1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C), Runtime(0),
43     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
44     VMContext(M.getContext()) {
45 
46   if (!Features.ObjC1)
47     Runtime = 0;
48   else if (!Features.NeXTRuntime)
49     Runtime = CreateGNUObjCRuntime(*this);
50   else if (Features.ObjCNonFragileABI)
51     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
52   else
53     Runtime = CreateMacObjCRuntime(*this);
54 
55   // If debug info generation is enabled, create the CGDebugInfo object.
56   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
57 }
58 
59 CodeGenModule::~CodeGenModule() {
60   delete Runtime;
61   delete DebugInfo;
62 }
63 
64 void CodeGenModule::Release() {
65   // We need to call this first because it can add deferred declarations.
66   EmitCXXGlobalInitFunc();
67 
68   EmitDeferred();
69   if (Runtime)
70     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
71       AddGlobalCtor(ObjCInitFunction);
72   EmitCtorList(GlobalCtors, "llvm.global_ctors");
73   EmitCtorList(GlobalDtors, "llvm.global_dtors");
74   EmitAnnotations();
75   EmitLLVMUsed();
76 }
77 
78 /// ErrorUnsupported - Print out an error that codegen doesn't support the
79 /// specified stmt yet.
80 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
81                                      bool OmitOnError) {
82   if (OmitOnError && getDiags().hasErrorOccurred())
83     return;
84   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
85                                                "cannot compile this %0 yet");
86   std::string Msg = Type;
87   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
88     << Msg << S->getSourceRange();
89 }
90 
91 /// ErrorUnsupported - Print out an error that codegen doesn't support the
92 /// specified decl yet.
93 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
94                                      bool OmitOnError) {
95   if (OmitOnError && getDiags().hasErrorOccurred())
96     return;
97   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
98                                                "cannot compile this %0 yet");
99   std::string Msg = Type;
100   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
101 }
102 
103 LangOptions::VisibilityMode
104 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
105   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
106     if (VD->getStorageClass() == VarDecl::PrivateExtern)
107       return LangOptions::Hidden;
108 
109   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
110     switch (attr->getVisibility()) {
111     default: assert(0 && "Unknown visibility!");
112     case VisibilityAttr::DefaultVisibility:
113       return LangOptions::Default;
114     case VisibilityAttr::HiddenVisibility:
115       return LangOptions::Hidden;
116     case VisibilityAttr::ProtectedVisibility:
117       return LangOptions::Protected;
118     }
119   }
120 
121   return getLangOptions().getVisibilityMode();
122 }
123 
124 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
125                                         const Decl *D) const {
126   // Internal definitions always have default visibility.
127   if (GV->hasLocalLinkage()) {
128     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
129     return;
130   }
131 
132   switch (getDeclVisibilityMode(D)) {
133   default: assert(0 && "Unknown visibility!");
134   case LangOptions::Default:
135     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
136   case LangOptions::Hidden:
137     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
138   case LangOptions::Protected:
139     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
140   }
141 }
142 
143 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
144   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
145 
146   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
147     return getMangledCXXCtorName(D, GD.getCtorType());
148   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
149     return getMangledCXXDtorName(D, GD.getDtorType());
150 
151   return getMangledName(ND);
152 }
153 
154 /// \brief Retrieves the mangled name for the given declaration.
155 ///
156 /// If the given declaration requires a mangled name, returns an
157 /// const char* containing the mangled name.  Otherwise, returns
158 /// the unmangled name.
159 ///
160 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
161   // In C, functions with no attributes never need to be mangled. Fastpath them.
162   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
163     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
164     return ND->getNameAsCString();
165   }
166 
167   llvm::SmallString<256> Name;
168   llvm::raw_svector_ostream Out(Name);
169   if (!mangleName(getMangleContext(), ND, Out)) {
170     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
171     return ND->getNameAsCString();
172   }
173 
174   Name += '\0';
175   return UniqueMangledName(Name.begin(), Name.end());
176 }
177 
178 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
179                                              const char *NameEnd) {
180   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
181 
182   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
183 }
184 
185 /// AddGlobalCtor - Add a function to the list that will be called before
186 /// main() runs.
187 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
188   // FIXME: Type coercion of void()* types.
189   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
190 }
191 
192 /// AddGlobalDtor - Add a function to the list that will be called
193 /// when the module is unloaded.
194 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
195   // FIXME: Type coercion of void()* types.
196   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
197 }
198 
199 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
200   // Ctor function type is void()*.
201   llvm::FunctionType* CtorFTy =
202     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
203                             std::vector<const llvm::Type*>(),
204                             false);
205   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
206 
207   // Get the type of a ctor entry, { i32, void ()* }.
208   llvm::StructType* CtorStructTy =
209     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
210                           llvm::PointerType::getUnqual(CtorFTy), NULL);
211 
212   // Construct the constructor and destructor arrays.
213   std::vector<llvm::Constant*> Ctors;
214   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
215     std::vector<llvm::Constant*> S;
216     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
217                 I->second, false));
218     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
219     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
220   }
221 
222   if (!Ctors.empty()) {
223     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
224     new llvm::GlobalVariable(TheModule, AT, false,
225                              llvm::GlobalValue::AppendingLinkage,
226                              llvm::ConstantArray::get(AT, Ctors),
227                              GlobalName);
228   }
229 }
230 
231 void CodeGenModule::EmitAnnotations() {
232   if (Annotations.empty())
233     return;
234 
235   // Create a new global variable for the ConstantStruct in the Module.
236   llvm::Constant *Array =
237   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
238                                                 Annotations.size()),
239                            Annotations);
240   llvm::GlobalValue *gv =
241   new llvm::GlobalVariable(TheModule, Array->getType(), false,
242                            llvm::GlobalValue::AppendingLinkage, Array,
243                            "llvm.global.annotations");
244   gv->setSection("llvm.metadata");
245 }
246 
247 static CodeGenModule::GVALinkage
248 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
249                       const LangOptions &Features) {
250   // Everything located semantically within an anonymous namespace is
251   // always internal.
252   if (FD->isInAnonymousNamespace())
253     return CodeGenModule::GVA_Internal;
254 
255   // The kind of external linkage this function will have, if it is not
256   // inline or static.
257   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
258   if (Context.getLangOptions().CPlusPlus &&
259       FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
260     External = CodeGenModule::GVA_TemplateInstantiation;
261 
262   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
263     // C++ member functions defined inside the class are always inline.
264     if (MD->isInline() || !MD->isOutOfLine())
265       return CodeGenModule::GVA_CXXInline;
266 
267     return External;
268   }
269 
270   // "static" functions get internal linkage.
271   if (FD->getStorageClass() == FunctionDecl::Static)
272     return CodeGenModule::GVA_Internal;
273 
274   if (!FD->isInline())
275     return External;
276 
277   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
278     // GNU or C99 inline semantics. Determine whether this symbol should be
279     // externally visible.
280     if (FD->isInlineDefinitionExternallyVisible())
281       return External;
282 
283     // C99 inline semantics, where the symbol is not externally visible.
284     return CodeGenModule::GVA_C99Inline;
285   }
286 
287   // C++ inline semantics
288   assert(Features.CPlusPlus && "Must be in C++ mode");
289   return CodeGenModule::GVA_CXXInline;
290 }
291 
292 /// SetFunctionDefinitionAttributes - Set attributes for a global.
293 ///
294 /// FIXME: This is currently only done for aliases and functions, but not for
295 /// variables (these details are set in EmitGlobalVarDefinition for variables).
296 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
297                                                     llvm::GlobalValue *GV) {
298   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
299 
300   if (Linkage == GVA_Internal) {
301     GV->setLinkage(llvm::Function::InternalLinkage);
302   } else if (D->hasAttr<DLLExportAttr>()) {
303     GV->setLinkage(llvm::Function::DLLExportLinkage);
304   } else if (D->hasAttr<WeakAttr>()) {
305     GV->setLinkage(llvm::Function::WeakAnyLinkage);
306   } else if (Linkage == GVA_C99Inline) {
307     // In C99 mode, 'inline' functions are guaranteed to have a strong
308     // definition somewhere else, so we can use available_externally linkage.
309     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
310   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
311     // In C++, the compiler has to emit a definition in every translation unit
312     // that references the function.  We should use linkonce_odr because
313     // a) if all references in this translation unit are optimized away, we
314     // don't need to codegen it.  b) if the function persists, it needs to be
315     // merged with other definitions. c) C++ has the ODR, so we know the
316     // definition is dependable.
317     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
318   } else {
319     assert(Linkage == GVA_StrongExternal);
320     // Otherwise, we have strong external linkage.
321     GV->setLinkage(llvm::Function::ExternalLinkage);
322   }
323 
324   SetCommonAttributes(D, GV);
325 }
326 
327 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
328                                               const CGFunctionInfo &Info,
329                                               llvm::Function *F) {
330   unsigned CallingConv;
331   AttributeListType AttributeList;
332   ConstructAttributeList(Info, D, AttributeList, CallingConv);
333   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
334                                           AttributeList.size()));
335   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
336 }
337 
338 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
339                                                            llvm::Function *F) {
340   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
341     F->addFnAttr(llvm::Attribute::NoUnwind);
342 
343   if (D->hasAttr<AlwaysInlineAttr>())
344     F->addFnAttr(llvm::Attribute::AlwaysInline);
345 
346   if (D->hasAttr<NoInlineAttr>())
347     F->addFnAttr(llvm::Attribute::NoInline);
348 
349   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
350     F->setAlignment(AA->getAlignment()/8);
351   // C++ ABI requires 2-byte alignment for member functions.
352   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
353     F->setAlignment(2);
354 }
355 
356 void CodeGenModule::SetCommonAttributes(const Decl *D,
357                                         llvm::GlobalValue *GV) {
358   setGlobalVisibility(GV, D);
359 
360   if (D->hasAttr<UsedAttr>())
361     AddUsedGlobal(GV);
362 
363   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
364     GV->setSection(SA->getName());
365 }
366 
367 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
368                                                   llvm::Function *F,
369                                                   const CGFunctionInfo &FI) {
370   SetLLVMFunctionAttributes(D, FI, F);
371   SetLLVMFunctionAttributesForDefinition(D, F);
372 
373   F->setLinkage(llvm::Function::InternalLinkage);
374 
375   SetCommonAttributes(D, F);
376 }
377 
378 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
379                                           llvm::Function *F,
380                                           bool IsIncompleteFunction) {
381   if (!IsIncompleteFunction)
382     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
383 
384   // Only a few attributes are set on declarations; these may later be
385   // overridden by a definition.
386 
387   if (FD->hasAttr<DLLImportAttr>()) {
388     F->setLinkage(llvm::Function::DLLImportLinkage);
389   } else if (FD->hasAttr<WeakAttr>() ||
390              FD->hasAttr<WeakImportAttr>()) {
391     // "extern_weak" is overloaded in LLVM; we probably should have
392     // separate linkage types for this.
393     F->setLinkage(llvm::Function::ExternalWeakLinkage);
394   } else {
395     F->setLinkage(llvm::Function::ExternalLinkage);
396   }
397 
398   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
399     F->setSection(SA->getName());
400 }
401 
402 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
403   assert(!GV->isDeclaration() &&
404          "Only globals with definition can force usage.");
405   LLVMUsed.push_back(GV);
406 }
407 
408 void CodeGenModule::EmitLLVMUsed() {
409   // Don't create llvm.used if there is no need.
410   if (LLVMUsed.empty())
411     return;
412 
413   llvm::Type *i8PTy =
414       llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
415 
416   // Convert LLVMUsed to what ConstantArray needs.
417   std::vector<llvm::Constant*> UsedArray;
418   UsedArray.resize(LLVMUsed.size());
419   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
420     UsedArray[i] =
421      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
422                                       i8PTy);
423   }
424 
425   if (UsedArray.empty())
426     return;
427   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
428 
429   llvm::GlobalVariable *GV =
430     new llvm::GlobalVariable(getModule(), ATy, false,
431                              llvm::GlobalValue::AppendingLinkage,
432                              llvm::ConstantArray::get(ATy, UsedArray),
433                              "llvm.used");
434 
435   GV->setSection("llvm.metadata");
436 }
437 
438 void CodeGenModule::EmitDeferred() {
439   // Emit code for any potentially referenced deferred decls.  Since a
440   // previously unused static decl may become used during the generation of code
441   // for a static function, iterate until no  changes are made.
442   while (!DeferredDeclsToEmit.empty()) {
443     GlobalDecl D = DeferredDeclsToEmit.back();
444     DeferredDeclsToEmit.pop_back();
445 
446     // The mangled name for the decl must have been emitted in GlobalDeclMap.
447     // Look it up to see if it was defined with a stronger definition (e.g. an
448     // extern inline function with a strong function redefinition).  If so,
449     // just ignore the deferred decl.
450     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
451     assert(CGRef && "Deferred decl wasn't referenced?");
452 
453     if (!CGRef->isDeclaration())
454       continue;
455 
456     // Otherwise, emit the definition and move on to the next one.
457     EmitGlobalDefinition(D);
458   }
459 }
460 
461 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
462 /// annotation information for a given GlobalValue.  The annotation struct is
463 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
464 /// GlobalValue being annotated.  The second field is the constant string
465 /// created from the AnnotateAttr's annotation.  The third field is a constant
466 /// string containing the name of the translation unit.  The fourth field is
467 /// the line number in the file of the annotated value declaration.
468 ///
469 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
470 ///        appears to.
471 ///
472 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
473                                                 const AnnotateAttr *AA,
474                                                 unsigned LineNo) {
475   llvm::Module *M = &getModule();
476 
477   // get [N x i8] constants for the annotation string, and the filename string
478   // which are the 2nd and 3rd elements of the global annotation structure.
479   const llvm::Type *SBP =
480       llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
481   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
482                                                   AA->getAnnotation(), true);
483   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
484                                                   M->getModuleIdentifier(),
485                                                   true);
486 
487   // Get the two global values corresponding to the ConstantArrays we just
488   // created to hold the bytes of the strings.
489   llvm::GlobalValue *annoGV =
490     new llvm::GlobalVariable(*M, anno->getType(), false,
491                              llvm::GlobalValue::PrivateLinkage, anno,
492                              GV->getName());
493   // translation unit name string, emitted into the llvm.metadata section.
494   llvm::GlobalValue *unitGV =
495     new llvm::GlobalVariable(*M, unit->getType(), false,
496                              llvm::GlobalValue::PrivateLinkage, unit,
497                              ".str");
498 
499   // Create the ConstantStruct for the global annotation.
500   llvm::Constant *Fields[4] = {
501     llvm::ConstantExpr::getBitCast(GV, SBP),
502     llvm::ConstantExpr::getBitCast(annoGV, SBP),
503     llvm::ConstantExpr::getBitCast(unitGV, SBP),
504     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
505   };
506   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
507 }
508 
509 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
510   // Never defer when EmitAllDecls is specified or the decl has
511   // attribute used.
512   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
513     return false;
514 
515   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
516     // Constructors and destructors should never be deferred.
517     if (FD->hasAttr<ConstructorAttr>() ||
518         FD->hasAttr<DestructorAttr>())
519       return false;
520 
521     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
522 
523     // static, static inline, always_inline, and extern inline functions can
524     // always be deferred.  Normal inline functions can be deferred in C99/C++.
525     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
526         Linkage == GVA_CXXInline)
527       return true;
528     return false;
529   }
530 
531   const VarDecl *VD = cast<VarDecl>(Global);
532   assert(VD->isFileVarDecl() && "Invalid decl");
533 
534   // We never want to defer structs that have non-trivial constructors or
535   // destructors.
536 
537   // FIXME: Handle references.
538   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
539     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
540       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
541         return false;
542     }
543   }
544 
545   return VD->getStorageClass() == VarDecl::Static;
546 }
547 
548 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
549   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
550 
551   // If this is an alias definition (which otherwise looks like a declaration)
552   // emit it now.
553   if (Global->hasAttr<AliasAttr>())
554     return EmitAliasDefinition(Global);
555 
556   // Ignore declarations, they will be emitted on their first use.
557   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
558     // Forward declarations are emitted lazily on first use.
559     if (!FD->isThisDeclarationADefinition())
560       return;
561   } else {
562     const VarDecl *VD = cast<VarDecl>(Global);
563     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
564 
565     // In C++, if this is marked "extern", defer code generation.
566     if (getLangOptions().CPlusPlus && !VD->getInit() &&
567         (VD->getStorageClass() == VarDecl::Extern ||
568          VD->isExternC()))
569       return;
570 
571     // In C, if this isn't a definition, defer code generation.
572     if (!getLangOptions().CPlusPlus && !VD->getInit())
573       return;
574   }
575 
576   // Defer code generation when possible if this is a static definition, inline
577   // function etc.  These we only want to emit if they are used.
578   if (MayDeferGeneration(Global)) {
579     // If the value has already been used, add it directly to the
580     // DeferredDeclsToEmit list.
581     const char *MangledName = getMangledName(GD);
582     if (GlobalDeclMap.count(MangledName))
583       DeferredDeclsToEmit.push_back(GD);
584     else {
585       // Otherwise, remember that we saw a deferred decl with this name.  The
586       // first use of the mangled name will cause it to move into
587       // DeferredDeclsToEmit.
588       DeferredDecls[MangledName] = GD;
589     }
590     return;
591   }
592 
593   // Otherwise emit the definition.
594   EmitGlobalDefinition(GD);
595 }
596 
597 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
598   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
599 
600   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
601     EmitCXXConstructor(CD, GD.getCtorType());
602   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
603     EmitCXXDestructor(DD, GD.getDtorType());
604   else if (isa<FunctionDecl>(D))
605     EmitGlobalFunctionDefinition(GD);
606   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
607     EmitGlobalVarDefinition(VD);
608   else {
609     assert(0 && "Invalid argument to EmitGlobalDefinition()");
610   }
611 }
612 
613 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
614 /// module, create and return an llvm Function with the specified type. If there
615 /// is something in the module with the specified name, return it potentially
616 /// bitcasted to the right type.
617 ///
618 /// If D is non-null, it specifies a decl that correspond to this.  This is used
619 /// to set the attributes on the function when it is first created.
620 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
621                                                        const llvm::Type *Ty,
622                                                        GlobalDecl D) {
623   // Lookup the entry, lazily creating it if necessary.
624   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
625   if (Entry) {
626     if (Entry->getType()->getElementType() == Ty)
627       return Entry;
628 
629     // Make sure the result is of the correct type.
630     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
631     return llvm::ConstantExpr::getBitCast(Entry, PTy);
632   }
633 
634   // This is the first use or definition of a mangled name.  If there is a
635   // deferred decl with this name, remember that we need to emit it at the end
636   // of the file.
637   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
638     DeferredDecls.find(MangledName);
639   if (DDI != DeferredDecls.end()) {
640     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
641     // list, and remove it from DeferredDecls (since we don't need it anymore).
642     DeferredDeclsToEmit.push_back(DDI->second);
643     DeferredDecls.erase(DDI);
644   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
645     // If this the first reference to a C++ inline function in a class, queue up
646     // the deferred function body for emission.  These are not seen as
647     // top-level declarations.
648     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
649       DeferredDeclsToEmit.push_back(D);
650     // A called constructor which has no definition or declaration need be
651     // synthesized.
652     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
653       const CXXRecordDecl *ClassDecl =
654         cast<CXXRecordDecl>(CD->getDeclContext());
655       if (CD->isCopyConstructor(getContext()))
656         DeferredCopyConstructorToEmit(D);
657       else if (!ClassDecl->hasUserDeclaredConstructor())
658         DeferredDeclsToEmit.push_back(D);
659     }
660     else if (isa<CXXDestructorDecl>(FD))
661        DeferredDestructorToEmit(D);
662     else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
663            if (MD->isCopyAssignment())
664              DeferredCopyAssignmentToEmit(D);
665   }
666 
667   // This function doesn't have a complete type (for example, the return
668   // type is an incomplete struct). Use a fake type instead, and make
669   // sure not to try to set attributes.
670   bool IsIncompleteFunction = false;
671   if (!isa<llvm::FunctionType>(Ty)) {
672     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
673                                  std::vector<const llvm::Type*>(), false);
674     IsIncompleteFunction = true;
675   }
676   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
677                                              llvm::Function::ExternalLinkage,
678                                              "", &getModule());
679   F->setName(MangledName);
680   if (D.getDecl())
681     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
682                           IsIncompleteFunction);
683   Entry = F;
684   return F;
685 }
686 
687 /// Defer definition of copy constructor(s) which need be implicitly defined.
688 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
689   const CXXConstructorDecl *CD =
690     cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
691   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
692   if (ClassDecl->hasTrivialCopyConstructor() ||
693       ClassDecl->hasUserDeclaredCopyConstructor())
694     return;
695 
696   // First make sure all direct base classes and virtual bases and non-static
697   // data mebers which need to have their copy constructors implicitly defined
698   // are defined. 12.8.p7
699   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
700        Base != ClassDecl->bases_end(); ++Base) {
701     CXXRecordDecl *BaseClassDecl
702       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
703     if (CXXConstructorDecl *BaseCopyCtor =
704         BaseClassDecl->getCopyConstructor(Context, 0))
705       GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
706   }
707 
708   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
709        FieldEnd = ClassDecl->field_end();
710        Field != FieldEnd; ++Field) {
711     QualType FieldType = Context.getCanonicalType((*Field)->getType());
712     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
713       FieldType = Array->getElementType();
714     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
715       if ((*Field)->isAnonymousStructOrUnion())
716         continue;
717       CXXRecordDecl *FieldClassDecl
718         = cast<CXXRecordDecl>(FieldClassType->getDecl());
719       if (CXXConstructorDecl *FieldCopyCtor =
720           FieldClassDecl->getCopyConstructor(Context, 0))
721         GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
722     }
723   }
724   DeferredDeclsToEmit.push_back(CopyCtorDecl);
725 }
726 
727 /// Defer definition of copy assignments which need be implicitly defined.
728 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) {
729   const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl());
730   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
731 
732   if (ClassDecl->hasTrivialCopyAssignment() ||
733       ClassDecl->hasUserDeclaredCopyAssignment())
734     return;
735 
736   // First make sure all direct base classes and virtual bases and non-static
737   // data mebers which need to have their copy assignments implicitly defined
738   // are defined. 12.8.p12
739   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
740        Base != ClassDecl->bases_end(); ++Base) {
741     CXXRecordDecl *BaseClassDecl
742       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
743     const CXXMethodDecl *MD = 0;
744     if (!BaseClassDecl->hasTrivialCopyAssignment() &&
745         !BaseClassDecl->hasUserDeclaredCopyAssignment() &&
746         BaseClassDecl->hasConstCopyAssignment(getContext(), MD))
747       GetAddrOfFunction(MD, 0);
748   }
749 
750   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
751        FieldEnd = ClassDecl->field_end();
752        Field != FieldEnd; ++Field) {
753     QualType FieldType = Context.getCanonicalType((*Field)->getType());
754     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
755       FieldType = Array->getElementType();
756     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
757       if ((*Field)->isAnonymousStructOrUnion())
758         continue;
759       CXXRecordDecl *FieldClassDecl
760         = cast<CXXRecordDecl>(FieldClassType->getDecl());
761       const CXXMethodDecl *MD = 0;
762       if (!FieldClassDecl->hasTrivialCopyAssignment() &&
763           !FieldClassDecl->hasUserDeclaredCopyAssignment() &&
764           FieldClassDecl->hasConstCopyAssignment(getContext(), MD))
765           GetAddrOfFunction(MD, 0);
766     }
767   }
768   DeferredDeclsToEmit.push_back(CopyAssignDecl);
769 }
770 
771 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) {
772   const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl());
773   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext());
774   if (ClassDecl->hasTrivialDestructor() ||
775       ClassDecl->hasUserDeclaredDestructor())
776     return;
777 
778   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
779        Base != ClassDecl->bases_end(); ++Base) {
780     CXXRecordDecl *BaseClassDecl
781       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
782     if (const CXXDestructorDecl *BaseDtor =
783           BaseClassDecl->getDestructor(Context))
784       GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete);
785   }
786 
787   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
788        FieldEnd = ClassDecl->field_end();
789        Field != FieldEnd; ++Field) {
790     QualType FieldType = Context.getCanonicalType((*Field)->getType());
791     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
792       FieldType = Array->getElementType();
793     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
794       if ((*Field)->isAnonymousStructOrUnion())
795         continue;
796       CXXRecordDecl *FieldClassDecl
797         = cast<CXXRecordDecl>(FieldClassType->getDecl());
798       if (const CXXDestructorDecl *FieldDtor =
799             FieldClassDecl->getDestructor(Context))
800         GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete);
801     }
802   }
803   DeferredDeclsToEmit.push_back(DtorDecl);
804 }
805 
806 
807 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
808 /// non-null, then this function will use the specified type if it has to
809 /// create it (this occurs when we see a definition of the function).
810 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
811                                                  const llvm::Type *Ty) {
812   // If there was no specific requested type, just convert it now.
813   if (!Ty)
814     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
815   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
816 }
817 
818 /// CreateRuntimeFunction - Create a new runtime function with the specified
819 /// type and name.
820 llvm::Constant *
821 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
822                                      const char *Name) {
823   // Convert Name to be a uniqued string from the IdentifierInfo table.
824   Name = getContext().Idents.get(Name).getName();
825   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
826 }
827 
828 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
829 /// create and return an llvm GlobalVariable with the specified type.  If there
830 /// is something in the module with the specified name, return it potentially
831 /// bitcasted to the right type.
832 ///
833 /// If D is non-null, it specifies a decl that correspond to this.  This is used
834 /// to set the attributes on the global when it is first created.
835 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
836                                                      const llvm::PointerType*Ty,
837                                                      const VarDecl *D) {
838   // Lookup the entry, lazily creating it if necessary.
839   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
840   if (Entry) {
841     if (Entry->getType() == Ty)
842       return Entry;
843 
844     // Make sure the result is of the correct type.
845     return llvm::ConstantExpr::getBitCast(Entry, Ty);
846   }
847 
848   // This is the first use or definition of a mangled name.  If there is a
849   // deferred decl with this name, remember that we need to emit it at the end
850   // of the file.
851   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
852     DeferredDecls.find(MangledName);
853   if (DDI != DeferredDecls.end()) {
854     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
855     // list, and remove it from DeferredDecls (since we don't need it anymore).
856     DeferredDeclsToEmit.push_back(DDI->second);
857     DeferredDecls.erase(DDI);
858   }
859 
860   llvm::GlobalVariable *GV =
861     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
862                              llvm::GlobalValue::ExternalLinkage,
863                              0, "", 0,
864                              false, Ty->getAddressSpace());
865   GV->setName(MangledName);
866 
867   // Handle things which are present even on external declarations.
868   if (D) {
869     // FIXME: This code is overly simple and should be merged with other global
870     // handling.
871     GV->setConstant(D->getType().isConstant(Context));
872 
873     // FIXME: Merge with other attribute handling code.
874     if (D->getStorageClass() == VarDecl::PrivateExtern)
875       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
876 
877     if (D->hasAttr<WeakAttr>() ||
878         D->hasAttr<WeakImportAttr>())
879       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
880 
881     GV->setThreadLocal(D->isThreadSpecified());
882   }
883 
884   return Entry = GV;
885 }
886 
887 
888 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
889 /// given global variable.  If Ty is non-null and if the global doesn't exist,
890 /// then it will be greated with the specified type instead of whatever the
891 /// normal requested type would be.
892 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
893                                                   const llvm::Type *Ty) {
894   assert(D->hasGlobalStorage() && "Not a global variable");
895   QualType ASTTy = D->getType();
896   if (Ty == 0)
897     Ty = getTypes().ConvertTypeForMem(ASTTy);
898 
899   const llvm::PointerType *PTy =
900     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
901   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
902 }
903 
904 /// CreateRuntimeVariable - Create a new runtime global variable with the
905 /// specified type and name.
906 llvm::Constant *
907 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
908                                      const char *Name) {
909   // Convert Name to be a uniqued string from the IdentifierInfo table.
910   Name = getContext().Idents.get(Name).getName();
911   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
912 }
913 
914 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
915   assert(!D->getInit() && "Cannot emit definite definitions here!");
916 
917   if (MayDeferGeneration(D)) {
918     // If we have not seen a reference to this variable yet, place it
919     // into the deferred declarations table to be emitted if needed
920     // later.
921     const char *MangledName = getMangledName(D);
922     if (GlobalDeclMap.count(MangledName) == 0) {
923       DeferredDecls[MangledName] = D;
924       return;
925     }
926   }
927 
928   // The tentative definition is the only definition.
929   EmitGlobalVarDefinition(D);
930 }
931 
932 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
933   llvm::Constant *Init = 0;
934   QualType ASTTy = D->getType();
935 
936   if (D->getInit() == 0) {
937     // This is a tentative definition; tentative definitions are
938     // implicitly initialized with { 0 }.
939     //
940     // Note that tentative definitions are only emitted at the end of
941     // a translation unit, so they should never have incomplete
942     // type. In addition, EmitTentativeDefinition makes sure that we
943     // never attempt to emit a tentative definition if a real one
944     // exists. A use may still exists, however, so we still may need
945     // to do a RAUW.
946     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
947     Init = EmitNullConstant(D->getType());
948   } else {
949     Init = EmitConstantExpr(D->getInit(), D->getType());
950 
951     if (!Init) {
952       QualType T = D->getInit()->getType();
953       if (getLangOptions().CPlusPlus) {
954         CXXGlobalInits.push_back(D);
955         Init = EmitNullConstant(T);
956       } else {
957         ErrorUnsupported(D, "static initializer");
958         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
959       }
960     }
961   }
962 
963   const llvm::Type* InitType = Init->getType();
964   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
965 
966   // Strip off a bitcast if we got one back.
967   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
968     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
969            // all zero index gep.
970            CE->getOpcode() == llvm::Instruction::GetElementPtr);
971     Entry = CE->getOperand(0);
972   }
973 
974   // Entry is now either a Function or GlobalVariable.
975   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
976 
977   // We have a definition after a declaration with the wrong type.
978   // We must make a new GlobalVariable* and update everything that used OldGV
979   // (a declaration or tentative definition) with the new GlobalVariable*
980   // (which will be a definition).
981   //
982   // This happens if there is a prototype for a global (e.g.
983   // "extern int x[];") and then a definition of a different type (e.g.
984   // "int x[10];"). This also happens when an initializer has a different type
985   // from the type of the global (this happens with unions).
986   if (GV == 0 ||
987       GV->getType()->getElementType() != InitType ||
988       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
989 
990     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
991     GlobalDeclMap.erase(getMangledName(D));
992 
993     // Make a new global with the correct type, this is now guaranteed to work.
994     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
995     GV->takeName(cast<llvm::GlobalValue>(Entry));
996 
997     // Replace all uses of the old global with the new global
998     llvm::Constant *NewPtrForOldDecl =
999         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1000     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1001 
1002     // Erase the old global, since it is no longer used.
1003     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1004   }
1005 
1006   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1007     SourceManager &SM = Context.getSourceManager();
1008     AddAnnotation(EmitAnnotateAttr(GV, AA,
1009                               SM.getInstantiationLineNumber(D->getLocation())));
1010   }
1011 
1012   GV->setInitializer(Init);
1013 
1014   // If it is safe to mark the global 'constant', do so now.
1015   GV->setConstant(false);
1016   if (D->getType().isConstant(Context)) {
1017     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
1018     // members, it cannot be declared "LLVM const".
1019     GV->setConstant(true);
1020   }
1021 
1022   GV->setAlignment(getContext().getDeclAlignInBytes(D));
1023 
1024   // Set the llvm linkage type as appropriate.
1025   if (D->isInAnonymousNamespace())
1026     GV->setLinkage(llvm::Function::InternalLinkage);
1027   else if (D->getStorageClass() == VarDecl::Static)
1028     GV->setLinkage(llvm::Function::InternalLinkage);
1029   else if (D->hasAttr<DLLImportAttr>())
1030     GV->setLinkage(llvm::Function::DLLImportLinkage);
1031   else if (D->hasAttr<DLLExportAttr>())
1032     GV->setLinkage(llvm::Function::DLLExportLinkage);
1033   else if (D->hasAttr<WeakAttr>()) {
1034     if (GV->isConstant())
1035       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1036     else
1037       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1038   } else if (!CompileOpts.NoCommon &&
1039            !D->hasExternalStorage() && !D->getInit() &&
1040            !D->getAttr<SectionAttr>()) {
1041     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1042     // common vars aren't constant even if declared const.
1043     GV->setConstant(false);
1044   } else
1045     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1046 
1047   SetCommonAttributes(D, GV);
1048 
1049   // Emit global variable debug information.
1050   if (CGDebugInfo *DI = getDebugInfo()) {
1051     DI->setLocation(D->getLocation());
1052     DI->EmitGlobalVariable(GV, D);
1053   }
1054 }
1055 
1056 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1057 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1058 /// existing call uses of the old function in the module, this adjusts them to
1059 /// call the new function directly.
1060 ///
1061 /// This is not just a cleanup: the always_inline pass requires direct calls to
1062 /// functions to be able to inline them.  If there is a bitcast in the way, it
1063 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1064 /// run at -O0.
1065 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1066                                                       llvm::Function *NewFn) {
1067   // If we're redefining a global as a function, don't transform it.
1068   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1069   if (OldFn == 0) return;
1070 
1071   const llvm::Type *NewRetTy = NewFn->getReturnType();
1072   llvm::SmallVector<llvm::Value*, 4> ArgList;
1073 
1074   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1075        UI != E; ) {
1076     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1077     unsigned OpNo = UI.getOperandNo();
1078     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1079     if (!CI || OpNo != 0) continue;
1080 
1081     // If the return types don't match exactly, and if the call isn't dead, then
1082     // we can't transform this call.
1083     if (CI->getType() != NewRetTy && !CI->use_empty())
1084       continue;
1085 
1086     // If the function was passed too few arguments, don't transform.  If extra
1087     // arguments were passed, we silently drop them.  If any of the types
1088     // mismatch, we don't transform.
1089     unsigned ArgNo = 0;
1090     bool DontTransform = false;
1091     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1092          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1093       if (CI->getNumOperands()-1 == ArgNo ||
1094           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1095         DontTransform = true;
1096         break;
1097       }
1098     }
1099     if (DontTransform)
1100       continue;
1101 
1102     // Okay, we can transform this.  Create the new call instruction and copy
1103     // over the required information.
1104     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1105     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1106                                                      ArgList.end(), "", CI);
1107     ArgList.clear();
1108     if (!NewCall->getType()->isVoidTy())
1109       NewCall->takeName(CI);
1110     NewCall->setAttributes(CI->getAttributes());
1111     NewCall->setCallingConv(CI->getCallingConv());
1112 
1113     // Finally, remove the old call, replacing any uses with the new one.
1114     if (!CI->use_empty())
1115       CI->replaceAllUsesWith(NewCall);
1116     CI->eraseFromParent();
1117   }
1118 }
1119 
1120 
1121 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1122   const llvm::FunctionType *Ty;
1123   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1124 
1125   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1126     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1127 
1128     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1129   } else {
1130     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1131 
1132     // As a special case, make sure that definitions of K&R function
1133     // "type foo()" aren't declared as varargs (which forces the backend
1134     // to do unnecessary work).
1135     if (D->getType()->isFunctionNoProtoType()) {
1136       assert(Ty->isVarArg() && "Didn't lower type as expected");
1137       // Due to stret, the lowered function could have arguments.
1138       // Just create the same type as was lowered by ConvertType
1139       // but strip off the varargs bit.
1140       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1141       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1142     }
1143   }
1144 
1145   // Get or create the prototype for the function.
1146   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1147 
1148   // Strip off a bitcast if we got one back.
1149   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1150     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1151     Entry = CE->getOperand(0);
1152   }
1153 
1154 
1155   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1156     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1157 
1158     // If the types mismatch then we have to rewrite the definition.
1159     assert(OldFn->isDeclaration() &&
1160            "Shouldn't replace non-declaration");
1161 
1162     // F is the Function* for the one with the wrong type, we must make a new
1163     // Function* and update everything that used F (a declaration) with the new
1164     // Function* (which will be a definition).
1165     //
1166     // This happens if there is a prototype for a function
1167     // (e.g. "int f()") and then a definition of a different type
1168     // (e.g. "int f(int x)").  Start by making a new function of the
1169     // correct type, RAUW, then steal the name.
1170     GlobalDeclMap.erase(getMangledName(D));
1171     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1172     NewFn->takeName(OldFn);
1173 
1174     // If this is an implementation of a function without a prototype, try to
1175     // replace any existing uses of the function (which may be calls) with uses
1176     // of the new function
1177     if (D->getType()->isFunctionNoProtoType()) {
1178       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1179       OldFn->removeDeadConstantUsers();
1180     }
1181 
1182     // Replace uses of F with the Function we will endow with a body.
1183     if (!Entry->use_empty()) {
1184       llvm::Constant *NewPtrForOldDecl =
1185         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1186       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1187     }
1188 
1189     // Ok, delete the old function now, which is dead.
1190     OldFn->eraseFromParent();
1191 
1192     Entry = NewFn;
1193   }
1194 
1195   llvm::Function *Fn = cast<llvm::Function>(Entry);
1196 
1197   CodeGenFunction(*this).GenerateCode(D, Fn);
1198 
1199   SetFunctionDefinitionAttributes(D, Fn);
1200   SetLLVMFunctionAttributesForDefinition(D, Fn);
1201 
1202   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1203     AddGlobalCtor(Fn, CA->getPriority());
1204   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1205     AddGlobalDtor(Fn, DA->getPriority());
1206 }
1207 
1208 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1209   const AliasAttr *AA = D->getAttr<AliasAttr>();
1210   assert(AA && "Not an alias?");
1211 
1212   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1213 
1214   // Unique the name through the identifier table.
1215   const char *AliaseeName = AA->getAliasee().c_str();
1216   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1217 
1218   // Create a reference to the named value.  This ensures that it is emitted
1219   // if a deferred decl.
1220   llvm::Constant *Aliasee;
1221   if (isa<llvm::FunctionType>(DeclTy))
1222     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1223   else
1224     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1225                                     llvm::PointerType::getUnqual(DeclTy), 0);
1226 
1227   // Create the new alias itself, but don't set a name yet.
1228   llvm::GlobalValue *GA =
1229     new llvm::GlobalAlias(Aliasee->getType(),
1230                           llvm::Function::ExternalLinkage,
1231                           "", Aliasee, &getModule());
1232 
1233   // See if there is already something with the alias' name in the module.
1234   const char *MangledName = getMangledName(D);
1235   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1236 
1237   if (Entry && !Entry->isDeclaration()) {
1238     // If there is a definition in the module, then it wins over the alias.
1239     // This is dubious, but allow it to be safe.  Just ignore the alias.
1240     GA->eraseFromParent();
1241     return;
1242   }
1243 
1244   if (Entry) {
1245     // If there is a declaration in the module, then we had an extern followed
1246     // by the alias, as in:
1247     //   extern int test6();
1248     //   ...
1249     //   int test6() __attribute__((alias("test7")));
1250     //
1251     // Remove it and replace uses of it with the alias.
1252 
1253     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1254                                                           Entry->getType()));
1255     Entry->eraseFromParent();
1256   }
1257 
1258   // Now we know that there is no conflict, set the name.
1259   Entry = GA;
1260   GA->setName(MangledName);
1261 
1262   // Set attributes which are particular to an alias; this is a
1263   // specialization of the attributes which may be set on a global
1264   // variable/function.
1265   if (D->hasAttr<DLLExportAttr>()) {
1266     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1267       // The dllexport attribute is ignored for undefined symbols.
1268       if (FD->getBody())
1269         GA->setLinkage(llvm::Function::DLLExportLinkage);
1270     } else {
1271       GA->setLinkage(llvm::Function::DLLExportLinkage);
1272     }
1273   } else if (D->hasAttr<WeakAttr>() ||
1274              D->hasAttr<WeakImportAttr>()) {
1275     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1276   }
1277 
1278   SetCommonAttributes(D, GA);
1279 }
1280 
1281 /// getBuiltinLibFunction - Given a builtin id for a function like
1282 /// "__builtin_fabsf", return a Function* for "fabsf".
1283 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1284                                                   unsigned BuiltinID) {
1285   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1286           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1287          "isn't a lib fn");
1288 
1289   // Get the name, skip over the __builtin_ prefix (if necessary).
1290   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1291   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1292     Name += 10;
1293 
1294   // Get the type for the builtin.
1295   ASTContext::GetBuiltinTypeError Error;
1296   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1297   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1298 
1299   const llvm::FunctionType *Ty =
1300     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1301 
1302   // Unique the name through the identifier table.
1303   Name = getContext().Idents.get(Name).getName();
1304   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1305 }
1306 
1307 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1308                                             unsigned NumTys) {
1309   return llvm::Intrinsic::getDeclaration(&getModule(),
1310                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1311 }
1312 
1313 llvm::Function *CodeGenModule::getMemCpyFn() {
1314   if (MemCpyFn) return MemCpyFn;
1315   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1316   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1317 }
1318 
1319 llvm::Function *CodeGenModule::getMemMoveFn() {
1320   if (MemMoveFn) return MemMoveFn;
1321   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1322   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1323 }
1324 
1325 llvm::Function *CodeGenModule::getMemSetFn() {
1326   if (MemSetFn) return MemSetFn;
1327   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1328   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1329 }
1330 
1331 static llvm::StringMapEntry<llvm::Constant*> &
1332 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1333                          const StringLiteral *Literal,
1334                          bool TargetIsLSB,
1335                          bool &IsUTF16,
1336                          unsigned &StringLength) {
1337   unsigned NumBytes = Literal->getByteLength();
1338 
1339   // Check for simple case.
1340   if (!Literal->containsNonAsciiOrNull()) {
1341     StringLength = NumBytes;
1342     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1343                                                 StringLength));
1344   }
1345 
1346   // Otherwise, convert the UTF8 literals into a byte string.
1347   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1348   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1349   UTF16 *ToPtr = &ToBuf[0];
1350 
1351   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1352                                                &ToPtr, ToPtr + NumBytes,
1353                                                strictConversion);
1354 
1355   // Check for conversion failure.
1356   if (Result != conversionOK) {
1357     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1358     // this duplicate code.
1359     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1360     StringLength = NumBytes;
1361     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1362                                                 StringLength));
1363   }
1364 
1365   // ConvertUTF8toUTF16 returns the length in ToPtr.
1366   StringLength = ToPtr - &ToBuf[0];
1367 
1368   // Render the UTF-16 string into a byte array and convert to the target byte
1369   // order.
1370   //
1371   // FIXME: This isn't something we should need to do here.
1372   llvm::SmallString<128> AsBytes;
1373   AsBytes.reserve(StringLength * 2);
1374   for (unsigned i = 0; i != StringLength; ++i) {
1375     unsigned short Val = ToBuf[i];
1376     if (TargetIsLSB) {
1377       AsBytes.push_back(Val & 0xFF);
1378       AsBytes.push_back(Val >> 8);
1379     } else {
1380       AsBytes.push_back(Val >> 8);
1381       AsBytes.push_back(Val & 0xFF);
1382     }
1383   }
1384   // Append one extra null character, the second is automatically added by our
1385   // caller.
1386   AsBytes.push_back(0);
1387 
1388   IsUTF16 = true;
1389   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1390 }
1391 
1392 llvm::Constant *
1393 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1394   unsigned StringLength = 0;
1395   bool isUTF16 = false;
1396   llvm::StringMapEntry<llvm::Constant*> &Entry =
1397     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1398                              getTargetData().isLittleEndian(),
1399                              isUTF16, StringLength);
1400 
1401   if (llvm::Constant *C = Entry.getValue())
1402     return C;
1403 
1404   llvm::Constant *Zero =
1405       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1406   llvm::Constant *Zeros[] = { Zero, Zero };
1407 
1408   // If we don't already have it, get __CFConstantStringClassReference.
1409   if (!CFConstantStringClassRef) {
1410     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1411     Ty = llvm::ArrayType::get(Ty, 0);
1412     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1413                                            "__CFConstantStringClassReference");
1414     // Decay array -> ptr
1415     CFConstantStringClassRef =
1416       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1417   }
1418 
1419   QualType CFTy = getContext().getCFConstantStringType();
1420 
1421   const llvm::StructType *STy =
1422     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1423 
1424   std::vector<llvm::Constant*> Fields(4);
1425 
1426   // Class pointer.
1427   Fields[0] = CFConstantStringClassRef;
1428 
1429   // Flags.
1430   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1431   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1432     llvm::ConstantInt::get(Ty, 0x07C8);
1433 
1434   // String pointer.
1435   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1436 
1437   const char *Sect, *Prefix;
1438   bool isConstant;
1439   llvm::GlobalValue::LinkageTypes Linkage;
1440   if (isUTF16) {
1441     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1442     Sect = getContext().Target.getUnicodeStringSection();
1443     // FIXME: why do utf strings get "l" labels instead of "L" labels?
1444     Linkage = llvm::GlobalValue::InternalLinkage;
1445     // FIXME: Why does GCC not set constant here?
1446     isConstant = false;
1447   } else {
1448     Prefix = ".str";
1449     Sect = getContext().Target.getCFStringDataSection();
1450     Linkage = llvm::GlobalValue::PrivateLinkage;
1451     // FIXME: -fwritable-strings should probably affect this, but we
1452     // are following gcc here.
1453     isConstant = true;
1454   }
1455   llvm::GlobalVariable *GV =
1456     new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
1457                              Linkage, C, Prefix);
1458   if (Sect)
1459     GV->setSection(Sect);
1460   if (isUTF16) {
1461     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1462     GV->setAlignment(Align);
1463   }
1464   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1465 
1466   // String length.
1467   Ty = getTypes().ConvertType(getContext().LongTy);
1468   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1469 
1470   // The struct.
1471   C = llvm::ConstantStruct::get(STy, Fields);
1472   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1473                                 llvm::GlobalVariable::PrivateLinkage, C,
1474                                 "_unnamed_cfstring_");
1475   if (const char *Sect = getContext().Target.getCFStringSection())
1476     GV->setSection(Sect);
1477   Entry.setValue(GV);
1478 
1479   return GV;
1480 }
1481 
1482 /// GetStringForStringLiteral - Return the appropriate bytes for a
1483 /// string literal, properly padded to match the literal type.
1484 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1485   const char *StrData = E->getStrData();
1486   unsigned Len = E->getByteLength();
1487 
1488   const ConstantArrayType *CAT =
1489     getContext().getAsConstantArrayType(E->getType());
1490   assert(CAT && "String isn't pointer or array!");
1491 
1492   // Resize the string to the right size.
1493   std::string Str(StrData, StrData+Len);
1494   uint64_t RealLen = CAT->getSize().getZExtValue();
1495 
1496   if (E->isWide())
1497     RealLen *= getContext().Target.getWCharWidth()/8;
1498 
1499   Str.resize(RealLen, '\0');
1500 
1501   return Str;
1502 }
1503 
1504 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1505 /// constant array for the given string literal.
1506 llvm::Constant *
1507 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1508   // FIXME: This can be more efficient.
1509   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1510 }
1511 
1512 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1513 /// array for the given ObjCEncodeExpr node.
1514 llvm::Constant *
1515 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1516   std::string Str;
1517   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1518 
1519   return GetAddrOfConstantCString(Str);
1520 }
1521 
1522 
1523 /// GenerateWritableString -- Creates storage for a string literal.
1524 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1525                                              bool constant,
1526                                              CodeGenModule &CGM,
1527                                              const char *GlobalName) {
1528   // Create Constant for this string literal. Don't add a '\0'.
1529   llvm::Constant *C =
1530       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1531 
1532   // Create a global variable for this string
1533   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1534                                   llvm::GlobalValue::PrivateLinkage,
1535                                   C, GlobalName);
1536 }
1537 
1538 /// GetAddrOfConstantString - Returns a pointer to a character array
1539 /// containing the literal. This contents are exactly that of the
1540 /// given string, i.e. it will not be null terminated automatically;
1541 /// see GetAddrOfConstantCString. Note that whether the result is
1542 /// actually a pointer to an LLVM constant depends on
1543 /// Feature.WriteableStrings.
1544 ///
1545 /// The result has pointer to array type.
1546 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1547                                                        const char *GlobalName) {
1548   bool IsConstant = !Features.WritableStrings;
1549 
1550   // Get the default prefix if a name wasn't specified.
1551   if (!GlobalName)
1552     GlobalName = ".str";
1553 
1554   // Don't share any string literals if strings aren't constant.
1555   if (!IsConstant)
1556     return GenerateStringLiteral(str, false, *this, GlobalName);
1557 
1558   llvm::StringMapEntry<llvm::Constant *> &Entry =
1559     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1560 
1561   if (Entry.getValue())
1562     return Entry.getValue();
1563 
1564   // Create a global variable for this.
1565   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1566   Entry.setValue(C);
1567   return C;
1568 }
1569 
1570 /// GetAddrOfConstantCString - Returns a pointer to a character
1571 /// array containing the literal and a terminating '\-'
1572 /// character. The result has pointer to array type.
1573 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1574                                                         const char *GlobalName){
1575   return GetAddrOfConstantString(str + '\0', GlobalName);
1576 }
1577 
1578 /// EmitObjCPropertyImplementations - Emit information for synthesized
1579 /// properties for an implementation.
1580 void CodeGenModule::EmitObjCPropertyImplementations(const
1581                                                     ObjCImplementationDecl *D) {
1582   for (ObjCImplementationDecl::propimpl_iterator
1583          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1584     ObjCPropertyImplDecl *PID = *i;
1585 
1586     // Dynamic is just for type-checking.
1587     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1588       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1589 
1590       // Determine which methods need to be implemented, some may have
1591       // been overridden. Note that ::isSynthesized is not the method
1592       // we want, that just indicates if the decl came from a
1593       // property. What we want to know is if the method is defined in
1594       // this implementation.
1595       if (!D->getInstanceMethod(PD->getGetterName()))
1596         CodeGenFunction(*this).GenerateObjCGetter(
1597                                  const_cast<ObjCImplementationDecl *>(D), PID);
1598       if (!PD->isReadOnly() &&
1599           !D->getInstanceMethod(PD->getSetterName()))
1600         CodeGenFunction(*this).GenerateObjCSetter(
1601                                  const_cast<ObjCImplementationDecl *>(D), PID);
1602     }
1603   }
1604 }
1605 
1606 /// EmitNamespace - Emit all declarations in a namespace.
1607 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1608   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1609        I != E; ++I)
1610     EmitTopLevelDecl(*I);
1611 }
1612 
1613 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1614 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1615   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1616       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1617     ErrorUnsupported(LSD, "linkage spec");
1618     return;
1619   }
1620 
1621   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1622        I != E; ++I)
1623     EmitTopLevelDecl(*I);
1624 }
1625 
1626 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1627 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1628   // If an error has occurred, stop code generation, but continue
1629   // parsing and semantic analysis (to ensure all warnings and errors
1630   // are emitted).
1631   if (Diags.hasErrorOccurred())
1632     return;
1633 
1634   // Ignore dependent declarations.
1635   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1636     return;
1637 
1638   switch (D->getKind()) {
1639   case Decl::CXXConversion:
1640   case Decl::CXXMethod:
1641   case Decl::Function:
1642     // Skip function templates
1643     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1644       return;
1645 
1646     EmitGlobal(cast<FunctionDecl>(D));
1647     break;
1648 
1649   case Decl::Var:
1650     EmitGlobal(cast<VarDecl>(D));
1651     break;
1652 
1653   // C++ Decls
1654   case Decl::Namespace:
1655     EmitNamespace(cast<NamespaceDecl>(D));
1656     break;
1657     // No code generation needed.
1658   case Decl::Using:
1659   case Decl::UsingDirective:
1660   case Decl::ClassTemplate:
1661   case Decl::FunctionTemplate:
1662   case Decl::NamespaceAlias:
1663     break;
1664   case Decl::CXXConstructor:
1665     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1666     break;
1667   case Decl::CXXDestructor:
1668     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1669     break;
1670 
1671   case Decl::StaticAssert:
1672     // Nothing to do.
1673     break;
1674 
1675   // Objective-C Decls
1676 
1677   // Forward declarations, no (immediate) code generation.
1678   case Decl::ObjCClass:
1679   case Decl::ObjCForwardProtocol:
1680   case Decl::ObjCCategory:
1681   case Decl::ObjCInterface:
1682     break;
1683 
1684   case Decl::ObjCProtocol:
1685     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1686     break;
1687 
1688   case Decl::ObjCCategoryImpl:
1689     // Categories have properties but don't support synthesize so we
1690     // can ignore them here.
1691     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1692     break;
1693 
1694   case Decl::ObjCImplementation: {
1695     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1696     EmitObjCPropertyImplementations(OMD);
1697     Runtime->GenerateClass(OMD);
1698     break;
1699   }
1700   case Decl::ObjCMethod: {
1701     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1702     // If this is not a prototype, emit the body.
1703     if (OMD->getBody())
1704       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1705     break;
1706   }
1707   case Decl::ObjCCompatibleAlias:
1708     // compatibility-alias is a directive and has no code gen.
1709     break;
1710 
1711   case Decl::LinkageSpec:
1712     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1713     break;
1714 
1715   case Decl::FileScopeAsm: {
1716     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1717     std::string AsmString(AD->getAsmString()->getStrData(),
1718                           AD->getAsmString()->getByteLength());
1719 
1720     const std::string &S = getModule().getModuleInlineAsm();
1721     if (S.empty())
1722       getModule().setModuleInlineAsm(AsmString);
1723     else
1724       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1725     break;
1726   }
1727 
1728   default:
1729     // Make sure we handled everything we should, every other kind is a
1730     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1731     // function. Need to recode Decl::Kind to do that easily.
1732     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1733   }
1734 }
1735