1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CodeGenModule.h" 16 #include "CodeGenFunction.h" 17 #include "CGObjCRuntime.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/Basic/Diagnostic.h" 21 #include "clang/Basic/SourceManager.h" 22 #include "clang/Basic/TargetInfo.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/Module.h" 25 #include "llvm/Intrinsics.h" 26 #include "llvm/Target/TargetData.h" 27 #include "llvm/Analysis/Verifier.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 32 CodeGenModule::CodeGenModule(ASTContext &C, const LangOptions &LO, 33 llvm::Module &M, const llvm::TargetData &TD, 34 Diagnostic &diags, bool GenerateDebugInfo) 35 : Context(C), Features(LO), TheModule(M), TheTargetData(TD), Diags(diags), 36 Types(C, M, TD), Runtime(0), MemCpyFn(0), MemMoveFn(0), MemSetFn(0), 37 CFConstantStringClassRef(0) { 38 39 if (Features.ObjC1) { 40 if (Features.NeXTRuntime) { 41 Runtime = CreateMacObjCRuntime(*this); 42 } else { 43 Runtime = CreateGNUObjCRuntime(*this); 44 } 45 } 46 47 // If debug info generation is enabled, create the CGDebugInfo object. 48 DebugInfo = GenerateDebugInfo ? new CGDebugInfo(this) : 0; 49 } 50 51 CodeGenModule::~CodeGenModule() { 52 delete Runtime; 53 delete DebugInfo; 54 } 55 56 void CodeGenModule::Release() { 57 EmitStatics(); 58 if (Runtime) 59 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 60 AddGlobalCtor(ObjCInitFunction); 61 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 62 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 63 EmitAnnotations(); 64 // Run the verifier to check that the generated code is consistent. 65 assert(!verifyModule(TheModule)); 66 } 67 68 /// WarnUnsupported - Print out a warning that codegen doesn't support the 69 /// specified stmt yet. 70 void CodeGenModule::WarnUnsupported(const Stmt *S, const char *Type) { 71 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Warning, 72 "cannot codegen this %0 yet"); 73 SourceRange Range = S->getSourceRange(); 74 std::string Msg = Type; 75 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID, 76 &Msg, 1, &Range, 1); 77 } 78 79 /// WarnUnsupported - Print out a warning that codegen doesn't support the 80 /// specified decl yet. 81 void CodeGenModule::WarnUnsupported(const Decl *D, const char *Type) { 82 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Warning, 83 "cannot codegen this %0 yet"); 84 std::string Msg = Type; 85 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID, 86 &Msg, 1); 87 } 88 89 /// setVisibility - Set the visibility for the given LLVM GlobalValue 90 /// according to the given clang AST visibility value. 91 void CodeGenModule::setVisibility(llvm::GlobalValue *GV, 92 VisibilityAttr::VisibilityTypes Vis) { 93 switch (Vis) { 94 default: assert(0 && "Unknown visibility!"); 95 case VisibilityAttr::DefaultVisibility: 96 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 97 break; 98 case VisibilityAttr::HiddenVisibility: 99 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 100 break; 101 case VisibilityAttr::ProtectedVisibility: 102 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 103 break; 104 } 105 } 106 107 /// AddGlobalCtor - Add a function to the list that will be called before 108 /// main() runs. 109 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 110 // TODO: Type coercion of void()* types. 111 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 112 } 113 114 /// AddGlobalDtor - Add a function to the list that will be called 115 /// when the module is unloaded. 116 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 117 // TODO: Type coercion of void()* types. 118 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 119 } 120 121 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 122 // Ctor function type is void()*. 123 llvm::FunctionType* CtorFTy = 124 llvm::FunctionType::get(llvm::Type::VoidTy, 125 std::vector<const llvm::Type*>(), 126 false); 127 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 128 129 // Get the type of a ctor entry, { i32, void ()* }. 130 llvm::StructType* CtorStructTy = 131 llvm::StructType::get(llvm::Type::Int32Ty, 132 llvm::PointerType::getUnqual(CtorFTy), NULL); 133 134 // Construct the constructor and destructor arrays. 135 std::vector<llvm::Constant*> Ctors; 136 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 137 std::vector<llvm::Constant*> S; 138 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 139 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 140 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 141 } 142 143 if (!Ctors.empty()) { 144 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 145 new llvm::GlobalVariable(AT, false, 146 llvm::GlobalValue::AppendingLinkage, 147 llvm::ConstantArray::get(AT, Ctors), 148 GlobalName, 149 &TheModule); 150 } 151 } 152 153 void CodeGenModule::EmitAnnotations() { 154 if (Annotations.empty()) 155 return; 156 157 // Create a new global variable for the ConstantStruct in the Module. 158 llvm::Constant *Array = 159 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 160 Annotations.size()), 161 Annotations); 162 llvm::GlobalValue *gv = 163 new llvm::GlobalVariable(Array->getType(), false, 164 llvm::GlobalValue::AppendingLinkage, Array, 165 "llvm.global.annotations", &TheModule); 166 gv->setSection("llvm.metadata"); 167 } 168 169 bool hasAggregateLLVMType(QualType T) { 170 return !T->isRealType() && !T->isPointerLikeType() && 171 !T->isVoidType() && !T->isVectorType() && !T->isFunctionType(); 172 } 173 174 void CodeGenModule::SetGlobalValueAttributes(const FunctionDecl *FD, 175 llvm::GlobalValue *GV) { 176 // TODO: Set up linkage and many other things. Note, this is a simple 177 // approximation of what we really want. 178 if (FD->getStorageClass() == FunctionDecl::Static) 179 GV->setLinkage(llvm::Function::InternalLinkage); 180 else if (FD->getAttr<DLLImportAttr>()) 181 GV->setLinkage(llvm::Function::DLLImportLinkage); 182 else if (FD->getAttr<DLLExportAttr>()) 183 GV->setLinkage(llvm::Function::DLLExportLinkage); 184 else if (FD->getAttr<WeakAttr>() || FD->isInline()) 185 GV->setLinkage(llvm::Function::WeakLinkage); 186 187 if (const VisibilityAttr *attr = FD->getAttr<VisibilityAttr>()) 188 CodeGenModule::setVisibility(GV, attr->getVisibility()); 189 // FIXME: else handle -fvisibility 190 191 if (const AsmLabelAttr *ALA = FD->getAttr<AsmLabelAttr>()) { 192 // Prefaced with special LLVM marker to indicate that the name 193 // should not be munged. 194 GV->setName("\01" + ALA->getLabel()); 195 } 196 } 197 198 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 199 llvm::Function *F, 200 const llvm::FunctionType *FTy) { 201 unsigned FuncAttrs = 0; 202 if (FD->getAttr<NoThrowAttr>()) 203 FuncAttrs |= llvm::ParamAttr::NoUnwind; 204 if (FD->getAttr<NoReturnAttr>()) 205 FuncAttrs |= llvm::ParamAttr::NoReturn; 206 207 llvm::SmallVector<llvm::ParamAttrsWithIndex, 8> ParamAttrList; 208 if (FuncAttrs) 209 ParamAttrList.push_back(llvm::ParamAttrsWithIndex::get(0, FuncAttrs)); 210 // Note that there is parallel code in CodeGenFunction::EmitCallExpr 211 bool AggregateReturn = hasAggregateLLVMType(FD->getResultType()); 212 if (AggregateReturn) 213 ParamAttrList.push_back( 214 llvm::ParamAttrsWithIndex::get(1, llvm::ParamAttr::StructRet)); 215 unsigned increment = AggregateReturn ? 2 : 1; 216 const FunctionTypeProto* FTP = dyn_cast<FunctionTypeProto>(FD->getType()); 217 if (FTP) { 218 for (unsigned i = 0; i < FTP->getNumArgs(); i++) { 219 QualType ParamType = FTP->getArgType(i); 220 unsigned ParamAttrs = 0; 221 if (ParamType->isRecordType()) 222 ParamAttrs |= llvm::ParamAttr::ByVal; 223 if (ParamType->isSignedIntegerType() && 224 ParamType->isPromotableIntegerType()) 225 ParamAttrs |= llvm::ParamAttr::SExt; 226 if (ParamType->isUnsignedIntegerType() && 227 ParamType->isPromotableIntegerType()) 228 ParamAttrs |= llvm::ParamAttr::ZExt; 229 if (ParamAttrs) 230 ParamAttrList.push_back(llvm::ParamAttrsWithIndex::get(i + increment, 231 ParamAttrs)); 232 } 233 } 234 235 F->setParamAttrs(llvm::PAListPtr::get(ParamAttrList.begin(), 236 ParamAttrList.size())); 237 238 // Set the appropriate calling convention for the Function. 239 if (FD->getAttr<FastCallAttr>()) 240 F->setCallingConv(llvm::CallingConv::Fast); 241 242 SetGlobalValueAttributes(FD, F); 243 } 244 245 void CodeGenModule::EmitObjCMethod(const ObjCMethodDecl *OMD) { 246 // If this is not a prototype, emit the body. 247 if (OMD->getBody()) 248 CodeGenFunction(*this).GenerateObjCMethod(OMD); 249 } 250 void CodeGenModule::EmitObjCProtocolImplementation(const ObjCProtocolDecl *PD){ 251 Runtime->GenerateProtocol(PD); 252 } 253 254 void CodeGenModule::EmitObjCCategoryImpl(const ObjCCategoryImplDecl *OCD) { 255 Runtime->GenerateCategory(OCD); 256 } 257 258 void 259 CodeGenModule::EmitObjCClassImplementation(const ObjCImplementationDecl *OID) { 260 Runtime->GenerateClass(OID); 261 } 262 263 void CodeGenModule::EmitStatics() { 264 // Emit code for each used static decl encountered. Since a previously unused 265 // static decl may become used during the generation of code for a static 266 // function, iterate until no changes are made. 267 bool Changed; 268 do { 269 Changed = false; 270 for (unsigned i = 0, e = StaticDecls.size(); i != e; ++i) { 271 const ValueDecl *D = StaticDecls[i]; 272 273 // Check if we have used a decl with the same name 274 // FIXME: The AST should have some sort of aggregate decls or 275 // global symbol map. 276 if (!GlobalDeclMap.count(D->getName())) 277 continue; 278 279 // Emit the definition. 280 EmitGlobalDefinition(D); 281 282 // Erase the used decl from the list. 283 StaticDecls[i] = StaticDecls.back(); 284 StaticDecls.pop_back(); 285 --i; 286 --e; 287 288 // Remember that we made a change. 289 Changed = true; 290 } 291 } while (Changed); 292 } 293 294 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 295 /// annotation information for a given GlobalValue. The annotation struct is 296 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 297 /// GlobalValue being annotated. The second field is the constant string 298 /// created from the AnnotateAttr's annotation. The third field is a constant 299 /// string containing the name of the translation unit. The fourth field is 300 /// the line number in the file of the annotated value declaration. 301 /// 302 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 303 /// appears to. 304 /// 305 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 306 const AnnotateAttr *AA, 307 unsigned LineNo) { 308 llvm::Module *M = &getModule(); 309 310 // get [N x i8] constants for the annotation string, and the filename string 311 // which are the 2nd and 3rd elements of the global annotation structure. 312 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 313 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 314 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 315 true); 316 317 // Get the two global values corresponding to the ConstantArrays we just 318 // created to hold the bytes of the strings. 319 llvm::GlobalValue *annoGV = 320 new llvm::GlobalVariable(anno->getType(), false, 321 llvm::GlobalValue::InternalLinkage, anno, 322 GV->getName() + ".str", M); 323 // translation unit name string, emitted into the llvm.metadata section. 324 llvm::GlobalValue *unitGV = 325 new llvm::GlobalVariable(unit->getType(), false, 326 llvm::GlobalValue::InternalLinkage, unit, ".str", M); 327 328 // Create the ConstantStruct that is the global annotion. 329 llvm::Constant *Fields[4] = { 330 llvm::ConstantExpr::getBitCast(GV, SBP), 331 llvm::ConstantExpr::getBitCast(annoGV, SBP), 332 llvm::ConstantExpr::getBitCast(unitGV, SBP), 333 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 334 }; 335 return llvm::ConstantStruct::get(Fields, 4, false); 336 } 337 338 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 339 bool isDef, isStatic; 340 341 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 342 isDef = (FD->isThisDeclarationADefinition() || 343 FD->getAttr<AliasAttr>()); 344 isStatic = FD->getStorageClass() == FunctionDecl::Static; 345 } else if (const VarDecl *VD = cast<VarDecl>(Global)) { 346 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 347 348 isDef = !(VD->getStorageClass() == VarDecl::Extern && VD->getInit() == 0); 349 isStatic = VD->getStorageClass() == VarDecl::Static; 350 } else { 351 assert(0 && "Invalid argument to EmitGlobal"); 352 return; 353 } 354 355 // Forward declarations are emitted lazily on first use. 356 if (!isDef) 357 return; 358 359 // If the global is a static, defer code generation until later so 360 // we can easily omit unused statics. 361 if (isStatic) { 362 StaticDecls.push_back(Global); 363 return; 364 } 365 366 // Otherwise emit the definition. 367 EmitGlobalDefinition(Global); 368 } 369 370 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 371 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 372 EmitGlobalFunctionDefinition(FD); 373 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 374 EmitGlobalVarDefinition(VD); 375 } else { 376 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 377 } 378 } 379 380 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D) { 381 assert(D->hasGlobalStorage() && "Not a global variable"); 382 383 QualType ASTTy = D->getType(); 384 const llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy); 385 const llvm::Type *PTy = llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 386 387 // Lookup the entry, lazily creating it if necessary. 388 llvm::GlobalValue *&Entry = GlobalDeclMap[D->getName()]; 389 if (!Entry) 390 Entry = new llvm::GlobalVariable(Ty, false, 391 llvm::GlobalValue::ExternalLinkage, 392 0, D->getName(), &getModule(), 0, 393 ASTTy.getAddressSpace()); 394 395 // Make sure the result is of the correct type. 396 return llvm::ConstantExpr::getBitCast(Entry, PTy); 397 } 398 399 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 400 llvm::Constant *Init = 0; 401 QualType ASTTy = D->getType(); 402 const llvm::Type *VarTy = getTypes().ConvertTypeForMem(ASTTy); 403 404 if (D->getInit() == 0) { 405 // This is a tentative definition; tentative definitions are 406 // implicitly initialized with { 0 } 407 const llvm::Type* InitTy; 408 if (ASTTy->isIncompleteArrayType()) { 409 // An incomplete array is normally [ TYPE x 0 ], but we need 410 // to fix it to [ TYPE x 1 ]. 411 const llvm::ArrayType* ATy = cast<llvm::ArrayType>(VarTy); 412 InitTy = llvm::ArrayType::get(ATy->getElementType(), 1); 413 } else { 414 InitTy = VarTy; 415 } 416 Init = llvm::Constant::getNullValue(InitTy); 417 } else { 418 Init = EmitConstantExpr(D->getInit()); 419 } 420 const llvm::Type* InitType = Init->getType(); 421 422 llvm::GlobalValue *&Entry = GlobalDeclMap[D->getName()]; 423 llvm::GlobalVariable *GV = cast_or_null<llvm::GlobalVariable>(Entry); 424 425 if (!GV) { 426 GV = new llvm::GlobalVariable(InitType, false, 427 llvm::GlobalValue::ExternalLinkage, 428 0, D->getName(), &getModule(), 0, 429 ASTTy.getAddressSpace()); 430 } else if (GV->getType() != 431 llvm::PointerType::get(InitType, ASTTy.getAddressSpace())) { 432 // We have a definition after a prototype with the wrong type. 433 // We must make a new GlobalVariable* and update everything that used OldGV 434 // (a declaration or tentative definition) with the new GlobalVariable* 435 // (which will be a definition). 436 // 437 // This happens if there is a prototype for a global (e.g. "extern int x[];") 438 // and then a definition of a different type (e.g. "int x[10];"). This also 439 // happens when an initializer has a different type from the type of the 440 // global (this happens with unions). 441 // 442 // FIXME: This also ends up happening if there's a definition followed by 443 // a tentative definition! (Although Sema rejects that construct 444 // at the moment.) 445 446 // Save the old global 447 llvm::GlobalVariable *OldGV = GV; 448 449 // Make a new global with the correct type 450 GV = new llvm::GlobalVariable(InitType, false, 451 llvm::GlobalValue::ExternalLinkage, 452 0, D->getName(), &getModule(), 0, 453 ASTTy.getAddressSpace()); 454 // Steal the name of the old global 455 GV->takeName(OldGV); 456 457 // Replace all uses of the old global with the new global 458 llvm::Constant *NewPtrForOldDecl = 459 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 460 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 461 462 // Erase the old global, since it is no longer used. 463 OldGV->eraseFromParent(); 464 } 465 466 Entry = GV; 467 468 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 469 SourceManager &SM = Context.getSourceManager(); 470 AddAnnotation(EmitAnnotateAttr(GV, AA, 471 SM.getLogicalLineNumber(D->getLocation()))); 472 } 473 474 GV->setInitializer(Init); 475 476 // FIXME: This is silly; getTypeAlign should just work for incomplete arrays 477 unsigned Align; 478 if (const IncompleteArrayType* IAT = 479 Context.getAsIncompleteArrayType(D->getType())) 480 Align = Context.getTypeAlign(IAT->getElementType()); 481 else 482 Align = Context.getTypeAlign(D->getType()); 483 if (const AlignedAttr* AA = D->getAttr<AlignedAttr>()) { 484 Align = std::max(Align, AA->getAlignment()); 485 } 486 GV->setAlignment(Align / 8); 487 488 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) 489 setVisibility(GV, attr->getVisibility()); 490 // FIXME: else handle -fvisibility 491 492 if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) { 493 // Prefaced with special LLVM marker to indicate that the name 494 // should not be munged. 495 GV->setName("\01" + ALA->getLabel()); 496 } 497 498 // Set the llvm linkage type as appropriate. 499 if (D->getStorageClass() == VarDecl::Static) 500 GV->setLinkage(llvm::Function::InternalLinkage); 501 else if (D->getAttr<DLLImportAttr>()) 502 GV->setLinkage(llvm::Function::DLLImportLinkage); 503 else if (D->getAttr<DLLExportAttr>()) 504 GV->setLinkage(llvm::Function::DLLExportLinkage); 505 else if (D->getAttr<WeakAttr>()) 506 GV->setLinkage(llvm::GlobalVariable::WeakLinkage); 507 else { 508 // FIXME: This isn't right. This should handle common linkage and other 509 // stuff. 510 switch (D->getStorageClass()) { 511 case VarDecl::Static: assert(0 && "This case handled above"); 512 case VarDecl::Auto: 513 case VarDecl::Register: 514 assert(0 && "Can't have auto or register globals"); 515 case VarDecl::None: 516 if (!D->getInit()) 517 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 518 break; 519 case VarDecl::Extern: 520 case VarDecl::PrivateExtern: 521 // todo: common 522 break; 523 } 524 } 525 526 // Emit global variable debug information. 527 CGDebugInfo *DI = getDebugInfo(); 528 if(DI) { 529 if(D->getLocation().isValid()) 530 DI->setLocation(D->getLocation()); 531 DI->EmitGlobalVariable(GV, D); 532 } 533 } 534 535 llvm::GlobalValue * 536 CodeGenModule::EmitForwardFunctionDefinition(const FunctionDecl *D) { 537 // FIXME: param attributes for sext/zext etc. 538 if (const AliasAttr *AA = D->getAttr<AliasAttr>()) { 539 assert(!D->getBody() && "Unexpected alias attr on function with body."); 540 541 const std::string& aliaseeName = AA->getAliasee(); 542 llvm::Function *aliasee = getModule().getFunction(aliaseeName); 543 llvm::GlobalValue *alias = new llvm::GlobalAlias(aliasee->getType(), 544 llvm::Function::ExternalLinkage, 545 D->getName(), 546 aliasee, 547 &getModule()); 548 SetGlobalValueAttributes(D, alias); 549 return alias; 550 } else { 551 const llvm::Type *Ty = getTypes().ConvertType(D->getType()); 552 const llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); 553 llvm::Function *F = llvm::Function::Create(FTy, 554 llvm::Function::ExternalLinkage, 555 D->getName(), &getModule()); 556 557 SetFunctionAttributes(D, F, FTy); 558 return F; 559 } 560 } 561 562 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D) { 563 QualType ASTTy = D->getType(); 564 const llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy); 565 const llvm::Type *PTy = llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 566 567 // Lookup the entry, lazily creating it if necessary. 568 llvm::GlobalValue *&Entry = GlobalDeclMap[D->getName()]; 569 if (!Entry) 570 Entry = EmitForwardFunctionDefinition(D); 571 572 return llvm::ConstantExpr::getBitCast(Entry, PTy); 573 } 574 575 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 576 llvm::GlobalValue *&Entry = GlobalDeclMap[D->getName()]; 577 if (!Entry) { 578 Entry = EmitForwardFunctionDefinition(D); 579 } else { 580 // If the types mismatch then we have to rewrite the definition. 581 const llvm::Type *Ty = getTypes().ConvertType(D->getType()); 582 if (Entry->getType() != llvm::PointerType::getUnqual(Ty)) { 583 // Otherwise, we have a definition after a prototype with the wrong type. 584 // F is the Function* for the one with the wrong type, we must make a new 585 // Function* and update everything that used F (a declaration) with the new 586 // Function* (which will be a definition). 587 // 588 // This happens if there is a prototype for a function (e.g. "int f()") and 589 // then a definition of a different type (e.g. "int f(int x)"). Start by 590 // making a new function of the correct type, RAUW, then steal the name. 591 llvm::GlobalValue *NewFn = EmitForwardFunctionDefinition(D); 592 NewFn->takeName(Entry); 593 594 // Replace uses of F with the Function we will endow with a body. 595 llvm::Constant *NewPtrForOldDecl = 596 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 597 Entry->replaceAllUsesWith(NewPtrForOldDecl); 598 599 // Ok, delete the old function now, which is dead. 600 // FIXME: Add GlobalValue->eraseFromParent(). 601 assert(Entry->isDeclaration() && "Shouldn't replace non-declaration"); 602 if (llvm::Function *F = dyn_cast<llvm::Function>(Entry)) { 603 F->eraseFromParent(); 604 } else if (llvm::GlobalAlias *GA = dyn_cast<llvm::GlobalAlias>(Entry)) { 605 GA->eraseFromParent(); 606 } else { 607 assert(0 && "Invalid global variable type."); 608 } 609 610 Entry = NewFn; 611 } 612 } 613 614 if (D->getAttr<AliasAttr>()) { 615 ; 616 } else { 617 llvm::Function *Fn = cast<llvm::Function>(Entry); 618 CodeGenFunction(*this).GenerateCode(D, Fn); 619 620 // Set attributes specific to definition. 621 // FIXME: This needs to be cleaned up by clearly emitting the 622 // declaration / definition at separate times. 623 if (!Features.Exceptions) 624 Fn->addParamAttr(0, llvm::ParamAttr::NoUnwind); 625 626 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) { 627 AddGlobalCtor(Fn, CA->getPriority()); 628 } else if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) { 629 AddGlobalDtor(Fn, DA->getPriority()); 630 } 631 } 632 } 633 634 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 635 // Make sure that this type is translated. 636 Types.UpdateCompletedType(TD); 637 } 638 639 640 /// getBuiltinLibFunction 641 llvm::Function *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 642 if (BuiltinID > BuiltinFunctions.size()) 643 BuiltinFunctions.resize(BuiltinID); 644 645 // Cache looked up functions. Since builtin id #0 is invalid we don't reserve 646 // a slot for it. 647 assert(BuiltinID && "Invalid Builtin ID"); 648 llvm::Function *&FunctionSlot = BuiltinFunctions[BuiltinID-1]; 649 if (FunctionSlot) 650 return FunctionSlot; 651 652 assert(Context.BuiltinInfo.isLibFunction(BuiltinID) && "isn't a lib fn"); 653 654 // Get the name, skip over the __builtin_ prefix. 655 const char *Name = Context.BuiltinInfo.GetName(BuiltinID)+10; 656 657 // Get the type for the builtin. 658 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context); 659 const llvm::FunctionType *Ty = 660 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 661 662 // FIXME: This has a serious problem with code like this: 663 // void abs() {} 664 // ... __builtin_abs(x); 665 // The two versions of abs will collide. The fix is for the builtin to win, 666 // and for the existing one to be turned into a constantexpr cast of the 667 // builtin. In the case where the existing one is a static function, it 668 // should just be renamed. 669 if (llvm::Function *Existing = getModule().getFunction(Name)) { 670 if (Existing->getFunctionType() == Ty && Existing->hasExternalLinkage()) 671 return FunctionSlot = Existing; 672 assert(Existing == 0 && "FIXME: Name collision"); 673 } 674 675 // FIXME: param attributes for sext/zext etc. 676 return FunctionSlot = 677 llvm::Function::Create(Ty, llvm::Function::ExternalLinkage, Name, 678 &getModule()); 679 } 680 681 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 682 unsigned NumTys) { 683 return llvm::Intrinsic::getDeclaration(&getModule(), 684 (llvm::Intrinsic::ID)IID, Tys, NumTys); 685 } 686 687 llvm::Function *CodeGenModule::getMemCpyFn() { 688 if (MemCpyFn) return MemCpyFn; 689 llvm::Intrinsic::ID IID; 690 switch (Context.Target.getPointerWidth(0)) { 691 default: assert(0 && "Unknown ptr width"); 692 case 32: IID = llvm::Intrinsic::memcpy_i32; break; 693 case 64: IID = llvm::Intrinsic::memcpy_i64; break; 694 } 695 return MemCpyFn = getIntrinsic(IID); 696 } 697 698 llvm::Function *CodeGenModule::getMemMoveFn() { 699 if (MemMoveFn) return MemMoveFn; 700 llvm::Intrinsic::ID IID; 701 switch (Context.Target.getPointerWidth(0)) { 702 default: assert(0 && "Unknown ptr width"); 703 case 32: IID = llvm::Intrinsic::memmove_i32; break; 704 case 64: IID = llvm::Intrinsic::memmove_i64; break; 705 } 706 return MemMoveFn = getIntrinsic(IID); 707 } 708 709 llvm::Function *CodeGenModule::getMemSetFn() { 710 if (MemSetFn) return MemSetFn; 711 llvm::Intrinsic::ID IID; 712 switch (Context.Target.getPointerWidth(0)) { 713 default: assert(0 && "Unknown ptr width"); 714 case 32: IID = llvm::Intrinsic::memset_i32; break; 715 case 64: IID = llvm::Intrinsic::memset_i64; break; 716 } 717 return MemSetFn = getIntrinsic(IID); 718 } 719 720 // FIXME: This needs moving into an Apple Objective-C runtime class 721 llvm::Constant *CodeGenModule:: 722 GetAddrOfConstantCFString(const std::string &str) { 723 llvm::StringMapEntry<llvm::Constant *> &Entry = 724 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 725 726 if (Entry.getValue()) 727 return Entry.getValue(); 728 729 std::vector<llvm::Constant*> Fields; 730 731 if (!CFConstantStringClassRef) { 732 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 733 Ty = llvm::ArrayType::get(Ty, 0); 734 735 CFConstantStringClassRef = 736 new llvm::GlobalVariable(Ty, false, 737 llvm::GlobalVariable::ExternalLinkage, 0, 738 "__CFConstantStringClassReference", 739 &getModule()); 740 } 741 742 // Class pointer. 743 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 744 llvm::Constant *Zeros[] = { Zero, Zero }; 745 llvm::Constant *C = 746 llvm::ConstantExpr::getGetElementPtr(CFConstantStringClassRef, Zeros, 2); 747 Fields.push_back(C); 748 749 // Flags. 750 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 751 Fields.push_back(llvm::ConstantInt::get(Ty, 1992)); 752 753 // String pointer. 754 C = llvm::ConstantArray::get(str); 755 C = new llvm::GlobalVariable(C->getType(), true, 756 llvm::GlobalValue::InternalLinkage, 757 C, ".str", &getModule()); 758 759 C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2); 760 Fields.push_back(C); 761 762 // String length. 763 Ty = getTypes().ConvertType(getContext().LongTy); 764 Fields.push_back(llvm::ConstantInt::get(Ty, str.length())); 765 766 // The struct. 767 Ty = getTypes().ConvertType(getContext().getCFConstantStringType()); 768 C = llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Fields); 769 llvm::GlobalVariable *GV = 770 new llvm::GlobalVariable(C->getType(), true, 771 llvm::GlobalVariable::InternalLinkage, 772 C, "", &getModule()); 773 GV->setSection("__DATA,__cfstring"); 774 Entry.setValue(GV); 775 return GV; 776 } 777 778 /// GetStringForStringLiteral - Return the appropriate bytes for a 779 /// string literal, properly padded to match the literal type. 780 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 781 assert(!E->isWide() && "FIXME: Wide strings not supported yet!"); 782 const char *StrData = E->getStrData(); 783 unsigned Len = E->getByteLength(); 784 785 const ConstantArrayType *CAT = 786 getContext().getAsConstantArrayType(E->getType()); 787 assert(CAT && "String isn't pointer or array!"); 788 789 // Resize the string to the right size 790 // FIXME: What about wchar_t strings? 791 std::string Str(StrData, StrData+Len); 792 uint64_t RealLen = CAT->getSize().getZExtValue(); 793 Str.resize(RealLen, '\0'); 794 795 return Str; 796 } 797 798 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 799 /// constant array for the given string literal. 800 llvm::Constant * 801 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 802 // FIXME: This can be more efficient. 803 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 804 } 805 806 /// GenerateWritableString -- Creates storage for a string literal. 807 static llvm::Constant *GenerateStringLiteral(const std::string &str, 808 bool constant, 809 CodeGenModule &CGM) { 810 // Create Constant for this string literal. Don't add a '\0'. 811 llvm::Constant *C = llvm::ConstantArray::get(str, false); 812 813 // Create a global variable for this string 814 C = new llvm::GlobalVariable(C->getType(), constant, 815 llvm::GlobalValue::InternalLinkage, 816 C, ".str", &CGM.getModule()); 817 818 return C; 819 } 820 821 /// GetAddrOfConstantString - Returns a pointer to a character array 822 /// containing the literal. This contents are exactly that of the 823 /// given string, i.e. it will not be null terminated automatically; 824 /// see GetAddrOfConstantCString. Note that whether the result is 825 /// actually a pointer to an LLVM constant depends on 826 /// Feature.WriteableStrings. 827 /// 828 /// The result has pointer to array type. 829 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str) { 830 // Don't share any string literals if writable-strings is turned on. 831 if (Features.WritableStrings) 832 return GenerateStringLiteral(str, false, *this); 833 834 llvm::StringMapEntry<llvm::Constant *> &Entry = 835 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 836 837 if (Entry.getValue()) 838 return Entry.getValue(); 839 840 // Create a global variable for this. 841 llvm::Constant *C = GenerateStringLiteral(str, true, *this); 842 Entry.setValue(C); 843 return C; 844 } 845 846 /// GetAddrOfConstantCString - Returns a pointer to a character 847 /// array containing the literal and a terminating '\-' 848 /// character. The result has pointer to array type. 849 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str) { 850 return GetAddrOfConstantString(str + "\0"); 851 } 852