1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Diagnostic.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Basic/ConvertUTF.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Module.h"
30 #include "llvm/Intrinsics.h"
31 #include "llvm/Target/TargetData.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 
36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
37                              llvm::Module &M, const llvm::TargetData &TD,
38                              Diagnostic &diags)
39   : BlockModule(C, M, TD, Types, *this), Context(C),
40     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
41     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
42     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
43 
44   if (!Features.ObjC1)
45     Runtime = 0;
46   else if (!Features.NeXTRuntime)
47     Runtime = CreateGNUObjCRuntime(*this);
48   else if (Features.ObjCNonFragileABI)
49     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
50   else
51     Runtime = CreateMacObjCRuntime(*this);
52 
53   // If debug info generation is enabled, create the CGDebugInfo object.
54   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
55 }
56 
57 CodeGenModule::~CodeGenModule() {
58   delete Runtime;
59   delete DebugInfo;
60 }
61 
62 void CodeGenModule::Release() {
63   EmitDeferred();
64   if (Runtime)
65     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
66       AddGlobalCtor(ObjCInitFunction);
67   EmitCtorList(GlobalCtors, "llvm.global_ctors");
68   EmitCtorList(GlobalDtors, "llvm.global_dtors");
69   EmitAnnotations();
70   EmitLLVMUsed();
71 }
72 
73 /// ErrorUnsupported - Print out an error that codegen doesn't support the
74 /// specified stmt yet.
75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
76                                      bool OmitOnError) {
77   if (OmitOnError && getDiags().hasErrorOccurred())
78     return;
79   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
80                                                "cannot compile this %0 yet");
81   std::string Msg = Type;
82   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
83     << Msg << S->getSourceRange();
84 }
85 
86 /// ErrorUnsupported - Print out an error that codegen doesn't support the
87 /// specified decl yet.
88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
89                                      bool OmitOnError) {
90   if (OmitOnError && getDiags().hasErrorOccurred())
91     return;
92   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
93                                                "cannot compile this %0 yet");
94   std::string Msg = Type;
95   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
96 }
97 
98 LangOptions::VisibilityMode
99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
100   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
101     if (VD->getStorageClass() == VarDecl::PrivateExtern)
102       return LangOptions::Hidden;
103 
104   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
105     switch (attr->getVisibility()) {
106     default: assert(0 && "Unknown visibility!");
107     case VisibilityAttr::DefaultVisibility:
108       return LangOptions::Default;
109     case VisibilityAttr::HiddenVisibility:
110       return LangOptions::Hidden;
111     case VisibilityAttr::ProtectedVisibility:
112       return LangOptions::Protected;
113     }
114   }
115 
116   return getLangOptions().getVisibilityMode();
117 }
118 
119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
120                                         const Decl *D) const {
121   // Internal definitions always have default visibility.
122   if (GV->hasLocalLinkage()) {
123     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
124     return;
125   }
126 
127   switch (getDeclVisibilityMode(D)) {
128   default: assert(0 && "Unknown visibility!");
129   case LangOptions::Default:
130     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131   case LangOptions::Hidden:
132     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
133   case LangOptions::Protected:
134     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
135   }
136 }
137 
138 /// \brief Retrieves the mangled name for the given declaration.
139 ///
140 /// If the given declaration requires a mangled name, returns an
141 /// const char* containing the mangled name.  Otherwise, returns
142 /// the unmangled name.
143 ///
144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
145   // In C, functions with no attributes never need to be mangled. Fastpath them.
146   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
147     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
148     return ND->getNameAsCString();
149   }
150 
151   llvm::SmallString<256> Name;
152   llvm::raw_svector_ostream Out(Name);
153   if (!mangleName(ND, Context, Out)) {
154     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
155     return ND->getNameAsCString();
156   }
157 
158   Name += '\0';
159   return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData();
160 }
161 
162 /// AddGlobalCtor - Add a function to the list that will be called before
163 /// main() runs.
164 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
165   // FIXME: Type coercion of void()* types.
166   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
167 }
168 
169 /// AddGlobalDtor - Add a function to the list that will be called
170 /// when the module is unloaded.
171 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
172   // FIXME: Type coercion of void()* types.
173   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
174 }
175 
176 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
177   // Ctor function type is void()*.
178   llvm::FunctionType* CtorFTy =
179     llvm::FunctionType::get(llvm::Type::VoidTy,
180                             std::vector<const llvm::Type*>(),
181                             false);
182   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
183 
184   // Get the type of a ctor entry, { i32, void ()* }.
185   llvm::StructType* CtorStructTy =
186     llvm::StructType::get(llvm::Type::Int32Ty,
187                           llvm::PointerType::getUnqual(CtorFTy), NULL);
188 
189   // Construct the constructor and destructor arrays.
190   std::vector<llvm::Constant*> Ctors;
191   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
192     std::vector<llvm::Constant*> S;
193     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
194     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
195     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
196   }
197 
198   if (!Ctors.empty()) {
199     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
200     new llvm::GlobalVariable(AT, false,
201                              llvm::GlobalValue::AppendingLinkage,
202                              llvm::ConstantArray::get(AT, Ctors),
203                              GlobalName,
204                              &TheModule);
205   }
206 }
207 
208 void CodeGenModule::EmitAnnotations() {
209   if (Annotations.empty())
210     return;
211 
212   // Create a new global variable for the ConstantStruct in the Module.
213   llvm::Constant *Array =
214   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
215                                                 Annotations.size()),
216                            Annotations);
217   llvm::GlobalValue *gv =
218   new llvm::GlobalVariable(Array->getType(), false,
219                            llvm::GlobalValue::AppendingLinkage, Array,
220                            "llvm.global.annotations", &TheModule);
221   gv->setSection("llvm.metadata");
222 }
223 
224 /// SetGlobalValueAttributes - Set attributes for a global.
225 ///
226 /// FIXME: This is currently only done for aliases and functions, but
227 /// not for variables (these details are set in
228 /// EmitGlobalVarDefinition for variables).
229 void CodeGenModule::SetGlobalValueAttributes(const Decl *D,
230                                              GVALinkage Linkage,
231                                              llvm::GlobalValue *GV,
232                                              bool ForDefinition) {
233   // FIXME: Set up linkage and many other things.  Note, this is a simple
234   // approximation of what we really want.
235   if (!ForDefinition) {
236     // Only a few attributes are set on declarations.
237 
238     // The dllimport attribute is overridden by a subsequent declaration as
239     // dllexport.
240     if (D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
241       // dllimport attribute can be applied only to function decls, not to
242       // definitions.
243       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
244         if (!FD->getBody())
245           GV->setLinkage(llvm::Function::DLLImportLinkage);
246       } else
247         GV->setLinkage(llvm::Function::DLLImportLinkage);
248     } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
249       // "extern_weak" is overloaded in LLVM; we probably should have
250       // separate linkage types for this.
251       GV->setLinkage(llvm::Function::ExternalWeakLinkage);
252     }
253   } else if (Linkage == GVA_Internal) {
254     GV->setLinkage(llvm::Function::InternalLinkage);
255   } else if (D->hasAttr<DLLExportAttr>()) {
256     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
257       // The dllexport attribute is ignored for undefined symbols.
258       if (FD->getBody())
259         GV->setLinkage(llvm::Function::DLLExportLinkage);
260     } else {
261       GV->setLinkage(llvm::Function::DLLExportLinkage);
262     }
263   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
264     GV->setLinkage(llvm::Function::WeakAnyLinkage);
265   } else if (Linkage == GVA_ExternInline) {
266     // "extern inline" always gets available_externally linkage, which is the
267     // strongest linkage type we can give an inline function: we don't have to
268     // codegen the definition at all, yet we know that it is "ODR".
269     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
270   } else if (Linkage == GVA_Inline) {
271     // The definition of inline changes based on the language.  Note that we
272     // have already handled "static inline" above, with the GVA_Internal case.
273     if (Features.CPlusPlus) {
274       // In C++, the compiler has to emit a definition in every translation unit
275       // that references the function.  We should use linkonce_odr because
276       // a) if all references in this translation unit are optimized away, we
277       // don't need to codegen it.  b) if the function persists, it needs to be
278       // merged with other definitions. c) C++ has the ODR, so we know the
279       // definition is dependable.
280       GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
281     } else if (Features.C99) {
282       // In C99 mode, 'inline' functions are guaranteed to have a strong
283       // definition somewhere else, so we can use available_externally linkage.
284       GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
285     } else {
286       // In C89 mode, an 'inline' function may only occur in one translation
287       // unit in the program, but may be extern'd in others.  Give it strong
288       // external linkage.
289       GV->setLinkage(llvm::Function::ExternalLinkage);
290     }
291   }
292 
293   if (ForDefinition) {
294     setGlobalVisibility(GV, D);
295 
296     // Only add to llvm.used when we see a definition, otherwise we
297     // might add it multiple times or risk the value being replaced by
298     // a subsequent RAUW.
299     if (D->hasAttr<UsedAttr>())
300       AddUsedGlobal(GV);
301   }
302 
303   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
304     GV->setSection(SA->getName());
305 }
306 
307 void CodeGenModule::SetFunctionAttributes(const Decl *D,
308                                           const CGFunctionInfo &Info,
309                                           llvm::Function *F) {
310   AttributeListType AttributeList;
311   ConstructAttributeList(Info, D, AttributeList);
312 
313   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
314                                         AttributeList.size()));
315 
316   // Set the appropriate calling convention for the Function.
317   if (D->hasAttr<FastCallAttr>())
318     F->setCallingConv(llvm::CallingConv::X86_FastCall);
319 
320   if (D->hasAttr<StdCallAttr>())
321     F->setCallingConv(llvm::CallingConv::X86_StdCall);
322 }
323 
324 
325 static CodeGenModule::GVALinkage
326 GetLinkageForFunctionOrMethodDecl(const Decl *D) {
327   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
328     // "static" and attr(always_inline) functions get internal linkage.
329     if (FD->getStorageClass() == FunctionDecl::Static ||
330         FD->hasAttr<AlwaysInlineAttr>())
331       return CodeGenModule::GVA_Internal;
332     if (FD->isInline()) {
333       if (FD->getStorageClass() == FunctionDecl::Extern)
334         return CodeGenModule::GVA_ExternInline;
335       return CodeGenModule::GVA_Inline;
336     }
337   } else {
338     assert(isa<ObjCMethodDecl>(D));
339     return CodeGenModule::GVA_Internal;
340   }
341   return CodeGenModule::GVA_Normal;
342 }
343 
344 /// SetFunctionAttributesForDefinition - Set function attributes
345 /// specific to a function definition.
346 void CodeGenModule::SetFunctionAttributesForDefinition(const Decl *D,
347                                                        llvm::Function *F) {
348   SetGlobalValueAttributes(D, GetLinkageForFunctionOrMethodDecl(D), F, true);
349 
350   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
351     F->addFnAttr(llvm::Attribute::NoUnwind);
352 
353   if (D->hasAttr<AlwaysInlineAttr>())
354     F->addFnAttr(llvm::Attribute::AlwaysInline);
355 
356   if (D->hasAttr<NoinlineAttr>())
357     F->addFnAttr(llvm::Attribute::NoInline);
358 }
359 
360 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD,
361                                         llvm::Function *F) {
362   SetFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F);
363 
364   SetFunctionAttributesForDefinition(MD, F);
365 }
366 
367 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
368                                           llvm::Function *F) {
369   SetFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
370 
371   SetGlobalValueAttributes(FD, GetLinkageForFunctionOrMethodDecl(FD), F, false);
372 }
373 
374 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
375   assert(!GV->isDeclaration() &&
376          "Only globals with definition can force usage.");
377   LLVMUsed.push_back(GV);
378 }
379 
380 void CodeGenModule::EmitLLVMUsed() {
381   // Don't create llvm.used if there is no need.
382   if (LLVMUsed.empty())
383     return;
384 
385   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
386   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size());
387 
388   // Convert LLVMUsed to what ConstantArray needs.
389   std::vector<llvm::Constant*> UsedArray;
390   UsedArray.resize(LLVMUsed.size());
391   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
392     UsedArray[i] =
393      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
394   }
395 
396   llvm::GlobalVariable *GV =
397     new llvm::GlobalVariable(ATy, false,
398                              llvm::GlobalValue::AppendingLinkage,
399                              llvm::ConstantArray::get(ATy, UsedArray),
400                              "llvm.used", &getModule());
401 
402   GV->setSection("llvm.metadata");
403 }
404 
405 void CodeGenModule::EmitDeferred() {
406   // Emit code for any potentially referenced deferred decls.  Since a
407   // previously unused static decl may become used during the generation of code
408   // for a static function, iterate until no  changes are made.
409   while (!DeferredDeclsToEmit.empty()) {
410     const ValueDecl *D = DeferredDeclsToEmit.back();
411     DeferredDeclsToEmit.pop_back();
412 
413     // The mangled name for the decl must have been emitted in GlobalDeclMap.
414     // Look it up to see if it was defined with a stronger definition (e.g. an
415     // extern inline function with a strong function redefinition).  If so,
416     // just ignore the deferred decl.
417     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
418     assert(CGRef && "Deferred decl wasn't referenced?");
419 
420     if (!CGRef->isDeclaration())
421       continue;
422 
423     // Otherwise, emit the definition and move on to the next one.
424     EmitGlobalDefinition(D);
425   }
426 }
427 
428 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
429 /// annotation information for a given GlobalValue.  The annotation struct is
430 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
431 /// GlobalValue being annotated.  The second field is the constant string
432 /// created from the AnnotateAttr's annotation.  The third field is a constant
433 /// string containing the name of the translation unit.  The fourth field is
434 /// the line number in the file of the annotated value declaration.
435 ///
436 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
437 ///        appears to.
438 ///
439 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
440                                                 const AnnotateAttr *AA,
441                                                 unsigned LineNo) {
442   llvm::Module *M = &getModule();
443 
444   // get [N x i8] constants for the annotation string, and the filename string
445   // which are the 2nd and 3rd elements of the global annotation structure.
446   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
447   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
448   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
449                                                   true);
450 
451   // Get the two global values corresponding to the ConstantArrays we just
452   // created to hold the bytes of the strings.
453   const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
454   llvm::GlobalValue *annoGV =
455   new llvm::GlobalVariable(anno->getType(), false,
456                            llvm::GlobalValue::InternalLinkage, anno,
457                            GV->getName() + StringPrefix, M);
458   // translation unit name string, emitted into the llvm.metadata section.
459   llvm::GlobalValue *unitGV =
460   new llvm::GlobalVariable(unit->getType(), false,
461                            llvm::GlobalValue::InternalLinkage, unit,
462                            StringPrefix, M);
463 
464   // Create the ConstantStruct that is the global annotion.
465   llvm::Constant *Fields[4] = {
466     llvm::ConstantExpr::getBitCast(GV, SBP),
467     llvm::ConstantExpr::getBitCast(annoGV, SBP),
468     llvm::ConstantExpr::getBitCast(unitGV, SBP),
469     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
470   };
471   return llvm::ConstantStruct::get(Fields, 4, false);
472 }
473 
474 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
475   // Never defer when EmitAllDecls is specified or the decl has
476   // attribute used.
477   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
478     return false;
479 
480   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
481     // Constructors and destructors should never be deferred.
482     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
483       return false;
484 
485     GVALinkage Linkage = GetLinkageForFunctionOrMethodDecl(FD);
486 
487     // static, static inline, always_inline, and extern inline functions can
488     // always be deferred.
489     if (Linkage == GVA_Internal || Linkage == GVA_ExternInline)
490       return true;
491 
492     // inline functions can be deferred unless we're in C89 mode.
493     if (Linkage == GVA_Inline && (Features.C99 || Features.CPlusPlus))
494       return true;
495 
496     return false;
497   }
498 
499   const VarDecl *VD = cast<VarDecl>(Global);
500   assert(VD->isFileVarDecl() && "Invalid decl");
501   return VD->getStorageClass() == VarDecl::Static;
502 }
503 
504 void CodeGenModule::EmitGlobal(const ValueDecl *Global) {
505   // If this is an alias definition (which otherwise looks like a declaration)
506   // emit it now.
507   if (Global->hasAttr<AliasAttr>())
508     return EmitAliasDefinition(Global);
509 
510   // Ignore declarations, they will be emitted on their first use.
511   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
512     // Forward declarations are emitted lazily on first use.
513     if (!FD->isThisDeclarationADefinition())
514       return;
515   } else {
516     const VarDecl *VD = cast<VarDecl>(Global);
517     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
518 
519     // Forward declarations are emitted lazily on first use.
520     if (!VD->getInit() && VD->hasExternalStorage())
521       return;
522   }
523 
524   // Defer code generation when possible if this is a static definition, inline
525   // function etc.  These we only want to emit if they are used.
526   if (MayDeferGeneration(Global)) {
527     // If the value has already been used, add it directly to the
528     // DeferredDeclsToEmit list.
529     const char *MangledName = getMangledName(Global);
530     if (GlobalDeclMap.count(MangledName))
531       DeferredDeclsToEmit.push_back(Global);
532     else {
533       // Otherwise, remember that we saw a deferred decl with this name.  The
534       // first use of the mangled name will cause it to move into
535       // DeferredDeclsToEmit.
536       DeferredDecls[MangledName] = Global;
537     }
538     return;
539   }
540 
541   // Otherwise emit the definition.
542   EmitGlobalDefinition(Global);
543 }
544 
545 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) {
546   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
547     EmitGlobalFunctionDefinition(FD);
548   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
549     EmitGlobalVarDefinition(VD);
550   } else {
551     assert(0 && "Invalid argument to EmitGlobalDefinition()");
552   }
553 }
554 
555 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
556 /// module, create and return an llvm Function with the specified type. If there
557 /// is something in the module with the specified name, return it potentially
558 /// bitcasted to the right type.
559 ///
560 /// If D is non-null, it specifies a decl that correspond to this.  This is used
561 /// to set the attributes on the function when it is first created.
562 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
563                                                        const llvm::Type *Ty,
564                                                        const FunctionDecl *D) {
565   // Lookup the entry, lazily creating it if necessary.
566   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
567   if (Entry) {
568     if (Entry->getType()->getElementType() == Ty)
569       return Entry;
570 
571     // Make sure the result is of the correct type.
572     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
573     return llvm::ConstantExpr::getBitCast(Entry, PTy);
574   }
575 
576   // This is the first use or definition of a mangled name.  If there is a
577   // deferred decl with this name, remember that we need to emit it at the end
578   // of the file.
579   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
580   DeferredDecls.find(MangledName);
581   if (DDI != DeferredDecls.end()) {
582     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
583     // list, and remove it from DeferredDecls (since we don't need it anymore).
584     DeferredDeclsToEmit.push_back(DDI->second);
585     DeferredDecls.erase(DDI);
586   }
587 
588   // This function doesn't have a complete type (for example, the return
589   // type is an incomplete struct). Use a fake type instead, and make
590   // sure not to try to set attributes.
591   bool ShouldSetAttributes = true;
592   if (!isa<llvm::FunctionType>(Ty)) {
593     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
594                                  std::vector<const llvm::Type*>(), false);
595     ShouldSetAttributes = false;
596   }
597   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
598                                              llvm::Function::ExternalLinkage,
599                                              "", &getModule());
600   F->setName(MangledName);
601   if (D && ShouldSetAttributes)
602     SetFunctionAttributes(D, F);
603   Entry = F;
604   return F;
605 }
606 
607 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
608 /// non-null, then this function will use the specified type if it has to
609 /// create it (this occurs when we see a definition of the function).
610 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D,
611                                                  const llvm::Type *Ty) {
612   // If there was no specific requested type, just convert it now.
613   if (!Ty)
614     Ty = getTypes().ConvertType(D->getType());
615   return GetOrCreateLLVMFunction(getMangledName(D), Ty, D);
616 }
617 
618 /// CreateRuntimeFunction - Create a new runtime function with the specified
619 /// type and name.
620 llvm::Constant *
621 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
622                                      const char *Name) {
623   // Convert Name to be a uniqued string from the IdentifierInfo table.
624   Name = getContext().Idents.get(Name).getName();
625   return GetOrCreateLLVMFunction(Name, FTy, 0);
626 }
627 
628 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
629 /// create and return an llvm GlobalVariable with the specified type.  If there
630 /// is something in the module with the specified name, return it potentially
631 /// bitcasted to the right type.
632 ///
633 /// If D is non-null, it specifies a decl that correspond to this.  This is used
634 /// to set the attributes on the global when it is first created.
635 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
636                                                      const llvm::PointerType*Ty,
637                                                      const VarDecl *D) {
638   // Lookup the entry, lazily creating it if necessary.
639   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
640   if (Entry) {
641     if (Entry->getType() == Ty)
642       return Entry;
643 
644     // Make sure the result is of the correct type.
645     return llvm::ConstantExpr::getBitCast(Entry, Ty);
646   }
647 
648   // We don't support __thread yet.
649   if (D && D->isThreadSpecified())
650     ErrorUnsupported(D, "thread local ('__thread') variable", true);
651 
652   // This is the first use or definition of a mangled name.  If there is a
653   // deferred decl with this name, remember that we need to emit it at the end
654   // of the file.
655   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
656     DeferredDecls.find(MangledName);
657   if (DDI != DeferredDecls.end()) {
658     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
659     // list, and remove it from DeferredDecls (since we don't need it anymore).
660     DeferredDeclsToEmit.push_back(DDI->second);
661     DeferredDecls.erase(DDI);
662   }
663 
664   llvm::GlobalVariable *GV =
665     new llvm::GlobalVariable(Ty->getElementType(), false,
666                              llvm::GlobalValue::ExternalLinkage,
667                              0, "", &getModule(),
668                              0, Ty->getAddressSpace());
669   GV->setName(MangledName);
670 
671   // Handle things which are present even on external declarations.
672   if (D) {
673     // FIXME: This code is overly simple and should be merged with
674     // other global handling.
675     GV->setConstant(D->getType().isConstant(Context));
676 
677     // FIXME: Merge with other attribute handling code.
678     if (D->getStorageClass() == VarDecl::PrivateExtern)
679       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
680 
681     if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
682       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
683   }
684 
685   return Entry = GV;
686 }
687 
688 
689 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
690 /// given global variable.  If Ty is non-null and if the global doesn't exist,
691 /// then it will be greated with the specified type instead of whatever the
692 /// normal requested type would be.
693 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
694                                                   const llvm::Type *Ty) {
695   assert(D->hasGlobalStorage() && "Not a global variable");
696   QualType ASTTy = D->getType();
697   if (Ty == 0)
698     Ty = getTypes().ConvertTypeForMem(ASTTy);
699 
700   const llvm::PointerType *PTy =
701     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
702   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
703 }
704 
705 /// CreateRuntimeVariable - Create a new runtime global variable with the
706 /// specified type and name.
707 llvm::Constant *
708 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
709                                      const char *Name) {
710   // Convert Name to be a uniqued string from the IdentifierInfo table.
711   Name = getContext().Idents.get(Name).getName();
712   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
713 }
714 
715 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
716   llvm::Constant *Init = 0;
717   QualType ASTTy = D->getType();
718 
719   if (D->getInit() == 0) {
720     // This is a tentative definition; tentative definitions are
721     // implicitly initialized with { 0 }
722     const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy);
723     if (ASTTy->isIncompleteArrayType()) {
724       // An incomplete array is normally [ TYPE x 0 ], but we need
725       // to fix it to [ TYPE x 1 ].
726       const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy);
727       InitTy = llvm::ArrayType::get(ATy->getElementType(), 1);
728     }
729     Init = llvm::Constant::getNullValue(InitTy);
730   } else {
731     Init = EmitConstantExpr(D->getInit(), D->getType());
732     if (!Init) {
733       ErrorUnsupported(D, "static initializer");
734       QualType T = D->getInit()->getType();
735       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
736     }
737   }
738 
739   const llvm::Type* InitType = Init->getType();
740   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
741 
742   // Strip off a bitcast if we got one back.
743   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
744     assert(CE->getOpcode() == llvm::Instruction::BitCast);
745     Entry = CE->getOperand(0);
746   }
747 
748   // Entry is now either a Function or GlobalVariable.
749   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
750 
751   // If we already have this global and it has an initializer, then
752   // we are in the rare situation where we emitted the defining
753   // declaration of the global and are now being asked to emit a
754   // definition which would be common. This occurs, for example, in
755   // the following situation because statics can be emitted out of
756   // order:
757   //
758   //  static int x;
759   //  static int *y = &x;
760   //  static int x = 10;
761   //  int **z = &y;
762   //
763   // Bail here so we don't blow away the definition. Note that if we
764   // can't distinguish here if we emitted a definition with a null
765   // initializer, but this case is safe.
766   if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) {
767     assert(!D->getInit() && "Emitting multiple definitions of a decl!");
768     return;
769   }
770 
771   // We have a definition after a declaration with the wrong type.
772   // We must make a new GlobalVariable* and update everything that used OldGV
773   // (a declaration or tentative definition) with the new GlobalVariable*
774   // (which will be a definition).
775   //
776   // This happens if there is a prototype for a global (e.g.
777   // "extern int x[];") and then a definition of a different type (e.g.
778   // "int x[10];"). This also happens when an initializer has a different type
779   // from the type of the global (this happens with unions).
780   if (GV == 0 ||
781       GV->getType()->getElementType() != InitType ||
782       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
783 
784     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
785     GlobalDeclMap.erase(getMangledName(D));
786 
787     // Make a new global with the correct type, this is now guaranteed to work.
788     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
789     GV->takeName(cast<llvm::GlobalValue>(Entry));
790 
791     // Replace all uses of the old global with the new global
792     llvm::Constant *NewPtrForOldDecl =
793         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
794     Entry->replaceAllUsesWith(NewPtrForOldDecl);
795 
796     // Erase the old global, since it is no longer used.
797     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
798   }
799 
800   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
801     SourceManager &SM = Context.getSourceManager();
802     AddAnnotation(EmitAnnotateAttr(GV, AA,
803                               SM.getInstantiationLineNumber(D->getLocation())));
804   }
805 
806   GV->setInitializer(Init);
807   GV->setConstant(D->getType().isConstant(Context));
808   GV->setAlignment(getContext().getDeclAlignInBytes(D));
809 
810   // Set the llvm linkage type as appropriate.
811   if (D->getStorageClass() == VarDecl::Static)
812     GV->setLinkage(llvm::Function::InternalLinkage);
813   else if (D->hasAttr<DLLImportAttr>())
814     GV->setLinkage(llvm::Function::DLLImportLinkage);
815   else if (D->hasAttr<DLLExportAttr>())
816     GV->setLinkage(llvm::Function::DLLExportLinkage);
817   else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
818     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
819   else if (!CompileOpts.NoCommon &&
820            (!D->hasExternalStorage() && !D->getInit()))
821     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
822   else
823     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
824 
825   setGlobalVisibility(GV, D);
826 
827   if (D->hasAttr<UsedAttr>())
828     AddUsedGlobal(GV);
829 
830   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
831     GV->setSection(SA->getName());
832 
833   // Emit global variable debug information.
834   if (CGDebugInfo *DI = getDebugInfo()) {
835     DI->setLocation(D->getLocation());
836     DI->EmitGlobalVariable(GV, D);
837   }
838 }
839 
840 
841 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) {
842   const llvm::FunctionType *Ty;
843 
844   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
845     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
846 
847     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
848   } else {
849     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
850 
851     // As a special case, make sure that definitions of K&R function
852     // "type foo()" aren't declared as varargs (which forces the backend
853     // to do unnecessary work).
854     if (D->getType()->isFunctionNoProtoType()) {
855       assert(Ty->isVarArg() && "Didn't lower type as expected");
856       // Due to stret, the lowered function could have arguments.
857       // Just create the same type as was lowered by ConvertType
858       // but strip off the varargs bit.
859       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
860       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
861     }
862   }
863 
864   // Get or create the prototype for teh function.
865   llvm::Constant *Entry = GetAddrOfFunction(D, Ty);
866 
867   // Strip off a bitcast if we got one back.
868   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
869     assert(CE->getOpcode() == llvm::Instruction::BitCast);
870     Entry = CE->getOperand(0);
871   }
872 
873 
874   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
875     // If the types mismatch then we have to rewrite the definition.
876     assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() &&
877            "Shouldn't replace non-declaration");
878 
879     // F is the Function* for the one with the wrong type, we must make a new
880     // Function* and update everything that used F (a declaration) with the new
881     // Function* (which will be a definition).
882     //
883     // This happens if there is a prototype for a function
884     // (e.g. "int f()") and then a definition of a different type
885     // (e.g. "int f(int x)").  Start by making a new function of the
886     // correct type, RAUW, then steal the name.
887     GlobalDeclMap.erase(getMangledName(D));
888     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty));
889     NewFn->takeName(cast<llvm::GlobalValue>(Entry));
890 
891     // Replace uses of F with the Function we will endow with a body.
892     llvm::Constant *NewPtrForOldDecl =
893       llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
894     Entry->replaceAllUsesWith(NewPtrForOldDecl);
895 
896     // Ok, delete the old function now, which is dead.
897     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
898 
899     Entry = NewFn;
900   }
901 
902   llvm::Function *Fn = cast<llvm::Function>(Entry);
903 
904   CodeGenFunction(*this).GenerateCode(D, Fn);
905 
906   SetFunctionAttributesForDefinition(D, Fn);
907 
908   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
909     AddGlobalCtor(Fn, CA->getPriority());
910   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
911     AddGlobalDtor(Fn, DA->getPriority());
912 }
913 
914 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
915   const AliasAttr *AA = D->getAttr<AliasAttr>();
916   assert(AA && "Not an alias?");
917 
918   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
919 
920   // Unique the name through the identifier table.
921   const char *AliaseeName = AA->getAliasee().c_str();
922   AliaseeName = getContext().Idents.get(AliaseeName).getName();
923 
924   // Create a reference to the named value.  This ensures that it is emitted
925   // if a deferred decl.
926   llvm::Constant *Aliasee;
927   if (isa<llvm::FunctionType>(DeclTy))
928     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0);
929   else
930     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
931                                     llvm::PointerType::getUnqual(DeclTy), 0);
932 
933   // Create the new alias itself, but don't set a name yet.
934   llvm::GlobalValue *GA =
935     new llvm::GlobalAlias(Aliasee->getType(),
936                           llvm::Function::ExternalLinkage,
937                           "", Aliasee, &getModule());
938 
939   // See if there is already something with the alias' name in the module.
940   const char *MangledName = getMangledName(D);
941   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
942 
943   if (Entry && !Entry->isDeclaration()) {
944     // If there is a definition in the module, then it wins over the alias.
945     // This is dubious, but allow it to be safe.  Just ignore the alias.
946     GA->eraseFromParent();
947     return;
948   }
949 
950   if (Entry) {
951     // If there is a declaration in the module, then we had an extern followed
952     // by the alias, as in:
953     //   extern int test6();
954     //   ...
955     //   int test6() __attribute__((alias("test7")));
956     //
957     // Remove it and replace uses of it with the alias.
958 
959     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
960                                                           Entry->getType()));
961     Entry->eraseFromParent();
962   }
963 
964   // Now we know that there is no conflict, set the name.
965   Entry = GA;
966   GA->setName(MangledName);
967 
968   // Alias should never be internal or inline.
969   SetGlobalValueAttributes(D, GVA_Normal, GA, true);
970 }
971 
972 /// getBuiltinLibFunction - Given a builtin id for a function like
973 /// "__builtin_fabsf", return a Function* for "fabsf".
974 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
975   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
976           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
977          "isn't a lib fn");
978 
979   // Get the name, skip over the __builtin_ prefix (if necessary).
980   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
981   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
982     Name += 10;
983 
984   // Get the type for the builtin.
985   Builtin::Context::GetBuiltinTypeError Error;
986   QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error);
987   assert(Error == Builtin::Context::GE_None && "Can't get builtin type");
988 
989   const llvm::FunctionType *Ty =
990     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
991 
992   // Unique the name through the identifier table.
993   Name = getContext().Idents.get(Name).getName();
994   // FIXME: param attributes for sext/zext etc.
995   return GetOrCreateLLVMFunction(Name, Ty, 0);
996 }
997 
998 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
999                                             unsigned NumTys) {
1000   return llvm::Intrinsic::getDeclaration(&getModule(),
1001                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1002 }
1003 
1004 llvm::Function *CodeGenModule::getMemCpyFn() {
1005   if (MemCpyFn) return MemCpyFn;
1006   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1007   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1008 }
1009 
1010 llvm::Function *CodeGenModule::getMemMoveFn() {
1011   if (MemMoveFn) return MemMoveFn;
1012   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1013   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1014 }
1015 
1016 llvm::Function *CodeGenModule::getMemSetFn() {
1017   if (MemSetFn) return MemSetFn;
1018   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1019   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1020 }
1021 
1022 static void appendFieldAndPadding(CodeGenModule &CGM,
1023                                   std::vector<llvm::Constant*>& Fields,
1024                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1025                                   llvm::Constant* Field,
1026                                   RecordDecl* RD, const llvm::StructType *STy) {
1027   // Append the field.
1028   Fields.push_back(Field);
1029 
1030   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1031 
1032   int NextStructFieldNo;
1033   if (!NextFieldD) {
1034     NextStructFieldNo = STy->getNumElements();
1035   } else {
1036     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1037   }
1038 
1039   // Append padding
1040   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1041     llvm::Constant *C =
1042       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1043 
1044     Fields.push_back(C);
1045   }
1046 }
1047 
1048 llvm::Constant *CodeGenModule::
1049 GetAddrOfConstantCFString(const StringLiteral *Literal) {
1050   std::string str;
1051   unsigned StringLength;
1052 
1053   bool isUTF16 = false;
1054   if (Literal->containsNonAsciiOrNull()) {
1055     // Convert from UTF-8 to UTF-16.
1056     llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1057     const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1058     UTF16 *ToPtr = &ToBuf[0];
1059 
1060     ConversionResult Result;
1061     Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1062                                 &ToPtr, ToPtr+Literal->getByteLength(),
1063                                 strictConversion);
1064     if (Result == conversionOK) {
1065       // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1066       // without doing more surgery to this routine. Since we aren't explicitly
1067       // checking for endianness here, it's also a bug (when generating code for
1068       // a target that doesn't match the host endianness). Modeling this as an
1069       // i16 array is likely the cleanest solution.
1070       StringLength = ToPtr-&ToBuf[0];
1071       str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1072       isUTF16 = true;
1073     } else if (Result == sourceIllegal) {
1074       // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1075       str.assign(Literal->getStrData(), Literal->getByteLength());
1076       StringLength = str.length();
1077     } else
1078       assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1079 
1080   } else {
1081     str.assign(Literal->getStrData(), Literal->getByteLength());
1082     StringLength = str.length();
1083   }
1084   llvm::StringMapEntry<llvm::Constant *> &Entry =
1085     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1086 
1087   if (llvm::Constant *C = Entry.getValue())
1088     return C;
1089 
1090   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1091   llvm::Constant *Zeros[] = { Zero, Zero };
1092 
1093   if (!CFConstantStringClassRef) {
1094     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1095     Ty = llvm::ArrayType::get(Ty, 0);
1096 
1097     // FIXME: This is fairly broken if
1098     // __CFConstantStringClassReference is already defined, in that it
1099     // will get renamed and the user will most likely see an opaque
1100     // error message. This is a general issue with relying on
1101     // particular names.
1102     llvm::GlobalVariable *GV =
1103       new llvm::GlobalVariable(Ty, false,
1104                                llvm::GlobalVariable::ExternalLinkage, 0,
1105                                "__CFConstantStringClassReference",
1106                                &getModule());
1107 
1108     // Decay array -> ptr
1109     CFConstantStringClassRef =
1110       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1111   }
1112 
1113   QualType CFTy = getContext().getCFConstantStringType();
1114   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1115 
1116   const llvm::StructType *STy =
1117     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1118 
1119   std::vector<llvm::Constant*> Fields;
1120   RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
1121 
1122   // Class pointer.
1123   FieldDecl *CurField = *Field++;
1124   FieldDecl *NextField = *Field++;
1125   appendFieldAndPadding(*this, Fields, CurField, NextField,
1126                         CFConstantStringClassRef, CFRD, STy);
1127 
1128   // Flags.
1129   CurField = NextField;
1130   NextField = *Field++;
1131   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1132   appendFieldAndPadding(*this, Fields, CurField, NextField,
1133                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1134                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1135                         CFRD, STy);
1136 
1137   // String pointer.
1138   CurField = NextField;
1139   NextField = *Field++;
1140   llvm::Constant *C = llvm::ConstantArray::get(str);
1141 
1142   const char *Sect, *Prefix;
1143   bool isConstant;
1144   if (isUTF16) {
1145     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1146     Sect = getContext().Target.getUnicodeStringSection();
1147     // FIXME: Why does GCC not set constant here?
1148     isConstant = false;
1149   } else {
1150     Prefix = getContext().Target.getStringSymbolPrefix(true);
1151     Sect = getContext().Target.getCFStringDataSection();
1152     // FIXME: -fwritable-strings should probably affect this, but we
1153     // are following gcc here.
1154     isConstant = true;
1155   }
1156   llvm::GlobalVariable *GV =
1157     new llvm::GlobalVariable(C->getType(), isConstant,
1158                              llvm::GlobalValue::InternalLinkage,
1159                              C, Prefix, &getModule());
1160   if (Sect)
1161     GV->setSection(Sect);
1162   if (isUTF16) {
1163     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1164     GV->setAlignment(Align);
1165   }
1166   appendFieldAndPadding(*this, Fields, CurField, NextField,
1167                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1168                         CFRD, STy);
1169 
1170   // String length.
1171   CurField = NextField;
1172   NextField = 0;
1173   Ty = getTypes().ConvertType(getContext().LongTy);
1174   appendFieldAndPadding(*this, Fields, CurField, NextField,
1175                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1176 
1177   // The struct.
1178   C = llvm::ConstantStruct::get(STy, Fields);
1179   GV = new llvm::GlobalVariable(C->getType(), true,
1180                                 llvm::GlobalVariable::InternalLinkage, C,
1181                                 getContext().Target.getCFStringSymbolPrefix(),
1182                                 &getModule());
1183   if (const char *Sect = getContext().Target.getCFStringSection())
1184     GV->setSection(Sect);
1185   Entry.setValue(GV);
1186 
1187   return GV;
1188 }
1189 
1190 /// GetStringForStringLiteral - Return the appropriate bytes for a
1191 /// string literal, properly padded to match the literal type.
1192 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1193   const char *StrData = E->getStrData();
1194   unsigned Len = E->getByteLength();
1195 
1196   const ConstantArrayType *CAT =
1197     getContext().getAsConstantArrayType(E->getType());
1198   assert(CAT && "String isn't pointer or array!");
1199 
1200   // Resize the string to the right size.
1201   std::string Str(StrData, StrData+Len);
1202   uint64_t RealLen = CAT->getSize().getZExtValue();
1203 
1204   if (E->isWide())
1205     RealLen *= getContext().Target.getWCharWidth()/8;
1206 
1207   Str.resize(RealLen, '\0');
1208 
1209   return Str;
1210 }
1211 
1212 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1213 /// constant array for the given string literal.
1214 llvm::Constant *
1215 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1216   // FIXME: This can be more efficient.
1217   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1218 }
1219 
1220 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1221 /// array for the given ObjCEncodeExpr node.
1222 llvm::Constant *
1223 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1224   std::string Str;
1225   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1226 
1227   return GetAddrOfConstantCString(Str);
1228 }
1229 
1230 
1231 /// GenerateWritableString -- Creates storage for a string literal.
1232 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1233                                              bool constant,
1234                                              CodeGenModule &CGM,
1235                                              const char *GlobalName) {
1236   // Create Constant for this string literal. Don't add a '\0'.
1237   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1238 
1239   // Create a global variable for this string
1240   return new llvm::GlobalVariable(C->getType(), constant,
1241                                   llvm::GlobalValue::InternalLinkage,
1242                                   C, GlobalName, &CGM.getModule());
1243 }
1244 
1245 /// GetAddrOfConstantString - Returns a pointer to a character array
1246 /// containing the literal. This contents are exactly that of the
1247 /// given string, i.e. it will not be null terminated automatically;
1248 /// see GetAddrOfConstantCString. Note that whether the result is
1249 /// actually a pointer to an LLVM constant depends on
1250 /// Feature.WriteableStrings.
1251 ///
1252 /// The result has pointer to array type.
1253 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1254                                                        const char *GlobalName) {
1255   bool IsConstant = !Features.WritableStrings;
1256 
1257   // Get the default prefix if a name wasn't specified.
1258   if (!GlobalName)
1259     GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1260 
1261   // Don't share any string literals if strings aren't constant.
1262   if (!IsConstant)
1263     return GenerateStringLiteral(str, false, *this, GlobalName);
1264 
1265   llvm::StringMapEntry<llvm::Constant *> &Entry =
1266   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1267 
1268   if (Entry.getValue())
1269     return Entry.getValue();
1270 
1271   // Create a global variable for this.
1272   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1273   Entry.setValue(C);
1274   return C;
1275 }
1276 
1277 /// GetAddrOfConstantCString - Returns a pointer to a character
1278 /// array containing the literal and a terminating '\-'
1279 /// character. The result has pointer to array type.
1280 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1281                                                         const char *GlobalName){
1282   return GetAddrOfConstantString(str + '\0', GlobalName);
1283 }
1284 
1285 /// EmitObjCPropertyImplementations - Emit information for synthesized
1286 /// properties for an implementation.
1287 void CodeGenModule::EmitObjCPropertyImplementations(const
1288                                                     ObjCImplementationDecl *D) {
1289   for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(),
1290          e = D->propimpl_end(); i != e; ++i) {
1291     ObjCPropertyImplDecl *PID = *i;
1292 
1293     // Dynamic is just for type-checking.
1294     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1295       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1296 
1297       // Determine which methods need to be implemented, some may have
1298       // been overridden. Note that ::isSynthesized is not the method
1299       // we want, that just indicates if the decl came from a
1300       // property. What we want to know is if the method is defined in
1301       // this implementation.
1302       if (!D->getInstanceMethod(PD->getGetterName()))
1303         CodeGenFunction(*this).GenerateObjCGetter(
1304                                  const_cast<ObjCImplementationDecl *>(D), PID);
1305       if (!PD->isReadOnly() &&
1306           !D->getInstanceMethod(PD->getSetterName()))
1307         CodeGenFunction(*this).GenerateObjCSetter(
1308                                  const_cast<ObjCImplementationDecl *>(D), PID);
1309     }
1310   }
1311 }
1312 
1313 /// EmitNamespace - Emit all declarations in a namespace.
1314 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1315   for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
1316          E = ND->decls_end(getContext());
1317        I != E; ++I)
1318     EmitTopLevelDecl(*I);
1319 }
1320 
1321 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1322 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1323   if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1324     ErrorUnsupported(LSD, "linkage spec");
1325     return;
1326   }
1327 
1328   for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
1329          E = LSD->decls_end(getContext());
1330        I != E; ++I)
1331     EmitTopLevelDecl(*I);
1332 }
1333 
1334 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1335 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1336   // If an error has occurred, stop code generation, but continue
1337   // parsing and semantic analysis (to ensure all warnings and errors
1338   // are emitted).
1339   if (Diags.hasErrorOccurred())
1340     return;
1341 
1342   switch (D->getKind()) {
1343   case Decl::CXXMethod:
1344   case Decl::Function:
1345   case Decl::Var:
1346     EmitGlobal(cast<ValueDecl>(D));
1347     break;
1348 
1349   case Decl::Namespace:
1350     EmitNamespace(cast<NamespaceDecl>(D));
1351     break;
1352 
1353     // Objective-C Decls
1354 
1355   // Forward declarations, no (immediate) code generation.
1356   case Decl::ObjCClass:
1357   case Decl::ObjCForwardProtocol:
1358   case Decl::ObjCCategory:
1359     break;
1360   case Decl::ObjCInterface:
1361     // If we already laid out this interface due to an @class, and if we
1362     // codegen'd a reference it, update the 'opaque' type to be a real type now.
1363     Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D));
1364     break;
1365 
1366   case Decl::ObjCProtocol:
1367     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1368     break;
1369 
1370   case Decl::ObjCCategoryImpl:
1371     // Categories have properties but don't support synthesize so we
1372     // can ignore them here.
1373     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1374     break;
1375 
1376   case Decl::ObjCImplementation: {
1377     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1378     EmitObjCPropertyImplementations(OMD);
1379     Runtime->GenerateClass(OMD);
1380     break;
1381   }
1382   case Decl::ObjCMethod: {
1383     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1384     // If this is not a prototype, emit the body.
1385     if (OMD->getBody())
1386       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1387     break;
1388   }
1389   case Decl::ObjCCompatibleAlias:
1390     // compatibility-alias is a directive and has no code gen.
1391     break;
1392 
1393   case Decl::LinkageSpec:
1394     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1395     break;
1396 
1397   case Decl::FileScopeAsm: {
1398     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1399     std::string AsmString(AD->getAsmString()->getStrData(),
1400                           AD->getAsmString()->getByteLength());
1401 
1402     const std::string &S = getModule().getModuleInlineAsm();
1403     if (S.empty())
1404       getModule().setModuleInlineAsm(AsmString);
1405     else
1406       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1407     break;
1408   }
1409 
1410   default:
1411     // Make sure we handled everything we should, every other kind is
1412     // a non-top-level decl.  FIXME: Would be nice to have an
1413     // isTopLevelDeclKind function. Need to recode Decl::Kind to do
1414     // that easily.
1415     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1416   }
1417 }
1418