761 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 762 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 763 } 764 765 /// CreateRuntimeFunction - Create a new runtime function with the specified 766 /// type and name. 767 llvm::Constant * 768 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 769 const char *Name) { 770 // Convert Name to be a uniqued string from the IdentifierInfo table. 771 Name = getContext().Idents.get(Name).getNameStart(); 772 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 773 } 774 775 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 776 if (!D->getType().isConstant(Context)) 777 return false; 778 if (Context.getLangOptions().CPlusPlus && 779 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 780 // FIXME: We should do something fancier here! 781 return false; 782 } 783 return true; 784 } 785 786 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 787 /// create and return an llvm GlobalVariable with the specified type. If there 788 /// is something in the module with the specified name, return it potentially 789 /// bitcasted to the right type. 790 /// 791 /// If D is non-null, it specifies a decl that correspond to this. This is used 792 /// to set the attributes on the global when it is first created. 793 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 794 const llvm::PointerType*Ty, 795 const VarDecl *D) { 796 // Lookup the entry, lazily creating it if necessary. 797 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 798 if (Entry) { 799 if (Entry->getType() == Ty) 800 return Entry; 801 802 // Make sure the result is of the correct type. 803 return llvm::ConstantExpr::getBitCast(Entry, Ty); 804 } 805 806 // This is the first use or definition of a mangled name. If there is a 807 // deferred decl with this name, remember that we need to emit it at the end 808 // of the file. 809 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 810 DeferredDecls.find(MangledName); 811 if (DDI != DeferredDecls.end()) { 812 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 813 // list, and remove it from DeferredDecls (since we don't need it anymore). 814 DeferredDeclsToEmit.push_back(DDI->second); 815 DeferredDecls.erase(DDI); 816 } 817 818 llvm::GlobalVariable *GV = 819 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 820 llvm::GlobalValue::ExternalLinkage, 821 0, "", 0, 822 false, Ty->getAddressSpace()); 823 GV->setName(MangledName); 824 825 // Handle things which are present even on external declarations. 826 if (D) { 827 // FIXME: This code is overly simple and should be merged with other global 828 // handling. 829 GV->setConstant(DeclIsConstantGlobal(Context, D)); 830 831 // FIXME: Merge with other attribute handling code. 832 if (D->getStorageClass() == VarDecl::PrivateExtern) 833 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 834 835 if (D->hasAttr<WeakAttr>() || 836 D->hasAttr<WeakImportAttr>()) 837 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 838 839 GV->setThreadLocal(D->isThreadSpecified()); 840 } 841 842 return Entry = GV; 843 } 844 845 846 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 847 /// given global variable. If Ty is non-null and if the global doesn't exist, 848 /// then it will be greated with the specified type instead of whatever the 849 /// normal requested type would be. 850 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 851 const llvm::Type *Ty) { 852 assert(D->hasGlobalStorage() && "Not a global variable"); 853 QualType ASTTy = D->getType(); 854 if (Ty == 0) 855 Ty = getTypes().ConvertTypeForMem(ASTTy); 856 857 const llvm::PointerType *PTy = 858 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 859 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 860 } 861 862 /// CreateRuntimeVariable - Create a new runtime global variable with the 863 /// specified type and name. 864 llvm::Constant * 865 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 866 const char *Name) { 867 // Convert Name to be a uniqued string from the IdentifierInfo table. 868 Name = getContext().Idents.get(Name).getNameStart(); 869 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 870 } 871 872 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 873 assert(!D->getInit() && "Cannot emit definite definitions here!"); 874 875 if (MayDeferGeneration(D)) { 876 // If we have not seen a reference to this variable yet, place it 877 // into the deferred declarations table to be emitted if needed 878 // later. 879 const char *MangledName = getMangledName(D); 880 if (GlobalDeclMap.count(MangledName) == 0) { 881 DeferredDecls[MangledName] = D; 882 return; 883 } 884 } 885 886 // The tentative definition is the only definition. 887 EmitGlobalVarDefinition(D); 888 } 889 890 static CodeGenModule::GVALinkage 891 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 892 // Everything located semantically within an anonymous namespace is 893 // always internal. 894 if (VD->isInAnonymousNamespace()) 895 return CodeGenModule::GVA_Internal; 896 897 // Handle linkage for static data members. 898 if (VD->isStaticDataMember()) { 899 switch (VD->getTemplateSpecializationKind()) { 900 case TSK_Undeclared: 901 case TSK_ExplicitSpecialization: 902 case TSK_ExplicitInstantiationDefinition: 903 return CodeGenModule::GVA_StrongExternal; 904 905 case TSK_ExplicitInstantiationDeclaration: 906 llvm_unreachable("Variable should not be instantiated"); 907 // Fall through to treat this like any other instantiation. 908 909 case TSK_ImplicitInstantiation: 910 return CodeGenModule::GVA_TemplateInstantiation; 911 } 912 } 913 914 if (VD->getLinkage() == VarDecl::InternalLinkage) 915 return CodeGenModule::GVA_Internal; 916 917 return CodeGenModule::GVA_StrongExternal; 918 } 919 920 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 921 llvm::Constant *Init = 0; 922 QualType ASTTy = D->getType(); 923 924 if (D->getInit() == 0) { 925 // This is a tentative definition; tentative definitions are 926 // implicitly initialized with { 0 }. 927 // 928 // Note that tentative definitions are only emitted at the end of 929 // a translation unit, so they should never have incomplete 930 // type. In addition, EmitTentativeDefinition makes sure that we 931 // never attempt to emit a tentative definition if a real one 932 // exists. A use may still exists, however, so we still may need 933 // to do a RAUW. 934 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 935 Init = EmitNullConstant(D->getType()); 936 } else { 937 Init = EmitConstantExpr(D->getInit(), D->getType()); 938 939 if (!Init) { 940 QualType T = D->getInit()->getType(); 941 if (getLangOptions().CPlusPlus) { 942 CXXGlobalInits.push_back(D); 943 Init = EmitNullConstant(T); 944 } else { 945 ErrorUnsupported(D, "static initializer"); 946 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 947 } 948 } 949 } 950 951 const llvm::Type* InitType = Init->getType(); 952 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 953 954 // Strip off a bitcast if we got one back. 955 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 956 assert(CE->getOpcode() == llvm::Instruction::BitCast || 957 // all zero index gep. 958 CE->getOpcode() == llvm::Instruction::GetElementPtr); 959 Entry = CE->getOperand(0); 960 } 961 962 // Entry is now either a Function or GlobalVariable. 963 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 964 965 // We have a definition after a declaration with the wrong type. 966 // We must make a new GlobalVariable* and update everything that used OldGV 967 // (a declaration or tentative definition) with the new GlobalVariable* 968 // (which will be a definition). 969 // 970 // This happens if there is a prototype for a global (e.g. 971 // "extern int x[];") and then a definition of a different type (e.g. 972 // "int x[10];"). This also happens when an initializer has a different type 973 // from the type of the global (this happens with unions). 974 if (GV == 0 || 975 GV->getType()->getElementType() != InitType || 976 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 977 978 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 979 GlobalDeclMap.erase(getMangledName(D)); 980 981 // Make a new global with the correct type, this is now guaranteed to work. 982 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 983 GV->takeName(cast<llvm::GlobalValue>(Entry)); 984 985 // Replace all uses of the old global with the new global 986 llvm::Constant *NewPtrForOldDecl = 987 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 988 Entry->replaceAllUsesWith(NewPtrForOldDecl); 989 990 // Erase the old global, since it is no longer used. 991 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 992 } 993 994 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 995 SourceManager &SM = Context.getSourceManager(); 996 AddAnnotation(EmitAnnotateAttr(GV, AA, 997 SM.getInstantiationLineNumber(D->getLocation()))); 998 } 999 1000 GV->setInitializer(Init); 1001 1002 // If it is safe to mark the global 'constant', do so now. 1003 GV->setConstant(false); 1004 if (DeclIsConstantGlobal(Context, D)) 1005 GV->setConstant(true); 1006 1007 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 1008 1009 // Set the llvm linkage type as appropriate. 1010 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1011 if (Linkage == GVA_Internal) 1012 GV->setLinkage(llvm::Function::InternalLinkage); 1013 else if (D->hasAttr<DLLImportAttr>()) 1014 GV->setLinkage(llvm::Function::DLLImportLinkage); 1015 else if (D->hasAttr<DLLExportAttr>()) 1016 GV->setLinkage(llvm::Function::DLLExportLinkage); 1017 else if (D->hasAttr<WeakAttr>()) { 1018 if (GV->isConstant()) 1019 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1020 else 1021 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1022 } else if (Linkage == GVA_TemplateInstantiation) 1023 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1024 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1025 !D->hasExternalStorage() && !D->getInit() && 1026 !D->getAttr<SectionAttr>()) { 1027 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1028 // common vars aren't constant even if declared const. 1029 GV->setConstant(false); 1030 } else 1031 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1032 1033 SetCommonAttributes(D, GV); 1034 1035 // Emit global variable debug information. 1036 if (CGDebugInfo *DI = getDebugInfo()) { 1037 DI->setLocation(D->getLocation()); 1038 DI->EmitGlobalVariable(GV, D); 1039 } 1040 } 1041 1042 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1043 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1044 /// existing call uses of the old function in the module, this adjusts them to 1045 /// call the new function directly. 1046 /// 1047 /// This is not just a cleanup: the always_inline pass requires direct calls to 1048 /// functions to be able to inline them. If there is a bitcast in the way, it 1049 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1050 /// run at -O0. 1051 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1052 llvm::Function *NewFn) { 1053 // If we're redefining a global as a function, don't transform it. 1054 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1055 if (OldFn == 0) return; 1056 1057 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1058 llvm::SmallVector<llvm::Value*, 4> ArgList; 1059 1060 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1061 UI != E; ) { 1062 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1063 unsigned OpNo = UI.getOperandNo(); 1064 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1065 if (!CI || OpNo != 0) continue; 1066 1067 // If the return types don't match exactly, and if the call isn't dead, then 1068 // we can't transform this call. 1069 if (CI->getType() != NewRetTy && !CI->use_empty()) 1070 continue; 1071 1072 // If the function was passed too few arguments, don't transform. If extra 1073 // arguments were passed, we silently drop them. If any of the types 1074 // mismatch, we don't transform. 1075 unsigned ArgNo = 0; 1076 bool DontTransform = false; 1077 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1078 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1079 if (CI->getNumOperands()-1 == ArgNo || 1080 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1081 DontTransform = true; 1082 break; 1083 } 1084 } 1085 if (DontTransform) 1086 continue; 1087 1088 // Okay, we can transform this. Create the new call instruction and copy 1089 // over the required information. 1090 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1091 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1092 ArgList.end(), "", CI); 1093 ArgList.clear(); 1094 if (!NewCall->getType()->isVoidTy()) 1095 NewCall->takeName(CI); 1096 NewCall->setAttributes(CI->getAttributes()); 1097 NewCall->setCallingConv(CI->getCallingConv()); 1098 1099 // Finally, remove the old call, replacing any uses with the new one. 1100 if (!CI->use_empty()) 1101 CI->replaceAllUsesWith(NewCall); 1102 1103 // Copy any custom metadata attached with CI. 1104 if (llvm::MDNode *DbgNode = CI->getMetadata("dbg")) 1105 NewCall->setMetadata("dbg", DbgNode); 1106 CI->eraseFromParent(); 1107 } 1108 } 1109 1110 1111 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1112 const llvm::FunctionType *Ty; 1113 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1114 1115 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1116 bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic(); 1117 1118 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1119 } else { 1120 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1121 1122 // As a special case, make sure that definitions of K&R function 1123 // "type foo()" aren't declared as varargs (which forces the backend 1124 // to do unnecessary work). 1125 if (D->getType()->isFunctionNoProtoType()) { 1126 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1127 // Due to stret, the lowered function could have arguments. 1128 // Just create the same type as was lowered by ConvertType 1129 // but strip off the varargs bit. 1130 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1131 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1132 } 1133 } 1134 1135 // Get or create the prototype for the function. 1136 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1137 1138 // Strip off a bitcast if we got one back. 1139 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1140 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1141 Entry = CE->getOperand(0); 1142 } 1143 1144 1145 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1146 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1147 1148 // If the types mismatch then we have to rewrite the definition. 1149 assert(OldFn->isDeclaration() && 1150 "Shouldn't replace non-declaration"); 1151 1152 // F is the Function* for the one with the wrong type, we must make a new 1153 // Function* and update everything that used F (a declaration) with the new 1154 // Function* (which will be a definition). 1155 // 1156 // This happens if there is a prototype for a function 1157 // (e.g. "int f()") and then a definition of a different type 1158 // (e.g. "int f(int x)"). Start by making a new function of the 1159 // correct type, RAUW, then steal the name. 1160 GlobalDeclMap.erase(getMangledName(D)); 1161 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1162 NewFn->takeName(OldFn); 1163 1164 // If this is an implementation of a function without a prototype, try to 1165 // replace any existing uses of the function (which may be calls) with uses 1166 // of the new function 1167 if (D->getType()->isFunctionNoProtoType()) { 1168 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1169 OldFn->removeDeadConstantUsers(); 1170 } 1171 1172 // Replace uses of F with the Function we will endow with a body. 1173 if (!Entry->use_empty()) { 1174 llvm::Constant *NewPtrForOldDecl = 1175 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1176 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1177 } 1178 1179 // Ok, delete the old function now, which is dead. 1180 OldFn->eraseFromParent(); 1181 1182 Entry = NewFn; 1183 } 1184 1185 llvm::Function *Fn = cast<llvm::Function>(Entry); 1186 1187 CodeGenFunction(*this).GenerateCode(D, Fn); 1188 1189 SetFunctionDefinitionAttributes(D, Fn); 1190 SetLLVMFunctionAttributesForDefinition(D, Fn); 1191 1192 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1193 AddGlobalCtor(Fn, CA->getPriority()); 1194 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1195 AddGlobalDtor(Fn, DA->getPriority()); 1196 } 1197 1198 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1199 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1200 assert(AA && "Not an alias?"); 1201 1202 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1203 1204 // Unique the name through the identifier table. 1205 const char *AliaseeName = AA->getAliasee().c_str(); 1206 AliaseeName = getContext().Idents.get(AliaseeName).getNameStart(); 1207 1208 // Create a reference to the named value. This ensures that it is emitted 1209 // if a deferred decl. 1210 llvm::Constant *Aliasee; 1211 if (isa<llvm::FunctionType>(DeclTy)) 1212 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1213 else 1214 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1215 llvm::PointerType::getUnqual(DeclTy), 0); 1216 1217 // Create the new alias itself, but don't set a name yet. 1218 llvm::GlobalValue *GA = 1219 new llvm::GlobalAlias(Aliasee->getType(), 1220 llvm::Function::ExternalLinkage, 1221 "", Aliasee, &getModule()); 1222 1223 // See if there is already something with the alias' name in the module. 1224 const char *MangledName = getMangledName(D); 1225 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1226 1227 if (Entry && !Entry->isDeclaration()) { 1228 // If there is a definition in the module, then it wins over the alias. 1229 // This is dubious, but allow it to be safe. Just ignore the alias. 1230 GA->eraseFromParent(); 1231 return; 1232 } 1233 1234 if (Entry) { 1235 // If there is a declaration in the module, then we had an extern followed 1236 // by the alias, as in: 1237 // extern int test6(); 1238 // ... 1239 // int test6() __attribute__((alias("test7"))); 1240 // 1241 // Remove it and replace uses of it with the alias. 1242 1243 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1244 Entry->getType())); 1245 Entry->eraseFromParent(); 1246 } 1247 1248 // Now we know that there is no conflict, set the name. 1249 Entry = GA; 1250 GA->setName(MangledName); 1251 1252 // Set attributes which are particular to an alias; this is a 1253 // specialization of the attributes which may be set on a global 1254 // variable/function. 1255 if (D->hasAttr<DLLExportAttr>()) { 1256 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1257 // The dllexport attribute is ignored for undefined symbols. 1258 if (FD->getBody()) 1259 GA->setLinkage(llvm::Function::DLLExportLinkage); 1260 } else { 1261 GA->setLinkage(llvm::Function::DLLExportLinkage); 1262 } 1263 } else if (D->hasAttr<WeakAttr>() || 1264 D->hasAttr<WeakImportAttr>()) { 1265 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1266 } 1267 1268 SetCommonAttributes(D, GA); 1269 } 1270 1271 /// getBuiltinLibFunction - Given a builtin id for a function like 1272 /// "__builtin_fabsf", return a Function* for "fabsf". 1273 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1274 unsigned BuiltinID) { 1275 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1276 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1277 "isn't a lib fn"); 1278 1279 // Get the name, skip over the __builtin_ prefix (if necessary). 1280 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1281 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1282 Name += 10; 1283 1284 const llvm::FunctionType *Ty = 1285 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1286 1287 // Unique the name through the identifier table. 1288 Name = getContext().Idents.get(Name).getNameStart(); 1289 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1290 } 1291 1292 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1293 unsigned NumTys) { 1294 return llvm::Intrinsic::getDeclaration(&getModule(), 1295 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1296 } 1297 1298 llvm::Function *CodeGenModule::getMemCpyFn() { 1299 if (MemCpyFn) return MemCpyFn; 1300 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1301 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1302 } 1303 1304 llvm::Function *CodeGenModule::getMemMoveFn() { 1305 if (MemMoveFn) return MemMoveFn; 1306 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1307 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1308 } 1309 1310 llvm::Function *CodeGenModule::getMemSetFn() { 1311 if (MemSetFn) return MemSetFn; 1312 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1313 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1314 } 1315 1316 static llvm::StringMapEntry<llvm::Constant*> & 1317 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1318 const StringLiteral *Literal, 1319 bool TargetIsLSB, 1320 bool &IsUTF16, 1321 unsigned &StringLength) { 1322 unsigned NumBytes = Literal->getByteLength(); 1323 1324 // Check for simple case. 1325 if (!Literal->containsNonAsciiOrNull()) { 1326 StringLength = NumBytes; 1327 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1328 StringLength)); 1329 } 1330 1331 // Otherwise, convert the UTF8 literals into a byte string. 1332 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1333 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1334 UTF16 *ToPtr = &ToBuf[0]; 1335 1336 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1337 &ToPtr, ToPtr + NumBytes, 1338 strictConversion); 1339 1340 // Check for conversion failure. 1341 if (Result != conversionOK) { 1342 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1343 // this duplicate code. 1344 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1345 StringLength = NumBytes; 1346 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1347 StringLength)); 1348 } 1349 1350 // ConvertUTF8toUTF16 returns the length in ToPtr. 1351 StringLength = ToPtr - &ToBuf[0]; 1352 1353 // Render the UTF-16 string into a byte array and convert to the target byte 1354 // order. 1355 // 1356 // FIXME: This isn't something we should need to do here. 1357 llvm::SmallString<128> AsBytes; 1358 AsBytes.reserve(StringLength * 2); 1359 for (unsigned i = 0; i != StringLength; ++i) { 1360 unsigned short Val = ToBuf[i]; 1361 if (TargetIsLSB) { 1362 AsBytes.push_back(Val & 0xFF); 1363 AsBytes.push_back(Val >> 8); 1364 } else { 1365 AsBytes.push_back(Val >> 8); 1366 AsBytes.push_back(Val & 0xFF); 1367 } 1368 } 1369 // Append one extra null character, the second is automatically added by our 1370 // caller. 1371 AsBytes.push_back(0); 1372 1373 IsUTF16 = true; 1374 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1375 } 1376 1377 llvm::Constant * 1378 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1379 unsigned StringLength = 0; 1380 bool isUTF16 = false; 1381 llvm::StringMapEntry<llvm::Constant*> &Entry = 1382 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1383 getTargetData().isLittleEndian(), 1384 isUTF16, StringLength); 1385 1386 if (llvm::Constant *C = Entry.getValue()) 1387 return C; 1388 1389 llvm::Constant *Zero = 1390 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1391 llvm::Constant *Zeros[] = { Zero, Zero }; 1392 1393 // If we don't already have it, get __CFConstantStringClassReference. 1394 if (!CFConstantStringClassRef) { 1395 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1396 Ty = llvm::ArrayType::get(Ty, 0); 1397 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1398 "__CFConstantStringClassReference"); 1399 // Decay array -> ptr 1400 CFConstantStringClassRef = 1401 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1402 } 1403 1404 QualType CFTy = getContext().getCFConstantStringType(); 1405 1406 const llvm::StructType *STy = 1407 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1408 1409 std::vector<llvm::Constant*> Fields(4); 1410 1411 // Class pointer. 1412 Fields[0] = CFConstantStringClassRef; 1413 1414 // Flags. 1415 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1416 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1417 llvm::ConstantInt::get(Ty, 0x07C8); 1418 1419 // String pointer. 1420 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1421 1422 const char *Sect = 0; 1423 llvm::GlobalValue::LinkageTypes Linkage; 1424 bool isConstant; 1425 if (isUTF16) { 1426 Sect = getContext().Target.getUnicodeStringSection(); 1427 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1428 Linkage = llvm::GlobalValue::InternalLinkage; 1429 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1430 // does make plain ascii ones writable. 1431 isConstant = true; 1432 } else { 1433 Linkage = llvm::GlobalValue::PrivateLinkage; 1434 isConstant = !Features.WritableStrings; 1435 } 1436 1437 llvm::GlobalVariable *GV = 1438 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1439 ".str"); 1440 if (Sect) 1441 GV->setSection(Sect); 1442 if (isUTF16) { 1443 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1444 GV->setAlignment(Align); 1445 } 1446 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1447 1448 // String length. 1449 Ty = getTypes().ConvertType(getContext().LongTy); 1450 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1451 1452 // The struct. 1453 C = llvm::ConstantStruct::get(STy, Fields); 1454 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1455 llvm::GlobalVariable::PrivateLinkage, C, 1456 "_unnamed_cfstring_"); 1457 if (const char *Sect = getContext().Target.getCFStringSection()) 1458 GV->setSection(Sect); 1459 Entry.setValue(GV); 1460 1461 return GV; 1462 } 1463 1464 /// GetStringForStringLiteral - Return the appropriate bytes for a 1465 /// string literal, properly padded to match the literal type. 1466 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1467 const char *StrData = E->getStrData(); 1468 unsigned Len = E->getByteLength(); 1469 1470 const ConstantArrayType *CAT = 1471 getContext().getAsConstantArrayType(E->getType()); 1472 assert(CAT && "String isn't pointer or array!"); 1473 1474 // Resize the string to the right size. 1475 std::string Str(StrData, StrData+Len); 1476 uint64_t RealLen = CAT->getSize().getZExtValue(); 1477 1478 if (E->isWide()) 1479 RealLen *= getContext().Target.getWCharWidth()/8; 1480 1481 Str.resize(RealLen, '\0'); 1482 1483 return Str; 1484 } 1485 1486 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1487 /// constant array for the given string literal. 1488 llvm::Constant * 1489 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1490 // FIXME: This can be more efficient. 1491 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1492 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1493 if (S->isWide()) { 1494 llvm::Type *DestTy = 1495 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1496 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1497 } 1498 return C; 1499 } 1500 1501 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1502 /// array for the given ObjCEncodeExpr node. 1503 llvm::Constant * 1504 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1505 std::string Str; 1506 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1507 1508 return GetAddrOfConstantCString(Str); 1509 } 1510 1511 1512 /// GenerateWritableString -- Creates storage for a string literal. 1513 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1514 bool constant, 1515 CodeGenModule &CGM, 1516 const char *GlobalName) { 1517 // Create Constant for this string literal. Don't add a '\0'. 1518 llvm::Constant *C = 1519 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1520 1521 // Create a global variable for this string 1522 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1523 llvm::GlobalValue::PrivateLinkage, 1524 C, GlobalName); 1525 } 1526 1527 /// GetAddrOfConstantString - Returns a pointer to a character array 1528 /// containing the literal. This contents are exactly that of the 1529 /// given string, i.e. it will not be null terminated automatically; 1530 /// see GetAddrOfConstantCString. Note that whether the result is 1531 /// actually a pointer to an LLVM constant depends on 1532 /// Feature.WriteableStrings. 1533 /// 1534 /// The result has pointer to array type. 1535 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1536 const char *GlobalName) { 1537 bool IsConstant = !Features.WritableStrings; 1538 1539 // Get the default prefix if a name wasn't specified. 1540 if (!GlobalName) 1541 GlobalName = ".str"; 1542 1543 // Don't share any string literals if strings aren't constant. 1544 if (!IsConstant) 1545 return GenerateStringLiteral(str, false, *this, GlobalName); 1546 1547 llvm::StringMapEntry<llvm::Constant *> &Entry = 1548 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1549 1550 if (Entry.getValue()) 1551 return Entry.getValue(); 1552 1553 // Create a global variable for this. 1554 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1555 Entry.setValue(C); 1556 return C; 1557 } 1558 1559 /// GetAddrOfConstantCString - Returns a pointer to a character 1560 /// array containing the literal and a terminating '\-' 1561 /// character. The result has pointer to array type. 1562 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1563 const char *GlobalName){ 1564 return GetAddrOfConstantString(str + '\0', GlobalName); 1565 } 1566 1567 /// EmitObjCPropertyImplementations - Emit information for synthesized 1568 /// properties for an implementation. 1569 void CodeGenModule::EmitObjCPropertyImplementations(const 1570 ObjCImplementationDecl *D) { 1571 for (ObjCImplementationDecl::propimpl_iterator 1572 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1573 ObjCPropertyImplDecl *PID = *i; 1574 1575 // Dynamic is just for type-checking. 1576 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1577 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1578 1579 // Determine which methods need to be implemented, some may have 1580 // been overridden. Note that ::isSynthesized is not the method 1581 // we want, that just indicates if the decl came from a 1582 // property. What we want to know is if the method is defined in 1583 // this implementation. 1584 if (!D->getInstanceMethod(PD->getGetterName())) 1585 CodeGenFunction(*this).GenerateObjCGetter( 1586 const_cast<ObjCImplementationDecl *>(D), PID); 1587 if (!PD->isReadOnly() && 1588 !D->getInstanceMethod(PD->getSetterName())) 1589 CodeGenFunction(*this).GenerateObjCSetter( 1590 const_cast<ObjCImplementationDecl *>(D), PID); 1591 } 1592 } 1593 } 1594 1595 /// EmitNamespace - Emit all declarations in a namespace. 1596 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1597 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1598 I != E; ++I) 1599 EmitTopLevelDecl(*I); 1600 } 1601 1602 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1603 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1604 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1605 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1606 ErrorUnsupported(LSD, "linkage spec"); 1607 return; 1608 } 1609 1610 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1611 I != E; ++I) 1612 EmitTopLevelDecl(*I); 1613 } 1614 1615 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1616 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1617 // If an error has occurred, stop code generation, but continue 1618 // parsing and semantic analysis (to ensure all warnings and errors 1619 // are emitted). 1620 if (Diags.hasErrorOccurred()) 1621 return; 1622 1623 // Ignore dependent declarations. 1624 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1625 return; 1626 1627 switch (D->getKind()) { 1628 case Decl::CXXConversion: 1629 case Decl::CXXMethod: 1630 case Decl::Function: 1631 // Skip function templates 1632 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1633 return; 1634 1635 EmitGlobal(cast<FunctionDecl>(D)); 1636 break; 1637 1638 case Decl::Var: 1639 EmitGlobal(cast<VarDecl>(D)); 1640 break; 1641 1642 // C++ Decls 1643 case Decl::Namespace: 1644 EmitNamespace(cast<NamespaceDecl>(D)); 1645 break; 1646 // No code generation needed. 1647 case Decl::UsingShadow: 1648 case Decl::Using: 1649 case Decl::UsingDirective: 1650 case Decl::ClassTemplate: 1651 case Decl::FunctionTemplate: 1652 case Decl::NamespaceAlias: 1653 break; 1654 case Decl::CXXConstructor: 1655 // Skip function templates 1656 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1657 return; 1658 1659 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1660 break; 1661 case Decl::CXXDestructor: 1662 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1663 break; 1664 1665 case Decl::StaticAssert: 1666 // Nothing to do. 1667 break; 1668 1669 // Objective-C Decls 1670 1671 // Forward declarations, no (immediate) code generation. 1672 case Decl::ObjCClass: 1673 case Decl::ObjCForwardProtocol: 1674 case Decl::ObjCCategory: 1675 case Decl::ObjCInterface: 1676 break; 1677 1678 case Decl::ObjCProtocol: 1679 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1680 break; 1681 1682 case Decl::ObjCCategoryImpl: 1683 // Categories have properties but don't support synthesize so we 1684 // can ignore them here. 1685 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1686 break; 1687 1688 case Decl::ObjCImplementation: { 1689 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1690 EmitObjCPropertyImplementations(OMD); 1691 Runtime->GenerateClass(OMD); 1692 break; 1693 } 1694 case Decl::ObjCMethod: { 1695 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1696 // If this is not a prototype, emit the body. 1697 if (OMD->getBody()) 1698 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1699 break; 1700 } 1701 case Decl::ObjCCompatibleAlias: 1702 // compatibility-alias is a directive and has no code gen. 1703 break; 1704 1705 case Decl::LinkageSpec: 1706 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1707 break; 1708 1709 case Decl::FileScopeAsm: { 1710 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1711 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1712 1713 const std::string &S = getModule().getModuleInlineAsm(); 1714 if (S.empty()) 1715 getModule().setModuleInlineAsm(AsmString); 1716 else 1717 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 1718 break; 1719 } 1720 1721 default: 1722 // Make sure we handled everything we should, every other kind is a 1723 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1724 // function. Need to recode Decl::Kind to do that easily. 1725 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1726 } 1727 } 1728