1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/Diagnostic.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Basic/ConvertUTF.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Module.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Target/TargetData.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 38 llvm::Module &M, const llvm::TargetData &TD, 39 Diagnostic &diags) 40 : BlockModule(C, M, TD, Types, *this), Context(C), 41 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 42 TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C), Runtime(0), 43 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 44 VMContext(M.getContext()) { 45 46 if (!Features.ObjC1) 47 Runtime = 0; 48 else if (!Features.NeXTRuntime) 49 Runtime = CreateGNUObjCRuntime(*this); 50 else if (Features.ObjCNonFragileABI) 51 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 52 else 53 Runtime = CreateMacObjCRuntime(*this); 54 55 // If debug info generation is enabled, create the CGDebugInfo object. 56 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 57 } 58 59 CodeGenModule::~CodeGenModule() { 60 delete Runtime; 61 delete DebugInfo; 62 } 63 64 void CodeGenModule::Release() { 65 // We need to call this first because it can add deferred declarations. 66 EmitCXXGlobalInitFunc(); 67 68 EmitDeferred(); 69 if (Runtime) 70 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 71 AddGlobalCtor(ObjCInitFunction); 72 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 73 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 74 EmitAnnotations(); 75 EmitLLVMUsed(); 76 } 77 78 /// ErrorUnsupported - Print out an error that codegen doesn't support the 79 /// specified stmt yet. 80 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 81 bool OmitOnError) { 82 if (OmitOnError && getDiags().hasErrorOccurred()) 83 return; 84 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 85 "cannot compile this %0 yet"); 86 std::string Msg = Type; 87 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 88 << Msg << S->getSourceRange(); 89 } 90 91 /// ErrorUnsupported - Print out an error that codegen doesn't support the 92 /// specified decl yet. 93 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 94 bool OmitOnError) { 95 if (OmitOnError && getDiags().hasErrorOccurred()) 96 return; 97 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 98 "cannot compile this %0 yet"); 99 std::string Msg = Type; 100 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 101 } 102 103 LangOptions::VisibilityMode 104 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 105 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 106 if (VD->getStorageClass() == VarDecl::PrivateExtern) 107 return LangOptions::Hidden; 108 109 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 110 switch (attr->getVisibility()) { 111 default: assert(0 && "Unknown visibility!"); 112 case VisibilityAttr::DefaultVisibility: 113 return LangOptions::Default; 114 case VisibilityAttr::HiddenVisibility: 115 return LangOptions::Hidden; 116 case VisibilityAttr::ProtectedVisibility: 117 return LangOptions::Protected; 118 } 119 } 120 121 return getLangOptions().getVisibilityMode(); 122 } 123 124 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 125 const Decl *D) const { 126 // Internal definitions always have default visibility. 127 if (GV->hasLocalLinkage()) { 128 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 129 return; 130 } 131 132 switch (getDeclVisibilityMode(D)) { 133 default: assert(0 && "Unknown visibility!"); 134 case LangOptions::Default: 135 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 136 case LangOptions::Hidden: 137 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 138 case LangOptions::Protected: 139 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 140 } 141 } 142 143 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 144 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 145 146 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 147 return getMangledCXXCtorName(D, GD.getCtorType()); 148 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 149 return getMangledCXXDtorName(D, GD.getDtorType()); 150 151 return getMangledName(ND); 152 } 153 154 /// \brief Retrieves the mangled name for the given declaration. 155 /// 156 /// If the given declaration requires a mangled name, returns an 157 /// const char* containing the mangled name. Otherwise, returns 158 /// the unmangled name. 159 /// 160 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 161 // In C, functions with no attributes never need to be mangled. Fastpath them. 162 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 163 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 164 return ND->getNameAsCString(); 165 } 166 167 llvm::SmallString<256> Name; 168 llvm::raw_svector_ostream Out(Name); 169 if (!mangleName(getMangleContext(), ND, Out)) { 170 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 171 return ND->getNameAsCString(); 172 } 173 174 Name += '\0'; 175 return UniqueMangledName(Name.begin(), Name.end()); 176 } 177 178 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 179 const char *NameEnd) { 180 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 181 182 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 183 } 184 185 /// AddGlobalCtor - Add a function to the list that will be called before 186 /// main() runs. 187 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 188 // FIXME: Type coercion of void()* types. 189 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 190 } 191 192 /// AddGlobalDtor - Add a function to the list that will be called 193 /// when the module is unloaded. 194 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 195 // FIXME: Type coercion of void()* types. 196 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 197 } 198 199 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 200 // Ctor function type is void()*. 201 llvm::FunctionType* CtorFTy = 202 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 203 std::vector<const llvm::Type*>(), 204 false); 205 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 206 207 // Get the type of a ctor entry, { i32, void ()* }. 208 llvm::StructType* CtorStructTy = 209 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 210 llvm::PointerType::getUnqual(CtorFTy), NULL); 211 212 // Construct the constructor and destructor arrays. 213 std::vector<llvm::Constant*> Ctors; 214 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 215 std::vector<llvm::Constant*> S; 216 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 217 I->second, false)); 218 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 219 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 220 } 221 222 if (!Ctors.empty()) { 223 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 224 new llvm::GlobalVariable(TheModule, AT, false, 225 llvm::GlobalValue::AppendingLinkage, 226 llvm::ConstantArray::get(AT, Ctors), 227 GlobalName); 228 } 229 } 230 231 void CodeGenModule::EmitAnnotations() { 232 if (Annotations.empty()) 233 return; 234 235 // Create a new global variable for the ConstantStruct in the Module. 236 llvm::Constant *Array = 237 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 238 Annotations.size()), 239 Annotations); 240 llvm::GlobalValue *gv = 241 new llvm::GlobalVariable(TheModule, Array->getType(), false, 242 llvm::GlobalValue::AppendingLinkage, Array, 243 "llvm.global.annotations"); 244 gv->setSection("llvm.metadata"); 245 } 246 247 static CodeGenModule::GVALinkage 248 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 249 const LangOptions &Features) { 250 // Everything located semantically within an anonymous namespace is 251 // always internal. 252 if (FD->isInAnonymousNamespace()) 253 return CodeGenModule::GVA_Internal; 254 255 // The kind of external linkage this function will have, if it is not 256 // inline or static. 257 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 258 if (Context.getLangOptions().CPlusPlus && 259 FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 260 External = CodeGenModule::GVA_TemplateInstantiation; 261 262 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 263 // C++ member functions defined inside the class are always inline. 264 if (MD->isInline() || !MD->isOutOfLine()) 265 return CodeGenModule::GVA_CXXInline; 266 267 return External; 268 } 269 270 // "static" functions get internal linkage. 271 if (FD->getStorageClass() == FunctionDecl::Static) 272 return CodeGenModule::GVA_Internal; 273 274 if (!FD->isInline()) 275 return External; 276 277 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 278 // GNU or C99 inline semantics. Determine whether this symbol should be 279 // externally visible. 280 if (FD->isInlineDefinitionExternallyVisible()) 281 return External; 282 283 // C99 inline semantics, where the symbol is not externally visible. 284 return CodeGenModule::GVA_C99Inline; 285 } 286 287 // C++ inline semantics 288 assert(Features.CPlusPlus && "Must be in C++ mode"); 289 return CodeGenModule::GVA_CXXInline; 290 } 291 292 /// SetFunctionDefinitionAttributes - Set attributes for a global. 293 /// 294 /// FIXME: This is currently only done for aliases and functions, but not for 295 /// variables (these details are set in EmitGlobalVarDefinition for variables). 296 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 297 llvm::GlobalValue *GV) { 298 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 299 300 if (Linkage == GVA_Internal) { 301 GV->setLinkage(llvm::Function::InternalLinkage); 302 } else if (D->hasAttr<DLLExportAttr>()) { 303 GV->setLinkage(llvm::Function::DLLExportLinkage); 304 } else if (D->hasAttr<WeakAttr>()) { 305 GV->setLinkage(llvm::Function::WeakAnyLinkage); 306 } else if (Linkage == GVA_C99Inline) { 307 // In C99 mode, 'inline' functions are guaranteed to have a strong 308 // definition somewhere else, so we can use available_externally linkage. 309 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 310 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 311 // In C++, the compiler has to emit a definition in every translation unit 312 // that references the function. We should use linkonce_odr because 313 // a) if all references in this translation unit are optimized away, we 314 // don't need to codegen it. b) if the function persists, it needs to be 315 // merged with other definitions. c) C++ has the ODR, so we know the 316 // definition is dependable. 317 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 318 } else { 319 assert(Linkage == GVA_StrongExternal); 320 // Otherwise, we have strong external linkage. 321 GV->setLinkage(llvm::Function::ExternalLinkage); 322 } 323 324 SetCommonAttributes(D, GV); 325 } 326 327 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 328 const CGFunctionInfo &Info, 329 llvm::Function *F) { 330 unsigned CallingConv; 331 AttributeListType AttributeList; 332 ConstructAttributeList(Info, D, AttributeList, CallingConv); 333 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 334 AttributeList.size())); 335 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 336 } 337 338 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 339 llvm::Function *F) { 340 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 341 F->addFnAttr(llvm::Attribute::NoUnwind); 342 343 if (D->hasAttr<AlwaysInlineAttr>()) 344 F->addFnAttr(llvm::Attribute::AlwaysInline); 345 346 if (D->hasAttr<NoInlineAttr>()) 347 F->addFnAttr(llvm::Attribute::NoInline); 348 349 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) 350 F->setAlignment(AA->getAlignment()/8); 351 // C++ ABI requires 2-byte alignment for member functions. 352 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 353 F->setAlignment(2); 354 } 355 356 void CodeGenModule::SetCommonAttributes(const Decl *D, 357 llvm::GlobalValue *GV) { 358 setGlobalVisibility(GV, D); 359 360 if (D->hasAttr<UsedAttr>()) 361 AddUsedGlobal(GV); 362 363 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 364 GV->setSection(SA->getName()); 365 } 366 367 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 368 llvm::Function *F, 369 const CGFunctionInfo &FI) { 370 SetLLVMFunctionAttributes(D, FI, F); 371 SetLLVMFunctionAttributesForDefinition(D, F); 372 373 F->setLinkage(llvm::Function::InternalLinkage); 374 375 SetCommonAttributes(D, F); 376 } 377 378 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 379 llvm::Function *F, 380 bool IsIncompleteFunction) { 381 if (!IsIncompleteFunction) 382 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 383 384 // Only a few attributes are set on declarations; these may later be 385 // overridden by a definition. 386 387 if (FD->hasAttr<DLLImportAttr>()) { 388 F->setLinkage(llvm::Function::DLLImportLinkage); 389 } else if (FD->hasAttr<WeakAttr>() || 390 FD->hasAttr<WeakImportAttr>()) { 391 // "extern_weak" is overloaded in LLVM; we probably should have 392 // separate linkage types for this. 393 F->setLinkage(llvm::Function::ExternalWeakLinkage); 394 } else { 395 F->setLinkage(llvm::Function::ExternalLinkage); 396 } 397 398 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 399 F->setSection(SA->getName()); 400 } 401 402 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 403 assert(!GV->isDeclaration() && 404 "Only globals with definition can force usage."); 405 LLVMUsed.push_back(GV); 406 } 407 408 void CodeGenModule::EmitLLVMUsed() { 409 // Don't create llvm.used if there is no need. 410 if (LLVMUsed.empty()) 411 return; 412 413 llvm::Type *i8PTy = 414 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext)); 415 416 // Convert LLVMUsed to what ConstantArray needs. 417 std::vector<llvm::Constant*> UsedArray; 418 UsedArray.resize(LLVMUsed.size()); 419 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 420 UsedArray[i] = 421 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 422 i8PTy); 423 } 424 425 if (UsedArray.empty()) 426 return; 427 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 428 429 llvm::GlobalVariable *GV = 430 new llvm::GlobalVariable(getModule(), ATy, false, 431 llvm::GlobalValue::AppendingLinkage, 432 llvm::ConstantArray::get(ATy, UsedArray), 433 "llvm.used"); 434 435 GV->setSection("llvm.metadata"); 436 } 437 438 void CodeGenModule::EmitDeferred() { 439 // Emit code for any potentially referenced deferred decls. Since a 440 // previously unused static decl may become used during the generation of code 441 // for a static function, iterate until no changes are made. 442 while (!DeferredDeclsToEmit.empty()) { 443 GlobalDecl D = DeferredDeclsToEmit.back(); 444 DeferredDeclsToEmit.pop_back(); 445 446 // The mangled name for the decl must have been emitted in GlobalDeclMap. 447 // Look it up to see if it was defined with a stronger definition (e.g. an 448 // extern inline function with a strong function redefinition). If so, 449 // just ignore the deferred decl. 450 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 451 assert(CGRef && "Deferred decl wasn't referenced?"); 452 453 if (!CGRef->isDeclaration()) 454 continue; 455 456 // Otherwise, emit the definition and move on to the next one. 457 EmitGlobalDefinition(D); 458 } 459 } 460 461 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 462 /// annotation information for a given GlobalValue. The annotation struct is 463 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 464 /// GlobalValue being annotated. The second field is the constant string 465 /// created from the AnnotateAttr's annotation. The third field is a constant 466 /// string containing the name of the translation unit. The fourth field is 467 /// the line number in the file of the annotated value declaration. 468 /// 469 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 470 /// appears to. 471 /// 472 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 473 const AnnotateAttr *AA, 474 unsigned LineNo) { 475 llvm::Module *M = &getModule(); 476 477 // get [N x i8] constants for the annotation string, and the filename string 478 // which are the 2nd and 3rd elements of the global annotation structure. 479 const llvm::Type *SBP = 480 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext)); 481 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 482 AA->getAnnotation(), true); 483 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 484 M->getModuleIdentifier(), 485 true); 486 487 // Get the two global values corresponding to the ConstantArrays we just 488 // created to hold the bytes of the strings. 489 llvm::GlobalValue *annoGV = 490 new llvm::GlobalVariable(*M, anno->getType(), false, 491 llvm::GlobalValue::PrivateLinkage, anno, 492 GV->getName()); 493 // translation unit name string, emitted into the llvm.metadata section. 494 llvm::GlobalValue *unitGV = 495 new llvm::GlobalVariable(*M, unit->getType(), false, 496 llvm::GlobalValue::PrivateLinkage, unit, 497 ".str"); 498 499 // Create the ConstantStruct for the global annotation. 500 llvm::Constant *Fields[4] = { 501 llvm::ConstantExpr::getBitCast(GV, SBP), 502 llvm::ConstantExpr::getBitCast(annoGV, SBP), 503 llvm::ConstantExpr::getBitCast(unitGV, SBP), 504 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 505 }; 506 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 507 } 508 509 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 510 // Never defer when EmitAllDecls is specified or the decl has 511 // attribute used. 512 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 513 return false; 514 515 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 516 // Constructors and destructors should never be deferred. 517 if (FD->hasAttr<ConstructorAttr>() || 518 FD->hasAttr<DestructorAttr>()) 519 return false; 520 521 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 522 523 // static, static inline, always_inline, and extern inline functions can 524 // always be deferred. Normal inline functions can be deferred in C99/C++. 525 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 526 Linkage == GVA_CXXInline) 527 return true; 528 return false; 529 } 530 531 const VarDecl *VD = cast<VarDecl>(Global); 532 assert(VD->isFileVarDecl() && "Invalid decl"); 533 534 // We never want to defer structs that have non-trivial constructors or 535 // destructors. 536 537 // FIXME: Handle references. 538 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 539 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 540 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 541 return false; 542 } 543 } 544 545 return VD->getStorageClass() == VarDecl::Static; 546 } 547 548 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 549 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 550 551 // If this is an alias definition (which otherwise looks like a declaration) 552 // emit it now. 553 if (Global->hasAttr<AliasAttr>()) 554 return EmitAliasDefinition(Global); 555 556 // Ignore declarations, they will be emitted on their first use. 557 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 558 // Forward declarations are emitted lazily on first use. 559 if (!FD->isThisDeclarationADefinition()) 560 return; 561 } else { 562 const VarDecl *VD = cast<VarDecl>(Global); 563 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 564 565 // In C++, if this is marked "extern", defer code generation. 566 if (getLangOptions().CPlusPlus && !VD->getInit() && 567 (VD->getStorageClass() == VarDecl::Extern || 568 VD->isExternC())) 569 return; 570 571 // In C, if this isn't a definition, defer code generation. 572 if (!getLangOptions().CPlusPlus && !VD->getInit()) 573 return; 574 } 575 576 // Defer code generation when possible if this is a static definition, inline 577 // function etc. These we only want to emit if they are used. 578 if (MayDeferGeneration(Global)) { 579 // If the value has already been used, add it directly to the 580 // DeferredDeclsToEmit list. 581 const char *MangledName = getMangledName(GD); 582 if (GlobalDeclMap.count(MangledName)) 583 DeferredDeclsToEmit.push_back(GD); 584 else { 585 // Otherwise, remember that we saw a deferred decl with this name. The 586 // first use of the mangled name will cause it to move into 587 // DeferredDeclsToEmit. 588 DeferredDecls[MangledName] = GD; 589 } 590 return; 591 } 592 593 // Otherwise emit the definition. 594 EmitGlobalDefinition(GD); 595 } 596 597 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 598 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 599 600 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 601 EmitCXXConstructor(CD, GD.getCtorType()); 602 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 603 EmitCXXDestructor(DD, GD.getDtorType()); 604 else if (isa<FunctionDecl>(D)) 605 EmitGlobalFunctionDefinition(GD); 606 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 607 EmitGlobalVarDefinition(VD); 608 else { 609 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 610 } 611 } 612 613 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 614 /// module, create and return an llvm Function with the specified type. If there 615 /// is something in the module with the specified name, return it potentially 616 /// bitcasted to the right type. 617 /// 618 /// If D is non-null, it specifies a decl that correspond to this. This is used 619 /// to set the attributes on the function when it is first created. 620 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 621 const llvm::Type *Ty, 622 GlobalDecl D) { 623 // Lookup the entry, lazily creating it if necessary. 624 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 625 if (Entry) { 626 if (Entry->getType()->getElementType() == Ty) 627 return Entry; 628 629 // Make sure the result is of the correct type. 630 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 631 return llvm::ConstantExpr::getBitCast(Entry, PTy); 632 } 633 634 // This is the first use or definition of a mangled name. If there is a 635 // deferred decl with this name, remember that we need to emit it at the end 636 // of the file. 637 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 638 DeferredDecls.find(MangledName); 639 if (DDI != DeferredDecls.end()) { 640 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 641 // list, and remove it from DeferredDecls (since we don't need it anymore). 642 DeferredDeclsToEmit.push_back(DDI->second); 643 DeferredDecls.erase(DDI); 644 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 645 // If this the first reference to a C++ inline function in a class, queue up 646 // the deferred function body for emission. These are not seen as 647 // top-level declarations. 648 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 649 DeferredDeclsToEmit.push_back(D); 650 // A called constructor which has no definition or declaration need be 651 // synthesized. 652 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 653 const CXXRecordDecl *ClassDecl = 654 cast<CXXRecordDecl>(CD->getDeclContext()); 655 if (CD->isCopyConstructor(getContext())) 656 DeferredCopyConstructorToEmit(D); 657 else if (!ClassDecl->hasUserDeclaredConstructor()) 658 DeferredDeclsToEmit.push_back(D); 659 } 660 else if (isa<CXXDestructorDecl>(FD)) 661 DeferredDestructorToEmit(D); 662 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 663 if (MD->isCopyAssignment()) 664 DeferredCopyAssignmentToEmit(D); 665 } 666 667 // This function doesn't have a complete type (for example, the return 668 // type is an incomplete struct). Use a fake type instead, and make 669 // sure not to try to set attributes. 670 bool IsIncompleteFunction = false; 671 if (!isa<llvm::FunctionType>(Ty)) { 672 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 673 std::vector<const llvm::Type*>(), false); 674 IsIncompleteFunction = true; 675 } 676 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 677 llvm::Function::ExternalLinkage, 678 "", &getModule()); 679 F->setName(MangledName); 680 if (D.getDecl()) 681 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 682 IsIncompleteFunction); 683 Entry = F; 684 return F; 685 } 686 687 /// Defer definition of copy constructor(s) which need be implicitly defined. 688 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) { 689 const CXXConstructorDecl *CD = 690 cast<CXXConstructorDecl>(CopyCtorDecl.getDecl()); 691 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 692 if (ClassDecl->hasTrivialCopyConstructor() || 693 ClassDecl->hasUserDeclaredCopyConstructor()) 694 return; 695 696 // First make sure all direct base classes and virtual bases and non-static 697 // data mebers which need to have their copy constructors implicitly defined 698 // are defined. 12.8.p7 699 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 700 Base != ClassDecl->bases_end(); ++Base) { 701 CXXRecordDecl *BaseClassDecl 702 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 703 if (CXXConstructorDecl *BaseCopyCtor = 704 BaseClassDecl->getCopyConstructor(Context, 0)) 705 GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete); 706 } 707 708 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 709 FieldEnd = ClassDecl->field_end(); 710 Field != FieldEnd; ++Field) { 711 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 712 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 713 FieldType = Array->getElementType(); 714 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 715 if ((*Field)->isAnonymousStructOrUnion()) 716 continue; 717 CXXRecordDecl *FieldClassDecl 718 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 719 if (CXXConstructorDecl *FieldCopyCtor = 720 FieldClassDecl->getCopyConstructor(Context, 0)) 721 GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete); 722 } 723 } 724 DeferredDeclsToEmit.push_back(CopyCtorDecl); 725 } 726 727 /// Defer definition of copy assignments which need be implicitly defined. 728 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) { 729 const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl()); 730 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 731 732 if (ClassDecl->hasTrivialCopyAssignment() || 733 ClassDecl->hasUserDeclaredCopyAssignment()) 734 return; 735 736 // First make sure all direct base classes and virtual bases and non-static 737 // data mebers which need to have their copy assignments implicitly defined 738 // are defined. 12.8.p12 739 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 740 Base != ClassDecl->bases_end(); ++Base) { 741 CXXRecordDecl *BaseClassDecl 742 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 743 const CXXMethodDecl *MD = 0; 744 if (!BaseClassDecl->hasTrivialCopyAssignment() && 745 !BaseClassDecl->hasUserDeclaredCopyAssignment() && 746 BaseClassDecl->hasConstCopyAssignment(getContext(), MD)) 747 GetAddrOfFunction(MD, 0); 748 } 749 750 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 751 FieldEnd = ClassDecl->field_end(); 752 Field != FieldEnd; ++Field) { 753 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 754 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 755 FieldType = Array->getElementType(); 756 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 757 if ((*Field)->isAnonymousStructOrUnion()) 758 continue; 759 CXXRecordDecl *FieldClassDecl 760 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 761 const CXXMethodDecl *MD = 0; 762 if (!FieldClassDecl->hasTrivialCopyAssignment() && 763 !FieldClassDecl->hasUserDeclaredCopyAssignment() && 764 FieldClassDecl->hasConstCopyAssignment(getContext(), MD)) 765 GetAddrOfFunction(MD, 0); 766 } 767 } 768 DeferredDeclsToEmit.push_back(CopyAssignDecl); 769 } 770 771 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) { 772 const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl()); 773 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext()); 774 if (ClassDecl->hasTrivialDestructor() || 775 ClassDecl->hasUserDeclaredDestructor()) 776 return; 777 778 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 779 Base != ClassDecl->bases_end(); ++Base) { 780 CXXRecordDecl *BaseClassDecl 781 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 782 if (const CXXDestructorDecl *BaseDtor = 783 BaseClassDecl->getDestructor(Context)) 784 GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete); 785 } 786 787 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 788 FieldEnd = ClassDecl->field_end(); 789 Field != FieldEnd; ++Field) { 790 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 791 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 792 FieldType = Array->getElementType(); 793 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 794 if ((*Field)->isAnonymousStructOrUnion()) 795 continue; 796 CXXRecordDecl *FieldClassDecl 797 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 798 if (const CXXDestructorDecl *FieldDtor = 799 FieldClassDecl->getDestructor(Context)) 800 GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete); 801 } 802 } 803 DeferredDeclsToEmit.push_back(DtorDecl); 804 } 805 806 807 /// GetAddrOfFunction - Return the address of the given function. If Ty is 808 /// non-null, then this function will use the specified type if it has to 809 /// create it (this occurs when we see a definition of the function). 810 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 811 const llvm::Type *Ty) { 812 // If there was no specific requested type, just convert it now. 813 if (!Ty) 814 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 815 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 816 } 817 818 /// CreateRuntimeFunction - Create a new runtime function with the specified 819 /// type and name. 820 llvm::Constant * 821 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 822 const char *Name) { 823 // Convert Name to be a uniqued string from the IdentifierInfo table. 824 Name = getContext().Idents.get(Name).getName(); 825 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 826 } 827 828 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 829 /// create and return an llvm GlobalVariable with the specified type. If there 830 /// is something in the module with the specified name, return it potentially 831 /// bitcasted to the right type. 832 /// 833 /// If D is non-null, it specifies a decl that correspond to this. This is used 834 /// to set the attributes on the global when it is first created. 835 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 836 const llvm::PointerType*Ty, 837 const VarDecl *D) { 838 // Lookup the entry, lazily creating it if necessary. 839 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 840 if (Entry) { 841 if (Entry->getType() == Ty) 842 return Entry; 843 844 // Make sure the result is of the correct type. 845 return llvm::ConstantExpr::getBitCast(Entry, Ty); 846 } 847 848 // This is the first use or definition of a mangled name. If there is a 849 // deferred decl with this name, remember that we need to emit it at the end 850 // of the file. 851 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 852 DeferredDecls.find(MangledName); 853 if (DDI != DeferredDecls.end()) { 854 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 855 // list, and remove it from DeferredDecls (since we don't need it anymore). 856 DeferredDeclsToEmit.push_back(DDI->second); 857 DeferredDecls.erase(DDI); 858 } 859 860 llvm::GlobalVariable *GV = 861 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 862 llvm::GlobalValue::ExternalLinkage, 863 0, "", 0, 864 false, Ty->getAddressSpace()); 865 GV->setName(MangledName); 866 867 // Handle things which are present even on external declarations. 868 if (D) { 869 // FIXME: This code is overly simple and should be merged with other global 870 // handling. 871 GV->setConstant(D->getType().isConstant(Context)); 872 873 // FIXME: Merge with other attribute handling code. 874 if (D->getStorageClass() == VarDecl::PrivateExtern) 875 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 876 877 if (D->hasAttr<WeakAttr>() || 878 D->hasAttr<WeakImportAttr>()) 879 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 880 881 GV->setThreadLocal(D->isThreadSpecified()); 882 } 883 884 return Entry = GV; 885 } 886 887 888 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 889 /// given global variable. If Ty is non-null and if the global doesn't exist, 890 /// then it will be greated with the specified type instead of whatever the 891 /// normal requested type would be. 892 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 893 const llvm::Type *Ty) { 894 assert(D->hasGlobalStorage() && "Not a global variable"); 895 QualType ASTTy = D->getType(); 896 if (Ty == 0) 897 Ty = getTypes().ConvertTypeForMem(ASTTy); 898 899 const llvm::PointerType *PTy = 900 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 901 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 902 } 903 904 /// CreateRuntimeVariable - Create a new runtime global variable with the 905 /// specified type and name. 906 llvm::Constant * 907 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 908 const char *Name) { 909 // Convert Name to be a uniqued string from the IdentifierInfo table. 910 Name = getContext().Idents.get(Name).getName(); 911 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 912 } 913 914 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 915 assert(!D->getInit() && "Cannot emit definite definitions here!"); 916 917 if (MayDeferGeneration(D)) { 918 // If we have not seen a reference to this variable yet, place it 919 // into the deferred declarations table to be emitted if needed 920 // later. 921 const char *MangledName = getMangledName(D); 922 if (GlobalDeclMap.count(MangledName) == 0) { 923 DeferredDecls[MangledName] = D; 924 return; 925 } 926 } 927 928 // The tentative definition is the only definition. 929 EmitGlobalVarDefinition(D); 930 } 931 932 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 933 llvm::Constant *Init = 0; 934 QualType ASTTy = D->getType(); 935 936 if (D->getInit() == 0) { 937 // This is a tentative definition; tentative definitions are 938 // implicitly initialized with { 0 }. 939 // 940 // Note that tentative definitions are only emitted at the end of 941 // a translation unit, so they should never have incomplete 942 // type. In addition, EmitTentativeDefinition makes sure that we 943 // never attempt to emit a tentative definition if a real one 944 // exists. A use may still exists, however, so we still may need 945 // to do a RAUW. 946 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 947 Init = EmitNullConstant(D->getType()); 948 } else { 949 Init = EmitConstantExpr(D->getInit(), D->getType()); 950 951 if (!Init) { 952 QualType T = D->getInit()->getType(); 953 if (getLangOptions().CPlusPlus) { 954 CXXGlobalInits.push_back(D); 955 Init = EmitNullConstant(T); 956 } else { 957 ErrorUnsupported(D, "static initializer"); 958 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 959 } 960 } 961 } 962 963 const llvm::Type* InitType = Init->getType(); 964 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 965 966 // Strip off a bitcast if we got one back. 967 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 968 assert(CE->getOpcode() == llvm::Instruction::BitCast || 969 // all zero index gep. 970 CE->getOpcode() == llvm::Instruction::GetElementPtr); 971 Entry = CE->getOperand(0); 972 } 973 974 // Entry is now either a Function or GlobalVariable. 975 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 976 977 // We have a definition after a declaration with the wrong type. 978 // We must make a new GlobalVariable* and update everything that used OldGV 979 // (a declaration or tentative definition) with the new GlobalVariable* 980 // (which will be a definition). 981 // 982 // This happens if there is a prototype for a global (e.g. 983 // "extern int x[];") and then a definition of a different type (e.g. 984 // "int x[10];"). This also happens when an initializer has a different type 985 // from the type of the global (this happens with unions). 986 if (GV == 0 || 987 GV->getType()->getElementType() != InitType || 988 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 989 990 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 991 GlobalDeclMap.erase(getMangledName(D)); 992 993 // Make a new global with the correct type, this is now guaranteed to work. 994 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 995 GV->takeName(cast<llvm::GlobalValue>(Entry)); 996 997 // Replace all uses of the old global with the new global 998 llvm::Constant *NewPtrForOldDecl = 999 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1000 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1001 1002 // Erase the old global, since it is no longer used. 1003 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1004 } 1005 1006 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1007 SourceManager &SM = Context.getSourceManager(); 1008 AddAnnotation(EmitAnnotateAttr(GV, AA, 1009 SM.getInstantiationLineNumber(D->getLocation()))); 1010 } 1011 1012 GV->setInitializer(Init); 1013 1014 // If it is safe to mark the global 'constant', do so now. 1015 GV->setConstant(false); 1016 if (D->getType().isConstant(Context)) { 1017 // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable 1018 // members, it cannot be declared "LLVM const". 1019 GV->setConstant(true); 1020 } 1021 1022 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 1023 1024 // Set the llvm linkage type as appropriate. 1025 if (D->isInAnonymousNamespace()) 1026 GV->setLinkage(llvm::Function::InternalLinkage); 1027 else if (D->getStorageClass() == VarDecl::Static) 1028 GV->setLinkage(llvm::Function::InternalLinkage); 1029 else if (D->hasAttr<DLLImportAttr>()) 1030 GV->setLinkage(llvm::Function::DLLImportLinkage); 1031 else if (D->hasAttr<DLLExportAttr>()) 1032 GV->setLinkage(llvm::Function::DLLExportLinkage); 1033 else if (D->hasAttr<WeakAttr>()) { 1034 if (GV->isConstant()) 1035 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1036 else 1037 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1038 } else if (!CompileOpts.NoCommon && 1039 !D->hasExternalStorage() && !D->getInit() && 1040 !D->getAttr<SectionAttr>()) { 1041 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1042 // common vars aren't constant even if declared const. 1043 GV->setConstant(false); 1044 } else 1045 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1046 1047 SetCommonAttributes(D, GV); 1048 1049 // Emit global variable debug information. 1050 if (CGDebugInfo *DI = getDebugInfo()) { 1051 DI->setLocation(D->getLocation()); 1052 DI->EmitGlobalVariable(GV, D); 1053 } 1054 } 1055 1056 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1057 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1058 /// existing call uses of the old function in the module, this adjusts them to 1059 /// call the new function directly. 1060 /// 1061 /// This is not just a cleanup: the always_inline pass requires direct calls to 1062 /// functions to be able to inline them. If there is a bitcast in the way, it 1063 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1064 /// run at -O0. 1065 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1066 llvm::Function *NewFn) { 1067 // If we're redefining a global as a function, don't transform it. 1068 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1069 if (OldFn == 0) return; 1070 1071 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1072 llvm::SmallVector<llvm::Value*, 4> ArgList; 1073 1074 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1075 UI != E; ) { 1076 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1077 unsigned OpNo = UI.getOperandNo(); 1078 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1079 if (!CI || OpNo != 0) continue; 1080 1081 // If the return types don't match exactly, and if the call isn't dead, then 1082 // we can't transform this call. 1083 if (CI->getType() != NewRetTy && !CI->use_empty()) 1084 continue; 1085 1086 // If the function was passed too few arguments, don't transform. If extra 1087 // arguments were passed, we silently drop them. If any of the types 1088 // mismatch, we don't transform. 1089 unsigned ArgNo = 0; 1090 bool DontTransform = false; 1091 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1092 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1093 if (CI->getNumOperands()-1 == ArgNo || 1094 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1095 DontTransform = true; 1096 break; 1097 } 1098 } 1099 if (DontTransform) 1100 continue; 1101 1102 // Okay, we can transform this. Create the new call instruction and copy 1103 // over the required information. 1104 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1105 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1106 ArgList.end(), "", CI); 1107 ArgList.clear(); 1108 if (!NewCall->getType()->isVoidTy()) 1109 NewCall->takeName(CI); 1110 NewCall->setAttributes(CI->getAttributes()); 1111 NewCall->setCallingConv(CI->getCallingConv()); 1112 1113 // Finally, remove the old call, replacing any uses with the new one. 1114 if (!CI->use_empty()) 1115 CI->replaceAllUsesWith(NewCall); 1116 CI->eraseFromParent(); 1117 } 1118 } 1119 1120 1121 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1122 const llvm::FunctionType *Ty; 1123 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1124 1125 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1126 bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic(); 1127 1128 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1129 } else { 1130 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1131 1132 // As a special case, make sure that definitions of K&R function 1133 // "type foo()" aren't declared as varargs (which forces the backend 1134 // to do unnecessary work). 1135 if (D->getType()->isFunctionNoProtoType()) { 1136 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1137 // Due to stret, the lowered function could have arguments. 1138 // Just create the same type as was lowered by ConvertType 1139 // but strip off the varargs bit. 1140 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1141 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1142 } 1143 } 1144 1145 // Get or create the prototype for the function. 1146 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1147 1148 // Strip off a bitcast if we got one back. 1149 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1150 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1151 Entry = CE->getOperand(0); 1152 } 1153 1154 1155 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1156 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1157 1158 // If the types mismatch then we have to rewrite the definition. 1159 assert(OldFn->isDeclaration() && 1160 "Shouldn't replace non-declaration"); 1161 1162 // F is the Function* for the one with the wrong type, we must make a new 1163 // Function* and update everything that used F (a declaration) with the new 1164 // Function* (which will be a definition). 1165 // 1166 // This happens if there is a prototype for a function 1167 // (e.g. "int f()") and then a definition of a different type 1168 // (e.g. "int f(int x)"). Start by making a new function of the 1169 // correct type, RAUW, then steal the name. 1170 GlobalDeclMap.erase(getMangledName(D)); 1171 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1172 NewFn->takeName(OldFn); 1173 1174 // If this is an implementation of a function without a prototype, try to 1175 // replace any existing uses of the function (which may be calls) with uses 1176 // of the new function 1177 if (D->getType()->isFunctionNoProtoType()) { 1178 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1179 OldFn->removeDeadConstantUsers(); 1180 } 1181 1182 // Replace uses of F with the Function we will endow with a body. 1183 if (!Entry->use_empty()) { 1184 llvm::Constant *NewPtrForOldDecl = 1185 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1186 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1187 } 1188 1189 // Ok, delete the old function now, which is dead. 1190 OldFn->eraseFromParent(); 1191 1192 Entry = NewFn; 1193 } 1194 1195 llvm::Function *Fn = cast<llvm::Function>(Entry); 1196 1197 CodeGenFunction(*this).GenerateCode(D, Fn); 1198 1199 SetFunctionDefinitionAttributes(D, Fn); 1200 SetLLVMFunctionAttributesForDefinition(D, Fn); 1201 1202 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1203 AddGlobalCtor(Fn, CA->getPriority()); 1204 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1205 AddGlobalDtor(Fn, DA->getPriority()); 1206 } 1207 1208 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1209 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1210 assert(AA && "Not an alias?"); 1211 1212 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1213 1214 // Unique the name through the identifier table. 1215 const char *AliaseeName = AA->getAliasee().c_str(); 1216 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 1217 1218 // Create a reference to the named value. This ensures that it is emitted 1219 // if a deferred decl. 1220 llvm::Constant *Aliasee; 1221 if (isa<llvm::FunctionType>(DeclTy)) 1222 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1223 else 1224 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1225 llvm::PointerType::getUnqual(DeclTy), 0); 1226 1227 // Create the new alias itself, but don't set a name yet. 1228 llvm::GlobalValue *GA = 1229 new llvm::GlobalAlias(Aliasee->getType(), 1230 llvm::Function::ExternalLinkage, 1231 "", Aliasee, &getModule()); 1232 1233 // See if there is already something with the alias' name in the module. 1234 const char *MangledName = getMangledName(D); 1235 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1236 1237 if (Entry && !Entry->isDeclaration()) { 1238 // If there is a definition in the module, then it wins over the alias. 1239 // This is dubious, but allow it to be safe. Just ignore the alias. 1240 GA->eraseFromParent(); 1241 return; 1242 } 1243 1244 if (Entry) { 1245 // If there is a declaration in the module, then we had an extern followed 1246 // by the alias, as in: 1247 // extern int test6(); 1248 // ... 1249 // int test6() __attribute__((alias("test7"))); 1250 // 1251 // Remove it and replace uses of it with the alias. 1252 1253 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1254 Entry->getType())); 1255 Entry->eraseFromParent(); 1256 } 1257 1258 // Now we know that there is no conflict, set the name. 1259 Entry = GA; 1260 GA->setName(MangledName); 1261 1262 // Set attributes which are particular to an alias; this is a 1263 // specialization of the attributes which may be set on a global 1264 // variable/function. 1265 if (D->hasAttr<DLLExportAttr>()) { 1266 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1267 // The dllexport attribute is ignored for undefined symbols. 1268 if (FD->getBody()) 1269 GA->setLinkage(llvm::Function::DLLExportLinkage); 1270 } else { 1271 GA->setLinkage(llvm::Function::DLLExportLinkage); 1272 } 1273 } else if (D->hasAttr<WeakAttr>() || 1274 D->hasAttr<WeakImportAttr>()) { 1275 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1276 } 1277 1278 SetCommonAttributes(D, GA); 1279 } 1280 1281 /// getBuiltinLibFunction - Given a builtin id for a function like 1282 /// "__builtin_fabsf", return a Function* for "fabsf". 1283 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1284 unsigned BuiltinID) { 1285 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1286 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1287 "isn't a lib fn"); 1288 1289 // Get the name, skip over the __builtin_ prefix (if necessary). 1290 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1291 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1292 Name += 10; 1293 1294 // Get the type for the builtin. 1295 ASTContext::GetBuiltinTypeError Error; 1296 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1297 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1298 1299 const llvm::FunctionType *Ty = 1300 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1301 1302 // Unique the name through the identifier table. 1303 Name = getContext().Idents.get(Name).getName(); 1304 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1305 } 1306 1307 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1308 unsigned NumTys) { 1309 return llvm::Intrinsic::getDeclaration(&getModule(), 1310 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1311 } 1312 1313 llvm::Function *CodeGenModule::getMemCpyFn() { 1314 if (MemCpyFn) return MemCpyFn; 1315 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1316 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1317 } 1318 1319 llvm::Function *CodeGenModule::getMemMoveFn() { 1320 if (MemMoveFn) return MemMoveFn; 1321 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1322 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1323 } 1324 1325 llvm::Function *CodeGenModule::getMemSetFn() { 1326 if (MemSetFn) return MemSetFn; 1327 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1328 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1329 } 1330 1331 static llvm::StringMapEntry<llvm::Constant*> & 1332 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1333 const StringLiteral *Literal, 1334 bool TargetIsLSB, 1335 bool &IsUTF16, 1336 unsigned &StringLength) { 1337 unsigned NumBytes = Literal->getByteLength(); 1338 1339 // Check for simple case. 1340 if (!Literal->containsNonAsciiOrNull()) { 1341 StringLength = NumBytes; 1342 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1343 StringLength)); 1344 } 1345 1346 // Otherwise, convert the UTF8 literals into a byte string. 1347 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1348 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1349 UTF16 *ToPtr = &ToBuf[0]; 1350 1351 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1352 &ToPtr, ToPtr + NumBytes, 1353 strictConversion); 1354 1355 // Check for conversion failure. 1356 if (Result != conversionOK) { 1357 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1358 // this duplicate code. 1359 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1360 StringLength = NumBytes; 1361 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1362 StringLength)); 1363 } 1364 1365 // ConvertUTF8toUTF16 returns the length in ToPtr. 1366 StringLength = ToPtr - &ToBuf[0]; 1367 1368 // Render the UTF-16 string into a byte array and convert to the target byte 1369 // order. 1370 // 1371 // FIXME: This isn't something we should need to do here. 1372 llvm::SmallString<128> AsBytes; 1373 AsBytes.reserve(StringLength * 2); 1374 for (unsigned i = 0; i != StringLength; ++i) { 1375 unsigned short Val = ToBuf[i]; 1376 if (TargetIsLSB) { 1377 AsBytes.push_back(Val & 0xFF); 1378 AsBytes.push_back(Val >> 8); 1379 } else { 1380 AsBytes.push_back(Val >> 8); 1381 AsBytes.push_back(Val & 0xFF); 1382 } 1383 } 1384 // Append one extra null character, the second is automatically added by our 1385 // caller. 1386 AsBytes.push_back(0); 1387 1388 IsUTF16 = true; 1389 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1390 } 1391 1392 llvm::Constant * 1393 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1394 unsigned StringLength = 0; 1395 bool isUTF16 = false; 1396 llvm::StringMapEntry<llvm::Constant*> &Entry = 1397 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1398 getTargetData().isLittleEndian(), 1399 isUTF16, StringLength); 1400 1401 if (llvm::Constant *C = Entry.getValue()) 1402 return C; 1403 1404 llvm::Constant *Zero = 1405 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1406 llvm::Constant *Zeros[] = { Zero, Zero }; 1407 1408 // If we don't already have it, get __CFConstantStringClassReference. 1409 if (!CFConstantStringClassRef) { 1410 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1411 Ty = llvm::ArrayType::get(Ty, 0); 1412 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1413 "__CFConstantStringClassReference"); 1414 // Decay array -> ptr 1415 CFConstantStringClassRef = 1416 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1417 } 1418 1419 QualType CFTy = getContext().getCFConstantStringType(); 1420 1421 const llvm::StructType *STy = 1422 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1423 1424 std::vector<llvm::Constant*> Fields(4); 1425 1426 // Class pointer. 1427 Fields[0] = CFConstantStringClassRef; 1428 1429 // Flags. 1430 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1431 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1432 llvm::ConstantInt::get(Ty, 0x07C8); 1433 1434 // String pointer. 1435 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1436 1437 const char *Sect, *Prefix; 1438 bool isConstant; 1439 llvm::GlobalValue::LinkageTypes Linkage; 1440 if (isUTF16) { 1441 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1442 Sect = getContext().Target.getUnicodeStringSection(); 1443 // FIXME: why do utf strings get "l" labels instead of "L" labels? 1444 Linkage = llvm::GlobalValue::InternalLinkage; 1445 // FIXME: Why does GCC not set constant here? 1446 isConstant = false; 1447 } else { 1448 Prefix = ".str"; 1449 Sect = getContext().Target.getCFStringDataSection(); 1450 Linkage = llvm::GlobalValue::PrivateLinkage; 1451 // FIXME: -fwritable-strings should probably affect this, but we 1452 // are following gcc here. 1453 isConstant = true; 1454 } 1455 llvm::GlobalVariable *GV = 1456 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 1457 Linkage, C, Prefix); 1458 if (Sect) 1459 GV->setSection(Sect); 1460 if (isUTF16) { 1461 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1462 GV->setAlignment(Align); 1463 } 1464 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1465 1466 // String length. 1467 Ty = getTypes().ConvertType(getContext().LongTy); 1468 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1469 1470 // The struct. 1471 C = llvm::ConstantStruct::get(STy, Fields); 1472 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1473 llvm::GlobalVariable::PrivateLinkage, C, 1474 "_unnamed_cfstring_"); 1475 if (const char *Sect = getContext().Target.getCFStringSection()) 1476 GV->setSection(Sect); 1477 Entry.setValue(GV); 1478 1479 return GV; 1480 } 1481 1482 /// GetStringForStringLiteral - Return the appropriate bytes for a 1483 /// string literal, properly padded to match the literal type. 1484 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1485 const char *StrData = E->getStrData(); 1486 unsigned Len = E->getByteLength(); 1487 1488 const ConstantArrayType *CAT = 1489 getContext().getAsConstantArrayType(E->getType()); 1490 assert(CAT && "String isn't pointer or array!"); 1491 1492 // Resize the string to the right size. 1493 std::string Str(StrData, StrData+Len); 1494 uint64_t RealLen = CAT->getSize().getZExtValue(); 1495 1496 if (E->isWide()) 1497 RealLen *= getContext().Target.getWCharWidth()/8; 1498 1499 Str.resize(RealLen, '\0'); 1500 1501 return Str; 1502 } 1503 1504 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1505 /// constant array for the given string literal. 1506 llvm::Constant * 1507 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1508 // FIXME: This can be more efficient. 1509 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1510 } 1511 1512 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1513 /// array for the given ObjCEncodeExpr node. 1514 llvm::Constant * 1515 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1516 std::string Str; 1517 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1518 1519 return GetAddrOfConstantCString(Str); 1520 } 1521 1522 1523 /// GenerateWritableString -- Creates storage for a string literal. 1524 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1525 bool constant, 1526 CodeGenModule &CGM, 1527 const char *GlobalName) { 1528 // Create Constant for this string literal. Don't add a '\0'. 1529 llvm::Constant *C = 1530 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1531 1532 // Create a global variable for this string 1533 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1534 llvm::GlobalValue::PrivateLinkage, 1535 C, GlobalName); 1536 } 1537 1538 /// GetAddrOfConstantString - Returns a pointer to a character array 1539 /// containing the literal. This contents are exactly that of the 1540 /// given string, i.e. it will not be null terminated automatically; 1541 /// see GetAddrOfConstantCString. Note that whether the result is 1542 /// actually a pointer to an LLVM constant depends on 1543 /// Feature.WriteableStrings. 1544 /// 1545 /// The result has pointer to array type. 1546 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1547 const char *GlobalName) { 1548 bool IsConstant = !Features.WritableStrings; 1549 1550 // Get the default prefix if a name wasn't specified. 1551 if (!GlobalName) 1552 GlobalName = ".str"; 1553 1554 // Don't share any string literals if strings aren't constant. 1555 if (!IsConstant) 1556 return GenerateStringLiteral(str, false, *this, GlobalName); 1557 1558 llvm::StringMapEntry<llvm::Constant *> &Entry = 1559 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1560 1561 if (Entry.getValue()) 1562 return Entry.getValue(); 1563 1564 // Create a global variable for this. 1565 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1566 Entry.setValue(C); 1567 return C; 1568 } 1569 1570 /// GetAddrOfConstantCString - Returns a pointer to a character 1571 /// array containing the literal and a terminating '\-' 1572 /// character. The result has pointer to array type. 1573 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1574 const char *GlobalName){ 1575 return GetAddrOfConstantString(str + '\0', GlobalName); 1576 } 1577 1578 /// EmitObjCPropertyImplementations - Emit information for synthesized 1579 /// properties for an implementation. 1580 void CodeGenModule::EmitObjCPropertyImplementations(const 1581 ObjCImplementationDecl *D) { 1582 for (ObjCImplementationDecl::propimpl_iterator 1583 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1584 ObjCPropertyImplDecl *PID = *i; 1585 1586 // Dynamic is just for type-checking. 1587 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1588 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1589 1590 // Determine which methods need to be implemented, some may have 1591 // been overridden. Note that ::isSynthesized is not the method 1592 // we want, that just indicates if the decl came from a 1593 // property. What we want to know is if the method is defined in 1594 // this implementation. 1595 if (!D->getInstanceMethod(PD->getGetterName())) 1596 CodeGenFunction(*this).GenerateObjCGetter( 1597 const_cast<ObjCImplementationDecl *>(D), PID); 1598 if (!PD->isReadOnly() && 1599 !D->getInstanceMethod(PD->getSetterName())) 1600 CodeGenFunction(*this).GenerateObjCSetter( 1601 const_cast<ObjCImplementationDecl *>(D), PID); 1602 } 1603 } 1604 } 1605 1606 /// EmitNamespace - Emit all declarations in a namespace. 1607 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1608 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1609 I != E; ++I) 1610 EmitTopLevelDecl(*I); 1611 } 1612 1613 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1614 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1615 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1616 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1617 ErrorUnsupported(LSD, "linkage spec"); 1618 return; 1619 } 1620 1621 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1622 I != E; ++I) 1623 EmitTopLevelDecl(*I); 1624 } 1625 1626 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1627 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1628 // If an error has occurred, stop code generation, but continue 1629 // parsing and semantic analysis (to ensure all warnings and errors 1630 // are emitted). 1631 if (Diags.hasErrorOccurred()) 1632 return; 1633 1634 // Ignore dependent declarations. 1635 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1636 return; 1637 1638 switch (D->getKind()) { 1639 case Decl::CXXConversion: 1640 case Decl::CXXMethod: 1641 case Decl::Function: 1642 // Skip function templates 1643 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1644 return; 1645 1646 EmitGlobal(cast<FunctionDecl>(D)); 1647 break; 1648 1649 case Decl::Var: 1650 EmitGlobal(cast<VarDecl>(D)); 1651 break; 1652 1653 // C++ Decls 1654 case Decl::Namespace: 1655 EmitNamespace(cast<NamespaceDecl>(D)); 1656 break; 1657 // No code generation needed. 1658 case Decl::Using: 1659 case Decl::UsingDirective: 1660 case Decl::ClassTemplate: 1661 case Decl::FunctionTemplate: 1662 case Decl::NamespaceAlias: 1663 break; 1664 case Decl::CXXConstructor: 1665 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1666 break; 1667 case Decl::CXXDestructor: 1668 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1669 break; 1670 1671 case Decl::StaticAssert: 1672 // Nothing to do. 1673 break; 1674 1675 // Objective-C Decls 1676 1677 // Forward declarations, no (immediate) code generation. 1678 case Decl::ObjCClass: 1679 case Decl::ObjCForwardProtocol: 1680 case Decl::ObjCCategory: 1681 case Decl::ObjCInterface: 1682 break; 1683 1684 case Decl::ObjCProtocol: 1685 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1686 break; 1687 1688 case Decl::ObjCCategoryImpl: 1689 // Categories have properties but don't support synthesize so we 1690 // can ignore them here. 1691 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1692 break; 1693 1694 case Decl::ObjCImplementation: { 1695 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1696 EmitObjCPropertyImplementations(OMD); 1697 Runtime->GenerateClass(OMD); 1698 break; 1699 } 1700 case Decl::ObjCMethod: { 1701 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1702 // If this is not a prototype, emit the body. 1703 if (OMD->getBody()) 1704 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1705 break; 1706 } 1707 case Decl::ObjCCompatibleAlias: 1708 // compatibility-alias is a directive and has no code gen. 1709 break; 1710 1711 case Decl::LinkageSpec: 1712 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1713 break; 1714 1715 case Decl::FileScopeAsm: { 1716 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1717 std::string AsmString(AD->getAsmString()->getStrData(), 1718 AD->getAsmString()->getByteLength()); 1719 1720 const std::string &S = getModule().getModuleInlineAsm(); 1721 if (S.empty()) 1722 getModule().setModuleInlineAsm(AsmString); 1723 else 1724 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1725 break; 1726 } 1727 1728 default: 1729 // Make sure we handled everything we should, every other kind is a 1730 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1731 // function. Need to recode Decl::Kind to do that easily. 1732 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1733 } 1734 } 1735