1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeNVPTX.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/CodeGen/ConstantInitBuilder.h" 46 #include "clang/Frontend/FrontendDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ProfileSummary.h" 56 #include "llvm/ProfileData/InstrProfReader.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/CommandLine.h" 59 #include "llvm/Support/ConvertUTF.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/MD5.h" 62 #include "llvm/Support/TimeProfiler.h" 63 64 using namespace clang; 65 using namespace CodeGen; 66 67 static llvm::cl::opt<bool> LimitedCoverage( 68 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 69 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 70 llvm::cl::init(false)); 71 72 static const char AnnotationSection[] = "llvm.metadata"; 73 74 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 75 switch (CGM.getTarget().getCXXABI().getKind()) { 76 case TargetCXXABI::GenericAArch64: 77 case TargetCXXABI::GenericARM: 78 case TargetCXXABI::iOS: 79 case TargetCXXABI::iOS64: 80 case TargetCXXABI::WatchOS: 81 case TargetCXXABI::GenericMIPS: 82 case TargetCXXABI::GenericItanium: 83 case TargetCXXABI::WebAssembly: 84 return CreateItaniumCXXABI(CGM); 85 case TargetCXXABI::Microsoft: 86 return CreateMicrosoftCXXABI(CGM); 87 } 88 89 llvm_unreachable("invalid C++ ABI kind"); 90 } 91 92 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 93 const PreprocessorOptions &PPO, 94 const CodeGenOptions &CGO, llvm::Module &M, 95 DiagnosticsEngine &diags, 96 CoverageSourceInfo *CoverageInfo) 97 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 98 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 99 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 100 VMContext(M.getContext()), Types(*this), VTables(*this), 101 SanitizerMD(new SanitizerMetadata(*this)) { 102 103 // Initialize the type cache. 104 llvm::LLVMContext &LLVMContext = M.getContext(); 105 VoidTy = llvm::Type::getVoidTy(LLVMContext); 106 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 107 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 108 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 109 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 110 HalfTy = llvm::Type::getHalfTy(LLVMContext); 111 FloatTy = llvm::Type::getFloatTy(LLVMContext); 112 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 113 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 114 PointerAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 116 SizeSizeInBytes = 117 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 118 IntAlignInBytes = 119 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 120 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 121 IntPtrTy = llvm::IntegerType::get(LLVMContext, 122 C.getTargetInfo().getMaxPointerWidth()); 123 Int8PtrTy = Int8Ty->getPointerTo(0); 124 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 125 AllocaInt8PtrTy = Int8Ty->getPointerTo( 126 M.getDataLayout().getAllocaAddrSpace()); 127 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 128 129 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 130 131 if (LangOpts.ObjC) 132 createObjCRuntime(); 133 if (LangOpts.OpenCL) 134 createOpenCLRuntime(); 135 if (LangOpts.OpenMP) 136 createOpenMPRuntime(); 137 if (LangOpts.CUDA) 138 createCUDARuntime(); 139 140 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 141 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 142 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 143 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 144 getCXXABI().getMangleContext())); 145 146 // If debug info or coverage generation is enabled, create the CGDebugInfo 147 // object. 148 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 149 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 150 DebugInfo.reset(new CGDebugInfo(*this)); 151 152 Block.GlobalUniqueCount = 0; 153 154 if (C.getLangOpts().ObjC) 155 ObjCData.reset(new ObjCEntrypoints()); 156 157 if (CodeGenOpts.hasProfileClangUse()) { 158 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 159 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 160 if (auto E = ReaderOrErr.takeError()) { 161 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 162 "Could not read profile %0: %1"); 163 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 164 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 165 << EI.message(); 166 }); 167 } else 168 PGOReader = std::move(ReaderOrErr.get()); 169 } 170 171 // If coverage mapping generation is enabled, create the 172 // CoverageMappingModuleGen object. 173 if (CodeGenOpts.CoverageMapping) 174 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 175 } 176 177 CodeGenModule::~CodeGenModule() {} 178 179 void CodeGenModule::createObjCRuntime() { 180 // This is just isGNUFamily(), but we want to force implementors of 181 // new ABIs to decide how best to do this. 182 switch (LangOpts.ObjCRuntime.getKind()) { 183 case ObjCRuntime::GNUstep: 184 case ObjCRuntime::GCC: 185 case ObjCRuntime::ObjFW: 186 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 187 return; 188 189 case ObjCRuntime::FragileMacOSX: 190 case ObjCRuntime::MacOSX: 191 case ObjCRuntime::iOS: 192 case ObjCRuntime::WatchOS: 193 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 194 return; 195 } 196 llvm_unreachable("bad runtime kind"); 197 } 198 199 void CodeGenModule::createOpenCLRuntime() { 200 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 201 } 202 203 void CodeGenModule::createOpenMPRuntime() { 204 // Select a specialized code generation class based on the target, if any. 205 // If it does not exist use the default implementation. 206 switch (getTriple().getArch()) { 207 case llvm::Triple::nvptx: 208 case llvm::Triple::nvptx64: 209 assert(getLangOpts().OpenMPIsDevice && 210 "OpenMP NVPTX is only prepared to deal with device code."); 211 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 212 break; 213 default: 214 if (LangOpts.OpenMPSimd) 215 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 216 else 217 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 218 break; 219 } 220 } 221 222 void CodeGenModule::createCUDARuntime() { 223 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 224 } 225 226 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 227 Replacements[Name] = C; 228 } 229 230 void CodeGenModule::applyReplacements() { 231 for (auto &I : Replacements) { 232 StringRef MangledName = I.first(); 233 llvm::Constant *Replacement = I.second; 234 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 235 if (!Entry) 236 continue; 237 auto *OldF = cast<llvm::Function>(Entry); 238 auto *NewF = dyn_cast<llvm::Function>(Replacement); 239 if (!NewF) { 240 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 241 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 242 } else { 243 auto *CE = cast<llvm::ConstantExpr>(Replacement); 244 assert(CE->getOpcode() == llvm::Instruction::BitCast || 245 CE->getOpcode() == llvm::Instruction::GetElementPtr); 246 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 247 } 248 } 249 250 // Replace old with new, but keep the old order. 251 OldF->replaceAllUsesWith(Replacement); 252 if (NewF) { 253 NewF->removeFromParent(); 254 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 255 NewF); 256 } 257 OldF->eraseFromParent(); 258 } 259 } 260 261 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 262 GlobalValReplacements.push_back(std::make_pair(GV, C)); 263 } 264 265 void CodeGenModule::applyGlobalValReplacements() { 266 for (auto &I : GlobalValReplacements) { 267 llvm::GlobalValue *GV = I.first; 268 llvm::Constant *C = I.second; 269 270 GV->replaceAllUsesWith(C); 271 GV->eraseFromParent(); 272 } 273 } 274 275 // This is only used in aliases that we created and we know they have a 276 // linear structure. 277 static const llvm::GlobalObject *getAliasedGlobal( 278 const llvm::GlobalIndirectSymbol &GIS) { 279 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 280 const llvm::Constant *C = &GIS; 281 for (;;) { 282 C = C->stripPointerCasts(); 283 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 284 return GO; 285 // stripPointerCasts will not walk over weak aliases. 286 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 287 if (!GIS2) 288 return nullptr; 289 if (!Visited.insert(GIS2).second) 290 return nullptr; 291 C = GIS2->getIndirectSymbol(); 292 } 293 } 294 295 void CodeGenModule::checkAliases() { 296 // Check if the constructed aliases are well formed. It is really unfortunate 297 // that we have to do this in CodeGen, but we only construct mangled names 298 // and aliases during codegen. 299 bool Error = false; 300 DiagnosticsEngine &Diags = getDiags(); 301 for (const GlobalDecl &GD : Aliases) { 302 const auto *D = cast<ValueDecl>(GD.getDecl()); 303 SourceLocation Location; 304 bool IsIFunc = D->hasAttr<IFuncAttr>(); 305 if (const Attr *A = D->getDefiningAttr()) 306 Location = A->getLocation(); 307 else 308 llvm_unreachable("Not an alias or ifunc?"); 309 StringRef MangledName = getMangledName(GD); 310 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 311 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 312 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 313 if (!GV) { 314 Error = true; 315 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 316 } else if (GV->isDeclaration()) { 317 Error = true; 318 Diags.Report(Location, diag::err_alias_to_undefined) 319 << IsIFunc << IsIFunc; 320 } else if (IsIFunc) { 321 // Check resolver function type. 322 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 323 GV->getType()->getPointerElementType()); 324 assert(FTy); 325 if (!FTy->getReturnType()->isPointerTy()) 326 Diags.Report(Location, diag::err_ifunc_resolver_return); 327 } 328 329 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 330 llvm::GlobalValue *AliaseeGV; 331 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 332 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 333 else 334 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 335 336 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 337 StringRef AliasSection = SA->getName(); 338 if (AliasSection != AliaseeGV->getSection()) 339 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 340 << AliasSection << IsIFunc << IsIFunc; 341 } 342 343 // We have to handle alias to weak aliases in here. LLVM itself disallows 344 // this since the object semantics would not match the IL one. For 345 // compatibility with gcc we implement it by just pointing the alias 346 // to its aliasee's aliasee. We also warn, since the user is probably 347 // expecting the link to be weak. 348 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 349 if (GA->isInterposable()) { 350 Diags.Report(Location, diag::warn_alias_to_weak_alias) 351 << GV->getName() << GA->getName() << IsIFunc; 352 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 353 GA->getIndirectSymbol(), Alias->getType()); 354 Alias->setIndirectSymbol(Aliasee); 355 } 356 } 357 } 358 if (!Error) 359 return; 360 361 for (const GlobalDecl &GD : Aliases) { 362 StringRef MangledName = getMangledName(GD); 363 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 364 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 365 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 366 Alias->eraseFromParent(); 367 } 368 } 369 370 void CodeGenModule::clear() { 371 DeferredDeclsToEmit.clear(); 372 if (OpenMPRuntime) 373 OpenMPRuntime->clear(); 374 } 375 376 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 377 StringRef MainFile) { 378 if (!hasDiagnostics()) 379 return; 380 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 381 if (MainFile.empty()) 382 MainFile = "<stdin>"; 383 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 384 } else { 385 if (Mismatched > 0) 386 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 387 388 if (Missing > 0) 389 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 390 } 391 } 392 393 void CodeGenModule::Release() { 394 EmitDeferred(); 395 EmitVTablesOpportunistically(); 396 applyGlobalValReplacements(); 397 applyReplacements(); 398 checkAliases(); 399 emitMultiVersionFunctions(); 400 EmitCXXGlobalInitFunc(); 401 EmitCXXGlobalDtorFunc(); 402 registerGlobalDtorsWithAtExit(); 403 EmitCXXThreadLocalInitFunc(); 404 if (ObjCRuntime) 405 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 406 AddGlobalCtor(ObjCInitFunction); 407 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 408 CUDARuntime) { 409 if (llvm::Function *CudaCtorFunction = 410 CUDARuntime->makeModuleCtorFunction()) 411 AddGlobalCtor(CudaCtorFunction); 412 } 413 if (OpenMPRuntime) { 414 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 415 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 416 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 417 } 418 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 419 OpenMPRuntime->clear(); 420 } 421 if (PGOReader) { 422 getModule().setProfileSummary( 423 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 424 llvm::ProfileSummary::PSK_Instr); 425 if (PGOStats.hasDiagnostics()) 426 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 427 } 428 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 429 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 430 EmitGlobalAnnotations(); 431 EmitStaticExternCAliases(); 432 EmitDeferredUnusedCoverageMappings(); 433 if (CoverageMapping) 434 CoverageMapping->emit(); 435 if (CodeGenOpts.SanitizeCfiCrossDso) { 436 CodeGenFunction(*this).EmitCfiCheckFail(); 437 CodeGenFunction(*this).EmitCfiCheckStub(); 438 } 439 emitAtAvailableLinkGuard(); 440 emitLLVMUsed(); 441 if (SanStats) 442 SanStats->finish(); 443 444 if (CodeGenOpts.Autolink && 445 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 446 EmitModuleLinkOptions(); 447 } 448 449 // On ELF we pass the dependent library specifiers directly to the linker 450 // without manipulating them. This is in contrast to other platforms where 451 // they are mapped to a specific linker option by the compiler. This 452 // difference is a result of the greater variety of ELF linkers and the fact 453 // that ELF linkers tend to handle libraries in a more complicated fashion 454 // than on other platforms. This forces us to defer handling the dependent 455 // libs to the linker. 456 // 457 // CUDA/HIP device and host libraries are different. Currently there is no 458 // way to differentiate dependent libraries for host or device. Existing 459 // usage of #pragma comment(lib, *) is intended for host libraries on 460 // Windows. Therefore emit llvm.dependent-libraries only for host. 461 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 462 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 463 for (auto *MD : ELFDependentLibraries) 464 NMD->addOperand(MD); 465 } 466 467 // Record mregparm value now so it is visible through rest of codegen. 468 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 469 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 470 CodeGenOpts.NumRegisterParameters); 471 472 if (CodeGenOpts.DwarfVersion) { 473 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 474 CodeGenOpts.DwarfVersion); 475 } 476 if (CodeGenOpts.EmitCodeView) { 477 // Indicate that we want CodeView in the metadata. 478 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 479 } 480 if (CodeGenOpts.CodeViewGHash) { 481 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 482 } 483 if (CodeGenOpts.ControlFlowGuard) { 484 // Function ID tables and checks for Control Flow Guard (cfguard=2). 485 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 486 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 487 // Function ID tables for Control Flow Guard (cfguard=1). 488 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 489 } 490 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 491 // We don't support LTO with 2 with different StrictVTablePointers 492 // FIXME: we could support it by stripping all the information introduced 493 // by StrictVTablePointers. 494 495 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 496 497 llvm::Metadata *Ops[2] = { 498 llvm::MDString::get(VMContext, "StrictVTablePointers"), 499 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 500 llvm::Type::getInt32Ty(VMContext), 1))}; 501 502 getModule().addModuleFlag(llvm::Module::Require, 503 "StrictVTablePointersRequirement", 504 llvm::MDNode::get(VMContext, Ops)); 505 } 506 if (DebugInfo) 507 // We support a single version in the linked module. The LLVM 508 // parser will drop debug info with a different version number 509 // (and warn about it, too). 510 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 511 llvm::DEBUG_METADATA_VERSION); 512 513 // We need to record the widths of enums and wchar_t, so that we can generate 514 // the correct build attributes in the ARM backend. wchar_size is also used by 515 // TargetLibraryInfo. 516 uint64_t WCharWidth = 517 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 518 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 519 520 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 521 if ( Arch == llvm::Triple::arm 522 || Arch == llvm::Triple::armeb 523 || Arch == llvm::Triple::thumb 524 || Arch == llvm::Triple::thumbeb) { 525 // The minimum width of an enum in bytes 526 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 527 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 528 } 529 530 if (CodeGenOpts.SanitizeCfiCrossDso) { 531 // Indicate that we want cross-DSO control flow integrity checks. 532 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 533 } 534 535 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 536 getModule().addModuleFlag(llvm::Module::Override, 537 "CFI Canonical Jump Tables", 538 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 539 } 540 541 if (CodeGenOpts.CFProtectionReturn && 542 Target.checkCFProtectionReturnSupported(getDiags())) { 543 // Indicate that we want to instrument return control flow protection. 544 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 545 1); 546 } 547 548 if (CodeGenOpts.CFProtectionBranch && 549 Target.checkCFProtectionBranchSupported(getDiags())) { 550 // Indicate that we want to instrument branch control flow protection. 551 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 552 1); 553 } 554 555 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 556 // Indicate whether __nvvm_reflect should be configured to flush denormal 557 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 558 // property.) 559 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 560 CodeGenOpts.FlushDenorm ? 1 : 0); 561 } 562 563 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 564 if (LangOpts.OpenCL) { 565 EmitOpenCLMetadata(); 566 // Emit SPIR version. 567 if (getTriple().isSPIR()) { 568 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 569 // opencl.spir.version named metadata. 570 // C++ is backwards compatible with OpenCL v2.0. 571 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 572 llvm::Metadata *SPIRVerElts[] = { 573 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 574 Int32Ty, Version / 100)), 575 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 576 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 577 llvm::NamedMDNode *SPIRVerMD = 578 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 579 llvm::LLVMContext &Ctx = TheModule.getContext(); 580 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 581 } 582 } 583 584 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 585 assert(PLevel < 3 && "Invalid PIC Level"); 586 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 587 if (Context.getLangOpts().PIE) 588 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 589 } 590 591 if (getCodeGenOpts().CodeModel.size() > 0) { 592 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 593 .Case("tiny", llvm::CodeModel::Tiny) 594 .Case("small", llvm::CodeModel::Small) 595 .Case("kernel", llvm::CodeModel::Kernel) 596 .Case("medium", llvm::CodeModel::Medium) 597 .Case("large", llvm::CodeModel::Large) 598 .Default(~0u); 599 if (CM != ~0u) { 600 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 601 getModule().setCodeModel(codeModel); 602 } 603 } 604 605 if (CodeGenOpts.NoPLT) 606 getModule().setRtLibUseGOT(); 607 608 SimplifyPersonality(); 609 610 if (getCodeGenOpts().EmitDeclMetadata) 611 EmitDeclMetadata(); 612 613 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 614 EmitCoverageFile(); 615 616 if (DebugInfo) 617 DebugInfo->finalize(); 618 619 if (getCodeGenOpts().EmitVersionIdentMetadata) 620 EmitVersionIdentMetadata(); 621 622 if (!getCodeGenOpts().RecordCommandLine.empty()) 623 EmitCommandLineMetadata(); 624 625 EmitTargetMetadata(); 626 } 627 628 void CodeGenModule::EmitOpenCLMetadata() { 629 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 630 // opencl.ocl.version named metadata node. 631 // C++ is backwards compatible with OpenCL v2.0. 632 // FIXME: We might need to add CXX version at some point too? 633 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 634 llvm::Metadata *OCLVerElts[] = { 635 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 636 Int32Ty, Version / 100)), 637 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 638 Int32Ty, (Version % 100) / 10))}; 639 llvm::NamedMDNode *OCLVerMD = 640 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 641 llvm::LLVMContext &Ctx = TheModule.getContext(); 642 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 643 } 644 645 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 646 // Make sure that this type is translated. 647 Types.UpdateCompletedType(TD); 648 } 649 650 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 651 // Make sure that this type is translated. 652 Types.RefreshTypeCacheForClass(RD); 653 } 654 655 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 656 if (!TBAA) 657 return nullptr; 658 return TBAA->getTypeInfo(QTy); 659 } 660 661 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 662 if (!TBAA) 663 return TBAAAccessInfo(); 664 return TBAA->getAccessInfo(AccessType); 665 } 666 667 TBAAAccessInfo 668 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 669 if (!TBAA) 670 return TBAAAccessInfo(); 671 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 672 } 673 674 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 675 if (!TBAA) 676 return nullptr; 677 return TBAA->getTBAAStructInfo(QTy); 678 } 679 680 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 681 if (!TBAA) 682 return nullptr; 683 return TBAA->getBaseTypeInfo(QTy); 684 } 685 686 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 687 if (!TBAA) 688 return nullptr; 689 return TBAA->getAccessTagInfo(Info); 690 } 691 692 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 693 TBAAAccessInfo TargetInfo) { 694 if (!TBAA) 695 return TBAAAccessInfo(); 696 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 697 } 698 699 TBAAAccessInfo 700 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 701 TBAAAccessInfo InfoB) { 702 if (!TBAA) 703 return TBAAAccessInfo(); 704 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 705 } 706 707 TBAAAccessInfo 708 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 709 TBAAAccessInfo SrcInfo) { 710 if (!TBAA) 711 return TBAAAccessInfo(); 712 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 713 } 714 715 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 716 TBAAAccessInfo TBAAInfo) { 717 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 718 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 719 } 720 721 void CodeGenModule::DecorateInstructionWithInvariantGroup( 722 llvm::Instruction *I, const CXXRecordDecl *RD) { 723 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 724 llvm::MDNode::get(getLLVMContext(), {})); 725 } 726 727 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 728 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 729 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 730 } 731 732 /// ErrorUnsupported - Print out an error that codegen doesn't support the 733 /// specified stmt yet. 734 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 735 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 736 "cannot compile this %0 yet"); 737 std::string Msg = Type; 738 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 739 << Msg << S->getSourceRange(); 740 } 741 742 /// ErrorUnsupported - Print out an error that codegen doesn't support the 743 /// specified decl yet. 744 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 745 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 746 "cannot compile this %0 yet"); 747 std::string Msg = Type; 748 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 749 } 750 751 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 752 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 753 } 754 755 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 756 const NamedDecl *D) const { 757 if (GV->hasDLLImportStorageClass()) 758 return; 759 // Internal definitions always have default visibility. 760 if (GV->hasLocalLinkage()) { 761 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 762 return; 763 } 764 if (!D) 765 return; 766 // Set visibility for definitions, and for declarations if requested globally 767 // or set explicitly. 768 LinkageInfo LV = D->getLinkageAndVisibility(); 769 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 770 !GV->isDeclarationForLinker()) 771 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 772 } 773 774 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 775 llvm::GlobalValue *GV) { 776 if (GV->hasLocalLinkage()) 777 return true; 778 779 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 780 return true; 781 782 // DLLImport explicitly marks the GV as external. 783 if (GV->hasDLLImportStorageClass()) 784 return false; 785 786 const llvm::Triple &TT = CGM.getTriple(); 787 if (TT.isWindowsGNUEnvironment()) { 788 // In MinGW, variables without DLLImport can still be automatically 789 // imported from a DLL by the linker; don't mark variables that 790 // potentially could come from another DLL as DSO local. 791 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 792 !GV->isThreadLocal()) 793 return false; 794 } 795 796 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 797 // remain unresolved in the link, they can be resolved to zero, which is 798 // outside the current DSO. 799 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 800 return false; 801 802 // Every other GV is local on COFF. 803 // Make an exception for windows OS in the triple: Some firmware builds use 804 // *-win32-macho triples. This (accidentally?) produced windows relocations 805 // without GOT tables in older clang versions; Keep this behaviour. 806 // FIXME: even thread local variables? 807 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 808 return true; 809 810 // Only handle COFF and ELF for now. 811 if (!TT.isOSBinFormatELF()) 812 return false; 813 814 // If this is not an executable, don't assume anything is local. 815 const auto &CGOpts = CGM.getCodeGenOpts(); 816 llvm::Reloc::Model RM = CGOpts.RelocationModel; 817 const auto &LOpts = CGM.getLangOpts(); 818 if (RM != llvm::Reloc::Static && !LOpts.PIE) 819 return false; 820 821 // A definition cannot be preempted from an executable. 822 if (!GV->isDeclarationForLinker()) 823 return true; 824 825 // Most PIC code sequences that assume that a symbol is local cannot produce a 826 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 827 // depended, it seems worth it to handle it here. 828 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 829 return false; 830 831 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 832 llvm::Triple::ArchType Arch = TT.getArch(); 833 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 834 Arch == llvm::Triple::ppc64le) 835 return false; 836 837 // If we can use copy relocations we can assume it is local. 838 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 839 if (!Var->isThreadLocal() && 840 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 841 return true; 842 843 // If we can use a plt entry as the symbol address we can assume it 844 // is local. 845 // FIXME: This should work for PIE, but the gold linker doesn't support it. 846 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 847 return true; 848 849 // Otherwise don't assue it is local. 850 return false; 851 } 852 853 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 854 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 855 } 856 857 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 858 GlobalDecl GD) const { 859 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 860 // C++ destructors have a few C++ ABI specific special cases. 861 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 862 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 863 return; 864 } 865 setDLLImportDLLExport(GV, D); 866 } 867 868 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 869 const NamedDecl *D) const { 870 if (D && D->isExternallyVisible()) { 871 if (D->hasAttr<DLLImportAttr>()) 872 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 873 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 874 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 875 } 876 } 877 878 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 879 GlobalDecl GD) const { 880 setDLLImportDLLExport(GV, GD); 881 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 882 } 883 884 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 885 const NamedDecl *D) const { 886 setDLLImportDLLExport(GV, D); 887 setGVPropertiesAux(GV, D); 888 } 889 890 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 891 const NamedDecl *D) const { 892 setGlobalVisibility(GV, D); 893 setDSOLocal(GV); 894 GV->setPartition(CodeGenOpts.SymbolPartition); 895 } 896 897 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 898 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 899 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 900 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 901 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 902 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 903 } 904 905 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 906 CodeGenOptions::TLSModel M) { 907 switch (M) { 908 case CodeGenOptions::GeneralDynamicTLSModel: 909 return llvm::GlobalVariable::GeneralDynamicTLSModel; 910 case CodeGenOptions::LocalDynamicTLSModel: 911 return llvm::GlobalVariable::LocalDynamicTLSModel; 912 case CodeGenOptions::InitialExecTLSModel: 913 return llvm::GlobalVariable::InitialExecTLSModel; 914 case CodeGenOptions::LocalExecTLSModel: 915 return llvm::GlobalVariable::LocalExecTLSModel; 916 } 917 llvm_unreachable("Invalid TLS model!"); 918 } 919 920 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 921 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 922 923 llvm::GlobalValue::ThreadLocalMode TLM; 924 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 925 926 // Override the TLS model if it is explicitly specified. 927 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 928 TLM = GetLLVMTLSModel(Attr->getModel()); 929 } 930 931 GV->setThreadLocalMode(TLM); 932 } 933 934 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 935 StringRef Name) { 936 const TargetInfo &Target = CGM.getTarget(); 937 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 938 } 939 940 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 941 const CPUSpecificAttr *Attr, 942 unsigned CPUIndex, 943 raw_ostream &Out) { 944 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 945 // supported. 946 if (Attr) 947 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 948 else if (CGM.getTarget().supportsIFunc()) 949 Out << ".resolver"; 950 } 951 952 static void AppendTargetMangling(const CodeGenModule &CGM, 953 const TargetAttr *Attr, raw_ostream &Out) { 954 if (Attr->isDefaultVersion()) 955 return; 956 957 Out << '.'; 958 const TargetInfo &Target = CGM.getTarget(); 959 TargetAttr::ParsedTargetAttr Info = 960 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 961 // Multiversioning doesn't allow "no-${feature}", so we can 962 // only have "+" prefixes here. 963 assert(LHS.startswith("+") && RHS.startswith("+") && 964 "Features should always have a prefix."); 965 return Target.multiVersionSortPriority(LHS.substr(1)) > 966 Target.multiVersionSortPriority(RHS.substr(1)); 967 }); 968 969 bool IsFirst = true; 970 971 if (!Info.Architecture.empty()) { 972 IsFirst = false; 973 Out << "arch_" << Info.Architecture; 974 } 975 976 for (StringRef Feat : Info.Features) { 977 if (!IsFirst) 978 Out << '_'; 979 IsFirst = false; 980 Out << Feat.substr(1); 981 } 982 } 983 984 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 985 const NamedDecl *ND, 986 bool OmitMultiVersionMangling = false) { 987 SmallString<256> Buffer; 988 llvm::raw_svector_ostream Out(Buffer); 989 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 990 if (MC.shouldMangleDeclName(ND)) { 991 llvm::raw_svector_ostream Out(Buffer); 992 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 993 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 994 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 995 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 996 else 997 MC.mangleName(ND, Out); 998 } else { 999 IdentifierInfo *II = ND->getIdentifier(); 1000 assert(II && "Attempt to mangle unnamed decl."); 1001 const auto *FD = dyn_cast<FunctionDecl>(ND); 1002 1003 if (FD && 1004 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1005 llvm::raw_svector_ostream Out(Buffer); 1006 Out << "__regcall3__" << II->getName(); 1007 } else { 1008 Out << II->getName(); 1009 } 1010 } 1011 1012 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1013 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1014 switch (FD->getMultiVersionKind()) { 1015 case MultiVersionKind::CPUDispatch: 1016 case MultiVersionKind::CPUSpecific: 1017 AppendCPUSpecificCPUDispatchMangling(CGM, 1018 FD->getAttr<CPUSpecificAttr>(), 1019 GD.getMultiVersionIndex(), Out); 1020 break; 1021 case MultiVersionKind::Target: 1022 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1023 break; 1024 case MultiVersionKind::None: 1025 llvm_unreachable("None multiversion type isn't valid here"); 1026 } 1027 } 1028 1029 return Out.str(); 1030 } 1031 1032 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1033 const FunctionDecl *FD) { 1034 if (!FD->isMultiVersion()) 1035 return; 1036 1037 // Get the name of what this would be without the 'target' attribute. This 1038 // allows us to lookup the version that was emitted when this wasn't a 1039 // multiversion function. 1040 std::string NonTargetName = 1041 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1042 GlobalDecl OtherGD; 1043 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1044 assert(OtherGD.getCanonicalDecl() 1045 .getDecl() 1046 ->getAsFunction() 1047 ->isMultiVersion() && 1048 "Other GD should now be a multiversioned function"); 1049 // OtherFD is the version of this function that was mangled BEFORE 1050 // becoming a MultiVersion function. It potentially needs to be updated. 1051 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1052 .getDecl() 1053 ->getAsFunction() 1054 ->getMostRecentDecl(); 1055 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1056 // This is so that if the initial version was already the 'default' 1057 // version, we don't try to update it. 1058 if (OtherName != NonTargetName) { 1059 // Remove instead of erase, since others may have stored the StringRef 1060 // to this. 1061 const auto ExistingRecord = Manglings.find(NonTargetName); 1062 if (ExistingRecord != std::end(Manglings)) 1063 Manglings.remove(&(*ExistingRecord)); 1064 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1065 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1066 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1067 Entry->setName(OtherName); 1068 } 1069 } 1070 } 1071 1072 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1073 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1074 1075 // Some ABIs don't have constructor variants. Make sure that base and 1076 // complete constructors get mangled the same. 1077 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1078 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1079 CXXCtorType OrigCtorType = GD.getCtorType(); 1080 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1081 if (OrigCtorType == Ctor_Base) 1082 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1083 } 1084 } 1085 1086 auto FoundName = MangledDeclNames.find(CanonicalGD); 1087 if (FoundName != MangledDeclNames.end()) 1088 return FoundName->second; 1089 1090 // Keep the first result in the case of a mangling collision. 1091 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1092 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1093 1094 // Adjust kernel stub mangling as we may need to be able to differentiate 1095 // them from the kernel itself (e.g., for HIP). 1096 if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) 1097 if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>()) 1098 MangledName = getCUDARuntime().getDeviceStubName(MangledName); 1099 1100 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1101 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1102 } 1103 1104 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1105 const BlockDecl *BD) { 1106 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1107 const Decl *D = GD.getDecl(); 1108 1109 SmallString<256> Buffer; 1110 llvm::raw_svector_ostream Out(Buffer); 1111 if (!D) 1112 MangleCtx.mangleGlobalBlock(BD, 1113 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1114 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1115 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1116 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1117 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1118 else 1119 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1120 1121 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1122 return Result.first->first(); 1123 } 1124 1125 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1126 return getModule().getNamedValue(Name); 1127 } 1128 1129 /// AddGlobalCtor - Add a function to the list that will be called before 1130 /// main() runs. 1131 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1132 llvm::Constant *AssociatedData) { 1133 // FIXME: Type coercion of void()* types. 1134 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1135 } 1136 1137 /// AddGlobalDtor - Add a function to the list that will be called 1138 /// when the module is unloaded. 1139 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1140 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1141 DtorsUsingAtExit[Priority].push_back(Dtor); 1142 return; 1143 } 1144 1145 // FIXME: Type coercion of void()* types. 1146 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1147 } 1148 1149 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1150 if (Fns.empty()) return; 1151 1152 // Ctor function type is void()*. 1153 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1154 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1155 TheModule.getDataLayout().getProgramAddressSpace()); 1156 1157 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1158 llvm::StructType *CtorStructTy = llvm::StructType::get( 1159 Int32Ty, CtorPFTy, VoidPtrTy); 1160 1161 // Construct the constructor and destructor arrays. 1162 ConstantInitBuilder builder(*this); 1163 auto ctors = builder.beginArray(CtorStructTy); 1164 for (const auto &I : Fns) { 1165 auto ctor = ctors.beginStruct(CtorStructTy); 1166 ctor.addInt(Int32Ty, I.Priority); 1167 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1168 if (I.AssociatedData) 1169 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1170 else 1171 ctor.addNullPointer(VoidPtrTy); 1172 ctor.finishAndAddTo(ctors); 1173 } 1174 1175 auto list = 1176 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1177 /*constant*/ false, 1178 llvm::GlobalValue::AppendingLinkage); 1179 1180 // The LTO linker doesn't seem to like it when we set an alignment 1181 // on appending variables. Take it off as a workaround. 1182 list->setAlignment(llvm::None); 1183 1184 Fns.clear(); 1185 } 1186 1187 llvm::GlobalValue::LinkageTypes 1188 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1189 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1190 1191 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1192 1193 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1194 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1195 1196 if (isa<CXXConstructorDecl>(D) && 1197 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1198 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1199 // Our approach to inheriting constructors is fundamentally different from 1200 // that used by the MS ABI, so keep our inheriting constructor thunks 1201 // internal rather than trying to pick an unambiguous mangling for them. 1202 return llvm::GlobalValue::InternalLinkage; 1203 } 1204 1205 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1206 } 1207 1208 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1209 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1210 if (!MDS) return nullptr; 1211 1212 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1213 } 1214 1215 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1216 const CGFunctionInfo &Info, 1217 llvm::Function *F) { 1218 unsigned CallingConv; 1219 llvm::AttributeList PAL; 1220 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1221 F->setAttributes(PAL); 1222 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1223 } 1224 1225 static void removeImageAccessQualifier(std::string& TyName) { 1226 std::string ReadOnlyQual("__read_only"); 1227 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1228 if (ReadOnlyPos != std::string::npos) 1229 // "+ 1" for the space after access qualifier. 1230 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1231 else { 1232 std::string WriteOnlyQual("__write_only"); 1233 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1234 if (WriteOnlyPos != std::string::npos) 1235 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1236 else { 1237 std::string ReadWriteQual("__read_write"); 1238 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1239 if (ReadWritePos != std::string::npos) 1240 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1241 } 1242 } 1243 } 1244 1245 // Returns the address space id that should be produced to the 1246 // kernel_arg_addr_space metadata. This is always fixed to the ids 1247 // as specified in the SPIR 2.0 specification in order to differentiate 1248 // for example in clGetKernelArgInfo() implementation between the address 1249 // spaces with targets without unique mapping to the OpenCL address spaces 1250 // (basically all single AS CPUs). 1251 static unsigned ArgInfoAddressSpace(LangAS AS) { 1252 switch (AS) { 1253 case LangAS::opencl_global: return 1; 1254 case LangAS::opencl_constant: return 2; 1255 case LangAS::opencl_local: return 3; 1256 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 1257 default: 1258 return 0; // Assume private. 1259 } 1260 } 1261 1262 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1263 const FunctionDecl *FD, 1264 CodeGenFunction *CGF) { 1265 assert(((FD && CGF) || (!FD && !CGF)) && 1266 "Incorrect use - FD and CGF should either be both null or not!"); 1267 // Create MDNodes that represent the kernel arg metadata. 1268 // Each MDNode is a list in the form of "key", N number of values which is 1269 // the same number of values as their are kernel arguments. 1270 1271 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1272 1273 // MDNode for the kernel argument address space qualifiers. 1274 SmallVector<llvm::Metadata *, 8> addressQuals; 1275 1276 // MDNode for the kernel argument access qualifiers (images only). 1277 SmallVector<llvm::Metadata *, 8> accessQuals; 1278 1279 // MDNode for the kernel argument type names. 1280 SmallVector<llvm::Metadata *, 8> argTypeNames; 1281 1282 // MDNode for the kernel argument base type names. 1283 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1284 1285 // MDNode for the kernel argument type qualifiers. 1286 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1287 1288 // MDNode for the kernel argument names. 1289 SmallVector<llvm::Metadata *, 8> argNames; 1290 1291 if (FD && CGF) 1292 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1293 const ParmVarDecl *parm = FD->getParamDecl(i); 1294 QualType ty = parm->getType(); 1295 std::string typeQuals; 1296 1297 if (ty->isPointerType()) { 1298 QualType pointeeTy = ty->getPointeeType(); 1299 1300 // Get address qualifier. 1301 addressQuals.push_back( 1302 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1303 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1304 1305 // Get argument type name. 1306 std::string typeName = 1307 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1308 1309 // Turn "unsigned type" to "utype" 1310 std::string::size_type pos = typeName.find("unsigned"); 1311 if (pointeeTy.isCanonical() && pos != std::string::npos) 1312 typeName.erase(pos + 1, 8); 1313 1314 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1315 1316 std::string baseTypeName = 1317 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1318 Policy) + 1319 "*"; 1320 1321 // Turn "unsigned type" to "utype" 1322 pos = baseTypeName.find("unsigned"); 1323 if (pos != std::string::npos) 1324 baseTypeName.erase(pos + 1, 8); 1325 1326 argBaseTypeNames.push_back( 1327 llvm::MDString::get(VMContext, baseTypeName)); 1328 1329 // Get argument type qualifiers: 1330 if (ty.isRestrictQualified()) 1331 typeQuals = "restrict"; 1332 if (pointeeTy.isConstQualified() || 1333 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1334 typeQuals += typeQuals.empty() ? "const" : " const"; 1335 if (pointeeTy.isVolatileQualified()) 1336 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1337 } else { 1338 uint32_t AddrSpc = 0; 1339 bool isPipe = ty->isPipeType(); 1340 if (ty->isImageType() || isPipe) 1341 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1342 1343 addressQuals.push_back( 1344 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1345 1346 // Get argument type name. 1347 std::string typeName; 1348 if (isPipe) 1349 typeName = ty.getCanonicalType() 1350 ->getAs<PipeType>() 1351 ->getElementType() 1352 .getAsString(Policy); 1353 else 1354 typeName = ty.getUnqualifiedType().getAsString(Policy); 1355 1356 // Turn "unsigned type" to "utype" 1357 std::string::size_type pos = typeName.find("unsigned"); 1358 if (ty.isCanonical() && pos != std::string::npos) 1359 typeName.erase(pos + 1, 8); 1360 1361 std::string baseTypeName; 1362 if (isPipe) 1363 baseTypeName = ty.getCanonicalType() 1364 ->getAs<PipeType>() 1365 ->getElementType() 1366 .getCanonicalType() 1367 .getAsString(Policy); 1368 else 1369 baseTypeName = 1370 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1371 1372 // Remove access qualifiers on images 1373 // (as they are inseparable from type in clang implementation, 1374 // but OpenCL spec provides a special query to get access qualifier 1375 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1376 if (ty->isImageType()) { 1377 removeImageAccessQualifier(typeName); 1378 removeImageAccessQualifier(baseTypeName); 1379 } 1380 1381 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1382 1383 // Turn "unsigned type" to "utype" 1384 pos = baseTypeName.find("unsigned"); 1385 if (pos != std::string::npos) 1386 baseTypeName.erase(pos + 1, 8); 1387 1388 argBaseTypeNames.push_back( 1389 llvm::MDString::get(VMContext, baseTypeName)); 1390 1391 if (isPipe) 1392 typeQuals = "pipe"; 1393 } 1394 1395 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1396 1397 // Get image and pipe access qualifier: 1398 if (ty->isImageType() || ty->isPipeType()) { 1399 const Decl *PDecl = parm; 1400 if (auto *TD = dyn_cast<TypedefType>(ty)) 1401 PDecl = TD->getDecl(); 1402 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1403 if (A && A->isWriteOnly()) 1404 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1405 else if (A && A->isReadWrite()) 1406 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1407 else 1408 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1409 } else 1410 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1411 1412 // Get argument name. 1413 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1414 } 1415 1416 Fn->setMetadata("kernel_arg_addr_space", 1417 llvm::MDNode::get(VMContext, addressQuals)); 1418 Fn->setMetadata("kernel_arg_access_qual", 1419 llvm::MDNode::get(VMContext, accessQuals)); 1420 Fn->setMetadata("kernel_arg_type", 1421 llvm::MDNode::get(VMContext, argTypeNames)); 1422 Fn->setMetadata("kernel_arg_base_type", 1423 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1424 Fn->setMetadata("kernel_arg_type_qual", 1425 llvm::MDNode::get(VMContext, argTypeQuals)); 1426 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1427 Fn->setMetadata("kernel_arg_name", 1428 llvm::MDNode::get(VMContext, argNames)); 1429 } 1430 1431 /// Determines whether the language options require us to model 1432 /// unwind exceptions. We treat -fexceptions as mandating this 1433 /// except under the fragile ObjC ABI with only ObjC exceptions 1434 /// enabled. This means, for example, that C with -fexceptions 1435 /// enables this. 1436 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1437 // If exceptions are completely disabled, obviously this is false. 1438 if (!LangOpts.Exceptions) return false; 1439 1440 // If C++ exceptions are enabled, this is true. 1441 if (LangOpts.CXXExceptions) return true; 1442 1443 // If ObjC exceptions are enabled, this depends on the ABI. 1444 if (LangOpts.ObjCExceptions) { 1445 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1446 } 1447 1448 return true; 1449 } 1450 1451 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1452 const CXXMethodDecl *MD) { 1453 // Check that the type metadata can ever actually be used by a call. 1454 if (!CGM.getCodeGenOpts().LTOUnit || 1455 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1456 return false; 1457 1458 // Only functions whose address can be taken with a member function pointer 1459 // need this sort of type metadata. 1460 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1461 !isa<CXXDestructorDecl>(MD); 1462 } 1463 1464 std::vector<const CXXRecordDecl *> 1465 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1466 llvm::SetVector<const CXXRecordDecl *> MostBases; 1467 1468 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1469 CollectMostBases = [&](const CXXRecordDecl *RD) { 1470 if (RD->getNumBases() == 0) 1471 MostBases.insert(RD); 1472 for (const CXXBaseSpecifier &B : RD->bases()) 1473 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1474 }; 1475 CollectMostBases(RD); 1476 return MostBases.takeVector(); 1477 } 1478 1479 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1480 llvm::Function *F) { 1481 llvm::AttrBuilder B; 1482 1483 if (CodeGenOpts.UnwindTables) 1484 B.addAttribute(llvm::Attribute::UWTable); 1485 1486 if (!hasUnwindExceptions(LangOpts)) 1487 B.addAttribute(llvm::Attribute::NoUnwind); 1488 1489 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1490 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1491 B.addAttribute(llvm::Attribute::StackProtect); 1492 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1493 B.addAttribute(llvm::Attribute::StackProtectStrong); 1494 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1495 B.addAttribute(llvm::Attribute::StackProtectReq); 1496 } 1497 1498 if (!D) { 1499 // If we don't have a declaration to control inlining, the function isn't 1500 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1501 // disabled, mark the function as noinline. 1502 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1503 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1504 B.addAttribute(llvm::Attribute::NoInline); 1505 1506 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1507 return; 1508 } 1509 1510 // Track whether we need to add the optnone LLVM attribute, 1511 // starting with the default for this optimization level. 1512 bool ShouldAddOptNone = 1513 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1514 // We can't add optnone in the following cases, it won't pass the verifier. 1515 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1516 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1517 1518 // Add optnone, but do so only if the function isn't always_inline. 1519 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1520 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1521 B.addAttribute(llvm::Attribute::OptimizeNone); 1522 1523 // OptimizeNone implies noinline; we should not be inlining such functions. 1524 B.addAttribute(llvm::Attribute::NoInline); 1525 1526 // We still need to handle naked functions even though optnone subsumes 1527 // much of their semantics. 1528 if (D->hasAttr<NakedAttr>()) 1529 B.addAttribute(llvm::Attribute::Naked); 1530 1531 // OptimizeNone wins over OptimizeForSize and MinSize. 1532 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1533 F->removeFnAttr(llvm::Attribute::MinSize); 1534 } else if (D->hasAttr<NakedAttr>()) { 1535 // Naked implies noinline: we should not be inlining such functions. 1536 B.addAttribute(llvm::Attribute::Naked); 1537 B.addAttribute(llvm::Attribute::NoInline); 1538 } else if (D->hasAttr<NoDuplicateAttr>()) { 1539 B.addAttribute(llvm::Attribute::NoDuplicate); 1540 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1541 // Add noinline if the function isn't always_inline. 1542 B.addAttribute(llvm::Attribute::NoInline); 1543 } else if (D->hasAttr<AlwaysInlineAttr>() && 1544 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1545 // (noinline wins over always_inline, and we can't specify both in IR) 1546 B.addAttribute(llvm::Attribute::AlwaysInline); 1547 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1548 // If we're not inlining, then force everything that isn't always_inline to 1549 // carry an explicit noinline attribute. 1550 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1551 B.addAttribute(llvm::Attribute::NoInline); 1552 } else { 1553 // Otherwise, propagate the inline hint attribute and potentially use its 1554 // absence to mark things as noinline. 1555 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1556 // Search function and template pattern redeclarations for inline. 1557 auto CheckForInline = [](const FunctionDecl *FD) { 1558 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1559 return Redecl->isInlineSpecified(); 1560 }; 1561 if (any_of(FD->redecls(), CheckRedeclForInline)) 1562 return true; 1563 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1564 if (!Pattern) 1565 return false; 1566 return any_of(Pattern->redecls(), CheckRedeclForInline); 1567 }; 1568 if (CheckForInline(FD)) { 1569 B.addAttribute(llvm::Attribute::InlineHint); 1570 } else if (CodeGenOpts.getInlining() == 1571 CodeGenOptions::OnlyHintInlining && 1572 !FD->isInlined() && 1573 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1574 B.addAttribute(llvm::Attribute::NoInline); 1575 } 1576 } 1577 } 1578 1579 // Add other optimization related attributes if we are optimizing this 1580 // function. 1581 if (!D->hasAttr<OptimizeNoneAttr>()) { 1582 if (D->hasAttr<ColdAttr>()) { 1583 if (!ShouldAddOptNone) 1584 B.addAttribute(llvm::Attribute::OptimizeForSize); 1585 B.addAttribute(llvm::Attribute::Cold); 1586 } 1587 1588 if (D->hasAttr<MinSizeAttr>()) 1589 B.addAttribute(llvm::Attribute::MinSize); 1590 } 1591 1592 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1593 1594 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1595 if (alignment) 1596 F->setAlignment(llvm::Align(alignment)); 1597 1598 if (!D->hasAttr<AlignedAttr>()) 1599 if (LangOpts.FunctionAlignment) 1600 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1601 1602 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1603 // reserve a bit for differentiating between virtual and non-virtual member 1604 // functions. If the current target's C++ ABI requires this and this is a 1605 // member function, set its alignment accordingly. 1606 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1607 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1608 F->setAlignment(llvm::Align(2)); 1609 } 1610 1611 // In the cross-dso CFI mode with canonical jump tables, we want !type 1612 // attributes on definitions only. 1613 if (CodeGenOpts.SanitizeCfiCrossDso && 1614 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1615 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1616 // Skip available_externally functions. They won't be codegen'ed in the 1617 // current module anyway. 1618 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1619 CreateFunctionTypeMetadataForIcall(FD, F); 1620 } 1621 } 1622 1623 // Emit type metadata on member functions for member function pointer checks. 1624 // These are only ever necessary on definitions; we're guaranteed that the 1625 // definition will be present in the LTO unit as a result of LTO visibility. 1626 auto *MD = dyn_cast<CXXMethodDecl>(D); 1627 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1628 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1629 llvm::Metadata *Id = 1630 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1631 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1632 F->addTypeMetadata(0, Id); 1633 } 1634 } 1635 } 1636 1637 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1638 const Decl *D = GD.getDecl(); 1639 if (dyn_cast_or_null<NamedDecl>(D)) 1640 setGVProperties(GV, GD); 1641 else 1642 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1643 1644 if (D && D->hasAttr<UsedAttr>()) 1645 addUsedGlobal(GV); 1646 1647 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1648 const auto *VD = cast<VarDecl>(D); 1649 if (VD->getType().isConstQualified() && 1650 VD->getStorageDuration() == SD_Static) 1651 addUsedGlobal(GV); 1652 } 1653 } 1654 1655 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1656 llvm::AttrBuilder &Attrs) { 1657 // Add target-cpu and target-features attributes to functions. If 1658 // we have a decl for the function and it has a target attribute then 1659 // parse that and add it to the feature set. 1660 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1661 std::vector<std::string> Features; 1662 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1663 FD = FD ? FD->getMostRecentDecl() : FD; 1664 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1665 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1666 bool AddedAttr = false; 1667 if (TD || SD) { 1668 llvm::StringMap<bool> FeatureMap; 1669 getFunctionFeatureMap(FeatureMap, GD); 1670 1671 // Produce the canonical string for this set of features. 1672 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1673 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1674 1675 // Now add the target-cpu and target-features to the function. 1676 // While we populated the feature map above, we still need to 1677 // get and parse the target attribute so we can get the cpu for 1678 // the function. 1679 if (TD) { 1680 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1681 if (ParsedAttr.Architecture != "" && 1682 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1683 TargetCPU = ParsedAttr.Architecture; 1684 } 1685 } else { 1686 // Otherwise just add the existing target cpu and target features to the 1687 // function. 1688 Features = getTarget().getTargetOpts().Features; 1689 } 1690 1691 if (TargetCPU != "") { 1692 Attrs.addAttribute("target-cpu", TargetCPU); 1693 AddedAttr = true; 1694 } 1695 if (!Features.empty()) { 1696 llvm::sort(Features); 1697 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1698 AddedAttr = true; 1699 } 1700 1701 return AddedAttr; 1702 } 1703 1704 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1705 llvm::GlobalObject *GO) { 1706 const Decl *D = GD.getDecl(); 1707 SetCommonAttributes(GD, GO); 1708 1709 if (D) { 1710 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1711 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1712 GV->addAttribute("bss-section", SA->getName()); 1713 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1714 GV->addAttribute("data-section", SA->getName()); 1715 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1716 GV->addAttribute("rodata-section", SA->getName()); 1717 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1718 GV->addAttribute("relro-section", SA->getName()); 1719 } 1720 1721 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1722 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1723 if (!D->getAttr<SectionAttr>()) 1724 F->addFnAttr("implicit-section-name", SA->getName()); 1725 1726 llvm::AttrBuilder Attrs; 1727 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1728 // We know that GetCPUAndFeaturesAttributes will always have the 1729 // newest set, since it has the newest possible FunctionDecl, so the 1730 // new ones should replace the old. 1731 F->removeFnAttr("target-cpu"); 1732 F->removeFnAttr("target-features"); 1733 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1734 } 1735 } 1736 1737 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1738 GO->setSection(CSA->getName()); 1739 else if (const auto *SA = D->getAttr<SectionAttr>()) 1740 GO->setSection(SA->getName()); 1741 } 1742 1743 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1744 } 1745 1746 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1747 llvm::Function *F, 1748 const CGFunctionInfo &FI) { 1749 const Decl *D = GD.getDecl(); 1750 SetLLVMFunctionAttributes(GD, FI, F); 1751 SetLLVMFunctionAttributesForDefinition(D, F); 1752 1753 F->setLinkage(llvm::Function::InternalLinkage); 1754 1755 setNonAliasAttributes(GD, F); 1756 } 1757 1758 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1759 // Set linkage and visibility in case we never see a definition. 1760 LinkageInfo LV = ND->getLinkageAndVisibility(); 1761 // Don't set internal linkage on declarations. 1762 // "extern_weak" is overloaded in LLVM; we probably should have 1763 // separate linkage types for this. 1764 if (isExternallyVisible(LV.getLinkage()) && 1765 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1766 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1767 } 1768 1769 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1770 llvm::Function *F) { 1771 // Only if we are checking indirect calls. 1772 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1773 return; 1774 1775 // Non-static class methods are handled via vtable or member function pointer 1776 // checks elsewhere. 1777 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1778 return; 1779 1780 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1781 F->addTypeMetadata(0, MD); 1782 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1783 1784 // Emit a hash-based bit set entry for cross-DSO calls. 1785 if (CodeGenOpts.SanitizeCfiCrossDso) 1786 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1787 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1788 } 1789 1790 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1791 bool IsIncompleteFunction, 1792 bool IsThunk) { 1793 1794 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1795 // If this is an intrinsic function, set the function's attributes 1796 // to the intrinsic's attributes. 1797 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1798 return; 1799 } 1800 1801 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1802 1803 if (!IsIncompleteFunction) 1804 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1805 1806 // Add the Returned attribute for "this", except for iOS 5 and earlier 1807 // where substantial code, including the libstdc++ dylib, was compiled with 1808 // GCC and does not actually return "this". 1809 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1810 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1811 assert(!F->arg_empty() && 1812 F->arg_begin()->getType() 1813 ->canLosslesslyBitCastTo(F->getReturnType()) && 1814 "unexpected this return"); 1815 F->addAttribute(1, llvm::Attribute::Returned); 1816 } 1817 1818 // Only a few attributes are set on declarations; these may later be 1819 // overridden by a definition. 1820 1821 setLinkageForGV(F, FD); 1822 setGVProperties(F, FD); 1823 1824 // Setup target-specific attributes. 1825 if (!IsIncompleteFunction && F->isDeclaration()) 1826 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1827 1828 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1829 F->setSection(CSA->getName()); 1830 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1831 F->setSection(SA->getName()); 1832 1833 if (FD->isReplaceableGlobalAllocationFunction()) { 1834 // A replaceable global allocation function does not act like a builtin by 1835 // default, only if it is invoked by a new-expression or delete-expression. 1836 F->addAttribute(llvm::AttributeList::FunctionIndex, 1837 llvm::Attribute::NoBuiltin); 1838 1839 // A sane operator new returns a non-aliasing pointer. 1840 // FIXME: Also add NonNull attribute to the return value 1841 // for the non-nothrow forms? 1842 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1843 if (getCodeGenOpts().AssumeSaneOperatorNew && 1844 (Kind == OO_New || Kind == OO_Array_New)) 1845 F->addAttribute(llvm::AttributeList::ReturnIndex, 1846 llvm::Attribute::NoAlias); 1847 } 1848 1849 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1850 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1851 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1852 if (MD->isVirtual()) 1853 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1854 1855 // Don't emit entries for function declarations in the cross-DSO mode. This 1856 // is handled with better precision by the receiving DSO. But if jump tables 1857 // are non-canonical then we need type metadata in order to produce the local 1858 // jump table. 1859 if (!CodeGenOpts.SanitizeCfiCrossDso || 1860 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 1861 CreateFunctionTypeMetadataForIcall(FD, F); 1862 1863 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1864 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1865 1866 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1867 // Annotate the callback behavior as metadata: 1868 // - The callback callee (as argument number). 1869 // - The callback payloads (as argument numbers). 1870 llvm::LLVMContext &Ctx = F->getContext(); 1871 llvm::MDBuilder MDB(Ctx); 1872 1873 // The payload indices are all but the first one in the encoding. The first 1874 // identifies the callback callee. 1875 int CalleeIdx = *CB->encoding_begin(); 1876 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1877 F->addMetadata(llvm::LLVMContext::MD_callback, 1878 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1879 CalleeIdx, PayloadIndices, 1880 /* VarArgsArePassed */ false)})); 1881 } 1882 } 1883 1884 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1885 assert(!GV->isDeclaration() && 1886 "Only globals with definition can force usage."); 1887 LLVMUsed.emplace_back(GV); 1888 } 1889 1890 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1891 assert(!GV->isDeclaration() && 1892 "Only globals with definition can force usage."); 1893 LLVMCompilerUsed.emplace_back(GV); 1894 } 1895 1896 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1897 std::vector<llvm::WeakTrackingVH> &List) { 1898 // Don't create llvm.used if there is no need. 1899 if (List.empty()) 1900 return; 1901 1902 // Convert List to what ConstantArray needs. 1903 SmallVector<llvm::Constant*, 8> UsedArray; 1904 UsedArray.resize(List.size()); 1905 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1906 UsedArray[i] = 1907 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1908 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1909 } 1910 1911 if (UsedArray.empty()) 1912 return; 1913 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1914 1915 auto *GV = new llvm::GlobalVariable( 1916 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1917 llvm::ConstantArray::get(ATy, UsedArray), Name); 1918 1919 GV->setSection("llvm.metadata"); 1920 } 1921 1922 void CodeGenModule::emitLLVMUsed() { 1923 emitUsed(*this, "llvm.used", LLVMUsed); 1924 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1925 } 1926 1927 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1928 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1929 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1930 } 1931 1932 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1933 llvm::SmallString<32> Opt; 1934 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1935 if (Opt.empty()) 1936 return; 1937 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1938 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1939 } 1940 1941 void CodeGenModule::AddDependentLib(StringRef Lib) { 1942 auto &C = getLLVMContext(); 1943 if (getTarget().getTriple().isOSBinFormatELF()) { 1944 ELFDependentLibraries.push_back( 1945 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 1946 return; 1947 } 1948 1949 llvm::SmallString<24> Opt; 1950 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1951 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1952 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 1953 } 1954 1955 /// Add link options implied by the given module, including modules 1956 /// it depends on, using a postorder walk. 1957 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1958 SmallVectorImpl<llvm::MDNode *> &Metadata, 1959 llvm::SmallPtrSet<Module *, 16> &Visited) { 1960 // Import this module's parent. 1961 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1962 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1963 } 1964 1965 // Import this module's dependencies. 1966 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1967 if (Visited.insert(Mod->Imports[I - 1]).second) 1968 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1969 } 1970 1971 // Add linker options to link against the libraries/frameworks 1972 // described by this module. 1973 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1974 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 1975 1976 // For modules that use export_as for linking, use that module 1977 // name instead. 1978 if (Mod->UseExportAsModuleLinkName) 1979 return; 1980 1981 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1982 // Link against a framework. Frameworks are currently Darwin only, so we 1983 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1984 if (Mod->LinkLibraries[I-1].IsFramework) { 1985 llvm::Metadata *Args[2] = { 1986 llvm::MDString::get(Context, "-framework"), 1987 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1988 1989 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1990 continue; 1991 } 1992 1993 // Link against a library. 1994 if (IsELF) { 1995 llvm::Metadata *Args[2] = { 1996 llvm::MDString::get(Context, "lib"), 1997 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 1998 }; 1999 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2000 } else { 2001 llvm::SmallString<24> Opt; 2002 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2003 Mod->LinkLibraries[I - 1].Library, Opt); 2004 auto *OptString = llvm::MDString::get(Context, Opt); 2005 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2006 } 2007 } 2008 } 2009 2010 void CodeGenModule::EmitModuleLinkOptions() { 2011 // Collect the set of all of the modules we want to visit to emit link 2012 // options, which is essentially the imported modules and all of their 2013 // non-explicit child modules. 2014 llvm::SetVector<clang::Module *> LinkModules; 2015 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2016 SmallVector<clang::Module *, 16> Stack; 2017 2018 // Seed the stack with imported modules. 2019 for (Module *M : ImportedModules) { 2020 // Do not add any link flags when an implementation TU of a module imports 2021 // a header of that same module. 2022 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2023 !getLangOpts().isCompilingModule()) 2024 continue; 2025 if (Visited.insert(M).second) 2026 Stack.push_back(M); 2027 } 2028 2029 // Find all of the modules to import, making a little effort to prune 2030 // non-leaf modules. 2031 while (!Stack.empty()) { 2032 clang::Module *Mod = Stack.pop_back_val(); 2033 2034 bool AnyChildren = false; 2035 2036 // Visit the submodules of this module. 2037 for (const auto &SM : Mod->submodules()) { 2038 // Skip explicit children; they need to be explicitly imported to be 2039 // linked against. 2040 if (SM->IsExplicit) 2041 continue; 2042 2043 if (Visited.insert(SM).second) { 2044 Stack.push_back(SM); 2045 AnyChildren = true; 2046 } 2047 } 2048 2049 // We didn't find any children, so add this module to the list of 2050 // modules to link against. 2051 if (!AnyChildren) { 2052 LinkModules.insert(Mod); 2053 } 2054 } 2055 2056 // Add link options for all of the imported modules in reverse topological 2057 // order. We don't do anything to try to order import link flags with respect 2058 // to linker options inserted by things like #pragma comment(). 2059 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2060 Visited.clear(); 2061 for (Module *M : LinkModules) 2062 if (Visited.insert(M).second) 2063 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2064 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2065 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2066 2067 // Add the linker options metadata flag. 2068 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2069 for (auto *MD : LinkerOptionsMetadata) 2070 NMD->addOperand(MD); 2071 } 2072 2073 void CodeGenModule::EmitDeferred() { 2074 // Emit deferred declare target declarations. 2075 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2076 getOpenMPRuntime().emitDeferredTargetDecls(); 2077 2078 // Emit code for any potentially referenced deferred decls. Since a 2079 // previously unused static decl may become used during the generation of code 2080 // for a static function, iterate until no changes are made. 2081 2082 if (!DeferredVTables.empty()) { 2083 EmitDeferredVTables(); 2084 2085 // Emitting a vtable doesn't directly cause more vtables to 2086 // become deferred, although it can cause functions to be 2087 // emitted that then need those vtables. 2088 assert(DeferredVTables.empty()); 2089 } 2090 2091 // Stop if we're out of both deferred vtables and deferred declarations. 2092 if (DeferredDeclsToEmit.empty()) 2093 return; 2094 2095 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2096 // work, it will not interfere with this. 2097 std::vector<GlobalDecl> CurDeclsToEmit; 2098 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2099 2100 for (GlobalDecl &D : CurDeclsToEmit) { 2101 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2102 // to get GlobalValue with exactly the type we need, not something that 2103 // might had been created for another decl with the same mangled name but 2104 // different type. 2105 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2106 GetAddrOfGlobal(D, ForDefinition)); 2107 2108 // In case of different address spaces, we may still get a cast, even with 2109 // IsForDefinition equal to true. Query mangled names table to get 2110 // GlobalValue. 2111 if (!GV) 2112 GV = GetGlobalValue(getMangledName(D)); 2113 2114 // Make sure GetGlobalValue returned non-null. 2115 assert(GV); 2116 2117 // Check to see if we've already emitted this. This is necessary 2118 // for a couple of reasons: first, decls can end up in the 2119 // deferred-decls queue multiple times, and second, decls can end 2120 // up with definitions in unusual ways (e.g. by an extern inline 2121 // function acquiring a strong function redefinition). Just 2122 // ignore these cases. 2123 if (!GV->isDeclaration()) 2124 continue; 2125 2126 // If this is OpenMP, check if it is legal to emit this global normally. 2127 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2128 continue; 2129 2130 // Otherwise, emit the definition and move on to the next one. 2131 EmitGlobalDefinition(D, GV); 2132 2133 // If we found out that we need to emit more decls, do that recursively. 2134 // This has the advantage that the decls are emitted in a DFS and related 2135 // ones are close together, which is convenient for testing. 2136 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2137 EmitDeferred(); 2138 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2139 } 2140 } 2141 } 2142 2143 void CodeGenModule::EmitVTablesOpportunistically() { 2144 // Try to emit external vtables as available_externally if they have emitted 2145 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2146 // is not allowed to create new references to things that need to be emitted 2147 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2148 2149 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2150 && "Only emit opportunistic vtables with optimizations"); 2151 2152 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2153 assert(getVTables().isVTableExternal(RD) && 2154 "This queue should only contain external vtables"); 2155 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2156 VTables.GenerateClassData(RD); 2157 } 2158 OpportunisticVTables.clear(); 2159 } 2160 2161 void CodeGenModule::EmitGlobalAnnotations() { 2162 if (Annotations.empty()) 2163 return; 2164 2165 // Create a new global variable for the ConstantStruct in the Module. 2166 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2167 Annotations[0]->getType(), Annotations.size()), Annotations); 2168 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2169 llvm::GlobalValue::AppendingLinkage, 2170 Array, "llvm.global.annotations"); 2171 gv->setSection(AnnotationSection); 2172 } 2173 2174 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2175 llvm::Constant *&AStr = AnnotationStrings[Str]; 2176 if (AStr) 2177 return AStr; 2178 2179 // Not found yet, create a new global. 2180 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2181 auto *gv = 2182 new llvm::GlobalVariable(getModule(), s->getType(), true, 2183 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2184 gv->setSection(AnnotationSection); 2185 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2186 AStr = gv; 2187 return gv; 2188 } 2189 2190 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2191 SourceManager &SM = getContext().getSourceManager(); 2192 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2193 if (PLoc.isValid()) 2194 return EmitAnnotationString(PLoc.getFilename()); 2195 return EmitAnnotationString(SM.getBufferName(Loc)); 2196 } 2197 2198 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2199 SourceManager &SM = getContext().getSourceManager(); 2200 PresumedLoc PLoc = SM.getPresumedLoc(L); 2201 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2202 SM.getExpansionLineNumber(L); 2203 return llvm::ConstantInt::get(Int32Ty, LineNo); 2204 } 2205 2206 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2207 const AnnotateAttr *AA, 2208 SourceLocation L) { 2209 // Get the globals for file name, annotation, and the line number. 2210 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2211 *UnitGV = EmitAnnotationUnit(L), 2212 *LineNoCst = EmitAnnotationLineNo(L); 2213 2214 // Create the ConstantStruct for the global annotation. 2215 llvm::Constant *Fields[4] = { 2216 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 2217 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2218 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2219 LineNoCst 2220 }; 2221 return llvm::ConstantStruct::getAnon(Fields); 2222 } 2223 2224 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2225 llvm::GlobalValue *GV) { 2226 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2227 // Get the struct elements for these annotations. 2228 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2229 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2230 } 2231 2232 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2233 llvm::Function *Fn, 2234 SourceLocation Loc) const { 2235 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2236 // Blacklist by function name. 2237 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2238 return true; 2239 // Blacklist by location. 2240 if (Loc.isValid()) 2241 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2242 // If location is unknown, this may be a compiler-generated function. Assume 2243 // it's located in the main file. 2244 auto &SM = Context.getSourceManager(); 2245 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2246 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2247 } 2248 return false; 2249 } 2250 2251 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2252 SourceLocation Loc, QualType Ty, 2253 StringRef Category) const { 2254 // For now globals can be blacklisted only in ASan and KASan. 2255 const SanitizerMask EnabledAsanMask = 2256 LangOpts.Sanitize.Mask & 2257 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2258 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2259 SanitizerKind::MemTag); 2260 if (!EnabledAsanMask) 2261 return false; 2262 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2263 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2264 return true; 2265 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2266 return true; 2267 // Check global type. 2268 if (!Ty.isNull()) { 2269 // Drill down the array types: if global variable of a fixed type is 2270 // blacklisted, we also don't instrument arrays of them. 2271 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2272 Ty = AT->getElementType(); 2273 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2274 // We allow to blacklist only record types (classes, structs etc.) 2275 if (Ty->isRecordType()) { 2276 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2277 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2278 return true; 2279 } 2280 } 2281 return false; 2282 } 2283 2284 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2285 StringRef Category) const { 2286 const auto &XRayFilter = getContext().getXRayFilter(); 2287 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2288 auto Attr = ImbueAttr::NONE; 2289 if (Loc.isValid()) 2290 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2291 if (Attr == ImbueAttr::NONE) 2292 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2293 switch (Attr) { 2294 case ImbueAttr::NONE: 2295 return false; 2296 case ImbueAttr::ALWAYS: 2297 Fn->addFnAttr("function-instrument", "xray-always"); 2298 break; 2299 case ImbueAttr::ALWAYS_ARG1: 2300 Fn->addFnAttr("function-instrument", "xray-always"); 2301 Fn->addFnAttr("xray-log-args", "1"); 2302 break; 2303 case ImbueAttr::NEVER: 2304 Fn->addFnAttr("function-instrument", "xray-never"); 2305 break; 2306 } 2307 return true; 2308 } 2309 2310 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2311 // Never defer when EmitAllDecls is specified. 2312 if (LangOpts.EmitAllDecls) 2313 return true; 2314 2315 if (CodeGenOpts.KeepStaticConsts) { 2316 const auto *VD = dyn_cast<VarDecl>(Global); 2317 if (VD && VD->getType().isConstQualified() && 2318 VD->getStorageDuration() == SD_Static) 2319 return true; 2320 } 2321 2322 return getContext().DeclMustBeEmitted(Global); 2323 } 2324 2325 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2326 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2327 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2328 // Implicit template instantiations may change linkage if they are later 2329 // explicitly instantiated, so they should not be emitted eagerly. 2330 return false; 2331 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2332 // not emit them eagerly unless we sure that the function must be emitted on 2333 // the host. 2334 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2335 !LangOpts.OpenMPIsDevice && 2336 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2337 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2338 return false; 2339 } 2340 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2341 if (Context.getInlineVariableDefinitionKind(VD) == 2342 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2343 // A definition of an inline constexpr static data member may change 2344 // linkage later if it's redeclared outside the class. 2345 return false; 2346 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2347 // codegen for global variables, because they may be marked as threadprivate. 2348 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2349 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2350 !isTypeConstant(Global->getType(), false) && 2351 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2352 return false; 2353 2354 return true; 2355 } 2356 2357 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2358 const CXXUuidofExpr* E) { 2359 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2360 // well-formed. 2361 StringRef Uuid = E->getUuidStr(); 2362 std::string Name = "_GUID_" + Uuid.lower(); 2363 std::replace(Name.begin(), Name.end(), '-', '_'); 2364 2365 // The UUID descriptor should be pointer aligned. 2366 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2367 2368 // Look for an existing global. 2369 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2370 return ConstantAddress(GV, Alignment); 2371 2372 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2373 assert(Init && "failed to initialize as constant"); 2374 2375 auto *GV = new llvm::GlobalVariable( 2376 getModule(), Init->getType(), 2377 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2378 if (supportsCOMDAT()) 2379 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2380 setDSOLocal(GV); 2381 return ConstantAddress(GV, Alignment); 2382 } 2383 2384 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2385 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2386 assert(AA && "No alias?"); 2387 2388 CharUnits Alignment = getContext().getDeclAlign(VD); 2389 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2390 2391 // See if there is already something with the target's name in the module. 2392 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2393 if (Entry) { 2394 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2395 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2396 return ConstantAddress(Ptr, Alignment); 2397 } 2398 2399 llvm::Constant *Aliasee; 2400 if (isa<llvm::FunctionType>(DeclTy)) 2401 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2402 GlobalDecl(cast<FunctionDecl>(VD)), 2403 /*ForVTable=*/false); 2404 else 2405 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2406 llvm::PointerType::getUnqual(DeclTy), 2407 nullptr); 2408 2409 auto *F = cast<llvm::GlobalValue>(Aliasee); 2410 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2411 WeakRefReferences.insert(F); 2412 2413 return ConstantAddress(Aliasee, Alignment); 2414 } 2415 2416 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2417 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2418 2419 // Weak references don't produce any output by themselves. 2420 if (Global->hasAttr<WeakRefAttr>()) 2421 return; 2422 2423 // If this is an alias definition (which otherwise looks like a declaration) 2424 // emit it now. 2425 if (Global->hasAttr<AliasAttr>()) 2426 return EmitAliasDefinition(GD); 2427 2428 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2429 if (Global->hasAttr<IFuncAttr>()) 2430 return emitIFuncDefinition(GD); 2431 2432 // If this is a cpu_dispatch multiversion function, emit the resolver. 2433 if (Global->hasAttr<CPUDispatchAttr>()) 2434 return emitCPUDispatchDefinition(GD); 2435 2436 // If this is CUDA, be selective about which declarations we emit. 2437 if (LangOpts.CUDA) { 2438 if (LangOpts.CUDAIsDevice) { 2439 if (!Global->hasAttr<CUDADeviceAttr>() && 2440 !Global->hasAttr<CUDAGlobalAttr>() && 2441 !Global->hasAttr<CUDAConstantAttr>() && 2442 !Global->hasAttr<CUDASharedAttr>() && 2443 !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>())) 2444 return; 2445 } else { 2446 // We need to emit host-side 'shadows' for all global 2447 // device-side variables because the CUDA runtime needs their 2448 // size and host-side address in order to provide access to 2449 // their device-side incarnations. 2450 2451 // So device-only functions are the only things we skip. 2452 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2453 Global->hasAttr<CUDADeviceAttr>()) 2454 return; 2455 2456 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2457 "Expected Variable or Function"); 2458 } 2459 } 2460 2461 if (LangOpts.OpenMP) { 2462 // If this is OpenMP, check if it is legal to emit this global normally. 2463 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2464 return; 2465 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2466 if (MustBeEmitted(Global)) 2467 EmitOMPDeclareReduction(DRD); 2468 return; 2469 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2470 if (MustBeEmitted(Global)) 2471 EmitOMPDeclareMapper(DMD); 2472 return; 2473 } 2474 } 2475 2476 // Ignore declarations, they will be emitted on their first use. 2477 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2478 // Forward declarations are emitted lazily on first use. 2479 if (!FD->doesThisDeclarationHaveABody()) { 2480 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2481 return; 2482 2483 StringRef MangledName = getMangledName(GD); 2484 2485 // Compute the function info and LLVM type. 2486 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2487 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2488 2489 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2490 /*DontDefer=*/false); 2491 return; 2492 } 2493 } else { 2494 const auto *VD = cast<VarDecl>(Global); 2495 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2496 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2497 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2498 if (LangOpts.OpenMP) { 2499 // Emit declaration of the must-be-emitted declare target variable. 2500 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2501 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2502 bool UnifiedMemoryEnabled = 2503 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2504 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2505 !UnifiedMemoryEnabled) { 2506 (void)GetAddrOfGlobalVar(VD); 2507 } else { 2508 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2509 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2510 UnifiedMemoryEnabled)) && 2511 "Link clause or to clause with unified memory expected."); 2512 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2513 } 2514 2515 return; 2516 } 2517 } 2518 // If this declaration may have caused an inline variable definition to 2519 // change linkage, make sure that it's emitted. 2520 if (Context.getInlineVariableDefinitionKind(VD) == 2521 ASTContext::InlineVariableDefinitionKind::Strong) 2522 GetAddrOfGlobalVar(VD); 2523 return; 2524 } 2525 } 2526 2527 // Defer code generation to first use when possible, e.g. if this is an inline 2528 // function. If the global must always be emitted, do it eagerly if possible 2529 // to benefit from cache locality. 2530 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2531 // Emit the definition if it can't be deferred. 2532 EmitGlobalDefinition(GD); 2533 return; 2534 } 2535 2536 // Check if this must be emitted as declare variant. 2537 if (LangOpts.OpenMP && isa<FunctionDecl>(Global) && OpenMPRuntime && 2538 OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/false)) 2539 return; 2540 2541 // If we're deferring emission of a C++ variable with an 2542 // initializer, remember the order in which it appeared in the file. 2543 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2544 cast<VarDecl>(Global)->hasInit()) { 2545 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2546 CXXGlobalInits.push_back(nullptr); 2547 } 2548 2549 StringRef MangledName = getMangledName(GD); 2550 if (GetGlobalValue(MangledName) != nullptr) { 2551 // The value has already been used and should therefore be emitted. 2552 addDeferredDeclToEmit(GD); 2553 } else if (MustBeEmitted(Global)) { 2554 // The value must be emitted, but cannot be emitted eagerly. 2555 assert(!MayBeEmittedEagerly(Global)); 2556 addDeferredDeclToEmit(GD); 2557 } else { 2558 // Otherwise, remember that we saw a deferred decl with this name. The 2559 // first use of the mangled name will cause it to move into 2560 // DeferredDeclsToEmit. 2561 DeferredDecls[MangledName] = GD; 2562 } 2563 } 2564 2565 // Check if T is a class type with a destructor that's not dllimport. 2566 static bool HasNonDllImportDtor(QualType T) { 2567 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2568 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2569 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2570 return true; 2571 2572 return false; 2573 } 2574 2575 namespace { 2576 struct FunctionIsDirectlyRecursive 2577 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2578 const StringRef Name; 2579 const Builtin::Context &BI; 2580 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2581 : Name(N), BI(C) {} 2582 2583 bool VisitCallExpr(const CallExpr *E) { 2584 const FunctionDecl *FD = E->getDirectCallee(); 2585 if (!FD) 2586 return false; 2587 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2588 if (Attr && Name == Attr->getLabel()) 2589 return true; 2590 unsigned BuiltinID = FD->getBuiltinID(); 2591 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2592 return false; 2593 StringRef BuiltinName = BI.getName(BuiltinID); 2594 if (BuiltinName.startswith("__builtin_") && 2595 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2596 return true; 2597 } 2598 return false; 2599 } 2600 2601 bool VisitStmt(const Stmt *S) { 2602 for (const Stmt *Child : S->children()) 2603 if (Child && this->Visit(Child)) 2604 return true; 2605 return false; 2606 } 2607 }; 2608 2609 // Make sure we're not referencing non-imported vars or functions. 2610 struct DLLImportFunctionVisitor 2611 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2612 bool SafeToInline = true; 2613 2614 bool shouldVisitImplicitCode() const { return true; } 2615 2616 bool VisitVarDecl(VarDecl *VD) { 2617 if (VD->getTLSKind()) { 2618 // A thread-local variable cannot be imported. 2619 SafeToInline = false; 2620 return SafeToInline; 2621 } 2622 2623 // A variable definition might imply a destructor call. 2624 if (VD->isThisDeclarationADefinition()) 2625 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2626 2627 return SafeToInline; 2628 } 2629 2630 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2631 if (const auto *D = E->getTemporary()->getDestructor()) 2632 SafeToInline = D->hasAttr<DLLImportAttr>(); 2633 return SafeToInline; 2634 } 2635 2636 bool VisitDeclRefExpr(DeclRefExpr *E) { 2637 ValueDecl *VD = E->getDecl(); 2638 if (isa<FunctionDecl>(VD)) 2639 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2640 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2641 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2642 return SafeToInline; 2643 } 2644 2645 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2646 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2647 return SafeToInline; 2648 } 2649 2650 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2651 CXXMethodDecl *M = E->getMethodDecl(); 2652 if (!M) { 2653 // Call through a pointer to member function. This is safe to inline. 2654 SafeToInline = true; 2655 } else { 2656 SafeToInline = M->hasAttr<DLLImportAttr>(); 2657 } 2658 return SafeToInline; 2659 } 2660 2661 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2662 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2663 return SafeToInline; 2664 } 2665 2666 bool VisitCXXNewExpr(CXXNewExpr *E) { 2667 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2668 return SafeToInline; 2669 } 2670 }; 2671 } 2672 2673 // isTriviallyRecursive - Check if this function calls another 2674 // decl that, because of the asm attribute or the other decl being a builtin, 2675 // ends up pointing to itself. 2676 bool 2677 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2678 StringRef Name; 2679 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2680 // asm labels are a special kind of mangling we have to support. 2681 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2682 if (!Attr) 2683 return false; 2684 Name = Attr->getLabel(); 2685 } else { 2686 Name = FD->getName(); 2687 } 2688 2689 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2690 const Stmt *Body = FD->getBody(); 2691 return Body ? Walker.Visit(Body) : false; 2692 } 2693 2694 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2695 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2696 return true; 2697 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2698 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2699 return false; 2700 2701 if (F->hasAttr<DLLImportAttr>()) { 2702 // Check whether it would be safe to inline this dllimport function. 2703 DLLImportFunctionVisitor Visitor; 2704 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2705 if (!Visitor.SafeToInline) 2706 return false; 2707 2708 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2709 // Implicit destructor invocations aren't captured in the AST, so the 2710 // check above can't see them. Check for them manually here. 2711 for (const Decl *Member : Dtor->getParent()->decls()) 2712 if (isa<FieldDecl>(Member)) 2713 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2714 return false; 2715 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2716 if (HasNonDllImportDtor(B.getType())) 2717 return false; 2718 } 2719 } 2720 2721 // PR9614. Avoid cases where the source code is lying to us. An available 2722 // externally function should have an equivalent function somewhere else, 2723 // but a function that calls itself is clearly not equivalent to the real 2724 // implementation. 2725 // This happens in glibc's btowc and in some configure checks. 2726 return !isTriviallyRecursive(F); 2727 } 2728 2729 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2730 return CodeGenOpts.OptimizationLevel > 0; 2731 } 2732 2733 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2734 llvm::GlobalValue *GV) { 2735 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2736 2737 if (FD->isCPUSpecificMultiVersion()) { 2738 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2739 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2740 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2741 // Requires multiple emits. 2742 } else 2743 EmitGlobalFunctionDefinition(GD, GV); 2744 } 2745 2746 void CodeGenModule::emitOpenMPDeviceFunctionRedefinition( 2747 GlobalDecl OldGD, GlobalDecl NewGD, llvm::GlobalValue *GV) { 2748 assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 2749 OpenMPRuntime && "Expected OpenMP device mode."); 2750 const auto *D = cast<FunctionDecl>(OldGD.getDecl()); 2751 2752 // Compute the function info and LLVM type. 2753 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(OldGD); 2754 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2755 2756 // Get or create the prototype for the function. 2757 if (!GV || (GV->getType()->getElementType() != Ty)) { 2758 GV = cast<llvm::GlobalValue>(GetOrCreateLLVMFunction( 2759 getMangledName(OldGD), Ty, GlobalDecl(), /*ForVTable=*/false, 2760 /*DontDefer=*/true, /*IsThunk=*/false, llvm::AttributeList(), 2761 ForDefinition)); 2762 SetFunctionAttributes(OldGD, cast<llvm::Function>(GV), 2763 /*IsIncompleteFunction=*/false, 2764 /*IsThunk=*/false); 2765 } 2766 // We need to set linkage and visibility on the function before 2767 // generating code for it because various parts of IR generation 2768 // want to propagate this information down (e.g. to local static 2769 // declarations). 2770 auto *Fn = cast<llvm::Function>(GV); 2771 setFunctionLinkage(OldGD, Fn); 2772 2773 // FIXME: this is redundant with part of 2774 // setFunctionDefinitionAttributes 2775 setGVProperties(Fn, OldGD); 2776 2777 MaybeHandleStaticInExternC(D, Fn); 2778 2779 maybeSetTrivialComdat(*D, *Fn); 2780 2781 CodeGenFunction(*this).GenerateCode(NewGD, Fn, FI); 2782 2783 setNonAliasAttributes(OldGD, Fn); 2784 SetLLVMFunctionAttributesForDefinition(D, Fn); 2785 2786 if (D->hasAttr<AnnotateAttr>()) 2787 AddGlobalAnnotations(D, Fn); 2788 } 2789 2790 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2791 const auto *D = cast<ValueDecl>(GD.getDecl()); 2792 2793 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2794 Context.getSourceManager(), 2795 "Generating code for declaration"); 2796 2797 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2798 // At -O0, don't generate IR for functions with available_externally 2799 // linkage. 2800 if (!shouldEmitFunction(GD)) 2801 return; 2802 2803 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 2804 std::string Name; 2805 llvm::raw_string_ostream OS(Name); 2806 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 2807 /*Qualified=*/true); 2808 return Name; 2809 }); 2810 2811 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2812 // Make sure to emit the definition(s) before we emit the thunks. 2813 // This is necessary for the generation of certain thunks. 2814 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2815 ABI->emitCXXStructor(GD); 2816 else if (FD->isMultiVersion()) 2817 EmitMultiVersionFunctionDefinition(GD, GV); 2818 else 2819 EmitGlobalFunctionDefinition(GD, GV); 2820 2821 if (Method->isVirtual()) 2822 getVTables().EmitThunks(GD); 2823 2824 return; 2825 } 2826 2827 if (FD->isMultiVersion()) 2828 return EmitMultiVersionFunctionDefinition(GD, GV); 2829 return EmitGlobalFunctionDefinition(GD, GV); 2830 } 2831 2832 if (const auto *VD = dyn_cast<VarDecl>(D)) 2833 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2834 2835 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2836 } 2837 2838 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2839 llvm::Function *NewFn); 2840 2841 static unsigned 2842 TargetMVPriority(const TargetInfo &TI, 2843 const CodeGenFunction::MultiVersionResolverOption &RO) { 2844 unsigned Priority = 0; 2845 for (StringRef Feat : RO.Conditions.Features) 2846 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2847 2848 if (!RO.Conditions.Architecture.empty()) 2849 Priority = std::max( 2850 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2851 return Priority; 2852 } 2853 2854 void CodeGenModule::emitMultiVersionFunctions() { 2855 for (GlobalDecl GD : MultiVersionFuncs) { 2856 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2857 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2858 getContext().forEachMultiversionedFunctionVersion( 2859 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2860 GlobalDecl CurGD{ 2861 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2862 StringRef MangledName = getMangledName(CurGD); 2863 llvm::Constant *Func = GetGlobalValue(MangledName); 2864 if (!Func) { 2865 if (CurFD->isDefined()) { 2866 EmitGlobalFunctionDefinition(CurGD, nullptr); 2867 Func = GetGlobalValue(MangledName); 2868 } else { 2869 const CGFunctionInfo &FI = 2870 getTypes().arrangeGlobalDeclaration(GD); 2871 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2872 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2873 /*DontDefer=*/false, ForDefinition); 2874 } 2875 assert(Func && "This should have just been created"); 2876 } 2877 2878 const auto *TA = CurFD->getAttr<TargetAttr>(); 2879 llvm::SmallVector<StringRef, 8> Feats; 2880 TA->getAddedFeatures(Feats); 2881 2882 Options.emplace_back(cast<llvm::Function>(Func), 2883 TA->getArchitecture(), Feats); 2884 }); 2885 2886 llvm::Function *ResolverFunc; 2887 const TargetInfo &TI = getTarget(); 2888 2889 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 2890 ResolverFunc = cast<llvm::Function>( 2891 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2892 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 2893 } else { 2894 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2895 } 2896 2897 if (supportsCOMDAT()) 2898 ResolverFunc->setComdat( 2899 getModule().getOrInsertComdat(ResolverFunc->getName())); 2900 2901 llvm::stable_sort( 2902 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2903 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2904 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2905 }); 2906 CodeGenFunction CGF(*this); 2907 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2908 } 2909 } 2910 2911 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2912 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2913 assert(FD && "Not a FunctionDecl?"); 2914 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2915 assert(DD && "Not a cpu_dispatch Function?"); 2916 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 2917 2918 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2919 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2920 DeclTy = getTypes().GetFunctionType(FInfo); 2921 } 2922 2923 StringRef ResolverName = getMangledName(GD); 2924 2925 llvm::Type *ResolverType; 2926 GlobalDecl ResolverGD; 2927 if (getTarget().supportsIFunc()) 2928 ResolverType = llvm::FunctionType::get( 2929 llvm::PointerType::get(DeclTy, 2930 Context.getTargetAddressSpace(FD->getType())), 2931 false); 2932 else { 2933 ResolverType = DeclTy; 2934 ResolverGD = GD; 2935 } 2936 2937 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2938 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2939 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 2940 if (supportsCOMDAT()) 2941 ResolverFunc->setComdat( 2942 getModule().getOrInsertComdat(ResolverFunc->getName())); 2943 2944 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2945 const TargetInfo &Target = getTarget(); 2946 unsigned Index = 0; 2947 for (const IdentifierInfo *II : DD->cpus()) { 2948 // Get the name of the target function so we can look it up/create it. 2949 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2950 getCPUSpecificMangling(*this, II->getName()); 2951 2952 llvm::Constant *Func = GetGlobalValue(MangledName); 2953 2954 if (!Func) { 2955 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 2956 if (ExistingDecl.getDecl() && 2957 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 2958 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 2959 Func = GetGlobalValue(MangledName); 2960 } else { 2961 if (!ExistingDecl.getDecl()) 2962 ExistingDecl = GD.getWithMultiVersionIndex(Index); 2963 2964 Func = GetOrCreateLLVMFunction( 2965 MangledName, DeclTy, ExistingDecl, 2966 /*ForVTable=*/false, /*DontDefer=*/true, 2967 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2968 } 2969 } 2970 2971 llvm::SmallVector<StringRef, 32> Features; 2972 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2973 llvm::transform(Features, Features.begin(), 2974 [](StringRef Str) { return Str.substr(1); }); 2975 Features.erase(std::remove_if( 2976 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2977 return !Target.validateCpuSupports(Feat); 2978 }), Features.end()); 2979 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 2980 ++Index; 2981 } 2982 2983 llvm::sort( 2984 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2985 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2986 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 2987 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 2988 }); 2989 2990 // If the list contains multiple 'default' versions, such as when it contains 2991 // 'pentium' and 'generic', don't emit the call to the generic one (since we 2992 // always run on at least a 'pentium'). We do this by deleting the 'least 2993 // advanced' (read, lowest mangling letter). 2994 while (Options.size() > 1 && 2995 CodeGenFunction::GetX86CpuSupportsMask( 2996 (Options.end() - 2)->Conditions.Features) == 0) { 2997 StringRef LHSName = (Options.end() - 2)->Function->getName(); 2998 StringRef RHSName = (Options.end() - 1)->Function->getName(); 2999 if (LHSName.compare(RHSName) < 0) 3000 Options.erase(Options.end() - 2); 3001 else 3002 Options.erase(Options.end() - 1); 3003 } 3004 3005 CodeGenFunction CGF(*this); 3006 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3007 3008 if (getTarget().supportsIFunc()) { 3009 std::string AliasName = getMangledNameImpl( 3010 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3011 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3012 if (!AliasFunc) { 3013 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3014 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3015 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3016 auto *GA = llvm::GlobalAlias::create( 3017 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3018 GA->setLinkage(llvm::Function::WeakODRLinkage); 3019 SetCommonAttributes(GD, GA); 3020 } 3021 } 3022 } 3023 3024 /// If a dispatcher for the specified mangled name is not in the module, create 3025 /// and return an llvm Function with the specified type. 3026 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3027 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3028 std::string MangledName = 3029 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3030 3031 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3032 // a separate resolver). 3033 std::string ResolverName = MangledName; 3034 if (getTarget().supportsIFunc()) 3035 ResolverName += ".ifunc"; 3036 else if (FD->isTargetMultiVersion()) 3037 ResolverName += ".resolver"; 3038 3039 // If this already exists, just return that one. 3040 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3041 return ResolverGV; 3042 3043 // Since this is the first time we've created this IFunc, make sure 3044 // that we put this multiversioned function into the list to be 3045 // replaced later if necessary (target multiversioning only). 3046 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3047 MultiVersionFuncs.push_back(GD); 3048 3049 if (getTarget().supportsIFunc()) { 3050 llvm::Type *ResolverType = llvm::FunctionType::get( 3051 llvm::PointerType::get( 3052 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3053 false); 3054 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3055 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3056 /*ForVTable=*/false); 3057 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3058 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3059 GIF->setName(ResolverName); 3060 SetCommonAttributes(FD, GIF); 3061 3062 return GIF; 3063 } 3064 3065 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3066 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3067 assert(isa<llvm::GlobalValue>(Resolver) && 3068 "Resolver should be created for the first time"); 3069 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3070 return Resolver; 3071 } 3072 3073 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3074 /// module, create and return an llvm Function with the specified type. If there 3075 /// is something in the module with the specified name, return it potentially 3076 /// bitcasted to the right type. 3077 /// 3078 /// If D is non-null, it specifies a decl that correspond to this. This is used 3079 /// to set the attributes on the function when it is first created. 3080 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3081 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3082 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3083 ForDefinition_t IsForDefinition) { 3084 const Decl *D = GD.getDecl(); 3085 3086 // Any attempts to use a MultiVersion function should result in retrieving 3087 // the iFunc instead. Name Mangling will handle the rest of the changes. 3088 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3089 // For the device mark the function as one that should be emitted. 3090 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3091 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3092 !DontDefer && !IsForDefinition) { 3093 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3094 GlobalDecl GDDef; 3095 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3096 GDDef = GlobalDecl(CD, GD.getCtorType()); 3097 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3098 GDDef = GlobalDecl(DD, GD.getDtorType()); 3099 else 3100 GDDef = GlobalDecl(FDDef); 3101 EmitGlobal(GDDef); 3102 } 3103 } 3104 // Check if this must be emitted as declare variant and emit reference to 3105 // the the declare variant function. 3106 if (LangOpts.OpenMP && OpenMPRuntime) 3107 (void)OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true); 3108 3109 if (FD->isMultiVersion()) { 3110 const auto *TA = FD->getAttr<TargetAttr>(); 3111 if (TA && TA->isDefaultVersion()) 3112 UpdateMultiVersionNames(GD, FD); 3113 if (!IsForDefinition) 3114 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3115 } 3116 } 3117 3118 // Lookup the entry, lazily creating it if necessary. 3119 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3120 if (Entry) { 3121 if (WeakRefReferences.erase(Entry)) { 3122 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3123 if (FD && !FD->hasAttr<WeakAttr>()) 3124 Entry->setLinkage(llvm::Function::ExternalLinkage); 3125 } 3126 3127 // Handle dropped DLL attributes. 3128 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3129 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3130 setDSOLocal(Entry); 3131 } 3132 3133 // If there are two attempts to define the same mangled name, issue an 3134 // error. 3135 if (IsForDefinition && !Entry->isDeclaration()) { 3136 GlobalDecl OtherGD; 3137 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3138 // to make sure that we issue an error only once. 3139 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3140 (GD.getCanonicalDecl().getDecl() != 3141 OtherGD.getCanonicalDecl().getDecl()) && 3142 DiagnosedConflictingDefinitions.insert(GD).second) { 3143 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3144 << MangledName; 3145 getDiags().Report(OtherGD.getDecl()->getLocation(), 3146 diag::note_previous_definition); 3147 } 3148 } 3149 3150 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3151 (Entry->getType()->getElementType() == Ty)) { 3152 return Entry; 3153 } 3154 3155 // Make sure the result is of the correct type. 3156 // (If function is requested for a definition, we always need to create a new 3157 // function, not just return a bitcast.) 3158 if (!IsForDefinition) 3159 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3160 } 3161 3162 // This function doesn't have a complete type (for example, the return 3163 // type is an incomplete struct). Use a fake type instead, and make 3164 // sure not to try to set attributes. 3165 bool IsIncompleteFunction = false; 3166 3167 llvm::FunctionType *FTy; 3168 if (isa<llvm::FunctionType>(Ty)) { 3169 FTy = cast<llvm::FunctionType>(Ty); 3170 } else { 3171 FTy = llvm::FunctionType::get(VoidTy, false); 3172 IsIncompleteFunction = true; 3173 } 3174 3175 llvm::Function *F = 3176 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3177 Entry ? StringRef() : MangledName, &getModule()); 3178 3179 // If we already created a function with the same mangled name (but different 3180 // type) before, take its name and add it to the list of functions to be 3181 // replaced with F at the end of CodeGen. 3182 // 3183 // This happens if there is a prototype for a function (e.g. "int f()") and 3184 // then a definition of a different type (e.g. "int f(int x)"). 3185 if (Entry) { 3186 F->takeName(Entry); 3187 3188 // This might be an implementation of a function without a prototype, in 3189 // which case, try to do special replacement of calls which match the new 3190 // prototype. The really key thing here is that we also potentially drop 3191 // arguments from the call site so as to make a direct call, which makes the 3192 // inliner happier and suppresses a number of optimizer warnings (!) about 3193 // dropping arguments. 3194 if (!Entry->use_empty()) { 3195 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3196 Entry->removeDeadConstantUsers(); 3197 } 3198 3199 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3200 F, Entry->getType()->getElementType()->getPointerTo()); 3201 addGlobalValReplacement(Entry, BC); 3202 } 3203 3204 assert(F->getName() == MangledName && "name was uniqued!"); 3205 if (D) 3206 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3207 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3208 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3209 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3210 } 3211 3212 if (!DontDefer) { 3213 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3214 // each other bottoming out with the base dtor. Therefore we emit non-base 3215 // dtors on usage, even if there is no dtor definition in the TU. 3216 if (D && isa<CXXDestructorDecl>(D) && 3217 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3218 GD.getDtorType())) 3219 addDeferredDeclToEmit(GD); 3220 3221 // This is the first use or definition of a mangled name. If there is a 3222 // deferred decl with this name, remember that we need to emit it at the end 3223 // of the file. 3224 auto DDI = DeferredDecls.find(MangledName); 3225 if (DDI != DeferredDecls.end()) { 3226 // Move the potentially referenced deferred decl to the 3227 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3228 // don't need it anymore). 3229 addDeferredDeclToEmit(DDI->second); 3230 DeferredDecls.erase(DDI); 3231 3232 // Otherwise, there are cases we have to worry about where we're 3233 // using a declaration for which we must emit a definition but where 3234 // we might not find a top-level definition: 3235 // - member functions defined inline in their classes 3236 // - friend functions defined inline in some class 3237 // - special member functions with implicit definitions 3238 // If we ever change our AST traversal to walk into class methods, 3239 // this will be unnecessary. 3240 // 3241 // We also don't emit a definition for a function if it's going to be an 3242 // entry in a vtable, unless it's already marked as used. 3243 } else if (getLangOpts().CPlusPlus && D) { 3244 // Look for a declaration that's lexically in a record. 3245 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3246 FD = FD->getPreviousDecl()) { 3247 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3248 if (FD->doesThisDeclarationHaveABody()) { 3249 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3250 break; 3251 } 3252 } 3253 } 3254 } 3255 } 3256 3257 // Make sure the result is of the requested type. 3258 if (!IsIncompleteFunction) { 3259 assert(F->getType()->getElementType() == Ty); 3260 return F; 3261 } 3262 3263 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3264 return llvm::ConstantExpr::getBitCast(F, PTy); 3265 } 3266 3267 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3268 /// non-null, then this function will use the specified type if it has to 3269 /// create it (this occurs when we see a definition of the function). 3270 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3271 llvm::Type *Ty, 3272 bool ForVTable, 3273 bool DontDefer, 3274 ForDefinition_t IsForDefinition) { 3275 // If there was no specific requested type, just convert it now. 3276 if (!Ty) { 3277 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3278 Ty = getTypes().ConvertType(FD->getType()); 3279 } 3280 3281 // Devirtualized destructor calls may come through here instead of via 3282 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3283 // of the complete destructor when necessary. 3284 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3285 if (getTarget().getCXXABI().isMicrosoft() && 3286 GD.getDtorType() == Dtor_Complete && 3287 DD->getParent()->getNumVBases() == 0) 3288 GD = GlobalDecl(DD, Dtor_Base); 3289 } 3290 3291 StringRef MangledName = getMangledName(GD); 3292 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3293 /*IsThunk=*/false, llvm::AttributeList(), 3294 IsForDefinition); 3295 } 3296 3297 static const FunctionDecl * 3298 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3299 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3300 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3301 3302 IdentifierInfo &CII = C.Idents.get(Name); 3303 for (const auto &Result : DC->lookup(&CII)) 3304 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3305 return FD; 3306 3307 if (!C.getLangOpts().CPlusPlus) 3308 return nullptr; 3309 3310 // Demangle the premangled name from getTerminateFn() 3311 IdentifierInfo &CXXII = 3312 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3313 ? C.Idents.get("terminate") 3314 : C.Idents.get(Name); 3315 3316 for (const auto &N : {"__cxxabiv1", "std"}) { 3317 IdentifierInfo &NS = C.Idents.get(N); 3318 for (const auto &Result : DC->lookup(&NS)) { 3319 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3320 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3321 for (const auto &Result : LSD->lookup(&NS)) 3322 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3323 break; 3324 3325 if (ND) 3326 for (const auto &Result : ND->lookup(&CXXII)) 3327 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3328 return FD; 3329 } 3330 } 3331 3332 return nullptr; 3333 } 3334 3335 /// CreateRuntimeFunction - Create a new runtime function with the specified 3336 /// type and name. 3337 llvm::FunctionCallee 3338 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3339 llvm::AttributeList ExtraAttrs, bool Local, 3340 bool AssumeConvergent) { 3341 if (AssumeConvergent) { 3342 ExtraAttrs = 3343 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3344 llvm::Attribute::Convergent); 3345 } 3346 3347 llvm::Constant *C = 3348 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3349 /*DontDefer=*/false, /*IsThunk=*/false, 3350 ExtraAttrs); 3351 3352 if (auto *F = dyn_cast<llvm::Function>(C)) { 3353 if (F->empty()) { 3354 F->setCallingConv(getRuntimeCC()); 3355 3356 // In Windows Itanium environments, try to mark runtime functions 3357 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3358 // will link their standard library statically or dynamically. Marking 3359 // functions imported when they are not imported can cause linker errors 3360 // and warnings. 3361 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3362 !getCodeGenOpts().LTOVisibilityPublicStd) { 3363 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3364 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3365 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3366 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3367 } 3368 } 3369 setDSOLocal(F); 3370 } 3371 } 3372 3373 return {FTy, C}; 3374 } 3375 3376 /// isTypeConstant - Determine whether an object of this type can be emitted 3377 /// as a constant. 3378 /// 3379 /// If ExcludeCtor is true, the duration when the object's constructor runs 3380 /// will not be considered. The caller will need to verify that the object is 3381 /// not written to during its construction. 3382 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3383 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3384 return false; 3385 3386 if (Context.getLangOpts().CPlusPlus) { 3387 if (const CXXRecordDecl *Record 3388 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3389 return ExcludeCtor && !Record->hasMutableFields() && 3390 Record->hasTrivialDestructor(); 3391 } 3392 3393 return true; 3394 } 3395 3396 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3397 /// create and return an llvm GlobalVariable with the specified type. If there 3398 /// is something in the module with the specified name, return it potentially 3399 /// bitcasted to the right type. 3400 /// 3401 /// If D is non-null, it specifies a decl that correspond to this. This is used 3402 /// to set the attributes on the global when it is first created. 3403 /// 3404 /// If IsForDefinition is true, it is guaranteed that an actual global with 3405 /// type Ty will be returned, not conversion of a variable with the same 3406 /// mangled name but some other type. 3407 llvm::Constant * 3408 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3409 llvm::PointerType *Ty, 3410 const VarDecl *D, 3411 ForDefinition_t IsForDefinition) { 3412 // Lookup the entry, lazily creating it if necessary. 3413 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3414 if (Entry) { 3415 if (WeakRefReferences.erase(Entry)) { 3416 if (D && !D->hasAttr<WeakAttr>()) 3417 Entry->setLinkage(llvm::Function::ExternalLinkage); 3418 } 3419 3420 // Handle dropped DLL attributes. 3421 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3422 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3423 3424 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3425 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3426 3427 if (Entry->getType() == Ty) 3428 return Entry; 3429 3430 // If there are two attempts to define the same mangled name, issue an 3431 // error. 3432 if (IsForDefinition && !Entry->isDeclaration()) { 3433 GlobalDecl OtherGD; 3434 const VarDecl *OtherD; 3435 3436 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3437 // to make sure that we issue an error only once. 3438 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3439 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3440 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3441 OtherD->hasInit() && 3442 DiagnosedConflictingDefinitions.insert(D).second) { 3443 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3444 << MangledName; 3445 getDiags().Report(OtherGD.getDecl()->getLocation(), 3446 diag::note_previous_definition); 3447 } 3448 } 3449 3450 // Make sure the result is of the correct type. 3451 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3452 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3453 3454 // (If global is requested for a definition, we always need to create a new 3455 // global, not just return a bitcast.) 3456 if (!IsForDefinition) 3457 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3458 } 3459 3460 auto AddrSpace = GetGlobalVarAddressSpace(D); 3461 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3462 3463 auto *GV = new llvm::GlobalVariable( 3464 getModule(), Ty->getElementType(), false, 3465 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3466 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3467 3468 // If we already created a global with the same mangled name (but different 3469 // type) before, take its name and remove it from its parent. 3470 if (Entry) { 3471 GV->takeName(Entry); 3472 3473 if (!Entry->use_empty()) { 3474 llvm::Constant *NewPtrForOldDecl = 3475 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3476 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3477 } 3478 3479 Entry->eraseFromParent(); 3480 } 3481 3482 // This is the first use or definition of a mangled name. If there is a 3483 // deferred decl with this name, remember that we need to emit it at the end 3484 // of the file. 3485 auto DDI = DeferredDecls.find(MangledName); 3486 if (DDI != DeferredDecls.end()) { 3487 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3488 // list, and remove it from DeferredDecls (since we don't need it anymore). 3489 addDeferredDeclToEmit(DDI->second); 3490 DeferredDecls.erase(DDI); 3491 } 3492 3493 // Handle things which are present even on external declarations. 3494 if (D) { 3495 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3496 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3497 3498 // FIXME: This code is overly simple and should be merged with other global 3499 // handling. 3500 GV->setConstant(isTypeConstant(D->getType(), false)); 3501 3502 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3503 3504 setLinkageForGV(GV, D); 3505 3506 if (D->getTLSKind()) { 3507 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3508 CXXThreadLocals.push_back(D); 3509 setTLSMode(GV, *D); 3510 } 3511 3512 setGVProperties(GV, D); 3513 3514 // If required by the ABI, treat declarations of static data members with 3515 // inline initializers as definitions. 3516 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3517 EmitGlobalVarDefinition(D); 3518 } 3519 3520 // Emit section information for extern variables. 3521 if (D->hasExternalStorage()) { 3522 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3523 GV->setSection(SA->getName()); 3524 } 3525 3526 // Handle XCore specific ABI requirements. 3527 if (getTriple().getArch() == llvm::Triple::xcore && 3528 D->getLanguageLinkage() == CLanguageLinkage && 3529 D->getType().isConstant(Context) && 3530 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3531 GV->setSection(".cp.rodata"); 3532 3533 // Check if we a have a const declaration with an initializer, we may be 3534 // able to emit it as available_externally to expose it's value to the 3535 // optimizer. 3536 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3537 D->getType().isConstQualified() && !GV->hasInitializer() && 3538 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3539 const auto *Record = 3540 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3541 bool HasMutableFields = Record && Record->hasMutableFields(); 3542 if (!HasMutableFields) { 3543 const VarDecl *InitDecl; 3544 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3545 if (InitExpr) { 3546 ConstantEmitter emitter(*this); 3547 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3548 if (Init) { 3549 auto *InitType = Init->getType(); 3550 if (GV->getType()->getElementType() != InitType) { 3551 // The type of the initializer does not match the definition. 3552 // This happens when an initializer has a different type from 3553 // the type of the global (because of padding at the end of a 3554 // structure for instance). 3555 GV->setName(StringRef()); 3556 // Make a new global with the correct type, this is now guaranteed 3557 // to work. 3558 auto *NewGV = cast<llvm::GlobalVariable>( 3559 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3560 ->stripPointerCasts()); 3561 3562 // Erase the old global, since it is no longer used. 3563 GV->eraseFromParent(); 3564 GV = NewGV; 3565 } else { 3566 GV->setInitializer(Init); 3567 GV->setConstant(true); 3568 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3569 } 3570 emitter.finalize(GV); 3571 } 3572 } 3573 } 3574 } 3575 } 3576 3577 if (GV->isDeclaration()) 3578 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3579 3580 LangAS ExpectedAS = 3581 D ? D->getType().getAddressSpace() 3582 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3583 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3584 Ty->getPointerAddressSpace()); 3585 if (AddrSpace != ExpectedAS) 3586 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3587 ExpectedAS, Ty); 3588 3589 return GV; 3590 } 3591 3592 llvm::Constant * 3593 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3594 ForDefinition_t IsForDefinition) { 3595 const Decl *D = GD.getDecl(); 3596 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3597 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3598 /*DontDefer=*/false, IsForDefinition); 3599 else if (isa<CXXMethodDecl>(D)) { 3600 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3601 cast<CXXMethodDecl>(D)); 3602 auto Ty = getTypes().GetFunctionType(*FInfo); 3603 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3604 IsForDefinition); 3605 } else if (isa<FunctionDecl>(D)) { 3606 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3607 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3608 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3609 IsForDefinition); 3610 } else 3611 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3612 IsForDefinition); 3613 } 3614 3615 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3616 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3617 unsigned Alignment) { 3618 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3619 llvm::GlobalVariable *OldGV = nullptr; 3620 3621 if (GV) { 3622 // Check if the variable has the right type. 3623 if (GV->getType()->getElementType() == Ty) 3624 return GV; 3625 3626 // Because C++ name mangling, the only way we can end up with an already 3627 // existing global with the same name is if it has been declared extern "C". 3628 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3629 OldGV = GV; 3630 } 3631 3632 // Create a new variable. 3633 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3634 Linkage, nullptr, Name); 3635 3636 if (OldGV) { 3637 // Replace occurrences of the old variable if needed. 3638 GV->takeName(OldGV); 3639 3640 if (!OldGV->use_empty()) { 3641 llvm::Constant *NewPtrForOldDecl = 3642 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3643 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3644 } 3645 3646 OldGV->eraseFromParent(); 3647 } 3648 3649 if (supportsCOMDAT() && GV->isWeakForLinker() && 3650 !GV->hasAvailableExternallyLinkage()) 3651 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3652 3653 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3654 3655 return GV; 3656 } 3657 3658 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3659 /// given global variable. If Ty is non-null and if the global doesn't exist, 3660 /// then it will be created with the specified type instead of whatever the 3661 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3662 /// that an actual global with type Ty will be returned, not conversion of a 3663 /// variable with the same mangled name but some other type. 3664 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3665 llvm::Type *Ty, 3666 ForDefinition_t IsForDefinition) { 3667 assert(D->hasGlobalStorage() && "Not a global variable"); 3668 QualType ASTTy = D->getType(); 3669 if (!Ty) 3670 Ty = getTypes().ConvertTypeForMem(ASTTy); 3671 3672 llvm::PointerType *PTy = 3673 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3674 3675 StringRef MangledName = getMangledName(D); 3676 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3677 } 3678 3679 /// CreateRuntimeVariable - Create a new runtime global variable with the 3680 /// specified type and name. 3681 llvm::Constant * 3682 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3683 StringRef Name) { 3684 auto PtrTy = 3685 getContext().getLangOpts().OpenCL 3686 ? llvm::PointerType::get( 3687 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3688 : llvm::PointerType::getUnqual(Ty); 3689 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3690 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3691 return Ret; 3692 } 3693 3694 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3695 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3696 3697 StringRef MangledName = getMangledName(D); 3698 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3699 3700 // We already have a definition, not declaration, with the same mangled name. 3701 // Emitting of declaration is not required (and actually overwrites emitted 3702 // definition). 3703 if (GV && !GV->isDeclaration()) 3704 return; 3705 3706 // If we have not seen a reference to this variable yet, place it into the 3707 // deferred declarations table to be emitted if needed later. 3708 if (!MustBeEmitted(D) && !GV) { 3709 DeferredDecls[MangledName] = D; 3710 return; 3711 } 3712 3713 // The tentative definition is the only definition. 3714 EmitGlobalVarDefinition(D); 3715 } 3716 3717 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3718 return Context.toCharUnitsFromBits( 3719 getDataLayout().getTypeStoreSizeInBits(Ty)); 3720 } 3721 3722 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3723 LangAS AddrSpace = LangAS::Default; 3724 if (LangOpts.OpenCL) { 3725 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3726 assert(AddrSpace == LangAS::opencl_global || 3727 AddrSpace == LangAS::opencl_constant || 3728 AddrSpace == LangAS::opencl_local || 3729 AddrSpace >= LangAS::FirstTargetAddressSpace); 3730 return AddrSpace; 3731 } 3732 3733 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3734 if (D && D->hasAttr<CUDAConstantAttr>()) 3735 return LangAS::cuda_constant; 3736 else if (D && D->hasAttr<CUDASharedAttr>()) 3737 return LangAS::cuda_shared; 3738 else if (D && D->hasAttr<CUDADeviceAttr>()) 3739 return LangAS::cuda_device; 3740 else if (D && D->getType().isConstQualified()) 3741 return LangAS::cuda_constant; 3742 else 3743 return LangAS::cuda_device; 3744 } 3745 3746 if (LangOpts.OpenMP) { 3747 LangAS AS; 3748 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3749 return AS; 3750 } 3751 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3752 } 3753 3754 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3755 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3756 if (LangOpts.OpenCL) 3757 return LangAS::opencl_constant; 3758 if (auto AS = getTarget().getConstantAddressSpace()) 3759 return AS.getValue(); 3760 return LangAS::Default; 3761 } 3762 3763 // In address space agnostic languages, string literals are in default address 3764 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3765 // emitted in constant address space in LLVM IR. To be consistent with other 3766 // parts of AST, string literal global variables in constant address space 3767 // need to be casted to default address space before being put into address 3768 // map and referenced by other part of CodeGen. 3769 // In OpenCL, string literals are in constant address space in AST, therefore 3770 // they should not be casted to default address space. 3771 static llvm::Constant * 3772 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3773 llvm::GlobalVariable *GV) { 3774 llvm::Constant *Cast = GV; 3775 if (!CGM.getLangOpts().OpenCL) { 3776 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3777 if (AS != LangAS::Default) 3778 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3779 CGM, GV, AS.getValue(), LangAS::Default, 3780 GV->getValueType()->getPointerTo( 3781 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3782 } 3783 } 3784 return Cast; 3785 } 3786 3787 template<typename SomeDecl> 3788 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3789 llvm::GlobalValue *GV) { 3790 if (!getLangOpts().CPlusPlus) 3791 return; 3792 3793 // Must have 'used' attribute, or else inline assembly can't rely on 3794 // the name existing. 3795 if (!D->template hasAttr<UsedAttr>()) 3796 return; 3797 3798 // Must have internal linkage and an ordinary name. 3799 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3800 return; 3801 3802 // Must be in an extern "C" context. Entities declared directly within 3803 // a record are not extern "C" even if the record is in such a context. 3804 const SomeDecl *First = D->getFirstDecl(); 3805 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3806 return; 3807 3808 // OK, this is an internal linkage entity inside an extern "C" linkage 3809 // specification. Make a note of that so we can give it the "expected" 3810 // mangled name if nothing else is using that name. 3811 std::pair<StaticExternCMap::iterator, bool> R = 3812 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3813 3814 // If we have multiple internal linkage entities with the same name 3815 // in extern "C" regions, none of them gets that name. 3816 if (!R.second) 3817 R.first->second = nullptr; 3818 } 3819 3820 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3821 if (!CGM.supportsCOMDAT()) 3822 return false; 3823 3824 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 3825 // them being "merged" by the COMDAT Folding linker optimization. 3826 if (D.hasAttr<CUDAGlobalAttr>()) 3827 return false; 3828 3829 if (D.hasAttr<SelectAnyAttr>()) 3830 return true; 3831 3832 GVALinkage Linkage; 3833 if (auto *VD = dyn_cast<VarDecl>(&D)) 3834 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3835 else 3836 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3837 3838 switch (Linkage) { 3839 case GVA_Internal: 3840 case GVA_AvailableExternally: 3841 case GVA_StrongExternal: 3842 return false; 3843 case GVA_DiscardableODR: 3844 case GVA_StrongODR: 3845 return true; 3846 } 3847 llvm_unreachable("No such linkage"); 3848 } 3849 3850 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3851 llvm::GlobalObject &GO) { 3852 if (!shouldBeInCOMDAT(*this, D)) 3853 return; 3854 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3855 } 3856 3857 /// Pass IsTentative as true if you want to create a tentative definition. 3858 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3859 bool IsTentative) { 3860 // OpenCL global variables of sampler type are translated to function calls, 3861 // therefore no need to be translated. 3862 QualType ASTTy = D->getType(); 3863 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3864 return; 3865 3866 // If this is OpenMP device, check if it is legal to emit this global 3867 // normally. 3868 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3869 OpenMPRuntime->emitTargetGlobalVariable(D)) 3870 return; 3871 3872 llvm::Constant *Init = nullptr; 3873 bool NeedsGlobalCtor = false; 3874 bool NeedsGlobalDtor = 3875 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 3876 3877 const VarDecl *InitDecl; 3878 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3879 3880 Optional<ConstantEmitter> emitter; 3881 3882 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3883 // as part of their declaration." Sema has already checked for 3884 // error cases, so we just need to set Init to UndefValue. 3885 bool IsCUDASharedVar = 3886 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3887 // Shadows of initialized device-side global variables are also left 3888 // undefined. 3889 bool IsCUDAShadowVar = 3890 !getLangOpts().CUDAIsDevice && 3891 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3892 D->hasAttr<CUDASharedAttr>()); 3893 // HIP pinned shadow of initialized host-side global variables are also 3894 // left undefined. 3895 bool IsHIPPinnedShadowVar = 3896 getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>(); 3897 if (getLangOpts().CUDA && 3898 (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar)) 3899 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3900 else if (!InitExpr) { 3901 // This is a tentative definition; tentative definitions are 3902 // implicitly initialized with { 0 }. 3903 // 3904 // Note that tentative definitions are only emitted at the end of 3905 // a translation unit, so they should never have incomplete 3906 // type. In addition, EmitTentativeDefinition makes sure that we 3907 // never attempt to emit a tentative definition if a real one 3908 // exists. A use may still exists, however, so we still may need 3909 // to do a RAUW. 3910 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3911 Init = EmitNullConstant(D->getType()); 3912 } else { 3913 initializedGlobalDecl = GlobalDecl(D); 3914 emitter.emplace(*this); 3915 Init = emitter->tryEmitForInitializer(*InitDecl); 3916 3917 if (!Init) { 3918 QualType T = InitExpr->getType(); 3919 if (D->getType()->isReferenceType()) 3920 T = D->getType(); 3921 3922 if (getLangOpts().CPlusPlus) { 3923 Init = EmitNullConstant(T); 3924 NeedsGlobalCtor = true; 3925 } else { 3926 ErrorUnsupported(D, "static initializer"); 3927 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3928 } 3929 } else { 3930 // We don't need an initializer, so remove the entry for the delayed 3931 // initializer position (just in case this entry was delayed) if we 3932 // also don't need to register a destructor. 3933 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3934 DelayedCXXInitPosition.erase(D); 3935 } 3936 } 3937 3938 llvm::Type* InitType = Init->getType(); 3939 llvm::Constant *Entry = 3940 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3941 3942 // Strip off pointer casts if we got them. 3943 Entry = Entry->stripPointerCasts(); 3944 3945 // Entry is now either a Function or GlobalVariable. 3946 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3947 3948 // We have a definition after a declaration with the wrong type. 3949 // We must make a new GlobalVariable* and update everything that used OldGV 3950 // (a declaration or tentative definition) with the new GlobalVariable* 3951 // (which will be a definition). 3952 // 3953 // This happens if there is a prototype for a global (e.g. 3954 // "extern int x[];") and then a definition of a different type (e.g. 3955 // "int x[10];"). This also happens when an initializer has a different type 3956 // from the type of the global (this happens with unions). 3957 if (!GV || GV->getType()->getElementType() != InitType || 3958 GV->getType()->getAddressSpace() != 3959 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3960 3961 // Move the old entry aside so that we'll create a new one. 3962 Entry->setName(StringRef()); 3963 3964 // Make a new global with the correct type, this is now guaranteed to work. 3965 GV = cast<llvm::GlobalVariable>( 3966 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 3967 ->stripPointerCasts()); 3968 3969 // Replace all uses of the old global with the new global 3970 llvm::Constant *NewPtrForOldDecl = 3971 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3972 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3973 3974 // Erase the old global, since it is no longer used. 3975 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3976 } 3977 3978 MaybeHandleStaticInExternC(D, GV); 3979 3980 if (D->hasAttr<AnnotateAttr>()) 3981 AddGlobalAnnotations(D, GV); 3982 3983 // Set the llvm linkage type as appropriate. 3984 llvm::GlobalValue::LinkageTypes Linkage = 3985 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3986 3987 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3988 // the device. [...]" 3989 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3990 // __device__, declares a variable that: [...] 3991 // Is accessible from all the threads within the grid and from the host 3992 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3993 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3994 if (GV && LangOpts.CUDA) { 3995 if (LangOpts.CUDAIsDevice) { 3996 if (Linkage != llvm::GlobalValue::InternalLinkage && 3997 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 3998 GV->setExternallyInitialized(true); 3999 } else { 4000 // Host-side shadows of external declarations of device-side 4001 // global variables become internal definitions. These have to 4002 // be internal in order to prevent name conflicts with global 4003 // host variables with the same name in a different TUs. 4004 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4005 D->hasAttr<HIPPinnedShadowAttr>()) { 4006 Linkage = llvm::GlobalValue::InternalLinkage; 4007 4008 // Shadow variables and their properties must be registered 4009 // with CUDA runtime. 4010 unsigned Flags = 0; 4011 if (!D->hasDefinition()) 4012 Flags |= CGCUDARuntime::ExternDeviceVar; 4013 if (D->hasAttr<CUDAConstantAttr>()) 4014 Flags |= CGCUDARuntime::ConstantDeviceVar; 4015 // Extern global variables will be registered in the TU where they are 4016 // defined. 4017 if (!D->hasExternalStorage()) 4018 getCUDARuntime().registerDeviceVar(D, *GV, Flags); 4019 } else if (D->hasAttr<CUDASharedAttr>()) 4020 // __shared__ variables are odd. Shadows do get created, but 4021 // they are not registered with the CUDA runtime, so they 4022 // can't really be used to access their device-side 4023 // counterparts. It's not clear yet whether it's nvcc's bug or 4024 // a feature, but we've got to do the same for compatibility. 4025 Linkage = llvm::GlobalValue::InternalLinkage; 4026 } 4027 } 4028 4029 if (!IsHIPPinnedShadowVar) 4030 GV->setInitializer(Init); 4031 if (emitter) emitter->finalize(GV); 4032 4033 // If it is safe to mark the global 'constant', do so now. 4034 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4035 isTypeConstant(D->getType(), true)); 4036 4037 // If it is in a read-only section, mark it 'constant'. 4038 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4039 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4040 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4041 GV->setConstant(true); 4042 } 4043 4044 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4045 4046 // On Darwin, if the normal linkage of a C++ thread_local variable is 4047 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 4048 // copies within a linkage unit; otherwise, the backing variable has 4049 // internal linkage and all accesses should just be calls to the 4050 // Itanium-specified entry point, which has the normal linkage of the 4051 // variable. This is to preserve the ability to change the implementation 4052 // behind the scenes. 4053 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 4054 Context.getTargetInfo().getTriple().isOSDarwin() && 4055 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 4056 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 4057 Linkage = llvm::GlobalValue::InternalLinkage; 4058 4059 GV->setLinkage(Linkage); 4060 if (D->hasAttr<DLLImportAttr>()) 4061 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4062 else if (D->hasAttr<DLLExportAttr>()) 4063 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4064 else 4065 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4066 4067 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4068 // common vars aren't constant even if declared const. 4069 GV->setConstant(false); 4070 // Tentative definition of global variables may be initialized with 4071 // non-zero null pointers. In this case they should have weak linkage 4072 // since common linkage must have zero initializer and must not have 4073 // explicit section therefore cannot have non-zero initial value. 4074 if (!GV->getInitializer()->isNullValue()) 4075 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4076 } 4077 4078 setNonAliasAttributes(D, GV); 4079 4080 if (D->getTLSKind() && !GV->isThreadLocal()) { 4081 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4082 CXXThreadLocals.push_back(D); 4083 setTLSMode(GV, *D); 4084 } 4085 4086 maybeSetTrivialComdat(*D, *GV); 4087 4088 // Emit the initializer function if necessary. 4089 if (NeedsGlobalCtor || NeedsGlobalDtor) 4090 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4091 4092 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4093 4094 // Emit global variable debug information. 4095 if (CGDebugInfo *DI = getModuleDebugInfo()) 4096 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4097 DI->EmitGlobalVariable(GV, D); 4098 } 4099 4100 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4101 CodeGenModule &CGM, const VarDecl *D, 4102 bool NoCommon) { 4103 // Don't give variables common linkage if -fno-common was specified unless it 4104 // was overridden by a NoCommon attribute. 4105 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4106 return true; 4107 4108 // C11 6.9.2/2: 4109 // A declaration of an identifier for an object that has file scope without 4110 // an initializer, and without a storage-class specifier or with the 4111 // storage-class specifier static, constitutes a tentative definition. 4112 if (D->getInit() || D->hasExternalStorage()) 4113 return true; 4114 4115 // A variable cannot be both common and exist in a section. 4116 if (D->hasAttr<SectionAttr>()) 4117 return true; 4118 4119 // A variable cannot be both common and exist in a section. 4120 // We don't try to determine which is the right section in the front-end. 4121 // If no specialized section name is applicable, it will resort to default. 4122 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4123 D->hasAttr<PragmaClangDataSectionAttr>() || 4124 D->hasAttr<PragmaClangRelroSectionAttr>() || 4125 D->hasAttr<PragmaClangRodataSectionAttr>()) 4126 return true; 4127 4128 // Thread local vars aren't considered common linkage. 4129 if (D->getTLSKind()) 4130 return true; 4131 4132 // Tentative definitions marked with WeakImportAttr are true definitions. 4133 if (D->hasAttr<WeakImportAttr>()) 4134 return true; 4135 4136 // A variable cannot be both common and exist in a comdat. 4137 if (shouldBeInCOMDAT(CGM, *D)) 4138 return true; 4139 4140 // Declarations with a required alignment do not have common linkage in MSVC 4141 // mode. 4142 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4143 if (D->hasAttr<AlignedAttr>()) 4144 return true; 4145 QualType VarType = D->getType(); 4146 if (Context.isAlignmentRequired(VarType)) 4147 return true; 4148 4149 if (const auto *RT = VarType->getAs<RecordType>()) { 4150 const RecordDecl *RD = RT->getDecl(); 4151 for (const FieldDecl *FD : RD->fields()) { 4152 if (FD->isBitField()) 4153 continue; 4154 if (FD->hasAttr<AlignedAttr>()) 4155 return true; 4156 if (Context.isAlignmentRequired(FD->getType())) 4157 return true; 4158 } 4159 } 4160 } 4161 4162 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4163 // common symbols, so symbols with greater alignment requirements cannot be 4164 // common. 4165 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4166 // alignments for common symbols via the aligncomm directive, so this 4167 // restriction only applies to MSVC environments. 4168 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4169 Context.getTypeAlignIfKnown(D->getType()) > 4170 Context.toBits(CharUnits::fromQuantity(32))) 4171 return true; 4172 4173 return false; 4174 } 4175 4176 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4177 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4178 if (Linkage == GVA_Internal) 4179 return llvm::Function::InternalLinkage; 4180 4181 if (D->hasAttr<WeakAttr>()) { 4182 if (IsConstantVariable) 4183 return llvm::GlobalVariable::WeakODRLinkage; 4184 else 4185 return llvm::GlobalVariable::WeakAnyLinkage; 4186 } 4187 4188 if (const auto *FD = D->getAsFunction()) 4189 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4190 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4191 4192 // We are guaranteed to have a strong definition somewhere else, 4193 // so we can use available_externally linkage. 4194 if (Linkage == GVA_AvailableExternally) 4195 return llvm::GlobalValue::AvailableExternallyLinkage; 4196 4197 // Note that Apple's kernel linker doesn't support symbol 4198 // coalescing, so we need to avoid linkonce and weak linkages there. 4199 // Normally, this means we just map to internal, but for explicit 4200 // instantiations we'll map to external. 4201 4202 // In C++, the compiler has to emit a definition in every translation unit 4203 // that references the function. We should use linkonce_odr because 4204 // a) if all references in this translation unit are optimized away, we 4205 // don't need to codegen it. b) if the function persists, it needs to be 4206 // merged with other definitions. c) C++ has the ODR, so we know the 4207 // definition is dependable. 4208 if (Linkage == GVA_DiscardableODR) 4209 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4210 : llvm::Function::InternalLinkage; 4211 4212 // An explicit instantiation of a template has weak linkage, since 4213 // explicit instantiations can occur in multiple translation units 4214 // and must all be equivalent. However, we are not allowed to 4215 // throw away these explicit instantiations. 4216 // 4217 // We don't currently support CUDA device code spread out across multiple TUs, 4218 // so say that CUDA templates are either external (for kernels) or internal. 4219 // This lets llvm perform aggressive inter-procedural optimizations. 4220 if (Linkage == GVA_StrongODR) { 4221 if (Context.getLangOpts().AppleKext) 4222 return llvm::Function::ExternalLinkage; 4223 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 4224 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4225 : llvm::Function::InternalLinkage; 4226 return llvm::Function::WeakODRLinkage; 4227 } 4228 4229 // C++ doesn't have tentative definitions and thus cannot have common 4230 // linkage. 4231 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4232 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4233 CodeGenOpts.NoCommon)) 4234 return llvm::GlobalVariable::CommonLinkage; 4235 4236 // selectany symbols are externally visible, so use weak instead of 4237 // linkonce. MSVC optimizes away references to const selectany globals, so 4238 // all definitions should be the same and ODR linkage should be used. 4239 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4240 if (D->hasAttr<SelectAnyAttr>()) 4241 return llvm::GlobalVariable::WeakODRLinkage; 4242 4243 // Otherwise, we have strong external linkage. 4244 assert(Linkage == GVA_StrongExternal); 4245 return llvm::GlobalVariable::ExternalLinkage; 4246 } 4247 4248 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4249 const VarDecl *VD, bool IsConstant) { 4250 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4251 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4252 } 4253 4254 /// Replace the uses of a function that was declared with a non-proto type. 4255 /// We want to silently drop extra arguments from call sites 4256 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4257 llvm::Function *newFn) { 4258 // Fast path. 4259 if (old->use_empty()) return; 4260 4261 llvm::Type *newRetTy = newFn->getReturnType(); 4262 SmallVector<llvm::Value*, 4> newArgs; 4263 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4264 4265 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4266 ui != ue; ) { 4267 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4268 llvm::User *user = use->getUser(); 4269 4270 // Recognize and replace uses of bitcasts. Most calls to 4271 // unprototyped functions will use bitcasts. 4272 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4273 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4274 replaceUsesOfNonProtoConstant(bitcast, newFn); 4275 continue; 4276 } 4277 4278 // Recognize calls to the function. 4279 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4280 if (!callSite) continue; 4281 if (!callSite->isCallee(&*use)) 4282 continue; 4283 4284 // If the return types don't match exactly, then we can't 4285 // transform this call unless it's dead. 4286 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4287 continue; 4288 4289 // Get the call site's attribute list. 4290 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4291 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4292 4293 // If the function was passed too few arguments, don't transform. 4294 unsigned newNumArgs = newFn->arg_size(); 4295 if (callSite->arg_size() < newNumArgs) 4296 continue; 4297 4298 // If extra arguments were passed, we silently drop them. 4299 // If any of the types mismatch, we don't transform. 4300 unsigned argNo = 0; 4301 bool dontTransform = false; 4302 for (llvm::Argument &A : newFn->args()) { 4303 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4304 dontTransform = true; 4305 break; 4306 } 4307 4308 // Add any parameter attributes. 4309 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4310 argNo++; 4311 } 4312 if (dontTransform) 4313 continue; 4314 4315 // Okay, we can transform this. Create the new call instruction and copy 4316 // over the required information. 4317 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4318 4319 // Copy over any operand bundles. 4320 callSite->getOperandBundlesAsDefs(newBundles); 4321 4322 llvm::CallBase *newCall; 4323 if (dyn_cast<llvm::CallInst>(callSite)) { 4324 newCall = 4325 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4326 } else { 4327 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4328 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4329 oldInvoke->getUnwindDest(), newArgs, 4330 newBundles, "", callSite); 4331 } 4332 newArgs.clear(); // for the next iteration 4333 4334 if (!newCall->getType()->isVoidTy()) 4335 newCall->takeName(callSite); 4336 newCall->setAttributes(llvm::AttributeList::get( 4337 newFn->getContext(), oldAttrs.getFnAttributes(), 4338 oldAttrs.getRetAttributes(), newArgAttrs)); 4339 newCall->setCallingConv(callSite->getCallingConv()); 4340 4341 // Finally, remove the old call, replacing any uses with the new one. 4342 if (!callSite->use_empty()) 4343 callSite->replaceAllUsesWith(newCall); 4344 4345 // Copy debug location attached to CI. 4346 if (callSite->getDebugLoc()) 4347 newCall->setDebugLoc(callSite->getDebugLoc()); 4348 4349 callSite->eraseFromParent(); 4350 } 4351 } 4352 4353 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4354 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4355 /// existing call uses of the old function in the module, this adjusts them to 4356 /// call the new function directly. 4357 /// 4358 /// This is not just a cleanup: the always_inline pass requires direct calls to 4359 /// functions to be able to inline them. If there is a bitcast in the way, it 4360 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4361 /// run at -O0. 4362 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4363 llvm::Function *NewFn) { 4364 // If we're redefining a global as a function, don't transform it. 4365 if (!isa<llvm::Function>(Old)) return; 4366 4367 replaceUsesOfNonProtoConstant(Old, NewFn); 4368 } 4369 4370 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4371 auto DK = VD->isThisDeclarationADefinition(); 4372 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4373 return; 4374 4375 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4376 // If we have a definition, this might be a deferred decl. If the 4377 // instantiation is explicit, make sure we emit it at the end. 4378 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4379 GetAddrOfGlobalVar(VD); 4380 4381 EmitTopLevelDecl(VD); 4382 } 4383 4384 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4385 llvm::GlobalValue *GV) { 4386 // Check if this must be emitted as declare variant. 4387 if (LangOpts.OpenMP && OpenMPRuntime && 4388 OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true)) 4389 return; 4390 4391 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4392 4393 // Compute the function info and LLVM type. 4394 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4395 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4396 4397 // Get or create the prototype for the function. 4398 if (!GV || (GV->getType()->getElementType() != Ty)) 4399 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4400 /*DontDefer=*/true, 4401 ForDefinition)); 4402 4403 // Already emitted. 4404 if (!GV->isDeclaration()) 4405 return; 4406 4407 // We need to set linkage and visibility on the function before 4408 // generating code for it because various parts of IR generation 4409 // want to propagate this information down (e.g. to local static 4410 // declarations). 4411 auto *Fn = cast<llvm::Function>(GV); 4412 setFunctionLinkage(GD, Fn); 4413 4414 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4415 setGVProperties(Fn, GD); 4416 4417 MaybeHandleStaticInExternC(D, Fn); 4418 4419 4420 maybeSetTrivialComdat(*D, *Fn); 4421 4422 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 4423 4424 setNonAliasAttributes(GD, Fn); 4425 SetLLVMFunctionAttributesForDefinition(D, Fn); 4426 4427 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4428 AddGlobalCtor(Fn, CA->getPriority()); 4429 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4430 AddGlobalDtor(Fn, DA->getPriority()); 4431 if (D->hasAttr<AnnotateAttr>()) 4432 AddGlobalAnnotations(D, Fn); 4433 } 4434 4435 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4436 const auto *D = cast<ValueDecl>(GD.getDecl()); 4437 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4438 assert(AA && "Not an alias?"); 4439 4440 StringRef MangledName = getMangledName(GD); 4441 4442 if (AA->getAliasee() == MangledName) { 4443 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4444 return; 4445 } 4446 4447 // If there is a definition in the module, then it wins over the alias. 4448 // This is dubious, but allow it to be safe. Just ignore the alias. 4449 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4450 if (Entry && !Entry->isDeclaration()) 4451 return; 4452 4453 Aliases.push_back(GD); 4454 4455 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4456 4457 // Create a reference to the named value. This ensures that it is emitted 4458 // if a deferred decl. 4459 llvm::Constant *Aliasee; 4460 llvm::GlobalValue::LinkageTypes LT; 4461 if (isa<llvm::FunctionType>(DeclTy)) { 4462 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4463 /*ForVTable=*/false); 4464 LT = getFunctionLinkage(GD); 4465 } else { 4466 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4467 llvm::PointerType::getUnqual(DeclTy), 4468 /*D=*/nullptr); 4469 LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()), 4470 D->getType().isConstQualified()); 4471 } 4472 4473 // Create the new alias itself, but don't set a name yet. 4474 auto *GA = 4475 llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule()); 4476 4477 if (Entry) { 4478 if (GA->getAliasee() == Entry) { 4479 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4480 return; 4481 } 4482 4483 assert(Entry->isDeclaration()); 4484 4485 // If there is a declaration in the module, then we had an extern followed 4486 // by the alias, as in: 4487 // extern int test6(); 4488 // ... 4489 // int test6() __attribute__((alias("test7"))); 4490 // 4491 // Remove it and replace uses of it with the alias. 4492 GA->takeName(Entry); 4493 4494 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4495 Entry->getType())); 4496 Entry->eraseFromParent(); 4497 } else { 4498 GA->setName(MangledName); 4499 } 4500 4501 // Set attributes which are particular to an alias; this is a 4502 // specialization of the attributes which may be set on a global 4503 // variable/function. 4504 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4505 D->isWeakImported()) { 4506 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4507 } 4508 4509 if (const auto *VD = dyn_cast<VarDecl>(D)) 4510 if (VD->getTLSKind()) 4511 setTLSMode(GA, *VD); 4512 4513 SetCommonAttributes(GD, GA); 4514 } 4515 4516 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4517 const auto *D = cast<ValueDecl>(GD.getDecl()); 4518 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4519 assert(IFA && "Not an ifunc?"); 4520 4521 StringRef MangledName = getMangledName(GD); 4522 4523 if (IFA->getResolver() == MangledName) { 4524 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4525 return; 4526 } 4527 4528 // Report an error if some definition overrides ifunc. 4529 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4530 if (Entry && !Entry->isDeclaration()) { 4531 GlobalDecl OtherGD; 4532 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4533 DiagnosedConflictingDefinitions.insert(GD).second) { 4534 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4535 << MangledName; 4536 Diags.Report(OtherGD.getDecl()->getLocation(), 4537 diag::note_previous_definition); 4538 } 4539 return; 4540 } 4541 4542 Aliases.push_back(GD); 4543 4544 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4545 llvm::Constant *Resolver = 4546 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4547 /*ForVTable=*/false); 4548 llvm::GlobalIFunc *GIF = 4549 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4550 "", Resolver, &getModule()); 4551 if (Entry) { 4552 if (GIF->getResolver() == Entry) { 4553 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4554 return; 4555 } 4556 assert(Entry->isDeclaration()); 4557 4558 // If there is a declaration in the module, then we had an extern followed 4559 // by the ifunc, as in: 4560 // extern int test(); 4561 // ... 4562 // int test() __attribute__((ifunc("resolver"))); 4563 // 4564 // Remove it and replace uses of it with the ifunc. 4565 GIF->takeName(Entry); 4566 4567 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4568 Entry->getType())); 4569 Entry->eraseFromParent(); 4570 } else 4571 GIF->setName(MangledName); 4572 4573 SetCommonAttributes(GD, GIF); 4574 } 4575 4576 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4577 ArrayRef<llvm::Type*> Tys) { 4578 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4579 Tys); 4580 } 4581 4582 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4583 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4584 const StringLiteral *Literal, bool TargetIsLSB, 4585 bool &IsUTF16, unsigned &StringLength) { 4586 StringRef String = Literal->getString(); 4587 unsigned NumBytes = String.size(); 4588 4589 // Check for simple case. 4590 if (!Literal->containsNonAsciiOrNull()) { 4591 StringLength = NumBytes; 4592 return *Map.insert(std::make_pair(String, nullptr)).first; 4593 } 4594 4595 // Otherwise, convert the UTF8 literals into a string of shorts. 4596 IsUTF16 = true; 4597 4598 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4599 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4600 llvm::UTF16 *ToPtr = &ToBuf[0]; 4601 4602 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4603 ToPtr + NumBytes, llvm::strictConversion); 4604 4605 // ConvertUTF8toUTF16 returns the length in ToPtr. 4606 StringLength = ToPtr - &ToBuf[0]; 4607 4608 // Add an explicit null. 4609 *ToPtr = 0; 4610 return *Map.insert(std::make_pair( 4611 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4612 (StringLength + 1) * 2), 4613 nullptr)).first; 4614 } 4615 4616 ConstantAddress 4617 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4618 unsigned StringLength = 0; 4619 bool isUTF16 = false; 4620 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4621 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4622 getDataLayout().isLittleEndian(), isUTF16, 4623 StringLength); 4624 4625 if (auto *C = Entry.second) 4626 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4627 4628 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4629 llvm::Constant *Zeros[] = { Zero, Zero }; 4630 4631 const ASTContext &Context = getContext(); 4632 const llvm::Triple &Triple = getTriple(); 4633 4634 const auto CFRuntime = getLangOpts().CFRuntime; 4635 const bool IsSwiftABI = 4636 static_cast<unsigned>(CFRuntime) >= 4637 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4638 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4639 4640 // If we don't already have it, get __CFConstantStringClassReference. 4641 if (!CFConstantStringClassRef) { 4642 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4643 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4644 Ty = llvm::ArrayType::get(Ty, 0); 4645 4646 switch (CFRuntime) { 4647 default: break; 4648 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4649 case LangOptions::CoreFoundationABI::Swift5_0: 4650 CFConstantStringClassName = 4651 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4652 : "$s10Foundation19_NSCFConstantStringCN"; 4653 Ty = IntPtrTy; 4654 break; 4655 case LangOptions::CoreFoundationABI::Swift4_2: 4656 CFConstantStringClassName = 4657 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4658 : "$S10Foundation19_NSCFConstantStringCN"; 4659 Ty = IntPtrTy; 4660 break; 4661 case LangOptions::CoreFoundationABI::Swift4_1: 4662 CFConstantStringClassName = 4663 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4664 : "__T010Foundation19_NSCFConstantStringCN"; 4665 Ty = IntPtrTy; 4666 break; 4667 } 4668 4669 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4670 4671 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4672 llvm::GlobalValue *GV = nullptr; 4673 4674 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4675 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4676 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4677 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4678 4679 const VarDecl *VD = nullptr; 4680 for (const auto &Result : DC->lookup(&II)) 4681 if ((VD = dyn_cast<VarDecl>(Result))) 4682 break; 4683 4684 if (Triple.isOSBinFormatELF()) { 4685 if (!VD) 4686 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4687 } else { 4688 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4689 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4690 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4691 else 4692 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4693 } 4694 4695 setDSOLocal(GV); 4696 } 4697 } 4698 4699 // Decay array -> ptr 4700 CFConstantStringClassRef = 4701 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4702 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4703 } 4704 4705 QualType CFTy = Context.getCFConstantStringType(); 4706 4707 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4708 4709 ConstantInitBuilder Builder(*this); 4710 auto Fields = Builder.beginStruct(STy); 4711 4712 // Class pointer. 4713 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4714 4715 // Flags. 4716 if (IsSwiftABI) { 4717 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4718 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4719 } else { 4720 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4721 } 4722 4723 // String pointer. 4724 llvm::Constant *C = nullptr; 4725 if (isUTF16) { 4726 auto Arr = llvm::makeArrayRef( 4727 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4728 Entry.first().size() / 2); 4729 C = llvm::ConstantDataArray::get(VMContext, Arr); 4730 } else { 4731 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4732 } 4733 4734 // Note: -fwritable-strings doesn't make the backing store strings of 4735 // CFStrings writable. (See <rdar://problem/10657500>) 4736 auto *GV = 4737 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4738 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4739 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4740 // Don't enforce the target's minimum global alignment, since the only use 4741 // of the string is via this class initializer. 4742 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4743 : Context.getTypeAlignInChars(Context.CharTy); 4744 GV->setAlignment(Align.getAsAlign()); 4745 4746 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4747 // Without it LLVM can merge the string with a non unnamed_addr one during 4748 // LTO. Doing that changes the section it ends in, which surprises ld64. 4749 if (Triple.isOSBinFormatMachO()) 4750 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4751 : "__TEXT,__cstring,cstring_literals"); 4752 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4753 // the static linker to adjust permissions to read-only later on. 4754 else if (Triple.isOSBinFormatELF()) 4755 GV->setSection(".rodata"); 4756 4757 // String. 4758 llvm::Constant *Str = 4759 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4760 4761 if (isUTF16) 4762 // Cast the UTF16 string to the correct type. 4763 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4764 Fields.add(Str); 4765 4766 // String length. 4767 llvm::IntegerType *LengthTy = 4768 llvm::IntegerType::get(getModule().getContext(), 4769 Context.getTargetInfo().getLongWidth()); 4770 if (IsSwiftABI) { 4771 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4772 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4773 LengthTy = Int32Ty; 4774 else 4775 LengthTy = IntPtrTy; 4776 } 4777 Fields.addInt(LengthTy, StringLength); 4778 4779 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 4780 // properly aligned on 32-bit platforms. 4781 CharUnits Alignment = 4782 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 4783 4784 // The struct. 4785 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4786 /*isConstant=*/false, 4787 llvm::GlobalVariable::PrivateLinkage); 4788 GV->addAttribute("objc_arc_inert"); 4789 switch (Triple.getObjectFormat()) { 4790 case llvm::Triple::UnknownObjectFormat: 4791 llvm_unreachable("unknown file format"); 4792 case llvm::Triple::XCOFF: 4793 llvm_unreachable("XCOFF is not yet implemented"); 4794 case llvm::Triple::COFF: 4795 case llvm::Triple::ELF: 4796 case llvm::Triple::Wasm: 4797 GV->setSection("cfstring"); 4798 break; 4799 case llvm::Triple::MachO: 4800 GV->setSection("__DATA,__cfstring"); 4801 break; 4802 } 4803 Entry.second = GV; 4804 4805 return ConstantAddress(GV, Alignment); 4806 } 4807 4808 bool CodeGenModule::getExpressionLocationsEnabled() const { 4809 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4810 } 4811 4812 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4813 if (ObjCFastEnumerationStateType.isNull()) { 4814 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4815 D->startDefinition(); 4816 4817 QualType FieldTypes[] = { 4818 Context.UnsignedLongTy, 4819 Context.getPointerType(Context.getObjCIdType()), 4820 Context.getPointerType(Context.UnsignedLongTy), 4821 Context.getConstantArrayType(Context.UnsignedLongTy, 4822 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 4823 }; 4824 4825 for (size_t i = 0; i < 4; ++i) { 4826 FieldDecl *Field = FieldDecl::Create(Context, 4827 D, 4828 SourceLocation(), 4829 SourceLocation(), nullptr, 4830 FieldTypes[i], /*TInfo=*/nullptr, 4831 /*BitWidth=*/nullptr, 4832 /*Mutable=*/false, 4833 ICIS_NoInit); 4834 Field->setAccess(AS_public); 4835 D->addDecl(Field); 4836 } 4837 4838 D->completeDefinition(); 4839 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4840 } 4841 4842 return ObjCFastEnumerationStateType; 4843 } 4844 4845 llvm::Constant * 4846 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4847 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4848 4849 // Don't emit it as the address of the string, emit the string data itself 4850 // as an inline array. 4851 if (E->getCharByteWidth() == 1) { 4852 SmallString<64> Str(E->getString()); 4853 4854 // Resize the string to the right size, which is indicated by its type. 4855 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4856 Str.resize(CAT->getSize().getZExtValue()); 4857 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4858 } 4859 4860 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4861 llvm::Type *ElemTy = AType->getElementType(); 4862 unsigned NumElements = AType->getNumElements(); 4863 4864 // Wide strings have either 2-byte or 4-byte elements. 4865 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4866 SmallVector<uint16_t, 32> Elements; 4867 Elements.reserve(NumElements); 4868 4869 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4870 Elements.push_back(E->getCodeUnit(i)); 4871 Elements.resize(NumElements); 4872 return llvm::ConstantDataArray::get(VMContext, Elements); 4873 } 4874 4875 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4876 SmallVector<uint32_t, 32> Elements; 4877 Elements.reserve(NumElements); 4878 4879 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4880 Elements.push_back(E->getCodeUnit(i)); 4881 Elements.resize(NumElements); 4882 return llvm::ConstantDataArray::get(VMContext, Elements); 4883 } 4884 4885 static llvm::GlobalVariable * 4886 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4887 CodeGenModule &CGM, StringRef GlobalName, 4888 CharUnits Alignment) { 4889 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4890 CGM.getStringLiteralAddressSpace()); 4891 4892 llvm::Module &M = CGM.getModule(); 4893 // Create a global variable for this string 4894 auto *GV = new llvm::GlobalVariable( 4895 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4896 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4897 GV->setAlignment(Alignment.getAsAlign()); 4898 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4899 if (GV->isWeakForLinker()) { 4900 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4901 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4902 } 4903 CGM.setDSOLocal(GV); 4904 4905 return GV; 4906 } 4907 4908 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4909 /// constant array for the given string literal. 4910 ConstantAddress 4911 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4912 StringRef Name) { 4913 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4914 4915 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4916 llvm::GlobalVariable **Entry = nullptr; 4917 if (!LangOpts.WritableStrings) { 4918 Entry = &ConstantStringMap[C]; 4919 if (auto GV = *Entry) { 4920 if (Alignment.getQuantity() > GV->getAlignment()) 4921 GV->setAlignment(Alignment.getAsAlign()); 4922 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4923 Alignment); 4924 } 4925 } 4926 4927 SmallString<256> MangledNameBuffer; 4928 StringRef GlobalVariableName; 4929 llvm::GlobalValue::LinkageTypes LT; 4930 4931 // Mangle the string literal if that's how the ABI merges duplicate strings. 4932 // Don't do it if they are writable, since we don't want writes in one TU to 4933 // affect strings in another. 4934 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4935 !LangOpts.WritableStrings) { 4936 llvm::raw_svector_ostream Out(MangledNameBuffer); 4937 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4938 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4939 GlobalVariableName = MangledNameBuffer; 4940 } else { 4941 LT = llvm::GlobalValue::PrivateLinkage; 4942 GlobalVariableName = Name; 4943 } 4944 4945 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4946 if (Entry) 4947 *Entry = GV; 4948 4949 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4950 QualType()); 4951 4952 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4953 Alignment); 4954 } 4955 4956 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4957 /// array for the given ObjCEncodeExpr node. 4958 ConstantAddress 4959 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4960 std::string Str; 4961 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4962 4963 return GetAddrOfConstantCString(Str); 4964 } 4965 4966 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4967 /// the literal and a terminating '\0' character. 4968 /// The result has pointer to array type. 4969 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4970 const std::string &Str, const char *GlobalName) { 4971 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4972 CharUnits Alignment = 4973 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4974 4975 llvm::Constant *C = 4976 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4977 4978 // Don't share any string literals if strings aren't constant. 4979 llvm::GlobalVariable **Entry = nullptr; 4980 if (!LangOpts.WritableStrings) { 4981 Entry = &ConstantStringMap[C]; 4982 if (auto GV = *Entry) { 4983 if (Alignment.getQuantity() > GV->getAlignment()) 4984 GV->setAlignment(Alignment.getAsAlign()); 4985 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4986 Alignment); 4987 } 4988 } 4989 4990 // Get the default prefix if a name wasn't specified. 4991 if (!GlobalName) 4992 GlobalName = ".str"; 4993 // Create a global variable for this. 4994 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4995 GlobalName, Alignment); 4996 if (Entry) 4997 *Entry = GV; 4998 4999 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5000 Alignment); 5001 } 5002 5003 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5004 const MaterializeTemporaryExpr *E, const Expr *Init) { 5005 assert((E->getStorageDuration() == SD_Static || 5006 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5007 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5008 5009 // If we're not materializing a subobject of the temporary, keep the 5010 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5011 QualType MaterializedType = Init->getType(); 5012 if (Init == E->getSubExpr()) 5013 MaterializedType = E->getType(); 5014 5015 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5016 5017 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5018 return ConstantAddress(Slot, Align); 5019 5020 // FIXME: If an externally-visible declaration extends multiple temporaries, 5021 // we need to give each temporary the same name in every translation unit (and 5022 // we also need to make the temporaries externally-visible). 5023 SmallString<256> Name; 5024 llvm::raw_svector_ostream Out(Name); 5025 getCXXABI().getMangleContext().mangleReferenceTemporary( 5026 VD, E->getManglingNumber(), Out); 5027 5028 APValue *Value = nullptr; 5029 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5030 // If the initializer of the extending declaration is a constant 5031 // initializer, we should have a cached constant initializer for this 5032 // temporary. Note that this might have a different value from the value 5033 // computed by evaluating the initializer if the surrounding constant 5034 // expression modifies the temporary. 5035 Value = E->getOrCreateValue(false); 5036 } 5037 5038 // Try evaluating it now, it might have a constant initializer. 5039 Expr::EvalResult EvalResult; 5040 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5041 !EvalResult.hasSideEffects()) 5042 Value = &EvalResult.Val; 5043 5044 LangAS AddrSpace = 5045 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5046 5047 Optional<ConstantEmitter> emitter; 5048 llvm::Constant *InitialValue = nullptr; 5049 bool Constant = false; 5050 llvm::Type *Type; 5051 if (Value) { 5052 // The temporary has a constant initializer, use it. 5053 emitter.emplace(*this); 5054 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5055 MaterializedType); 5056 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5057 Type = InitialValue->getType(); 5058 } else { 5059 // No initializer, the initialization will be provided when we 5060 // initialize the declaration which performed lifetime extension. 5061 Type = getTypes().ConvertTypeForMem(MaterializedType); 5062 } 5063 5064 // Create a global variable for this lifetime-extended temporary. 5065 llvm::GlobalValue::LinkageTypes Linkage = 5066 getLLVMLinkageVarDefinition(VD, Constant); 5067 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5068 const VarDecl *InitVD; 5069 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5070 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5071 // Temporaries defined inside a class get linkonce_odr linkage because the 5072 // class can be defined in multiple translation units. 5073 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5074 } else { 5075 // There is no need for this temporary to have external linkage if the 5076 // VarDecl has external linkage. 5077 Linkage = llvm::GlobalVariable::InternalLinkage; 5078 } 5079 } 5080 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5081 auto *GV = new llvm::GlobalVariable( 5082 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5083 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5084 if (emitter) emitter->finalize(GV); 5085 setGVProperties(GV, VD); 5086 GV->setAlignment(Align.getAsAlign()); 5087 if (supportsCOMDAT() && GV->isWeakForLinker()) 5088 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5089 if (VD->getTLSKind()) 5090 setTLSMode(GV, *VD); 5091 llvm::Constant *CV = GV; 5092 if (AddrSpace != LangAS::Default) 5093 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5094 *this, GV, AddrSpace, LangAS::Default, 5095 Type->getPointerTo( 5096 getContext().getTargetAddressSpace(LangAS::Default))); 5097 MaterializedGlobalTemporaryMap[E] = CV; 5098 return ConstantAddress(CV, Align); 5099 } 5100 5101 /// EmitObjCPropertyImplementations - Emit information for synthesized 5102 /// properties for an implementation. 5103 void CodeGenModule::EmitObjCPropertyImplementations(const 5104 ObjCImplementationDecl *D) { 5105 for (const auto *PID : D->property_impls()) { 5106 // Dynamic is just for type-checking. 5107 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5108 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5109 5110 // Determine which methods need to be implemented, some may have 5111 // been overridden. Note that ::isPropertyAccessor is not the method 5112 // we want, that just indicates if the decl came from a 5113 // property. What we want to know is if the method is defined in 5114 // this implementation. 5115 auto *Getter = PID->getGetterMethodDecl(); 5116 if (!Getter || Getter->isSynthesizedAccessorStub()) 5117 CodeGenFunction(*this).GenerateObjCGetter( 5118 const_cast<ObjCImplementationDecl *>(D), PID); 5119 auto *Setter = PID->getSetterMethodDecl(); 5120 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5121 CodeGenFunction(*this).GenerateObjCSetter( 5122 const_cast<ObjCImplementationDecl *>(D), PID); 5123 } 5124 } 5125 } 5126 5127 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5128 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5129 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5130 ivar; ivar = ivar->getNextIvar()) 5131 if (ivar->getType().isDestructedType()) 5132 return true; 5133 5134 return false; 5135 } 5136 5137 static bool AllTrivialInitializers(CodeGenModule &CGM, 5138 ObjCImplementationDecl *D) { 5139 CodeGenFunction CGF(CGM); 5140 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5141 E = D->init_end(); B != E; ++B) { 5142 CXXCtorInitializer *CtorInitExp = *B; 5143 Expr *Init = CtorInitExp->getInit(); 5144 if (!CGF.isTrivialInitializer(Init)) 5145 return false; 5146 } 5147 return true; 5148 } 5149 5150 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5151 /// for an implementation. 5152 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5153 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5154 if (needsDestructMethod(D)) { 5155 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5156 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5157 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5158 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5159 getContext().VoidTy, nullptr, D, 5160 /*isInstance=*/true, /*isVariadic=*/false, 5161 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5162 /*isImplicitlyDeclared=*/true, 5163 /*isDefined=*/false, ObjCMethodDecl::Required); 5164 D->addInstanceMethod(DTORMethod); 5165 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5166 D->setHasDestructors(true); 5167 } 5168 5169 // If the implementation doesn't have any ivar initializers, we don't need 5170 // a .cxx_construct. 5171 if (D->getNumIvarInitializers() == 0 || 5172 AllTrivialInitializers(*this, D)) 5173 return; 5174 5175 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5176 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5177 // The constructor returns 'self'. 5178 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5179 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5180 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5181 /*isVariadic=*/false, 5182 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5183 /*isImplicitlyDeclared=*/true, 5184 /*isDefined=*/false, ObjCMethodDecl::Required); 5185 D->addInstanceMethod(CTORMethod); 5186 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5187 D->setHasNonZeroConstructors(true); 5188 } 5189 5190 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5191 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5192 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5193 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5194 ErrorUnsupported(LSD, "linkage spec"); 5195 return; 5196 } 5197 5198 EmitDeclContext(LSD); 5199 } 5200 5201 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5202 for (auto *I : DC->decls()) { 5203 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5204 // are themselves considered "top-level", so EmitTopLevelDecl on an 5205 // ObjCImplDecl does not recursively visit them. We need to do that in 5206 // case they're nested inside another construct (LinkageSpecDecl / 5207 // ExportDecl) that does stop them from being considered "top-level". 5208 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5209 for (auto *M : OID->methods()) 5210 EmitTopLevelDecl(M); 5211 } 5212 5213 EmitTopLevelDecl(I); 5214 } 5215 } 5216 5217 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5218 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5219 // Ignore dependent declarations. 5220 if (D->isTemplated()) 5221 return; 5222 5223 switch (D->getKind()) { 5224 case Decl::CXXConversion: 5225 case Decl::CXXMethod: 5226 case Decl::Function: 5227 EmitGlobal(cast<FunctionDecl>(D)); 5228 // Always provide some coverage mapping 5229 // even for the functions that aren't emitted. 5230 AddDeferredUnusedCoverageMapping(D); 5231 break; 5232 5233 case Decl::CXXDeductionGuide: 5234 // Function-like, but does not result in code emission. 5235 break; 5236 5237 case Decl::Var: 5238 case Decl::Decomposition: 5239 case Decl::VarTemplateSpecialization: 5240 EmitGlobal(cast<VarDecl>(D)); 5241 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5242 for (auto *B : DD->bindings()) 5243 if (auto *HD = B->getHoldingVar()) 5244 EmitGlobal(HD); 5245 break; 5246 5247 // Indirect fields from global anonymous structs and unions can be 5248 // ignored; only the actual variable requires IR gen support. 5249 case Decl::IndirectField: 5250 break; 5251 5252 // C++ Decls 5253 case Decl::Namespace: 5254 EmitDeclContext(cast<NamespaceDecl>(D)); 5255 break; 5256 case Decl::ClassTemplateSpecialization: { 5257 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5258 if (DebugInfo && 5259 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 5260 Spec->hasDefinition()) 5261 DebugInfo->completeTemplateDefinition(*Spec); 5262 } LLVM_FALLTHROUGH; 5263 case Decl::CXXRecord: 5264 if (DebugInfo) { 5265 if (auto *ES = D->getASTContext().getExternalSource()) 5266 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5267 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 5268 } 5269 // Emit any static data members, they may be definitions. 5270 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 5271 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5272 EmitTopLevelDecl(I); 5273 break; 5274 // No code generation needed. 5275 case Decl::UsingShadow: 5276 case Decl::ClassTemplate: 5277 case Decl::VarTemplate: 5278 case Decl::Concept: 5279 case Decl::VarTemplatePartialSpecialization: 5280 case Decl::FunctionTemplate: 5281 case Decl::TypeAliasTemplate: 5282 case Decl::Block: 5283 case Decl::Empty: 5284 case Decl::Binding: 5285 break; 5286 case Decl::Using: // using X; [C++] 5287 if (CGDebugInfo *DI = getModuleDebugInfo()) 5288 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5289 return; 5290 case Decl::NamespaceAlias: 5291 if (CGDebugInfo *DI = getModuleDebugInfo()) 5292 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5293 return; 5294 case Decl::UsingDirective: // using namespace X; [C++] 5295 if (CGDebugInfo *DI = getModuleDebugInfo()) 5296 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5297 return; 5298 case Decl::CXXConstructor: 5299 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5300 break; 5301 case Decl::CXXDestructor: 5302 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5303 break; 5304 5305 case Decl::StaticAssert: 5306 // Nothing to do. 5307 break; 5308 5309 // Objective-C Decls 5310 5311 // Forward declarations, no (immediate) code generation. 5312 case Decl::ObjCInterface: 5313 case Decl::ObjCCategory: 5314 break; 5315 5316 case Decl::ObjCProtocol: { 5317 auto *Proto = cast<ObjCProtocolDecl>(D); 5318 if (Proto->isThisDeclarationADefinition()) 5319 ObjCRuntime->GenerateProtocol(Proto); 5320 break; 5321 } 5322 5323 case Decl::ObjCCategoryImpl: 5324 // Categories have properties but don't support synthesize so we 5325 // can ignore them here. 5326 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5327 break; 5328 5329 case Decl::ObjCImplementation: { 5330 auto *OMD = cast<ObjCImplementationDecl>(D); 5331 EmitObjCPropertyImplementations(OMD); 5332 EmitObjCIvarInitializations(OMD); 5333 ObjCRuntime->GenerateClass(OMD); 5334 // Emit global variable debug information. 5335 if (CGDebugInfo *DI = getModuleDebugInfo()) 5336 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 5337 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5338 OMD->getClassInterface()), OMD->getLocation()); 5339 break; 5340 } 5341 case Decl::ObjCMethod: { 5342 auto *OMD = cast<ObjCMethodDecl>(D); 5343 // If this is not a prototype, emit the body. 5344 if (OMD->getBody()) 5345 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5346 break; 5347 } 5348 case Decl::ObjCCompatibleAlias: 5349 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5350 break; 5351 5352 case Decl::PragmaComment: { 5353 const auto *PCD = cast<PragmaCommentDecl>(D); 5354 switch (PCD->getCommentKind()) { 5355 case PCK_Unknown: 5356 llvm_unreachable("unexpected pragma comment kind"); 5357 case PCK_Linker: 5358 AppendLinkerOptions(PCD->getArg()); 5359 break; 5360 case PCK_Lib: 5361 AddDependentLib(PCD->getArg()); 5362 break; 5363 case PCK_Compiler: 5364 case PCK_ExeStr: 5365 case PCK_User: 5366 break; // We ignore all of these. 5367 } 5368 break; 5369 } 5370 5371 case Decl::PragmaDetectMismatch: { 5372 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5373 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5374 break; 5375 } 5376 5377 case Decl::LinkageSpec: 5378 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5379 break; 5380 5381 case Decl::FileScopeAsm: { 5382 // File-scope asm is ignored during device-side CUDA compilation. 5383 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5384 break; 5385 // File-scope asm is ignored during device-side OpenMP compilation. 5386 if (LangOpts.OpenMPIsDevice) 5387 break; 5388 auto *AD = cast<FileScopeAsmDecl>(D); 5389 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5390 break; 5391 } 5392 5393 case Decl::Import: { 5394 auto *Import = cast<ImportDecl>(D); 5395 5396 // If we've already imported this module, we're done. 5397 if (!ImportedModules.insert(Import->getImportedModule())) 5398 break; 5399 5400 // Emit debug information for direct imports. 5401 if (!Import->getImportedOwningModule()) { 5402 if (CGDebugInfo *DI = getModuleDebugInfo()) 5403 DI->EmitImportDecl(*Import); 5404 } 5405 5406 // Find all of the submodules and emit the module initializers. 5407 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5408 SmallVector<clang::Module *, 16> Stack; 5409 Visited.insert(Import->getImportedModule()); 5410 Stack.push_back(Import->getImportedModule()); 5411 5412 while (!Stack.empty()) { 5413 clang::Module *Mod = Stack.pop_back_val(); 5414 if (!EmittedModuleInitializers.insert(Mod).second) 5415 continue; 5416 5417 for (auto *D : Context.getModuleInitializers(Mod)) 5418 EmitTopLevelDecl(D); 5419 5420 // Visit the submodules of this module. 5421 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5422 SubEnd = Mod->submodule_end(); 5423 Sub != SubEnd; ++Sub) { 5424 // Skip explicit children; they need to be explicitly imported to emit 5425 // the initializers. 5426 if ((*Sub)->IsExplicit) 5427 continue; 5428 5429 if (Visited.insert(*Sub).second) 5430 Stack.push_back(*Sub); 5431 } 5432 } 5433 break; 5434 } 5435 5436 case Decl::Export: 5437 EmitDeclContext(cast<ExportDecl>(D)); 5438 break; 5439 5440 case Decl::OMPThreadPrivate: 5441 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5442 break; 5443 5444 case Decl::OMPAllocate: 5445 break; 5446 5447 case Decl::OMPDeclareReduction: 5448 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5449 break; 5450 5451 case Decl::OMPDeclareMapper: 5452 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5453 break; 5454 5455 case Decl::OMPRequires: 5456 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5457 break; 5458 5459 default: 5460 // Make sure we handled everything we should, every other kind is a 5461 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5462 // function. Need to recode Decl::Kind to do that easily. 5463 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5464 break; 5465 } 5466 } 5467 5468 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5469 // Do we need to generate coverage mapping? 5470 if (!CodeGenOpts.CoverageMapping) 5471 return; 5472 switch (D->getKind()) { 5473 case Decl::CXXConversion: 5474 case Decl::CXXMethod: 5475 case Decl::Function: 5476 case Decl::ObjCMethod: 5477 case Decl::CXXConstructor: 5478 case Decl::CXXDestructor: { 5479 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5480 return; 5481 SourceManager &SM = getContext().getSourceManager(); 5482 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5483 return; 5484 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5485 if (I == DeferredEmptyCoverageMappingDecls.end()) 5486 DeferredEmptyCoverageMappingDecls[D] = true; 5487 break; 5488 } 5489 default: 5490 break; 5491 }; 5492 } 5493 5494 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5495 // Do we need to generate coverage mapping? 5496 if (!CodeGenOpts.CoverageMapping) 5497 return; 5498 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5499 if (Fn->isTemplateInstantiation()) 5500 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5501 } 5502 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5503 if (I == DeferredEmptyCoverageMappingDecls.end()) 5504 DeferredEmptyCoverageMappingDecls[D] = false; 5505 else 5506 I->second = false; 5507 } 5508 5509 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5510 // We call takeVector() here to avoid use-after-free. 5511 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5512 // we deserialize function bodies to emit coverage info for them, and that 5513 // deserializes more declarations. How should we handle that case? 5514 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5515 if (!Entry.second) 5516 continue; 5517 const Decl *D = Entry.first; 5518 switch (D->getKind()) { 5519 case Decl::CXXConversion: 5520 case Decl::CXXMethod: 5521 case Decl::Function: 5522 case Decl::ObjCMethod: { 5523 CodeGenPGO PGO(*this); 5524 GlobalDecl GD(cast<FunctionDecl>(D)); 5525 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5526 getFunctionLinkage(GD)); 5527 break; 5528 } 5529 case Decl::CXXConstructor: { 5530 CodeGenPGO PGO(*this); 5531 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5532 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5533 getFunctionLinkage(GD)); 5534 break; 5535 } 5536 case Decl::CXXDestructor: { 5537 CodeGenPGO PGO(*this); 5538 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5539 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5540 getFunctionLinkage(GD)); 5541 break; 5542 } 5543 default: 5544 break; 5545 }; 5546 } 5547 } 5548 5549 /// Turns the given pointer into a constant. 5550 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5551 const void *Ptr) { 5552 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5553 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5554 return llvm::ConstantInt::get(i64, PtrInt); 5555 } 5556 5557 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5558 llvm::NamedMDNode *&GlobalMetadata, 5559 GlobalDecl D, 5560 llvm::GlobalValue *Addr) { 5561 if (!GlobalMetadata) 5562 GlobalMetadata = 5563 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5564 5565 // TODO: should we report variant information for ctors/dtors? 5566 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5567 llvm::ConstantAsMetadata::get(GetPointerConstant( 5568 CGM.getLLVMContext(), D.getDecl()))}; 5569 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5570 } 5571 5572 /// For each function which is declared within an extern "C" region and marked 5573 /// as 'used', but has internal linkage, create an alias from the unmangled 5574 /// name to the mangled name if possible. People expect to be able to refer 5575 /// to such functions with an unmangled name from inline assembly within the 5576 /// same translation unit. 5577 void CodeGenModule::EmitStaticExternCAliases() { 5578 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5579 return; 5580 for (auto &I : StaticExternCValues) { 5581 IdentifierInfo *Name = I.first; 5582 llvm::GlobalValue *Val = I.second; 5583 if (Val && !getModule().getNamedValue(Name->getName())) 5584 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5585 } 5586 } 5587 5588 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5589 GlobalDecl &Result) const { 5590 auto Res = Manglings.find(MangledName); 5591 if (Res == Manglings.end()) 5592 return false; 5593 Result = Res->getValue(); 5594 return true; 5595 } 5596 5597 /// Emits metadata nodes associating all the global values in the 5598 /// current module with the Decls they came from. This is useful for 5599 /// projects using IR gen as a subroutine. 5600 /// 5601 /// Since there's currently no way to associate an MDNode directly 5602 /// with an llvm::GlobalValue, we create a global named metadata 5603 /// with the name 'clang.global.decl.ptrs'. 5604 void CodeGenModule::EmitDeclMetadata() { 5605 llvm::NamedMDNode *GlobalMetadata = nullptr; 5606 5607 for (auto &I : MangledDeclNames) { 5608 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5609 // Some mangled names don't necessarily have an associated GlobalValue 5610 // in this module, e.g. if we mangled it for DebugInfo. 5611 if (Addr) 5612 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5613 } 5614 } 5615 5616 /// Emits metadata nodes for all the local variables in the current 5617 /// function. 5618 void CodeGenFunction::EmitDeclMetadata() { 5619 if (LocalDeclMap.empty()) return; 5620 5621 llvm::LLVMContext &Context = getLLVMContext(); 5622 5623 // Find the unique metadata ID for this name. 5624 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5625 5626 llvm::NamedMDNode *GlobalMetadata = nullptr; 5627 5628 for (auto &I : LocalDeclMap) { 5629 const Decl *D = I.first; 5630 llvm::Value *Addr = I.second.getPointer(); 5631 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5632 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5633 Alloca->setMetadata( 5634 DeclPtrKind, llvm::MDNode::get( 5635 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5636 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5637 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5638 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5639 } 5640 } 5641 } 5642 5643 void CodeGenModule::EmitVersionIdentMetadata() { 5644 llvm::NamedMDNode *IdentMetadata = 5645 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5646 std::string Version = getClangFullVersion(); 5647 llvm::LLVMContext &Ctx = TheModule.getContext(); 5648 5649 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5650 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5651 } 5652 5653 void CodeGenModule::EmitCommandLineMetadata() { 5654 llvm::NamedMDNode *CommandLineMetadata = 5655 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5656 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5657 llvm::LLVMContext &Ctx = TheModule.getContext(); 5658 5659 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5660 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5661 } 5662 5663 void CodeGenModule::EmitTargetMetadata() { 5664 // Warning, new MangledDeclNames may be appended within this loop. 5665 // We rely on MapVector insertions adding new elements to the end 5666 // of the container. 5667 // FIXME: Move this loop into the one target that needs it, and only 5668 // loop over those declarations for which we couldn't emit the target 5669 // metadata when we emitted the declaration. 5670 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5671 auto Val = *(MangledDeclNames.begin() + I); 5672 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5673 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5674 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5675 } 5676 } 5677 5678 void CodeGenModule::EmitCoverageFile() { 5679 if (getCodeGenOpts().CoverageDataFile.empty() && 5680 getCodeGenOpts().CoverageNotesFile.empty()) 5681 return; 5682 5683 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5684 if (!CUNode) 5685 return; 5686 5687 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5688 llvm::LLVMContext &Ctx = TheModule.getContext(); 5689 auto *CoverageDataFile = 5690 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5691 auto *CoverageNotesFile = 5692 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5693 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5694 llvm::MDNode *CU = CUNode->getOperand(i); 5695 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5696 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5697 } 5698 } 5699 5700 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5701 // Sema has checked that all uuid strings are of the form 5702 // "12345678-1234-1234-1234-1234567890ab". 5703 assert(Uuid.size() == 36); 5704 for (unsigned i = 0; i < 36; ++i) { 5705 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5706 else assert(isHexDigit(Uuid[i])); 5707 } 5708 5709 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5710 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5711 5712 llvm::Constant *Field3[8]; 5713 for (unsigned Idx = 0; Idx < 8; ++Idx) 5714 Field3[Idx] = llvm::ConstantInt::get( 5715 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5716 5717 llvm::Constant *Fields[4] = { 5718 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5719 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5720 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5721 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5722 }; 5723 5724 return llvm::ConstantStruct::getAnon(Fields); 5725 } 5726 5727 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5728 bool ForEH) { 5729 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5730 // FIXME: should we even be calling this method if RTTI is disabled 5731 // and it's not for EH? 5732 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5733 return llvm::Constant::getNullValue(Int8PtrTy); 5734 5735 if (ForEH && Ty->isObjCObjectPointerType() && 5736 LangOpts.ObjCRuntime.isGNUFamily()) 5737 return ObjCRuntime->GetEHType(Ty); 5738 5739 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5740 } 5741 5742 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5743 // Do not emit threadprivates in simd-only mode. 5744 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5745 return; 5746 for (auto RefExpr : D->varlists()) { 5747 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5748 bool PerformInit = 5749 VD->getAnyInitializer() && 5750 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5751 /*ForRef=*/false); 5752 5753 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5754 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5755 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5756 CXXGlobalInits.push_back(InitFunction); 5757 } 5758 } 5759 5760 llvm::Metadata * 5761 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5762 StringRef Suffix) { 5763 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5764 if (InternalId) 5765 return InternalId; 5766 5767 if (isExternallyVisible(T->getLinkage())) { 5768 std::string OutName; 5769 llvm::raw_string_ostream Out(OutName); 5770 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5771 Out << Suffix; 5772 5773 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5774 } else { 5775 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5776 llvm::ArrayRef<llvm::Metadata *>()); 5777 } 5778 5779 return InternalId; 5780 } 5781 5782 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5783 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5784 } 5785 5786 llvm::Metadata * 5787 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5788 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5789 } 5790 5791 // Generalize pointer types to a void pointer with the qualifiers of the 5792 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5793 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5794 // 'void *'. 5795 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5796 if (!Ty->isPointerType()) 5797 return Ty; 5798 5799 return Ctx.getPointerType( 5800 QualType(Ctx.VoidTy).withCVRQualifiers( 5801 Ty->getPointeeType().getCVRQualifiers())); 5802 } 5803 5804 // Apply type generalization to a FunctionType's return and argument types 5805 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5806 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5807 SmallVector<QualType, 8> GeneralizedParams; 5808 for (auto &Param : FnType->param_types()) 5809 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5810 5811 return Ctx.getFunctionType( 5812 GeneralizeType(Ctx, FnType->getReturnType()), 5813 GeneralizedParams, FnType->getExtProtoInfo()); 5814 } 5815 5816 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5817 return Ctx.getFunctionNoProtoType( 5818 GeneralizeType(Ctx, FnType->getReturnType())); 5819 5820 llvm_unreachable("Encountered unknown FunctionType"); 5821 } 5822 5823 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5824 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5825 GeneralizedMetadataIdMap, ".generalized"); 5826 } 5827 5828 /// Returns whether this module needs the "all-vtables" type identifier. 5829 bool CodeGenModule::NeedAllVtablesTypeId() const { 5830 // Returns true if at least one of vtable-based CFI checkers is enabled and 5831 // is not in the trapping mode. 5832 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5833 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5834 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5835 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5836 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5837 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5838 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5839 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5840 } 5841 5842 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5843 CharUnits Offset, 5844 const CXXRecordDecl *RD) { 5845 llvm::Metadata *MD = 5846 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5847 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5848 5849 if (CodeGenOpts.SanitizeCfiCrossDso) 5850 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5851 VTable->addTypeMetadata(Offset.getQuantity(), 5852 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5853 5854 if (NeedAllVtablesTypeId()) { 5855 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5856 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5857 } 5858 } 5859 5860 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5861 assert(TD != nullptr); 5862 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5863 5864 ParsedAttr.Features.erase( 5865 llvm::remove_if(ParsedAttr.Features, 5866 [&](const std::string &Feat) { 5867 return !Target.isValidFeatureName( 5868 StringRef{Feat}.substr(1)); 5869 }), 5870 ParsedAttr.Features.end()); 5871 return ParsedAttr; 5872 } 5873 5874 5875 // Fills in the supplied string map with the set of target features for the 5876 // passed in function. 5877 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5878 GlobalDecl GD) { 5879 StringRef TargetCPU = Target.getTargetOpts().CPU; 5880 const FunctionDecl *FD = GD.getDecl()->getAsFunction(); 5881 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5882 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5883 5884 // Make a copy of the features as passed on the command line into the 5885 // beginning of the additional features from the function to override. 5886 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5887 Target.getTargetOpts().FeaturesAsWritten.begin(), 5888 Target.getTargetOpts().FeaturesAsWritten.end()); 5889 5890 if (ParsedAttr.Architecture != "" && 5891 Target.isValidCPUName(ParsedAttr.Architecture)) 5892 TargetCPU = ParsedAttr.Architecture; 5893 5894 // Now populate the feature map, first with the TargetCPU which is either 5895 // the default or a new one from the target attribute string. Then we'll use 5896 // the passed in features (FeaturesAsWritten) along with the new ones from 5897 // the attribute. 5898 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5899 ParsedAttr.Features); 5900 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5901 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5902 Target.getCPUSpecificCPUDispatchFeatures( 5903 SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp); 5904 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5905 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5906 } else { 5907 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5908 Target.getTargetOpts().Features); 5909 } 5910 } 5911 5912 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5913 if (!SanStats) 5914 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 5915 5916 return *SanStats; 5917 } 5918 llvm::Value * 5919 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5920 CodeGenFunction &CGF) { 5921 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5922 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5923 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5924 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5925 "__translate_sampler_initializer"), 5926 {C}); 5927 } 5928