1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/CodeGen/CodeGenOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/Basic/Diagnostic.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Basic/ConvertUTF.h"
30 #include "llvm/CallingConv.h"
31 #include "llvm/Module.h"
32 #include "llvm/Intrinsics.h"
33 #include "llvm/Target/TargetData.h"
34 #include "llvm/Support/ErrorHandling.h"
35 using namespace clang;
36 using namespace CodeGen;
37 
38 
39 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
40                              llvm::Module &M, const llvm::TargetData &TD,
41                              Diagnostic &diags)
42   : BlockModule(C, M, TD, Types, *this), Context(C),
43     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
44     TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C),
45     VtableInfo(*this), Runtime(0),
46     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
47     VMContext(M.getContext()) {
48 
49   if (!Features.ObjC1)
50     Runtime = 0;
51   else if (!Features.NeXTRuntime)
52     Runtime = CreateGNUObjCRuntime(*this);
53   else if (Features.ObjCNonFragileABI)
54     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
55   else
56     Runtime = CreateMacObjCRuntime(*this);
57 
58   // If debug info generation is enabled, create the CGDebugInfo object.
59   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(this) : 0;
60 }
61 
62 CodeGenModule::~CodeGenModule() {
63   delete Runtime;
64   delete DebugInfo;
65 }
66 
67 void CodeGenModule::Release() {
68   // We need to call this first because it can add deferred declarations.
69   EmitCXXGlobalInitFunc();
70 
71   EmitDeferred();
72   if (Runtime)
73     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
74       AddGlobalCtor(ObjCInitFunction);
75   EmitCtorList(GlobalCtors, "llvm.global_ctors");
76   EmitCtorList(GlobalDtors, "llvm.global_dtors");
77   EmitAnnotations();
78   EmitLLVMUsed();
79 }
80 
81 /// ErrorUnsupported - Print out an error that codegen doesn't support the
82 /// specified stmt yet.
83 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
84                                      bool OmitOnError) {
85   if (OmitOnError && getDiags().hasErrorOccurred())
86     return;
87   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
88                                                "cannot compile this %0 yet");
89   std::string Msg = Type;
90   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
91     << Msg << S->getSourceRange();
92 }
93 
94 /// ErrorUnsupported - Print out an error that codegen doesn't support the
95 /// specified decl yet.
96 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
97                                      bool OmitOnError) {
98   if (OmitOnError && getDiags().hasErrorOccurred())
99     return;
100   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
101                                                "cannot compile this %0 yet");
102   std::string Msg = Type;
103   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
104 }
105 
106 LangOptions::VisibilityMode
107 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
108   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
109     if (VD->getStorageClass() == VarDecl::PrivateExtern)
110       return LangOptions::Hidden;
111 
112   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
113     switch (attr->getVisibility()) {
114     default: assert(0 && "Unknown visibility!");
115     case VisibilityAttr::DefaultVisibility:
116       return LangOptions::Default;
117     case VisibilityAttr::HiddenVisibility:
118       return LangOptions::Hidden;
119     case VisibilityAttr::ProtectedVisibility:
120       return LangOptions::Protected;
121     }
122   }
123 
124   return getLangOptions().getVisibilityMode();
125 }
126 
127 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
128                                         const Decl *D) const {
129   // Internal definitions always have default visibility.
130   if (GV->hasLocalLinkage()) {
131     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
132     return;
133   }
134 
135   switch (getDeclVisibilityMode(D)) {
136   default: assert(0 && "Unknown visibility!");
137   case LangOptions::Default:
138     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
139   case LangOptions::Hidden:
140     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
141   case LangOptions::Protected:
142     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
143   }
144 }
145 
146 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
147   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
148 
149   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
150     return getMangledCXXCtorName(D, GD.getCtorType());
151   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
152     return getMangledCXXDtorName(D, GD.getDtorType());
153 
154   return getMangledName(ND);
155 }
156 
157 /// \brief Retrieves the mangled name for the given declaration.
158 ///
159 /// If the given declaration requires a mangled name, returns an
160 /// const char* containing the mangled name.  Otherwise, returns
161 /// the unmangled name.
162 ///
163 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
164   if (!getMangleContext().shouldMangleDeclName(ND)) {
165     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
166     return ND->getNameAsCString();
167   }
168 
169   llvm::SmallString<256> Name;
170   getMangleContext().mangleName(ND, Name);
171   Name += '\0';
172   return UniqueMangledName(Name.begin(), Name.end());
173 }
174 
175 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
176                                              const char *NameEnd) {
177   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
178 
179   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
180 }
181 
182 /// AddGlobalCtor - Add a function to the list that will be called before
183 /// main() runs.
184 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
185   // FIXME: Type coercion of void()* types.
186   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
187 }
188 
189 /// AddGlobalDtor - Add a function to the list that will be called
190 /// when the module is unloaded.
191 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
192   // FIXME: Type coercion of void()* types.
193   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
194 }
195 
196 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
197   // Ctor function type is void()*.
198   llvm::FunctionType* CtorFTy =
199     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
200                             std::vector<const llvm::Type*>(),
201                             false);
202   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
203 
204   // Get the type of a ctor entry, { i32, void ()* }.
205   llvm::StructType* CtorStructTy =
206     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
207                           llvm::PointerType::getUnqual(CtorFTy), NULL);
208 
209   // Construct the constructor and destructor arrays.
210   std::vector<llvm::Constant*> Ctors;
211   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
212     std::vector<llvm::Constant*> S;
213     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
214                 I->second, false));
215     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
216     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
217   }
218 
219   if (!Ctors.empty()) {
220     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
221     new llvm::GlobalVariable(TheModule, AT, false,
222                              llvm::GlobalValue::AppendingLinkage,
223                              llvm::ConstantArray::get(AT, Ctors),
224                              GlobalName);
225   }
226 }
227 
228 void CodeGenModule::EmitAnnotations() {
229   if (Annotations.empty())
230     return;
231 
232   // Create a new global variable for the ConstantStruct in the Module.
233   llvm::Constant *Array =
234   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
235                                                 Annotations.size()),
236                            Annotations);
237   llvm::GlobalValue *gv =
238   new llvm::GlobalVariable(TheModule, Array->getType(), false,
239                            llvm::GlobalValue::AppendingLinkage, Array,
240                            "llvm.global.annotations");
241   gv->setSection("llvm.metadata");
242 }
243 
244 static CodeGenModule::GVALinkage
245 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
246                       const LangOptions &Features) {
247   // Everything located semantically within an anonymous namespace is
248   // always internal.
249   if (FD->isInAnonymousNamespace())
250     return CodeGenModule::GVA_Internal;
251 
252   // "static" functions get internal linkage.
253   if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD))
254     return CodeGenModule::GVA_Internal;
255 
256   // The kind of external linkage this function will have, if it is not
257   // inline or static.
258   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
259   if (Context.getLangOptions().CPlusPlus &&
260       FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
261     External = CodeGenModule::GVA_TemplateInstantiation;
262 
263   if (!FD->isInlined())
264     return External;
265 
266   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
267     // GNU or C99 inline semantics. Determine whether this symbol should be
268     // externally visible.
269     if (FD->isInlineDefinitionExternallyVisible())
270       return External;
271 
272     // C99 inline semantics, where the symbol is not externally visible.
273     return CodeGenModule::GVA_C99Inline;
274   }
275 
276   // C++0x [temp.explicit]p9:
277   //   [ Note: The intent is that an inline function that is the subject of
278   //   an explicit instantiation declaration will still be implicitly
279   //   instantiated when used so that the body can be considered for
280   //   inlining, but that no out-of-line copy of the inline function would be
281   //   generated in the translation unit. -- end note ]
282   if (FD->getTemplateSpecializationKind()
283                                        == TSK_ExplicitInstantiationDeclaration)
284     return CodeGenModule::GVA_C99Inline;
285 
286   return CodeGenModule::GVA_CXXInline;
287 }
288 
289 /// SetFunctionDefinitionAttributes - Set attributes for a global.
290 ///
291 /// FIXME: This is currently only done for aliases and functions, but not for
292 /// variables (these details are set in EmitGlobalVarDefinition for variables).
293 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
294                                                     llvm::GlobalValue *GV) {
295   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
296 
297   if (Linkage == GVA_Internal) {
298     GV->setLinkage(llvm::Function::InternalLinkage);
299   } else if (D->hasAttr<DLLExportAttr>()) {
300     GV->setLinkage(llvm::Function::DLLExportLinkage);
301   } else if (D->hasAttr<WeakAttr>()) {
302     GV->setLinkage(llvm::Function::WeakAnyLinkage);
303   } else if (Linkage == GVA_C99Inline) {
304     // In C99 mode, 'inline' functions are guaranteed to have a strong
305     // definition somewhere else, so we can use available_externally linkage.
306     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
307   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
308     // In C++, the compiler has to emit a definition in every translation unit
309     // that references the function.  We should use linkonce_odr because
310     // a) if all references in this translation unit are optimized away, we
311     // don't need to codegen it.  b) if the function persists, it needs to be
312     // merged with other definitions. c) C++ has the ODR, so we know the
313     // definition is dependable.
314     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
315   } else {
316     assert(Linkage == GVA_StrongExternal);
317     // Otherwise, we have strong external linkage.
318     GV->setLinkage(llvm::Function::ExternalLinkage);
319   }
320 
321   SetCommonAttributes(D, GV);
322 }
323 
324 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
325                                               const CGFunctionInfo &Info,
326                                               llvm::Function *F) {
327   unsigned CallingConv;
328   AttributeListType AttributeList;
329   ConstructAttributeList(Info, D, AttributeList, CallingConv);
330   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
331                                           AttributeList.size()));
332   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
333 }
334 
335 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
336                                                            llvm::Function *F) {
337   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
338     F->addFnAttr(llvm::Attribute::NoUnwind);
339 
340   if (D->hasAttr<AlwaysInlineAttr>())
341     F->addFnAttr(llvm::Attribute::AlwaysInline);
342 
343   if (D->hasAttr<NoInlineAttr>())
344     F->addFnAttr(llvm::Attribute::NoInline);
345 
346   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
347     F->addFnAttr(llvm::Attribute::StackProtect);
348   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
349     F->addFnAttr(llvm::Attribute::StackProtectReq);
350 
351   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
352     unsigned width = Context.Target.getCharWidth();
353     F->setAlignment(AA->getAlignment() / width);
354     while ((AA = AA->getNext<AlignedAttr>()))
355       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
356   }
357   // C++ ABI requires 2-byte alignment for member functions.
358   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
359     F->setAlignment(2);
360 }
361 
362 void CodeGenModule::SetCommonAttributes(const Decl *D,
363                                         llvm::GlobalValue *GV) {
364   setGlobalVisibility(GV, D);
365 
366   if (D->hasAttr<UsedAttr>())
367     AddUsedGlobal(GV);
368 
369   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
370     GV->setSection(SA->getName());
371 }
372 
373 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
374                                                   llvm::Function *F,
375                                                   const CGFunctionInfo &FI) {
376   SetLLVMFunctionAttributes(D, FI, F);
377   SetLLVMFunctionAttributesForDefinition(D, F);
378 
379   F->setLinkage(llvm::Function::InternalLinkage);
380 
381   SetCommonAttributes(D, F);
382 }
383 
384 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
385                                           llvm::Function *F,
386                                           bool IsIncompleteFunction) {
387   if (!IsIncompleteFunction)
388     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
389 
390   // Only a few attributes are set on declarations; these may later be
391   // overridden by a definition.
392 
393   if (FD->hasAttr<DLLImportAttr>()) {
394     F->setLinkage(llvm::Function::DLLImportLinkage);
395   } else if (FD->hasAttr<WeakAttr>() ||
396              FD->hasAttr<WeakImportAttr>()) {
397     // "extern_weak" is overloaded in LLVM; we probably should have
398     // separate linkage types for this.
399     F->setLinkage(llvm::Function::ExternalWeakLinkage);
400   } else {
401     F->setLinkage(llvm::Function::ExternalLinkage);
402   }
403 
404   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
405     F->setSection(SA->getName());
406 }
407 
408 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
409   assert(!GV->isDeclaration() &&
410          "Only globals with definition can force usage.");
411   LLVMUsed.push_back(GV);
412 }
413 
414 void CodeGenModule::EmitLLVMUsed() {
415   // Don't create llvm.used if there is no need.
416   if (LLVMUsed.empty())
417     return;
418 
419   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
420 
421   // Convert LLVMUsed to what ConstantArray needs.
422   std::vector<llvm::Constant*> UsedArray;
423   UsedArray.resize(LLVMUsed.size());
424   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
425     UsedArray[i] =
426      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
427                                       i8PTy);
428   }
429 
430   if (UsedArray.empty())
431     return;
432   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
433 
434   llvm::GlobalVariable *GV =
435     new llvm::GlobalVariable(getModule(), ATy, false,
436                              llvm::GlobalValue::AppendingLinkage,
437                              llvm::ConstantArray::get(ATy, UsedArray),
438                              "llvm.used");
439 
440   GV->setSection("llvm.metadata");
441 }
442 
443 void CodeGenModule::EmitDeferred() {
444   // Emit code for any potentially referenced deferred decls.  Since a
445   // previously unused static decl may become used during the generation of code
446   // for a static function, iterate until no  changes are made.
447   while (!DeferredDeclsToEmit.empty()) {
448     GlobalDecl D = DeferredDeclsToEmit.back();
449     DeferredDeclsToEmit.pop_back();
450 
451     // The mangled name for the decl must have been emitted in GlobalDeclMap.
452     // Look it up to see if it was defined with a stronger definition (e.g. an
453     // extern inline function with a strong function redefinition).  If so,
454     // just ignore the deferred decl.
455     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
456     assert(CGRef && "Deferred decl wasn't referenced?");
457 
458     if (!CGRef->isDeclaration())
459       continue;
460 
461     // Otherwise, emit the definition and move on to the next one.
462     EmitGlobalDefinition(D);
463   }
464 }
465 
466 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
467 /// annotation information for a given GlobalValue.  The annotation struct is
468 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
469 /// GlobalValue being annotated.  The second field is the constant string
470 /// created from the AnnotateAttr's annotation.  The third field is a constant
471 /// string containing the name of the translation unit.  The fourth field is
472 /// the line number in the file of the annotated value declaration.
473 ///
474 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
475 ///        appears to.
476 ///
477 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
478                                                 const AnnotateAttr *AA,
479                                                 unsigned LineNo) {
480   llvm::Module *M = &getModule();
481 
482   // get [N x i8] constants for the annotation string, and the filename string
483   // which are the 2nd and 3rd elements of the global annotation structure.
484   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
485   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
486                                                   AA->getAnnotation(), true);
487   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
488                                                   M->getModuleIdentifier(),
489                                                   true);
490 
491   // Get the two global values corresponding to the ConstantArrays we just
492   // created to hold the bytes of the strings.
493   llvm::GlobalValue *annoGV =
494     new llvm::GlobalVariable(*M, anno->getType(), false,
495                              llvm::GlobalValue::PrivateLinkage, anno,
496                              GV->getName());
497   // translation unit name string, emitted into the llvm.metadata section.
498   llvm::GlobalValue *unitGV =
499     new llvm::GlobalVariable(*M, unit->getType(), false,
500                              llvm::GlobalValue::PrivateLinkage, unit,
501                              ".str");
502 
503   // Create the ConstantStruct for the global annotation.
504   llvm::Constant *Fields[4] = {
505     llvm::ConstantExpr::getBitCast(GV, SBP),
506     llvm::ConstantExpr::getBitCast(annoGV, SBP),
507     llvm::ConstantExpr::getBitCast(unitGV, SBP),
508     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
509   };
510   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
511 }
512 
513 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
514   // Never defer when EmitAllDecls is specified or the decl has
515   // attribute used.
516   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
517     return false;
518 
519   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
520     // Constructors and destructors should never be deferred.
521     if (FD->hasAttr<ConstructorAttr>() ||
522         FD->hasAttr<DestructorAttr>())
523       return false;
524 
525     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
526 
527     // static, static inline, always_inline, and extern inline functions can
528     // always be deferred.  Normal inline functions can be deferred in C99/C++.
529     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
530         Linkage == GVA_CXXInline)
531       return true;
532     return false;
533   }
534 
535   const VarDecl *VD = cast<VarDecl>(Global);
536   assert(VD->isFileVarDecl() && "Invalid decl");
537 
538   // We never want to defer structs that have non-trivial constructors or
539   // destructors.
540 
541   // FIXME: Handle references.
542   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
543     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
544       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
545         return false;
546     }
547   }
548 
549   // Static data may be deferred, but out-of-line static data members
550   // cannot be.
551   if (VD->isInAnonymousNamespace())
552     return true;
553   if (VD->getLinkage() == VarDecl::InternalLinkage) {
554     // Initializer has side effects?
555     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
556       return false;
557     return !(VD->isStaticDataMember() && VD->isOutOfLine());
558   }
559   return false;
560 }
561 
562 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
563   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
564 
565   // If this is an alias definition (which otherwise looks like a declaration)
566   // emit it now.
567   if (Global->hasAttr<AliasAttr>())
568     return EmitAliasDefinition(Global);
569 
570   // Ignore declarations, they will be emitted on their first use.
571   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
572     // Forward declarations are emitted lazily on first use.
573     if (!FD->isThisDeclarationADefinition())
574       return;
575   } else {
576     const VarDecl *VD = cast<VarDecl>(Global);
577     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
578 
579     if (getLangOptions().CPlusPlus && !VD->getInit()) {
580       // In C++, if this is marked "extern", defer code generation.
581       if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC())
582         return;
583 
584       // If this is a declaration of an explicit specialization of a static
585       // data member in a class template, don't emit it.
586       if (VD->isStaticDataMember() &&
587           VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
588         return;
589     }
590 
591     // In C, if this isn't a definition, defer code generation.
592     if (!getLangOptions().CPlusPlus && !VD->getInit())
593       return;
594   }
595 
596   // Defer code generation when possible if this is a static definition, inline
597   // function etc.  These we only want to emit if they are used.
598   if (MayDeferGeneration(Global)) {
599     // If the value has already been used, add it directly to the
600     // DeferredDeclsToEmit list.
601     const char *MangledName = getMangledName(GD);
602     if (GlobalDeclMap.count(MangledName))
603       DeferredDeclsToEmit.push_back(GD);
604     else {
605       // Otherwise, remember that we saw a deferred decl with this name.  The
606       // first use of the mangled name will cause it to move into
607       // DeferredDeclsToEmit.
608       DeferredDecls[MangledName] = GD;
609     }
610     return;
611   }
612 
613   // Otherwise emit the definition.
614   EmitGlobalDefinition(GD);
615 }
616 
617 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
618   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
619 
620   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
621                                  Context.getSourceManager(),
622                                  "Generating code for declaration");
623 
624   if (isa<CXXMethodDecl>(D))
625     getVtableInfo().MaybeEmitVtable(GD);
626 
627   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
628     EmitCXXConstructor(CD, GD.getCtorType());
629   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
630     EmitCXXDestructor(DD, GD.getDtorType());
631   else if (isa<FunctionDecl>(D))
632     EmitGlobalFunctionDefinition(GD);
633   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
634     EmitGlobalVarDefinition(VD);
635   else {
636     assert(0 && "Invalid argument to EmitGlobalDefinition()");
637   }
638 }
639 
640 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
641 /// module, create and return an llvm Function with the specified type. If there
642 /// is something in the module with the specified name, return it potentially
643 /// bitcasted to the right type.
644 ///
645 /// If D is non-null, it specifies a decl that correspond to this.  This is used
646 /// to set the attributes on the function when it is first created.
647 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
648                                                        const llvm::Type *Ty,
649                                                        GlobalDecl D) {
650   // Lookup the entry, lazily creating it if necessary.
651   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
652   if (Entry) {
653     if (Entry->getType()->getElementType() == Ty)
654       return Entry;
655 
656     // Make sure the result is of the correct type.
657     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
658     return llvm::ConstantExpr::getBitCast(Entry, PTy);
659   }
660 
661   // This function doesn't have a complete type (for example, the return
662   // type is an incomplete struct). Use a fake type instead, and make
663   // sure not to try to set attributes.
664   bool IsIncompleteFunction = false;
665   if (!isa<llvm::FunctionType>(Ty)) {
666     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
667                                  std::vector<const llvm::Type*>(), false);
668     IsIncompleteFunction = true;
669   }
670   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
671                                              llvm::Function::ExternalLinkage,
672                                              "", &getModule());
673   F->setName(MangledName);
674   if (D.getDecl())
675     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
676                           IsIncompleteFunction);
677   Entry = F;
678 
679   // This is the first use or definition of a mangled name.  If there is a
680   // deferred decl with this name, remember that we need to emit it at the end
681   // of the file.
682   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
683     DeferredDecls.find(MangledName);
684   if (DDI != DeferredDecls.end()) {
685     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
686     // list, and remove it from DeferredDecls (since we don't need it anymore).
687     DeferredDeclsToEmit.push_back(DDI->second);
688     DeferredDecls.erase(DDI);
689   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
690     // If this the first reference to a C++ inline function in a class, queue up
691     // the deferred function body for emission.  These are not seen as
692     // top-level declarations.
693     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
694       DeferredDeclsToEmit.push_back(D);
695     // A called constructor which has no definition or declaration need be
696     // synthesized.
697     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
698       if (CD->isImplicit())
699         DeferredDeclsToEmit.push_back(D);
700     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
701       if (DD->isImplicit())
702         DeferredDeclsToEmit.push_back(D);
703     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
704       if (MD->isCopyAssignment() && MD->isImplicit())
705         DeferredDeclsToEmit.push_back(D);
706     }
707   }
708 
709   return F;
710 }
711 
712 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
713 /// non-null, then this function will use the specified type if it has to
714 /// create it (this occurs when we see a definition of the function).
715 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
716                                                  const llvm::Type *Ty) {
717   // If there was no specific requested type, just convert it now.
718   if (!Ty)
719     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
720   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
721 }
722 
723 /// CreateRuntimeFunction - Create a new runtime function with the specified
724 /// type and name.
725 llvm::Constant *
726 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
727                                      const char *Name) {
728   // Convert Name to be a uniqued string from the IdentifierInfo table.
729   Name = getContext().Idents.get(Name).getNameStart();
730   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
731 }
732 
733 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
734 /// create and return an llvm GlobalVariable with the specified type.  If there
735 /// is something in the module with the specified name, return it potentially
736 /// bitcasted to the right type.
737 ///
738 /// If D is non-null, it specifies a decl that correspond to this.  This is used
739 /// to set the attributes on the global when it is first created.
740 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
741                                                      const llvm::PointerType*Ty,
742                                                      const VarDecl *D) {
743   // Lookup the entry, lazily creating it if necessary.
744   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
745   if (Entry) {
746     if (Entry->getType() == Ty)
747       return Entry;
748 
749     // Make sure the result is of the correct type.
750     return llvm::ConstantExpr::getBitCast(Entry, Ty);
751   }
752 
753   // This is the first use or definition of a mangled name.  If there is a
754   // deferred decl with this name, remember that we need to emit it at the end
755   // of the file.
756   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
757     DeferredDecls.find(MangledName);
758   if (DDI != DeferredDecls.end()) {
759     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
760     // list, and remove it from DeferredDecls (since we don't need it anymore).
761     DeferredDeclsToEmit.push_back(DDI->second);
762     DeferredDecls.erase(DDI);
763   }
764 
765   llvm::GlobalVariable *GV =
766     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
767                              llvm::GlobalValue::ExternalLinkage,
768                              0, "", 0,
769                              false, Ty->getAddressSpace());
770   GV->setName(MangledName);
771 
772   // Handle things which are present even on external declarations.
773   if (D) {
774     // FIXME: This code is overly simple and should be merged with other global
775     // handling.
776     GV->setConstant(D->getType().isConstant(Context));
777 
778     // FIXME: Merge with other attribute handling code.
779     if (D->getStorageClass() == VarDecl::PrivateExtern)
780       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
781 
782     if (D->hasAttr<WeakAttr>() ||
783         D->hasAttr<WeakImportAttr>())
784       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
785 
786     GV->setThreadLocal(D->isThreadSpecified());
787   }
788 
789   return Entry = GV;
790 }
791 
792 
793 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
794 /// given global variable.  If Ty is non-null and if the global doesn't exist,
795 /// then it will be greated with the specified type instead of whatever the
796 /// normal requested type would be.
797 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
798                                                   const llvm::Type *Ty) {
799   assert(D->hasGlobalStorage() && "Not a global variable");
800   QualType ASTTy = D->getType();
801   if (Ty == 0)
802     Ty = getTypes().ConvertTypeForMem(ASTTy);
803 
804   const llvm::PointerType *PTy =
805     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
806   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
807 }
808 
809 /// CreateRuntimeVariable - Create a new runtime global variable with the
810 /// specified type and name.
811 llvm::Constant *
812 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
813                                      const char *Name) {
814   // Convert Name to be a uniqued string from the IdentifierInfo table.
815   Name = getContext().Idents.get(Name).getNameStart();
816   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
817 }
818 
819 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
820   assert(!D->getInit() && "Cannot emit definite definitions here!");
821 
822   if (MayDeferGeneration(D)) {
823     // If we have not seen a reference to this variable yet, place it
824     // into the deferred declarations table to be emitted if needed
825     // later.
826     const char *MangledName = getMangledName(D);
827     if (GlobalDeclMap.count(MangledName) == 0) {
828       DeferredDecls[MangledName] = D;
829       return;
830     }
831   }
832 
833   // The tentative definition is the only definition.
834   EmitGlobalVarDefinition(D);
835 }
836 
837 static CodeGenModule::GVALinkage
838 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
839   // Everything located semantically within an anonymous namespace is
840   // always internal.
841   if (VD->isInAnonymousNamespace())
842     return CodeGenModule::GVA_Internal;
843 
844   // Handle linkage for static data members.
845   if (VD->isStaticDataMember()) {
846     switch (VD->getTemplateSpecializationKind()) {
847     case TSK_Undeclared:
848     case TSK_ExplicitSpecialization:
849     case TSK_ExplicitInstantiationDefinition:
850       return CodeGenModule::GVA_StrongExternal;
851 
852     case TSK_ExplicitInstantiationDeclaration:
853       llvm::llvm_unreachable("Variable should not be instantiated");
854       // Fall through to treat this like any other instantiation.
855 
856     case TSK_ImplicitInstantiation:
857       return CodeGenModule::GVA_TemplateInstantiation;
858     }
859   }
860 
861   if (VD->getLinkage() == VarDecl::InternalLinkage)
862     return CodeGenModule::GVA_Internal;
863 
864   return CodeGenModule::GVA_StrongExternal;
865 }
866 
867 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
868   llvm::Constant *Init = 0;
869   QualType ASTTy = D->getType();
870 
871   if (D->getInit() == 0) {
872     // This is a tentative definition; tentative definitions are
873     // implicitly initialized with { 0 }.
874     //
875     // Note that tentative definitions are only emitted at the end of
876     // a translation unit, so they should never have incomplete
877     // type. In addition, EmitTentativeDefinition makes sure that we
878     // never attempt to emit a tentative definition if a real one
879     // exists. A use may still exists, however, so we still may need
880     // to do a RAUW.
881     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
882     Init = EmitNullConstant(D->getType());
883   } else {
884     Init = EmitConstantExpr(D->getInit(), D->getType());
885 
886     if (!Init) {
887       QualType T = D->getInit()->getType();
888       if (getLangOptions().CPlusPlus) {
889         CXXGlobalInits.push_back(D);
890         Init = EmitNullConstant(T);
891       } else {
892         ErrorUnsupported(D, "static initializer");
893         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
894       }
895     }
896   }
897 
898   const llvm::Type* InitType = Init->getType();
899   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
900 
901   // Strip off a bitcast if we got one back.
902   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
903     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
904            // all zero index gep.
905            CE->getOpcode() == llvm::Instruction::GetElementPtr);
906     Entry = CE->getOperand(0);
907   }
908 
909   // Entry is now either a Function or GlobalVariable.
910   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
911 
912   // We have a definition after a declaration with the wrong type.
913   // We must make a new GlobalVariable* and update everything that used OldGV
914   // (a declaration or tentative definition) with the new GlobalVariable*
915   // (which will be a definition).
916   //
917   // This happens if there is a prototype for a global (e.g.
918   // "extern int x[];") and then a definition of a different type (e.g.
919   // "int x[10];"). This also happens when an initializer has a different type
920   // from the type of the global (this happens with unions).
921   if (GV == 0 ||
922       GV->getType()->getElementType() != InitType ||
923       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
924 
925     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
926     GlobalDeclMap.erase(getMangledName(D));
927 
928     // Make a new global with the correct type, this is now guaranteed to work.
929     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
930     GV->takeName(cast<llvm::GlobalValue>(Entry));
931 
932     // Replace all uses of the old global with the new global
933     llvm::Constant *NewPtrForOldDecl =
934         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
935     Entry->replaceAllUsesWith(NewPtrForOldDecl);
936 
937     // Erase the old global, since it is no longer used.
938     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
939   }
940 
941   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
942     SourceManager &SM = Context.getSourceManager();
943     AddAnnotation(EmitAnnotateAttr(GV, AA,
944                               SM.getInstantiationLineNumber(D->getLocation())));
945   }
946 
947   GV->setInitializer(Init);
948 
949   // If it is safe to mark the global 'constant', do so now.
950   GV->setConstant(false);
951   if (D->getType().isConstant(Context)) {
952     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
953     // members, it cannot be declared "LLVM const".
954     GV->setConstant(true);
955   }
956 
957   GV->setAlignment(getContext().getDeclAlignInBytes(D));
958 
959   // Set the llvm linkage type as appropriate.
960   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
961   if (Linkage == GVA_Internal)
962     GV->setLinkage(llvm::Function::InternalLinkage);
963   else if (D->hasAttr<DLLImportAttr>())
964     GV->setLinkage(llvm::Function::DLLImportLinkage);
965   else if (D->hasAttr<DLLExportAttr>())
966     GV->setLinkage(llvm::Function::DLLExportLinkage);
967   else if (D->hasAttr<WeakAttr>()) {
968     if (GV->isConstant())
969       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
970     else
971       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
972   } else if (Linkage == GVA_TemplateInstantiation)
973     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
974   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
975            !D->hasExternalStorage() && !D->getInit() &&
976            !D->getAttr<SectionAttr>()) {
977     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
978     // common vars aren't constant even if declared const.
979     GV->setConstant(false);
980   } else
981     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
982 
983   SetCommonAttributes(D, GV);
984 
985   // Emit global variable debug information.
986   if (CGDebugInfo *DI = getDebugInfo()) {
987     DI->setLocation(D->getLocation());
988     DI->EmitGlobalVariable(GV, D);
989   }
990 }
991 
992 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
993 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
994 /// existing call uses of the old function in the module, this adjusts them to
995 /// call the new function directly.
996 ///
997 /// This is not just a cleanup: the always_inline pass requires direct calls to
998 /// functions to be able to inline them.  If there is a bitcast in the way, it
999 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1000 /// run at -O0.
1001 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1002                                                       llvm::Function *NewFn) {
1003   // If we're redefining a global as a function, don't transform it.
1004   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1005   if (OldFn == 0) return;
1006 
1007   const llvm::Type *NewRetTy = NewFn->getReturnType();
1008   llvm::SmallVector<llvm::Value*, 4> ArgList;
1009 
1010   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1011        UI != E; ) {
1012     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1013     unsigned OpNo = UI.getOperandNo();
1014     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1015     if (!CI || OpNo != 0) continue;
1016 
1017     // If the return types don't match exactly, and if the call isn't dead, then
1018     // we can't transform this call.
1019     if (CI->getType() != NewRetTy && !CI->use_empty())
1020       continue;
1021 
1022     // If the function was passed too few arguments, don't transform.  If extra
1023     // arguments were passed, we silently drop them.  If any of the types
1024     // mismatch, we don't transform.
1025     unsigned ArgNo = 0;
1026     bool DontTransform = false;
1027     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1028          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1029       if (CI->getNumOperands()-1 == ArgNo ||
1030           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1031         DontTransform = true;
1032         break;
1033       }
1034     }
1035     if (DontTransform)
1036       continue;
1037 
1038     // Okay, we can transform this.  Create the new call instruction and copy
1039     // over the required information.
1040     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1041     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1042                                                      ArgList.end(), "", CI);
1043     ArgList.clear();
1044     if (!NewCall->getType()->isVoidTy())
1045       NewCall->takeName(CI);
1046     NewCall->setAttributes(CI->getAttributes());
1047     NewCall->setCallingConv(CI->getCallingConv());
1048 
1049     // Finally, remove the old call, replacing any uses with the new one.
1050     if (!CI->use_empty())
1051       CI->replaceAllUsesWith(NewCall);
1052 
1053     // Copy any custom metadata attached with CI.
1054     llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata();
1055     TheMetadata.copyMD(CI, NewCall);
1056 
1057     CI->eraseFromParent();
1058   }
1059 }
1060 
1061 
1062 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1063   const llvm::FunctionType *Ty;
1064   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1065 
1066   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1067     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1068 
1069     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1070   } else {
1071     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1072 
1073     // As a special case, make sure that definitions of K&R function
1074     // "type foo()" aren't declared as varargs (which forces the backend
1075     // to do unnecessary work).
1076     if (D->getType()->isFunctionNoProtoType()) {
1077       assert(Ty->isVarArg() && "Didn't lower type as expected");
1078       // Due to stret, the lowered function could have arguments.
1079       // Just create the same type as was lowered by ConvertType
1080       // but strip off the varargs bit.
1081       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1082       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1083     }
1084   }
1085 
1086   // Get or create the prototype for the function.
1087   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1088 
1089   // Strip off a bitcast if we got one back.
1090   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1091     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1092     Entry = CE->getOperand(0);
1093   }
1094 
1095 
1096   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1097     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1098 
1099     // If the types mismatch then we have to rewrite the definition.
1100     assert(OldFn->isDeclaration() &&
1101            "Shouldn't replace non-declaration");
1102 
1103     // F is the Function* for the one with the wrong type, we must make a new
1104     // Function* and update everything that used F (a declaration) with the new
1105     // Function* (which will be a definition).
1106     //
1107     // This happens if there is a prototype for a function
1108     // (e.g. "int f()") and then a definition of a different type
1109     // (e.g. "int f(int x)").  Start by making a new function of the
1110     // correct type, RAUW, then steal the name.
1111     GlobalDeclMap.erase(getMangledName(D));
1112     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1113     NewFn->takeName(OldFn);
1114 
1115     // If this is an implementation of a function without a prototype, try to
1116     // replace any existing uses of the function (which may be calls) with uses
1117     // of the new function
1118     if (D->getType()->isFunctionNoProtoType()) {
1119       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1120       OldFn->removeDeadConstantUsers();
1121     }
1122 
1123     // Replace uses of F with the Function we will endow with a body.
1124     if (!Entry->use_empty()) {
1125       llvm::Constant *NewPtrForOldDecl =
1126         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1127       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1128     }
1129 
1130     // Ok, delete the old function now, which is dead.
1131     OldFn->eraseFromParent();
1132 
1133     Entry = NewFn;
1134   }
1135 
1136   llvm::Function *Fn = cast<llvm::Function>(Entry);
1137 
1138   CodeGenFunction(*this).GenerateCode(D, Fn);
1139 
1140   SetFunctionDefinitionAttributes(D, Fn);
1141   SetLLVMFunctionAttributesForDefinition(D, Fn);
1142 
1143   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1144     AddGlobalCtor(Fn, CA->getPriority());
1145   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1146     AddGlobalDtor(Fn, DA->getPriority());
1147 }
1148 
1149 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1150   const AliasAttr *AA = D->getAttr<AliasAttr>();
1151   assert(AA && "Not an alias?");
1152 
1153   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1154 
1155   // Unique the name through the identifier table.
1156   const char *AliaseeName = AA->getAliasee().c_str();
1157   AliaseeName = getContext().Idents.get(AliaseeName).getNameStart();
1158 
1159   // Create a reference to the named value.  This ensures that it is emitted
1160   // if a deferred decl.
1161   llvm::Constant *Aliasee;
1162   if (isa<llvm::FunctionType>(DeclTy))
1163     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1164   else
1165     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1166                                     llvm::PointerType::getUnqual(DeclTy), 0);
1167 
1168   // Create the new alias itself, but don't set a name yet.
1169   llvm::GlobalValue *GA =
1170     new llvm::GlobalAlias(Aliasee->getType(),
1171                           llvm::Function::ExternalLinkage,
1172                           "", Aliasee, &getModule());
1173 
1174   // See if there is already something with the alias' name in the module.
1175   const char *MangledName = getMangledName(D);
1176   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1177 
1178   if (Entry && !Entry->isDeclaration()) {
1179     // If there is a definition in the module, then it wins over the alias.
1180     // This is dubious, but allow it to be safe.  Just ignore the alias.
1181     GA->eraseFromParent();
1182     return;
1183   }
1184 
1185   if (Entry) {
1186     // If there is a declaration in the module, then we had an extern followed
1187     // by the alias, as in:
1188     //   extern int test6();
1189     //   ...
1190     //   int test6() __attribute__((alias("test7")));
1191     //
1192     // Remove it and replace uses of it with the alias.
1193 
1194     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1195                                                           Entry->getType()));
1196     Entry->eraseFromParent();
1197   }
1198 
1199   // Now we know that there is no conflict, set the name.
1200   Entry = GA;
1201   GA->setName(MangledName);
1202 
1203   // Set attributes which are particular to an alias; this is a
1204   // specialization of the attributes which may be set on a global
1205   // variable/function.
1206   if (D->hasAttr<DLLExportAttr>()) {
1207     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1208       // The dllexport attribute is ignored for undefined symbols.
1209       if (FD->getBody())
1210         GA->setLinkage(llvm::Function::DLLExportLinkage);
1211     } else {
1212       GA->setLinkage(llvm::Function::DLLExportLinkage);
1213     }
1214   } else if (D->hasAttr<WeakAttr>() ||
1215              D->hasAttr<WeakImportAttr>()) {
1216     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1217   }
1218 
1219   SetCommonAttributes(D, GA);
1220 }
1221 
1222 /// getBuiltinLibFunction - Given a builtin id for a function like
1223 /// "__builtin_fabsf", return a Function* for "fabsf".
1224 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1225                                                   unsigned BuiltinID) {
1226   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1227           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1228          "isn't a lib fn");
1229 
1230   // Get the name, skip over the __builtin_ prefix (if necessary).
1231   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1232   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1233     Name += 10;
1234 
1235   // Get the type for the builtin.
1236   ASTContext::GetBuiltinTypeError Error;
1237   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1238   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1239 
1240   const llvm::FunctionType *Ty =
1241     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1242 
1243   // Unique the name through the identifier table.
1244   Name = getContext().Idents.get(Name).getNameStart();
1245   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1246 }
1247 
1248 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1249                                             unsigned NumTys) {
1250   return llvm::Intrinsic::getDeclaration(&getModule(),
1251                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1252 }
1253 
1254 llvm::Function *CodeGenModule::getMemCpyFn() {
1255   if (MemCpyFn) return MemCpyFn;
1256   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1257   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1258 }
1259 
1260 llvm::Function *CodeGenModule::getMemMoveFn() {
1261   if (MemMoveFn) return MemMoveFn;
1262   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1263   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1264 }
1265 
1266 llvm::Function *CodeGenModule::getMemSetFn() {
1267   if (MemSetFn) return MemSetFn;
1268   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1269   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1270 }
1271 
1272 static llvm::StringMapEntry<llvm::Constant*> &
1273 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1274                          const StringLiteral *Literal,
1275                          bool TargetIsLSB,
1276                          bool &IsUTF16,
1277                          unsigned &StringLength) {
1278   unsigned NumBytes = Literal->getByteLength();
1279 
1280   // Check for simple case.
1281   if (!Literal->containsNonAsciiOrNull()) {
1282     StringLength = NumBytes;
1283     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1284                                                 StringLength));
1285   }
1286 
1287   // Otherwise, convert the UTF8 literals into a byte string.
1288   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1289   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1290   UTF16 *ToPtr = &ToBuf[0];
1291 
1292   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1293                                                &ToPtr, ToPtr + NumBytes,
1294                                                strictConversion);
1295 
1296   // Check for conversion failure.
1297   if (Result != conversionOK) {
1298     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1299     // this duplicate code.
1300     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1301     StringLength = NumBytes;
1302     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1303                                                 StringLength));
1304   }
1305 
1306   // ConvertUTF8toUTF16 returns the length in ToPtr.
1307   StringLength = ToPtr - &ToBuf[0];
1308 
1309   // Render the UTF-16 string into a byte array and convert to the target byte
1310   // order.
1311   //
1312   // FIXME: This isn't something we should need to do here.
1313   llvm::SmallString<128> AsBytes;
1314   AsBytes.reserve(StringLength * 2);
1315   for (unsigned i = 0; i != StringLength; ++i) {
1316     unsigned short Val = ToBuf[i];
1317     if (TargetIsLSB) {
1318       AsBytes.push_back(Val & 0xFF);
1319       AsBytes.push_back(Val >> 8);
1320     } else {
1321       AsBytes.push_back(Val >> 8);
1322       AsBytes.push_back(Val & 0xFF);
1323     }
1324   }
1325   // Append one extra null character, the second is automatically added by our
1326   // caller.
1327   AsBytes.push_back(0);
1328 
1329   IsUTF16 = true;
1330   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1331 }
1332 
1333 llvm::Constant *
1334 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1335   unsigned StringLength = 0;
1336   bool isUTF16 = false;
1337   llvm::StringMapEntry<llvm::Constant*> &Entry =
1338     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1339                              getTargetData().isLittleEndian(),
1340                              isUTF16, StringLength);
1341 
1342   if (llvm::Constant *C = Entry.getValue())
1343     return C;
1344 
1345   llvm::Constant *Zero =
1346       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1347   llvm::Constant *Zeros[] = { Zero, Zero };
1348 
1349   // If we don't already have it, get __CFConstantStringClassReference.
1350   if (!CFConstantStringClassRef) {
1351     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1352     Ty = llvm::ArrayType::get(Ty, 0);
1353     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1354                                            "__CFConstantStringClassReference");
1355     // Decay array -> ptr
1356     CFConstantStringClassRef =
1357       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1358   }
1359 
1360   QualType CFTy = getContext().getCFConstantStringType();
1361 
1362   const llvm::StructType *STy =
1363     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1364 
1365   std::vector<llvm::Constant*> Fields(4);
1366 
1367   // Class pointer.
1368   Fields[0] = CFConstantStringClassRef;
1369 
1370   // Flags.
1371   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1372   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1373     llvm::ConstantInt::get(Ty, 0x07C8);
1374 
1375   // String pointer.
1376   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1377 
1378   const char *Sect = 0;
1379   llvm::GlobalValue::LinkageTypes Linkage;
1380   bool isConstant;
1381   if (isUTF16) {
1382     Sect = getContext().Target.getUnicodeStringSection();
1383     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1384     Linkage = llvm::GlobalValue::InternalLinkage;
1385     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1386     // does make plain ascii ones writable.
1387     isConstant = true;
1388   } else {
1389     Linkage = llvm::GlobalValue::PrivateLinkage;
1390     isConstant = !Features.WritableStrings;
1391   }
1392 
1393   llvm::GlobalVariable *GV =
1394     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1395                              ".str");
1396   if (Sect)
1397     GV->setSection(Sect);
1398   if (isUTF16) {
1399     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1400     GV->setAlignment(Align);
1401   }
1402   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1403 
1404   // String length.
1405   Ty = getTypes().ConvertType(getContext().LongTy);
1406   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1407 
1408   // The struct.
1409   C = llvm::ConstantStruct::get(STy, Fields);
1410   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1411                                 llvm::GlobalVariable::PrivateLinkage, C,
1412                                 "_unnamed_cfstring_");
1413   if (const char *Sect = getContext().Target.getCFStringSection())
1414     GV->setSection(Sect);
1415   Entry.setValue(GV);
1416 
1417   return GV;
1418 }
1419 
1420 /// GetStringForStringLiteral - Return the appropriate bytes for a
1421 /// string literal, properly padded to match the literal type.
1422 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1423   const char *StrData = E->getStrData();
1424   unsigned Len = E->getByteLength();
1425 
1426   const ConstantArrayType *CAT =
1427     getContext().getAsConstantArrayType(E->getType());
1428   assert(CAT && "String isn't pointer or array!");
1429 
1430   // Resize the string to the right size.
1431   std::string Str(StrData, StrData+Len);
1432   uint64_t RealLen = CAT->getSize().getZExtValue();
1433 
1434   if (E->isWide())
1435     RealLen *= getContext().Target.getWCharWidth()/8;
1436 
1437   Str.resize(RealLen, '\0');
1438 
1439   return Str;
1440 }
1441 
1442 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1443 /// constant array for the given string literal.
1444 llvm::Constant *
1445 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1446   // FIXME: This can be more efficient.
1447   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1448   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1449   if (S->isWide()) {
1450     llvm::Type *DestTy =
1451         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1452     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1453   }
1454   return C;
1455 }
1456 
1457 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1458 /// array for the given ObjCEncodeExpr node.
1459 llvm::Constant *
1460 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1461   std::string Str;
1462   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1463 
1464   return GetAddrOfConstantCString(Str);
1465 }
1466 
1467 
1468 /// GenerateWritableString -- Creates storage for a string literal.
1469 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1470                                              bool constant,
1471                                              CodeGenModule &CGM,
1472                                              const char *GlobalName) {
1473   // Create Constant for this string literal. Don't add a '\0'.
1474   llvm::Constant *C =
1475       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1476 
1477   // Create a global variable for this string
1478   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1479                                   llvm::GlobalValue::PrivateLinkage,
1480                                   C, GlobalName);
1481 }
1482 
1483 /// GetAddrOfConstantString - Returns a pointer to a character array
1484 /// containing the literal. This contents are exactly that of the
1485 /// given string, i.e. it will not be null terminated automatically;
1486 /// see GetAddrOfConstantCString. Note that whether the result is
1487 /// actually a pointer to an LLVM constant depends on
1488 /// Feature.WriteableStrings.
1489 ///
1490 /// The result has pointer to array type.
1491 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1492                                                        const char *GlobalName) {
1493   bool IsConstant = !Features.WritableStrings;
1494 
1495   // Get the default prefix if a name wasn't specified.
1496   if (!GlobalName)
1497     GlobalName = ".str";
1498 
1499   // Don't share any string literals if strings aren't constant.
1500   if (!IsConstant)
1501     return GenerateStringLiteral(str, false, *this, GlobalName);
1502 
1503   llvm::StringMapEntry<llvm::Constant *> &Entry =
1504     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1505 
1506   if (Entry.getValue())
1507     return Entry.getValue();
1508 
1509   // Create a global variable for this.
1510   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1511   Entry.setValue(C);
1512   return C;
1513 }
1514 
1515 /// GetAddrOfConstantCString - Returns a pointer to a character
1516 /// array containing the literal and a terminating '\-'
1517 /// character. The result has pointer to array type.
1518 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1519                                                         const char *GlobalName){
1520   return GetAddrOfConstantString(str + '\0', GlobalName);
1521 }
1522 
1523 /// EmitObjCPropertyImplementations - Emit information for synthesized
1524 /// properties for an implementation.
1525 void CodeGenModule::EmitObjCPropertyImplementations(const
1526                                                     ObjCImplementationDecl *D) {
1527   for (ObjCImplementationDecl::propimpl_iterator
1528          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1529     ObjCPropertyImplDecl *PID = *i;
1530 
1531     // Dynamic is just for type-checking.
1532     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1533       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1534 
1535       // Determine which methods need to be implemented, some may have
1536       // been overridden. Note that ::isSynthesized is not the method
1537       // we want, that just indicates if the decl came from a
1538       // property. What we want to know is if the method is defined in
1539       // this implementation.
1540       if (!D->getInstanceMethod(PD->getGetterName()))
1541         CodeGenFunction(*this).GenerateObjCGetter(
1542                                  const_cast<ObjCImplementationDecl *>(D), PID);
1543       if (!PD->isReadOnly() &&
1544           !D->getInstanceMethod(PD->getSetterName()))
1545         CodeGenFunction(*this).GenerateObjCSetter(
1546                                  const_cast<ObjCImplementationDecl *>(D), PID);
1547     }
1548   }
1549 }
1550 
1551 /// EmitNamespace - Emit all declarations in a namespace.
1552 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1553   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1554        I != E; ++I)
1555     EmitTopLevelDecl(*I);
1556 }
1557 
1558 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1559 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1560   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1561       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1562     ErrorUnsupported(LSD, "linkage spec");
1563     return;
1564   }
1565 
1566   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1567        I != E; ++I)
1568     EmitTopLevelDecl(*I);
1569 }
1570 
1571 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1572 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1573   // If an error has occurred, stop code generation, but continue
1574   // parsing and semantic analysis (to ensure all warnings and errors
1575   // are emitted).
1576   if (Diags.hasErrorOccurred())
1577     return;
1578 
1579   // Ignore dependent declarations.
1580   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1581     return;
1582 
1583   switch (D->getKind()) {
1584   case Decl::CXXConversion:
1585   case Decl::CXXMethod:
1586   case Decl::Function:
1587     // Skip function templates
1588     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1589       return;
1590 
1591     EmitGlobal(cast<FunctionDecl>(D));
1592     break;
1593 
1594   case Decl::Var:
1595     EmitGlobal(cast<VarDecl>(D));
1596     break;
1597 
1598   // C++ Decls
1599   case Decl::Namespace:
1600     EmitNamespace(cast<NamespaceDecl>(D));
1601     break;
1602     // No code generation needed.
1603   case Decl::UsingShadow:
1604   case Decl::Using:
1605   case Decl::UsingDirective:
1606   case Decl::ClassTemplate:
1607   case Decl::FunctionTemplate:
1608   case Decl::NamespaceAlias:
1609     break;
1610   case Decl::CXXConstructor:
1611     // Skip function templates
1612     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1613       return;
1614 
1615     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1616     break;
1617   case Decl::CXXDestructor:
1618     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1619     break;
1620 
1621   case Decl::StaticAssert:
1622     // Nothing to do.
1623     break;
1624 
1625   // Objective-C Decls
1626 
1627   // Forward declarations, no (immediate) code generation.
1628   case Decl::ObjCClass:
1629   case Decl::ObjCForwardProtocol:
1630   case Decl::ObjCCategory:
1631   case Decl::ObjCInterface:
1632     break;
1633 
1634   case Decl::ObjCProtocol:
1635     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1636     break;
1637 
1638   case Decl::ObjCCategoryImpl:
1639     // Categories have properties but don't support synthesize so we
1640     // can ignore them here.
1641     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1642     break;
1643 
1644   case Decl::ObjCImplementation: {
1645     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1646     EmitObjCPropertyImplementations(OMD);
1647     Runtime->GenerateClass(OMD);
1648     break;
1649   }
1650   case Decl::ObjCMethod: {
1651     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1652     // If this is not a prototype, emit the body.
1653     if (OMD->getBody())
1654       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1655     break;
1656   }
1657   case Decl::ObjCCompatibleAlias:
1658     // compatibility-alias is a directive and has no code gen.
1659     break;
1660 
1661   case Decl::LinkageSpec:
1662     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1663     break;
1664 
1665   case Decl::FileScopeAsm: {
1666     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1667     std::string AsmString(AD->getAsmString()->getStrData(),
1668                           AD->getAsmString()->getByteLength());
1669 
1670     const std::string &S = getModule().getModuleInlineAsm();
1671     if (S.empty())
1672       getModule().setModuleInlineAsm(AsmString);
1673     else
1674       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1675     break;
1676   }
1677 
1678   default:
1679     // Make sure we handled everything we should, every other kind is a
1680     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1681     // function. Need to recode Decl::Kind to do that easily.
1682     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1683   }
1684 }
1685