1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   FloatTy = llvm::Type::getFloatTy(LLVMContext);
107   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
108   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
109   PointerAlignInBytes =
110     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
111   SizeSizeInBytes =
112     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
113   IntAlignInBytes =
114     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
115   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
116   IntPtrTy = llvm::IntegerType::get(LLVMContext,
117     C.getTargetInfo().getMaxPointerWidth());
118   Int8PtrTy = Int8Ty->getPointerTo(0);
119   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
120   AllocaInt8PtrTy = Int8Ty->getPointerTo(
121       M.getDataLayout().getAllocaAddrSpace());
122   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
123 
124   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
125   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
126 
127   if (LangOpts.ObjC1)
128     createObjCRuntime();
129   if (LangOpts.OpenCL)
130     createOpenCLRuntime();
131   if (LangOpts.OpenMP)
132     createOpenMPRuntime();
133   if (LangOpts.CUDA)
134     createCUDARuntime();
135 
136   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
137   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
138       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
139     TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
140                                getCXXABI().getMangleContext()));
141 
142   // If debug info or coverage generation is enabled, create the CGDebugInfo
143   // object.
144   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
145       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
146     DebugInfo.reset(new CGDebugInfo(*this));
147 
148   Block.GlobalUniqueCount = 0;
149 
150   if (C.getLangOpts().ObjC1)
151     ObjCData.reset(new ObjCEntrypoints());
152 
153   if (CodeGenOpts.hasProfileClangUse()) {
154     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
155         CodeGenOpts.ProfileInstrumentUsePath);
156     if (auto E = ReaderOrErr.takeError()) {
157       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
158                                               "Could not read profile %0: %1");
159       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
160         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
161                                   << EI.message();
162       });
163     } else
164       PGOReader = std::move(ReaderOrErr.get());
165   }
166 
167   // If coverage mapping generation is enabled, create the
168   // CoverageMappingModuleGen object.
169   if (CodeGenOpts.CoverageMapping)
170     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
171 }
172 
173 CodeGenModule::~CodeGenModule() {}
174 
175 void CodeGenModule::createObjCRuntime() {
176   // This is just isGNUFamily(), but we want to force implementors of
177   // new ABIs to decide how best to do this.
178   switch (LangOpts.ObjCRuntime.getKind()) {
179   case ObjCRuntime::GNUstep:
180   case ObjCRuntime::GCC:
181   case ObjCRuntime::ObjFW:
182     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
183     return;
184 
185   case ObjCRuntime::FragileMacOSX:
186   case ObjCRuntime::MacOSX:
187   case ObjCRuntime::iOS:
188   case ObjCRuntime::WatchOS:
189     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
190     return;
191   }
192   llvm_unreachable("bad runtime kind");
193 }
194 
195 void CodeGenModule::createOpenCLRuntime() {
196   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
197 }
198 
199 void CodeGenModule::createOpenMPRuntime() {
200   // Select a specialized code generation class based on the target, if any.
201   // If it does not exist use the default implementation.
202   switch (getTriple().getArch()) {
203   case llvm::Triple::nvptx:
204   case llvm::Triple::nvptx64:
205     assert(getLangOpts().OpenMPIsDevice &&
206            "OpenMP NVPTX is only prepared to deal with device code.");
207     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
208     break;
209   default:
210     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
211     break;
212   }
213 }
214 
215 void CodeGenModule::createCUDARuntime() {
216   CUDARuntime.reset(CreateNVCUDARuntime(*this));
217 }
218 
219 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
220   Replacements[Name] = C;
221 }
222 
223 void CodeGenModule::applyReplacements() {
224   for (auto &I : Replacements) {
225     StringRef MangledName = I.first();
226     llvm::Constant *Replacement = I.second;
227     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
228     if (!Entry)
229       continue;
230     auto *OldF = cast<llvm::Function>(Entry);
231     auto *NewF = dyn_cast<llvm::Function>(Replacement);
232     if (!NewF) {
233       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
234         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
235       } else {
236         auto *CE = cast<llvm::ConstantExpr>(Replacement);
237         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
238                CE->getOpcode() == llvm::Instruction::GetElementPtr);
239         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
240       }
241     }
242 
243     // Replace old with new, but keep the old order.
244     OldF->replaceAllUsesWith(Replacement);
245     if (NewF) {
246       NewF->removeFromParent();
247       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
248                                                        NewF);
249     }
250     OldF->eraseFromParent();
251   }
252 }
253 
254 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
255   GlobalValReplacements.push_back(std::make_pair(GV, C));
256 }
257 
258 void CodeGenModule::applyGlobalValReplacements() {
259   for (auto &I : GlobalValReplacements) {
260     llvm::GlobalValue *GV = I.first;
261     llvm::Constant *C = I.second;
262 
263     GV->replaceAllUsesWith(C);
264     GV->eraseFromParent();
265   }
266 }
267 
268 // This is only used in aliases that we created and we know they have a
269 // linear structure.
270 static const llvm::GlobalObject *getAliasedGlobal(
271     const llvm::GlobalIndirectSymbol &GIS) {
272   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
273   const llvm::Constant *C = &GIS;
274   for (;;) {
275     C = C->stripPointerCasts();
276     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
277       return GO;
278     // stripPointerCasts will not walk over weak aliases.
279     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
280     if (!GIS2)
281       return nullptr;
282     if (!Visited.insert(GIS2).second)
283       return nullptr;
284     C = GIS2->getIndirectSymbol();
285   }
286 }
287 
288 void CodeGenModule::checkAliases() {
289   // Check if the constructed aliases are well formed. It is really unfortunate
290   // that we have to do this in CodeGen, but we only construct mangled names
291   // and aliases during codegen.
292   bool Error = false;
293   DiagnosticsEngine &Diags = getDiags();
294   for (const GlobalDecl &GD : Aliases) {
295     const auto *D = cast<ValueDecl>(GD.getDecl());
296     SourceLocation Location;
297     bool IsIFunc = D->hasAttr<IFuncAttr>();
298     if (const Attr *A = D->getDefiningAttr())
299       Location = A->getLocation();
300     else
301       llvm_unreachable("Not an alias or ifunc?");
302     StringRef MangledName = getMangledName(GD);
303     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
304     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
305     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
306     if (!GV) {
307       Error = true;
308       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
309     } else if (GV->isDeclaration()) {
310       Error = true;
311       Diags.Report(Location, diag::err_alias_to_undefined)
312           << IsIFunc << IsIFunc;
313     } else if (IsIFunc) {
314       // Check resolver function type.
315       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
316           GV->getType()->getPointerElementType());
317       assert(FTy);
318       if (!FTy->getReturnType()->isPointerTy())
319         Diags.Report(Location, diag::err_ifunc_resolver_return);
320       if (FTy->getNumParams())
321         Diags.Report(Location, diag::err_ifunc_resolver_params);
322     }
323 
324     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
325     llvm::GlobalValue *AliaseeGV;
326     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
327       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
328     else
329       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
330 
331     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
332       StringRef AliasSection = SA->getName();
333       if (AliasSection != AliaseeGV->getSection())
334         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
335             << AliasSection << IsIFunc << IsIFunc;
336     }
337 
338     // We have to handle alias to weak aliases in here. LLVM itself disallows
339     // this since the object semantics would not match the IL one. For
340     // compatibility with gcc we implement it by just pointing the alias
341     // to its aliasee's aliasee. We also warn, since the user is probably
342     // expecting the link to be weak.
343     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
344       if (GA->isInterposable()) {
345         Diags.Report(Location, diag::warn_alias_to_weak_alias)
346             << GV->getName() << GA->getName() << IsIFunc;
347         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
348             GA->getIndirectSymbol(), Alias->getType());
349         Alias->setIndirectSymbol(Aliasee);
350       }
351     }
352   }
353   if (!Error)
354     return;
355 
356   for (const GlobalDecl &GD : Aliases) {
357     StringRef MangledName = getMangledName(GD);
358     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
359     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
360     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
361     Alias->eraseFromParent();
362   }
363 }
364 
365 void CodeGenModule::clear() {
366   DeferredDeclsToEmit.clear();
367   if (OpenMPRuntime)
368     OpenMPRuntime->clear();
369 }
370 
371 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
372                                        StringRef MainFile) {
373   if (!hasDiagnostics())
374     return;
375   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
376     if (MainFile.empty())
377       MainFile = "<stdin>";
378     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
379   } else {
380     if (Mismatched > 0)
381       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
382 
383     if (Missing > 0)
384       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
385   }
386 }
387 
388 void CodeGenModule::Release() {
389   EmitDeferred();
390   EmitVTablesOpportunistically();
391   applyGlobalValReplacements();
392   applyReplacements();
393   checkAliases();
394   EmitCXXGlobalInitFunc();
395   EmitCXXGlobalDtorFunc();
396   EmitCXXThreadLocalInitFunc();
397   if (ObjCRuntime)
398     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
399       AddGlobalCtor(ObjCInitFunction);
400   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
401       CUDARuntime) {
402     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
403       AddGlobalCtor(CudaCtorFunction);
404     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
405       AddGlobalDtor(CudaDtorFunction);
406   }
407   if (OpenMPRuntime)
408     if (llvm::Function *OpenMPRegistrationFunction =
409             OpenMPRuntime->emitRegistrationFunction()) {
410       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
411         OpenMPRegistrationFunction : nullptr;
412       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
413     }
414   if (PGOReader) {
415     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
416     if (PGOStats.hasDiagnostics())
417       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
418   }
419   EmitCtorList(GlobalCtors, "llvm.global_ctors");
420   EmitCtorList(GlobalDtors, "llvm.global_dtors");
421   EmitGlobalAnnotations();
422   EmitStaticExternCAliases();
423   EmitDeferredUnusedCoverageMappings();
424   if (CoverageMapping)
425     CoverageMapping->emit();
426   if (CodeGenOpts.SanitizeCfiCrossDso) {
427     CodeGenFunction(*this).EmitCfiCheckFail();
428     CodeGenFunction(*this).EmitCfiCheckStub();
429   }
430   emitAtAvailableLinkGuard();
431   emitLLVMUsed();
432   if (SanStats)
433     SanStats->finish();
434 
435   if (CodeGenOpts.Autolink &&
436       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
437     EmitModuleLinkOptions();
438   }
439 
440   // Record mregparm value now so it is visible through rest of codegen.
441   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
442     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
443                               CodeGenOpts.NumRegisterParameters);
444 
445   if (CodeGenOpts.DwarfVersion) {
446     // We actually want the latest version when there are conflicts.
447     // We can change from Warning to Latest if such mode is supported.
448     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
449                               CodeGenOpts.DwarfVersion);
450   }
451   if (CodeGenOpts.EmitCodeView) {
452     // Indicate that we want CodeView in the metadata.
453     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
454   }
455   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
456     // We don't support LTO with 2 with different StrictVTablePointers
457     // FIXME: we could support it by stripping all the information introduced
458     // by StrictVTablePointers.
459 
460     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
461 
462     llvm::Metadata *Ops[2] = {
463               llvm::MDString::get(VMContext, "StrictVTablePointers"),
464               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
465                   llvm::Type::getInt32Ty(VMContext), 1))};
466 
467     getModule().addModuleFlag(llvm::Module::Require,
468                               "StrictVTablePointersRequirement",
469                               llvm::MDNode::get(VMContext, Ops));
470   }
471   if (DebugInfo)
472     // We support a single version in the linked module. The LLVM
473     // parser will drop debug info with a different version number
474     // (and warn about it, too).
475     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
476                               llvm::DEBUG_METADATA_VERSION);
477 
478   // We need to record the widths of enums and wchar_t, so that we can generate
479   // the correct build attributes in the ARM backend. wchar_size is also used by
480   // TargetLibraryInfo.
481   uint64_t WCharWidth =
482       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
483   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
484 
485   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
486   if (   Arch == llvm::Triple::arm
487       || Arch == llvm::Triple::armeb
488       || Arch == llvm::Triple::thumb
489       || Arch == llvm::Triple::thumbeb) {
490     // The minimum width of an enum in bytes
491     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
492     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
493   }
494 
495   if (CodeGenOpts.SanitizeCfiCrossDso) {
496     // Indicate that we want cross-DSO control flow integrity checks.
497     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
498   }
499 
500   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
501     // Indicate whether __nvvm_reflect should be configured to flush denormal
502     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
503     // property.)
504     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
505                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
506   }
507 
508   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
509   if (LangOpts.OpenCL) {
510     EmitOpenCLMetadata();
511     // Emit SPIR version.
512     if (getTriple().getArch() == llvm::Triple::spir ||
513         getTriple().getArch() == llvm::Triple::spir64) {
514       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
515       // opencl.spir.version named metadata.
516       llvm::Metadata *SPIRVerElts[] = {
517           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
518               Int32Ty, LangOpts.OpenCLVersion / 100)),
519           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
520               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
521       llvm::NamedMDNode *SPIRVerMD =
522           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
523       llvm::LLVMContext &Ctx = TheModule.getContext();
524       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
525     }
526   }
527 
528   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
529     assert(PLevel < 3 && "Invalid PIC Level");
530     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
531     if (Context.getLangOpts().PIE)
532       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
533   }
534 
535   SimplifyPersonality();
536 
537   if (getCodeGenOpts().EmitDeclMetadata)
538     EmitDeclMetadata();
539 
540   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
541     EmitCoverageFile();
542 
543   if (DebugInfo)
544     DebugInfo->finalize();
545 
546   EmitVersionIdentMetadata();
547 
548   EmitTargetMetadata();
549 }
550 
551 void CodeGenModule::EmitOpenCLMetadata() {
552   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
553   // opencl.ocl.version named metadata node.
554   llvm::Metadata *OCLVerElts[] = {
555       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
556           Int32Ty, LangOpts.OpenCLVersion / 100)),
557       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
558           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
559   llvm::NamedMDNode *OCLVerMD =
560       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
561   llvm::LLVMContext &Ctx = TheModule.getContext();
562   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
563 }
564 
565 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
566   // Make sure that this type is translated.
567   Types.UpdateCompletedType(TD);
568 }
569 
570 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
571   // Make sure that this type is translated.
572   Types.RefreshTypeCacheForClass(RD);
573 }
574 
575 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
576   if (!TBAA)
577     return nullptr;
578   return TBAA->getTypeInfo(QTy);
579 }
580 
581 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
582   return TBAAAccessInfo(getTBAATypeInfo(AccessType));
583 }
584 
585 TBAAAccessInfo CodeGenModule::getTBAAVTablePtrAccessInfo() {
586   if (!TBAA)
587     return TBAAAccessInfo();
588   return TBAA->getVTablePtrAccessInfo();
589 }
590 
591 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
592   if (!TBAA)
593     return nullptr;
594   return TBAA->getTBAAStructInfo(QTy);
595 }
596 
597 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
598   if (!TBAA)
599     return nullptr;
600   return TBAA->getBaseTypeInfo(QTy);
601 }
602 
603 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
604   if (!TBAA)
605     return nullptr;
606   return TBAA->getAccessTagInfo(Info);
607 }
608 
609 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
610                                                    TBAAAccessInfo TargetInfo) {
611   if (!TBAA)
612     return TBAAAccessInfo();
613   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
614 }
615 
616 TBAAAccessInfo
617 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
618                                                    TBAAAccessInfo InfoB) {
619   if (!TBAA)
620     return TBAAAccessInfo();
621   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
622 }
623 
624 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
625                                                 TBAAAccessInfo TBAAInfo) {
626   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
627     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
628 }
629 
630 void CodeGenModule::DecorateInstructionWithInvariantGroup(
631     llvm::Instruction *I, const CXXRecordDecl *RD) {
632   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
633                  llvm::MDNode::get(getLLVMContext(), {}));
634 }
635 
636 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
637   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
638   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
639 }
640 
641 /// ErrorUnsupported - Print out an error that codegen doesn't support the
642 /// specified stmt yet.
643 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
644   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
645                                                "cannot compile this %0 yet");
646   std::string Msg = Type;
647   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
648     << Msg << S->getSourceRange();
649 }
650 
651 /// ErrorUnsupported - Print out an error that codegen doesn't support the
652 /// specified decl yet.
653 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
654   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
655                                                "cannot compile this %0 yet");
656   std::string Msg = Type;
657   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
658 }
659 
660 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
661   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
662 }
663 
664 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
665                                         const NamedDecl *D,
666                                         ForDefinition_t IsForDefinition) const {
667   // Internal definitions always have default visibility.
668   if (GV->hasLocalLinkage()) {
669     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
670     return;
671   }
672 
673   // Set visibility for definitions.
674   LinkageInfo LV = D->getLinkageAndVisibility();
675   if (LV.isVisibilityExplicit() ||
676       (IsForDefinition && !GV->hasAvailableExternallyLinkage()))
677     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
678 }
679 
680 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
681   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
682       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
683       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
684       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
685       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
686 }
687 
688 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
689     CodeGenOptions::TLSModel M) {
690   switch (M) {
691   case CodeGenOptions::GeneralDynamicTLSModel:
692     return llvm::GlobalVariable::GeneralDynamicTLSModel;
693   case CodeGenOptions::LocalDynamicTLSModel:
694     return llvm::GlobalVariable::LocalDynamicTLSModel;
695   case CodeGenOptions::InitialExecTLSModel:
696     return llvm::GlobalVariable::InitialExecTLSModel;
697   case CodeGenOptions::LocalExecTLSModel:
698     return llvm::GlobalVariable::LocalExecTLSModel;
699   }
700   llvm_unreachable("Invalid TLS model!");
701 }
702 
703 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
704   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
705 
706   llvm::GlobalValue::ThreadLocalMode TLM;
707   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
708 
709   // Override the TLS model if it is explicitly specified.
710   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
711     TLM = GetLLVMTLSModel(Attr->getModel());
712   }
713 
714   GV->setThreadLocalMode(TLM);
715 }
716 
717 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
718   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
719 
720   // Some ABIs don't have constructor variants.  Make sure that base and
721   // complete constructors get mangled the same.
722   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
723     if (!getTarget().getCXXABI().hasConstructorVariants()) {
724       CXXCtorType OrigCtorType = GD.getCtorType();
725       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
726       if (OrigCtorType == Ctor_Base)
727         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
728     }
729   }
730 
731   auto FoundName = MangledDeclNames.find(CanonicalGD);
732   if (FoundName != MangledDeclNames.end())
733     return FoundName->second;
734 
735   const auto *ND = cast<NamedDecl>(GD.getDecl());
736   SmallString<256> Buffer;
737   StringRef Str;
738   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
739     llvm::raw_svector_ostream Out(Buffer);
740     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
741       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
742     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
743       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
744     else
745       getCXXABI().getMangleContext().mangleName(ND, Out);
746     Str = Out.str();
747   } else {
748     IdentifierInfo *II = ND->getIdentifier();
749     assert(II && "Attempt to mangle unnamed decl.");
750     const auto *FD = dyn_cast<FunctionDecl>(ND);
751 
752     if (FD &&
753         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
754       llvm::raw_svector_ostream Out(Buffer);
755       Out << "__regcall3__" << II->getName();
756       Str = Out.str();
757     } else {
758       Str = II->getName();
759     }
760   }
761 
762   // Keep the first result in the case of a mangling collision.
763   auto Result = Manglings.insert(std::make_pair(Str, GD));
764   return MangledDeclNames[CanonicalGD] = Result.first->first();
765 }
766 
767 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
768                                              const BlockDecl *BD) {
769   MangleContext &MangleCtx = getCXXABI().getMangleContext();
770   const Decl *D = GD.getDecl();
771 
772   SmallString<256> Buffer;
773   llvm::raw_svector_ostream Out(Buffer);
774   if (!D)
775     MangleCtx.mangleGlobalBlock(BD,
776       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
777   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
778     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
779   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
780     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
781   else
782     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
783 
784   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
785   return Result.first->first();
786 }
787 
788 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
789   return getModule().getNamedValue(Name);
790 }
791 
792 /// AddGlobalCtor - Add a function to the list that will be called before
793 /// main() runs.
794 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
795                                   llvm::Constant *AssociatedData) {
796   // FIXME: Type coercion of void()* types.
797   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
798 }
799 
800 /// AddGlobalDtor - Add a function to the list that will be called
801 /// when the module is unloaded.
802 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
803   // FIXME: Type coercion of void()* types.
804   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
805 }
806 
807 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
808   if (Fns.empty()) return;
809 
810   // Ctor function type is void()*.
811   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
812   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
813 
814   // Get the type of a ctor entry, { i32, void ()*, i8* }.
815   llvm::StructType *CtorStructTy = llvm::StructType::get(
816       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
817 
818   // Construct the constructor and destructor arrays.
819   ConstantInitBuilder builder(*this);
820   auto ctors = builder.beginArray(CtorStructTy);
821   for (const auto &I : Fns) {
822     auto ctor = ctors.beginStruct(CtorStructTy);
823     ctor.addInt(Int32Ty, I.Priority);
824     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
825     if (I.AssociatedData)
826       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
827     else
828       ctor.addNullPointer(VoidPtrTy);
829     ctor.finishAndAddTo(ctors);
830   }
831 
832   auto list =
833     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
834                                 /*constant*/ false,
835                                 llvm::GlobalValue::AppendingLinkage);
836 
837   // The LTO linker doesn't seem to like it when we set an alignment
838   // on appending variables.  Take it off as a workaround.
839   list->setAlignment(0);
840 
841   Fns.clear();
842 }
843 
844 llvm::GlobalValue::LinkageTypes
845 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
846   const auto *D = cast<FunctionDecl>(GD.getDecl());
847 
848   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
849 
850   if (isa<CXXDestructorDecl>(D) &&
851       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
852                                          GD.getDtorType())) {
853     // Destructor variants in the Microsoft C++ ABI are always internal or
854     // linkonce_odr thunks emitted on an as-needed basis.
855     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
856                                    : llvm::GlobalValue::LinkOnceODRLinkage;
857   }
858 
859   if (isa<CXXConstructorDecl>(D) &&
860       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
861       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
862     // Our approach to inheriting constructors is fundamentally different from
863     // that used by the MS ABI, so keep our inheriting constructor thunks
864     // internal rather than trying to pick an unambiguous mangling for them.
865     return llvm::GlobalValue::InternalLinkage;
866   }
867 
868   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
869 }
870 
871 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
872   const auto *FD = cast<FunctionDecl>(GD.getDecl());
873 
874   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
875     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
876       // Don't dllexport/import destructor thunks.
877       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
878       return;
879     }
880   }
881 
882   if (FD->hasAttr<DLLImportAttr>())
883     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
884   else if (FD->hasAttr<DLLExportAttr>())
885     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
886   else
887     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
888 }
889 
890 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
891   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
892   if (!MDS) return nullptr;
893 
894   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
895 }
896 
897 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
898                                                     llvm::Function *F) {
899   setNonAliasAttributes(D, F);
900 }
901 
902 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
903                                               const CGFunctionInfo &Info,
904                                               llvm::Function *F) {
905   unsigned CallingConv;
906   llvm::AttributeList PAL;
907   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
908   F->setAttributes(PAL);
909   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
910 }
911 
912 /// Determines whether the language options require us to model
913 /// unwind exceptions.  We treat -fexceptions as mandating this
914 /// except under the fragile ObjC ABI with only ObjC exceptions
915 /// enabled.  This means, for example, that C with -fexceptions
916 /// enables this.
917 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
918   // If exceptions are completely disabled, obviously this is false.
919   if (!LangOpts.Exceptions) return false;
920 
921   // If C++ exceptions are enabled, this is true.
922   if (LangOpts.CXXExceptions) return true;
923 
924   // If ObjC exceptions are enabled, this depends on the ABI.
925   if (LangOpts.ObjCExceptions) {
926     return LangOpts.ObjCRuntime.hasUnwindExceptions();
927   }
928 
929   return true;
930 }
931 
932 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
933                                                            llvm::Function *F) {
934   llvm::AttrBuilder B;
935 
936   if (CodeGenOpts.UnwindTables)
937     B.addAttribute(llvm::Attribute::UWTable);
938 
939   if (!hasUnwindExceptions(LangOpts))
940     B.addAttribute(llvm::Attribute::NoUnwind);
941 
942   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
943     B.addAttribute(llvm::Attribute::StackProtect);
944   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
945     B.addAttribute(llvm::Attribute::StackProtectStrong);
946   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
947     B.addAttribute(llvm::Attribute::StackProtectReq);
948 
949   if (!D) {
950     // If we don't have a declaration to control inlining, the function isn't
951     // explicitly marked as alwaysinline for semantic reasons, and inlining is
952     // disabled, mark the function as noinline.
953     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
954         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
955       B.addAttribute(llvm::Attribute::NoInline);
956 
957     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
958     return;
959   }
960 
961   // Track whether we need to add the optnone LLVM attribute,
962   // starting with the default for this optimization level.
963   bool ShouldAddOptNone =
964       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
965   // We can't add optnone in the following cases, it won't pass the verifier.
966   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
967   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
968   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
969 
970   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
971     B.addAttribute(llvm::Attribute::OptimizeNone);
972 
973     // OptimizeNone implies noinline; we should not be inlining such functions.
974     B.addAttribute(llvm::Attribute::NoInline);
975     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
976            "OptimizeNone and AlwaysInline on same function!");
977 
978     // We still need to handle naked functions even though optnone subsumes
979     // much of their semantics.
980     if (D->hasAttr<NakedAttr>())
981       B.addAttribute(llvm::Attribute::Naked);
982 
983     // OptimizeNone wins over OptimizeForSize and MinSize.
984     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
985     F->removeFnAttr(llvm::Attribute::MinSize);
986   } else if (D->hasAttr<NakedAttr>()) {
987     // Naked implies noinline: we should not be inlining such functions.
988     B.addAttribute(llvm::Attribute::Naked);
989     B.addAttribute(llvm::Attribute::NoInline);
990   } else if (D->hasAttr<NoDuplicateAttr>()) {
991     B.addAttribute(llvm::Attribute::NoDuplicate);
992   } else if (D->hasAttr<NoInlineAttr>()) {
993     B.addAttribute(llvm::Attribute::NoInline);
994   } else if (D->hasAttr<AlwaysInlineAttr>() &&
995              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
996     // (noinline wins over always_inline, and we can't specify both in IR)
997     B.addAttribute(llvm::Attribute::AlwaysInline);
998   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
999     // If we're not inlining, then force everything that isn't always_inline to
1000     // carry an explicit noinline attribute.
1001     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1002       B.addAttribute(llvm::Attribute::NoInline);
1003   } else {
1004     // Otherwise, propagate the inline hint attribute and potentially use its
1005     // absence to mark things as noinline.
1006     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1007       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1008             return Redecl->isInlineSpecified();
1009           })) {
1010         B.addAttribute(llvm::Attribute::InlineHint);
1011       } else if (CodeGenOpts.getInlining() ==
1012                      CodeGenOptions::OnlyHintInlining &&
1013                  !FD->isInlined() &&
1014                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1015         B.addAttribute(llvm::Attribute::NoInline);
1016       }
1017     }
1018   }
1019 
1020   // Add other optimization related attributes if we are optimizing this
1021   // function.
1022   if (!D->hasAttr<OptimizeNoneAttr>()) {
1023     if (D->hasAttr<ColdAttr>()) {
1024       if (!ShouldAddOptNone)
1025         B.addAttribute(llvm::Attribute::OptimizeForSize);
1026       B.addAttribute(llvm::Attribute::Cold);
1027     }
1028 
1029     if (D->hasAttr<MinSizeAttr>())
1030       B.addAttribute(llvm::Attribute::MinSize);
1031   }
1032 
1033   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1034 
1035   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1036   if (alignment)
1037     F->setAlignment(alignment);
1038 
1039   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1040   // reserve a bit for differentiating between virtual and non-virtual member
1041   // functions. If the current target's C++ ABI requires this and this is a
1042   // member function, set its alignment accordingly.
1043   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1044     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1045       F->setAlignment(2);
1046   }
1047 
1048   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1049   if (CodeGenOpts.SanitizeCfiCrossDso)
1050     if (auto *FD = dyn_cast<FunctionDecl>(D))
1051       CreateFunctionTypeMetadata(FD, F);
1052 }
1053 
1054 void CodeGenModule::SetCommonAttributes(const Decl *D,
1055                                         llvm::GlobalValue *GV) {
1056   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
1057     setGlobalVisibility(GV, ND, ForDefinition);
1058   else
1059     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1060 
1061   if (D && D->hasAttr<UsedAttr>())
1062     addUsedGlobal(GV);
1063 }
1064 
1065 void CodeGenModule::setAliasAttributes(const Decl *D,
1066                                        llvm::GlobalValue *GV) {
1067   SetCommonAttributes(D, GV);
1068 
1069   // Process the dllexport attribute based on whether the original definition
1070   // (not necessarily the aliasee) was exported.
1071   if (D->hasAttr<DLLExportAttr>())
1072     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1073 }
1074 
1075 void CodeGenModule::setNonAliasAttributes(const Decl *D,
1076                                           llvm::GlobalObject *GO) {
1077   SetCommonAttributes(D, GO);
1078 
1079   if (D) {
1080     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1081       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1082         GV->addAttribute("bss-section", SA->getName());
1083       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1084         GV->addAttribute("data-section", SA->getName());
1085       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1086         GV->addAttribute("rodata-section", SA->getName());
1087     }
1088 
1089     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1090       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1091        if (!D->getAttr<SectionAttr>())
1092          F->addFnAttr("implicit-section-name", SA->getName());
1093     }
1094 
1095     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1096       GO->setSection(SA->getName());
1097   }
1098 
1099   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition);
1100 }
1101 
1102 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1103                                                   llvm::Function *F,
1104                                                   const CGFunctionInfo &FI) {
1105   SetLLVMFunctionAttributes(D, FI, F);
1106   SetLLVMFunctionAttributesForDefinition(D, F);
1107 
1108   F->setLinkage(llvm::Function::InternalLinkage);
1109 
1110   setNonAliasAttributes(D, F);
1111 }
1112 
1113 static void setLinkageForGV(llvm::GlobalValue *GV,
1114                             const NamedDecl *ND) {
1115   // Set linkage and visibility in case we never see a definition.
1116   LinkageInfo LV = ND->getLinkageAndVisibility();
1117   if (!isExternallyVisible(LV.getLinkage())) {
1118     // Don't set internal linkage on declarations.
1119   } else {
1120     if (ND->hasAttr<DLLImportAttr>()) {
1121       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1122       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1123     } else if (ND->hasAttr<DLLExportAttr>()) {
1124       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1125     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1126       // "extern_weak" is overloaded in LLVM; we probably should have
1127       // separate linkage types for this.
1128       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1129     }
1130   }
1131 }
1132 
1133 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1134                                                llvm::Function *F) {
1135   // Only if we are checking indirect calls.
1136   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1137     return;
1138 
1139   // Non-static class methods are handled via vtable pointer checks elsewhere.
1140   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1141     return;
1142 
1143   // Additionally, if building with cross-DSO support...
1144   if (CodeGenOpts.SanitizeCfiCrossDso) {
1145     // Skip available_externally functions. They won't be codegen'ed in the
1146     // current module anyway.
1147     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1148       return;
1149   }
1150 
1151   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1152   F->addTypeMetadata(0, MD);
1153   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1154 
1155   // Emit a hash-based bit set entry for cross-DSO calls.
1156   if (CodeGenOpts.SanitizeCfiCrossDso)
1157     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1158       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1159 }
1160 
1161 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1162                                           bool IsIncompleteFunction,
1163                                           bool IsThunk,
1164                                           ForDefinition_t IsForDefinition) {
1165 
1166   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1167     // If this is an intrinsic function, set the function's attributes
1168     // to the intrinsic's attributes.
1169     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1170     return;
1171   }
1172 
1173   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1174 
1175   if (!IsIncompleteFunction) {
1176     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1177     // Setup target-specific attributes.
1178     if (!IsForDefinition)
1179       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this,
1180                                                  NotForDefinition);
1181   }
1182 
1183   // Add the Returned attribute for "this", except for iOS 5 and earlier
1184   // where substantial code, including the libstdc++ dylib, was compiled with
1185   // GCC and does not actually return "this".
1186   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1187       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1188     assert(!F->arg_empty() &&
1189            F->arg_begin()->getType()
1190              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1191            "unexpected this return");
1192     F->addAttribute(1, llvm::Attribute::Returned);
1193   }
1194 
1195   // Only a few attributes are set on declarations; these may later be
1196   // overridden by a definition.
1197 
1198   setLinkageForGV(F, FD);
1199   setGlobalVisibility(F, FD, NotForDefinition);
1200 
1201   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1202     F->addFnAttr("implicit-section-name");
1203   }
1204 
1205   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1206     F->setSection(SA->getName());
1207 
1208   if (FD->isReplaceableGlobalAllocationFunction()) {
1209     // A replaceable global allocation function does not act like a builtin by
1210     // default, only if it is invoked by a new-expression or delete-expression.
1211     F->addAttribute(llvm::AttributeList::FunctionIndex,
1212                     llvm::Attribute::NoBuiltin);
1213 
1214     // A sane operator new returns a non-aliasing pointer.
1215     // FIXME: Also add NonNull attribute to the return value
1216     // for the non-nothrow forms?
1217     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1218     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1219         (Kind == OO_New || Kind == OO_Array_New))
1220       F->addAttribute(llvm::AttributeList::ReturnIndex,
1221                       llvm::Attribute::NoAlias);
1222   }
1223 
1224   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1225     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1226   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1227     if (MD->isVirtual())
1228       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1229 
1230   // Don't emit entries for function declarations in the cross-DSO mode. This
1231   // is handled with better precision by the receiving DSO.
1232   if (!CodeGenOpts.SanitizeCfiCrossDso)
1233     CreateFunctionTypeMetadata(FD, F);
1234 }
1235 
1236 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1237   assert(!GV->isDeclaration() &&
1238          "Only globals with definition can force usage.");
1239   LLVMUsed.emplace_back(GV);
1240 }
1241 
1242 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1243   assert(!GV->isDeclaration() &&
1244          "Only globals with definition can force usage.");
1245   LLVMCompilerUsed.emplace_back(GV);
1246 }
1247 
1248 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1249                      std::vector<llvm::WeakTrackingVH> &List) {
1250   // Don't create llvm.used if there is no need.
1251   if (List.empty())
1252     return;
1253 
1254   // Convert List to what ConstantArray needs.
1255   SmallVector<llvm::Constant*, 8> UsedArray;
1256   UsedArray.resize(List.size());
1257   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1258     UsedArray[i] =
1259         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1260             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1261   }
1262 
1263   if (UsedArray.empty())
1264     return;
1265   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1266 
1267   auto *GV = new llvm::GlobalVariable(
1268       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1269       llvm::ConstantArray::get(ATy, UsedArray), Name);
1270 
1271   GV->setSection("llvm.metadata");
1272 }
1273 
1274 void CodeGenModule::emitLLVMUsed() {
1275   emitUsed(*this, "llvm.used", LLVMUsed);
1276   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1277 }
1278 
1279 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1280   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1281   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1282 }
1283 
1284 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1285   llvm::SmallString<32> Opt;
1286   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1287   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1288   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1289 }
1290 
1291 void CodeGenModule::AddDependentLib(StringRef Lib) {
1292   llvm::SmallString<24> Opt;
1293   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1294   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1295   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1296 }
1297 
1298 /// \brief Add link options implied by the given module, including modules
1299 /// it depends on, using a postorder walk.
1300 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1301                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1302                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1303   // Import this module's parent.
1304   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1305     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1306   }
1307 
1308   // Import this module's dependencies.
1309   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1310     if (Visited.insert(Mod->Imports[I - 1]).second)
1311       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1312   }
1313 
1314   // Add linker options to link against the libraries/frameworks
1315   // described by this module.
1316   llvm::LLVMContext &Context = CGM.getLLVMContext();
1317   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1318     // Link against a framework.  Frameworks are currently Darwin only, so we
1319     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1320     if (Mod->LinkLibraries[I-1].IsFramework) {
1321       llvm::Metadata *Args[2] = {
1322           llvm::MDString::get(Context, "-framework"),
1323           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1324 
1325       Metadata.push_back(llvm::MDNode::get(Context, Args));
1326       continue;
1327     }
1328 
1329     // Link against a library.
1330     llvm::SmallString<24> Opt;
1331     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1332       Mod->LinkLibraries[I-1].Library, Opt);
1333     auto *OptString = llvm::MDString::get(Context, Opt);
1334     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1335   }
1336 }
1337 
1338 void CodeGenModule::EmitModuleLinkOptions() {
1339   // Collect the set of all of the modules we want to visit to emit link
1340   // options, which is essentially the imported modules and all of their
1341   // non-explicit child modules.
1342   llvm::SetVector<clang::Module *> LinkModules;
1343   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1344   SmallVector<clang::Module *, 16> Stack;
1345 
1346   // Seed the stack with imported modules.
1347   for (Module *M : ImportedModules) {
1348     // Do not add any link flags when an implementation TU of a module imports
1349     // a header of that same module.
1350     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1351         !getLangOpts().isCompilingModule())
1352       continue;
1353     if (Visited.insert(M).second)
1354       Stack.push_back(M);
1355   }
1356 
1357   // Find all of the modules to import, making a little effort to prune
1358   // non-leaf modules.
1359   while (!Stack.empty()) {
1360     clang::Module *Mod = Stack.pop_back_val();
1361 
1362     bool AnyChildren = false;
1363 
1364     // Visit the submodules of this module.
1365     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1366                                         SubEnd = Mod->submodule_end();
1367          Sub != SubEnd; ++Sub) {
1368       // Skip explicit children; they need to be explicitly imported to be
1369       // linked against.
1370       if ((*Sub)->IsExplicit)
1371         continue;
1372 
1373       if (Visited.insert(*Sub).second) {
1374         Stack.push_back(*Sub);
1375         AnyChildren = true;
1376       }
1377     }
1378 
1379     // We didn't find any children, so add this module to the list of
1380     // modules to link against.
1381     if (!AnyChildren) {
1382       LinkModules.insert(Mod);
1383     }
1384   }
1385 
1386   // Add link options for all of the imported modules in reverse topological
1387   // order.  We don't do anything to try to order import link flags with respect
1388   // to linker options inserted by things like #pragma comment().
1389   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1390   Visited.clear();
1391   for (Module *M : LinkModules)
1392     if (Visited.insert(M).second)
1393       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1394   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1395   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1396 
1397   // Add the linker options metadata flag.
1398   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1399   for (auto *MD : LinkerOptionsMetadata)
1400     NMD->addOperand(MD);
1401 }
1402 
1403 void CodeGenModule::EmitDeferred() {
1404   // Emit code for any potentially referenced deferred decls.  Since a
1405   // previously unused static decl may become used during the generation of code
1406   // for a static function, iterate until no changes are made.
1407 
1408   if (!DeferredVTables.empty()) {
1409     EmitDeferredVTables();
1410 
1411     // Emitting a vtable doesn't directly cause more vtables to
1412     // become deferred, although it can cause functions to be
1413     // emitted that then need those vtables.
1414     assert(DeferredVTables.empty());
1415   }
1416 
1417   // Stop if we're out of both deferred vtables and deferred declarations.
1418   if (DeferredDeclsToEmit.empty())
1419     return;
1420 
1421   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1422   // work, it will not interfere with this.
1423   std::vector<GlobalDecl> CurDeclsToEmit;
1424   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1425 
1426   for (GlobalDecl &D : CurDeclsToEmit) {
1427     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1428     // to get GlobalValue with exactly the type we need, not something that
1429     // might had been created for another decl with the same mangled name but
1430     // different type.
1431     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1432         GetAddrOfGlobal(D, ForDefinition));
1433 
1434     // In case of different address spaces, we may still get a cast, even with
1435     // IsForDefinition equal to true. Query mangled names table to get
1436     // GlobalValue.
1437     if (!GV)
1438       GV = GetGlobalValue(getMangledName(D));
1439 
1440     // Make sure GetGlobalValue returned non-null.
1441     assert(GV);
1442 
1443     // Check to see if we've already emitted this.  This is necessary
1444     // for a couple of reasons: first, decls can end up in the
1445     // deferred-decls queue multiple times, and second, decls can end
1446     // up with definitions in unusual ways (e.g. by an extern inline
1447     // function acquiring a strong function redefinition).  Just
1448     // ignore these cases.
1449     if (!GV->isDeclaration())
1450       continue;
1451 
1452     // Otherwise, emit the definition and move on to the next one.
1453     EmitGlobalDefinition(D, GV);
1454 
1455     // If we found out that we need to emit more decls, do that recursively.
1456     // This has the advantage that the decls are emitted in a DFS and related
1457     // ones are close together, which is convenient for testing.
1458     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1459       EmitDeferred();
1460       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1461     }
1462   }
1463 }
1464 
1465 void CodeGenModule::EmitVTablesOpportunistically() {
1466   // Try to emit external vtables as available_externally if they have emitted
1467   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1468   // is not allowed to create new references to things that need to be emitted
1469   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1470 
1471   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1472          && "Only emit opportunistic vtables with optimizations");
1473 
1474   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1475     assert(getVTables().isVTableExternal(RD) &&
1476            "This queue should only contain external vtables");
1477     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1478       VTables.GenerateClassData(RD);
1479   }
1480   OpportunisticVTables.clear();
1481 }
1482 
1483 void CodeGenModule::EmitGlobalAnnotations() {
1484   if (Annotations.empty())
1485     return;
1486 
1487   // Create a new global variable for the ConstantStruct in the Module.
1488   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1489     Annotations[0]->getType(), Annotations.size()), Annotations);
1490   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1491                                       llvm::GlobalValue::AppendingLinkage,
1492                                       Array, "llvm.global.annotations");
1493   gv->setSection(AnnotationSection);
1494 }
1495 
1496 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1497   llvm::Constant *&AStr = AnnotationStrings[Str];
1498   if (AStr)
1499     return AStr;
1500 
1501   // Not found yet, create a new global.
1502   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1503   auto *gv =
1504       new llvm::GlobalVariable(getModule(), s->getType(), true,
1505                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1506   gv->setSection(AnnotationSection);
1507   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1508   AStr = gv;
1509   return gv;
1510 }
1511 
1512 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1513   SourceManager &SM = getContext().getSourceManager();
1514   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1515   if (PLoc.isValid())
1516     return EmitAnnotationString(PLoc.getFilename());
1517   return EmitAnnotationString(SM.getBufferName(Loc));
1518 }
1519 
1520 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1521   SourceManager &SM = getContext().getSourceManager();
1522   PresumedLoc PLoc = SM.getPresumedLoc(L);
1523   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1524     SM.getExpansionLineNumber(L);
1525   return llvm::ConstantInt::get(Int32Ty, LineNo);
1526 }
1527 
1528 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1529                                                 const AnnotateAttr *AA,
1530                                                 SourceLocation L) {
1531   // Get the globals for file name, annotation, and the line number.
1532   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1533                  *UnitGV = EmitAnnotationUnit(L),
1534                  *LineNoCst = EmitAnnotationLineNo(L);
1535 
1536   // Create the ConstantStruct for the global annotation.
1537   llvm::Constant *Fields[4] = {
1538     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1539     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1540     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1541     LineNoCst
1542   };
1543   return llvm::ConstantStruct::getAnon(Fields);
1544 }
1545 
1546 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1547                                          llvm::GlobalValue *GV) {
1548   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1549   // Get the struct elements for these annotations.
1550   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1551     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1552 }
1553 
1554 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1555                                            llvm::Function *Fn,
1556                                            SourceLocation Loc) const {
1557   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1558   // Blacklist by function name.
1559   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1560     return true;
1561   // Blacklist by location.
1562   if (Loc.isValid())
1563     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1564   // If location is unknown, this may be a compiler-generated function. Assume
1565   // it's located in the main file.
1566   auto &SM = Context.getSourceManager();
1567   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1568     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1569   }
1570   return false;
1571 }
1572 
1573 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1574                                            SourceLocation Loc, QualType Ty,
1575                                            StringRef Category) const {
1576   // For now globals can be blacklisted only in ASan and KASan.
1577   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1578       (SanitizerKind::Address | SanitizerKind::KernelAddress);
1579   if (!EnabledAsanMask)
1580     return false;
1581   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1582   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1583     return true;
1584   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1585     return true;
1586   // Check global type.
1587   if (!Ty.isNull()) {
1588     // Drill down the array types: if global variable of a fixed type is
1589     // blacklisted, we also don't instrument arrays of them.
1590     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1591       Ty = AT->getElementType();
1592     Ty = Ty.getCanonicalType().getUnqualifiedType();
1593     // We allow to blacklist only record types (classes, structs etc.)
1594     if (Ty->isRecordType()) {
1595       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1596       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1597         return true;
1598     }
1599   }
1600   return false;
1601 }
1602 
1603 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1604                                    StringRef Category) const {
1605   if (!LangOpts.XRayInstrument)
1606     return false;
1607   const auto &XRayFilter = getContext().getXRayFilter();
1608   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1609   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1610   if (Loc.isValid())
1611     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1612   if (Attr == ImbueAttr::NONE)
1613     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1614   switch (Attr) {
1615   case ImbueAttr::NONE:
1616     return false;
1617   case ImbueAttr::ALWAYS:
1618     Fn->addFnAttr("function-instrument", "xray-always");
1619     break;
1620   case ImbueAttr::ALWAYS_ARG1:
1621     Fn->addFnAttr("function-instrument", "xray-always");
1622     Fn->addFnAttr("xray-log-args", "1");
1623     break;
1624   case ImbueAttr::NEVER:
1625     Fn->addFnAttr("function-instrument", "xray-never");
1626     break;
1627   }
1628   return true;
1629 }
1630 
1631 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1632   // Never defer when EmitAllDecls is specified.
1633   if (LangOpts.EmitAllDecls)
1634     return true;
1635 
1636   return getContext().DeclMustBeEmitted(Global);
1637 }
1638 
1639 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1640   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1641     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1642       // Implicit template instantiations may change linkage if they are later
1643       // explicitly instantiated, so they should not be emitted eagerly.
1644       return false;
1645   if (const auto *VD = dyn_cast<VarDecl>(Global))
1646     if (Context.getInlineVariableDefinitionKind(VD) ==
1647         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1648       // A definition of an inline constexpr static data member may change
1649       // linkage later if it's redeclared outside the class.
1650       return false;
1651   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1652   // codegen for global variables, because they may be marked as threadprivate.
1653   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1654       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1655     return false;
1656 
1657   return true;
1658 }
1659 
1660 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1661     const CXXUuidofExpr* E) {
1662   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1663   // well-formed.
1664   StringRef Uuid = E->getUuidStr();
1665   std::string Name = "_GUID_" + Uuid.lower();
1666   std::replace(Name.begin(), Name.end(), '-', '_');
1667 
1668   // The UUID descriptor should be pointer aligned.
1669   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1670 
1671   // Look for an existing global.
1672   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1673     return ConstantAddress(GV, Alignment);
1674 
1675   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1676   assert(Init && "failed to initialize as constant");
1677 
1678   auto *GV = new llvm::GlobalVariable(
1679       getModule(), Init->getType(),
1680       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1681   if (supportsCOMDAT())
1682     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1683   return ConstantAddress(GV, Alignment);
1684 }
1685 
1686 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1687   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1688   assert(AA && "No alias?");
1689 
1690   CharUnits Alignment = getContext().getDeclAlign(VD);
1691   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1692 
1693   // See if there is already something with the target's name in the module.
1694   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1695   if (Entry) {
1696     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1697     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1698     return ConstantAddress(Ptr, Alignment);
1699   }
1700 
1701   llvm::Constant *Aliasee;
1702   if (isa<llvm::FunctionType>(DeclTy))
1703     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1704                                       GlobalDecl(cast<FunctionDecl>(VD)),
1705                                       /*ForVTable=*/false);
1706   else
1707     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1708                                     llvm::PointerType::getUnqual(DeclTy),
1709                                     nullptr);
1710 
1711   auto *F = cast<llvm::GlobalValue>(Aliasee);
1712   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1713   WeakRefReferences.insert(F);
1714 
1715   return ConstantAddress(Aliasee, Alignment);
1716 }
1717 
1718 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1719   const auto *Global = cast<ValueDecl>(GD.getDecl());
1720 
1721   // Weak references don't produce any output by themselves.
1722   if (Global->hasAttr<WeakRefAttr>())
1723     return;
1724 
1725   // If this is an alias definition (which otherwise looks like a declaration)
1726   // emit it now.
1727   if (Global->hasAttr<AliasAttr>())
1728     return EmitAliasDefinition(GD);
1729 
1730   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1731   if (Global->hasAttr<IFuncAttr>())
1732     return emitIFuncDefinition(GD);
1733 
1734   // If this is CUDA, be selective about which declarations we emit.
1735   if (LangOpts.CUDA) {
1736     if (LangOpts.CUDAIsDevice) {
1737       if (!Global->hasAttr<CUDADeviceAttr>() &&
1738           !Global->hasAttr<CUDAGlobalAttr>() &&
1739           !Global->hasAttr<CUDAConstantAttr>() &&
1740           !Global->hasAttr<CUDASharedAttr>())
1741         return;
1742     } else {
1743       // We need to emit host-side 'shadows' for all global
1744       // device-side variables because the CUDA runtime needs their
1745       // size and host-side address in order to provide access to
1746       // their device-side incarnations.
1747 
1748       // So device-only functions are the only things we skip.
1749       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1750           Global->hasAttr<CUDADeviceAttr>())
1751         return;
1752 
1753       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1754              "Expected Variable or Function");
1755     }
1756   }
1757 
1758   if (LangOpts.OpenMP) {
1759     // If this is OpenMP device, check if it is legal to emit this global
1760     // normally.
1761     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1762       return;
1763     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1764       if (MustBeEmitted(Global))
1765         EmitOMPDeclareReduction(DRD);
1766       return;
1767     }
1768   }
1769 
1770   // Ignore declarations, they will be emitted on their first use.
1771   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1772     // Forward declarations are emitted lazily on first use.
1773     if (!FD->doesThisDeclarationHaveABody()) {
1774       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1775         return;
1776 
1777       StringRef MangledName = getMangledName(GD);
1778 
1779       // Compute the function info and LLVM type.
1780       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1781       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1782 
1783       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1784                               /*DontDefer=*/false);
1785       return;
1786     }
1787   } else {
1788     const auto *VD = cast<VarDecl>(Global);
1789     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1790     // We need to emit device-side global CUDA variables even if a
1791     // variable does not have a definition -- we still need to define
1792     // host-side shadow for it.
1793     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1794                            !VD->hasDefinition() &&
1795                            (VD->hasAttr<CUDAConstantAttr>() ||
1796                             VD->hasAttr<CUDADeviceAttr>());
1797     if (!MustEmitForCuda &&
1798         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1799         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1800       // If this declaration may have caused an inline variable definition to
1801       // change linkage, make sure that it's emitted.
1802       if (Context.getInlineVariableDefinitionKind(VD) ==
1803           ASTContext::InlineVariableDefinitionKind::Strong)
1804         GetAddrOfGlobalVar(VD);
1805       return;
1806     }
1807   }
1808 
1809   // Defer code generation to first use when possible, e.g. if this is an inline
1810   // function. If the global must always be emitted, do it eagerly if possible
1811   // to benefit from cache locality.
1812   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1813     // Emit the definition if it can't be deferred.
1814     EmitGlobalDefinition(GD);
1815     return;
1816   }
1817 
1818   // If we're deferring emission of a C++ variable with an
1819   // initializer, remember the order in which it appeared in the file.
1820   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1821       cast<VarDecl>(Global)->hasInit()) {
1822     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1823     CXXGlobalInits.push_back(nullptr);
1824   }
1825 
1826   StringRef MangledName = getMangledName(GD);
1827   if (GetGlobalValue(MangledName) != nullptr) {
1828     // The value has already been used and should therefore be emitted.
1829     addDeferredDeclToEmit(GD);
1830   } else if (MustBeEmitted(Global)) {
1831     // The value must be emitted, but cannot be emitted eagerly.
1832     assert(!MayBeEmittedEagerly(Global));
1833     addDeferredDeclToEmit(GD);
1834   } else {
1835     // Otherwise, remember that we saw a deferred decl with this name.  The
1836     // first use of the mangled name will cause it to move into
1837     // DeferredDeclsToEmit.
1838     DeferredDecls[MangledName] = GD;
1839   }
1840 }
1841 
1842 // Check if T is a class type with a destructor that's not dllimport.
1843 static bool HasNonDllImportDtor(QualType T) {
1844   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
1845     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1846       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1847         return true;
1848 
1849   return false;
1850 }
1851 
1852 namespace {
1853   struct FunctionIsDirectlyRecursive :
1854     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1855     const StringRef Name;
1856     const Builtin::Context &BI;
1857     bool Result;
1858     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1859       Name(N), BI(C), Result(false) {
1860     }
1861     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1862 
1863     bool TraverseCallExpr(CallExpr *E) {
1864       const FunctionDecl *FD = E->getDirectCallee();
1865       if (!FD)
1866         return true;
1867       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1868       if (Attr && Name == Attr->getLabel()) {
1869         Result = true;
1870         return false;
1871       }
1872       unsigned BuiltinID = FD->getBuiltinID();
1873       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1874         return true;
1875       StringRef BuiltinName = BI.getName(BuiltinID);
1876       if (BuiltinName.startswith("__builtin_") &&
1877           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1878         Result = true;
1879         return false;
1880       }
1881       return true;
1882     }
1883   };
1884 
1885   // Make sure we're not referencing non-imported vars or functions.
1886   struct DLLImportFunctionVisitor
1887       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1888     bool SafeToInline = true;
1889 
1890     bool shouldVisitImplicitCode() const { return true; }
1891 
1892     bool VisitVarDecl(VarDecl *VD) {
1893       if (VD->getTLSKind()) {
1894         // A thread-local variable cannot be imported.
1895         SafeToInline = false;
1896         return SafeToInline;
1897       }
1898 
1899       // A variable definition might imply a destructor call.
1900       if (VD->isThisDeclarationADefinition())
1901         SafeToInline = !HasNonDllImportDtor(VD->getType());
1902 
1903       return SafeToInline;
1904     }
1905 
1906     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1907       if (const auto *D = E->getTemporary()->getDestructor())
1908         SafeToInline = D->hasAttr<DLLImportAttr>();
1909       return SafeToInline;
1910     }
1911 
1912     bool VisitDeclRefExpr(DeclRefExpr *E) {
1913       ValueDecl *VD = E->getDecl();
1914       if (isa<FunctionDecl>(VD))
1915         SafeToInline = VD->hasAttr<DLLImportAttr>();
1916       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1917         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1918       return SafeToInline;
1919     }
1920 
1921     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
1922       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
1923       return SafeToInline;
1924     }
1925 
1926     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1927       CXXMethodDecl *M = E->getMethodDecl();
1928       if (!M) {
1929         // Call through a pointer to member function. This is safe to inline.
1930         SafeToInline = true;
1931       } else {
1932         SafeToInline = M->hasAttr<DLLImportAttr>();
1933       }
1934       return SafeToInline;
1935     }
1936 
1937     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1938       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1939       return SafeToInline;
1940     }
1941 
1942     bool VisitCXXNewExpr(CXXNewExpr *E) {
1943       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1944       return SafeToInline;
1945     }
1946   };
1947 }
1948 
1949 // isTriviallyRecursive - Check if this function calls another
1950 // decl that, because of the asm attribute or the other decl being a builtin,
1951 // ends up pointing to itself.
1952 bool
1953 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1954   StringRef Name;
1955   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1956     // asm labels are a special kind of mangling we have to support.
1957     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1958     if (!Attr)
1959       return false;
1960     Name = Attr->getLabel();
1961   } else {
1962     Name = FD->getName();
1963   }
1964 
1965   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1966   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1967   return Walker.Result;
1968 }
1969 
1970 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1971   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1972     return true;
1973   const auto *F = cast<FunctionDecl>(GD.getDecl());
1974   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1975     return false;
1976 
1977   if (F->hasAttr<DLLImportAttr>()) {
1978     // Check whether it would be safe to inline this dllimport function.
1979     DLLImportFunctionVisitor Visitor;
1980     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1981     if (!Visitor.SafeToInline)
1982       return false;
1983 
1984     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
1985       // Implicit destructor invocations aren't captured in the AST, so the
1986       // check above can't see them. Check for them manually here.
1987       for (const Decl *Member : Dtor->getParent()->decls())
1988         if (isa<FieldDecl>(Member))
1989           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
1990             return false;
1991       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
1992         if (HasNonDllImportDtor(B.getType()))
1993           return false;
1994     }
1995   }
1996 
1997   // PR9614. Avoid cases where the source code is lying to us. An available
1998   // externally function should have an equivalent function somewhere else,
1999   // but a function that calls itself is clearly not equivalent to the real
2000   // implementation.
2001   // This happens in glibc's btowc and in some configure checks.
2002   return !isTriviallyRecursive(F);
2003 }
2004 
2005 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2006   return CodeGenOpts.OptimizationLevel > 0;
2007 }
2008 
2009 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2010   const auto *D = cast<ValueDecl>(GD.getDecl());
2011 
2012   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2013                                  Context.getSourceManager(),
2014                                  "Generating code for declaration");
2015 
2016   if (isa<FunctionDecl>(D)) {
2017     // At -O0, don't generate IR for functions with available_externally
2018     // linkage.
2019     if (!shouldEmitFunction(GD))
2020       return;
2021 
2022     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2023       // Make sure to emit the definition(s) before we emit the thunks.
2024       // This is necessary for the generation of certain thunks.
2025       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2026         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2027       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2028         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2029       else
2030         EmitGlobalFunctionDefinition(GD, GV);
2031 
2032       if (Method->isVirtual())
2033         getVTables().EmitThunks(GD);
2034 
2035       return;
2036     }
2037 
2038     return EmitGlobalFunctionDefinition(GD, GV);
2039   }
2040 
2041   if (const auto *VD = dyn_cast<VarDecl>(D))
2042     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2043 
2044   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2045 }
2046 
2047 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2048                                                       llvm::Function *NewFn);
2049 
2050 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2051 /// module, create and return an llvm Function with the specified type. If there
2052 /// is something in the module with the specified name, return it potentially
2053 /// bitcasted to the right type.
2054 ///
2055 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2056 /// to set the attributes on the function when it is first created.
2057 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2058     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2059     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2060     ForDefinition_t IsForDefinition) {
2061   const Decl *D = GD.getDecl();
2062 
2063   // Lookup the entry, lazily creating it if necessary.
2064   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2065   if (Entry) {
2066     if (WeakRefReferences.erase(Entry)) {
2067       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2068       if (FD && !FD->hasAttr<WeakAttr>())
2069         Entry->setLinkage(llvm::Function::ExternalLinkage);
2070     }
2071 
2072     // Handle dropped DLL attributes.
2073     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2074       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2075 
2076     // If there are two attempts to define the same mangled name, issue an
2077     // error.
2078     if (IsForDefinition && !Entry->isDeclaration()) {
2079       GlobalDecl OtherGD;
2080       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2081       // to make sure that we issue an error only once.
2082       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2083           (GD.getCanonicalDecl().getDecl() !=
2084            OtherGD.getCanonicalDecl().getDecl()) &&
2085           DiagnosedConflictingDefinitions.insert(GD).second) {
2086         getDiags().Report(D->getLocation(),
2087                           diag::err_duplicate_mangled_name);
2088         getDiags().Report(OtherGD.getDecl()->getLocation(),
2089                           diag::note_previous_definition);
2090       }
2091     }
2092 
2093     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2094         (Entry->getType()->getElementType() == Ty)) {
2095       return Entry;
2096     }
2097 
2098     // Make sure the result is of the correct type.
2099     // (If function is requested for a definition, we always need to create a new
2100     // function, not just return a bitcast.)
2101     if (!IsForDefinition)
2102       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2103   }
2104 
2105   // This function doesn't have a complete type (for example, the return
2106   // type is an incomplete struct). Use a fake type instead, and make
2107   // sure not to try to set attributes.
2108   bool IsIncompleteFunction = false;
2109 
2110   llvm::FunctionType *FTy;
2111   if (isa<llvm::FunctionType>(Ty)) {
2112     FTy = cast<llvm::FunctionType>(Ty);
2113   } else {
2114     FTy = llvm::FunctionType::get(VoidTy, false);
2115     IsIncompleteFunction = true;
2116   }
2117 
2118   llvm::Function *F =
2119       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2120                              Entry ? StringRef() : MangledName, &getModule());
2121 
2122   // If we already created a function with the same mangled name (but different
2123   // type) before, take its name and add it to the list of functions to be
2124   // replaced with F at the end of CodeGen.
2125   //
2126   // This happens if there is a prototype for a function (e.g. "int f()") and
2127   // then a definition of a different type (e.g. "int f(int x)").
2128   if (Entry) {
2129     F->takeName(Entry);
2130 
2131     // This might be an implementation of a function without a prototype, in
2132     // which case, try to do special replacement of calls which match the new
2133     // prototype.  The really key thing here is that we also potentially drop
2134     // arguments from the call site so as to make a direct call, which makes the
2135     // inliner happier and suppresses a number of optimizer warnings (!) about
2136     // dropping arguments.
2137     if (!Entry->use_empty()) {
2138       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2139       Entry->removeDeadConstantUsers();
2140     }
2141 
2142     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2143         F, Entry->getType()->getElementType()->getPointerTo());
2144     addGlobalValReplacement(Entry, BC);
2145   }
2146 
2147   assert(F->getName() == MangledName && "name was uniqued!");
2148   if (D)
2149     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk,
2150                           IsForDefinition);
2151   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2152     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2153     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2154   }
2155 
2156   if (!DontDefer) {
2157     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2158     // each other bottoming out with the base dtor.  Therefore we emit non-base
2159     // dtors on usage, even if there is no dtor definition in the TU.
2160     if (D && isa<CXXDestructorDecl>(D) &&
2161         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2162                                            GD.getDtorType()))
2163       addDeferredDeclToEmit(GD);
2164 
2165     // This is the first use or definition of a mangled name.  If there is a
2166     // deferred decl with this name, remember that we need to emit it at the end
2167     // of the file.
2168     auto DDI = DeferredDecls.find(MangledName);
2169     if (DDI != DeferredDecls.end()) {
2170       // Move the potentially referenced deferred decl to the
2171       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2172       // don't need it anymore).
2173       addDeferredDeclToEmit(DDI->second);
2174       DeferredDecls.erase(DDI);
2175 
2176       // Otherwise, there are cases we have to worry about where we're
2177       // using a declaration for which we must emit a definition but where
2178       // we might not find a top-level definition:
2179       //   - member functions defined inline in their classes
2180       //   - friend functions defined inline in some class
2181       //   - special member functions with implicit definitions
2182       // If we ever change our AST traversal to walk into class methods,
2183       // this will be unnecessary.
2184       //
2185       // We also don't emit a definition for a function if it's going to be an
2186       // entry in a vtable, unless it's already marked as used.
2187     } else if (getLangOpts().CPlusPlus && D) {
2188       // Look for a declaration that's lexically in a record.
2189       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2190            FD = FD->getPreviousDecl()) {
2191         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2192           if (FD->doesThisDeclarationHaveABody()) {
2193             addDeferredDeclToEmit(GD.getWithDecl(FD));
2194             break;
2195           }
2196         }
2197       }
2198     }
2199   }
2200 
2201   // Make sure the result is of the requested type.
2202   if (!IsIncompleteFunction) {
2203     assert(F->getType()->getElementType() == Ty);
2204     return F;
2205   }
2206 
2207   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2208   return llvm::ConstantExpr::getBitCast(F, PTy);
2209 }
2210 
2211 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2212 /// non-null, then this function will use the specified type if it has to
2213 /// create it (this occurs when we see a definition of the function).
2214 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2215                                                  llvm::Type *Ty,
2216                                                  bool ForVTable,
2217                                                  bool DontDefer,
2218                                               ForDefinition_t IsForDefinition) {
2219   // If there was no specific requested type, just convert it now.
2220   if (!Ty) {
2221     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2222     auto CanonTy = Context.getCanonicalType(FD->getType());
2223     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2224   }
2225 
2226   StringRef MangledName = getMangledName(GD);
2227   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2228                                  /*IsThunk=*/false, llvm::AttributeList(),
2229                                  IsForDefinition);
2230 }
2231 
2232 static const FunctionDecl *
2233 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2234   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2235   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2236 
2237   IdentifierInfo &CII = C.Idents.get(Name);
2238   for (const auto &Result : DC->lookup(&CII))
2239     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2240       return FD;
2241 
2242   if (!C.getLangOpts().CPlusPlus)
2243     return nullptr;
2244 
2245   // Demangle the premangled name from getTerminateFn()
2246   IdentifierInfo &CXXII =
2247       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2248           ? C.Idents.get("terminate")
2249           : C.Idents.get(Name);
2250 
2251   for (const auto &N : {"__cxxabiv1", "std"}) {
2252     IdentifierInfo &NS = C.Idents.get(N);
2253     for (const auto &Result : DC->lookup(&NS)) {
2254       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2255       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2256         for (const auto &Result : LSD->lookup(&NS))
2257           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2258             break;
2259 
2260       if (ND)
2261         for (const auto &Result : ND->lookup(&CXXII))
2262           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2263             return FD;
2264     }
2265   }
2266 
2267   return nullptr;
2268 }
2269 
2270 /// CreateRuntimeFunction - Create a new runtime function with the specified
2271 /// type and name.
2272 llvm::Constant *
2273 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2274                                      llvm::AttributeList ExtraAttrs,
2275                                      bool Local) {
2276   llvm::Constant *C =
2277       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2278                               /*DontDefer=*/false, /*IsThunk=*/false,
2279                               ExtraAttrs);
2280 
2281   if (auto *F = dyn_cast<llvm::Function>(C)) {
2282     if (F->empty()) {
2283       F->setCallingConv(getRuntimeCC());
2284 
2285       if (!Local && getTriple().isOSBinFormatCOFF() &&
2286           !getCodeGenOpts().LTOVisibilityPublicStd &&
2287           !getTriple().isWindowsGNUEnvironment()) {
2288         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2289         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2290           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2291           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2292         }
2293       }
2294     }
2295   }
2296 
2297   return C;
2298 }
2299 
2300 /// CreateBuiltinFunction - Create a new builtin function with the specified
2301 /// type and name.
2302 llvm::Constant *
2303 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2304                                      llvm::AttributeList ExtraAttrs) {
2305   llvm::Constant *C =
2306       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2307                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2308   if (auto *F = dyn_cast<llvm::Function>(C))
2309     if (F->empty())
2310       F->setCallingConv(getBuiltinCC());
2311   return C;
2312 }
2313 
2314 /// isTypeConstant - Determine whether an object of this type can be emitted
2315 /// as a constant.
2316 ///
2317 /// If ExcludeCtor is true, the duration when the object's constructor runs
2318 /// will not be considered. The caller will need to verify that the object is
2319 /// not written to during its construction.
2320 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2321   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2322     return false;
2323 
2324   if (Context.getLangOpts().CPlusPlus) {
2325     if (const CXXRecordDecl *Record
2326           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2327       return ExcludeCtor && !Record->hasMutableFields() &&
2328              Record->hasTrivialDestructor();
2329   }
2330 
2331   return true;
2332 }
2333 
2334 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2335 /// create and return an llvm GlobalVariable with the specified type.  If there
2336 /// is something in the module with the specified name, return it potentially
2337 /// bitcasted to the right type.
2338 ///
2339 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2340 /// to set the attributes on the global when it is first created.
2341 ///
2342 /// If IsForDefinition is true, it is guranteed that an actual global with
2343 /// type Ty will be returned, not conversion of a variable with the same
2344 /// mangled name but some other type.
2345 llvm::Constant *
2346 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2347                                      llvm::PointerType *Ty,
2348                                      const VarDecl *D,
2349                                      ForDefinition_t IsForDefinition) {
2350   // Lookup the entry, lazily creating it if necessary.
2351   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2352   if (Entry) {
2353     if (WeakRefReferences.erase(Entry)) {
2354       if (D && !D->hasAttr<WeakAttr>())
2355         Entry->setLinkage(llvm::Function::ExternalLinkage);
2356     }
2357 
2358     // Handle dropped DLL attributes.
2359     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2360       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2361 
2362     if (Entry->getType() == Ty)
2363       return Entry;
2364 
2365     // If there are two attempts to define the same mangled name, issue an
2366     // error.
2367     if (IsForDefinition && !Entry->isDeclaration()) {
2368       GlobalDecl OtherGD;
2369       const VarDecl *OtherD;
2370 
2371       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2372       // to make sure that we issue an error only once.
2373       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2374           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2375           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2376           OtherD->hasInit() &&
2377           DiagnosedConflictingDefinitions.insert(D).second) {
2378         getDiags().Report(D->getLocation(),
2379                           diag::err_duplicate_mangled_name);
2380         getDiags().Report(OtherGD.getDecl()->getLocation(),
2381                           diag::note_previous_definition);
2382       }
2383     }
2384 
2385     // Make sure the result is of the correct type.
2386     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2387       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2388 
2389     // (If global is requested for a definition, we always need to create a new
2390     // global, not just return a bitcast.)
2391     if (!IsForDefinition)
2392       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2393   }
2394 
2395   auto AddrSpace = GetGlobalVarAddressSpace(D);
2396   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2397 
2398   auto *GV = new llvm::GlobalVariable(
2399       getModule(), Ty->getElementType(), false,
2400       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2401       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2402 
2403   // If we already created a global with the same mangled name (but different
2404   // type) before, take its name and remove it from its parent.
2405   if (Entry) {
2406     GV->takeName(Entry);
2407 
2408     if (!Entry->use_empty()) {
2409       llvm::Constant *NewPtrForOldDecl =
2410           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2411       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2412     }
2413 
2414     Entry->eraseFromParent();
2415   }
2416 
2417   // This is the first use or definition of a mangled name.  If there is a
2418   // deferred decl with this name, remember that we need to emit it at the end
2419   // of the file.
2420   auto DDI = DeferredDecls.find(MangledName);
2421   if (DDI != DeferredDecls.end()) {
2422     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2423     // list, and remove it from DeferredDecls (since we don't need it anymore).
2424     addDeferredDeclToEmit(DDI->second);
2425     DeferredDecls.erase(DDI);
2426   }
2427 
2428   // Handle things which are present even on external declarations.
2429   if (D) {
2430     // FIXME: This code is overly simple and should be merged with other global
2431     // handling.
2432     GV->setConstant(isTypeConstant(D->getType(), false));
2433 
2434     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2435 
2436     setLinkageForGV(GV, D);
2437     setGlobalVisibility(GV, D, NotForDefinition);
2438 
2439     if (D->getTLSKind()) {
2440       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2441         CXXThreadLocals.push_back(D);
2442       setTLSMode(GV, *D);
2443     }
2444 
2445     // If required by the ABI, treat declarations of static data members with
2446     // inline initializers as definitions.
2447     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2448       EmitGlobalVarDefinition(D);
2449     }
2450 
2451     // Emit section information for extern variables.
2452     if (D->hasExternalStorage()) {
2453       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2454         GV->setSection(SA->getName());
2455     }
2456 
2457     // Handle XCore specific ABI requirements.
2458     if (getTriple().getArch() == llvm::Triple::xcore &&
2459         D->getLanguageLinkage() == CLanguageLinkage &&
2460         D->getType().isConstant(Context) &&
2461         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2462       GV->setSection(".cp.rodata");
2463 
2464     // Check if we a have a const declaration with an initializer, we may be
2465     // able to emit it as available_externally to expose it's value to the
2466     // optimizer.
2467     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2468         D->getType().isConstQualified() && !GV->hasInitializer() &&
2469         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2470       const auto *Record =
2471           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2472       bool HasMutableFields = Record && Record->hasMutableFields();
2473       if (!HasMutableFields) {
2474         const VarDecl *InitDecl;
2475         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2476         if (InitExpr) {
2477           ConstantEmitter emitter(*this);
2478           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2479           if (Init) {
2480             auto *InitType = Init->getType();
2481             if (GV->getType()->getElementType() != InitType) {
2482               // The type of the initializer does not match the definition.
2483               // This happens when an initializer has a different type from
2484               // the type of the global (because of padding at the end of a
2485               // structure for instance).
2486               GV->setName(StringRef());
2487               // Make a new global with the correct type, this is now guaranteed
2488               // to work.
2489               auto *NewGV = cast<llvm::GlobalVariable>(
2490                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2491 
2492               // Erase the old global, since it is no longer used.
2493               cast<llvm::GlobalValue>(GV)->eraseFromParent();
2494               GV = NewGV;
2495             } else {
2496               GV->setInitializer(Init);
2497               GV->setConstant(true);
2498               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2499             }
2500             emitter.finalize(GV);
2501           }
2502         }
2503       }
2504     }
2505   }
2506 
2507   LangAS ExpectedAS =
2508       D ? D->getType().getAddressSpace()
2509         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2510   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2511          Ty->getPointerAddressSpace());
2512   if (AddrSpace != ExpectedAS)
2513     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2514                                                        ExpectedAS, Ty);
2515 
2516   return GV;
2517 }
2518 
2519 llvm::Constant *
2520 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2521                                ForDefinition_t IsForDefinition) {
2522   const Decl *D = GD.getDecl();
2523   if (isa<CXXConstructorDecl>(D))
2524     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2525                                 getFromCtorType(GD.getCtorType()),
2526                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2527                                 /*DontDefer=*/false, IsForDefinition);
2528   else if (isa<CXXDestructorDecl>(D))
2529     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2530                                 getFromDtorType(GD.getDtorType()),
2531                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2532                                 /*DontDefer=*/false, IsForDefinition);
2533   else if (isa<CXXMethodDecl>(D)) {
2534     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2535         cast<CXXMethodDecl>(D));
2536     auto Ty = getTypes().GetFunctionType(*FInfo);
2537     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2538                              IsForDefinition);
2539   } else if (isa<FunctionDecl>(D)) {
2540     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2541     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2542     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2543                              IsForDefinition);
2544   } else
2545     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2546                               IsForDefinition);
2547 }
2548 
2549 llvm::GlobalVariable *
2550 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2551                                       llvm::Type *Ty,
2552                                       llvm::GlobalValue::LinkageTypes Linkage) {
2553   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2554   llvm::GlobalVariable *OldGV = nullptr;
2555 
2556   if (GV) {
2557     // Check if the variable has the right type.
2558     if (GV->getType()->getElementType() == Ty)
2559       return GV;
2560 
2561     // Because C++ name mangling, the only way we can end up with an already
2562     // existing global with the same name is if it has been declared extern "C".
2563     assert(GV->isDeclaration() && "Declaration has wrong type!");
2564     OldGV = GV;
2565   }
2566 
2567   // Create a new variable.
2568   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2569                                 Linkage, nullptr, Name);
2570 
2571   if (OldGV) {
2572     // Replace occurrences of the old variable if needed.
2573     GV->takeName(OldGV);
2574 
2575     if (!OldGV->use_empty()) {
2576       llvm::Constant *NewPtrForOldDecl =
2577       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2578       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2579     }
2580 
2581     OldGV->eraseFromParent();
2582   }
2583 
2584   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2585       !GV->hasAvailableExternallyLinkage())
2586     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2587 
2588   return GV;
2589 }
2590 
2591 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2592 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2593 /// then it will be created with the specified type instead of whatever the
2594 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2595 /// that an actual global with type Ty will be returned, not conversion of a
2596 /// variable with the same mangled name but some other type.
2597 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2598                                                   llvm::Type *Ty,
2599                                            ForDefinition_t IsForDefinition) {
2600   assert(D->hasGlobalStorage() && "Not a global variable");
2601   QualType ASTTy = D->getType();
2602   if (!Ty)
2603     Ty = getTypes().ConvertTypeForMem(ASTTy);
2604 
2605   llvm::PointerType *PTy =
2606     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2607 
2608   StringRef MangledName = getMangledName(D);
2609   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2610 }
2611 
2612 /// CreateRuntimeVariable - Create a new runtime global variable with the
2613 /// specified type and name.
2614 llvm::Constant *
2615 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2616                                      StringRef Name) {
2617   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2618 }
2619 
2620 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2621   assert(!D->getInit() && "Cannot emit definite definitions here!");
2622 
2623   StringRef MangledName = getMangledName(D);
2624   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2625 
2626   // We already have a definition, not declaration, with the same mangled name.
2627   // Emitting of declaration is not required (and actually overwrites emitted
2628   // definition).
2629   if (GV && !GV->isDeclaration())
2630     return;
2631 
2632   // If we have not seen a reference to this variable yet, place it into the
2633   // deferred declarations table to be emitted if needed later.
2634   if (!MustBeEmitted(D) && !GV) {
2635       DeferredDecls[MangledName] = D;
2636       return;
2637   }
2638 
2639   // The tentative definition is the only definition.
2640   EmitGlobalVarDefinition(D);
2641 }
2642 
2643 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2644   return Context.toCharUnitsFromBits(
2645       getDataLayout().getTypeStoreSizeInBits(Ty));
2646 }
2647 
2648 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
2649   LangAS AddrSpace = LangAS::Default;
2650   if (LangOpts.OpenCL) {
2651     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
2652     assert(AddrSpace == LangAS::opencl_global ||
2653            AddrSpace == LangAS::opencl_constant ||
2654            AddrSpace == LangAS::opencl_local ||
2655            AddrSpace >= LangAS::FirstTargetAddressSpace);
2656     return AddrSpace;
2657   }
2658 
2659   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2660     if (D && D->hasAttr<CUDAConstantAttr>())
2661       return LangAS::cuda_constant;
2662     else if (D && D->hasAttr<CUDASharedAttr>())
2663       return LangAS::cuda_shared;
2664     else
2665       return LangAS::cuda_device;
2666   }
2667 
2668   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
2669 }
2670 
2671 template<typename SomeDecl>
2672 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2673                                                llvm::GlobalValue *GV) {
2674   if (!getLangOpts().CPlusPlus)
2675     return;
2676 
2677   // Must have 'used' attribute, or else inline assembly can't rely on
2678   // the name existing.
2679   if (!D->template hasAttr<UsedAttr>())
2680     return;
2681 
2682   // Must have internal linkage and an ordinary name.
2683   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2684     return;
2685 
2686   // Must be in an extern "C" context. Entities declared directly within
2687   // a record are not extern "C" even if the record is in such a context.
2688   const SomeDecl *First = D->getFirstDecl();
2689   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2690     return;
2691 
2692   // OK, this is an internal linkage entity inside an extern "C" linkage
2693   // specification. Make a note of that so we can give it the "expected"
2694   // mangled name if nothing else is using that name.
2695   std::pair<StaticExternCMap::iterator, bool> R =
2696       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2697 
2698   // If we have multiple internal linkage entities with the same name
2699   // in extern "C" regions, none of them gets that name.
2700   if (!R.second)
2701     R.first->second = nullptr;
2702 }
2703 
2704 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2705   if (!CGM.supportsCOMDAT())
2706     return false;
2707 
2708   if (D.hasAttr<SelectAnyAttr>())
2709     return true;
2710 
2711   GVALinkage Linkage;
2712   if (auto *VD = dyn_cast<VarDecl>(&D))
2713     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2714   else
2715     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2716 
2717   switch (Linkage) {
2718   case GVA_Internal:
2719   case GVA_AvailableExternally:
2720   case GVA_StrongExternal:
2721     return false;
2722   case GVA_DiscardableODR:
2723   case GVA_StrongODR:
2724     return true;
2725   }
2726   llvm_unreachable("No such linkage");
2727 }
2728 
2729 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2730                                           llvm::GlobalObject &GO) {
2731   if (!shouldBeInCOMDAT(*this, D))
2732     return;
2733   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2734 }
2735 
2736 /// Pass IsTentative as true if you want to create a tentative definition.
2737 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2738                                             bool IsTentative) {
2739   // OpenCL global variables of sampler type are translated to function calls,
2740   // therefore no need to be translated.
2741   QualType ASTTy = D->getType();
2742   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2743     return;
2744 
2745   llvm::Constant *Init = nullptr;
2746   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2747   bool NeedsGlobalCtor = false;
2748   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2749 
2750   const VarDecl *InitDecl;
2751   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2752 
2753   Optional<ConstantEmitter> emitter;
2754 
2755   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2756   // as part of their declaration."  Sema has already checked for
2757   // error cases, so we just need to set Init to UndefValue.
2758   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2759       D->hasAttr<CUDASharedAttr>())
2760     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2761   else if (!InitExpr) {
2762     // This is a tentative definition; tentative definitions are
2763     // implicitly initialized with { 0 }.
2764     //
2765     // Note that tentative definitions are only emitted at the end of
2766     // a translation unit, so they should never have incomplete
2767     // type. In addition, EmitTentativeDefinition makes sure that we
2768     // never attempt to emit a tentative definition if a real one
2769     // exists. A use may still exists, however, so we still may need
2770     // to do a RAUW.
2771     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2772     Init = EmitNullConstant(D->getType());
2773   } else {
2774     initializedGlobalDecl = GlobalDecl(D);
2775     emitter.emplace(*this);
2776     Init = emitter->tryEmitForInitializer(*InitDecl);
2777 
2778     if (!Init) {
2779       QualType T = InitExpr->getType();
2780       if (D->getType()->isReferenceType())
2781         T = D->getType();
2782 
2783       if (getLangOpts().CPlusPlus) {
2784         Init = EmitNullConstant(T);
2785         NeedsGlobalCtor = true;
2786       } else {
2787         ErrorUnsupported(D, "static initializer");
2788         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2789       }
2790     } else {
2791       // We don't need an initializer, so remove the entry for the delayed
2792       // initializer position (just in case this entry was delayed) if we
2793       // also don't need to register a destructor.
2794       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2795         DelayedCXXInitPosition.erase(D);
2796     }
2797   }
2798 
2799   llvm::Type* InitType = Init->getType();
2800   llvm::Constant *Entry =
2801       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
2802 
2803   // Strip off a bitcast if we got one back.
2804   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2805     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2806            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2807            // All zero index gep.
2808            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2809     Entry = CE->getOperand(0);
2810   }
2811 
2812   // Entry is now either a Function or GlobalVariable.
2813   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2814 
2815   // We have a definition after a declaration with the wrong type.
2816   // We must make a new GlobalVariable* and update everything that used OldGV
2817   // (a declaration or tentative definition) with the new GlobalVariable*
2818   // (which will be a definition).
2819   //
2820   // This happens if there is a prototype for a global (e.g.
2821   // "extern int x[];") and then a definition of a different type (e.g.
2822   // "int x[10];"). This also happens when an initializer has a different type
2823   // from the type of the global (this happens with unions).
2824   if (!GV || GV->getType()->getElementType() != InitType ||
2825       GV->getType()->getAddressSpace() !=
2826           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
2827 
2828     // Move the old entry aside so that we'll create a new one.
2829     Entry->setName(StringRef());
2830 
2831     // Make a new global with the correct type, this is now guaranteed to work.
2832     GV = cast<llvm::GlobalVariable>(
2833         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
2834 
2835     // Replace all uses of the old global with the new global
2836     llvm::Constant *NewPtrForOldDecl =
2837         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2838     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2839 
2840     // Erase the old global, since it is no longer used.
2841     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2842   }
2843 
2844   MaybeHandleStaticInExternC(D, GV);
2845 
2846   if (D->hasAttr<AnnotateAttr>())
2847     AddGlobalAnnotations(D, GV);
2848 
2849   // Set the llvm linkage type as appropriate.
2850   llvm::GlobalValue::LinkageTypes Linkage =
2851       getLLVMLinkageVarDefinition(D, GV->isConstant());
2852 
2853   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2854   // the device. [...]"
2855   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2856   // __device__, declares a variable that: [...]
2857   // Is accessible from all the threads within the grid and from the host
2858   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2859   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2860   if (GV && LangOpts.CUDA) {
2861     if (LangOpts.CUDAIsDevice) {
2862       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2863         GV->setExternallyInitialized(true);
2864     } else {
2865       // Host-side shadows of external declarations of device-side
2866       // global variables become internal definitions. These have to
2867       // be internal in order to prevent name conflicts with global
2868       // host variables with the same name in a different TUs.
2869       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2870         Linkage = llvm::GlobalValue::InternalLinkage;
2871 
2872         // Shadow variables and their properties must be registered
2873         // with CUDA runtime.
2874         unsigned Flags = 0;
2875         if (!D->hasDefinition())
2876           Flags |= CGCUDARuntime::ExternDeviceVar;
2877         if (D->hasAttr<CUDAConstantAttr>())
2878           Flags |= CGCUDARuntime::ConstantDeviceVar;
2879         getCUDARuntime().registerDeviceVar(*GV, Flags);
2880       } else if (D->hasAttr<CUDASharedAttr>())
2881         // __shared__ variables are odd. Shadows do get created, but
2882         // they are not registered with the CUDA runtime, so they
2883         // can't really be used to access their device-side
2884         // counterparts. It's not clear yet whether it's nvcc's bug or
2885         // a feature, but we've got to do the same for compatibility.
2886         Linkage = llvm::GlobalValue::InternalLinkage;
2887     }
2888   }
2889 
2890   GV->setInitializer(Init);
2891   if (emitter) emitter->finalize(GV);
2892 
2893   // If it is safe to mark the global 'constant', do so now.
2894   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2895                   isTypeConstant(D->getType(), true));
2896 
2897   // If it is in a read-only section, mark it 'constant'.
2898   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2899     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2900     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2901       GV->setConstant(true);
2902   }
2903 
2904   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2905 
2906 
2907   // On Darwin, if the normal linkage of a C++ thread_local variable is
2908   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2909   // copies within a linkage unit; otherwise, the backing variable has
2910   // internal linkage and all accesses should just be calls to the
2911   // Itanium-specified entry point, which has the normal linkage of the
2912   // variable. This is to preserve the ability to change the implementation
2913   // behind the scenes.
2914   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2915       Context.getTargetInfo().getTriple().isOSDarwin() &&
2916       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2917       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2918     Linkage = llvm::GlobalValue::InternalLinkage;
2919 
2920   GV->setLinkage(Linkage);
2921   if (D->hasAttr<DLLImportAttr>())
2922     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2923   else if (D->hasAttr<DLLExportAttr>())
2924     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2925   else
2926     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2927 
2928   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
2929     // common vars aren't constant even if declared const.
2930     GV->setConstant(false);
2931     // Tentative definition of global variables may be initialized with
2932     // non-zero null pointers. In this case they should have weak linkage
2933     // since common linkage must have zero initializer and must not have
2934     // explicit section therefore cannot have non-zero initial value.
2935     if (!GV->getInitializer()->isNullValue())
2936       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
2937   }
2938 
2939   setNonAliasAttributes(D, GV);
2940 
2941   if (D->getTLSKind() && !GV->isThreadLocal()) {
2942     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2943       CXXThreadLocals.push_back(D);
2944     setTLSMode(GV, *D);
2945   }
2946 
2947   maybeSetTrivialComdat(*D, *GV);
2948 
2949   // Emit the initializer function if necessary.
2950   if (NeedsGlobalCtor || NeedsGlobalDtor)
2951     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2952 
2953   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2954 
2955   // Emit global variable debug information.
2956   if (CGDebugInfo *DI = getModuleDebugInfo())
2957     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2958       DI->EmitGlobalVariable(GV, D);
2959 }
2960 
2961 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2962                                       CodeGenModule &CGM, const VarDecl *D,
2963                                       bool NoCommon) {
2964   // Don't give variables common linkage if -fno-common was specified unless it
2965   // was overridden by a NoCommon attribute.
2966   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2967     return true;
2968 
2969   // C11 6.9.2/2:
2970   //   A declaration of an identifier for an object that has file scope without
2971   //   an initializer, and without a storage-class specifier or with the
2972   //   storage-class specifier static, constitutes a tentative definition.
2973   if (D->getInit() || D->hasExternalStorage())
2974     return true;
2975 
2976   // A variable cannot be both common and exist in a section.
2977   if (D->hasAttr<SectionAttr>())
2978     return true;
2979 
2980   // A variable cannot be both common and exist in a section.
2981   // We dont try to determine which is the right section in the front-end.
2982   // If no specialized section name is applicable, it will resort to default.
2983   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
2984       D->hasAttr<PragmaClangDataSectionAttr>() ||
2985       D->hasAttr<PragmaClangRodataSectionAttr>())
2986     return true;
2987 
2988   // Thread local vars aren't considered common linkage.
2989   if (D->getTLSKind())
2990     return true;
2991 
2992   // Tentative definitions marked with WeakImportAttr are true definitions.
2993   if (D->hasAttr<WeakImportAttr>())
2994     return true;
2995 
2996   // A variable cannot be both common and exist in a comdat.
2997   if (shouldBeInCOMDAT(CGM, *D))
2998     return true;
2999 
3000   // Declarations with a required alignment do not have common linkage in MSVC
3001   // mode.
3002   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3003     if (D->hasAttr<AlignedAttr>())
3004       return true;
3005     QualType VarType = D->getType();
3006     if (Context.isAlignmentRequired(VarType))
3007       return true;
3008 
3009     if (const auto *RT = VarType->getAs<RecordType>()) {
3010       const RecordDecl *RD = RT->getDecl();
3011       for (const FieldDecl *FD : RD->fields()) {
3012         if (FD->isBitField())
3013           continue;
3014         if (FD->hasAttr<AlignedAttr>())
3015           return true;
3016         if (Context.isAlignmentRequired(FD->getType()))
3017           return true;
3018       }
3019     }
3020   }
3021 
3022   return false;
3023 }
3024 
3025 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3026     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3027   if (Linkage == GVA_Internal)
3028     return llvm::Function::InternalLinkage;
3029 
3030   if (D->hasAttr<WeakAttr>()) {
3031     if (IsConstantVariable)
3032       return llvm::GlobalVariable::WeakODRLinkage;
3033     else
3034       return llvm::GlobalVariable::WeakAnyLinkage;
3035   }
3036 
3037   // We are guaranteed to have a strong definition somewhere else,
3038   // so we can use available_externally linkage.
3039   if (Linkage == GVA_AvailableExternally)
3040     return llvm::GlobalValue::AvailableExternallyLinkage;
3041 
3042   // Note that Apple's kernel linker doesn't support symbol
3043   // coalescing, so we need to avoid linkonce and weak linkages there.
3044   // Normally, this means we just map to internal, but for explicit
3045   // instantiations we'll map to external.
3046 
3047   // In C++, the compiler has to emit a definition in every translation unit
3048   // that references the function.  We should use linkonce_odr because
3049   // a) if all references in this translation unit are optimized away, we
3050   // don't need to codegen it.  b) if the function persists, it needs to be
3051   // merged with other definitions. c) C++ has the ODR, so we know the
3052   // definition is dependable.
3053   if (Linkage == GVA_DiscardableODR)
3054     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3055                                             : llvm::Function::InternalLinkage;
3056 
3057   // An explicit instantiation of a template has weak linkage, since
3058   // explicit instantiations can occur in multiple translation units
3059   // and must all be equivalent. However, we are not allowed to
3060   // throw away these explicit instantiations.
3061   //
3062   // We don't currently support CUDA device code spread out across multiple TUs,
3063   // so say that CUDA templates are either external (for kernels) or internal.
3064   // This lets llvm perform aggressive inter-procedural optimizations.
3065   if (Linkage == GVA_StrongODR) {
3066     if (Context.getLangOpts().AppleKext)
3067       return llvm::Function::ExternalLinkage;
3068     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3069       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3070                                           : llvm::Function::InternalLinkage;
3071     return llvm::Function::WeakODRLinkage;
3072   }
3073 
3074   // C++ doesn't have tentative definitions and thus cannot have common
3075   // linkage.
3076   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3077       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3078                                  CodeGenOpts.NoCommon))
3079     return llvm::GlobalVariable::CommonLinkage;
3080 
3081   // selectany symbols are externally visible, so use weak instead of
3082   // linkonce.  MSVC optimizes away references to const selectany globals, so
3083   // all definitions should be the same and ODR linkage should be used.
3084   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3085   if (D->hasAttr<SelectAnyAttr>())
3086     return llvm::GlobalVariable::WeakODRLinkage;
3087 
3088   // Otherwise, we have strong external linkage.
3089   assert(Linkage == GVA_StrongExternal);
3090   return llvm::GlobalVariable::ExternalLinkage;
3091 }
3092 
3093 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3094     const VarDecl *VD, bool IsConstant) {
3095   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3096   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3097 }
3098 
3099 /// Replace the uses of a function that was declared with a non-proto type.
3100 /// We want to silently drop extra arguments from call sites
3101 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3102                                           llvm::Function *newFn) {
3103   // Fast path.
3104   if (old->use_empty()) return;
3105 
3106   llvm::Type *newRetTy = newFn->getReturnType();
3107   SmallVector<llvm::Value*, 4> newArgs;
3108   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3109 
3110   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3111          ui != ue; ) {
3112     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3113     llvm::User *user = use->getUser();
3114 
3115     // Recognize and replace uses of bitcasts.  Most calls to
3116     // unprototyped functions will use bitcasts.
3117     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3118       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3119         replaceUsesOfNonProtoConstant(bitcast, newFn);
3120       continue;
3121     }
3122 
3123     // Recognize calls to the function.
3124     llvm::CallSite callSite(user);
3125     if (!callSite) continue;
3126     if (!callSite.isCallee(&*use)) continue;
3127 
3128     // If the return types don't match exactly, then we can't
3129     // transform this call unless it's dead.
3130     if (callSite->getType() != newRetTy && !callSite->use_empty())
3131       continue;
3132 
3133     // Get the call site's attribute list.
3134     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3135     llvm::AttributeList oldAttrs = callSite.getAttributes();
3136 
3137     // If the function was passed too few arguments, don't transform.
3138     unsigned newNumArgs = newFn->arg_size();
3139     if (callSite.arg_size() < newNumArgs) continue;
3140 
3141     // If extra arguments were passed, we silently drop them.
3142     // If any of the types mismatch, we don't transform.
3143     unsigned argNo = 0;
3144     bool dontTransform = false;
3145     for (llvm::Argument &A : newFn->args()) {
3146       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3147         dontTransform = true;
3148         break;
3149       }
3150 
3151       // Add any parameter attributes.
3152       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3153       argNo++;
3154     }
3155     if (dontTransform)
3156       continue;
3157 
3158     // Okay, we can transform this.  Create the new call instruction and copy
3159     // over the required information.
3160     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3161 
3162     // Copy over any operand bundles.
3163     callSite.getOperandBundlesAsDefs(newBundles);
3164 
3165     llvm::CallSite newCall;
3166     if (callSite.isCall()) {
3167       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3168                                        callSite.getInstruction());
3169     } else {
3170       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3171       newCall = llvm::InvokeInst::Create(newFn,
3172                                          oldInvoke->getNormalDest(),
3173                                          oldInvoke->getUnwindDest(),
3174                                          newArgs, newBundles, "",
3175                                          callSite.getInstruction());
3176     }
3177     newArgs.clear(); // for the next iteration
3178 
3179     if (!newCall->getType()->isVoidTy())
3180       newCall->takeName(callSite.getInstruction());
3181     newCall.setAttributes(llvm::AttributeList::get(
3182         newFn->getContext(), oldAttrs.getFnAttributes(),
3183         oldAttrs.getRetAttributes(), newArgAttrs));
3184     newCall.setCallingConv(callSite.getCallingConv());
3185 
3186     // Finally, remove the old call, replacing any uses with the new one.
3187     if (!callSite->use_empty())
3188       callSite->replaceAllUsesWith(newCall.getInstruction());
3189 
3190     // Copy debug location attached to CI.
3191     if (callSite->getDebugLoc())
3192       newCall->setDebugLoc(callSite->getDebugLoc());
3193 
3194     callSite->eraseFromParent();
3195   }
3196 }
3197 
3198 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3199 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3200 /// existing call uses of the old function in the module, this adjusts them to
3201 /// call the new function directly.
3202 ///
3203 /// This is not just a cleanup: the always_inline pass requires direct calls to
3204 /// functions to be able to inline them.  If there is a bitcast in the way, it
3205 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3206 /// run at -O0.
3207 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3208                                                       llvm::Function *NewFn) {
3209   // If we're redefining a global as a function, don't transform it.
3210   if (!isa<llvm::Function>(Old)) return;
3211 
3212   replaceUsesOfNonProtoConstant(Old, NewFn);
3213 }
3214 
3215 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3216   auto DK = VD->isThisDeclarationADefinition();
3217   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3218     return;
3219 
3220   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3221   // If we have a definition, this might be a deferred decl. If the
3222   // instantiation is explicit, make sure we emit it at the end.
3223   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3224     GetAddrOfGlobalVar(VD);
3225 
3226   EmitTopLevelDecl(VD);
3227 }
3228 
3229 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3230                                                  llvm::GlobalValue *GV) {
3231   const auto *D = cast<FunctionDecl>(GD.getDecl());
3232 
3233   // Compute the function info and LLVM type.
3234   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3235   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3236 
3237   // Get or create the prototype for the function.
3238   if (!GV || (GV->getType()->getElementType() != Ty))
3239     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3240                                                    /*DontDefer=*/true,
3241                                                    ForDefinition));
3242 
3243   // Already emitted.
3244   if (!GV->isDeclaration())
3245     return;
3246 
3247   // We need to set linkage and visibility on the function before
3248   // generating code for it because various parts of IR generation
3249   // want to propagate this information down (e.g. to local static
3250   // declarations).
3251   auto *Fn = cast<llvm::Function>(GV);
3252   setFunctionLinkage(GD, Fn);
3253   setFunctionDLLStorageClass(GD, Fn);
3254 
3255   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3256   setGlobalVisibility(Fn, D, ForDefinition);
3257 
3258   MaybeHandleStaticInExternC(D, Fn);
3259 
3260   maybeSetTrivialComdat(*D, *Fn);
3261 
3262   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3263 
3264   setFunctionDefinitionAttributes(D, Fn);
3265   SetLLVMFunctionAttributesForDefinition(D, Fn);
3266 
3267   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3268     AddGlobalCtor(Fn, CA->getPriority());
3269   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3270     AddGlobalDtor(Fn, DA->getPriority());
3271   if (D->hasAttr<AnnotateAttr>())
3272     AddGlobalAnnotations(D, Fn);
3273 }
3274 
3275 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3276   const auto *D = cast<ValueDecl>(GD.getDecl());
3277   const AliasAttr *AA = D->getAttr<AliasAttr>();
3278   assert(AA && "Not an alias?");
3279 
3280   StringRef MangledName = getMangledName(GD);
3281 
3282   if (AA->getAliasee() == MangledName) {
3283     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3284     return;
3285   }
3286 
3287   // If there is a definition in the module, then it wins over the alias.
3288   // This is dubious, but allow it to be safe.  Just ignore the alias.
3289   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3290   if (Entry && !Entry->isDeclaration())
3291     return;
3292 
3293   Aliases.push_back(GD);
3294 
3295   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3296 
3297   // Create a reference to the named value.  This ensures that it is emitted
3298   // if a deferred decl.
3299   llvm::Constant *Aliasee;
3300   if (isa<llvm::FunctionType>(DeclTy))
3301     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3302                                       /*ForVTable=*/false);
3303   else
3304     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3305                                     llvm::PointerType::getUnqual(DeclTy),
3306                                     /*D=*/nullptr);
3307 
3308   // Create the new alias itself, but don't set a name yet.
3309   auto *GA = llvm::GlobalAlias::create(
3310       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3311 
3312   if (Entry) {
3313     if (GA->getAliasee() == Entry) {
3314       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3315       return;
3316     }
3317 
3318     assert(Entry->isDeclaration());
3319 
3320     // If there is a declaration in the module, then we had an extern followed
3321     // by the alias, as in:
3322     //   extern int test6();
3323     //   ...
3324     //   int test6() __attribute__((alias("test7")));
3325     //
3326     // Remove it and replace uses of it with the alias.
3327     GA->takeName(Entry);
3328 
3329     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3330                                                           Entry->getType()));
3331     Entry->eraseFromParent();
3332   } else {
3333     GA->setName(MangledName);
3334   }
3335 
3336   // Set attributes which are particular to an alias; this is a
3337   // specialization of the attributes which may be set on a global
3338   // variable/function.
3339   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3340       D->isWeakImported()) {
3341     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3342   }
3343 
3344   if (const auto *VD = dyn_cast<VarDecl>(D))
3345     if (VD->getTLSKind())
3346       setTLSMode(GA, *VD);
3347 
3348   setAliasAttributes(D, GA);
3349 }
3350 
3351 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3352   const auto *D = cast<ValueDecl>(GD.getDecl());
3353   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3354   assert(IFA && "Not an ifunc?");
3355 
3356   StringRef MangledName = getMangledName(GD);
3357 
3358   if (IFA->getResolver() == MangledName) {
3359     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3360     return;
3361   }
3362 
3363   // Report an error if some definition overrides ifunc.
3364   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3365   if (Entry && !Entry->isDeclaration()) {
3366     GlobalDecl OtherGD;
3367     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3368         DiagnosedConflictingDefinitions.insert(GD).second) {
3369       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3370       Diags.Report(OtherGD.getDecl()->getLocation(),
3371                    diag::note_previous_definition);
3372     }
3373     return;
3374   }
3375 
3376   Aliases.push_back(GD);
3377 
3378   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3379   llvm::Constant *Resolver =
3380       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3381                               /*ForVTable=*/false);
3382   llvm::GlobalIFunc *GIF =
3383       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3384                                 "", Resolver, &getModule());
3385   if (Entry) {
3386     if (GIF->getResolver() == Entry) {
3387       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3388       return;
3389     }
3390     assert(Entry->isDeclaration());
3391 
3392     // If there is a declaration in the module, then we had an extern followed
3393     // by the ifunc, as in:
3394     //   extern int test();
3395     //   ...
3396     //   int test() __attribute__((ifunc("resolver")));
3397     //
3398     // Remove it and replace uses of it with the ifunc.
3399     GIF->takeName(Entry);
3400 
3401     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3402                                                           Entry->getType()));
3403     Entry->eraseFromParent();
3404   } else
3405     GIF->setName(MangledName);
3406 
3407   SetCommonAttributes(D, GIF);
3408 }
3409 
3410 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3411                                             ArrayRef<llvm::Type*> Tys) {
3412   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3413                                          Tys);
3414 }
3415 
3416 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3417 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3418                          const StringLiteral *Literal, bool TargetIsLSB,
3419                          bool &IsUTF16, unsigned &StringLength) {
3420   StringRef String = Literal->getString();
3421   unsigned NumBytes = String.size();
3422 
3423   // Check for simple case.
3424   if (!Literal->containsNonAsciiOrNull()) {
3425     StringLength = NumBytes;
3426     return *Map.insert(std::make_pair(String, nullptr)).first;
3427   }
3428 
3429   // Otherwise, convert the UTF8 literals into a string of shorts.
3430   IsUTF16 = true;
3431 
3432   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3433   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3434   llvm::UTF16 *ToPtr = &ToBuf[0];
3435 
3436   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3437                                  ToPtr + NumBytes, llvm::strictConversion);
3438 
3439   // ConvertUTF8toUTF16 returns the length in ToPtr.
3440   StringLength = ToPtr - &ToBuf[0];
3441 
3442   // Add an explicit null.
3443   *ToPtr = 0;
3444   return *Map.insert(std::make_pair(
3445                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3446                                    (StringLength + 1) * 2),
3447                          nullptr)).first;
3448 }
3449 
3450 ConstantAddress
3451 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3452   unsigned StringLength = 0;
3453   bool isUTF16 = false;
3454   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3455       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3456                                getDataLayout().isLittleEndian(), isUTF16,
3457                                StringLength);
3458 
3459   if (auto *C = Entry.second)
3460     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3461 
3462   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3463   llvm::Constant *Zeros[] = { Zero, Zero };
3464 
3465   // If we don't already have it, get __CFConstantStringClassReference.
3466   if (!CFConstantStringClassRef) {
3467     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3468     Ty = llvm::ArrayType::get(Ty, 0);
3469     llvm::Constant *GV =
3470         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3471 
3472     if (getTriple().isOSBinFormatCOFF()) {
3473       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3474       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3475       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3476       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3477 
3478       const VarDecl *VD = nullptr;
3479       for (const auto &Result : DC->lookup(&II))
3480         if ((VD = dyn_cast<VarDecl>(Result)))
3481           break;
3482 
3483       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3484         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3485         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3486       } else {
3487         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3488         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3489       }
3490     }
3491 
3492     // Decay array -> ptr
3493     CFConstantStringClassRef =
3494         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3495   }
3496 
3497   QualType CFTy = getContext().getCFConstantStringType();
3498 
3499   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3500 
3501   ConstantInitBuilder Builder(*this);
3502   auto Fields = Builder.beginStruct(STy);
3503 
3504   // Class pointer.
3505   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3506 
3507   // Flags.
3508   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3509 
3510   // String pointer.
3511   llvm::Constant *C = nullptr;
3512   if (isUTF16) {
3513     auto Arr = llvm::makeArrayRef(
3514         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3515         Entry.first().size() / 2);
3516     C = llvm::ConstantDataArray::get(VMContext, Arr);
3517   } else {
3518     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3519   }
3520 
3521   // Note: -fwritable-strings doesn't make the backing store strings of
3522   // CFStrings writable. (See <rdar://problem/10657500>)
3523   auto *GV =
3524       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3525                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3526   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3527   // Don't enforce the target's minimum global alignment, since the only use
3528   // of the string is via this class initializer.
3529   CharUnits Align = isUTF16
3530                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3531                         : getContext().getTypeAlignInChars(getContext().CharTy);
3532   GV->setAlignment(Align.getQuantity());
3533 
3534   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3535   // Without it LLVM can merge the string with a non unnamed_addr one during
3536   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3537   if (getTriple().isOSBinFormatMachO())
3538     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3539                            : "__TEXT,__cstring,cstring_literals");
3540 
3541   // String.
3542   llvm::Constant *Str =
3543       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3544 
3545   if (isUTF16)
3546     // Cast the UTF16 string to the correct type.
3547     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3548   Fields.add(Str);
3549 
3550   // String length.
3551   auto Ty = getTypes().ConvertType(getContext().LongTy);
3552   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3553 
3554   CharUnits Alignment = getPointerAlign();
3555 
3556   // The struct.
3557   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3558                                     /*isConstant=*/false,
3559                                     llvm::GlobalVariable::PrivateLinkage);
3560   switch (getTriple().getObjectFormat()) {
3561   case llvm::Triple::UnknownObjectFormat:
3562     llvm_unreachable("unknown file format");
3563   case llvm::Triple::COFF:
3564   case llvm::Triple::ELF:
3565   case llvm::Triple::Wasm:
3566     GV->setSection("cfstring");
3567     break;
3568   case llvm::Triple::MachO:
3569     GV->setSection("__DATA,__cfstring");
3570     break;
3571   }
3572   Entry.second = GV;
3573 
3574   return ConstantAddress(GV, Alignment);
3575 }
3576 
3577 bool CodeGenModule::getExpressionLocationsEnabled() const {
3578   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3579 }
3580 
3581 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3582   if (ObjCFastEnumerationStateType.isNull()) {
3583     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3584     D->startDefinition();
3585 
3586     QualType FieldTypes[] = {
3587       Context.UnsignedLongTy,
3588       Context.getPointerType(Context.getObjCIdType()),
3589       Context.getPointerType(Context.UnsignedLongTy),
3590       Context.getConstantArrayType(Context.UnsignedLongTy,
3591                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3592     };
3593 
3594     for (size_t i = 0; i < 4; ++i) {
3595       FieldDecl *Field = FieldDecl::Create(Context,
3596                                            D,
3597                                            SourceLocation(),
3598                                            SourceLocation(), nullptr,
3599                                            FieldTypes[i], /*TInfo=*/nullptr,
3600                                            /*BitWidth=*/nullptr,
3601                                            /*Mutable=*/false,
3602                                            ICIS_NoInit);
3603       Field->setAccess(AS_public);
3604       D->addDecl(Field);
3605     }
3606 
3607     D->completeDefinition();
3608     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3609   }
3610 
3611   return ObjCFastEnumerationStateType;
3612 }
3613 
3614 llvm::Constant *
3615 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3616   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3617 
3618   // Don't emit it as the address of the string, emit the string data itself
3619   // as an inline array.
3620   if (E->getCharByteWidth() == 1) {
3621     SmallString<64> Str(E->getString());
3622 
3623     // Resize the string to the right size, which is indicated by its type.
3624     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3625     Str.resize(CAT->getSize().getZExtValue());
3626     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3627   }
3628 
3629   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3630   llvm::Type *ElemTy = AType->getElementType();
3631   unsigned NumElements = AType->getNumElements();
3632 
3633   // Wide strings have either 2-byte or 4-byte elements.
3634   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3635     SmallVector<uint16_t, 32> Elements;
3636     Elements.reserve(NumElements);
3637 
3638     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3639       Elements.push_back(E->getCodeUnit(i));
3640     Elements.resize(NumElements);
3641     return llvm::ConstantDataArray::get(VMContext, Elements);
3642   }
3643 
3644   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3645   SmallVector<uint32_t, 32> Elements;
3646   Elements.reserve(NumElements);
3647 
3648   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3649     Elements.push_back(E->getCodeUnit(i));
3650   Elements.resize(NumElements);
3651   return llvm::ConstantDataArray::get(VMContext, Elements);
3652 }
3653 
3654 static llvm::GlobalVariable *
3655 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3656                       CodeGenModule &CGM, StringRef GlobalName,
3657                       CharUnits Alignment) {
3658   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3659   unsigned AddrSpace = 0;
3660   if (CGM.getLangOpts().OpenCL)
3661     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3662 
3663   llvm::Module &M = CGM.getModule();
3664   // Create a global variable for this string
3665   auto *GV = new llvm::GlobalVariable(
3666       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3667       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3668   GV->setAlignment(Alignment.getQuantity());
3669   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3670   if (GV->isWeakForLinker()) {
3671     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3672     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3673   }
3674 
3675   return GV;
3676 }
3677 
3678 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3679 /// constant array for the given string literal.
3680 ConstantAddress
3681 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3682                                                   StringRef Name) {
3683   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3684 
3685   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3686   llvm::GlobalVariable **Entry = nullptr;
3687   if (!LangOpts.WritableStrings) {
3688     Entry = &ConstantStringMap[C];
3689     if (auto GV = *Entry) {
3690       if (Alignment.getQuantity() > GV->getAlignment())
3691         GV->setAlignment(Alignment.getQuantity());
3692       return ConstantAddress(GV, Alignment);
3693     }
3694   }
3695 
3696   SmallString<256> MangledNameBuffer;
3697   StringRef GlobalVariableName;
3698   llvm::GlobalValue::LinkageTypes LT;
3699 
3700   // Mangle the string literal if the ABI allows for it.  However, we cannot
3701   // do this if  we are compiling with ASan or -fwritable-strings because they
3702   // rely on strings having normal linkage.
3703   if (!LangOpts.WritableStrings &&
3704       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3705       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3706     llvm::raw_svector_ostream Out(MangledNameBuffer);
3707     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3708 
3709     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3710     GlobalVariableName = MangledNameBuffer;
3711   } else {
3712     LT = llvm::GlobalValue::PrivateLinkage;
3713     GlobalVariableName = Name;
3714   }
3715 
3716   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3717   if (Entry)
3718     *Entry = GV;
3719 
3720   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3721                                   QualType());
3722   return ConstantAddress(GV, Alignment);
3723 }
3724 
3725 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3726 /// array for the given ObjCEncodeExpr node.
3727 ConstantAddress
3728 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3729   std::string Str;
3730   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3731 
3732   return GetAddrOfConstantCString(Str);
3733 }
3734 
3735 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3736 /// the literal and a terminating '\0' character.
3737 /// The result has pointer to array type.
3738 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3739     const std::string &Str, const char *GlobalName) {
3740   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3741   CharUnits Alignment =
3742     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3743 
3744   llvm::Constant *C =
3745       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3746 
3747   // Don't share any string literals if strings aren't constant.
3748   llvm::GlobalVariable **Entry = nullptr;
3749   if (!LangOpts.WritableStrings) {
3750     Entry = &ConstantStringMap[C];
3751     if (auto GV = *Entry) {
3752       if (Alignment.getQuantity() > GV->getAlignment())
3753         GV->setAlignment(Alignment.getQuantity());
3754       return ConstantAddress(GV, Alignment);
3755     }
3756   }
3757 
3758   // Get the default prefix if a name wasn't specified.
3759   if (!GlobalName)
3760     GlobalName = ".str";
3761   // Create a global variable for this.
3762   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3763                                   GlobalName, Alignment);
3764   if (Entry)
3765     *Entry = GV;
3766   return ConstantAddress(GV, Alignment);
3767 }
3768 
3769 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3770     const MaterializeTemporaryExpr *E, const Expr *Init) {
3771   assert((E->getStorageDuration() == SD_Static ||
3772           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3773   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3774 
3775   // If we're not materializing a subobject of the temporary, keep the
3776   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3777   QualType MaterializedType = Init->getType();
3778   if (Init == E->GetTemporaryExpr())
3779     MaterializedType = E->getType();
3780 
3781   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3782 
3783   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3784     return ConstantAddress(Slot, Align);
3785 
3786   // FIXME: If an externally-visible declaration extends multiple temporaries,
3787   // we need to give each temporary the same name in every translation unit (and
3788   // we also need to make the temporaries externally-visible).
3789   SmallString<256> Name;
3790   llvm::raw_svector_ostream Out(Name);
3791   getCXXABI().getMangleContext().mangleReferenceTemporary(
3792       VD, E->getManglingNumber(), Out);
3793 
3794   APValue *Value = nullptr;
3795   if (E->getStorageDuration() == SD_Static) {
3796     // We might have a cached constant initializer for this temporary. Note
3797     // that this might have a different value from the value computed by
3798     // evaluating the initializer if the surrounding constant expression
3799     // modifies the temporary.
3800     Value = getContext().getMaterializedTemporaryValue(E, false);
3801     if (Value && Value->isUninit())
3802       Value = nullptr;
3803   }
3804 
3805   // Try evaluating it now, it might have a constant initializer.
3806   Expr::EvalResult EvalResult;
3807   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3808       !EvalResult.hasSideEffects())
3809     Value = &EvalResult.Val;
3810 
3811   LangAS AddrSpace =
3812       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
3813 
3814   Optional<ConstantEmitter> emitter;
3815   llvm::Constant *InitialValue = nullptr;
3816   bool Constant = false;
3817   llvm::Type *Type;
3818   if (Value) {
3819     // The temporary has a constant initializer, use it.
3820     emitter.emplace(*this);
3821     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
3822                                                MaterializedType);
3823     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3824     Type = InitialValue->getType();
3825   } else {
3826     // No initializer, the initialization will be provided when we
3827     // initialize the declaration which performed lifetime extension.
3828     Type = getTypes().ConvertTypeForMem(MaterializedType);
3829   }
3830 
3831   // Create a global variable for this lifetime-extended temporary.
3832   llvm::GlobalValue::LinkageTypes Linkage =
3833       getLLVMLinkageVarDefinition(VD, Constant);
3834   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3835     const VarDecl *InitVD;
3836     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3837         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3838       // Temporaries defined inside a class get linkonce_odr linkage because the
3839       // class can be defined in multipe translation units.
3840       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3841     } else {
3842       // There is no need for this temporary to have external linkage if the
3843       // VarDecl has external linkage.
3844       Linkage = llvm::GlobalVariable::InternalLinkage;
3845     }
3846   }
3847   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
3848   auto *GV = new llvm::GlobalVariable(
3849       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3850       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
3851   if (emitter) emitter->finalize(GV);
3852   setGlobalVisibility(GV, VD, ForDefinition);
3853   GV->setAlignment(Align.getQuantity());
3854   if (supportsCOMDAT() && GV->isWeakForLinker())
3855     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3856   if (VD->getTLSKind())
3857     setTLSMode(GV, *VD);
3858   llvm::Constant *CV = GV;
3859   if (AddrSpace != LangAS::Default)
3860     CV = getTargetCodeGenInfo().performAddrSpaceCast(
3861         *this, GV, AddrSpace, LangAS::Default,
3862         Type->getPointerTo(
3863             getContext().getTargetAddressSpace(LangAS::Default)));
3864   MaterializedGlobalTemporaryMap[E] = CV;
3865   return ConstantAddress(CV, Align);
3866 }
3867 
3868 /// EmitObjCPropertyImplementations - Emit information for synthesized
3869 /// properties for an implementation.
3870 void CodeGenModule::EmitObjCPropertyImplementations(const
3871                                                     ObjCImplementationDecl *D) {
3872   for (const auto *PID : D->property_impls()) {
3873     // Dynamic is just for type-checking.
3874     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3875       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3876 
3877       // Determine which methods need to be implemented, some may have
3878       // been overridden. Note that ::isPropertyAccessor is not the method
3879       // we want, that just indicates if the decl came from a
3880       // property. What we want to know is if the method is defined in
3881       // this implementation.
3882       if (!D->getInstanceMethod(PD->getGetterName()))
3883         CodeGenFunction(*this).GenerateObjCGetter(
3884                                  const_cast<ObjCImplementationDecl *>(D), PID);
3885       if (!PD->isReadOnly() &&
3886           !D->getInstanceMethod(PD->getSetterName()))
3887         CodeGenFunction(*this).GenerateObjCSetter(
3888                                  const_cast<ObjCImplementationDecl *>(D), PID);
3889     }
3890   }
3891 }
3892 
3893 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3894   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3895   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3896        ivar; ivar = ivar->getNextIvar())
3897     if (ivar->getType().isDestructedType())
3898       return true;
3899 
3900   return false;
3901 }
3902 
3903 static bool AllTrivialInitializers(CodeGenModule &CGM,
3904                                    ObjCImplementationDecl *D) {
3905   CodeGenFunction CGF(CGM);
3906   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3907        E = D->init_end(); B != E; ++B) {
3908     CXXCtorInitializer *CtorInitExp = *B;
3909     Expr *Init = CtorInitExp->getInit();
3910     if (!CGF.isTrivialInitializer(Init))
3911       return false;
3912   }
3913   return true;
3914 }
3915 
3916 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3917 /// for an implementation.
3918 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3919   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3920   if (needsDestructMethod(D)) {
3921     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3922     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3923     ObjCMethodDecl *DTORMethod =
3924       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3925                              cxxSelector, getContext().VoidTy, nullptr, D,
3926                              /*isInstance=*/true, /*isVariadic=*/false,
3927                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3928                              /*isDefined=*/false, ObjCMethodDecl::Required);
3929     D->addInstanceMethod(DTORMethod);
3930     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3931     D->setHasDestructors(true);
3932   }
3933 
3934   // If the implementation doesn't have any ivar initializers, we don't need
3935   // a .cxx_construct.
3936   if (D->getNumIvarInitializers() == 0 ||
3937       AllTrivialInitializers(*this, D))
3938     return;
3939 
3940   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3941   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3942   // The constructor returns 'self'.
3943   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3944                                                 D->getLocation(),
3945                                                 D->getLocation(),
3946                                                 cxxSelector,
3947                                                 getContext().getObjCIdType(),
3948                                                 nullptr, D, /*isInstance=*/true,
3949                                                 /*isVariadic=*/false,
3950                                                 /*isPropertyAccessor=*/true,
3951                                                 /*isImplicitlyDeclared=*/true,
3952                                                 /*isDefined=*/false,
3953                                                 ObjCMethodDecl::Required);
3954   D->addInstanceMethod(CTORMethod);
3955   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3956   D->setHasNonZeroConstructors(true);
3957 }
3958 
3959 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3960 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3961   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3962       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3963     ErrorUnsupported(LSD, "linkage spec");
3964     return;
3965   }
3966 
3967   EmitDeclContext(LSD);
3968 }
3969 
3970 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
3971   for (auto *I : DC->decls()) {
3972     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
3973     // are themselves considered "top-level", so EmitTopLevelDecl on an
3974     // ObjCImplDecl does not recursively visit them. We need to do that in
3975     // case they're nested inside another construct (LinkageSpecDecl /
3976     // ExportDecl) that does stop them from being considered "top-level".
3977     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3978       for (auto *M : OID->methods())
3979         EmitTopLevelDecl(M);
3980     }
3981 
3982     EmitTopLevelDecl(I);
3983   }
3984 }
3985 
3986 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3987 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3988   // Ignore dependent declarations.
3989   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3990     return;
3991 
3992   switch (D->getKind()) {
3993   case Decl::CXXConversion:
3994   case Decl::CXXMethod:
3995   case Decl::Function:
3996     // Skip function templates
3997     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3998         cast<FunctionDecl>(D)->isLateTemplateParsed())
3999       return;
4000 
4001     EmitGlobal(cast<FunctionDecl>(D));
4002     // Always provide some coverage mapping
4003     // even for the functions that aren't emitted.
4004     AddDeferredUnusedCoverageMapping(D);
4005     break;
4006 
4007   case Decl::CXXDeductionGuide:
4008     // Function-like, but does not result in code emission.
4009     break;
4010 
4011   case Decl::Var:
4012   case Decl::Decomposition:
4013     // Skip variable templates
4014     if (cast<VarDecl>(D)->getDescribedVarTemplate())
4015       return;
4016     LLVM_FALLTHROUGH;
4017   case Decl::VarTemplateSpecialization:
4018     EmitGlobal(cast<VarDecl>(D));
4019     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4020       for (auto *B : DD->bindings())
4021         if (auto *HD = B->getHoldingVar())
4022           EmitGlobal(HD);
4023     break;
4024 
4025   // Indirect fields from global anonymous structs and unions can be
4026   // ignored; only the actual variable requires IR gen support.
4027   case Decl::IndirectField:
4028     break;
4029 
4030   // C++ Decls
4031   case Decl::Namespace:
4032     EmitDeclContext(cast<NamespaceDecl>(D));
4033     break;
4034   case Decl::ClassTemplateSpecialization: {
4035     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4036     if (DebugInfo &&
4037         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4038         Spec->hasDefinition())
4039       DebugInfo->completeTemplateDefinition(*Spec);
4040   } LLVM_FALLTHROUGH;
4041   case Decl::CXXRecord:
4042     if (DebugInfo) {
4043       if (auto *ES = D->getASTContext().getExternalSource())
4044         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4045           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4046     }
4047     // Emit any static data members, they may be definitions.
4048     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4049       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4050         EmitTopLevelDecl(I);
4051     break;
4052     // No code generation needed.
4053   case Decl::UsingShadow:
4054   case Decl::ClassTemplate:
4055   case Decl::VarTemplate:
4056   case Decl::VarTemplatePartialSpecialization:
4057   case Decl::FunctionTemplate:
4058   case Decl::TypeAliasTemplate:
4059   case Decl::Block:
4060   case Decl::Empty:
4061     break;
4062   case Decl::Using:          // using X; [C++]
4063     if (CGDebugInfo *DI = getModuleDebugInfo())
4064         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4065     return;
4066   case Decl::NamespaceAlias:
4067     if (CGDebugInfo *DI = getModuleDebugInfo())
4068         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4069     return;
4070   case Decl::UsingDirective: // using namespace X; [C++]
4071     if (CGDebugInfo *DI = getModuleDebugInfo())
4072       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4073     return;
4074   case Decl::CXXConstructor:
4075     // Skip function templates
4076     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
4077         cast<FunctionDecl>(D)->isLateTemplateParsed())
4078       return;
4079 
4080     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4081     break;
4082   case Decl::CXXDestructor:
4083     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
4084       return;
4085     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4086     break;
4087 
4088   case Decl::StaticAssert:
4089     // Nothing to do.
4090     break;
4091 
4092   // Objective-C Decls
4093 
4094   // Forward declarations, no (immediate) code generation.
4095   case Decl::ObjCInterface:
4096   case Decl::ObjCCategory:
4097     break;
4098 
4099   case Decl::ObjCProtocol: {
4100     auto *Proto = cast<ObjCProtocolDecl>(D);
4101     if (Proto->isThisDeclarationADefinition())
4102       ObjCRuntime->GenerateProtocol(Proto);
4103     break;
4104   }
4105 
4106   case Decl::ObjCCategoryImpl:
4107     // Categories have properties but don't support synthesize so we
4108     // can ignore them here.
4109     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4110     break;
4111 
4112   case Decl::ObjCImplementation: {
4113     auto *OMD = cast<ObjCImplementationDecl>(D);
4114     EmitObjCPropertyImplementations(OMD);
4115     EmitObjCIvarInitializations(OMD);
4116     ObjCRuntime->GenerateClass(OMD);
4117     // Emit global variable debug information.
4118     if (CGDebugInfo *DI = getModuleDebugInfo())
4119       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4120         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4121             OMD->getClassInterface()), OMD->getLocation());
4122     break;
4123   }
4124   case Decl::ObjCMethod: {
4125     auto *OMD = cast<ObjCMethodDecl>(D);
4126     // If this is not a prototype, emit the body.
4127     if (OMD->getBody())
4128       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4129     break;
4130   }
4131   case Decl::ObjCCompatibleAlias:
4132     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4133     break;
4134 
4135   case Decl::PragmaComment: {
4136     const auto *PCD = cast<PragmaCommentDecl>(D);
4137     switch (PCD->getCommentKind()) {
4138     case PCK_Unknown:
4139       llvm_unreachable("unexpected pragma comment kind");
4140     case PCK_Linker:
4141       AppendLinkerOptions(PCD->getArg());
4142       break;
4143     case PCK_Lib:
4144       AddDependentLib(PCD->getArg());
4145       break;
4146     case PCK_Compiler:
4147     case PCK_ExeStr:
4148     case PCK_User:
4149       break; // We ignore all of these.
4150     }
4151     break;
4152   }
4153 
4154   case Decl::PragmaDetectMismatch: {
4155     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4156     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4157     break;
4158   }
4159 
4160   case Decl::LinkageSpec:
4161     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4162     break;
4163 
4164   case Decl::FileScopeAsm: {
4165     // File-scope asm is ignored during device-side CUDA compilation.
4166     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4167       break;
4168     // File-scope asm is ignored during device-side OpenMP compilation.
4169     if (LangOpts.OpenMPIsDevice)
4170       break;
4171     auto *AD = cast<FileScopeAsmDecl>(D);
4172     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4173     break;
4174   }
4175 
4176   case Decl::Import: {
4177     auto *Import = cast<ImportDecl>(D);
4178 
4179     // If we've already imported this module, we're done.
4180     if (!ImportedModules.insert(Import->getImportedModule()))
4181       break;
4182 
4183     // Emit debug information for direct imports.
4184     if (!Import->getImportedOwningModule()) {
4185       if (CGDebugInfo *DI = getModuleDebugInfo())
4186         DI->EmitImportDecl(*Import);
4187     }
4188 
4189     // Find all of the submodules and emit the module initializers.
4190     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4191     SmallVector<clang::Module *, 16> Stack;
4192     Visited.insert(Import->getImportedModule());
4193     Stack.push_back(Import->getImportedModule());
4194 
4195     while (!Stack.empty()) {
4196       clang::Module *Mod = Stack.pop_back_val();
4197       if (!EmittedModuleInitializers.insert(Mod).second)
4198         continue;
4199 
4200       for (auto *D : Context.getModuleInitializers(Mod))
4201         EmitTopLevelDecl(D);
4202 
4203       // Visit the submodules of this module.
4204       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4205                                              SubEnd = Mod->submodule_end();
4206            Sub != SubEnd; ++Sub) {
4207         // Skip explicit children; they need to be explicitly imported to emit
4208         // the initializers.
4209         if ((*Sub)->IsExplicit)
4210           continue;
4211 
4212         if (Visited.insert(*Sub).second)
4213           Stack.push_back(*Sub);
4214       }
4215     }
4216     break;
4217   }
4218 
4219   case Decl::Export:
4220     EmitDeclContext(cast<ExportDecl>(D));
4221     break;
4222 
4223   case Decl::OMPThreadPrivate:
4224     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4225     break;
4226 
4227   case Decl::OMPDeclareReduction:
4228     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4229     break;
4230 
4231   default:
4232     // Make sure we handled everything we should, every other kind is a
4233     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4234     // function. Need to recode Decl::Kind to do that easily.
4235     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4236     break;
4237   }
4238 }
4239 
4240 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4241   // Do we need to generate coverage mapping?
4242   if (!CodeGenOpts.CoverageMapping)
4243     return;
4244   switch (D->getKind()) {
4245   case Decl::CXXConversion:
4246   case Decl::CXXMethod:
4247   case Decl::Function:
4248   case Decl::ObjCMethod:
4249   case Decl::CXXConstructor:
4250   case Decl::CXXDestructor: {
4251     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4252       return;
4253     SourceManager &SM = getContext().getSourceManager();
4254     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4255       return;
4256     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4257     if (I == DeferredEmptyCoverageMappingDecls.end())
4258       DeferredEmptyCoverageMappingDecls[D] = true;
4259     break;
4260   }
4261   default:
4262     break;
4263   };
4264 }
4265 
4266 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4267   // Do we need to generate coverage mapping?
4268   if (!CodeGenOpts.CoverageMapping)
4269     return;
4270   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4271     if (Fn->isTemplateInstantiation())
4272       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4273   }
4274   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4275   if (I == DeferredEmptyCoverageMappingDecls.end())
4276     DeferredEmptyCoverageMappingDecls[D] = false;
4277   else
4278     I->second = false;
4279 }
4280 
4281 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4282   std::vector<const Decl *> DeferredDecls;
4283   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
4284     if (!I.second)
4285       continue;
4286     DeferredDecls.push_back(I.first);
4287   }
4288   // Sort the declarations by their location to make sure that the tests get a
4289   // predictable order for the coverage mapping for the unused declarations.
4290   if (CodeGenOpts.DumpCoverageMapping)
4291     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
4292               [] (const Decl *LHS, const Decl *RHS) {
4293       return LHS->getLocStart() < RHS->getLocStart();
4294     });
4295   for (const auto *D : DeferredDecls) {
4296     switch (D->getKind()) {
4297     case Decl::CXXConversion:
4298     case Decl::CXXMethod:
4299     case Decl::Function:
4300     case Decl::ObjCMethod: {
4301       CodeGenPGO PGO(*this);
4302       GlobalDecl GD(cast<FunctionDecl>(D));
4303       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4304                                   getFunctionLinkage(GD));
4305       break;
4306     }
4307     case Decl::CXXConstructor: {
4308       CodeGenPGO PGO(*this);
4309       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4310       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4311                                   getFunctionLinkage(GD));
4312       break;
4313     }
4314     case Decl::CXXDestructor: {
4315       CodeGenPGO PGO(*this);
4316       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4317       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4318                                   getFunctionLinkage(GD));
4319       break;
4320     }
4321     default:
4322       break;
4323     };
4324   }
4325 }
4326 
4327 /// Turns the given pointer into a constant.
4328 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4329                                           const void *Ptr) {
4330   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4331   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4332   return llvm::ConstantInt::get(i64, PtrInt);
4333 }
4334 
4335 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4336                                    llvm::NamedMDNode *&GlobalMetadata,
4337                                    GlobalDecl D,
4338                                    llvm::GlobalValue *Addr) {
4339   if (!GlobalMetadata)
4340     GlobalMetadata =
4341       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4342 
4343   // TODO: should we report variant information for ctors/dtors?
4344   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4345                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4346                                CGM.getLLVMContext(), D.getDecl()))};
4347   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4348 }
4349 
4350 /// For each function which is declared within an extern "C" region and marked
4351 /// as 'used', but has internal linkage, create an alias from the unmangled
4352 /// name to the mangled name if possible. People expect to be able to refer
4353 /// to such functions with an unmangled name from inline assembly within the
4354 /// same translation unit.
4355 void CodeGenModule::EmitStaticExternCAliases() {
4356   // Don't do anything if we're generating CUDA device code -- the NVPTX
4357   // assembly target doesn't support aliases.
4358   if (Context.getTargetInfo().getTriple().isNVPTX())
4359     return;
4360   for (auto &I : StaticExternCValues) {
4361     IdentifierInfo *Name = I.first;
4362     llvm::GlobalValue *Val = I.second;
4363     if (Val && !getModule().getNamedValue(Name->getName()))
4364       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4365   }
4366 }
4367 
4368 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4369                                              GlobalDecl &Result) const {
4370   auto Res = Manglings.find(MangledName);
4371   if (Res == Manglings.end())
4372     return false;
4373   Result = Res->getValue();
4374   return true;
4375 }
4376 
4377 /// Emits metadata nodes associating all the global values in the
4378 /// current module with the Decls they came from.  This is useful for
4379 /// projects using IR gen as a subroutine.
4380 ///
4381 /// Since there's currently no way to associate an MDNode directly
4382 /// with an llvm::GlobalValue, we create a global named metadata
4383 /// with the name 'clang.global.decl.ptrs'.
4384 void CodeGenModule::EmitDeclMetadata() {
4385   llvm::NamedMDNode *GlobalMetadata = nullptr;
4386 
4387   for (auto &I : MangledDeclNames) {
4388     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4389     // Some mangled names don't necessarily have an associated GlobalValue
4390     // in this module, e.g. if we mangled it for DebugInfo.
4391     if (Addr)
4392       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4393   }
4394 }
4395 
4396 /// Emits metadata nodes for all the local variables in the current
4397 /// function.
4398 void CodeGenFunction::EmitDeclMetadata() {
4399   if (LocalDeclMap.empty()) return;
4400 
4401   llvm::LLVMContext &Context = getLLVMContext();
4402 
4403   // Find the unique metadata ID for this name.
4404   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4405 
4406   llvm::NamedMDNode *GlobalMetadata = nullptr;
4407 
4408   for (auto &I : LocalDeclMap) {
4409     const Decl *D = I.first;
4410     llvm::Value *Addr = I.second.getPointer();
4411     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4412       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4413       Alloca->setMetadata(
4414           DeclPtrKind, llvm::MDNode::get(
4415                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4416     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4417       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4418       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4419     }
4420   }
4421 }
4422 
4423 void CodeGenModule::EmitVersionIdentMetadata() {
4424   llvm::NamedMDNode *IdentMetadata =
4425     TheModule.getOrInsertNamedMetadata("llvm.ident");
4426   std::string Version = getClangFullVersion();
4427   llvm::LLVMContext &Ctx = TheModule.getContext();
4428 
4429   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4430   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4431 }
4432 
4433 void CodeGenModule::EmitTargetMetadata() {
4434   // Warning, new MangledDeclNames may be appended within this loop.
4435   // We rely on MapVector insertions adding new elements to the end
4436   // of the container.
4437   // FIXME: Move this loop into the one target that needs it, and only
4438   // loop over those declarations for which we couldn't emit the target
4439   // metadata when we emitted the declaration.
4440   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4441     auto Val = *(MangledDeclNames.begin() + I);
4442     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4443     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4444     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4445   }
4446 }
4447 
4448 void CodeGenModule::EmitCoverageFile() {
4449   if (getCodeGenOpts().CoverageDataFile.empty() &&
4450       getCodeGenOpts().CoverageNotesFile.empty())
4451     return;
4452 
4453   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4454   if (!CUNode)
4455     return;
4456 
4457   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4458   llvm::LLVMContext &Ctx = TheModule.getContext();
4459   auto *CoverageDataFile =
4460       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4461   auto *CoverageNotesFile =
4462       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4463   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4464     llvm::MDNode *CU = CUNode->getOperand(i);
4465     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4466     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4467   }
4468 }
4469 
4470 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4471   // Sema has checked that all uuid strings are of the form
4472   // "12345678-1234-1234-1234-1234567890ab".
4473   assert(Uuid.size() == 36);
4474   for (unsigned i = 0; i < 36; ++i) {
4475     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4476     else                                         assert(isHexDigit(Uuid[i]));
4477   }
4478 
4479   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4480   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4481 
4482   llvm::Constant *Field3[8];
4483   for (unsigned Idx = 0; Idx < 8; ++Idx)
4484     Field3[Idx] = llvm::ConstantInt::get(
4485         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4486 
4487   llvm::Constant *Fields[4] = {
4488     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4489     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4490     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4491     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4492   };
4493 
4494   return llvm::ConstantStruct::getAnon(Fields);
4495 }
4496 
4497 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4498                                                        bool ForEH) {
4499   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4500   // FIXME: should we even be calling this method if RTTI is disabled
4501   // and it's not for EH?
4502   if (!ForEH && !getLangOpts().RTTI)
4503     return llvm::Constant::getNullValue(Int8PtrTy);
4504 
4505   if (ForEH && Ty->isObjCObjectPointerType() &&
4506       LangOpts.ObjCRuntime.isGNUFamily())
4507     return ObjCRuntime->GetEHType(Ty);
4508 
4509   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4510 }
4511 
4512 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4513   for (auto RefExpr : D->varlists()) {
4514     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4515     bool PerformInit =
4516         VD->getAnyInitializer() &&
4517         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4518                                                         /*ForRef=*/false);
4519 
4520     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4521     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4522             VD, Addr, RefExpr->getLocStart(), PerformInit))
4523       CXXGlobalInits.push_back(InitFunction);
4524   }
4525 }
4526 
4527 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4528   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4529   if (InternalId)
4530     return InternalId;
4531 
4532   if (isExternallyVisible(T->getLinkage())) {
4533     std::string OutName;
4534     llvm::raw_string_ostream Out(OutName);
4535     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4536 
4537     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4538   } else {
4539     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4540                                            llvm::ArrayRef<llvm::Metadata *>());
4541   }
4542 
4543   return InternalId;
4544 }
4545 
4546 // Generalize pointer types to a void pointer with the qualifiers of the
4547 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
4548 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
4549 // 'void *'.
4550 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
4551   if (!Ty->isPointerType())
4552     return Ty;
4553 
4554   return Ctx.getPointerType(
4555       QualType(Ctx.VoidTy).withCVRQualifiers(
4556           Ty->getPointeeType().getCVRQualifiers()));
4557 }
4558 
4559 // Apply type generalization to a FunctionType's return and argument types
4560 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
4561   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
4562     SmallVector<QualType, 8> GeneralizedParams;
4563     for (auto &Param : FnType->param_types())
4564       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
4565 
4566     return Ctx.getFunctionType(
4567         GeneralizeType(Ctx, FnType->getReturnType()),
4568         GeneralizedParams, FnType->getExtProtoInfo());
4569   }
4570 
4571   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
4572     return Ctx.getFunctionNoProtoType(
4573         GeneralizeType(Ctx, FnType->getReturnType()));
4574 
4575   llvm_unreachable("Encountered unknown FunctionType");
4576 }
4577 
4578 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
4579   T = GeneralizeFunctionType(getContext(), T);
4580 
4581   llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()];
4582   if (InternalId)
4583     return InternalId;
4584 
4585   if (isExternallyVisible(T->getLinkage())) {
4586     std::string OutName;
4587     llvm::raw_string_ostream Out(OutName);
4588     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4589     Out << ".generalized";
4590 
4591     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4592   } else {
4593     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4594                                            llvm::ArrayRef<llvm::Metadata *>());
4595   }
4596 
4597   return InternalId;
4598 }
4599 
4600 /// Returns whether this module needs the "all-vtables" type identifier.
4601 bool CodeGenModule::NeedAllVtablesTypeId() const {
4602   // Returns true if at least one of vtable-based CFI checkers is enabled and
4603   // is not in the trapping mode.
4604   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4605            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4606           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4607            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4608           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4609            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4610           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4611            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4612 }
4613 
4614 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4615                                           CharUnits Offset,
4616                                           const CXXRecordDecl *RD) {
4617   llvm::Metadata *MD =
4618       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4619   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4620 
4621   if (CodeGenOpts.SanitizeCfiCrossDso)
4622     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4623       VTable->addTypeMetadata(Offset.getQuantity(),
4624                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4625 
4626   if (NeedAllVtablesTypeId()) {
4627     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4628     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4629   }
4630 }
4631 
4632 // Fills in the supplied string map with the set of target features for the
4633 // passed in function.
4634 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4635                                           const FunctionDecl *FD) {
4636   StringRef TargetCPU = Target.getTargetOpts().CPU;
4637   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4638     // If we have a TargetAttr build up the feature map based on that.
4639     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4640 
4641     ParsedAttr.Features.erase(
4642         llvm::remove_if(ParsedAttr.Features,
4643                         [&](const std::string &Feat) {
4644                           return !Target.isValidFeatureName(
4645                               StringRef{Feat}.substr(1));
4646                         }),
4647         ParsedAttr.Features.end());
4648 
4649     // Make a copy of the features as passed on the command line into the
4650     // beginning of the additional features from the function to override.
4651     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
4652                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4653                             Target.getTargetOpts().FeaturesAsWritten.end());
4654 
4655     if (ParsedAttr.Architecture != "" &&
4656         Target.isValidCPUName(ParsedAttr.Architecture))
4657       TargetCPU = ParsedAttr.Architecture;
4658 
4659     // Now populate the feature map, first with the TargetCPU which is either
4660     // the default or a new one from the target attribute string. Then we'll use
4661     // the passed in features (FeaturesAsWritten) along with the new ones from
4662     // the attribute.
4663     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4664                           ParsedAttr.Features);
4665   } else {
4666     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4667                           Target.getTargetOpts().Features);
4668   }
4669 }
4670 
4671 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4672   if (!SanStats)
4673     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4674 
4675   return *SanStats;
4676 }
4677 llvm::Value *
4678 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4679                                                   CodeGenFunction &CGF) {
4680   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
4681   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
4682   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4683   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4684                                 "__translate_sampler_initializer"),
4685                                 {C});
4686 }
4687