1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CodeGenModule.h" 16 #include "CodeGenFunction.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/Basic/Diagnostic.h" 20 #include "clang/Basic/LangOptions.h" 21 #include "clang/Basic/SourceManager.h" 22 #include "clang/Basic/TargetInfo.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/Constants.h" 25 #include "llvm/DerivedTypes.h" 26 #include "llvm/Module.h" 27 #include "llvm/Intrinsics.h" 28 #include "llvm/Target/TargetData.h" 29 #include "llvm/Analysis/Verifier.h" 30 #include <algorithm> 31 using namespace clang; 32 using namespace CodeGen; 33 34 35 CodeGenModule::CodeGenModule(ASTContext &C, const LangOptions &LO, 36 llvm::Module &M, const llvm::TargetData &TD, 37 Diagnostic &diags, bool GenerateDebugInfo) 38 : Context(C), Features(LO), TheModule(M), TheTargetData(TD), Diags(diags), 39 Types(C, M, TD), MemCpyFn(0), MemMoveFn(0), MemSetFn(0), 40 CFConstantStringClassRef(0) { 41 //TODO: Make this selectable at runtime 42 Runtime = CreateObjCRuntime(*this); 43 44 // If debug info generation is enabled, create the CGDebugInfo object. 45 if (GenerateDebugInfo) 46 DebugInfo = new CGDebugInfo(this); 47 else 48 DebugInfo = NULL; 49 } 50 51 CodeGenModule::~CodeGenModule() { 52 EmitStatics(); 53 llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction(); 54 if (ObjCInitFunction) 55 AddGlobalCtor(ObjCInitFunction); 56 EmitGlobalCtors(); 57 EmitAnnotations(); 58 delete Runtime; 59 delete DebugInfo; 60 // Run the verifier to check that the generated code is consistent. 61 assert(!verifyModule(TheModule)); 62 } 63 64 /// WarnUnsupported - Print out a warning that codegen doesn't support the 65 /// specified stmt yet. 66 void CodeGenModule::WarnUnsupported(const Stmt *S, const char *Type) { 67 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Warning, 68 "cannot codegen this %0 yet"); 69 SourceRange Range = S->getSourceRange(); 70 std::string Msg = Type; 71 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID, 72 &Msg, 1, &Range, 1); 73 } 74 75 /// WarnUnsupported - Print out a warning that codegen doesn't support the 76 /// specified decl yet. 77 void CodeGenModule::WarnUnsupported(const Decl *D, const char *Type) { 78 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Warning, 79 "cannot codegen this %0 yet"); 80 std::string Msg = Type; 81 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID, 82 &Msg, 1); 83 } 84 85 /// setVisibility - Set the visibility for the given LLVM GlobalValue 86 /// according to the given clang AST visibility value. 87 void CodeGenModule::setVisibility(llvm::GlobalValue *GV, 88 VisibilityAttr::VisibilityTypes Vis) { 89 switch (Vis) { 90 default: assert(0 && "Unknown visibility!"); 91 case VisibilityAttr::DefaultVisibility: 92 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 93 break; 94 case VisibilityAttr::HiddenVisibility: 95 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 96 break; 97 case VisibilityAttr::ProtectedVisibility: 98 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 99 break; 100 } 101 } 102 103 /// AddGlobalCtor - Add a function to the list that will be called before 104 /// main() runs. 105 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor) { 106 // TODO: Type coercion of void()* types. 107 GlobalCtors.push_back(Ctor); 108 } 109 110 /// EmitGlobalCtors - Generates the array of contsturctor functions to be 111 /// called on module load, if any have been registered with AddGlobalCtor. 112 void CodeGenModule::EmitGlobalCtors() { 113 if (GlobalCtors.empty()) return; 114 115 // Get the type of @llvm.global_ctors 116 std::vector<const llvm::Type*> CtorFields; 117 CtorFields.push_back(llvm::IntegerType::get(32)); 118 // Constructor function type 119 std::vector<const llvm::Type*> VoidArgs; 120 llvm::FunctionType* CtorFuncTy = 121 llvm::FunctionType::get(llvm::Type::VoidTy, VoidArgs, false); 122 123 // i32, function type pair 124 const llvm::Type *FPType = llvm::PointerType::getUnqual(CtorFuncTy); 125 llvm::StructType* CtorStructTy = 126 llvm::StructType::get(llvm::Type::Int32Ty, FPType, NULL); 127 // Array of fields 128 llvm::ArrayType* GlobalCtorsTy = 129 llvm::ArrayType::get(CtorStructTy, GlobalCtors.size()); 130 131 // Define the global variable 132 llvm::GlobalVariable *GlobalCtorsVal = 133 new llvm::GlobalVariable(GlobalCtorsTy, false, 134 llvm::GlobalValue::AppendingLinkage, 135 (llvm::Constant*)0, "llvm.global_ctors", 136 &TheModule); 137 138 // Populate the array 139 std::vector<llvm::Constant*> CtorValues; 140 llvm::Constant *MagicNumber = 141 llvm::ConstantInt::get(llvm::Type::Int32Ty, 65535, false); 142 std::vector<llvm::Constant*> StructValues; 143 for (std::vector<llvm::Constant*>::iterator I = GlobalCtors.begin(), 144 E = GlobalCtors.end(); I != E; ++I) { 145 StructValues.clear(); 146 StructValues.push_back(MagicNumber); 147 StructValues.push_back(*I); 148 149 CtorValues.push_back(llvm::ConstantStruct::get(CtorStructTy, StructValues)); 150 } 151 152 GlobalCtorsVal->setInitializer(llvm::ConstantArray::get(GlobalCtorsTy, 153 CtorValues)); 154 } 155 156 void CodeGenModule::EmitAnnotations() { 157 if (Annotations.empty()) 158 return; 159 160 // Create a new global variable for the ConstantStruct in the Module. 161 llvm::Constant *Array = 162 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 163 Annotations.size()), 164 Annotations); 165 llvm::GlobalValue *gv = 166 new llvm::GlobalVariable(Array->getType(), false, 167 llvm::GlobalValue::AppendingLinkage, Array, 168 "llvm.global.annotations", &TheModule); 169 gv->setSection("llvm.metadata"); 170 } 171 172 bool hasAggregateLLVMType(QualType T) { 173 return !T->isRealType() && !T->isPointerLikeType() && 174 !T->isVoidType() && !T->isVectorType() && !T->isFunctionType(); 175 } 176 177 void CodeGenModule::SetGlobalValueAttributes(const FunctionDecl *FD, 178 llvm::GlobalValue *GV) { 179 // TODO: Set up linkage and many other things. Note, this is a simple 180 // approximation of what we really want. 181 if (FD->getStorageClass() == FunctionDecl::Static) 182 GV->setLinkage(llvm::Function::InternalLinkage); 183 else if (FD->getAttr<DLLImportAttr>()) 184 GV->setLinkage(llvm::Function::DLLImportLinkage); 185 else if (FD->getAttr<DLLExportAttr>()) 186 GV->setLinkage(llvm::Function::DLLExportLinkage); 187 else if (FD->getAttr<WeakAttr>() || FD->isInline()) 188 GV->setLinkage(llvm::Function::WeakLinkage); 189 190 if (const VisibilityAttr *attr = FD->getAttr<VisibilityAttr>()) 191 CodeGenModule::setVisibility(GV, attr->getVisibility()); 192 // FIXME: else handle -fvisibility 193 } 194 195 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 196 llvm::Function *F, 197 const llvm::FunctionType *FTy) { 198 unsigned FuncAttrs = 0; 199 if (FD->getAttr<NoThrowAttr>()) 200 FuncAttrs |= llvm::ParamAttr::NoUnwind; 201 if (FD->getAttr<NoReturnAttr>()) 202 FuncAttrs |= llvm::ParamAttr::NoReturn; 203 204 llvm::SmallVector<llvm::ParamAttrsWithIndex, 8> ParamAttrList; 205 if (FuncAttrs) 206 ParamAttrList.push_back(llvm::ParamAttrsWithIndex::get(0, FuncAttrs)); 207 // Note that there is parallel code in CodeGenFunction::EmitCallExpr 208 bool AggregateReturn = hasAggregateLLVMType(FD->getResultType()); 209 if (AggregateReturn) 210 ParamAttrList.push_back( 211 llvm::ParamAttrsWithIndex::get(1, llvm::ParamAttr::StructRet)); 212 unsigned increment = AggregateReturn ? 2 : 1; 213 const FunctionTypeProto* FTP = dyn_cast<FunctionTypeProto>(FD->getType()); 214 if (FTP) { 215 for (unsigned i = 0; i < FTP->getNumArgs(); i++) { 216 QualType ParamType = FTP->getArgType(i); 217 unsigned ParamAttrs = 0; 218 if (ParamType->isRecordType()) 219 ParamAttrs |= llvm::ParamAttr::ByVal; 220 if (ParamType->isSignedIntegerType() && 221 ParamType->isPromotableIntegerType()) 222 ParamAttrs |= llvm::ParamAttr::SExt; 223 if (ParamType->isUnsignedIntegerType() && 224 ParamType->isPromotableIntegerType()) 225 ParamAttrs |= llvm::ParamAttr::ZExt; 226 if (ParamAttrs) 227 ParamAttrList.push_back(llvm::ParamAttrsWithIndex::get(i + increment, 228 ParamAttrs)); 229 } 230 } 231 232 F->setParamAttrs(llvm::PAListPtr::get(ParamAttrList.begin(), 233 ParamAttrList.size())); 234 235 // Set the appropriate calling convention for the Function. 236 if (FD->getAttr<FastCallAttr>()) 237 F->setCallingConv(llvm::CallingConv::Fast); 238 239 SetGlobalValueAttributes(FD, F); 240 } 241 242 void CodeGenModule::EmitObjCMethod(const ObjCMethodDecl *OMD) { 243 // If this is not a prototype, emit the body. 244 if (OMD->getBody()) 245 CodeGenFunction(*this).GenerateObjCMethod(OMD); 246 } 247 void CodeGenModule::EmitObjCProtocolImplementation(const ObjCProtocolDecl *PD){ 248 llvm::SmallVector<std::string, 16> Protocols; 249 for (ObjCProtocolDecl::protocol_iterator PI = PD->protocol_begin(), 250 E = PD->protocol_end(); PI != E; ++PI) 251 Protocols.push_back((*PI)->getName()); 252 llvm::SmallVector<llvm::Constant*, 16> InstanceMethodNames; 253 llvm::SmallVector<llvm::Constant*, 16> InstanceMethodTypes; 254 for (ObjCProtocolDecl::instmeth_iterator iter = PD->instmeth_begin(), 255 E = PD->instmeth_end(); iter != E; iter++) { 256 std::string TypeStr; 257 Context.getObjCEncodingForMethodDecl(*iter, TypeStr); 258 InstanceMethodNames.push_back( 259 GetAddrOfConstantString((*iter)->getSelector().getName())); 260 InstanceMethodTypes.push_back(GetAddrOfConstantString(TypeStr)); 261 } 262 // Collect information about class methods: 263 llvm::SmallVector<llvm::Constant*, 16> ClassMethodNames; 264 llvm::SmallVector<llvm::Constant*, 16> ClassMethodTypes; 265 for (ObjCProtocolDecl::classmeth_iterator iter = PD->classmeth_begin(), 266 endIter = PD->classmeth_end() ; iter != endIter ; iter++) { 267 std::string TypeStr; 268 Context.getObjCEncodingForMethodDecl((*iter),TypeStr); 269 ClassMethodNames.push_back( 270 GetAddrOfConstantString((*iter)->getSelector().getName())); 271 ClassMethodTypes.push_back(GetAddrOfConstantString(TypeStr)); 272 } 273 Runtime->GenerateProtocol(PD->getName(), Protocols, InstanceMethodNames, 274 InstanceMethodTypes, ClassMethodNames, ClassMethodTypes); 275 } 276 277 void CodeGenModule::EmitObjCCategoryImpl(const ObjCCategoryImplDecl *OCD) { 278 279 // Collect information about instance methods 280 llvm::SmallVector<Selector, 16> InstanceMethodSels; 281 llvm::SmallVector<llvm::Constant*, 16> InstanceMethodTypes; 282 for (ObjCCategoryDecl::instmeth_iterator iter = OCD->instmeth_begin(), 283 endIter = OCD->instmeth_end() ; iter != endIter ; iter++) { 284 InstanceMethodSels.push_back((*iter)->getSelector()); 285 std::string TypeStr; 286 Context.getObjCEncodingForMethodDecl(*iter,TypeStr); 287 InstanceMethodTypes.push_back(GetAddrOfConstantString(TypeStr)); 288 } 289 290 // Collect information about class methods 291 llvm::SmallVector<Selector, 16> ClassMethodSels; 292 llvm::SmallVector<llvm::Constant*, 16> ClassMethodTypes; 293 for (ObjCCategoryDecl::classmeth_iterator iter = OCD->classmeth_begin(), 294 endIter = OCD->classmeth_end() ; iter != endIter ; iter++) { 295 ClassMethodSels.push_back((*iter)->getSelector()); 296 std::string TypeStr; 297 Context.getObjCEncodingForMethodDecl(*iter,TypeStr); 298 ClassMethodTypes.push_back(GetAddrOfConstantString(TypeStr)); 299 } 300 301 // Collect the names of referenced protocols 302 llvm::SmallVector<std::string, 16> Protocols; 303 const ObjCInterfaceDecl *ClassDecl = OCD->getClassInterface(); 304 const ObjCList<ObjCProtocolDecl> &Protos =ClassDecl->getReferencedProtocols(); 305 for (ObjCList<ObjCProtocolDecl>::iterator I = Protos.begin(), 306 E = Protos.end(); I != E; ++I) 307 Protocols.push_back((*I)->getName()); 308 309 // Generate the category 310 Runtime->GenerateCategory(OCD->getClassInterface()->getName(), 311 OCD->getName(), InstanceMethodSels, InstanceMethodTypes, 312 ClassMethodSels, ClassMethodTypes, Protocols); 313 } 314 315 void CodeGenModule::EmitObjCClassImplementation( 316 const ObjCImplementationDecl *OID) { 317 // Get the superclass name. 318 const ObjCInterfaceDecl * SCDecl = OID->getClassInterface()->getSuperClass(); 319 const char * SCName = NULL; 320 if (SCDecl) { 321 SCName = SCDecl->getName(); 322 } 323 324 // Get the class name 325 ObjCInterfaceDecl * ClassDecl = (ObjCInterfaceDecl*)OID->getClassInterface(); 326 const char * ClassName = ClassDecl->getName(); 327 328 // Get the size of instances. For runtimes that support late-bound instances 329 // this should probably be something different (size just of instance 330 // varaibles in this class, not superclasses?). 331 int instanceSize = 0; 332 const llvm::Type *ObjTy; 333 if (!Runtime->LateBoundIVars()) { 334 ObjTy = getTypes().ConvertType(Context.getObjCInterfaceType(ClassDecl)); 335 instanceSize = TheTargetData.getABITypeSize(ObjTy); 336 } 337 338 // Collect information about instance variables. 339 llvm::SmallVector<llvm::Constant*, 16> IvarNames; 340 llvm::SmallVector<llvm::Constant*, 16> IvarTypes; 341 llvm::SmallVector<llvm::Constant*, 16> IvarOffsets; 342 const llvm::StructLayout *Layout = 343 TheTargetData.getStructLayout(cast<llvm::StructType>(ObjTy)); 344 ObjTy = llvm::PointerType::getUnqual(ObjTy); 345 for (ObjCInterfaceDecl::ivar_iterator iter = ClassDecl->ivar_begin(), 346 endIter = ClassDecl->ivar_end() ; iter != endIter ; iter++) { 347 // Store the name 348 IvarNames.push_back(GetAddrOfConstantString((*iter)->getName())); 349 // Get the type encoding for this ivar 350 std::string TypeStr; 351 llvm::SmallVector<const RecordType *, 8> EncodingRecordTypes; 352 Context.getObjCEncodingForType((*iter)->getType(), TypeStr, 353 EncodingRecordTypes); 354 IvarTypes.push_back(GetAddrOfConstantString(TypeStr)); 355 // Get the offset 356 int offset = 357 (int)Layout->getElementOffset(getTypes().getLLVMFieldNo(*iter)); 358 IvarOffsets.push_back( 359 llvm::ConstantInt::get(llvm::Type::Int32Ty, offset)); 360 } 361 362 // Collect information about instance methods 363 llvm::SmallVector<Selector, 16> InstanceMethodSels; 364 llvm::SmallVector<llvm::Constant*, 16> InstanceMethodTypes; 365 for (ObjCImplementationDecl::instmeth_iterator iter = OID->instmeth_begin(), 366 endIter = OID->instmeth_end() ; iter != endIter ; iter++) { 367 InstanceMethodSels.push_back((*iter)->getSelector()); 368 std::string TypeStr; 369 Context.getObjCEncodingForMethodDecl((*iter),TypeStr); 370 InstanceMethodTypes.push_back(GetAddrOfConstantString(TypeStr)); 371 } 372 373 // Collect information about class methods 374 llvm::SmallVector<Selector, 16> ClassMethodSels; 375 llvm::SmallVector<llvm::Constant*, 16> ClassMethodTypes; 376 for (ObjCImplementationDecl::classmeth_iterator iter = OID->classmeth_begin(), 377 endIter = OID->classmeth_end() ; iter != endIter ; iter++) { 378 ClassMethodSels.push_back((*iter)->getSelector()); 379 std::string TypeStr; 380 Context.getObjCEncodingForMethodDecl((*iter),TypeStr); 381 ClassMethodTypes.push_back(GetAddrOfConstantString(TypeStr)); 382 } 383 // Collect the names of referenced protocols 384 llvm::SmallVector<std::string, 16> Protocols; 385 const ObjCList<ObjCProtocolDecl> &Protos =ClassDecl->getReferencedProtocols(); 386 for (ObjCList<ObjCProtocolDecl>::iterator I = Protos.begin(), 387 E = Protos.end(); I != E; ++I) 388 Protocols.push_back((*I)->getName()); 389 390 // Generate the category 391 Runtime->GenerateClass(ClassName, SCName, instanceSize, IvarNames, IvarTypes, 392 IvarOffsets, InstanceMethodSels, InstanceMethodTypes, 393 ClassMethodSels, ClassMethodTypes, Protocols); 394 } 395 396 void CodeGenModule::EmitStatics() { 397 // Emit code for each used static decl encountered. Since a previously unused 398 // static decl may become used during the generation of code for a static 399 // function, iterate until no changes are made. 400 bool Changed; 401 do { 402 Changed = false; 403 for (unsigned i = 0, e = StaticDecls.size(); i != e; ++i) { 404 const ValueDecl *D = StaticDecls[i]; 405 406 // Check if we have used a decl with the same name 407 // FIXME: The AST should have some sort of aggregate decls or 408 // global symbol map. 409 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 410 if (!getModule().getFunction(FD->getName())) 411 continue; 412 } else { 413 if (!getModule().getNamedGlobal(cast<VarDecl>(D)->getName())) 414 continue; 415 } 416 417 // Emit the definition. 418 EmitGlobalDefinition(D); 419 420 // Erase the used decl from the list. 421 StaticDecls[i] = StaticDecls.back(); 422 StaticDecls.pop_back(); 423 --i; 424 --e; 425 426 // Remember that we made a change. 427 Changed = true; 428 } 429 } while (Changed); 430 } 431 432 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 433 /// annotation information for a given GlobalValue. The annotation struct is 434 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 435 /// GlobalValue being annotated. The second filed is thee constant string 436 /// created from the AnnotateAttr's annotation. The third field is a constant 437 /// string containing the name of the translation unit. The fourth field is 438 /// the line number in the file of the annotated value declaration. 439 /// 440 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 441 /// appears to. 442 /// 443 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 444 const AnnotateAttr *AA, 445 unsigned LineNo) { 446 llvm::Module *M = &getModule(); 447 448 // get [N x i8] constants for the annotation string, and the filename string 449 // which are the 2nd and 3rd elements of the global annotation structure. 450 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 451 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 452 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 453 true); 454 455 // Get the two global values corresponding to the ConstantArrays we just 456 // created to hold the bytes of the strings. 457 llvm::GlobalValue *annoGV = 458 new llvm::GlobalVariable(anno->getType(), false, 459 llvm::GlobalValue::InternalLinkage, anno, 460 GV->getName() + ".str", M); 461 // translation unit name string, emitted into the llvm.metadata section. 462 llvm::GlobalValue *unitGV = 463 new llvm::GlobalVariable(unit->getType(), false, 464 llvm::GlobalValue::InternalLinkage, unit, ".str", M); 465 466 // Create the ConstantStruct that is the global annotion. 467 llvm::Constant *Fields[4] = { 468 llvm::ConstantExpr::getBitCast(GV, SBP), 469 llvm::ConstantExpr::getBitCast(annoGV, SBP), 470 llvm::ConstantExpr::getBitCast(unitGV, SBP), 471 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 472 }; 473 return llvm::ConstantStruct::get(Fields, 4, false); 474 } 475 476 /// ReplaceMapValuesWith - This is a really slow and bad function that 477 /// searches for any entries in GlobalDeclMap that point to OldVal, changing 478 /// them to point to NewVal. This is badbadbad, FIXME! 479 void CodeGenModule::ReplaceMapValuesWith(llvm::Constant *OldVal, 480 llvm::Constant *NewVal) { 481 for (llvm::DenseMap<const Decl*, llvm::Constant*>::iterator 482 I = GlobalDeclMap.begin(), E = GlobalDeclMap.end(); I != E; ++I) 483 if (I->second == OldVal) I->second = NewVal; 484 } 485 486 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 487 bool isDef, isStatic; 488 489 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 490 isDef = (FD->isThisDeclarationADefinition() || 491 FD->getAttr<AliasAttr>()); 492 isStatic = FD->getStorageClass() == FunctionDecl::Static; 493 } else if (const VarDecl *VD = cast<VarDecl>(Global)) { 494 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 495 496 isDef = !(VD->getStorageClass() == VarDecl::Extern && VD->getInit() == 0); 497 isStatic = VD->getStorageClass() == VarDecl::Static; 498 } else { 499 assert(0 && "Invalid argument to EmitGlobal"); 500 return; 501 } 502 503 // Forward declarations are emitted lazily on first use. 504 if (!isDef) 505 return; 506 507 // If the global is a static, defer code generation until later so 508 // we can easily omit unused statics. 509 if (isStatic) { 510 StaticDecls.push_back(Global); 511 return; 512 } 513 514 // Otherwise emit the definition. 515 EmitGlobalDefinition(Global); 516 } 517 518 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 519 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 520 EmitGlobalFunctionDefinition(FD); 521 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 522 EmitGlobalVarDefinition(VD); 523 } else { 524 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 525 } 526 } 527 528 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D) { 529 assert(D->hasGlobalStorage() && "Not a global variable"); 530 531 // See if it is already in the map. 532 llvm::Constant *&Entry = GlobalDeclMap[D]; 533 if (Entry) return Entry; 534 535 QualType ASTTy = D->getType(); 536 const llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy); 537 538 // Check to see if the global already exists. 539 llvm::GlobalVariable *GV = getModule().getGlobalVariable(D->getName(), true); 540 541 // If it doesn't already exist, just create and return an entry. 542 if (GV == 0) { 543 return Entry = new llvm::GlobalVariable(Ty, false, 544 llvm::GlobalValue::ExternalLinkage, 545 0, D->getName(), &getModule(), 0, 546 ASTTy.getAddressSpace()); 547 } 548 549 // Otherwise, it already exists; return the existing version 550 llvm::PointerType *PTy = llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 551 return Entry = llvm::ConstantExpr::getBitCast(GV, PTy); 552 } 553 554 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 555 llvm::Constant *Init = 0; 556 QualType ASTTy = D->getType(); 557 const llvm::Type *VarTy = getTypes().ConvertTypeForMem(ASTTy); 558 const llvm::Type *VarPtrTy = 559 llvm::PointerType::get(VarTy, ASTTy.getAddressSpace()); 560 561 if (D->getInit() == 0) { 562 // This is a tentative definition; tentative definitions are 563 // implicitly initialized with { 0 } 564 const llvm::Type* InitTy; 565 if (ASTTy->isIncompleteArrayType()) { 566 // An incomplete array is normally [ TYPE x 0 ], but we need 567 // to fix it to [ TYPE x 1 ]. 568 const llvm::ArrayType* ATy = cast<llvm::ArrayType>(VarTy); 569 InitTy = llvm::ArrayType::get(ATy->getElementType(), 1); 570 } else { 571 InitTy = VarTy; 572 } 573 Init = llvm::Constant::getNullValue(InitTy); 574 } else { 575 Init = EmitConstantExpr(D->getInit()); 576 } 577 const llvm::Type* InitType = Init->getType(); 578 579 llvm::GlobalVariable *GV = getModule().getGlobalVariable(D->getName(), true); 580 581 if (!GV) { 582 GV = new llvm::GlobalVariable(InitType, false, 583 llvm::GlobalValue::ExternalLinkage, 584 0, D->getName(), &getModule(), 0, 585 ASTTy.getAddressSpace()); 586 } else if (GV->getType()->getElementType() != InitType || 587 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 588 // We have a definition after a prototype with the wrong type. 589 // We must make a new GlobalVariable* and update everything that used OldGV 590 // (a declaration or tentative definition) with the new GlobalVariable* 591 // (which will be a definition). 592 // 593 // This happens if there is a prototype for a global (e.g. "extern int x[];") 594 // and then a definition of a different type (e.g. "int x[10];"). This also 595 // happens when an initializer has a different type from the type of the 596 // global (this happens with unions). 597 // 598 // FIXME: This also ends up happening if there's a definition followed by 599 // a tentative definition! (Although Sema rejects that construct 600 // at the moment.) 601 602 // Save the old global 603 llvm::GlobalVariable *OldGV = GV; 604 605 // Make a new global with the correct type 606 GV = new llvm::GlobalVariable(InitType, false, 607 llvm::GlobalValue::ExternalLinkage, 608 0, D->getName(), &getModule(), 0, 609 ASTTy.getAddressSpace()); 610 // Steal the name of the old global 611 GV->takeName(OldGV); 612 613 // Replace all uses of the old global with the new global 614 llvm::Constant *NewPtrForOldDecl = 615 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 616 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 617 // Make sure we don't keep around any stale references to globals 618 // FIXME: This is really slow; we need a better way to walk all 619 // the decls with the same name 620 ReplaceMapValuesWith(OldGV, NewPtrForOldDecl); 621 622 // Erase the old global, since it is no longer used. 623 OldGV->eraseFromParent(); 624 } 625 626 GlobalDeclMap[D] = llvm::ConstantExpr::getBitCast(GV, VarPtrTy); 627 628 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 629 SourceManager &SM = Context.getSourceManager(); 630 AddAnnotation(EmitAnnotateAttr(GV, AA, 631 SM.getLogicalLineNumber(D->getLocation()))); 632 } 633 634 GV->setInitializer(Init); 635 636 // FIXME: This is silly; getTypeAlign should just work for incomplete arrays 637 unsigned Align; 638 if (const IncompleteArrayType* IAT = D->getType()->getAsIncompleteArrayType()) 639 Align = Context.getTypeAlign(IAT->getElementType()); 640 else 641 Align = Context.getTypeAlign(D->getType()); 642 if (const AlignedAttr* AA = D->getAttr<AlignedAttr>()) { 643 Align = std::max(Align, AA->getAlignment()); 644 } 645 GV->setAlignment(Align / 8); 646 647 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) 648 setVisibility(GV, attr->getVisibility()); 649 // FIXME: else handle -fvisibility 650 651 // Set the llvm linkage type as appropriate. 652 if (D->getStorageClass() == VarDecl::Static) 653 GV->setLinkage(llvm::Function::InternalLinkage); 654 else if (D->getAttr<DLLImportAttr>()) 655 GV->setLinkage(llvm::Function::DLLImportLinkage); 656 else if (D->getAttr<DLLExportAttr>()) 657 GV->setLinkage(llvm::Function::DLLExportLinkage); 658 else if (D->getAttr<WeakAttr>()) 659 GV->setLinkage(llvm::GlobalVariable::WeakLinkage); 660 else { 661 // FIXME: This isn't right. This should handle common linkage and other 662 // stuff. 663 switch (D->getStorageClass()) { 664 case VarDecl::Static: assert(0 && "This case handled above"); 665 case VarDecl::Auto: 666 case VarDecl::Register: 667 assert(0 && "Can't have auto or register globals"); 668 case VarDecl::None: 669 if (!D->getInit()) 670 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 671 break; 672 case VarDecl::Extern: 673 case VarDecl::PrivateExtern: 674 // todo: common 675 break; 676 } 677 } 678 679 // Emit global variable debug information. 680 CGDebugInfo *DI = getDebugInfo(); 681 if(DI) { 682 if(D->getLocation().isValid()) 683 DI->setLocation(D->getLocation()); 684 DI->EmitGlobalVariable(GV, D); 685 } 686 } 687 688 llvm::GlobalValue * 689 CodeGenModule::EmitForwardFunctionDefinition(const FunctionDecl *D) { 690 // FIXME: param attributes for sext/zext etc. 691 if (const AliasAttr *AA = D->getAttr<AliasAttr>()) { 692 assert(!D->getBody() && "Unexpected alias attr on function with body."); 693 694 const std::string& aliaseeName = AA->getAliasee(); 695 llvm::Function *aliasee = getModule().getFunction(aliaseeName); 696 llvm::GlobalValue *alias = new llvm::GlobalAlias(aliasee->getType(), 697 llvm::Function::ExternalLinkage, 698 D->getName(), 699 aliasee, 700 &getModule()); 701 SetGlobalValueAttributes(D, alias); 702 return alias; 703 } else { 704 const llvm::Type *Ty = getTypes().ConvertType(D->getType()); 705 const llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); 706 llvm::Function *F = llvm::Function::Create(FTy, 707 llvm::Function::ExternalLinkage, 708 D->getName(), &getModule()); 709 710 SetFunctionAttributes(D, F, FTy); 711 return F; 712 } 713 } 714 715 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D) { 716 // See if it is already in the map. If so, just return it. 717 llvm::Constant *&Entry = GlobalDeclMap[D]; 718 if (Entry) return Entry; 719 720 // Check to see if the function already exists; this occurs when 721 // this decl shadows a previous one. If it exists we bitcast it to 722 // the proper type for this decl and return. 723 llvm::Function *F = getModule().getFunction(D->getName()); 724 if (F) { 725 const llvm::Type *Ty = getTypes().ConvertType(D->getType()); 726 llvm::Type *PFTy = llvm::PointerType::getUnqual(Ty); 727 return Entry = llvm::ConstantExpr::getBitCast(F, PFTy); 728 } 729 730 // It doesn't exist; create and return an entry. 731 return Entry = EmitForwardFunctionDefinition(D); 732 } 733 734 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 735 llvm::Constant *&Entry = GlobalDeclMap[D]; 736 737 const llvm::Type *Ty = getTypes().ConvertType(D->getType()); 738 const llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); 739 740 // Check to see if the function already exists. 741 llvm::Function *F = getModule().getFunction(D->getName()); 742 743 // If it doesn't already exist, just create and return an entry. 744 if (F == 0) { 745 Entry = EmitForwardFunctionDefinition(D); 746 } else { 747 // If the pointer type matches, just return it. 748 llvm::Type *PFTy = llvm::PointerType::getUnqual(Ty); 749 if (PFTy == F->getType()) { 750 Entry = F; 751 } else { 752 // Otherwise, we have a definition after a prototype with the wrong type. 753 // F is the Function* for the one with the wrong type, we must make a new 754 // Function* and update everything that used F (a declaration) with the new 755 // Function* (which will be a definition). 756 // 757 // This happens if there is a prototype for a function (e.g. "int f()") and 758 // then a definition of a different type (e.g. "int f(int x)"). Start by 759 // making a new function of the correct type, RAUW, then steal the name. 760 llvm::Function *NewFn = llvm::Function::Create(FTy, 761 llvm::Function::ExternalLinkage, 762 "", &getModule()); 763 NewFn->takeName(F); 764 765 // Replace uses of F with the Function we will endow with a body. 766 llvm::Constant *NewPtrForOldDecl = 767 llvm::ConstantExpr::getBitCast(NewFn, F->getType()); 768 F->replaceAllUsesWith(NewPtrForOldDecl); 769 770 // FIXME: Update the globaldeclmap for the previous decl of this name. We 771 // really want a way to walk all of these, but we don't have it yet. This 772 // is incredibly slow! 773 ReplaceMapValuesWith(F, NewPtrForOldDecl); 774 775 // Ok, delete the old function now, which is dead. 776 assert(F->isDeclaration() && "Shouldn't replace non-declaration"); 777 F->eraseFromParent(); 778 779 SetFunctionAttributes(D, NewFn, FTy); 780 // Return the new function which has the right type. 781 Entry = NewFn; 782 } 783 } 784 785 if (D->getAttr<AliasAttr>()) { 786 ; 787 } else { 788 llvm::Function *Fn = cast<llvm::Function>(Entry); 789 CodeGenFunction(*this).GenerateCode(D, Fn); 790 } 791 } 792 793 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 794 // Make sure that this type is translated. 795 Types.UpdateCompletedType(TD); 796 } 797 798 799 /// getBuiltinLibFunction 800 llvm::Function *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 801 if (BuiltinID > BuiltinFunctions.size()) 802 BuiltinFunctions.resize(BuiltinID); 803 804 // Cache looked up functions. Since builtin id #0 is invalid we don't reserve 805 // a slot for it. 806 assert(BuiltinID && "Invalid Builtin ID"); 807 llvm::Function *&FunctionSlot = BuiltinFunctions[BuiltinID-1]; 808 if (FunctionSlot) 809 return FunctionSlot; 810 811 assert(Context.BuiltinInfo.isLibFunction(BuiltinID) && "isn't a lib fn"); 812 813 // Get the name, skip over the __builtin_ prefix. 814 const char *Name = Context.BuiltinInfo.GetName(BuiltinID)+10; 815 816 // Get the type for the builtin. 817 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context); 818 const llvm::FunctionType *Ty = 819 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 820 821 // FIXME: This has a serious problem with code like this: 822 // void abs() {} 823 // ... __builtin_abs(x); 824 // The two versions of abs will collide. The fix is for the builtin to win, 825 // and for the existing one to be turned into a constantexpr cast of the 826 // builtin. In the case where the existing one is a static function, it 827 // should just be renamed. 828 if (llvm::Function *Existing = getModule().getFunction(Name)) { 829 if (Existing->getFunctionType() == Ty && Existing->hasExternalLinkage()) 830 return FunctionSlot = Existing; 831 assert(Existing == 0 && "FIXME: Name collision"); 832 } 833 834 // FIXME: param attributes for sext/zext etc. 835 return FunctionSlot = 836 llvm::Function::Create(Ty, llvm::Function::ExternalLinkage, Name, 837 &getModule()); 838 } 839 840 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 841 unsigned NumTys) { 842 return llvm::Intrinsic::getDeclaration(&getModule(), 843 (llvm::Intrinsic::ID)IID, Tys, NumTys); 844 } 845 846 llvm::Function *CodeGenModule::getMemCpyFn() { 847 if (MemCpyFn) return MemCpyFn; 848 llvm::Intrinsic::ID IID; 849 switch (Context.Target.getPointerWidth(0)) { 850 default: assert(0 && "Unknown ptr width"); 851 case 32: IID = llvm::Intrinsic::memcpy_i32; break; 852 case 64: IID = llvm::Intrinsic::memcpy_i64; break; 853 } 854 return MemCpyFn = getIntrinsic(IID); 855 } 856 857 llvm::Function *CodeGenModule::getMemMoveFn() { 858 if (MemMoveFn) return MemMoveFn; 859 llvm::Intrinsic::ID IID; 860 switch (Context.Target.getPointerWidth(0)) { 861 default: assert(0 && "Unknown ptr width"); 862 case 32: IID = llvm::Intrinsic::memmove_i32; break; 863 case 64: IID = llvm::Intrinsic::memmove_i64; break; 864 } 865 return MemMoveFn = getIntrinsic(IID); 866 } 867 868 llvm::Function *CodeGenModule::getMemSetFn() { 869 if (MemSetFn) return MemSetFn; 870 llvm::Intrinsic::ID IID; 871 switch (Context.Target.getPointerWidth(0)) { 872 default: assert(0 && "Unknown ptr width"); 873 case 32: IID = llvm::Intrinsic::memset_i32; break; 874 case 64: IID = llvm::Intrinsic::memset_i64; break; 875 } 876 return MemSetFn = getIntrinsic(IID); 877 } 878 879 // FIXME: This needs moving into an Apple Objective-C runtime class 880 llvm::Constant *CodeGenModule:: 881 GetAddrOfConstantCFString(const std::string &str) { 882 llvm::StringMapEntry<llvm::Constant *> &Entry = 883 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 884 885 if (Entry.getValue()) 886 return Entry.getValue(); 887 888 std::vector<llvm::Constant*> Fields; 889 890 if (!CFConstantStringClassRef) { 891 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 892 Ty = llvm::ArrayType::get(Ty, 0); 893 894 CFConstantStringClassRef = 895 new llvm::GlobalVariable(Ty, false, 896 llvm::GlobalVariable::ExternalLinkage, 0, 897 "__CFConstantStringClassReference", 898 &getModule()); 899 } 900 901 // Class pointer. 902 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 903 llvm::Constant *Zeros[] = { Zero, Zero }; 904 llvm::Constant *C = 905 llvm::ConstantExpr::getGetElementPtr(CFConstantStringClassRef, Zeros, 2); 906 Fields.push_back(C); 907 908 // Flags. 909 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 910 Fields.push_back(llvm::ConstantInt::get(Ty, 1992)); 911 912 // String pointer. 913 C = llvm::ConstantArray::get(str); 914 C = new llvm::GlobalVariable(C->getType(), true, 915 llvm::GlobalValue::InternalLinkage, 916 C, ".str", &getModule()); 917 918 C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2); 919 Fields.push_back(C); 920 921 // String length. 922 Ty = getTypes().ConvertType(getContext().LongTy); 923 Fields.push_back(llvm::ConstantInt::get(Ty, str.length())); 924 925 // The struct. 926 Ty = getTypes().ConvertType(getContext().getCFConstantStringType()); 927 C = llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Fields); 928 llvm::GlobalVariable *GV = 929 new llvm::GlobalVariable(C->getType(), true, 930 llvm::GlobalVariable::InternalLinkage, 931 C, "", &getModule()); 932 GV->setSection("__DATA,__cfstring"); 933 Entry.setValue(GV); 934 return GV; 935 } 936 937 /// GenerateWritableString -- Creates storage for a string literal. 938 static llvm::Constant *GenerateStringLiteral(const std::string &str, 939 bool constant, 940 CodeGenModule &CGM) { 941 // Create Constant for this string literal 942 llvm::Constant *C=llvm::ConstantArray::get(str); 943 944 // Create a global variable for this string 945 C = new llvm::GlobalVariable(C->getType(), constant, 946 llvm::GlobalValue::InternalLinkage, 947 C, ".str", &CGM.getModule()); 948 return C; 949 } 950 951 /// CodeGenModule::GetAddrOfConstantString -- returns a pointer to the character 952 /// array containing the literal. The result is pointer to array type. 953 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str) { 954 // Don't share any string literals if writable-strings is turned on. 955 if (Features.WritableStrings) 956 return GenerateStringLiteral(str, false, *this); 957 958 llvm::StringMapEntry<llvm::Constant *> &Entry = 959 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 960 961 if (Entry.getValue()) 962 return Entry.getValue(); 963 964 // Create a global variable for this. 965 llvm::Constant *C = GenerateStringLiteral(str, true, *this); 966 Entry.setValue(C); 967 return C; 968 } 969