1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
44 
45   if (!Features.ObjC1)
46     Runtime = 0;
47   else if (!Features.NeXTRuntime)
48     Runtime = CreateGNUObjCRuntime(*this);
49   else if (Features.ObjCNonFragileABI)
50     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
51   else
52     Runtime = CreateMacObjCRuntime(*this);
53 
54   // If debug info generation is enabled, create the CGDebugInfo object.
55   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
56 }
57 
58 CodeGenModule::~CodeGenModule() {
59   delete Runtime;
60   delete DebugInfo;
61 }
62 
63 void CodeGenModule::Release() {
64   EmitDeferred();
65   if (Runtime)
66     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
67       AddGlobalCtor(ObjCInitFunction);
68   EmitCtorList(GlobalCtors, "llvm.global_ctors");
69   EmitCtorList(GlobalDtors, "llvm.global_dtors");
70   EmitAnnotations();
71   EmitLLVMUsed();
72 }
73 
74 /// ErrorUnsupported - Print out an error that codegen doesn't support the
75 /// specified stmt yet.
76 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
77                                      bool OmitOnError) {
78   if (OmitOnError && getDiags().hasErrorOccurred())
79     return;
80   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
81                                                "cannot compile this %0 yet");
82   std::string Msg = Type;
83   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
84     << Msg << S->getSourceRange();
85 }
86 
87 /// ErrorUnsupported - Print out an error that codegen doesn't support the
88 /// specified decl yet.
89 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
90                                      bool OmitOnError) {
91   if (OmitOnError && getDiags().hasErrorOccurred())
92     return;
93   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
94                                                "cannot compile this %0 yet");
95   std::string Msg = Type;
96   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
97 }
98 
99 LangOptions::VisibilityMode
100 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
101   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
102     if (VD->getStorageClass() == VarDecl::PrivateExtern)
103       return LangOptions::Hidden;
104 
105   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>(getContext())) {
106     switch (attr->getVisibility()) {
107     default: assert(0 && "Unknown visibility!");
108     case VisibilityAttr::DefaultVisibility:
109       return LangOptions::Default;
110     case VisibilityAttr::HiddenVisibility:
111       return LangOptions::Hidden;
112     case VisibilityAttr::ProtectedVisibility:
113       return LangOptions::Protected;
114     }
115   }
116 
117   return getLangOptions().getVisibilityMode();
118 }
119 
120 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
121                                         const Decl *D) const {
122   // Internal definitions always have default visibility.
123   if (GV->hasLocalLinkage()) {
124     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
125     return;
126   }
127 
128   switch (getDeclVisibilityMode(D)) {
129   default: assert(0 && "Unknown visibility!");
130   case LangOptions::Default:
131     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
132   case LangOptions::Hidden:
133     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
134   case LangOptions::Protected:
135     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
136   }
137 }
138 
139 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
140   const NamedDecl *ND = GD.getDecl();
141 
142   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
143     return getMangledCXXCtorName(D, GD.getCtorType());
144   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
145     return getMangledCXXDtorName(D, GD.getDtorType());
146 
147   return getMangledName(ND);
148 }
149 
150 /// \brief Retrieves the mangled name for the given declaration.
151 ///
152 /// If the given declaration requires a mangled name, returns an
153 /// const char* containing the mangled name.  Otherwise, returns
154 /// the unmangled name.
155 ///
156 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
157   // In C, functions with no attributes never need to be mangled. Fastpath them.
158   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
159     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
160     return ND->getNameAsCString();
161   }
162 
163   llvm::SmallString<256> Name;
164   llvm::raw_svector_ostream Out(Name);
165   if (!mangleName(ND, Context, Out)) {
166     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
167     return ND->getNameAsCString();
168   }
169 
170   Name += '\0';
171   return UniqueMangledName(Name.begin(), Name.end());
172 }
173 
174 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
175                                              const char *NameEnd) {
176   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
177 
178   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
179 }
180 
181 /// AddGlobalCtor - Add a function to the list that will be called before
182 /// main() runs.
183 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
184   // FIXME: Type coercion of void()* types.
185   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
186 }
187 
188 /// AddGlobalDtor - Add a function to the list that will be called
189 /// when the module is unloaded.
190 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
191   // FIXME: Type coercion of void()* types.
192   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
193 }
194 
195 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
196   // Ctor function type is void()*.
197   llvm::FunctionType* CtorFTy =
198     llvm::FunctionType::get(llvm::Type::VoidTy,
199                             std::vector<const llvm::Type*>(),
200                             false);
201   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
202 
203   // Get the type of a ctor entry, { i32, void ()* }.
204   llvm::StructType* CtorStructTy =
205     llvm::StructType::get(llvm::Type::Int32Ty,
206                           llvm::PointerType::getUnqual(CtorFTy), NULL);
207 
208   // Construct the constructor and destructor arrays.
209   std::vector<llvm::Constant*> Ctors;
210   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
211     std::vector<llvm::Constant*> S;
212     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
213     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
214     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
215   }
216 
217   if (!Ctors.empty()) {
218     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
219     new llvm::GlobalVariable(AT, false,
220                              llvm::GlobalValue::AppendingLinkage,
221                              llvm::ConstantArray::get(AT, Ctors),
222                              GlobalName,
223                              &TheModule);
224   }
225 }
226 
227 void CodeGenModule::EmitAnnotations() {
228   if (Annotations.empty())
229     return;
230 
231   // Create a new global variable for the ConstantStruct in the Module.
232   llvm::Constant *Array =
233   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
234                                                 Annotations.size()),
235                            Annotations);
236   llvm::GlobalValue *gv =
237   new llvm::GlobalVariable(Array->getType(), false,
238                            llvm::GlobalValue::AppendingLinkage, Array,
239                            "llvm.global.annotations", &TheModule);
240   gv->setSection("llvm.metadata");
241 }
242 
243 static CodeGenModule::GVALinkage
244 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
245                       const LangOptions &Features) {
246   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
247     // C++ member functions defined inside the class are always inline.
248     if (MD->isInline() || !MD->isOutOfLine())
249       return CodeGenModule::GVA_CXXInline;
250 
251     return CodeGenModule::GVA_StrongExternal;
252   }
253 
254   // "static" functions get internal linkage.
255   if (FD->getStorageClass() == FunctionDecl::Static)
256     return CodeGenModule::GVA_Internal;
257 
258   if (!FD->isInline())
259     return CodeGenModule::GVA_StrongExternal;
260 
261   // If the inline function explicitly has the GNU inline attribute on it, or if
262   // this is C89 mode, we use to GNU semantics.
263   if (!Features.C99 && !Features.CPlusPlus) {
264     // extern inline in GNU mode is like C99 inline.
265     if (FD->getStorageClass() == FunctionDecl::Extern)
266       return CodeGenModule::GVA_C99Inline;
267     // Normal inline is a strong symbol.
268     return CodeGenModule::GVA_StrongExternal;
269   } else if (FD->hasActiveGNUInlineAttribute(Context)) {
270     // GCC in C99 mode seems to use a different decision-making
271     // process for extern inline, which factors in previous
272     // declarations.
273     if (FD->isExternGNUInline(Context))
274       return CodeGenModule::GVA_C99Inline;
275     // Normal inline is a strong symbol.
276     return CodeGenModule::GVA_StrongExternal;
277   }
278 
279   // The definition of inline changes based on the language.  Note that we
280   // have already handled "static inline" above, with the GVA_Internal case.
281   if (Features.CPlusPlus)  // inline and extern inline.
282     return CodeGenModule::GVA_CXXInline;
283 
284   assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
285   if (FD->isC99InlineDefinition())
286     return CodeGenModule::GVA_C99Inline;
287 
288   return CodeGenModule::GVA_StrongExternal;
289 }
290 
291 /// SetFunctionDefinitionAttributes - Set attributes for a global.
292 ///
293 /// FIXME: This is currently only done for aliases and functions, but not for
294 /// variables (these details are set in EmitGlobalVarDefinition for variables).
295 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
296                                                     llvm::GlobalValue *GV) {
297   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
298 
299   if (Linkage == GVA_Internal) {
300     GV->setLinkage(llvm::Function::InternalLinkage);
301   } else if (D->hasAttr<DLLExportAttr>(getContext())) {
302     GV->setLinkage(llvm::Function::DLLExportLinkage);
303   } else if (D->hasAttr<WeakAttr>(getContext())) {
304     GV->setLinkage(llvm::Function::WeakAnyLinkage);
305   } else if (Linkage == GVA_C99Inline) {
306     // In C99 mode, 'inline' functions are guaranteed to have a strong
307     // definition somewhere else, so we can use available_externally linkage.
308     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
309   } else if (Linkage == GVA_CXXInline) {
310     // In C++, the compiler has to emit a definition in every translation unit
311     // that references the function.  We should use linkonce_odr because
312     // a) if all references in this translation unit are optimized away, we
313     // don't need to codegen it.  b) if the function persists, it needs to be
314     // merged with other definitions. c) C++ has the ODR, so we know the
315     // definition is dependable.
316     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
317   } else {
318     assert(Linkage == GVA_StrongExternal);
319     // Otherwise, we have strong external linkage.
320     GV->setLinkage(llvm::Function::ExternalLinkage);
321   }
322 
323   SetCommonAttributes(D, GV);
324 }
325 
326 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
327                                               const CGFunctionInfo &Info,
328                                               llvm::Function *F) {
329   AttributeListType AttributeList;
330   ConstructAttributeList(Info, D, AttributeList);
331 
332   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
333                                         AttributeList.size()));
334 
335   // Set the appropriate calling convention for the Function.
336   if (D->hasAttr<FastCallAttr>(getContext()))
337     F->setCallingConv(llvm::CallingConv::X86_FastCall);
338 
339   if (D->hasAttr<StdCallAttr>(getContext()))
340     F->setCallingConv(llvm::CallingConv::X86_StdCall);
341 }
342 
343 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
344                                                            llvm::Function *F) {
345   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
346     F->addFnAttr(llvm::Attribute::NoUnwind);
347 
348   if (D->hasAttr<AlwaysInlineAttr>(getContext()))
349     F->addFnAttr(llvm::Attribute::AlwaysInline);
350 
351   if (D->hasAttr<NoinlineAttr>(getContext()))
352     F->addFnAttr(llvm::Attribute::NoInline);
353 }
354 
355 void CodeGenModule::SetCommonAttributes(const Decl *D,
356                                         llvm::GlobalValue *GV) {
357   setGlobalVisibility(GV, D);
358 
359   if (D->hasAttr<UsedAttr>(getContext()))
360     AddUsedGlobal(GV);
361 
362   if (const SectionAttr *SA = D->getAttr<SectionAttr>(getContext()))
363     GV->setSection(SA->getName());
364 }
365 
366 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
367                                                   llvm::Function *F,
368                                                   const CGFunctionInfo &FI) {
369   SetLLVMFunctionAttributes(D, FI, F);
370   SetLLVMFunctionAttributesForDefinition(D, F);
371 
372   F->setLinkage(llvm::Function::InternalLinkage);
373 
374   SetCommonAttributes(D, F);
375 }
376 
377 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
378                                           llvm::Function *F,
379                                           bool IsIncompleteFunction) {
380   if (!IsIncompleteFunction)
381     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
382 
383   // Only a few attributes are set on declarations; these may later be
384   // overridden by a definition.
385 
386   if (FD->hasAttr<DLLImportAttr>(getContext())) {
387     F->setLinkage(llvm::Function::DLLImportLinkage);
388   } else if (FD->hasAttr<WeakAttr>(getContext()) ||
389              FD->hasAttr<WeakImportAttr>(getContext())) {
390     // "extern_weak" is overloaded in LLVM; we probably should have
391     // separate linkage types for this.
392     F->setLinkage(llvm::Function::ExternalWeakLinkage);
393   } else {
394     F->setLinkage(llvm::Function::ExternalLinkage);
395   }
396 
397   if (const SectionAttr *SA = FD->getAttr<SectionAttr>(getContext()))
398     F->setSection(SA->getName());
399 }
400 
401 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
402   assert(!GV->isDeclaration() &&
403          "Only globals with definition can force usage.");
404   LLVMUsed.push_back(GV);
405 }
406 
407 void CodeGenModule::EmitLLVMUsed() {
408   // Don't create llvm.used if there is no need.
409   // FIXME. Runtime indicates that there might be more 'used' symbols; but not
410   // necessariy. So, this test is not accurate for emptiness.
411   if (LLVMUsed.empty() && !Runtime)
412     return;
413 
414   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
415 
416   // Convert LLVMUsed to what ConstantArray needs.
417   std::vector<llvm::Constant*> UsedArray;
418   UsedArray.resize(LLVMUsed.size());
419   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
420     UsedArray[i] =
421      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
422   }
423 
424   if (Runtime)
425     Runtime->MergeMetadataGlobals(UsedArray);
426   if (UsedArray.empty())
427     return;
428   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
429 
430   llvm::GlobalVariable *GV =
431     new llvm::GlobalVariable(ATy, false,
432                              llvm::GlobalValue::AppendingLinkage,
433                              llvm::ConstantArray::get(ATy, UsedArray),
434                              "llvm.used", &getModule());
435 
436   GV->setSection("llvm.metadata");
437 }
438 
439 void CodeGenModule::EmitDeferred() {
440   // Emit code for any potentially referenced deferred decls.  Since a
441   // previously unused static decl may become used during the generation of code
442   // for a static function, iterate until no  changes are made.
443   while (!DeferredDeclsToEmit.empty()) {
444     GlobalDecl D = DeferredDeclsToEmit.back();
445     DeferredDeclsToEmit.pop_back();
446 
447     // The mangled name for the decl must have been emitted in GlobalDeclMap.
448     // Look it up to see if it was defined with a stronger definition (e.g. an
449     // extern inline function with a strong function redefinition).  If so,
450     // just ignore the deferred decl.
451     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
452     assert(CGRef && "Deferred decl wasn't referenced?");
453 
454     if (!CGRef->isDeclaration())
455       continue;
456 
457     // Otherwise, emit the definition and move on to the next one.
458     EmitGlobalDefinition(D);
459   }
460 }
461 
462 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
463 /// annotation information for a given GlobalValue.  The annotation struct is
464 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
465 /// GlobalValue being annotated.  The second field is the constant string
466 /// created from the AnnotateAttr's annotation.  The third field is a constant
467 /// string containing the name of the translation unit.  The fourth field is
468 /// the line number in the file of the annotated value declaration.
469 ///
470 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
471 ///        appears to.
472 ///
473 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
474                                                 const AnnotateAttr *AA,
475                                                 unsigned LineNo) {
476   llvm::Module *M = &getModule();
477 
478   // get [N x i8] constants for the annotation string, and the filename string
479   // which are the 2nd and 3rd elements of the global annotation structure.
480   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
481   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
482   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
483                                                   true);
484 
485   // Get the two global values corresponding to the ConstantArrays we just
486   // created to hold the bytes of the strings.
487   const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
488   llvm::GlobalValue *annoGV =
489   new llvm::GlobalVariable(anno->getType(), false,
490                            llvm::GlobalValue::InternalLinkage, anno,
491                            GV->getName() + StringPrefix, M);
492   // translation unit name string, emitted into the llvm.metadata section.
493   llvm::GlobalValue *unitGV =
494   new llvm::GlobalVariable(unit->getType(), false,
495                            llvm::GlobalValue::InternalLinkage, unit,
496                            StringPrefix, M);
497 
498   // Create the ConstantStruct for the global annotation.
499   llvm::Constant *Fields[4] = {
500     llvm::ConstantExpr::getBitCast(GV, SBP),
501     llvm::ConstantExpr::getBitCast(annoGV, SBP),
502     llvm::ConstantExpr::getBitCast(unitGV, SBP),
503     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
504   };
505   return llvm::ConstantStruct::get(Fields, 4, false);
506 }
507 
508 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
509   // Never defer when EmitAllDecls is specified or the decl has
510   // attribute used.
511   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>(getContext()))
512     return false;
513 
514   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
515     // Constructors and destructors should never be deferred.
516     if (FD->hasAttr<ConstructorAttr>(getContext()) ||
517         FD->hasAttr<DestructorAttr>(getContext()))
518       return false;
519 
520     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
521 
522     // static, static inline, always_inline, and extern inline functions can
523     // always be deferred.  Normal inline functions can be deferred in C99/C++.
524     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
525         Linkage == GVA_CXXInline)
526       return true;
527     return false;
528   }
529 
530   const VarDecl *VD = cast<VarDecl>(Global);
531   assert(VD->isFileVarDecl() && "Invalid decl");
532 
533   return VD->getStorageClass() == VarDecl::Static;
534 }
535 
536 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
537   const ValueDecl *Global = GD.getDecl();
538 
539   // If this is an alias definition (which otherwise looks like a declaration)
540   // emit it now.
541   if (Global->hasAttr<AliasAttr>(getContext()))
542     return EmitAliasDefinition(Global);
543 
544   // Ignore declarations, they will be emitted on their first use.
545   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
546     // Forward declarations are emitted lazily on first use.
547     if (!FD->isThisDeclarationADefinition())
548       return;
549   } else {
550     const VarDecl *VD = cast<VarDecl>(Global);
551     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
552 
553     // In C++, if this is marked "extern", defer code generation.
554     if (getLangOptions().CPlusPlus && !VD->getInit() &&
555         (VD->getStorageClass() == VarDecl::Extern ||
556          VD->isExternC(getContext())))
557       return;
558 
559     // In C, if this isn't a definition, defer code generation.
560     if (!getLangOptions().CPlusPlus && !VD->getInit())
561       return;
562   }
563 
564   // Defer code generation when possible if this is a static definition, inline
565   // function etc.  These we only want to emit if they are used.
566   if (MayDeferGeneration(Global)) {
567     // If the value has already been used, add it directly to the
568     // DeferredDeclsToEmit list.
569     const char *MangledName = getMangledName(GD);
570     if (GlobalDeclMap.count(MangledName))
571       DeferredDeclsToEmit.push_back(GD);
572     else {
573       // Otherwise, remember that we saw a deferred decl with this name.  The
574       // first use of the mangled name will cause it to move into
575       // DeferredDeclsToEmit.
576       DeferredDecls[MangledName] = GD;
577     }
578     return;
579   }
580 
581   // Otherwise emit the definition.
582   EmitGlobalDefinition(GD);
583 }
584 
585 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
586   const ValueDecl *D = GD.getDecl();
587 
588   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
589     EmitCXXConstructor(CD, GD.getCtorType());
590   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
591     EmitCXXDestructor(DD, GD.getDtorType());
592   else if (isa<FunctionDecl>(D))
593     EmitGlobalFunctionDefinition(GD);
594   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
595     EmitGlobalVarDefinition(VD);
596   else {
597     assert(0 && "Invalid argument to EmitGlobalDefinition()");
598   }
599 }
600 
601 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
602 /// module, create and return an llvm Function with the specified type. If there
603 /// is something in the module with the specified name, return it potentially
604 /// bitcasted to the right type.
605 ///
606 /// If D is non-null, it specifies a decl that correspond to this.  This is used
607 /// to set the attributes on the function when it is first created.
608 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
609                                                        const llvm::Type *Ty,
610                                                        GlobalDecl D) {
611   // Lookup the entry, lazily creating it if necessary.
612   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
613   if (Entry) {
614     if (Entry->getType()->getElementType() == Ty)
615       return Entry;
616 
617     // Make sure the result is of the correct type.
618     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
619     return llvm::ConstantExpr::getBitCast(Entry, PTy);
620   }
621 
622   // This is the first use or definition of a mangled name.  If there is a
623   // deferred decl with this name, remember that we need to emit it at the end
624   // of the file.
625   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
626     DeferredDecls.find(MangledName);
627   if (DDI != DeferredDecls.end()) {
628     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
629     // list, and remove it from DeferredDecls (since we don't need it anymore).
630     DeferredDeclsToEmit.push_back(DDI->second);
631     DeferredDecls.erase(DDI);
632   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
633     // If this the first reference to a C++ inline function in a class, queue up
634     // the deferred function body for emission.  These are not seen as
635     // top-level declarations.
636     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
637       DeferredDeclsToEmit.push_back(D);
638   }
639 
640   // This function doesn't have a complete type (for example, the return
641   // type is an incomplete struct). Use a fake type instead, and make
642   // sure not to try to set attributes.
643   bool IsIncompleteFunction = false;
644   if (!isa<llvm::FunctionType>(Ty)) {
645     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
646                                  std::vector<const llvm::Type*>(), false);
647     IsIncompleteFunction = true;
648   }
649   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
650                                              llvm::Function::ExternalLinkage,
651                                              "", &getModule());
652   F->setName(MangledName);
653   if (D.getDecl())
654     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
655                           IsIncompleteFunction);
656   Entry = F;
657   return F;
658 }
659 
660 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
661 /// non-null, then this function will use the specified type if it has to
662 /// create it (this occurs when we see a definition of the function).
663 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
664                                                  const llvm::Type *Ty) {
665   // If there was no specific requested type, just convert it now.
666   if (!Ty)
667     Ty = getTypes().ConvertType(GD.getDecl()->getType());
668   return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD);
669 }
670 
671 /// CreateRuntimeFunction - Create a new runtime function with the specified
672 /// type and name.
673 llvm::Constant *
674 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
675                                      const char *Name) {
676   // Convert Name to be a uniqued string from the IdentifierInfo table.
677   Name = getContext().Idents.get(Name).getName();
678   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
679 }
680 
681 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
682 /// create and return an llvm GlobalVariable with the specified type.  If there
683 /// is something in the module with the specified name, return it potentially
684 /// bitcasted to the right type.
685 ///
686 /// If D is non-null, it specifies a decl that correspond to this.  This is used
687 /// to set the attributes on the global when it is first created.
688 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
689                                                      const llvm::PointerType*Ty,
690                                                      const VarDecl *D) {
691   // Lookup the entry, lazily creating it if necessary.
692   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
693   if (Entry) {
694     if (Entry->getType() == Ty)
695       return Entry;
696 
697     // Make sure the result is of the correct type.
698     return llvm::ConstantExpr::getBitCast(Entry, Ty);
699   }
700 
701   // This is the first use or definition of a mangled name.  If there is a
702   // deferred decl with this name, remember that we need to emit it at the end
703   // of the file.
704   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
705     DeferredDecls.find(MangledName);
706   if (DDI != DeferredDecls.end()) {
707     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
708     // list, and remove it from DeferredDecls (since we don't need it anymore).
709     DeferredDeclsToEmit.push_back(DDI->second);
710     DeferredDecls.erase(DDI);
711   }
712 
713   llvm::GlobalVariable *GV =
714     new llvm::GlobalVariable(Ty->getElementType(), false,
715                              llvm::GlobalValue::ExternalLinkage,
716                              0, "", &getModule(),
717                              false, Ty->getAddressSpace());
718   GV->setName(MangledName);
719 
720   // Handle things which are present even on external declarations.
721   if (D) {
722     // FIXME: This code is overly simple and should be merged with other global
723     // handling.
724     GV->setConstant(D->getType().isConstant(Context));
725 
726     // FIXME: Merge with other attribute handling code.
727     if (D->getStorageClass() == VarDecl::PrivateExtern)
728       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
729 
730     if (D->hasAttr<WeakAttr>(getContext()) ||
731         D->hasAttr<WeakImportAttr>(getContext()))
732       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
733 
734     GV->setThreadLocal(D->isThreadSpecified());
735   }
736 
737   return Entry = GV;
738 }
739 
740 
741 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
742 /// given global variable.  If Ty is non-null and if the global doesn't exist,
743 /// then it will be greated with the specified type instead of whatever the
744 /// normal requested type would be.
745 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
746                                                   const llvm::Type *Ty) {
747   assert(D->hasGlobalStorage() && "Not a global variable");
748   QualType ASTTy = D->getType();
749   if (Ty == 0)
750     Ty = getTypes().ConvertTypeForMem(ASTTy);
751 
752   const llvm::PointerType *PTy =
753     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
754   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
755 }
756 
757 /// CreateRuntimeVariable - Create a new runtime global variable with the
758 /// specified type and name.
759 llvm::Constant *
760 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
761                                      const char *Name) {
762   // Convert Name to be a uniqued string from the IdentifierInfo table.
763   Name = getContext().Idents.get(Name).getName();
764   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
765 }
766 
767 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
768   assert(!D->getInit() && "Cannot emit definite definitions here!");
769 
770   if (MayDeferGeneration(D)) {
771     // If we have not seen a reference to this variable yet, place it
772     // into the deferred declarations table to be emitted if needed
773     // later.
774     const char *MangledName = getMangledName(D);
775     if (GlobalDeclMap.count(MangledName) == 0) {
776       DeferredDecls[MangledName] = GlobalDecl(D);
777       return;
778     }
779   }
780 
781   // The tentative definition is the only definition.
782   EmitGlobalVarDefinition(D);
783 }
784 
785 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
786   llvm::Constant *Init = 0;
787   QualType ASTTy = D->getType();
788 
789   if (D->getInit() == 0) {
790     // This is a tentative definition; tentative definitions are
791     // implicitly initialized with { 0 }.
792     //
793     // Note that tentative definitions are only emitted at the end of
794     // a translation unit, so they should never have incomplete
795     // type. In addition, EmitTentativeDefinition makes sure that we
796     // never attempt to emit a tentative definition if a real one
797     // exists. A use may still exists, however, so we still may need
798     // to do a RAUW.
799     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
800     Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy));
801   } else {
802     Init = EmitConstantExpr(D->getInit(), D->getType());
803     if (!Init) {
804       ErrorUnsupported(D, "static initializer");
805       QualType T = D->getInit()->getType();
806       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
807     }
808   }
809 
810   const llvm::Type* InitType = Init->getType();
811   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
812 
813   // Strip off a bitcast if we got one back.
814   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
815     assert(CE->getOpcode() == llvm::Instruction::BitCast);
816     Entry = CE->getOperand(0);
817   }
818 
819   // Entry is now either a Function or GlobalVariable.
820   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
821 
822   // We have a definition after a declaration with the wrong type.
823   // We must make a new GlobalVariable* and update everything that used OldGV
824   // (a declaration or tentative definition) with the new GlobalVariable*
825   // (which will be a definition).
826   //
827   // This happens if there is a prototype for a global (e.g.
828   // "extern int x[];") and then a definition of a different type (e.g.
829   // "int x[10];"). This also happens when an initializer has a different type
830   // from the type of the global (this happens with unions).
831   if (GV == 0 ||
832       GV->getType()->getElementType() != InitType ||
833       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
834 
835     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
836     GlobalDeclMap.erase(getMangledName(D));
837 
838     // Make a new global with the correct type, this is now guaranteed to work.
839     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
840     GV->takeName(cast<llvm::GlobalValue>(Entry));
841 
842     // Replace all uses of the old global with the new global
843     llvm::Constant *NewPtrForOldDecl =
844         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
845     Entry->replaceAllUsesWith(NewPtrForOldDecl);
846 
847     // Erase the old global, since it is no longer used.
848     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
849   }
850 
851   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>(getContext())) {
852     SourceManager &SM = Context.getSourceManager();
853     AddAnnotation(EmitAnnotateAttr(GV, AA,
854                               SM.getInstantiationLineNumber(D->getLocation())));
855   }
856 
857   GV->setInitializer(Init);
858   GV->setConstant(D->getType().isConstant(Context));
859   GV->setAlignment(getContext().getDeclAlignInBytes(D));
860 
861   // Set the llvm linkage type as appropriate.
862   if (D->getStorageClass() == VarDecl::Static)
863     GV->setLinkage(llvm::Function::InternalLinkage);
864   else if (D->hasAttr<DLLImportAttr>(getContext()))
865     GV->setLinkage(llvm::Function::DLLImportLinkage);
866   else if (D->hasAttr<DLLExportAttr>(getContext()))
867     GV->setLinkage(llvm::Function::DLLExportLinkage);
868   else if (D->hasAttr<WeakAttr>(getContext()))
869     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
870   else if (!CompileOpts.NoCommon &&
871            (!D->hasExternalStorage() && !D->getInit()))
872     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
873   else
874     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
875 
876   SetCommonAttributes(D, GV);
877 
878   // Emit global variable debug information.
879   if (CGDebugInfo *DI = getDebugInfo()) {
880     DI->setLocation(D->getLocation());
881     DI->EmitGlobalVariable(GV, D);
882   }
883 }
884 
885 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
886 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
887 /// existing call uses of the old function in the module, this adjusts them to
888 /// call the new function directly.
889 ///
890 /// This is not just a cleanup: the always_inline pass requires direct calls to
891 /// functions to be able to inline them.  If there is a bitcast in the way, it
892 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
893 /// run at -O0.
894 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
895                                                       llvm::Function *NewFn) {
896   // If we're redefining a global as a function, don't transform it.
897   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
898   if (OldFn == 0) return;
899 
900   const llvm::Type *NewRetTy = NewFn->getReturnType();
901   llvm::SmallVector<llvm::Value*, 4> ArgList;
902 
903   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
904        UI != E; ) {
905     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
906     unsigned OpNo = UI.getOperandNo();
907     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
908     if (!CI || OpNo != 0) continue;
909 
910     // If the return types don't match exactly, and if the call isn't dead, then
911     // we can't transform this call.
912     if (CI->getType() != NewRetTy && !CI->use_empty())
913       continue;
914 
915     // If the function was passed too few arguments, don't transform.  If extra
916     // arguments were passed, we silently drop them.  If any of the types
917     // mismatch, we don't transform.
918     unsigned ArgNo = 0;
919     bool DontTransform = false;
920     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
921          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
922       if (CI->getNumOperands()-1 == ArgNo ||
923           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
924         DontTransform = true;
925         break;
926       }
927     }
928     if (DontTransform)
929       continue;
930 
931     // Okay, we can transform this.  Create the new call instruction and copy
932     // over the required information.
933     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
934     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
935                                                      ArgList.end(), "", CI);
936     ArgList.clear();
937     if (NewCall->getType() != llvm::Type::VoidTy)
938       NewCall->takeName(CI);
939     NewCall->setCallingConv(CI->getCallingConv());
940     NewCall->setAttributes(CI->getAttributes());
941 
942     // Finally, remove the old call, replacing any uses with the new one.
943     if (!CI->use_empty())
944       CI->replaceAllUsesWith(NewCall);
945     CI->eraseFromParent();
946   }
947 }
948 
949 
950 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
951   const llvm::FunctionType *Ty;
952   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
953 
954   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
955     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
956 
957     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
958   } else {
959     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
960 
961     // As a special case, make sure that definitions of K&R function
962     // "type foo()" aren't declared as varargs (which forces the backend
963     // to do unnecessary work).
964     if (D->getType()->isFunctionNoProtoType()) {
965       assert(Ty->isVarArg() && "Didn't lower type as expected");
966       // Due to stret, the lowered function could have arguments.
967       // Just create the same type as was lowered by ConvertType
968       // but strip off the varargs bit.
969       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
970       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
971     }
972   }
973 
974   // Get or create the prototype for the function.
975   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
976 
977   // Strip off a bitcast if we got one back.
978   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
979     assert(CE->getOpcode() == llvm::Instruction::BitCast);
980     Entry = CE->getOperand(0);
981   }
982 
983 
984   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
985     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
986 
987     // If the types mismatch then we have to rewrite the definition.
988     assert(OldFn->isDeclaration() &&
989            "Shouldn't replace non-declaration");
990 
991     // F is the Function* for the one with the wrong type, we must make a new
992     // Function* and update everything that used F (a declaration) with the new
993     // Function* (which will be a definition).
994     //
995     // This happens if there is a prototype for a function
996     // (e.g. "int f()") and then a definition of a different type
997     // (e.g. "int f(int x)").  Start by making a new function of the
998     // correct type, RAUW, then steal the name.
999     GlobalDeclMap.erase(getMangledName(D));
1000     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1001     NewFn->takeName(OldFn);
1002 
1003     // If this is an implementation of a function without a prototype, try to
1004     // replace any existing uses of the function (which may be calls) with uses
1005     // of the new function
1006     if (D->getType()->isFunctionNoProtoType()) {
1007       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1008       OldFn->removeDeadConstantUsers();
1009     }
1010 
1011     // Replace uses of F with the Function we will endow with a body.
1012     if (!Entry->use_empty()) {
1013       llvm::Constant *NewPtrForOldDecl =
1014         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1015       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1016     }
1017 
1018     // Ok, delete the old function now, which is dead.
1019     OldFn->eraseFromParent();
1020 
1021     Entry = NewFn;
1022   }
1023 
1024   llvm::Function *Fn = cast<llvm::Function>(Entry);
1025 
1026   CodeGenFunction(*this).GenerateCode(D, Fn);
1027 
1028   SetFunctionDefinitionAttributes(D, Fn);
1029   SetLLVMFunctionAttributesForDefinition(D, Fn);
1030 
1031   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>(getContext()))
1032     AddGlobalCtor(Fn, CA->getPriority());
1033   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>(getContext()))
1034     AddGlobalDtor(Fn, DA->getPriority());
1035 }
1036 
1037 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1038   const AliasAttr *AA = D->getAttr<AliasAttr>(getContext());
1039   assert(AA && "Not an alias?");
1040 
1041   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1042 
1043   // Unique the name through the identifier table.
1044   const char *AliaseeName = AA->getAliasee().c_str();
1045   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1046 
1047   // Create a reference to the named value.  This ensures that it is emitted
1048   // if a deferred decl.
1049   llvm::Constant *Aliasee;
1050   if (isa<llvm::FunctionType>(DeclTy))
1051     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1052   else
1053     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1054                                     llvm::PointerType::getUnqual(DeclTy), 0);
1055 
1056   // Create the new alias itself, but don't set a name yet.
1057   llvm::GlobalValue *GA =
1058     new llvm::GlobalAlias(Aliasee->getType(),
1059                           llvm::Function::ExternalLinkage,
1060                           "", Aliasee, &getModule());
1061 
1062   // See if there is already something with the alias' name in the module.
1063   const char *MangledName = getMangledName(D);
1064   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1065 
1066   if (Entry && !Entry->isDeclaration()) {
1067     // If there is a definition in the module, then it wins over the alias.
1068     // This is dubious, but allow it to be safe.  Just ignore the alias.
1069     GA->eraseFromParent();
1070     return;
1071   }
1072 
1073   if (Entry) {
1074     // If there is a declaration in the module, then we had an extern followed
1075     // by the alias, as in:
1076     //   extern int test6();
1077     //   ...
1078     //   int test6() __attribute__((alias("test7")));
1079     //
1080     // Remove it and replace uses of it with the alias.
1081 
1082     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1083                                                           Entry->getType()));
1084     Entry->eraseFromParent();
1085   }
1086 
1087   // Now we know that there is no conflict, set the name.
1088   Entry = GA;
1089   GA->setName(MangledName);
1090 
1091   // Set attributes which are particular to an alias; this is a
1092   // specialization of the attributes which may be set on a global
1093   // variable/function.
1094   if (D->hasAttr<DLLExportAttr>(getContext())) {
1095     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1096       // The dllexport attribute is ignored for undefined symbols.
1097       if (FD->getBody(getContext()))
1098         GA->setLinkage(llvm::Function::DLLExportLinkage);
1099     } else {
1100       GA->setLinkage(llvm::Function::DLLExportLinkage);
1101     }
1102   } else if (D->hasAttr<WeakAttr>(getContext()) ||
1103              D->hasAttr<WeakImportAttr>(getContext())) {
1104     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1105   }
1106 
1107   SetCommonAttributes(D, GA);
1108 }
1109 
1110 /// getBuiltinLibFunction - Given a builtin id for a function like
1111 /// "__builtin_fabsf", return a Function* for "fabsf".
1112 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1113   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1114           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1115          "isn't a lib fn");
1116 
1117   // Get the name, skip over the __builtin_ prefix (if necessary).
1118   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1119   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1120     Name += 10;
1121 
1122   // Get the type for the builtin.
1123   ASTContext::GetBuiltinTypeError Error;
1124   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1125   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1126 
1127   const llvm::FunctionType *Ty =
1128     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1129 
1130   // Unique the name through the identifier table.
1131   Name = getContext().Idents.get(Name).getName();
1132   // FIXME: param attributes for sext/zext etc.
1133   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1134 }
1135 
1136 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1137                                             unsigned NumTys) {
1138   return llvm::Intrinsic::getDeclaration(&getModule(),
1139                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1140 }
1141 
1142 llvm::Function *CodeGenModule::getMemCpyFn() {
1143   if (MemCpyFn) return MemCpyFn;
1144   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1145   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1146 }
1147 
1148 llvm::Function *CodeGenModule::getMemMoveFn() {
1149   if (MemMoveFn) return MemMoveFn;
1150   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1151   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1152 }
1153 
1154 llvm::Function *CodeGenModule::getMemSetFn() {
1155   if (MemSetFn) return MemSetFn;
1156   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1157   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1158 }
1159 
1160 static void appendFieldAndPadding(CodeGenModule &CGM,
1161                                   std::vector<llvm::Constant*>& Fields,
1162                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1163                                   llvm::Constant* Field,
1164                                   RecordDecl* RD, const llvm::StructType *STy) {
1165   // Append the field.
1166   Fields.push_back(Field);
1167 
1168   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1169 
1170   int NextStructFieldNo;
1171   if (!NextFieldD) {
1172     NextStructFieldNo = STy->getNumElements();
1173   } else {
1174     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1175   }
1176 
1177   // Append padding
1178   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1179     llvm::Constant *C =
1180       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1181 
1182     Fields.push_back(C);
1183   }
1184 }
1185 
1186 llvm::Constant *CodeGenModule::
1187 GetAddrOfConstantCFString(const StringLiteral *Literal) {
1188   std::string str;
1189   unsigned StringLength = 0;
1190 
1191   bool isUTF16 = false;
1192   if (Literal->containsNonAsciiOrNull()) {
1193     // Convert from UTF-8 to UTF-16.
1194     llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1195     const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1196     UTF16 *ToPtr = &ToBuf[0];
1197 
1198     ConversionResult Result;
1199     Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1200                                 &ToPtr, ToPtr+Literal->getByteLength(),
1201                                 strictConversion);
1202     if (Result == conversionOK) {
1203       // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1204       // without doing more surgery to this routine. Since we aren't explicitly
1205       // checking for endianness here, it's also a bug (when generating code for
1206       // a target that doesn't match the host endianness). Modeling this as an
1207       // i16 array is likely the cleanest solution.
1208       StringLength = ToPtr-&ToBuf[0];
1209       str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1210       isUTF16 = true;
1211     } else if (Result == sourceIllegal) {
1212       // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1213       str.assign(Literal->getStrData(), Literal->getByteLength());
1214       StringLength = str.length();
1215     } else
1216       assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1217 
1218   } else {
1219     str.assign(Literal->getStrData(), Literal->getByteLength());
1220     StringLength = str.length();
1221   }
1222   llvm::StringMapEntry<llvm::Constant *> &Entry =
1223     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1224 
1225   if (llvm::Constant *C = Entry.getValue())
1226     return C;
1227 
1228   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1229   llvm::Constant *Zeros[] = { Zero, Zero };
1230 
1231   if (!CFConstantStringClassRef) {
1232     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1233     Ty = llvm::ArrayType::get(Ty, 0);
1234 
1235     // FIXME: This is fairly broken if __CFConstantStringClassReference is
1236     // already defined, in that it will get renamed and the user will most
1237     // likely see an opaque error message. This is a general issue with relying
1238     // on particular names.
1239     llvm::GlobalVariable *GV =
1240       new llvm::GlobalVariable(Ty, false,
1241                                llvm::GlobalVariable::ExternalLinkage, 0,
1242                                "__CFConstantStringClassReference",
1243                                &getModule());
1244 
1245     // Decay array -> ptr
1246     CFConstantStringClassRef =
1247       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1248   }
1249 
1250   QualType CFTy = getContext().getCFConstantStringType();
1251   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1252 
1253   const llvm::StructType *STy =
1254     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1255 
1256   std::vector<llvm::Constant*> Fields;
1257   RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
1258 
1259   // Class pointer.
1260   FieldDecl *CurField = *Field++;
1261   FieldDecl *NextField = *Field++;
1262   appendFieldAndPadding(*this, Fields, CurField, NextField,
1263                         CFConstantStringClassRef, CFRD, STy);
1264 
1265   // Flags.
1266   CurField = NextField;
1267   NextField = *Field++;
1268   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1269   appendFieldAndPadding(*this, Fields, CurField, NextField,
1270                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1271                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1272                         CFRD, STy);
1273 
1274   // String pointer.
1275   CurField = NextField;
1276   NextField = *Field++;
1277   llvm::Constant *C = llvm::ConstantArray::get(str);
1278 
1279   const char *Sect, *Prefix;
1280   bool isConstant;
1281   if (isUTF16) {
1282     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1283     Sect = getContext().Target.getUnicodeStringSection();
1284     // FIXME: Why does GCC not set constant here?
1285     isConstant = false;
1286   } else {
1287     Prefix = getContext().Target.getStringSymbolPrefix(true);
1288     Sect = getContext().Target.getCFStringDataSection();
1289     // FIXME: -fwritable-strings should probably affect this, but we
1290     // are following gcc here.
1291     isConstant = true;
1292   }
1293   llvm::GlobalVariable *GV =
1294     new llvm::GlobalVariable(C->getType(), isConstant,
1295                              llvm::GlobalValue::InternalLinkage,
1296                              C, Prefix, &getModule());
1297   if (Sect)
1298     GV->setSection(Sect);
1299   if (isUTF16) {
1300     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1301     GV->setAlignment(Align);
1302   }
1303   appendFieldAndPadding(*this, Fields, CurField, NextField,
1304                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1305                         CFRD, STy);
1306 
1307   // String length.
1308   CurField = NextField;
1309   NextField = 0;
1310   Ty = getTypes().ConvertType(getContext().LongTy);
1311   appendFieldAndPadding(*this, Fields, CurField, NextField,
1312                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1313 
1314   // The struct.
1315   C = llvm::ConstantStruct::get(STy, Fields);
1316   GV = new llvm::GlobalVariable(C->getType(), true,
1317                                 llvm::GlobalVariable::InternalLinkage, C,
1318                                 getContext().Target.getCFStringSymbolPrefix(),
1319                                 &getModule());
1320   if (const char *Sect = getContext().Target.getCFStringSection())
1321     GV->setSection(Sect);
1322   Entry.setValue(GV);
1323 
1324   return GV;
1325 }
1326 
1327 /// GetStringForStringLiteral - Return the appropriate bytes for a
1328 /// string literal, properly padded to match the literal type.
1329 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1330   const char *StrData = E->getStrData();
1331   unsigned Len = E->getByteLength();
1332 
1333   const ConstantArrayType *CAT =
1334     getContext().getAsConstantArrayType(E->getType());
1335   assert(CAT && "String isn't pointer or array!");
1336 
1337   // Resize the string to the right size.
1338   std::string Str(StrData, StrData+Len);
1339   uint64_t RealLen = CAT->getSize().getZExtValue();
1340 
1341   if (E->isWide())
1342     RealLen *= getContext().Target.getWCharWidth()/8;
1343 
1344   Str.resize(RealLen, '\0');
1345 
1346   return Str;
1347 }
1348 
1349 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1350 /// constant array for the given string literal.
1351 llvm::Constant *
1352 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1353   // FIXME: This can be more efficient.
1354   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1355 }
1356 
1357 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1358 /// array for the given ObjCEncodeExpr node.
1359 llvm::Constant *
1360 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1361   std::string Str;
1362   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1363 
1364   return GetAddrOfConstantCString(Str);
1365 }
1366 
1367 
1368 /// GenerateWritableString -- Creates storage for a string literal.
1369 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1370                                              bool constant,
1371                                              CodeGenModule &CGM,
1372                                              const char *GlobalName) {
1373   // Create Constant for this string literal. Don't add a '\0'.
1374   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1375 
1376   // Create a global variable for this string
1377   return new llvm::GlobalVariable(C->getType(), constant,
1378                                   llvm::GlobalValue::InternalLinkage,
1379                                   C, GlobalName, &CGM.getModule());
1380 }
1381 
1382 /// GetAddrOfConstantString - Returns a pointer to a character array
1383 /// containing the literal. This contents are exactly that of the
1384 /// given string, i.e. it will not be null terminated automatically;
1385 /// see GetAddrOfConstantCString. Note that whether the result is
1386 /// actually a pointer to an LLVM constant depends on
1387 /// Feature.WriteableStrings.
1388 ///
1389 /// The result has pointer to array type.
1390 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1391                                                        const char *GlobalName) {
1392   bool IsConstant = !Features.WritableStrings;
1393 
1394   // Get the default prefix if a name wasn't specified.
1395   if (!GlobalName)
1396     GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1397 
1398   // Don't share any string literals if strings aren't constant.
1399   if (!IsConstant)
1400     return GenerateStringLiteral(str, false, *this, GlobalName);
1401 
1402   llvm::StringMapEntry<llvm::Constant *> &Entry =
1403   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1404 
1405   if (Entry.getValue())
1406     return Entry.getValue();
1407 
1408   // Create a global variable for this.
1409   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1410   Entry.setValue(C);
1411   return C;
1412 }
1413 
1414 /// GetAddrOfConstantCString - Returns a pointer to a character
1415 /// array containing the literal and a terminating '\-'
1416 /// character. The result has pointer to array type.
1417 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1418                                                         const char *GlobalName){
1419   return GetAddrOfConstantString(str + '\0', GlobalName);
1420 }
1421 
1422 /// EmitObjCPropertyImplementations - Emit information for synthesized
1423 /// properties for an implementation.
1424 void CodeGenModule::EmitObjCPropertyImplementations(const
1425                                                     ObjCImplementationDecl *D) {
1426   for (ObjCImplementationDecl::propimpl_iterator
1427          i = D->propimpl_begin(getContext()),
1428          e = D->propimpl_end(getContext()); i != e; ++i) {
1429     ObjCPropertyImplDecl *PID = *i;
1430 
1431     // Dynamic is just for type-checking.
1432     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1433       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1434 
1435       // Determine which methods need to be implemented, some may have
1436       // been overridden. Note that ::isSynthesized is not the method
1437       // we want, that just indicates if the decl came from a
1438       // property. What we want to know is if the method is defined in
1439       // this implementation.
1440       if (!D->getInstanceMethod(getContext(), PD->getGetterName()))
1441         CodeGenFunction(*this).GenerateObjCGetter(
1442                                  const_cast<ObjCImplementationDecl *>(D), PID);
1443       if (!PD->isReadOnly() &&
1444           !D->getInstanceMethod(getContext(), PD->getSetterName()))
1445         CodeGenFunction(*this).GenerateObjCSetter(
1446                                  const_cast<ObjCImplementationDecl *>(D), PID);
1447     }
1448   }
1449 }
1450 
1451 /// EmitNamespace - Emit all declarations in a namespace.
1452 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1453   for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
1454          E = ND->decls_end(getContext());
1455        I != E; ++I)
1456     EmitTopLevelDecl(*I);
1457 }
1458 
1459 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1460 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1461   if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1462     ErrorUnsupported(LSD, "linkage spec");
1463     return;
1464   }
1465 
1466   for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
1467          E = LSD->decls_end(getContext());
1468        I != E; ++I)
1469     EmitTopLevelDecl(*I);
1470 }
1471 
1472 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1473 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1474   // If an error has occurred, stop code generation, but continue
1475   // parsing and semantic analysis (to ensure all warnings and errors
1476   // are emitted).
1477   if (Diags.hasErrorOccurred())
1478     return;
1479 
1480   // Ignore dependent declarations.
1481   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1482     return;
1483 
1484   switch (D->getKind()) {
1485   case Decl::CXXMethod:
1486   case Decl::Function:
1487     // Skip function templates
1488     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1489       return;
1490 
1491     // Fall through
1492 
1493   case Decl::Var:
1494     EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
1495     break;
1496 
1497   // C++ Decls
1498   case Decl::Namespace:
1499     EmitNamespace(cast<NamespaceDecl>(D));
1500     break;
1501     // No code generation needed.
1502   case Decl::Using:
1503   case Decl::ClassTemplate:
1504   case Decl::FunctionTemplate:
1505     break;
1506   case Decl::CXXConstructor:
1507     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1508     break;
1509   case Decl::CXXDestructor:
1510     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1511     break;
1512 
1513   case Decl::StaticAssert:
1514     // Nothing to do.
1515     break;
1516 
1517   // Objective-C Decls
1518 
1519   // Forward declarations, no (immediate) code generation.
1520   case Decl::ObjCClass:
1521   case Decl::ObjCForwardProtocol:
1522   case Decl::ObjCCategory:
1523   case Decl::ObjCInterface:
1524     break;
1525 
1526   case Decl::ObjCProtocol:
1527     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1528     break;
1529 
1530   case Decl::ObjCCategoryImpl:
1531     // Categories have properties but don't support synthesize so we
1532     // can ignore them here.
1533     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1534     break;
1535 
1536   case Decl::ObjCImplementation: {
1537     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1538     EmitObjCPropertyImplementations(OMD);
1539     Runtime->GenerateClass(OMD);
1540     break;
1541   }
1542   case Decl::ObjCMethod: {
1543     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1544     // If this is not a prototype, emit the body.
1545     if (OMD->getBody(getContext()))
1546       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1547     break;
1548   }
1549   case Decl::ObjCCompatibleAlias:
1550     // compatibility-alias is a directive and has no code gen.
1551     break;
1552 
1553   case Decl::LinkageSpec:
1554     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1555     break;
1556 
1557   case Decl::FileScopeAsm: {
1558     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1559     std::string AsmString(AD->getAsmString()->getStrData(),
1560                           AD->getAsmString()->getByteLength());
1561 
1562     const std::string &S = getModule().getModuleInlineAsm();
1563     if (S.empty())
1564       getModule().setModuleInlineAsm(AsmString);
1565     else
1566       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1567     break;
1568   }
1569 
1570   default:
1571     // Make sure we handled everything we should, every other kind is a
1572     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1573     // function. Need to recode Decl::Kind to do that easily.
1574     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1575   }
1576 }
1577