1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/Diagnostic.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Basic/ConvertUTF.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Module.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Target/TargetData.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 38 llvm::Module &M, const llvm::TargetData &TD, 39 Diagnostic &diags) 40 : BlockModule(C, M, TD, Types, *this), Context(C), 41 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 42 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 43 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 44 VMContext(M.getContext()) { 45 46 if (!Features.ObjC1) 47 Runtime = 0; 48 else if (!Features.NeXTRuntime) 49 Runtime = CreateGNUObjCRuntime(*this); 50 else if (Features.ObjCNonFragileABI) 51 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 52 else 53 Runtime = CreateMacObjCRuntime(*this); 54 55 // If debug info generation is enabled, create the CGDebugInfo object. 56 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 57 } 58 59 CodeGenModule::~CodeGenModule() { 60 delete Runtime; 61 delete DebugInfo; 62 } 63 64 void CodeGenModule::Release() { 65 // We need to call this first because it can add deferred declarations. 66 EmitCXXGlobalInitFunc(); 67 68 EmitDeferred(); 69 if (Runtime) 70 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 71 AddGlobalCtor(ObjCInitFunction); 72 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 73 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 74 EmitAnnotations(); 75 EmitLLVMUsed(); 76 } 77 78 /// ErrorUnsupported - Print out an error that codegen doesn't support the 79 /// specified stmt yet. 80 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 81 bool OmitOnError) { 82 if (OmitOnError && getDiags().hasErrorOccurred()) 83 return; 84 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 85 "cannot compile this %0 yet"); 86 std::string Msg = Type; 87 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 88 << Msg << S->getSourceRange(); 89 } 90 91 /// ErrorUnsupported - Print out an error that codegen doesn't support the 92 /// specified decl yet. 93 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 94 bool OmitOnError) { 95 if (OmitOnError && getDiags().hasErrorOccurred()) 96 return; 97 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 98 "cannot compile this %0 yet"); 99 std::string Msg = Type; 100 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 101 } 102 103 LangOptions::VisibilityMode 104 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 105 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 106 if (VD->getStorageClass() == VarDecl::PrivateExtern) 107 return LangOptions::Hidden; 108 109 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 110 switch (attr->getVisibility()) { 111 default: assert(0 && "Unknown visibility!"); 112 case VisibilityAttr::DefaultVisibility: 113 return LangOptions::Default; 114 case VisibilityAttr::HiddenVisibility: 115 return LangOptions::Hidden; 116 case VisibilityAttr::ProtectedVisibility: 117 return LangOptions::Protected; 118 } 119 } 120 121 return getLangOptions().getVisibilityMode(); 122 } 123 124 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 125 const Decl *D) const { 126 // Internal definitions always have default visibility. 127 if (GV->hasLocalLinkage()) { 128 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 129 return; 130 } 131 132 switch (getDeclVisibilityMode(D)) { 133 default: assert(0 && "Unknown visibility!"); 134 case LangOptions::Default: 135 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 136 case LangOptions::Hidden: 137 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 138 case LangOptions::Protected: 139 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 140 } 141 } 142 143 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 144 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 145 146 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 147 return getMangledCXXCtorName(D, GD.getCtorType()); 148 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 149 return getMangledCXXDtorName(D, GD.getDtorType()); 150 151 return getMangledName(ND); 152 } 153 154 /// \brief Retrieves the mangled name for the given declaration. 155 /// 156 /// If the given declaration requires a mangled name, returns an 157 /// const char* containing the mangled name. Otherwise, returns 158 /// the unmangled name. 159 /// 160 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 161 // In C, functions with no attributes never need to be mangled. Fastpath them. 162 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 163 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 164 return ND->getNameAsCString(); 165 } 166 167 llvm::SmallString<256> Name; 168 llvm::raw_svector_ostream Out(Name); 169 if (!mangleName(ND, Context, Out)) { 170 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 171 return ND->getNameAsCString(); 172 } 173 174 Name += '\0'; 175 return UniqueMangledName(Name.begin(), Name.end()); 176 } 177 178 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 179 const char *NameEnd) { 180 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 181 182 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 183 } 184 185 /// AddGlobalCtor - Add a function to the list that will be called before 186 /// main() runs. 187 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 188 // FIXME: Type coercion of void()* types. 189 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 190 } 191 192 /// AddGlobalDtor - Add a function to the list that will be called 193 /// when the module is unloaded. 194 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 195 // FIXME: Type coercion of void()* types. 196 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 197 } 198 199 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 200 // Ctor function type is void()*. 201 llvm::FunctionType* CtorFTy = 202 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 203 std::vector<const llvm::Type*>(), 204 false); 205 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 206 207 // Get the type of a ctor entry, { i32, void ()* }. 208 llvm::StructType* CtorStructTy = 209 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 210 llvm::PointerType::getUnqual(CtorFTy), NULL); 211 212 // Construct the constructor and destructor arrays. 213 std::vector<llvm::Constant*> Ctors; 214 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 215 std::vector<llvm::Constant*> S; 216 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 217 I->second, false)); 218 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 219 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 220 } 221 222 if (!Ctors.empty()) { 223 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 224 new llvm::GlobalVariable(TheModule, AT, false, 225 llvm::GlobalValue::AppendingLinkage, 226 llvm::ConstantArray::get(AT, Ctors), 227 GlobalName); 228 } 229 } 230 231 void CodeGenModule::EmitAnnotations() { 232 if (Annotations.empty()) 233 return; 234 235 // Create a new global variable for the ConstantStruct in the Module. 236 llvm::Constant *Array = 237 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 238 Annotations.size()), 239 Annotations); 240 llvm::GlobalValue *gv = 241 new llvm::GlobalVariable(TheModule, Array->getType(), false, 242 llvm::GlobalValue::AppendingLinkage, Array, 243 "llvm.global.annotations"); 244 gv->setSection("llvm.metadata"); 245 } 246 247 static CodeGenModule::GVALinkage 248 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 249 const LangOptions &Features) { 250 // Everything located semantically within an anonymous namespace is 251 // always internal. 252 if (FD->isInAnonymousNamespace()) 253 return CodeGenModule::GVA_Internal; 254 255 // The kind of external linkage this function will have, if it is not 256 // inline or static. 257 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 258 if (Context.getLangOptions().CPlusPlus && 259 FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 260 External = CodeGenModule::GVA_TemplateInstantiation; 261 262 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 263 // C++ member functions defined inside the class are always inline. 264 if (MD->isInline() || !MD->isOutOfLine()) 265 return CodeGenModule::GVA_CXXInline; 266 267 return External; 268 } 269 270 // "static" functions get internal linkage. 271 if (FD->getStorageClass() == FunctionDecl::Static) 272 return CodeGenModule::GVA_Internal; 273 274 if (!FD->isInline()) 275 return External; 276 277 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 278 // GNU or C99 inline semantics. Determine whether this symbol should be 279 // externally visible. 280 if (FD->isInlineDefinitionExternallyVisible()) 281 return External; 282 283 // C99 inline semantics, where the symbol is not externally visible. 284 return CodeGenModule::GVA_C99Inline; 285 } 286 287 // C++ inline semantics 288 assert(Features.CPlusPlus && "Must be in C++ mode"); 289 return CodeGenModule::GVA_CXXInline; 290 } 291 292 /// SetFunctionDefinitionAttributes - Set attributes for a global. 293 /// 294 /// FIXME: This is currently only done for aliases and functions, but not for 295 /// variables (these details are set in EmitGlobalVarDefinition for variables). 296 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 297 llvm::GlobalValue *GV) { 298 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 299 300 if (Linkage == GVA_Internal) { 301 GV->setLinkage(llvm::Function::InternalLinkage); 302 } else if (D->hasAttr<DLLExportAttr>()) { 303 GV->setLinkage(llvm::Function::DLLExportLinkage); 304 } else if (D->hasAttr<WeakAttr>()) { 305 GV->setLinkage(llvm::Function::WeakAnyLinkage); 306 } else if (Linkage == GVA_C99Inline) { 307 // In C99 mode, 'inline' functions are guaranteed to have a strong 308 // definition somewhere else, so we can use available_externally linkage. 309 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 310 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 311 // In C++, the compiler has to emit a definition in every translation unit 312 // that references the function. We should use linkonce_odr because 313 // a) if all references in this translation unit are optimized away, we 314 // don't need to codegen it. b) if the function persists, it needs to be 315 // merged with other definitions. c) C++ has the ODR, so we know the 316 // definition is dependable. 317 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 318 } else { 319 assert(Linkage == GVA_StrongExternal); 320 // Otherwise, we have strong external linkage. 321 GV->setLinkage(llvm::Function::ExternalLinkage); 322 } 323 324 SetCommonAttributes(D, GV); 325 } 326 327 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 328 const CGFunctionInfo &Info, 329 llvm::Function *F) { 330 unsigned CallingConv; 331 AttributeListType AttributeList; 332 ConstructAttributeList(Info, D, AttributeList, CallingConv); 333 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 334 AttributeList.size())); 335 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 336 } 337 338 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 339 llvm::Function *F) { 340 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 341 F->addFnAttr(llvm::Attribute::NoUnwind); 342 343 if (D->hasAttr<AlwaysInlineAttr>()) 344 F->addFnAttr(llvm::Attribute::AlwaysInline); 345 346 if (D->hasAttr<NoInlineAttr>()) 347 F->addFnAttr(llvm::Attribute::NoInline); 348 349 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) 350 F->setAlignment(AA->getAlignment()/8); 351 // C++ ABI requires 2-byte alignment for member functions. 352 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 353 F->setAlignment(2); 354 } 355 356 void CodeGenModule::SetCommonAttributes(const Decl *D, 357 llvm::GlobalValue *GV) { 358 setGlobalVisibility(GV, D); 359 360 if (D->hasAttr<UsedAttr>()) 361 AddUsedGlobal(GV); 362 363 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 364 GV->setSection(SA->getName()); 365 } 366 367 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 368 llvm::Function *F, 369 const CGFunctionInfo &FI) { 370 SetLLVMFunctionAttributes(D, FI, F); 371 SetLLVMFunctionAttributesForDefinition(D, F); 372 373 F->setLinkage(llvm::Function::InternalLinkage); 374 375 SetCommonAttributes(D, F); 376 } 377 378 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 379 llvm::Function *F, 380 bool IsIncompleteFunction) { 381 if (!IsIncompleteFunction) 382 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 383 384 // Only a few attributes are set on declarations; these may later be 385 // overridden by a definition. 386 387 if (FD->hasAttr<DLLImportAttr>()) { 388 F->setLinkage(llvm::Function::DLLImportLinkage); 389 } else if (FD->hasAttr<WeakAttr>() || 390 FD->hasAttr<WeakImportAttr>()) { 391 // "extern_weak" is overloaded in LLVM; we probably should have 392 // separate linkage types for this. 393 F->setLinkage(llvm::Function::ExternalWeakLinkage); 394 } else { 395 F->setLinkage(llvm::Function::ExternalLinkage); 396 } 397 398 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 399 F->setSection(SA->getName()); 400 } 401 402 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 403 assert(!GV->isDeclaration() && 404 "Only globals with definition can force usage."); 405 LLVMUsed.push_back(GV); 406 } 407 408 void CodeGenModule::EmitLLVMUsed() { 409 // Don't create llvm.used if there is no need. 410 if (LLVMUsed.empty()) 411 return; 412 413 llvm::Type *i8PTy = 414 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext)); 415 416 // Convert LLVMUsed to what ConstantArray needs. 417 std::vector<llvm::Constant*> UsedArray; 418 UsedArray.resize(LLVMUsed.size()); 419 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 420 UsedArray[i] = 421 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 422 i8PTy); 423 } 424 425 if (UsedArray.empty()) 426 return; 427 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 428 429 llvm::GlobalVariable *GV = 430 new llvm::GlobalVariable(getModule(), ATy, false, 431 llvm::GlobalValue::AppendingLinkage, 432 llvm::ConstantArray::get(ATy, UsedArray), 433 "llvm.used"); 434 435 GV->setSection("llvm.metadata"); 436 } 437 438 void CodeGenModule::EmitDeferred() { 439 // Emit code for any potentially referenced deferred decls. Since a 440 // previously unused static decl may become used during the generation of code 441 // for a static function, iterate until no changes are made. 442 while (!DeferredDeclsToEmit.empty()) { 443 GlobalDecl D = DeferredDeclsToEmit.back(); 444 DeferredDeclsToEmit.pop_back(); 445 446 // The mangled name for the decl must have been emitted in GlobalDeclMap. 447 // Look it up to see if it was defined with a stronger definition (e.g. an 448 // extern inline function with a strong function redefinition). If so, 449 // just ignore the deferred decl. 450 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 451 assert(CGRef && "Deferred decl wasn't referenced?"); 452 453 if (!CGRef->isDeclaration()) 454 continue; 455 456 // Otherwise, emit the definition and move on to the next one. 457 EmitGlobalDefinition(D); 458 } 459 } 460 461 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 462 /// annotation information for a given GlobalValue. The annotation struct is 463 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 464 /// GlobalValue being annotated. The second field is the constant string 465 /// created from the AnnotateAttr's annotation. The third field is a constant 466 /// string containing the name of the translation unit. The fourth field is 467 /// the line number in the file of the annotated value declaration. 468 /// 469 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 470 /// appears to. 471 /// 472 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 473 const AnnotateAttr *AA, 474 unsigned LineNo) { 475 llvm::Module *M = &getModule(); 476 477 // get [N x i8] constants for the annotation string, and the filename string 478 // which are the 2nd and 3rd elements of the global annotation structure. 479 const llvm::Type *SBP = 480 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext)); 481 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 482 AA->getAnnotation(), true); 483 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 484 M->getModuleIdentifier(), 485 true); 486 487 // Get the two global values corresponding to the ConstantArrays we just 488 // created to hold the bytes of the strings. 489 llvm::GlobalValue *annoGV = 490 new llvm::GlobalVariable(*M, anno->getType(), false, 491 llvm::GlobalValue::PrivateLinkage, anno, 492 GV->getName()); 493 // translation unit name string, emitted into the llvm.metadata section. 494 llvm::GlobalValue *unitGV = 495 new llvm::GlobalVariable(*M, unit->getType(), false, 496 llvm::GlobalValue::PrivateLinkage, unit, 497 ".str"); 498 499 // Create the ConstantStruct for the global annotation. 500 llvm::Constant *Fields[4] = { 501 llvm::ConstantExpr::getBitCast(GV, SBP), 502 llvm::ConstantExpr::getBitCast(annoGV, SBP), 503 llvm::ConstantExpr::getBitCast(unitGV, SBP), 504 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 505 }; 506 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 507 } 508 509 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 510 // Never defer when EmitAllDecls is specified or the decl has 511 // attribute used. 512 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 513 return false; 514 515 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 516 // Constructors and destructors should never be deferred. 517 if (FD->hasAttr<ConstructorAttr>() || 518 FD->hasAttr<DestructorAttr>()) 519 return false; 520 521 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 522 523 // static, static inline, always_inline, and extern inline functions can 524 // always be deferred. Normal inline functions can be deferred in C99/C++. 525 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 526 Linkage == GVA_CXXInline) 527 return true; 528 return false; 529 } 530 531 const VarDecl *VD = cast<VarDecl>(Global); 532 assert(VD->isFileVarDecl() && "Invalid decl"); 533 534 return VD->getStorageClass() == VarDecl::Static; 535 } 536 537 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 538 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 539 540 // If this is an alias definition (which otherwise looks like a declaration) 541 // emit it now. 542 if (Global->hasAttr<AliasAttr>()) 543 return EmitAliasDefinition(Global); 544 545 // Ignore declarations, they will be emitted on their first use. 546 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 547 // Forward declarations are emitted lazily on first use. 548 if (!FD->isThisDeclarationADefinition()) 549 return; 550 } else { 551 const VarDecl *VD = cast<VarDecl>(Global); 552 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 553 554 // In C++, if this is marked "extern", defer code generation. 555 if (getLangOptions().CPlusPlus && !VD->getInit() && 556 (VD->getStorageClass() == VarDecl::Extern || 557 VD->isExternC())) 558 return; 559 560 // In C, if this isn't a definition, defer code generation. 561 if (!getLangOptions().CPlusPlus && !VD->getInit()) 562 return; 563 } 564 565 // Defer code generation when possible if this is a static definition, inline 566 // function etc. These we only want to emit if they are used. 567 if (MayDeferGeneration(Global)) { 568 // If the value has already been used, add it directly to the 569 // DeferredDeclsToEmit list. 570 const char *MangledName = getMangledName(GD); 571 if (GlobalDeclMap.count(MangledName)) 572 DeferredDeclsToEmit.push_back(GD); 573 else { 574 // Otherwise, remember that we saw a deferred decl with this name. The 575 // first use of the mangled name will cause it to move into 576 // DeferredDeclsToEmit. 577 DeferredDecls[MangledName] = GD; 578 } 579 return; 580 } 581 582 // Otherwise emit the definition. 583 EmitGlobalDefinition(GD); 584 } 585 586 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 587 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 588 589 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 590 EmitCXXConstructor(CD, GD.getCtorType()); 591 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 592 EmitCXXDestructor(DD, GD.getDtorType()); 593 else if (isa<FunctionDecl>(D)) 594 EmitGlobalFunctionDefinition(GD); 595 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 596 EmitGlobalVarDefinition(VD); 597 else { 598 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 599 } 600 } 601 602 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 603 /// module, create and return an llvm Function with the specified type. If there 604 /// is something in the module with the specified name, return it potentially 605 /// bitcasted to the right type. 606 /// 607 /// If D is non-null, it specifies a decl that correspond to this. This is used 608 /// to set the attributes on the function when it is first created. 609 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 610 const llvm::Type *Ty, 611 GlobalDecl D) { 612 // Lookup the entry, lazily creating it if necessary. 613 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 614 if (Entry) { 615 if (Entry->getType()->getElementType() == Ty) 616 return Entry; 617 618 // Make sure the result is of the correct type. 619 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 620 return llvm::ConstantExpr::getBitCast(Entry, PTy); 621 } 622 623 // This is the first use or definition of a mangled name. If there is a 624 // deferred decl with this name, remember that we need to emit it at the end 625 // of the file. 626 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 627 DeferredDecls.find(MangledName); 628 if (DDI != DeferredDecls.end()) { 629 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 630 // list, and remove it from DeferredDecls (since we don't need it anymore). 631 DeferredDeclsToEmit.push_back(DDI->second); 632 DeferredDecls.erase(DDI); 633 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 634 // If this the first reference to a C++ inline function in a class, queue up 635 // the deferred function body for emission. These are not seen as 636 // top-level declarations. 637 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 638 DeferredDeclsToEmit.push_back(D); 639 // A called constructor which has no definition or declaration need be 640 // synthesized. 641 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 642 const CXXRecordDecl *ClassDecl = 643 cast<CXXRecordDecl>(CD->getDeclContext()); 644 if (CD->isCopyConstructor(getContext())) 645 DeferredCopyConstructorToEmit(D); 646 else if (!ClassDecl->hasUserDeclaredConstructor()) 647 DeferredDeclsToEmit.push_back(D); 648 } 649 else if (isa<CXXDestructorDecl>(FD)) 650 DeferredDestructorToEmit(D); 651 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 652 if (MD->isCopyAssignment()) 653 DeferredCopyAssignmentToEmit(D); 654 } 655 656 // This function doesn't have a complete type (for example, the return 657 // type is an incomplete struct). Use a fake type instead, and make 658 // sure not to try to set attributes. 659 bool IsIncompleteFunction = false; 660 if (!isa<llvm::FunctionType>(Ty)) { 661 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 662 std::vector<const llvm::Type*>(), false); 663 IsIncompleteFunction = true; 664 } 665 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 666 llvm::Function::ExternalLinkage, 667 "", &getModule()); 668 F->setName(MangledName); 669 if (D.getDecl()) 670 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 671 IsIncompleteFunction); 672 Entry = F; 673 return F; 674 } 675 676 /// Defer definition of copy constructor(s) which need be implicitly defined. 677 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) { 678 const CXXConstructorDecl *CD = 679 cast<CXXConstructorDecl>(CopyCtorDecl.getDecl()); 680 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 681 if (ClassDecl->hasTrivialCopyConstructor() || 682 ClassDecl->hasUserDeclaredCopyConstructor()) 683 return; 684 685 // First make sure all direct base classes and virtual bases and non-static 686 // data mebers which need to have their copy constructors implicitly defined 687 // are defined. 12.8.p7 688 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 689 Base != ClassDecl->bases_end(); ++Base) { 690 CXXRecordDecl *BaseClassDecl 691 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 692 if (CXXConstructorDecl *BaseCopyCtor = 693 BaseClassDecl->getCopyConstructor(Context, 0)) 694 GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete); 695 } 696 697 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 698 FieldEnd = ClassDecl->field_end(); 699 Field != FieldEnd; ++Field) { 700 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 701 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 702 FieldType = Array->getElementType(); 703 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 704 if ((*Field)->isAnonymousStructOrUnion()) 705 continue; 706 CXXRecordDecl *FieldClassDecl 707 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 708 if (CXXConstructorDecl *FieldCopyCtor = 709 FieldClassDecl->getCopyConstructor(Context, 0)) 710 GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete); 711 } 712 } 713 DeferredDeclsToEmit.push_back(CopyCtorDecl); 714 } 715 716 /// Defer definition of copy assignments which need be implicitly defined. 717 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) { 718 const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl()); 719 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 720 721 if (ClassDecl->hasTrivialCopyAssignment() || 722 ClassDecl->hasUserDeclaredCopyAssignment()) 723 return; 724 725 // First make sure all direct base classes and virtual bases and non-static 726 // data mebers which need to have their copy assignments implicitly defined 727 // are defined. 12.8.p12 728 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 729 Base != ClassDecl->bases_end(); ++Base) { 730 CXXRecordDecl *BaseClassDecl 731 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 732 const CXXMethodDecl *MD = 0; 733 if (!BaseClassDecl->hasTrivialCopyAssignment() && 734 !BaseClassDecl->hasUserDeclaredCopyAssignment() && 735 BaseClassDecl->hasConstCopyAssignment(getContext(), MD)) 736 GetAddrOfFunction(MD, 0); 737 } 738 739 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 740 FieldEnd = ClassDecl->field_end(); 741 Field != FieldEnd; ++Field) { 742 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 743 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 744 FieldType = Array->getElementType(); 745 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 746 if ((*Field)->isAnonymousStructOrUnion()) 747 continue; 748 CXXRecordDecl *FieldClassDecl 749 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 750 const CXXMethodDecl *MD = 0; 751 if (!FieldClassDecl->hasTrivialCopyAssignment() && 752 !FieldClassDecl->hasUserDeclaredCopyAssignment() && 753 FieldClassDecl->hasConstCopyAssignment(getContext(), MD)) 754 GetAddrOfFunction(MD, 0); 755 } 756 } 757 DeferredDeclsToEmit.push_back(CopyAssignDecl); 758 } 759 760 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) { 761 const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl()); 762 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext()); 763 if (ClassDecl->hasTrivialDestructor() || 764 ClassDecl->hasUserDeclaredDestructor()) 765 return; 766 767 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 768 Base != ClassDecl->bases_end(); ++Base) { 769 CXXRecordDecl *BaseClassDecl 770 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 771 if (const CXXDestructorDecl *BaseDtor = 772 BaseClassDecl->getDestructor(Context)) 773 GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete); 774 } 775 776 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 777 FieldEnd = ClassDecl->field_end(); 778 Field != FieldEnd; ++Field) { 779 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 780 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 781 FieldType = Array->getElementType(); 782 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 783 if ((*Field)->isAnonymousStructOrUnion()) 784 continue; 785 CXXRecordDecl *FieldClassDecl 786 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 787 if (const CXXDestructorDecl *FieldDtor = 788 FieldClassDecl->getDestructor(Context)) 789 GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete); 790 } 791 } 792 DeferredDeclsToEmit.push_back(DtorDecl); 793 } 794 795 796 /// GetAddrOfFunction - Return the address of the given function. If Ty is 797 /// non-null, then this function will use the specified type if it has to 798 /// create it (this occurs when we see a definition of the function). 799 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 800 const llvm::Type *Ty) { 801 // If there was no specific requested type, just convert it now. 802 if (!Ty) 803 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 804 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 805 } 806 807 /// CreateRuntimeFunction - Create a new runtime function with the specified 808 /// type and name. 809 llvm::Constant * 810 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 811 const char *Name) { 812 // Convert Name to be a uniqued string from the IdentifierInfo table. 813 Name = getContext().Idents.get(Name).getName(); 814 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 815 } 816 817 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 818 /// create and return an llvm GlobalVariable with the specified type. If there 819 /// is something in the module with the specified name, return it potentially 820 /// bitcasted to the right type. 821 /// 822 /// If D is non-null, it specifies a decl that correspond to this. This is used 823 /// to set the attributes on the global when it is first created. 824 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 825 const llvm::PointerType*Ty, 826 const VarDecl *D) { 827 // Lookup the entry, lazily creating it if necessary. 828 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 829 if (Entry) { 830 if (Entry->getType() == Ty) 831 return Entry; 832 833 // Make sure the result is of the correct type. 834 return llvm::ConstantExpr::getBitCast(Entry, Ty); 835 } 836 837 // This is the first use or definition of a mangled name. If there is a 838 // deferred decl with this name, remember that we need to emit it at the end 839 // of the file. 840 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 841 DeferredDecls.find(MangledName); 842 if (DDI != DeferredDecls.end()) { 843 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 844 // list, and remove it from DeferredDecls (since we don't need it anymore). 845 DeferredDeclsToEmit.push_back(DDI->second); 846 DeferredDecls.erase(DDI); 847 } 848 849 llvm::GlobalVariable *GV = 850 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 851 llvm::GlobalValue::ExternalLinkage, 852 0, "", 0, 853 false, Ty->getAddressSpace()); 854 GV->setName(MangledName); 855 856 // Handle things which are present even on external declarations. 857 if (D) { 858 // FIXME: This code is overly simple and should be merged with other global 859 // handling. 860 GV->setConstant(D->getType().isConstant(Context)); 861 862 // FIXME: Merge with other attribute handling code. 863 if (D->getStorageClass() == VarDecl::PrivateExtern) 864 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 865 866 if (D->hasAttr<WeakAttr>() || 867 D->hasAttr<WeakImportAttr>()) 868 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 869 870 GV->setThreadLocal(D->isThreadSpecified()); 871 } 872 873 return Entry = GV; 874 } 875 876 877 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 878 /// given global variable. If Ty is non-null and if the global doesn't exist, 879 /// then it will be greated with the specified type instead of whatever the 880 /// normal requested type would be. 881 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 882 const llvm::Type *Ty) { 883 assert(D->hasGlobalStorage() && "Not a global variable"); 884 QualType ASTTy = D->getType(); 885 if (Ty == 0) 886 Ty = getTypes().ConvertTypeForMem(ASTTy); 887 888 const llvm::PointerType *PTy = 889 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 890 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 891 } 892 893 /// CreateRuntimeVariable - Create a new runtime global variable with the 894 /// specified type and name. 895 llvm::Constant * 896 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 897 const char *Name) { 898 // Convert Name to be a uniqued string from the IdentifierInfo table. 899 Name = getContext().Idents.get(Name).getName(); 900 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 901 } 902 903 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 904 assert(!D->getInit() && "Cannot emit definite definitions here!"); 905 906 if (MayDeferGeneration(D)) { 907 // If we have not seen a reference to this variable yet, place it 908 // into the deferred declarations table to be emitted if needed 909 // later. 910 const char *MangledName = getMangledName(D); 911 if (GlobalDeclMap.count(MangledName) == 0) { 912 DeferredDecls[MangledName] = D; 913 return; 914 } 915 } 916 917 // The tentative definition is the only definition. 918 EmitGlobalVarDefinition(D); 919 } 920 921 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 922 llvm::Constant *Init = 0; 923 QualType ASTTy = D->getType(); 924 925 if (D->getInit() == 0) { 926 // This is a tentative definition; tentative definitions are 927 // implicitly initialized with { 0 }. 928 // 929 // Note that tentative definitions are only emitted at the end of 930 // a translation unit, so they should never have incomplete 931 // type. In addition, EmitTentativeDefinition makes sure that we 932 // never attempt to emit a tentative definition if a real one 933 // exists. A use may still exists, however, so we still may need 934 // to do a RAUW. 935 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 936 Init = EmitNullConstant(D->getType()); 937 } else { 938 Init = EmitConstantExpr(D->getInit(), D->getType()); 939 940 if (!Init) { 941 QualType T = D->getInit()->getType(); 942 if (getLangOptions().CPlusPlus) { 943 CXXGlobalInits.push_back(D); 944 Init = EmitNullConstant(T); 945 } else { 946 ErrorUnsupported(D, "static initializer"); 947 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 948 } 949 } 950 } 951 952 const llvm::Type* InitType = Init->getType(); 953 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 954 955 // Strip off a bitcast if we got one back. 956 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 957 assert(CE->getOpcode() == llvm::Instruction::BitCast || 958 // all zero index gep. 959 CE->getOpcode() == llvm::Instruction::GetElementPtr); 960 Entry = CE->getOperand(0); 961 } 962 963 // Entry is now either a Function or GlobalVariable. 964 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 965 966 // We have a definition after a declaration with the wrong type. 967 // We must make a new GlobalVariable* and update everything that used OldGV 968 // (a declaration or tentative definition) with the new GlobalVariable* 969 // (which will be a definition). 970 // 971 // This happens if there is a prototype for a global (e.g. 972 // "extern int x[];") and then a definition of a different type (e.g. 973 // "int x[10];"). This also happens when an initializer has a different type 974 // from the type of the global (this happens with unions). 975 if (GV == 0 || 976 GV->getType()->getElementType() != InitType || 977 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 978 979 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 980 GlobalDeclMap.erase(getMangledName(D)); 981 982 // Make a new global with the correct type, this is now guaranteed to work. 983 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 984 GV->takeName(cast<llvm::GlobalValue>(Entry)); 985 986 // Replace all uses of the old global with the new global 987 llvm::Constant *NewPtrForOldDecl = 988 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 989 Entry->replaceAllUsesWith(NewPtrForOldDecl); 990 991 // Erase the old global, since it is no longer used. 992 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 993 } 994 995 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 996 SourceManager &SM = Context.getSourceManager(); 997 AddAnnotation(EmitAnnotateAttr(GV, AA, 998 SM.getInstantiationLineNumber(D->getLocation()))); 999 } 1000 1001 GV->setInitializer(Init); 1002 1003 // If it is safe to mark the global 'constant', do so now. 1004 GV->setConstant(false); 1005 if (D->getType().isConstant(Context)) { 1006 // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable 1007 // members, it cannot be declared "LLVM const". 1008 GV->setConstant(true); 1009 } 1010 1011 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 1012 1013 // Set the llvm linkage type as appropriate. 1014 if (D->isInAnonymousNamespace()) 1015 GV->setLinkage(llvm::Function::InternalLinkage); 1016 else if (D->getStorageClass() == VarDecl::Static) 1017 GV->setLinkage(llvm::Function::InternalLinkage); 1018 else if (D->hasAttr<DLLImportAttr>()) 1019 GV->setLinkage(llvm::Function::DLLImportLinkage); 1020 else if (D->hasAttr<DLLExportAttr>()) 1021 GV->setLinkage(llvm::Function::DLLExportLinkage); 1022 else if (D->hasAttr<WeakAttr>()) { 1023 if (GV->isConstant()) 1024 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1025 else 1026 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1027 } else if (!CompileOpts.NoCommon && 1028 !D->hasExternalStorage() && !D->getInit() && 1029 !D->getAttr<SectionAttr>()) { 1030 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1031 // common vars aren't constant even if declared const. 1032 GV->setConstant(false); 1033 } else 1034 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1035 1036 SetCommonAttributes(D, GV); 1037 1038 // Emit global variable debug information. 1039 if (CGDebugInfo *DI = getDebugInfo()) { 1040 DI->setLocation(D->getLocation()); 1041 DI->EmitGlobalVariable(GV, D); 1042 } 1043 } 1044 1045 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1046 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1047 /// existing call uses of the old function in the module, this adjusts them to 1048 /// call the new function directly. 1049 /// 1050 /// This is not just a cleanup: the always_inline pass requires direct calls to 1051 /// functions to be able to inline them. If there is a bitcast in the way, it 1052 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1053 /// run at -O0. 1054 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1055 llvm::Function *NewFn) { 1056 // If we're redefining a global as a function, don't transform it. 1057 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1058 if (OldFn == 0) return; 1059 1060 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1061 llvm::SmallVector<llvm::Value*, 4> ArgList; 1062 1063 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1064 UI != E; ) { 1065 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1066 unsigned OpNo = UI.getOperandNo(); 1067 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1068 if (!CI || OpNo != 0) continue; 1069 1070 // If the return types don't match exactly, and if the call isn't dead, then 1071 // we can't transform this call. 1072 if (CI->getType() != NewRetTy && !CI->use_empty()) 1073 continue; 1074 1075 // If the function was passed too few arguments, don't transform. If extra 1076 // arguments were passed, we silently drop them. If any of the types 1077 // mismatch, we don't transform. 1078 unsigned ArgNo = 0; 1079 bool DontTransform = false; 1080 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1081 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1082 if (CI->getNumOperands()-1 == ArgNo || 1083 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1084 DontTransform = true; 1085 break; 1086 } 1087 } 1088 if (DontTransform) 1089 continue; 1090 1091 // Okay, we can transform this. Create the new call instruction and copy 1092 // over the required information. 1093 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1094 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1095 ArgList.end(), "", CI); 1096 ArgList.clear(); 1097 if (!NewCall->getType()->isVoidTy()) 1098 NewCall->takeName(CI); 1099 NewCall->setAttributes(CI->getAttributes()); 1100 NewCall->setCallingConv(CI->getCallingConv()); 1101 1102 // Finally, remove the old call, replacing any uses with the new one. 1103 if (!CI->use_empty()) 1104 CI->replaceAllUsesWith(NewCall); 1105 CI->eraseFromParent(); 1106 } 1107 } 1108 1109 1110 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1111 const llvm::FunctionType *Ty; 1112 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1113 1114 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1115 bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic(); 1116 1117 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1118 } else { 1119 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1120 1121 // As a special case, make sure that definitions of K&R function 1122 // "type foo()" aren't declared as varargs (which forces the backend 1123 // to do unnecessary work). 1124 if (D->getType()->isFunctionNoProtoType()) { 1125 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1126 // Due to stret, the lowered function could have arguments. 1127 // Just create the same type as was lowered by ConvertType 1128 // but strip off the varargs bit. 1129 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1130 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1131 } 1132 } 1133 1134 // Get or create the prototype for the function. 1135 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1136 1137 // Strip off a bitcast if we got one back. 1138 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1139 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1140 Entry = CE->getOperand(0); 1141 } 1142 1143 1144 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1145 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1146 1147 // If the types mismatch then we have to rewrite the definition. 1148 assert(OldFn->isDeclaration() && 1149 "Shouldn't replace non-declaration"); 1150 1151 // F is the Function* for the one with the wrong type, we must make a new 1152 // Function* and update everything that used F (a declaration) with the new 1153 // Function* (which will be a definition). 1154 // 1155 // This happens if there is a prototype for a function 1156 // (e.g. "int f()") and then a definition of a different type 1157 // (e.g. "int f(int x)"). Start by making a new function of the 1158 // correct type, RAUW, then steal the name. 1159 GlobalDeclMap.erase(getMangledName(D)); 1160 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1161 NewFn->takeName(OldFn); 1162 1163 // If this is an implementation of a function without a prototype, try to 1164 // replace any existing uses of the function (which may be calls) with uses 1165 // of the new function 1166 if (D->getType()->isFunctionNoProtoType()) { 1167 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1168 OldFn->removeDeadConstantUsers(); 1169 } 1170 1171 // Replace uses of F with the Function we will endow with a body. 1172 if (!Entry->use_empty()) { 1173 llvm::Constant *NewPtrForOldDecl = 1174 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1175 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1176 } 1177 1178 // Ok, delete the old function now, which is dead. 1179 OldFn->eraseFromParent(); 1180 1181 Entry = NewFn; 1182 } 1183 1184 llvm::Function *Fn = cast<llvm::Function>(Entry); 1185 1186 CodeGenFunction(*this).GenerateCode(D, Fn); 1187 1188 SetFunctionDefinitionAttributes(D, Fn); 1189 SetLLVMFunctionAttributesForDefinition(D, Fn); 1190 1191 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1192 AddGlobalCtor(Fn, CA->getPriority()); 1193 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1194 AddGlobalDtor(Fn, DA->getPriority()); 1195 } 1196 1197 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1198 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1199 assert(AA && "Not an alias?"); 1200 1201 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1202 1203 // Unique the name through the identifier table. 1204 const char *AliaseeName = AA->getAliasee().c_str(); 1205 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 1206 1207 // Create a reference to the named value. This ensures that it is emitted 1208 // if a deferred decl. 1209 llvm::Constant *Aliasee; 1210 if (isa<llvm::FunctionType>(DeclTy)) 1211 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1212 else 1213 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1214 llvm::PointerType::getUnqual(DeclTy), 0); 1215 1216 // Create the new alias itself, but don't set a name yet. 1217 llvm::GlobalValue *GA = 1218 new llvm::GlobalAlias(Aliasee->getType(), 1219 llvm::Function::ExternalLinkage, 1220 "", Aliasee, &getModule()); 1221 1222 // See if there is already something with the alias' name in the module. 1223 const char *MangledName = getMangledName(D); 1224 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1225 1226 if (Entry && !Entry->isDeclaration()) { 1227 // If there is a definition in the module, then it wins over the alias. 1228 // This is dubious, but allow it to be safe. Just ignore the alias. 1229 GA->eraseFromParent(); 1230 return; 1231 } 1232 1233 if (Entry) { 1234 // If there is a declaration in the module, then we had an extern followed 1235 // by the alias, as in: 1236 // extern int test6(); 1237 // ... 1238 // int test6() __attribute__((alias("test7"))); 1239 // 1240 // Remove it and replace uses of it with the alias. 1241 1242 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1243 Entry->getType())); 1244 Entry->eraseFromParent(); 1245 } 1246 1247 // Now we know that there is no conflict, set the name. 1248 Entry = GA; 1249 GA->setName(MangledName); 1250 1251 // Set attributes which are particular to an alias; this is a 1252 // specialization of the attributes which may be set on a global 1253 // variable/function. 1254 if (D->hasAttr<DLLExportAttr>()) { 1255 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1256 // The dllexport attribute is ignored for undefined symbols. 1257 if (FD->getBody()) 1258 GA->setLinkage(llvm::Function::DLLExportLinkage); 1259 } else { 1260 GA->setLinkage(llvm::Function::DLLExportLinkage); 1261 } 1262 } else if (D->hasAttr<WeakAttr>() || 1263 D->hasAttr<WeakImportAttr>()) { 1264 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1265 } 1266 1267 SetCommonAttributes(D, GA); 1268 } 1269 1270 /// getBuiltinLibFunction - Given a builtin id for a function like 1271 /// "__builtin_fabsf", return a Function* for "fabsf". 1272 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1273 unsigned BuiltinID) { 1274 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1275 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1276 "isn't a lib fn"); 1277 1278 // Get the name, skip over the __builtin_ prefix (if necessary). 1279 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1280 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1281 Name += 10; 1282 1283 // Get the type for the builtin. 1284 ASTContext::GetBuiltinTypeError Error; 1285 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1286 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1287 1288 const llvm::FunctionType *Ty = 1289 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1290 1291 // Unique the name through the identifier table. 1292 Name = getContext().Idents.get(Name).getName(); 1293 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1294 } 1295 1296 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1297 unsigned NumTys) { 1298 return llvm::Intrinsic::getDeclaration(&getModule(), 1299 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1300 } 1301 1302 llvm::Function *CodeGenModule::getMemCpyFn() { 1303 if (MemCpyFn) return MemCpyFn; 1304 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1305 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1306 } 1307 1308 llvm::Function *CodeGenModule::getMemMoveFn() { 1309 if (MemMoveFn) return MemMoveFn; 1310 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1311 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1312 } 1313 1314 llvm::Function *CodeGenModule::getMemSetFn() { 1315 if (MemSetFn) return MemSetFn; 1316 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1317 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1318 } 1319 1320 static llvm::StringMapEntry<llvm::Constant*> & 1321 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1322 const StringLiteral *Literal, 1323 bool TargetIsLSB, 1324 bool &IsUTF16, 1325 unsigned &StringLength) { 1326 unsigned NumBytes = Literal->getByteLength(); 1327 1328 // Check for simple case. 1329 if (!Literal->containsNonAsciiOrNull()) { 1330 StringLength = NumBytes; 1331 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1332 StringLength)); 1333 } 1334 1335 // Otherwise, convert the UTF8 literals into a byte string. 1336 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1337 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1338 UTF16 *ToPtr = &ToBuf[0]; 1339 1340 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1341 &ToPtr, ToPtr + NumBytes, 1342 strictConversion); 1343 1344 // Check for conversion failure. 1345 if (Result != conversionOK) { 1346 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1347 // this duplicate code. 1348 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1349 StringLength = NumBytes; 1350 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1351 StringLength)); 1352 } 1353 1354 // ConvertUTF8toUTF16 returns the length in ToPtr. 1355 StringLength = ToPtr - &ToBuf[0]; 1356 1357 // Render the UTF-16 string into a byte array and convert to the target byte 1358 // order. 1359 // 1360 // FIXME: This isn't something we should need to do here. 1361 llvm::SmallString<128> AsBytes; 1362 AsBytes.reserve(StringLength * 2); 1363 for (unsigned i = 0; i != StringLength; ++i) { 1364 unsigned short Val = ToBuf[i]; 1365 if (TargetIsLSB) { 1366 AsBytes.push_back(Val & 0xFF); 1367 AsBytes.push_back(Val >> 8); 1368 } else { 1369 AsBytes.push_back(Val >> 8); 1370 AsBytes.push_back(Val & 0xFF); 1371 } 1372 } 1373 // Append one extra null character, the second is automatically added by our 1374 // caller. 1375 AsBytes.push_back(0); 1376 1377 IsUTF16 = true; 1378 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1379 } 1380 1381 llvm::Constant * 1382 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1383 unsigned StringLength = 0; 1384 bool isUTF16 = false; 1385 llvm::StringMapEntry<llvm::Constant*> &Entry = 1386 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1387 getTargetData().isLittleEndian(), 1388 isUTF16, StringLength); 1389 1390 if (llvm::Constant *C = Entry.getValue()) 1391 return C; 1392 1393 llvm::Constant *Zero = 1394 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1395 llvm::Constant *Zeros[] = { Zero, Zero }; 1396 1397 // If we don't already have it, get __CFConstantStringClassReference. 1398 if (!CFConstantStringClassRef) { 1399 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1400 Ty = llvm::ArrayType::get(Ty, 0); 1401 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1402 "__CFConstantStringClassReference"); 1403 // Decay array -> ptr 1404 CFConstantStringClassRef = 1405 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1406 } 1407 1408 QualType CFTy = getContext().getCFConstantStringType(); 1409 1410 const llvm::StructType *STy = 1411 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1412 1413 std::vector<llvm::Constant*> Fields(4); 1414 1415 // Class pointer. 1416 Fields[0] = CFConstantStringClassRef; 1417 1418 // Flags. 1419 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1420 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1421 llvm::ConstantInt::get(Ty, 0x07C8); 1422 1423 // String pointer. 1424 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1425 1426 const char *Sect, *Prefix; 1427 bool isConstant; 1428 llvm::GlobalValue::LinkageTypes Linkage; 1429 if (isUTF16) { 1430 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1431 Sect = getContext().Target.getUnicodeStringSection(); 1432 // FIXME: why do utf strings get "l" labels instead of "L" labels? 1433 Linkage = llvm::GlobalValue::InternalLinkage; 1434 // FIXME: Why does GCC not set constant here? 1435 isConstant = false; 1436 } else { 1437 Prefix = ".str"; 1438 Sect = getContext().Target.getCFStringDataSection(); 1439 Linkage = llvm::GlobalValue::PrivateLinkage; 1440 // FIXME: -fwritable-strings should probably affect this, but we 1441 // are following gcc here. 1442 isConstant = true; 1443 } 1444 llvm::GlobalVariable *GV = 1445 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 1446 Linkage, C, Prefix); 1447 if (Sect) 1448 GV->setSection(Sect); 1449 if (isUTF16) { 1450 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1451 GV->setAlignment(Align); 1452 } 1453 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1454 1455 // String length. 1456 Ty = getTypes().ConvertType(getContext().LongTy); 1457 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1458 1459 // The struct. 1460 C = llvm::ConstantStruct::get(STy, Fields); 1461 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1462 llvm::GlobalVariable::PrivateLinkage, C, 1463 "_unnamed_cfstring_"); 1464 if (const char *Sect = getContext().Target.getCFStringSection()) 1465 GV->setSection(Sect); 1466 Entry.setValue(GV); 1467 1468 return GV; 1469 } 1470 1471 /// GetStringForStringLiteral - Return the appropriate bytes for a 1472 /// string literal, properly padded to match the literal type. 1473 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1474 const char *StrData = E->getStrData(); 1475 unsigned Len = E->getByteLength(); 1476 1477 const ConstantArrayType *CAT = 1478 getContext().getAsConstantArrayType(E->getType()); 1479 assert(CAT && "String isn't pointer or array!"); 1480 1481 // Resize the string to the right size. 1482 std::string Str(StrData, StrData+Len); 1483 uint64_t RealLen = CAT->getSize().getZExtValue(); 1484 1485 if (E->isWide()) 1486 RealLen *= getContext().Target.getWCharWidth()/8; 1487 1488 Str.resize(RealLen, '\0'); 1489 1490 return Str; 1491 } 1492 1493 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1494 /// constant array for the given string literal. 1495 llvm::Constant * 1496 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1497 // FIXME: This can be more efficient. 1498 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1499 } 1500 1501 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1502 /// array for the given ObjCEncodeExpr node. 1503 llvm::Constant * 1504 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1505 std::string Str; 1506 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1507 1508 return GetAddrOfConstantCString(Str); 1509 } 1510 1511 1512 /// GenerateWritableString -- Creates storage for a string literal. 1513 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1514 bool constant, 1515 CodeGenModule &CGM, 1516 const char *GlobalName) { 1517 // Create Constant for this string literal. Don't add a '\0'. 1518 llvm::Constant *C = 1519 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1520 1521 // Create a global variable for this string 1522 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1523 llvm::GlobalValue::PrivateLinkage, 1524 C, GlobalName); 1525 } 1526 1527 /// GetAddrOfConstantString - Returns a pointer to a character array 1528 /// containing the literal. This contents are exactly that of the 1529 /// given string, i.e. it will not be null terminated automatically; 1530 /// see GetAddrOfConstantCString. Note that whether the result is 1531 /// actually a pointer to an LLVM constant depends on 1532 /// Feature.WriteableStrings. 1533 /// 1534 /// The result has pointer to array type. 1535 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1536 const char *GlobalName) { 1537 bool IsConstant = !Features.WritableStrings; 1538 1539 // Get the default prefix if a name wasn't specified. 1540 if (!GlobalName) 1541 GlobalName = ".str"; 1542 1543 // Don't share any string literals if strings aren't constant. 1544 if (!IsConstant) 1545 return GenerateStringLiteral(str, false, *this, GlobalName); 1546 1547 llvm::StringMapEntry<llvm::Constant *> &Entry = 1548 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1549 1550 if (Entry.getValue()) 1551 return Entry.getValue(); 1552 1553 // Create a global variable for this. 1554 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1555 Entry.setValue(C); 1556 return C; 1557 } 1558 1559 /// GetAddrOfConstantCString - Returns a pointer to a character 1560 /// array containing the literal and a terminating '\-' 1561 /// character. The result has pointer to array type. 1562 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1563 const char *GlobalName){ 1564 return GetAddrOfConstantString(str + '\0', GlobalName); 1565 } 1566 1567 /// EmitObjCPropertyImplementations - Emit information for synthesized 1568 /// properties for an implementation. 1569 void CodeGenModule::EmitObjCPropertyImplementations(const 1570 ObjCImplementationDecl *D) { 1571 for (ObjCImplementationDecl::propimpl_iterator 1572 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1573 ObjCPropertyImplDecl *PID = *i; 1574 1575 // Dynamic is just for type-checking. 1576 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1577 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1578 1579 // Determine which methods need to be implemented, some may have 1580 // been overridden. Note that ::isSynthesized is not the method 1581 // we want, that just indicates if the decl came from a 1582 // property. What we want to know is if the method is defined in 1583 // this implementation. 1584 if (!D->getInstanceMethod(PD->getGetterName())) 1585 CodeGenFunction(*this).GenerateObjCGetter( 1586 const_cast<ObjCImplementationDecl *>(D), PID); 1587 if (!PD->isReadOnly() && 1588 !D->getInstanceMethod(PD->getSetterName())) 1589 CodeGenFunction(*this).GenerateObjCSetter( 1590 const_cast<ObjCImplementationDecl *>(D), PID); 1591 } 1592 } 1593 } 1594 1595 /// EmitNamespace - Emit all declarations in a namespace. 1596 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1597 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1598 I != E; ++I) 1599 EmitTopLevelDecl(*I); 1600 } 1601 1602 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1603 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1604 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1605 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1606 ErrorUnsupported(LSD, "linkage spec"); 1607 return; 1608 } 1609 1610 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1611 I != E; ++I) 1612 EmitTopLevelDecl(*I); 1613 } 1614 1615 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1616 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1617 // If an error has occurred, stop code generation, but continue 1618 // parsing and semantic analysis (to ensure all warnings and errors 1619 // are emitted). 1620 if (Diags.hasErrorOccurred()) 1621 return; 1622 1623 // Ignore dependent declarations. 1624 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1625 return; 1626 1627 switch (D->getKind()) { 1628 case Decl::CXXConversion: 1629 case Decl::CXXMethod: 1630 case Decl::Function: 1631 // Skip function templates 1632 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1633 return; 1634 1635 EmitGlobal(cast<FunctionDecl>(D)); 1636 break; 1637 1638 case Decl::Var: 1639 EmitGlobal(cast<VarDecl>(D)); 1640 break; 1641 1642 // C++ Decls 1643 case Decl::Namespace: 1644 EmitNamespace(cast<NamespaceDecl>(D)); 1645 break; 1646 // No code generation needed. 1647 case Decl::Using: 1648 case Decl::UsingDirective: 1649 case Decl::ClassTemplate: 1650 case Decl::FunctionTemplate: 1651 case Decl::NamespaceAlias: 1652 break; 1653 case Decl::CXXConstructor: 1654 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1655 break; 1656 case Decl::CXXDestructor: 1657 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1658 break; 1659 1660 case Decl::StaticAssert: 1661 // Nothing to do. 1662 break; 1663 1664 // Objective-C Decls 1665 1666 // Forward declarations, no (immediate) code generation. 1667 case Decl::ObjCClass: 1668 case Decl::ObjCForwardProtocol: 1669 case Decl::ObjCCategory: 1670 case Decl::ObjCInterface: 1671 break; 1672 1673 case Decl::ObjCProtocol: 1674 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1675 break; 1676 1677 case Decl::ObjCCategoryImpl: 1678 // Categories have properties but don't support synthesize so we 1679 // can ignore them here. 1680 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1681 break; 1682 1683 case Decl::ObjCImplementation: { 1684 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1685 EmitObjCPropertyImplementations(OMD); 1686 Runtime->GenerateClass(OMD); 1687 break; 1688 } 1689 case Decl::ObjCMethod: { 1690 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1691 // If this is not a prototype, emit the body. 1692 if (OMD->getBody()) 1693 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1694 break; 1695 } 1696 case Decl::ObjCCompatibleAlias: 1697 // compatibility-alias is a directive and has no code gen. 1698 break; 1699 1700 case Decl::LinkageSpec: 1701 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1702 break; 1703 1704 case Decl::FileScopeAsm: { 1705 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1706 std::string AsmString(AD->getAsmString()->getStrData(), 1707 AD->getAsmString()->getByteLength()); 1708 1709 const std::string &S = getModule().getModuleInlineAsm(); 1710 if (S.empty()) 1711 getModule().setModuleInlineAsm(AsmString); 1712 else 1713 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1714 break; 1715 } 1716 1717 default: 1718 // Make sure we handled everything we should, every other kind is a 1719 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1720 // function. Need to recode Decl::Kind to do that easily. 1721 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1722 } 1723 } 1724