1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getContext().getCXXABIKind()) {
79   case TargetCXXABI::AppleARM64:
80   case TargetCXXABI::Fuchsia:
81   case TargetCXXABI::GenericAArch64:
82   case TargetCXXABI::GenericARM:
83   case TargetCXXABI::iOS:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   CharTy =
127     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
128   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
129   IntPtrTy = llvm::IntegerType::get(LLVMContext,
130     C.getTargetInfo().getMaxPointerWidth());
131   Int8PtrTy = Int8Ty->getPointerTo(0);
132   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
133   AllocaInt8PtrTy = Int8Ty->getPointerTo(
134       M.getDataLayout().getAllocaAddrSpace());
135   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
136 
137   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
138 
139   if (LangOpts.ObjC)
140     createObjCRuntime();
141   if (LangOpts.OpenCL)
142     createOpenCLRuntime();
143   if (LangOpts.OpenMP)
144     createOpenMPRuntime();
145   if (LangOpts.CUDA)
146     createCUDARuntime();
147 
148   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
149   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
150       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
151     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
152                                getCXXABI().getMangleContext()));
153 
154   // If debug info or coverage generation is enabled, create the CGDebugInfo
155   // object.
156   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
157       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
158     DebugInfo.reset(new CGDebugInfo(*this));
159 
160   Block.GlobalUniqueCount = 0;
161 
162   if (C.getLangOpts().ObjC)
163     ObjCData.reset(new ObjCEntrypoints());
164 
165   if (CodeGenOpts.hasProfileClangUse()) {
166     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
167         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
168     if (auto E = ReaderOrErr.takeError()) {
169       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
170                                               "Could not read profile %0: %1");
171       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
172         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
173                                   << EI.message();
174       });
175     } else
176       PGOReader = std::move(ReaderOrErr.get());
177   }
178 
179   // If coverage mapping generation is enabled, create the
180   // CoverageMappingModuleGen object.
181   if (CodeGenOpts.CoverageMapping)
182     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
183 
184   // Generate the module name hash here if needed.
185   if (CodeGenOpts.UniqueInternalLinkageNames &&
186       !getModule().getSourceFileName().empty()) {
187     std::string Path = getModule().getSourceFileName();
188     // Check if a path substitution is needed from the MacroPrefixMap.
189     for (const auto &Entry : PPO.MacroPrefixMap)
190       if (Path.rfind(Entry.first, 0) != std::string::npos) {
191         Path = Entry.second + Path.substr(Entry.first.size());
192         break;
193       }
194     llvm::MD5 Md5;
195     Md5.update(Path);
196     llvm::MD5::MD5Result R;
197     Md5.final(R);
198     SmallString<32> Str;
199     llvm::MD5::stringifyResult(R, Str);
200     // Convert MD5hash to Decimal. Demangler suffixes can either contain
201     // numbers or characters but not both.
202     llvm::APInt IntHash(128, Str.str(), 16);
203     // Prepend "__uniq" before the hash for tools like profilers to understand
204     // that this symbol is of internal linkage type.  The "__uniq" is the
205     // pre-determined prefix that is used to tell tools that this symbol was
206     // created with -funique-internal-linakge-symbols and the tools can strip or
207     // keep the prefix as needed.
208     ModuleNameHash = (Twine(".__uniq.") +
209         Twine(IntHash.toString(/* Radix = */ 10, /* Signed = */false))).str();
210   }
211 }
212 
213 CodeGenModule::~CodeGenModule() {}
214 
215 void CodeGenModule::createObjCRuntime() {
216   // This is just isGNUFamily(), but we want to force implementors of
217   // new ABIs to decide how best to do this.
218   switch (LangOpts.ObjCRuntime.getKind()) {
219   case ObjCRuntime::GNUstep:
220   case ObjCRuntime::GCC:
221   case ObjCRuntime::ObjFW:
222     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
223     return;
224 
225   case ObjCRuntime::FragileMacOSX:
226   case ObjCRuntime::MacOSX:
227   case ObjCRuntime::iOS:
228   case ObjCRuntime::WatchOS:
229     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
230     return;
231   }
232   llvm_unreachable("bad runtime kind");
233 }
234 
235 void CodeGenModule::createOpenCLRuntime() {
236   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
237 }
238 
239 void CodeGenModule::createOpenMPRuntime() {
240   // Select a specialized code generation class based on the target, if any.
241   // If it does not exist use the default implementation.
242   switch (getTriple().getArch()) {
243   case llvm::Triple::nvptx:
244   case llvm::Triple::nvptx64:
245     assert(getLangOpts().OpenMPIsDevice &&
246            "OpenMP NVPTX is only prepared to deal with device code.");
247     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
248     break;
249   case llvm::Triple::amdgcn:
250     assert(getLangOpts().OpenMPIsDevice &&
251            "OpenMP AMDGCN is only prepared to deal with device code.");
252     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
253     break;
254   default:
255     if (LangOpts.OpenMPSimd)
256       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
257     else
258       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
259     break;
260   }
261 }
262 
263 void CodeGenModule::createCUDARuntime() {
264   CUDARuntime.reset(CreateNVCUDARuntime(*this));
265 }
266 
267 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
268   Replacements[Name] = C;
269 }
270 
271 void CodeGenModule::applyReplacements() {
272   for (auto &I : Replacements) {
273     StringRef MangledName = I.first();
274     llvm::Constant *Replacement = I.second;
275     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
276     if (!Entry)
277       continue;
278     auto *OldF = cast<llvm::Function>(Entry);
279     auto *NewF = dyn_cast<llvm::Function>(Replacement);
280     if (!NewF) {
281       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
282         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
283       } else {
284         auto *CE = cast<llvm::ConstantExpr>(Replacement);
285         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
286                CE->getOpcode() == llvm::Instruction::GetElementPtr);
287         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
288       }
289     }
290 
291     // Replace old with new, but keep the old order.
292     OldF->replaceAllUsesWith(Replacement);
293     if (NewF) {
294       NewF->removeFromParent();
295       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
296                                                        NewF);
297     }
298     OldF->eraseFromParent();
299   }
300 }
301 
302 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
303   GlobalValReplacements.push_back(std::make_pair(GV, C));
304 }
305 
306 void CodeGenModule::applyGlobalValReplacements() {
307   for (auto &I : GlobalValReplacements) {
308     llvm::GlobalValue *GV = I.first;
309     llvm::Constant *C = I.second;
310 
311     GV->replaceAllUsesWith(C);
312     GV->eraseFromParent();
313   }
314 }
315 
316 // This is only used in aliases that we created and we know they have a
317 // linear structure.
318 static const llvm::GlobalObject *getAliasedGlobal(
319     const llvm::GlobalIndirectSymbol &GIS) {
320   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
321   const llvm::Constant *C = &GIS;
322   for (;;) {
323     C = C->stripPointerCasts();
324     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
325       return GO;
326     // stripPointerCasts will not walk over weak aliases.
327     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
328     if (!GIS2)
329       return nullptr;
330     if (!Visited.insert(GIS2).second)
331       return nullptr;
332     C = GIS2->getIndirectSymbol();
333   }
334 }
335 
336 void CodeGenModule::checkAliases() {
337   // Check if the constructed aliases are well formed. It is really unfortunate
338   // that we have to do this in CodeGen, but we only construct mangled names
339   // and aliases during codegen.
340   bool Error = false;
341   DiagnosticsEngine &Diags = getDiags();
342   for (const GlobalDecl &GD : Aliases) {
343     const auto *D = cast<ValueDecl>(GD.getDecl());
344     SourceLocation Location;
345     bool IsIFunc = D->hasAttr<IFuncAttr>();
346     if (const Attr *A = D->getDefiningAttr())
347       Location = A->getLocation();
348     else
349       llvm_unreachable("Not an alias or ifunc?");
350     StringRef MangledName = getMangledName(GD);
351     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
352     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
353     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
354     if (!GV) {
355       Error = true;
356       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
357     } else if (GV->isDeclaration()) {
358       Error = true;
359       Diags.Report(Location, diag::err_alias_to_undefined)
360           << IsIFunc << IsIFunc;
361     } else if (IsIFunc) {
362       // Check resolver function type.
363       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
364           GV->getType()->getPointerElementType());
365       assert(FTy);
366       if (!FTy->getReturnType()->isPointerTy())
367         Diags.Report(Location, diag::err_ifunc_resolver_return);
368     }
369 
370     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
371     llvm::GlobalValue *AliaseeGV;
372     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
373       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
374     else
375       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
376 
377     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
378       StringRef AliasSection = SA->getName();
379       if (AliasSection != AliaseeGV->getSection())
380         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
381             << AliasSection << IsIFunc << IsIFunc;
382     }
383 
384     // We have to handle alias to weak aliases in here. LLVM itself disallows
385     // this since the object semantics would not match the IL one. For
386     // compatibility with gcc we implement it by just pointing the alias
387     // to its aliasee's aliasee. We also warn, since the user is probably
388     // expecting the link to be weak.
389     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
390       if (GA->isInterposable()) {
391         Diags.Report(Location, diag::warn_alias_to_weak_alias)
392             << GV->getName() << GA->getName() << IsIFunc;
393         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
394             GA->getIndirectSymbol(), Alias->getType());
395         Alias->setIndirectSymbol(Aliasee);
396       }
397     }
398   }
399   if (!Error)
400     return;
401 
402   for (const GlobalDecl &GD : Aliases) {
403     StringRef MangledName = getMangledName(GD);
404     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
405     auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
406     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
407     Alias->eraseFromParent();
408   }
409 }
410 
411 void CodeGenModule::clear() {
412   DeferredDeclsToEmit.clear();
413   if (OpenMPRuntime)
414     OpenMPRuntime->clear();
415 }
416 
417 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
418                                        StringRef MainFile) {
419   if (!hasDiagnostics())
420     return;
421   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
422     if (MainFile.empty())
423       MainFile = "<stdin>";
424     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
425   } else {
426     if (Mismatched > 0)
427       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
428 
429     if (Missing > 0)
430       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
431   }
432 }
433 
434 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
435                                              llvm::Module &M) {
436   if (!LO.VisibilityFromDLLStorageClass)
437     return;
438 
439   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
440       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
441   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
442       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
443   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
444       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
445   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
446       CodeGenModule::GetLLVMVisibility(
447           LO.getExternDeclNoDLLStorageClassVisibility());
448 
449   for (llvm::GlobalValue &GV : M.global_values()) {
450     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
451       continue;
452 
453     // Reset DSO locality before setting the visibility. This removes
454     // any effects that visibility options and annotations may have
455     // had on the DSO locality. Setting the visibility will implicitly set
456     // appropriate globals to DSO Local; however, this will be pessimistic
457     // w.r.t. to the normal compiler IRGen.
458     GV.setDSOLocal(false);
459 
460     if (GV.isDeclarationForLinker()) {
461       GV.setVisibility(GV.getDLLStorageClass() ==
462                                llvm::GlobalValue::DLLImportStorageClass
463                            ? ExternDeclDLLImportVisibility
464                            : ExternDeclNoDLLStorageClassVisibility);
465     } else {
466       GV.setVisibility(GV.getDLLStorageClass() ==
467                                llvm::GlobalValue::DLLExportStorageClass
468                            ? DLLExportVisibility
469                            : NoDLLStorageClassVisibility);
470     }
471 
472     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
473   }
474 }
475 
476 void CodeGenModule::Release() {
477   EmitDeferred();
478   EmitVTablesOpportunistically();
479   applyGlobalValReplacements();
480   applyReplacements();
481   checkAliases();
482   emitMultiVersionFunctions();
483   EmitCXXGlobalInitFunc();
484   EmitCXXGlobalCleanUpFunc();
485   registerGlobalDtorsWithAtExit();
486   EmitCXXThreadLocalInitFunc();
487   if (ObjCRuntime)
488     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
489       AddGlobalCtor(ObjCInitFunction);
490   if (Context.getLangOpts().CUDA && CUDARuntime) {
491     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
492       AddGlobalCtor(CudaCtorFunction);
493   }
494   if (OpenMPRuntime) {
495     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
496             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
497       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
498     }
499     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
500     OpenMPRuntime->clear();
501   }
502   if (PGOReader) {
503     getModule().setProfileSummary(
504         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
505         llvm::ProfileSummary::PSK_Instr);
506     if (PGOStats.hasDiagnostics())
507       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
508   }
509   EmitCtorList(GlobalCtors, "llvm.global_ctors");
510   EmitCtorList(GlobalDtors, "llvm.global_dtors");
511   EmitGlobalAnnotations();
512   EmitStaticExternCAliases();
513   EmitDeferredUnusedCoverageMappings();
514   CodeGenPGO(*this).setValueProfilingFlag(getModule());
515   if (CoverageMapping)
516     CoverageMapping->emit();
517   if (CodeGenOpts.SanitizeCfiCrossDso) {
518     CodeGenFunction(*this).EmitCfiCheckFail();
519     CodeGenFunction(*this).EmitCfiCheckStub();
520   }
521   emitAtAvailableLinkGuard();
522   if (Context.getTargetInfo().getTriple().isWasm() &&
523       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
524     EmitMainVoidAlias();
525   }
526   emitLLVMUsed();
527   if (SanStats)
528     SanStats->finish();
529 
530   if (CodeGenOpts.Autolink &&
531       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
532     EmitModuleLinkOptions();
533   }
534 
535   // On ELF we pass the dependent library specifiers directly to the linker
536   // without manipulating them. This is in contrast to other platforms where
537   // they are mapped to a specific linker option by the compiler. This
538   // difference is a result of the greater variety of ELF linkers and the fact
539   // that ELF linkers tend to handle libraries in a more complicated fashion
540   // than on other platforms. This forces us to defer handling the dependent
541   // libs to the linker.
542   //
543   // CUDA/HIP device and host libraries are different. Currently there is no
544   // way to differentiate dependent libraries for host or device. Existing
545   // usage of #pragma comment(lib, *) is intended for host libraries on
546   // Windows. Therefore emit llvm.dependent-libraries only for host.
547   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
548     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
549     for (auto *MD : ELFDependentLibraries)
550       NMD->addOperand(MD);
551   }
552 
553   // Record mregparm value now so it is visible through rest of codegen.
554   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
555     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
556                               CodeGenOpts.NumRegisterParameters);
557 
558   if (CodeGenOpts.DwarfVersion) {
559     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
560                               CodeGenOpts.DwarfVersion);
561   }
562 
563   if (CodeGenOpts.Dwarf64)
564     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
565 
566   if (Context.getLangOpts().SemanticInterposition)
567     // Require various optimization to respect semantic interposition.
568     getModule().setSemanticInterposition(1);
569 
570   if (CodeGenOpts.EmitCodeView) {
571     // Indicate that we want CodeView in the metadata.
572     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
573   }
574   if (CodeGenOpts.CodeViewGHash) {
575     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
576   }
577   if (CodeGenOpts.ControlFlowGuard) {
578     // Function ID tables and checks for Control Flow Guard (cfguard=2).
579     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
580   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
581     // Function ID tables for Control Flow Guard (cfguard=1).
582     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
583   }
584   if (CodeGenOpts.EHContGuard) {
585     // Function ID tables for EH Continuation Guard.
586     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
587   }
588   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
589     // We don't support LTO with 2 with different StrictVTablePointers
590     // FIXME: we could support it by stripping all the information introduced
591     // by StrictVTablePointers.
592 
593     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
594 
595     llvm::Metadata *Ops[2] = {
596               llvm::MDString::get(VMContext, "StrictVTablePointers"),
597               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
598                   llvm::Type::getInt32Ty(VMContext), 1))};
599 
600     getModule().addModuleFlag(llvm::Module::Require,
601                               "StrictVTablePointersRequirement",
602                               llvm::MDNode::get(VMContext, Ops));
603   }
604   if (getModuleDebugInfo())
605     // We support a single version in the linked module. The LLVM
606     // parser will drop debug info with a different version number
607     // (and warn about it, too).
608     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
609                               llvm::DEBUG_METADATA_VERSION);
610 
611   // We need to record the widths of enums and wchar_t, so that we can generate
612   // the correct build attributes in the ARM backend. wchar_size is also used by
613   // TargetLibraryInfo.
614   uint64_t WCharWidth =
615       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
616   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
617 
618   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
619   if (   Arch == llvm::Triple::arm
620       || Arch == llvm::Triple::armeb
621       || Arch == llvm::Triple::thumb
622       || Arch == llvm::Triple::thumbeb) {
623     // The minimum width of an enum in bytes
624     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
625     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
626   }
627 
628   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
629     StringRef ABIStr = Target.getABI();
630     llvm::LLVMContext &Ctx = TheModule.getContext();
631     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
632                               llvm::MDString::get(Ctx, ABIStr));
633   }
634 
635   if (CodeGenOpts.SanitizeCfiCrossDso) {
636     // Indicate that we want cross-DSO control flow integrity checks.
637     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
638   }
639 
640   if (CodeGenOpts.WholeProgramVTables) {
641     // Indicate whether VFE was enabled for this module, so that the
642     // vcall_visibility metadata added under whole program vtables is handled
643     // appropriately in the optimizer.
644     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
645                               CodeGenOpts.VirtualFunctionElimination);
646   }
647 
648   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
649     getModule().addModuleFlag(llvm::Module::Override,
650                               "CFI Canonical Jump Tables",
651                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
652   }
653 
654   if (CodeGenOpts.CFProtectionReturn &&
655       Target.checkCFProtectionReturnSupported(getDiags())) {
656     // Indicate that we want to instrument return control flow protection.
657     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
658                               1);
659   }
660 
661   if (CodeGenOpts.CFProtectionBranch &&
662       Target.checkCFProtectionBranchSupported(getDiags())) {
663     // Indicate that we want to instrument branch control flow protection.
664     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
665                               1);
666   }
667 
668   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
669       Arch == llvm::Triple::aarch64_be) {
670     getModule().addModuleFlag(llvm::Module::Error,
671                               "branch-target-enforcement",
672                               LangOpts.BranchTargetEnforcement);
673 
674     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
675                               LangOpts.hasSignReturnAddress());
676 
677     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
678                               LangOpts.isSignReturnAddressScopeAll());
679 
680     getModule().addModuleFlag(llvm::Module::Error,
681                               "sign-return-address-with-bkey",
682                               !LangOpts.isSignReturnAddressWithAKey());
683   }
684 
685   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
686     llvm::LLVMContext &Ctx = TheModule.getContext();
687     getModule().addModuleFlag(
688         llvm::Module::Error, "MemProfProfileFilename",
689         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
690   }
691 
692   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
693     // Indicate whether __nvvm_reflect should be configured to flush denormal
694     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
695     // property.)
696     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
697                               CodeGenOpts.FP32DenormalMode.Output !=
698                                   llvm::DenormalMode::IEEE);
699   }
700 
701   if (LangOpts.EHAsynch)
702     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
703 
704   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
705   if (LangOpts.OpenCL) {
706     EmitOpenCLMetadata();
707     // Emit SPIR version.
708     if (getTriple().isSPIR()) {
709       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
710       // opencl.spir.version named metadata.
711       // C++ is backwards compatible with OpenCL v2.0.
712       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
713       llvm::Metadata *SPIRVerElts[] = {
714           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
715               Int32Ty, Version / 100)),
716           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
717               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
718       llvm::NamedMDNode *SPIRVerMD =
719           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
720       llvm::LLVMContext &Ctx = TheModule.getContext();
721       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
722     }
723   }
724 
725   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
726     assert(PLevel < 3 && "Invalid PIC Level");
727     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
728     if (Context.getLangOpts().PIE)
729       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
730   }
731 
732   if (getCodeGenOpts().CodeModel.size() > 0) {
733     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
734                   .Case("tiny", llvm::CodeModel::Tiny)
735                   .Case("small", llvm::CodeModel::Small)
736                   .Case("kernel", llvm::CodeModel::Kernel)
737                   .Case("medium", llvm::CodeModel::Medium)
738                   .Case("large", llvm::CodeModel::Large)
739                   .Default(~0u);
740     if (CM != ~0u) {
741       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
742       getModule().setCodeModel(codeModel);
743     }
744   }
745 
746   if (CodeGenOpts.NoPLT)
747     getModule().setRtLibUseGOT();
748   if (CodeGenOpts.UnwindTables)
749     getModule().setUwtable();
750 
751   switch (CodeGenOpts.getFramePointer()) {
752   case CodeGenOptions::FramePointerKind::None:
753     // 0 ("none") is the default.
754     break;
755   case CodeGenOptions::FramePointerKind::NonLeaf:
756     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
757     break;
758   case CodeGenOptions::FramePointerKind::All:
759     getModule().setFramePointer(llvm::FramePointerKind::All);
760     break;
761   }
762 
763   SimplifyPersonality();
764 
765   if (getCodeGenOpts().EmitDeclMetadata)
766     EmitDeclMetadata();
767 
768   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
769     EmitCoverageFile();
770 
771   if (CGDebugInfo *DI = getModuleDebugInfo())
772     DI->finalize();
773 
774   if (getCodeGenOpts().EmitVersionIdentMetadata)
775     EmitVersionIdentMetadata();
776 
777   if (!getCodeGenOpts().RecordCommandLine.empty())
778     EmitCommandLineMetadata();
779 
780   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
781 
782   EmitBackendOptionsMetadata(getCodeGenOpts());
783 
784   // Set visibility from DLL storage class
785   // We do this at the end of LLVM IR generation; after any operation
786   // that might affect the DLL storage class or the visibility, and
787   // before anything that might act on these.
788   setVisibilityFromDLLStorageClass(LangOpts, getModule());
789 }
790 
791 void CodeGenModule::EmitOpenCLMetadata() {
792   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
793   // opencl.ocl.version named metadata node.
794   // C++ is backwards compatible with OpenCL v2.0.
795   // FIXME: We might need to add CXX version at some point too?
796   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
797   llvm::Metadata *OCLVerElts[] = {
798       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
799           Int32Ty, Version / 100)),
800       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
801           Int32Ty, (Version % 100) / 10))};
802   llvm::NamedMDNode *OCLVerMD =
803       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
804   llvm::LLVMContext &Ctx = TheModule.getContext();
805   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
806 }
807 
808 void CodeGenModule::EmitBackendOptionsMetadata(
809     const CodeGenOptions CodeGenOpts) {
810   switch (getTriple().getArch()) {
811   default:
812     break;
813   case llvm::Triple::riscv32:
814   case llvm::Triple::riscv64:
815     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
816                               CodeGenOpts.SmallDataLimit);
817     break;
818   }
819 }
820 
821 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
822   // Make sure that this type is translated.
823   Types.UpdateCompletedType(TD);
824 }
825 
826 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
827   // Make sure that this type is translated.
828   Types.RefreshTypeCacheForClass(RD);
829 }
830 
831 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
832   if (!TBAA)
833     return nullptr;
834   return TBAA->getTypeInfo(QTy);
835 }
836 
837 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
838   if (!TBAA)
839     return TBAAAccessInfo();
840   if (getLangOpts().CUDAIsDevice) {
841     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
842     // access info.
843     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
844       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
845           nullptr)
846         return TBAAAccessInfo();
847     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
848       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
849           nullptr)
850         return TBAAAccessInfo();
851     }
852   }
853   return TBAA->getAccessInfo(AccessType);
854 }
855 
856 TBAAAccessInfo
857 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
858   if (!TBAA)
859     return TBAAAccessInfo();
860   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
861 }
862 
863 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
864   if (!TBAA)
865     return nullptr;
866   return TBAA->getTBAAStructInfo(QTy);
867 }
868 
869 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
870   if (!TBAA)
871     return nullptr;
872   return TBAA->getBaseTypeInfo(QTy);
873 }
874 
875 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
876   if (!TBAA)
877     return nullptr;
878   return TBAA->getAccessTagInfo(Info);
879 }
880 
881 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
882                                                    TBAAAccessInfo TargetInfo) {
883   if (!TBAA)
884     return TBAAAccessInfo();
885   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
886 }
887 
888 TBAAAccessInfo
889 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
890                                                    TBAAAccessInfo InfoB) {
891   if (!TBAA)
892     return TBAAAccessInfo();
893   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
894 }
895 
896 TBAAAccessInfo
897 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
898                                               TBAAAccessInfo SrcInfo) {
899   if (!TBAA)
900     return TBAAAccessInfo();
901   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
902 }
903 
904 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
905                                                 TBAAAccessInfo TBAAInfo) {
906   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
907     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
908 }
909 
910 void CodeGenModule::DecorateInstructionWithInvariantGroup(
911     llvm::Instruction *I, const CXXRecordDecl *RD) {
912   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
913                  llvm::MDNode::get(getLLVMContext(), {}));
914 }
915 
916 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
917   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
918   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
919 }
920 
921 /// ErrorUnsupported - Print out an error that codegen doesn't support the
922 /// specified stmt yet.
923 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
924   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
925                                                "cannot compile this %0 yet");
926   std::string Msg = Type;
927   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
928       << Msg << S->getSourceRange();
929 }
930 
931 /// ErrorUnsupported - Print out an error that codegen doesn't support the
932 /// specified decl yet.
933 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
934   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
935                                                "cannot compile this %0 yet");
936   std::string Msg = Type;
937   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
938 }
939 
940 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
941   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
942 }
943 
944 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
945                                         const NamedDecl *D) const {
946   if (GV->hasDLLImportStorageClass())
947     return;
948   // Internal definitions always have default visibility.
949   if (GV->hasLocalLinkage()) {
950     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
951     return;
952   }
953   if (!D)
954     return;
955   // Set visibility for definitions, and for declarations if requested globally
956   // or set explicitly.
957   LinkageInfo LV = D->getLinkageAndVisibility();
958   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
959       !GV->isDeclarationForLinker())
960     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
961 }
962 
963 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
964                                  llvm::GlobalValue *GV) {
965   if (GV->hasLocalLinkage())
966     return true;
967 
968   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
969     return true;
970 
971   // DLLImport explicitly marks the GV as external.
972   if (GV->hasDLLImportStorageClass())
973     return false;
974 
975   const llvm::Triple &TT = CGM.getTriple();
976   if (TT.isWindowsGNUEnvironment()) {
977     // In MinGW, variables without DLLImport can still be automatically
978     // imported from a DLL by the linker; don't mark variables that
979     // potentially could come from another DLL as DSO local.
980     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
981         !GV->isThreadLocal())
982       return false;
983   }
984 
985   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
986   // remain unresolved in the link, they can be resolved to zero, which is
987   // outside the current DSO.
988   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
989     return false;
990 
991   // Every other GV is local on COFF.
992   // Make an exception for windows OS in the triple: Some firmware builds use
993   // *-win32-macho triples. This (accidentally?) produced windows relocations
994   // without GOT tables in older clang versions; Keep this behaviour.
995   // FIXME: even thread local variables?
996   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
997     return true;
998 
999   // Only handle COFF and ELF for now.
1000   if (!TT.isOSBinFormatELF())
1001     return false;
1002 
1003   // If this is not an executable, don't assume anything is local.
1004   const auto &CGOpts = CGM.getCodeGenOpts();
1005   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1006   const auto &LOpts = CGM.getLangOpts();
1007   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1008     // On ELF, if -fno-semantic-interposition is specified and the target
1009     // supports local aliases, there will be neither CC1
1010     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1011     // dso_local on the function if using a local alias is preferable (can avoid
1012     // PLT indirection).
1013     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1014       return false;
1015     return !(CGM.getLangOpts().SemanticInterposition ||
1016              CGM.getLangOpts().HalfNoSemanticInterposition);
1017   }
1018 
1019   // A definition cannot be preempted from an executable.
1020   if (!GV->isDeclarationForLinker())
1021     return true;
1022 
1023   // Most PIC code sequences that assume that a symbol is local cannot produce a
1024   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1025   // depended, it seems worth it to handle it here.
1026   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1027     return false;
1028 
1029   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1030   if (TT.isPPC64())
1031     return false;
1032 
1033   if (CGOpts.DirectAccessExternalData) {
1034     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1035     // for non-thread-local variables. If the symbol is not defined in the
1036     // executable, a copy relocation will be needed at link time. dso_local is
1037     // excluded for thread-local variables because they generally don't support
1038     // copy relocations.
1039     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1040       if (!Var->isThreadLocal())
1041         return true;
1042 
1043     // -fno-pic sets dso_local on a function declaration to allow direct
1044     // accesses when taking its address (similar to a data symbol). If the
1045     // function is not defined in the executable, a canonical PLT entry will be
1046     // needed at link time. -fno-direct-access-external-data can avoid the
1047     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1048     // it could just cause trouble without providing perceptible benefits.
1049     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1050       return true;
1051   }
1052 
1053   // If we can use copy relocations we can assume it is local.
1054 
1055   // Otherwise don't assume it is local.
1056   return false;
1057 }
1058 
1059 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1060   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1061 }
1062 
1063 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1064                                           GlobalDecl GD) const {
1065   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1066   // C++ destructors have a few C++ ABI specific special cases.
1067   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1068     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1069     return;
1070   }
1071   setDLLImportDLLExport(GV, D);
1072 }
1073 
1074 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1075                                           const NamedDecl *D) const {
1076   if (D && D->isExternallyVisible()) {
1077     if (D->hasAttr<DLLImportAttr>())
1078       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1079     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1080       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1081   }
1082 }
1083 
1084 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1085                                     GlobalDecl GD) const {
1086   setDLLImportDLLExport(GV, GD);
1087   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1088 }
1089 
1090 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1091                                     const NamedDecl *D) const {
1092   setDLLImportDLLExport(GV, D);
1093   setGVPropertiesAux(GV, D);
1094 }
1095 
1096 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1097                                        const NamedDecl *D) const {
1098   setGlobalVisibility(GV, D);
1099   setDSOLocal(GV);
1100   GV->setPartition(CodeGenOpts.SymbolPartition);
1101 }
1102 
1103 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1104   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1105       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1106       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1107       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1108       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1109 }
1110 
1111 llvm::GlobalVariable::ThreadLocalMode
1112 CodeGenModule::GetDefaultLLVMTLSModel() const {
1113   switch (CodeGenOpts.getDefaultTLSModel()) {
1114   case CodeGenOptions::GeneralDynamicTLSModel:
1115     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1116   case CodeGenOptions::LocalDynamicTLSModel:
1117     return llvm::GlobalVariable::LocalDynamicTLSModel;
1118   case CodeGenOptions::InitialExecTLSModel:
1119     return llvm::GlobalVariable::InitialExecTLSModel;
1120   case CodeGenOptions::LocalExecTLSModel:
1121     return llvm::GlobalVariable::LocalExecTLSModel;
1122   }
1123   llvm_unreachable("Invalid TLS model!");
1124 }
1125 
1126 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1127   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1128 
1129   llvm::GlobalValue::ThreadLocalMode TLM;
1130   TLM = GetDefaultLLVMTLSModel();
1131 
1132   // Override the TLS model if it is explicitly specified.
1133   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1134     TLM = GetLLVMTLSModel(Attr->getModel());
1135   }
1136 
1137   GV->setThreadLocalMode(TLM);
1138 }
1139 
1140 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1141                                           StringRef Name) {
1142   const TargetInfo &Target = CGM.getTarget();
1143   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1144 }
1145 
1146 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1147                                                  const CPUSpecificAttr *Attr,
1148                                                  unsigned CPUIndex,
1149                                                  raw_ostream &Out) {
1150   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1151   // supported.
1152   if (Attr)
1153     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1154   else if (CGM.getTarget().supportsIFunc())
1155     Out << ".resolver";
1156 }
1157 
1158 static void AppendTargetMangling(const CodeGenModule &CGM,
1159                                  const TargetAttr *Attr, raw_ostream &Out) {
1160   if (Attr->isDefaultVersion())
1161     return;
1162 
1163   Out << '.';
1164   const TargetInfo &Target = CGM.getTarget();
1165   ParsedTargetAttr Info =
1166       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1167         // Multiversioning doesn't allow "no-${feature}", so we can
1168         // only have "+" prefixes here.
1169         assert(LHS.startswith("+") && RHS.startswith("+") &&
1170                "Features should always have a prefix.");
1171         return Target.multiVersionSortPriority(LHS.substr(1)) >
1172                Target.multiVersionSortPriority(RHS.substr(1));
1173       });
1174 
1175   bool IsFirst = true;
1176 
1177   if (!Info.Architecture.empty()) {
1178     IsFirst = false;
1179     Out << "arch_" << Info.Architecture;
1180   }
1181 
1182   for (StringRef Feat : Info.Features) {
1183     if (!IsFirst)
1184       Out << '_';
1185     IsFirst = false;
1186     Out << Feat.substr(1);
1187   }
1188 }
1189 
1190 // Returns true if GD is a function decl with internal linkage and
1191 // needs a unique suffix after the mangled name.
1192 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1193                                         CodeGenModule &CGM) {
1194   const Decl *D = GD.getDecl();
1195   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1196          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1197 }
1198 
1199 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1200                                       const NamedDecl *ND,
1201                                       bool OmitMultiVersionMangling = false) {
1202   SmallString<256> Buffer;
1203   llvm::raw_svector_ostream Out(Buffer);
1204   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1205   if (!CGM.getModuleNameHash().empty())
1206     MC.needsUniqueInternalLinkageNames();
1207   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1208   if (ShouldMangle)
1209     MC.mangleName(GD.getWithDecl(ND), Out);
1210   else {
1211     IdentifierInfo *II = ND->getIdentifier();
1212     assert(II && "Attempt to mangle unnamed decl.");
1213     const auto *FD = dyn_cast<FunctionDecl>(ND);
1214 
1215     if (FD &&
1216         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1217       Out << "__regcall3__" << II->getName();
1218     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1219                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1220       Out << "__device_stub__" << II->getName();
1221     } else {
1222       Out << II->getName();
1223     }
1224   }
1225 
1226   // Check if the module name hash should be appended for internal linkage
1227   // symbols.   This should come before multi-version target suffixes are
1228   // appended. This is to keep the name and module hash suffix of the
1229   // internal linkage function together.  The unique suffix should only be
1230   // added when name mangling is done to make sure that the final name can
1231   // be properly demangled.  For example, for C functions without prototypes,
1232   // name mangling is not done and the unique suffix should not be appeneded
1233   // then.
1234   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1235     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1236            "Hash computed when not explicitly requested");
1237     Out << CGM.getModuleNameHash();
1238   }
1239 
1240   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1241     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1242       switch (FD->getMultiVersionKind()) {
1243       case MultiVersionKind::CPUDispatch:
1244       case MultiVersionKind::CPUSpecific:
1245         AppendCPUSpecificCPUDispatchMangling(CGM,
1246                                              FD->getAttr<CPUSpecificAttr>(),
1247                                              GD.getMultiVersionIndex(), Out);
1248         break;
1249       case MultiVersionKind::Target:
1250         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1251         break;
1252       case MultiVersionKind::None:
1253         llvm_unreachable("None multiversion type isn't valid here");
1254       }
1255     }
1256 
1257   // Make unique name for device side static file-scope variable for HIP.
1258   if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
1259       CGM.getLangOpts().GPURelocatableDeviceCode &&
1260       CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty())
1261     CGM.printPostfixForExternalizedStaticVar(Out);
1262   return std::string(Out.str());
1263 }
1264 
1265 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1266                                             const FunctionDecl *FD) {
1267   if (!FD->isMultiVersion())
1268     return;
1269 
1270   // Get the name of what this would be without the 'target' attribute.  This
1271   // allows us to lookup the version that was emitted when this wasn't a
1272   // multiversion function.
1273   std::string NonTargetName =
1274       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1275   GlobalDecl OtherGD;
1276   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1277     assert(OtherGD.getCanonicalDecl()
1278                .getDecl()
1279                ->getAsFunction()
1280                ->isMultiVersion() &&
1281            "Other GD should now be a multiversioned function");
1282     // OtherFD is the version of this function that was mangled BEFORE
1283     // becoming a MultiVersion function.  It potentially needs to be updated.
1284     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1285                                       .getDecl()
1286                                       ->getAsFunction()
1287                                       ->getMostRecentDecl();
1288     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1289     // This is so that if the initial version was already the 'default'
1290     // version, we don't try to update it.
1291     if (OtherName != NonTargetName) {
1292       // Remove instead of erase, since others may have stored the StringRef
1293       // to this.
1294       const auto ExistingRecord = Manglings.find(NonTargetName);
1295       if (ExistingRecord != std::end(Manglings))
1296         Manglings.remove(&(*ExistingRecord));
1297       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1298       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1299       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1300         Entry->setName(OtherName);
1301     }
1302   }
1303 }
1304 
1305 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1306   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1307 
1308   // Some ABIs don't have constructor variants.  Make sure that base and
1309   // complete constructors get mangled the same.
1310   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1311     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1312       CXXCtorType OrigCtorType = GD.getCtorType();
1313       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1314       if (OrigCtorType == Ctor_Base)
1315         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1316     }
1317   }
1318 
1319   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1320   // static device variable depends on whether the variable is referenced by
1321   // a host or device host function. Therefore the mangled name cannot be
1322   // cached.
1323   if (!LangOpts.CUDAIsDevice ||
1324       !getContext().mayExternalizeStaticVar(GD.getDecl())) {
1325     auto FoundName = MangledDeclNames.find(CanonicalGD);
1326     if (FoundName != MangledDeclNames.end())
1327       return FoundName->second;
1328   }
1329 
1330   // Keep the first result in the case of a mangling collision.
1331   const auto *ND = cast<NamedDecl>(GD.getDecl());
1332   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1333 
1334   // Ensure either we have different ABIs between host and device compilations,
1335   // says host compilation following MSVC ABI but device compilation follows
1336   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1337   // mangling should be the same after name stubbing. The later checking is
1338   // very important as the device kernel name being mangled in host-compilation
1339   // is used to resolve the device binaries to be executed. Inconsistent naming
1340   // result in undefined behavior. Even though we cannot check that naming
1341   // directly between host- and device-compilations, the host- and
1342   // device-mangling in host compilation could help catching certain ones.
1343   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1344          getLangOpts().CUDAIsDevice ||
1345          (getContext().getAuxTargetInfo() &&
1346           (getContext().getAuxTargetInfo()->getCXXABI() !=
1347            getContext().getTargetInfo().getCXXABI())) ||
1348          getCUDARuntime().getDeviceSideName(ND) ==
1349              getMangledNameImpl(
1350                  *this,
1351                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1352                  ND));
1353 
1354   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1355   return MangledDeclNames[CanonicalGD] = Result.first->first();
1356 }
1357 
1358 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1359                                              const BlockDecl *BD) {
1360   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1361   const Decl *D = GD.getDecl();
1362 
1363   SmallString<256> Buffer;
1364   llvm::raw_svector_ostream Out(Buffer);
1365   if (!D)
1366     MangleCtx.mangleGlobalBlock(BD,
1367       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1368   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1369     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1370   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1371     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1372   else
1373     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1374 
1375   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1376   return Result.first->first();
1377 }
1378 
1379 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1380   return getModule().getNamedValue(Name);
1381 }
1382 
1383 /// AddGlobalCtor - Add a function to the list that will be called before
1384 /// main() runs.
1385 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1386                                   llvm::Constant *AssociatedData) {
1387   // FIXME: Type coercion of void()* types.
1388   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1389 }
1390 
1391 /// AddGlobalDtor - Add a function to the list that will be called
1392 /// when the module is unloaded.
1393 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1394                                   bool IsDtorAttrFunc) {
1395   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1396       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1397     DtorsUsingAtExit[Priority].push_back(Dtor);
1398     return;
1399   }
1400 
1401   // FIXME: Type coercion of void()* types.
1402   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1403 }
1404 
1405 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1406   if (Fns.empty()) return;
1407 
1408   // Ctor function type is void()*.
1409   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1410   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1411       TheModule.getDataLayout().getProgramAddressSpace());
1412 
1413   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1414   llvm::StructType *CtorStructTy = llvm::StructType::get(
1415       Int32Ty, CtorPFTy, VoidPtrTy);
1416 
1417   // Construct the constructor and destructor arrays.
1418   ConstantInitBuilder builder(*this);
1419   auto ctors = builder.beginArray(CtorStructTy);
1420   for (const auto &I : Fns) {
1421     auto ctor = ctors.beginStruct(CtorStructTy);
1422     ctor.addInt(Int32Ty, I.Priority);
1423     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1424     if (I.AssociatedData)
1425       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1426     else
1427       ctor.addNullPointer(VoidPtrTy);
1428     ctor.finishAndAddTo(ctors);
1429   }
1430 
1431   auto list =
1432     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1433                                 /*constant*/ false,
1434                                 llvm::GlobalValue::AppendingLinkage);
1435 
1436   // The LTO linker doesn't seem to like it when we set an alignment
1437   // on appending variables.  Take it off as a workaround.
1438   list->setAlignment(llvm::None);
1439 
1440   Fns.clear();
1441 }
1442 
1443 llvm::GlobalValue::LinkageTypes
1444 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1445   const auto *D = cast<FunctionDecl>(GD.getDecl());
1446 
1447   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1448 
1449   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1450     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1451 
1452   if (isa<CXXConstructorDecl>(D) &&
1453       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1454       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1455     // Our approach to inheriting constructors is fundamentally different from
1456     // that used by the MS ABI, so keep our inheriting constructor thunks
1457     // internal rather than trying to pick an unambiguous mangling for them.
1458     return llvm::GlobalValue::InternalLinkage;
1459   }
1460 
1461   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1462 }
1463 
1464 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1465   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1466   if (!MDS) return nullptr;
1467 
1468   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1469 }
1470 
1471 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1472                                               const CGFunctionInfo &Info,
1473                                               llvm::Function *F, bool IsThunk) {
1474   unsigned CallingConv;
1475   llvm::AttributeList PAL;
1476   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1477                          /*AttrOnCallSite=*/false, IsThunk);
1478   F->setAttributes(PAL);
1479   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1480 }
1481 
1482 static void removeImageAccessQualifier(std::string& TyName) {
1483   std::string ReadOnlyQual("__read_only");
1484   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1485   if (ReadOnlyPos != std::string::npos)
1486     // "+ 1" for the space after access qualifier.
1487     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1488   else {
1489     std::string WriteOnlyQual("__write_only");
1490     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1491     if (WriteOnlyPos != std::string::npos)
1492       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1493     else {
1494       std::string ReadWriteQual("__read_write");
1495       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1496       if (ReadWritePos != std::string::npos)
1497         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1498     }
1499   }
1500 }
1501 
1502 // Returns the address space id that should be produced to the
1503 // kernel_arg_addr_space metadata. This is always fixed to the ids
1504 // as specified in the SPIR 2.0 specification in order to differentiate
1505 // for example in clGetKernelArgInfo() implementation between the address
1506 // spaces with targets without unique mapping to the OpenCL address spaces
1507 // (basically all single AS CPUs).
1508 static unsigned ArgInfoAddressSpace(LangAS AS) {
1509   switch (AS) {
1510   case LangAS::opencl_global:
1511     return 1;
1512   case LangAS::opencl_constant:
1513     return 2;
1514   case LangAS::opencl_local:
1515     return 3;
1516   case LangAS::opencl_generic:
1517     return 4; // Not in SPIR 2.0 specs.
1518   case LangAS::opencl_global_device:
1519     return 5;
1520   case LangAS::opencl_global_host:
1521     return 6;
1522   default:
1523     return 0; // Assume private.
1524   }
1525 }
1526 
1527 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1528                                          const FunctionDecl *FD,
1529                                          CodeGenFunction *CGF) {
1530   assert(((FD && CGF) || (!FD && !CGF)) &&
1531          "Incorrect use - FD and CGF should either be both null or not!");
1532   // Create MDNodes that represent the kernel arg metadata.
1533   // Each MDNode is a list in the form of "key", N number of values which is
1534   // the same number of values as their are kernel arguments.
1535 
1536   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1537 
1538   // MDNode for the kernel argument address space qualifiers.
1539   SmallVector<llvm::Metadata *, 8> addressQuals;
1540 
1541   // MDNode for the kernel argument access qualifiers (images only).
1542   SmallVector<llvm::Metadata *, 8> accessQuals;
1543 
1544   // MDNode for the kernel argument type names.
1545   SmallVector<llvm::Metadata *, 8> argTypeNames;
1546 
1547   // MDNode for the kernel argument base type names.
1548   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1549 
1550   // MDNode for the kernel argument type qualifiers.
1551   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1552 
1553   // MDNode for the kernel argument names.
1554   SmallVector<llvm::Metadata *, 8> argNames;
1555 
1556   if (FD && CGF)
1557     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1558       const ParmVarDecl *parm = FD->getParamDecl(i);
1559       QualType ty = parm->getType();
1560       std::string typeQuals;
1561 
1562       // Get image and pipe access qualifier:
1563       if (ty->isImageType() || ty->isPipeType()) {
1564         const Decl *PDecl = parm;
1565         if (auto *TD = dyn_cast<TypedefType>(ty))
1566           PDecl = TD->getDecl();
1567         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1568         if (A && A->isWriteOnly())
1569           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1570         else if (A && A->isReadWrite())
1571           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1572         else
1573           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1574       } else
1575         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1576 
1577       // Get argument name.
1578       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1579 
1580       auto getTypeSpelling = [&](QualType Ty) {
1581         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1582 
1583         if (Ty.isCanonical()) {
1584           StringRef typeNameRef = typeName;
1585           // Turn "unsigned type" to "utype"
1586           if (typeNameRef.consume_front("unsigned "))
1587             return std::string("u") + typeNameRef.str();
1588           if (typeNameRef.consume_front("signed "))
1589             return typeNameRef.str();
1590         }
1591 
1592         return typeName;
1593       };
1594 
1595       if (ty->isPointerType()) {
1596         QualType pointeeTy = ty->getPointeeType();
1597 
1598         // Get address qualifier.
1599         addressQuals.push_back(
1600             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1601                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1602 
1603         // Get argument type name.
1604         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1605         std::string baseTypeName =
1606             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1607         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1608         argBaseTypeNames.push_back(
1609             llvm::MDString::get(VMContext, baseTypeName));
1610 
1611         // Get argument type qualifiers:
1612         if (ty.isRestrictQualified())
1613           typeQuals = "restrict";
1614         if (pointeeTy.isConstQualified() ||
1615             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1616           typeQuals += typeQuals.empty() ? "const" : " const";
1617         if (pointeeTy.isVolatileQualified())
1618           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1619       } else {
1620         uint32_t AddrSpc = 0;
1621         bool isPipe = ty->isPipeType();
1622         if (ty->isImageType() || isPipe)
1623           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1624 
1625         addressQuals.push_back(
1626             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1627 
1628         // Get argument type name.
1629         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1630         std::string typeName = getTypeSpelling(ty);
1631         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1632 
1633         // Remove access qualifiers on images
1634         // (as they are inseparable from type in clang implementation,
1635         // but OpenCL spec provides a special query to get access qualifier
1636         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1637         if (ty->isImageType()) {
1638           removeImageAccessQualifier(typeName);
1639           removeImageAccessQualifier(baseTypeName);
1640         }
1641 
1642         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1643         argBaseTypeNames.push_back(
1644             llvm::MDString::get(VMContext, baseTypeName));
1645 
1646         if (isPipe)
1647           typeQuals = "pipe";
1648       }
1649       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1650     }
1651 
1652   Fn->setMetadata("kernel_arg_addr_space",
1653                   llvm::MDNode::get(VMContext, addressQuals));
1654   Fn->setMetadata("kernel_arg_access_qual",
1655                   llvm::MDNode::get(VMContext, accessQuals));
1656   Fn->setMetadata("kernel_arg_type",
1657                   llvm::MDNode::get(VMContext, argTypeNames));
1658   Fn->setMetadata("kernel_arg_base_type",
1659                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1660   Fn->setMetadata("kernel_arg_type_qual",
1661                   llvm::MDNode::get(VMContext, argTypeQuals));
1662   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1663     Fn->setMetadata("kernel_arg_name",
1664                     llvm::MDNode::get(VMContext, argNames));
1665 }
1666 
1667 /// Determines whether the language options require us to model
1668 /// unwind exceptions.  We treat -fexceptions as mandating this
1669 /// except under the fragile ObjC ABI with only ObjC exceptions
1670 /// enabled.  This means, for example, that C with -fexceptions
1671 /// enables this.
1672 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1673   // If exceptions are completely disabled, obviously this is false.
1674   if (!LangOpts.Exceptions) return false;
1675 
1676   // If C++ exceptions are enabled, this is true.
1677   if (LangOpts.CXXExceptions) return true;
1678 
1679   // If ObjC exceptions are enabled, this depends on the ABI.
1680   if (LangOpts.ObjCExceptions) {
1681     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1682   }
1683 
1684   return true;
1685 }
1686 
1687 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1688                                                       const CXXMethodDecl *MD) {
1689   // Check that the type metadata can ever actually be used by a call.
1690   if (!CGM.getCodeGenOpts().LTOUnit ||
1691       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1692     return false;
1693 
1694   // Only functions whose address can be taken with a member function pointer
1695   // need this sort of type metadata.
1696   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1697          !isa<CXXDestructorDecl>(MD);
1698 }
1699 
1700 std::vector<const CXXRecordDecl *>
1701 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1702   llvm::SetVector<const CXXRecordDecl *> MostBases;
1703 
1704   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1705   CollectMostBases = [&](const CXXRecordDecl *RD) {
1706     if (RD->getNumBases() == 0)
1707       MostBases.insert(RD);
1708     for (const CXXBaseSpecifier &B : RD->bases())
1709       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1710   };
1711   CollectMostBases(RD);
1712   return MostBases.takeVector();
1713 }
1714 
1715 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1716                                                            llvm::Function *F) {
1717   llvm::AttrBuilder B;
1718 
1719   if (CodeGenOpts.UnwindTables)
1720     B.addAttribute(llvm::Attribute::UWTable);
1721 
1722   if (CodeGenOpts.StackClashProtector)
1723     B.addAttribute("probe-stack", "inline-asm");
1724 
1725   if (!hasUnwindExceptions(LangOpts))
1726     B.addAttribute(llvm::Attribute::NoUnwind);
1727 
1728   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1729     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1730       B.addAttribute(llvm::Attribute::StackProtect);
1731     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1732       B.addAttribute(llvm::Attribute::StackProtectStrong);
1733     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1734       B.addAttribute(llvm::Attribute::StackProtectReq);
1735   }
1736 
1737   if (!D) {
1738     // If we don't have a declaration to control inlining, the function isn't
1739     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1740     // disabled, mark the function as noinline.
1741     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1742         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1743       B.addAttribute(llvm::Attribute::NoInline);
1744 
1745     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1746     return;
1747   }
1748 
1749   // Track whether we need to add the optnone LLVM attribute,
1750   // starting with the default for this optimization level.
1751   bool ShouldAddOptNone =
1752       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1753   // We can't add optnone in the following cases, it won't pass the verifier.
1754   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1755   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1756 
1757   // Add optnone, but do so only if the function isn't always_inline.
1758   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1759       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1760     B.addAttribute(llvm::Attribute::OptimizeNone);
1761 
1762     // OptimizeNone implies noinline; we should not be inlining such functions.
1763     B.addAttribute(llvm::Attribute::NoInline);
1764 
1765     // We still need to handle naked functions even though optnone subsumes
1766     // much of their semantics.
1767     if (D->hasAttr<NakedAttr>())
1768       B.addAttribute(llvm::Attribute::Naked);
1769 
1770     // OptimizeNone wins over OptimizeForSize and MinSize.
1771     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1772     F->removeFnAttr(llvm::Attribute::MinSize);
1773   } else if (D->hasAttr<NakedAttr>()) {
1774     // Naked implies noinline: we should not be inlining such functions.
1775     B.addAttribute(llvm::Attribute::Naked);
1776     B.addAttribute(llvm::Attribute::NoInline);
1777   } else if (D->hasAttr<NoDuplicateAttr>()) {
1778     B.addAttribute(llvm::Attribute::NoDuplicate);
1779   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1780     // Add noinline if the function isn't always_inline.
1781     B.addAttribute(llvm::Attribute::NoInline);
1782   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1783              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1784     // (noinline wins over always_inline, and we can't specify both in IR)
1785     B.addAttribute(llvm::Attribute::AlwaysInline);
1786   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1787     // If we're not inlining, then force everything that isn't always_inline to
1788     // carry an explicit noinline attribute.
1789     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1790       B.addAttribute(llvm::Attribute::NoInline);
1791   } else {
1792     // Otherwise, propagate the inline hint attribute and potentially use its
1793     // absence to mark things as noinline.
1794     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1795       // Search function and template pattern redeclarations for inline.
1796       auto CheckForInline = [](const FunctionDecl *FD) {
1797         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1798           return Redecl->isInlineSpecified();
1799         };
1800         if (any_of(FD->redecls(), CheckRedeclForInline))
1801           return true;
1802         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1803         if (!Pattern)
1804           return false;
1805         return any_of(Pattern->redecls(), CheckRedeclForInline);
1806       };
1807       if (CheckForInline(FD)) {
1808         B.addAttribute(llvm::Attribute::InlineHint);
1809       } else if (CodeGenOpts.getInlining() ==
1810                      CodeGenOptions::OnlyHintInlining &&
1811                  !FD->isInlined() &&
1812                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1813         B.addAttribute(llvm::Attribute::NoInline);
1814       }
1815     }
1816   }
1817 
1818   // Add other optimization related attributes if we are optimizing this
1819   // function.
1820   if (!D->hasAttr<OptimizeNoneAttr>()) {
1821     if (D->hasAttr<ColdAttr>()) {
1822       if (!ShouldAddOptNone)
1823         B.addAttribute(llvm::Attribute::OptimizeForSize);
1824       B.addAttribute(llvm::Attribute::Cold);
1825     }
1826     if (D->hasAttr<HotAttr>())
1827       B.addAttribute(llvm::Attribute::Hot);
1828     if (D->hasAttr<MinSizeAttr>())
1829       B.addAttribute(llvm::Attribute::MinSize);
1830   }
1831 
1832   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1833 
1834   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1835   if (alignment)
1836     F->setAlignment(llvm::Align(alignment));
1837 
1838   if (!D->hasAttr<AlignedAttr>())
1839     if (LangOpts.FunctionAlignment)
1840       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1841 
1842   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1843   // reserve a bit for differentiating between virtual and non-virtual member
1844   // functions. If the current target's C++ ABI requires this and this is a
1845   // member function, set its alignment accordingly.
1846   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1847     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1848       F->setAlignment(llvm::Align(2));
1849   }
1850 
1851   // In the cross-dso CFI mode with canonical jump tables, we want !type
1852   // attributes on definitions only.
1853   if (CodeGenOpts.SanitizeCfiCrossDso &&
1854       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1855     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1856       // Skip available_externally functions. They won't be codegen'ed in the
1857       // current module anyway.
1858       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1859         CreateFunctionTypeMetadataForIcall(FD, F);
1860     }
1861   }
1862 
1863   // Emit type metadata on member functions for member function pointer checks.
1864   // These are only ever necessary on definitions; we're guaranteed that the
1865   // definition will be present in the LTO unit as a result of LTO visibility.
1866   auto *MD = dyn_cast<CXXMethodDecl>(D);
1867   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1868     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1869       llvm::Metadata *Id =
1870           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1871               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1872       F->addTypeMetadata(0, Id);
1873     }
1874   }
1875 }
1876 
1877 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1878                                                   llvm::Function *F) {
1879   if (D->hasAttr<StrictFPAttr>()) {
1880     llvm::AttrBuilder FuncAttrs;
1881     FuncAttrs.addAttribute("strictfp");
1882     F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1883   }
1884 }
1885 
1886 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1887   const Decl *D = GD.getDecl();
1888   if (dyn_cast_or_null<NamedDecl>(D))
1889     setGVProperties(GV, GD);
1890   else
1891     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1892 
1893   if (D && D->hasAttr<UsedAttr>())
1894     addUsedOrCompilerUsedGlobal(GV);
1895 
1896   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1897     const auto *VD = cast<VarDecl>(D);
1898     if (VD->getType().isConstQualified() &&
1899         VD->getStorageDuration() == SD_Static)
1900       addUsedOrCompilerUsedGlobal(GV);
1901   }
1902 }
1903 
1904 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1905                                                 llvm::AttrBuilder &Attrs) {
1906   // Add target-cpu and target-features attributes to functions. If
1907   // we have a decl for the function and it has a target attribute then
1908   // parse that and add it to the feature set.
1909   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1910   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1911   std::vector<std::string> Features;
1912   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1913   FD = FD ? FD->getMostRecentDecl() : FD;
1914   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1915   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1916   bool AddedAttr = false;
1917   if (TD || SD) {
1918     llvm::StringMap<bool> FeatureMap;
1919     getContext().getFunctionFeatureMap(FeatureMap, GD);
1920 
1921     // Produce the canonical string for this set of features.
1922     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1923       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1924 
1925     // Now add the target-cpu and target-features to the function.
1926     // While we populated the feature map above, we still need to
1927     // get and parse the target attribute so we can get the cpu for
1928     // the function.
1929     if (TD) {
1930       ParsedTargetAttr ParsedAttr = TD->parse();
1931       if (!ParsedAttr.Architecture.empty() &&
1932           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1933         TargetCPU = ParsedAttr.Architecture;
1934         TuneCPU = ""; // Clear the tune CPU.
1935       }
1936       if (!ParsedAttr.Tune.empty() &&
1937           getTarget().isValidCPUName(ParsedAttr.Tune))
1938         TuneCPU = ParsedAttr.Tune;
1939     }
1940   } else {
1941     // Otherwise just add the existing target cpu and target features to the
1942     // function.
1943     Features = getTarget().getTargetOpts().Features;
1944   }
1945 
1946   if (!TargetCPU.empty()) {
1947     Attrs.addAttribute("target-cpu", TargetCPU);
1948     AddedAttr = true;
1949   }
1950   if (!TuneCPU.empty()) {
1951     Attrs.addAttribute("tune-cpu", TuneCPU);
1952     AddedAttr = true;
1953   }
1954   if (!Features.empty()) {
1955     llvm::sort(Features);
1956     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1957     AddedAttr = true;
1958   }
1959 
1960   return AddedAttr;
1961 }
1962 
1963 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1964                                           llvm::GlobalObject *GO) {
1965   const Decl *D = GD.getDecl();
1966   SetCommonAttributes(GD, GO);
1967 
1968   if (D) {
1969     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1970       if (D->hasAttr<RetainAttr>())
1971         addUsedGlobal(GV);
1972       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1973         GV->addAttribute("bss-section", SA->getName());
1974       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1975         GV->addAttribute("data-section", SA->getName());
1976       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1977         GV->addAttribute("rodata-section", SA->getName());
1978       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1979         GV->addAttribute("relro-section", SA->getName());
1980     }
1981 
1982     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1983       if (D->hasAttr<RetainAttr>())
1984         addUsedGlobal(F);
1985       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1986         if (!D->getAttr<SectionAttr>())
1987           F->addFnAttr("implicit-section-name", SA->getName());
1988 
1989       llvm::AttrBuilder Attrs;
1990       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1991         // We know that GetCPUAndFeaturesAttributes will always have the
1992         // newest set, since it has the newest possible FunctionDecl, so the
1993         // new ones should replace the old.
1994         llvm::AttrBuilder RemoveAttrs;
1995         RemoveAttrs.addAttribute("target-cpu");
1996         RemoveAttrs.addAttribute("target-features");
1997         RemoveAttrs.addAttribute("tune-cpu");
1998         F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
1999         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
2000       }
2001     }
2002 
2003     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2004       GO->setSection(CSA->getName());
2005     else if (const auto *SA = D->getAttr<SectionAttr>())
2006       GO->setSection(SA->getName());
2007   }
2008 
2009   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2010 }
2011 
2012 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2013                                                   llvm::Function *F,
2014                                                   const CGFunctionInfo &FI) {
2015   const Decl *D = GD.getDecl();
2016   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2017   SetLLVMFunctionAttributesForDefinition(D, F);
2018 
2019   F->setLinkage(llvm::Function::InternalLinkage);
2020 
2021   setNonAliasAttributes(GD, F);
2022 }
2023 
2024 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2025   // Set linkage and visibility in case we never see a definition.
2026   LinkageInfo LV = ND->getLinkageAndVisibility();
2027   // Don't set internal linkage on declarations.
2028   // "extern_weak" is overloaded in LLVM; we probably should have
2029   // separate linkage types for this.
2030   if (isExternallyVisible(LV.getLinkage()) &&
2031       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2032     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2033 }
2034 
2035 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2036                                                        llvm::Function *F) {
2037   // Only if we are checking indirect calls.
2038   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2039     return;
2040 
2041   // Non-static class methods are handled via vtable or member function pointer
2042   // checks elsewhere.
2043   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2044     return;
2045 
2046   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2047   F->addTypeMetadata(0, MD);
2048   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2049 
2050   // Emit a hash-based bit set entry for cross-DSO calls.
2051   if (CodeGenOpts.SanitizeCfiCrossDso)
2052     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2053       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2054 }
2055 
2056 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2057                                           bool IsIncompleteFunction,
2058                                           bool IsThunk) {
2059 
2060   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2061     // If this is an intrinsic function, set the function's attributes
2062     // to the intrinsic's attributes.
2063     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2064     return;
2065   }
2066 
2067   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2068 
2069   if (!IsIncompleteFunction)
2070     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2071                               IsThunk);
2072 
2073   // Add the Returned attribute for "this", except for iOS 5 and earlier
2074   // where substantial code, including the libstdc++ dylib, was compiled with
2075   // GCC and does not actually return "this".
2076   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2077       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2078     assert(!F->arg_empty() &&
2079            F->arg_begin()->getType()
2080              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2081            "unexpected this return");
2082     F->addAttribute(1, llvm::Attribute::Returned);
2083   }
2084 
2085   // Only a few attributes are set on declarations; these may later be
2086   // overridden by a definition.
2087 
2088   setLinkageForGV(F, FD);
2089   setGVProperties(F, FD);
2090 
2091   // Setup target-specific attributes.
2092   if (!IsIncompleteFunction && F->isDeclaration())
2093     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2094 
2095   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2096     F->setSection(CSA->getName());
2097   else if (const auto *SA = FD->getAttr<SectionAttr>())
2098      F->setSection(SA->getName());
2099 
2100   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2101   if (FD->isInlineBuiltinDeclaration()) {
2102     const FunctionDecl *FDBody;
2103     bool HasBody = FD->hasBody(FDBody);
2104     (void)HasBody;
2105     assert(HasBody && "Inline builtin declarations should always have an "
2106                       "available body!");
2107     if (shouldEmitFunction(FDBody))
2108       F->addAttribute(llvm::AttributeList::FunctionIndex,
2109                       llvm::Attribute::NoBuiltin);
2110   }
2111 
2112   if (FD->isReplaceableGlobalAllocationFunction()) {
2113     // A replaceable global allocation function does not act like a builtin by
2114     // default, only if it is invoked by a new-expression or delete-expression.
2115     F->addAttribute(llvm::AttributeList::FunctionIndex,
2116                     llvm::Attribute::NoBuiltin);
2117   }
2118 
2119   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2120     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2121   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2122     if (MD->isVirtual())
2123       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2124 
2125   // Don't emit entries for function declarations in the cross-DSO mode. This
2126   // is handled with better precision by the receiving DSO. But if jump tables
2127   // are non-canonical then we need type metadata in order to produce the local
2128   // jump table.
2129   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2130       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2131     CreateFunctionTypeMetadataForIcall(FD, F);
2132 
2133   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2134     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2135 
2136   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2137     // Annotate the callback behavior as metadata:
2138     //  - The callback callee (as argument number).
2139     //  - The callback payloads (as argument numbers).
2140     llvm::LLVMContext &Ctx = F->getContext();
2141     llvm::MDBuilder MDB(Ctx);
2142 
2143     // The payload indices are all but the first one in the encoding. The first
2144     // identifies the callback callee.
2145     int CalleeIdx = *CB->encoding_begin();
2146     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2147     F->addMetadata(llvm::LLVMContext::MD_callback,
2148                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2149                                                CalleeIdx, PayloadIndices,
2150                                                /* VarArgsArePassed */ false)}));
2151   }
2152 }
2153 
2154 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2155   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2156          "Only globals with definition can force usage.");
2157   LLVMUsed.emplace_back(GV);
2158 }
2159 
2160 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2161   assert(!GV->isDeclaration() &&
2162          "Only globals with definition can force usage.");
2163   LLVMCompilerUsed.emplace_back(GV);
2164 }
2165 
2166 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2167   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2168          "Only globals with definition can force usage.");
2169   if (getTriple().isOSBinFormatELF())
2170     LLVMCompilerUsed.emplace_back(GV);
2171   else
2172     LLVMUsed.emplace_back(GV);
2173 }
2174 
2175 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2176                      std::vector<llvm::WeakTrackingVH> &List) {
2177   // Don't create llvm.used if there is no need.
2178   if (List.empty())
2179     return;
2180 
2181   // Convert List to what ConstantArray needs.
2182   SmallVector<llvm::Constant*, 8> UsedArray;
2183   UsedArray.resize(List.size());
2184   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2185     UsedArray[i] =
2186         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2187             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2188   }
2189 
2190   if (UsedArray.empty())
2191     return;
2192   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2193 
2194   auto *GV = new llvm::GlobalVariable(
2195       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2196       llvm::ConstantArray::get(ATy, UsedArray), Name);
2197 
2198   GV->setSection("llvm.metadata");
2199 }
2200 
2201 void CodeGenModule::emitLLVMUsed() {
2202   emitUsed(*this, "llvm.used", LLVMUsed);
2203   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2204 }
2205 
2206 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2207   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2208   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2209 }
2210 
2211 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2212   llvm::SmallString<32> Opt;
2213   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2214   if (Opt.empty())
2215     return;
2216   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2217   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2218 }
2219 
2220 void CodeGenModule::AddDependentLib(StringRef Lib) {
2221   auto &C = getLLVMContext();
2222   if (getTarget().getTriple().isOSBinFormatELF()) {
2223       ELFDependentLibraries.push_back(
2224         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2225     return;
2226   }
2227 
2228   llvm::SmallString<24> Opt;
2229   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2230   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2231   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2232 }
2233 
2234 /// Add link options implied by the given module, including modules
2235 /// it depends on, using a postorder walk.
2236 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2237                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2238                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2239   // Import this module's parent.
2240   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2241     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2242   }
2243 
2244   // Import this module's dependencies.
2245   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2246     if (Visited.insert(Mod->Imports[I - 1]).second)
2247       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2248   }
2249 
2250   // Add linker options to link against the libraries/frameworks
2251   // described by this module.
2252   llvm::LLVMContext &Context = CGM.getLLVMContext();
2253   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2254 
2255   // For modules that use export_as for linking, use that module
2256   // name instead.
2257   if (Mod->UseExportAsModuleLinkName)
2258     return;
2259 
2260   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2261     // Link against a framework.  Frameworks are currently Darwin only, so we
2262     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2263     if (Mod->LinkLibraries[I-1].IsFramework) {
2264       llvm::Metadata *Args[2] = {
2265           llvm::MDString::get(Context, "-framework"),
2266           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2267 
2268       Metadata.push_back(llvm::MDNode::get(Context, Args));
2269       continue;
2270     }
2271 
2272     // Link against a library.
2273     if (IsELF) {
2274       llvm::Metadata *Args[2] = {
2275           llvm::MDString::get(Context, "lib"),
2276           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2277       };
2278       Metadata.push_back(llvm::MDNode::get(Context, Args));
2279     } else {
2280       llvm::SmallString<24> Opt;
2281       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2282           Mod->LinkLibraries[I - 1].Library, Opt);
2283       auto *OptString = llvm::MDString::get(Context, Opt);
2284       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2285     }
2286   }
2287 }
2288 
2289 void CodeGenModule::EmitModuleLinkOptions() {
2290   // Collect the set of all of the modules we want to visit to emit link
2291   // options, which is essentially the imported modules and all of their
2292   // non-explicit child modules.
2293   llvm::SetVector<clang::Module *> LinkModules;
2294   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2295   SmallVector<clang::Module *, 16> Stack;
2296 
2297   // Seed the stack with imported modules.
2298   for (Module *M : ImportedModules) {
2299     // Do not add any link flags when an implementation TU of a module imports
2300     // a header of that same module.
2301     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2302         !getLangOpts().isCompilingModule())
2303       continue;
2304     if (Visited.insert(M).second)
2305       Stack.push_back(M);
2306   }
2307 
2308   // Find all of the modules to import, making a little effort to prune
2309   // non-leaf modules.
2310   while (!Stack.empty()) {
2311     clang::Module *Mod = Stack.pop_back_val();
2312 
2313     bool AnyChildren = false;
2314 
2315     // Visit the submodules of this module.
2316     for (const auto &SM : Mod->submodules()) {
2317       // Skip explicit children; they need to be explicitly imported to be
2318       // linked against.
2319       if (SM->IsExplicit)
2320         continue;
2321 
2322       if (Visited.insert(SM).second) {
2323         Stack.push_back(SM);
2324         AnyChildren = true;
2325       }
2326     }
2327 
2328     // We didn't find any children, so add this module to the list of
2329     // modules to link against.
2330     if (!AnyChildren) {
2331       LinkModules.insert(Mod);
2332     }
2333   }
2334 
2335   // Add link options for all of the imported modules in reverse topological
2336   // order.  We don't do anything to try to order import link flags with respect
2337   // to linker options inserted by things like #pragma comment().
2338   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2339   Visited.clear();
2340   for (Module *M : LinkModules)
2341     if (Visited.insert(M).second)
2342       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2343   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2344   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2345 
2346   // Add the linker options metadata flag.
2347   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2348   for (auto *MD : LinkerOptionsMetadata)
2349     NMD->addOperand(MD);
2350 }
2351 
2352 void CodeGenModule::EmitDeferred() {
2353   // Emit deferred declare target declarations.
2354   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2355     getOpenMPRuntime().emitDeferredTargetDecls();
2356 
2357   // Emit code for any potentially referenced deferred decls.  Since a
2358   // previously unused static decl may become used during the generation of code
2359   // for a static function, iterate until no changes are made.
2360 
2361   if (!DeferredVTables.empty()) {
2362     EmitDeferredVTables();
2363 
2364     // Emitting a vtable doesn't directly cause more vtables to
2365     // become deferred, although it can cause functions to be
2366     // emitted that then need those vtables.
2367     assert(DeferredVTables.empty());
2368   }
2369 
2370   // Emit CUDA/HIP static device variables referenced by host code only.
2371   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2372     for (const auto *V : getContext().CUDADeviceVarODRUsedByHost)
2373       DeferredDeclsToEmit.push_back(V);
2374 
2375   // Stop if we're out of both deferred vtables and deferred declarations.
2376   if (DeferredDeclsToEmit.empty())
2377     return;
2378 
2379   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2380   // work, it will not interfere with this.
2381   std::vector<GlobalDecl> CurDeclsToEmit;
2382   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2383 
2384   for (GlobalDecl &D : CurDeclsToEmit) {
2385     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2386     // to get GlobalValue with exactly the type we need, not something that
2387     // might had been created for another decl with the same mangled name but
2388     // different type.
2389     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2390         GetAddrOfGlobal(D, ForDefinition));
2391 
2392     // In case of different address spaces, we may still get a cast, even with
2393     // IsForDefinition equal to true. Query mangled names table to get
2394     // GlobalValue.
2395     if (!GV)
2396       GV = GetGlobalValue(getMangledName(D));
2397 
2398     // Make sure GetGlobalValue returned non-null.
2399     assert(GV);
2400 
2401     // Check to see if we've already emitted this.  This is necessary
2402     // for a couple of reasons: first, decls can end up in the
2403     // deferred-decls queue multiple times, and second, decls can end
2404     // up with definitions in unusual ways (e.g. by an extern inline
2405     // function acquiring a strong function redefinition).  Just
2406     // ignore these cases.
2407     if (!GV->isDeclaration())
2408       continue;
2409 
2410     // If this is OpenMP, check if it is legal to emit this global normally.
2411     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2412       continue;
2413 
2414     // Otherwise, emit the definition and move on to the next one.
2415     EmitGlobalDefinition(D, GV);
2416 
2417     // If we found out that we need to emit more decls, do that recursively.
2418     // This has the advantage that the decls are emitted in a DFS and related
2419     // ones are close together, which is convenient for testing.
2420     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2421       EmitDeferred();
2422       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2423     }
2424   }
2425 }
2426 
2427 void CodeGenModule::EmitVTablesOpportunistically() {
2428   // Try to emit external vtables as available_externally if they have emitted
2429   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2430   // is not allowed to create new references to things that need to be emitted
2431   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2432 
2433   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2434          && "Only emit opportunistic vtables with optimizations");
2435 
2436   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2437     assert(getVTables().isVTableExternal(RD) &&
2438            "This queue should only contain external vtables");
2439     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2440       VTables.GenerateClassData(RD);
2441   }
2442   OpportunisticVTables.clear();
2443 }
2444 
2445 void CodeGenModule::EmitGlobalAnnotations() {
2446   if (Annotations.empty())
2447     return;
2448 
2449   // Create a new global variable for the ConstantStruct in the Module.
2450   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2451     Annotations[0]->getType(), Annotations.size()), Annotations);
2452   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2453                                       llvm::GlobalValue::AppendingLinkage,
2454                                       Array, "llvm.global.annotations");
2455   gv->setSection(AnnotationSection);
2456 }
2457 
2458 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2459   llvm::Constant *&AStr = AnnotationStrings[Str];
2460   if (AStr)
2461     return AStr;
2462 
2463   // Not found yet, create a new global.
2464   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2465   auto *gv =
2466       new llvm::GlobalVariable(getModule(), s->getType(), true,
2467                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2468   gv->setSection(AnnotationSection);
2469   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2470   AStr = gv;
2471   return gv;
2472 }
2473 
2474 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2475   SourceManager &SM = getContext().getSourceManager();
2476   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2477   if (PLoc.isValid())
2478     return EmitAnnotationString(PLoc.getFilename());
2479   return EmitAnnotationString(SM.getBufferName(Loc));
2480 }
2481 
2482 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2483   SourceManager &SM = getContext().getSourceManager();
2484   PresumedLoc PLoc = SM.getPresumedLoc(L);
2485   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2486     SM.getExpansionLineNumber(L);
2487   return llvm::ConstantInt::get(Int32Ty, LineNo);
2488 }
2489 
2490 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2491   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2492   if (Exprs.empty())
2493     return llvm::ConstantPointerNull::get(Int8PtrTy);
2494 
2495   llvm::FoldingSetNodeID ID;
2496   for (Expr *E : Exprs) {
2497     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2498   }
2499   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2500   if (Lookup)
2501     return Lookup;
2502 
2503   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2504   LLVMArgs.reserve(Exprs.size());
2505   ConstantEmitter ConstEmiter(*this);
2506   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2507     const auto *CE = cast<clang::ConstantExpr>(E);
2508     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2509                                     CE->getType());
2510   });
2511   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2512   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2513                                       llvm::GlobalValue::PrivateLinkage, Struct,
2514                                       ".args");
2515   GV->setSection(AnnotationSection);
2516   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2517   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy);
2518 
2519   Lookup = Bitcasted;
2520   return Bitcasted;
2521 }
2522 
2523 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2524                                                 const AnnotateAttr *AA,
2525                                                 SourceLocation L) {
2526   // Get the globals for file name, annotation, and the line number.
2527   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2528                  *UnitGV = EmitAnnotationUnit(L),
2529                  *LineNoCst = EmitAnnotationLineNo(L),
2530                  *Args = EmitAnnotationArgs(AA);
2531 
2532   llvm::Constant *ASZeroGV = GV;
2533   if (GV->getAddressSpace() != 0) {
2534     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2535                    GV, GV->getValueType()->getPointerTo(0));
2536   }
2537 
2538   // Create the ConstantStruct for the global annotation.
2539   llvm::Constant *Fields[] = {
2540       llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2541       llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2542       llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2543       LineNoCst,
2544       Args,
2545   };
2546   return llvm::ConstantStruct::getAnon(Fields);
2547 }
2548 
2549 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2550                                          llvm::GlobalValue *GV) {
2551   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2552   // Get the struct elements for these annotations.
2553   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2554     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2555 }
2556 
2557 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2558                                        SourceLocation Loc) const {
2559   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2560   // NoSanitize by function name.
2561   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2562     return true;
2563   // NoSanitize by location.
2564   if (Loc.isValid())
2565     return NoSanitizeL.containsLocation(Kind, Loc);
2566   // If location is unknown, this may be a compiler-generated function. Assume
2567   // it's located in the main file.
2568   auto &SM = Context.getSourceManager();
2569   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2570     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2571   }
2572   return false;
2573 }
2574 
2575 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV,
2576                                        SourceLocation Loc, QualType Ty,
2577                                        StringRef Category) const {
2578   // For now globals can be ignored only in ASan and KASan.
2579   const SanitizerMask EnabledAsanMask =
2580       LangOpts.Sanitize.Mask &
2581       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2582        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2583        SanitizerKind::MemTag);
2584   if (!EnabledAsanMask)
2585     return false;
2586   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2587   if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category))
2588     return true;
2589   if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category))
2590     return true;
2591   // Check global type.
2592   if (!Ty.isNull()) {
2593     // Drill down the array types: if global variable of a fixed type is
2594     // not sanitized, we also don't instrument arrays of them.
2595     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2596       Ty = AT->getElementType();
2597     Ty = Ty.getCanonicalType().getUnqualifiedType();
2598     // Only record types (classes, structs etc.) are ignored.
2599     if (Ty->isRecordType()) {
2600       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2601       if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category))
2602         return true;
2603     }
2604   }
2605   return false;
2606 }
2607 
2608 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2609                                    StringRef Category) const {
2610   const auto &XRayFilter = getContext().getXRayFilter();
2611   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2612   auto Attr = ImbueAttr::NONE;
2613   if (Loc.isValid())
2614     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2615   if (Attr == ImbueAttr::NONE)
2616     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2617   switch (Attr) {
2618   case ImbueAttr::NONE:
2619     return false;
2620   case ImbueAttr::ALWAYS:
2621     Fn->addFnAttr("function-instrument", "xray-always");
2622     break;
2623   case ImbueAttr::ALWAYS_ARG1:
2624     Fn->addFnAttr("function-instrument", "xray-always");
2625     Fn->addFnAttr("xray-log-args", "1");
2626     break;
2627   case ImbueAttr::NEVER:
2628     Fn->addFnAttr("function-instrument", "xray-never");
2629     break;
2630   }
2631   return true;
2632 }
2633 
2634 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2635                                            SourceLocation Loc) const {
2636   const auto &ProfileList = getContext().getProfileList();
2637   // If the profile list is empty, then instrument everything.
2638   if (ProfileList.isEmpty())
2639     return false;
2640   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2641   // First, check the function name.
2642   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2643   if (V.hasValue())
2644     return *V;
2645   // Next, check the source location.
2646   if (Loc.isValid()) {
2647     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2648     if (V.hasValue())
2649       return *V;
2650   }
2651   // If location is unknown, this may be a compiler-generated function. Assume
2652   // it's located in the main file.
2653   auto &SM = Context.getSourceManager();
2654   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2655     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2656     if (V.hasValue())
2657       return *V;
2658   }
2659   return ProfileList.getDefault();
2660 }
2661 
2662 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2663   // Never defer when EmitAllDecls is specified.
2664   if (LangOpts.EmitAllDecls)
2665     return true;
2666 
2667   if (CodeGenOpts.KeepStaticConsts) {
2668     const auto *VD = dyn_cast<VarDecl>(Global);
2669     if (VD && VD->getType().isConstQualified() &&
2670         VD->getStorageDuration() == SD_Static)
2671       return true;
2672   }
2673 
2674   return getContext().DeclMustBeEmitted(Global);
2675 }
2676 
2677 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2678   // In OpenMP 5.0 variables and function may be marked as
2679   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2680   // that they must be emitted on the host/device. To be sure we need to have
2681   // seen a declare target with an explicit mentioning of the function, we know
2682   // we have if the level of the declare target attribute is -1. Note that we
2683   // check somewhere else if we should emit this at all.
2684   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2685     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2686         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2687     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2688       return false;
2689   }
2690 
2691   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2692     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2693       // Implicit template instantiations may change linkage if they are later
2694       // explicitly instantiated, so they should not be emitted eagerly.
2695       return false;
2696   }
2697   if (const auto *VD = dyn_cast<VarDecl>(Global))
2698     if (Context.getInlineVariableDefinitionKind(VD) ==
2699         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2700       // A definition of an inline constexpr static data member may change
2701       // linkage later if it's redeclared outside the class.
2702       return false;
2703   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2704   // codegen for global variables, because they may be marked as threadprivate.
2705   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2706       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2707       !isTypeConstant(Global->getType(), false) &&
2708       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2709     return false;
2710 
2711   return true;
2712 }
2713 
2714 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2715   StringRef Name = getMangledName(GD);
2716 
2717   // The UUID descriptor should be pointer aligned.
2718   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2719 
2720   // Look for an existing global.
2721   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2722     return ConstantAddress(GV, Alignment);
2723 
2724   ConstantEmitter Emitter(*this);
2725   llvm::Constant *Init;
2726 
2727   APValue &V = GD->getAsAPValue();
2728   if (!V.isAbsent()) {
2729     // If possible, emit the APValue version of the initializer. In particular,
2730     // this gets the type of the constant right.
2731     Init = Emitter.emitForInitializer(
2732         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2733   } else {
2734     // As a fallback, directly construct the constant.
2735     // FIXME: This may get padding wrong under esoteric struct layout rules.
2736     // MSVC appears to create a complete type 'struct __s_GUID' that it
2737     // presumably uses to represent these constants.
2738     MSGuidDecl::Parts Parts = GD->getParts();
2739     llvm::Constant *Fields[4] = {
2740         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2741         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2742         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2743         llvm::ConstantDataArray::getRaw(
2744             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2745             Int8Ty)};
2746     Init = llvm::ConstantStruct::getAnon(Fields);
2747   }
2748 
2749   auto *GV = new llvm::GlobalVariable(
2750       getModule(), Init->getType(),
2751       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2752   if (supportsCOMDAT())
2753     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2754   setDSOLocal(GV);
2755 
2756   llvm::Constant *Addr = GV;
2757   if (!V.isAbsent()) {
2758     Emitter.finalize(GV);
2759   } else {
2760     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2761     Addr = llvm::ConstantExpr::getBitCast(
2762         GV, Ty->getPointerTo(GV->getAddressSpace()));
2763   }
2764   return ConstantAddress(Addr, Alignment);
2765 }
2766 
2767 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2768     const TemplateParamObjectDecl *TPO) {
2769   StringRef Name = getMangledName(TPO);
2770   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2771 
2772   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2773     return ConstantAddress(GV, Alignment);
2774 
2775   ConstantEmitter Emitter(*this);
2776   llvm::Constant *Init = Emitter.emitForInitializer(
2777         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2778 
2779   if (!Init) {
2780     ErrorUnsupported(TPO, "template parameter object");
2781     return ConstantAddress::invalid();
2782   }
2783 
2784   auto *GV = new llvm::GlobalVariable(
2785       getModule(), Init->getType(),
2786       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2787   if (supportsCOMDAT())
2788     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2789   Emitter.finalize(GV);
2790 
2791   return ConstantAddress(GV, Alignment);
2792 }
2793 
2794 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2795   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2796   assert(AA && "No alias?");
2797 
2798   CharUnits Alignment = getContext().getDeclAlign(VD);
2799   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2800 
2801   // See if there is already something with the target's name in the module.
2802   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2803   if (Entry) {
2804     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2805     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2806     return ConstantAddress(Ptr, Alignment);
2807   }
2808 
2809   llvm::Constant *Aliasee;
2810   if (isa<llvm::FunctionType>(DeclTy))
2811     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2812                                       GlobalDecl(cast<FunctionDecl>(VD)),
2813                                       /*ForVTable=*/false);
2814   else
2815     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, 0, nullptr);
2816 
2817   auto *F = cast<llvm::GlobalValue>(Aliasee);
2818   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2819   WeakRefReferences.insert(F);
2820 
2821   return ConstantAddress(Aliasee, Alignment);
2822 }
2823 
2824 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2825   const auto *Global = cast<ValueDecl>(GD.getDecl());
2826 
2827   // Weak references don't produce any output by themselves.
2828   if (Global->hasAttr<WeakRefAttr>())
2829     return;
2830 
2831   // If this is an alias definition (which otherwise looks like a declaration)
2832   // emit it now.
2833   if (Global->hasAttr<AliasAttr>())
2834     return EmitAliasDefinition(GD);
2835 
2836   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2837   if (Global->hasAttr<IFuncAttr>())
2838     return emitIFuncDefinition(GD);
2839 
2840   // If this is a cpu_dispatch multiversion function, emit the resolver.
2841   if (Global->hasAttr<CPUDispatchAttr>())
2842     return emitCPUDispatchDefinition(GD);
2843 
2844   // If this is CUDA, be selective about which declarations we emit.
2845   if (LangOpts.CUDA) {
2846     if (LangOpts.CUDAIsDevice) {
2847       if (!Global->hasAttr<CUDADeviceAttr>() &&
2848           !Global->hasAttr<CUDAGlobalAttr>() &&
2849           !Global->hasAttr<CUDAConstantAttr>() &&
2850           !Global->hasAttr<CUDASharedAttr>() &&
2851           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2852           !Global->getType()->isCUDADeviceBuiltinTextureType())
2853         return;
2854     } else {
2855       // We need to emit host-side 'shadows' for all global
2856       // device-side variables because the CUDA runtime needs their
2857       // size and host-side address in order to provide access to
2858       // their device-side incarnations.
2859 
2860       // So device-only functions are the only things we skip.
2861       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2862           Global->hasAttr<CUDADeviceAttr>())
2863         return;
2864 
2865       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2866              "Expected Variable or Function");
2867     }
2868   }
2869 
2870   if (LangOpts.OpenMP) {
2871     // If this is OpenMP, check if it is legal to emit this global normally.
2872     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2873       return;
2874     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2875       if (MustBeEmitted(Global))
2876         EmitOMPDeclareReduction(DRD);
2877       return;
2878     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2879       if (MustBeEmitted(Global))
2880         EmitOMPDeclareMapper(DMD);
2881       return;
2882     }
2883   }
2884 
2885   // Ignore declarations, they will be emitted on their first use.
2886   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2887     // Forward declarations are emitted lazily on first use.
2888     if (!FD->doesThisDeclarationHaveABody()) {
2889       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2890         return;
2891 
2892       StringRef MangledName = getMangledName(GD);
2893 
2894       // Compute the function info and LLVM type.
2895       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2896       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2897 
2898       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2899                               /*DontDefer=*/false);
2900       return;
2901     }
2902   } else {
2903     const auto *VD = cast<VarDecl>(Global);
2904     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2905     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2906         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2907       if (LangOpts.OpenMP) {
2908         // Emit declaration of the must-be-emitted declare target variable.
2909         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2910                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2911           bool UnifiedMemoryEnabled =
2912               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2913           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2914               !UnifiedMemoryEnabled) {
2915             (void)GetAddrOfGlobalVar(VD);
2916           } else {
2917             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2918                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2919                      UnifiedMemoryEnabled)) &&
2920                    "Link clause or to clause with unified memory expected.");
2921             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2922           }
2923 
2924           return;
2925         }
2926       }
2927       // If this declaration may have caused an inline variable definition to
2928       // change linkage, make sure that it's emitted.
2929       if (Context.getInlineVariableDefinitionKind(VD) ==
2930           ASTContext::InlineVariableDefinitionKind::Strong)
2931         GetAddrOfGlobalVar(VD);
2932       return;
2933     }
2934   }
2935 
2936   // Defer code generation to first use when possible, e.g. if this is an inline
2937   // function. If the global must always be emitted, do it eagerly if possible
2938   // to benefit from cache locality.
2939   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2940     // Emit the definition if it can't be deferred.
2941     EmitGlobalDefinition(GD);
2942     return;
2943   }
2944 
2945   // If we're deferring emission of a C++ variable with an
2946   // initializer, remember the order in which it appeared in the file.
2947   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2948       cast<VarDecl>(Global)->hasInit()) {
2949     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2950     CXXGlobalInits.push_back(nullptr);
2951   }
2952 
2953   StringRef MangledName = getMangledName(GD);
2954   if (GetGlobalValue(MangledName) != nullptr) {
2955     // The value has already been used and should therefore be emitted.
2956     addDeferredDeclToEmit(GD);
2957   } else if (MustBeEmitted(Global)) {
2958     // The value must be emitted, but cannot be emitted eagerly.
2959     assert(!MayBeEmittedEagerly(Global));
2960     addDeferredDeclToEmit(GD);
2961   } else {
2962     // Otherwise, remember that we saw a deferred decl with this name.  The
2963     // first use of the mangled name will cause it to move into
2964     // DeferredDeclsToEmit.
2965     DeferredDecls[MangledName] = GD;
2966   }
2967 }
2968 
2969 // Check if T is a class type with a destructor that's not dllimport.
2970 static bool HasNonDllImportDtor(QualType T) {
2971   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2972     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2973       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2974         return true;
2975 
2976   return false;
2977 }
2978 
2979 namespace {
2980   struct FunctionIsDirectlyRecursive
2981       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2982     const StringRef Name;
2983     const Builtin::Context &BI;
2984     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2985         : Name(N), BI(C) {}
2986 
2987     bool VisitCallExpr(const CallExpr *E) {
2988       const FunctionDecl *FD = E->getDirectCallee();
2989       if (!FD)
2990         return false;
2991       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2992       if (Attr && Name == Attr->getLabel())
2993         return true;
2994       unsigned BuiltinID = FD->getBuiltinID();
2995       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2996         return false;
2997       StringRef BuiltinName = BI.getName(BuiltinID);
2998       if (BuiltinName.startswith("__builtin_") &&
2999           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3000         return true;
3001       }
3002       return false;
3003     }
3004 
3005     bool VisitStmt(const Stmt *S) {
3006       for (const Stmt *Child : S->children())
3007         if (Child && this->Visit(Child))
3008           return true;
3009       return false;
3010     }
3011   };
3012 
3013   // Make sure we're not referencing non-imported vars or functions.
3014   struct DLLImportFunctionVisitor
3015       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3016     bool SafeToInline = true;
3017 
3018     bool shouldVisitImplicitCode() const { return true; }
3019 
3020     bool VisitVarDecl(VarDecl *VD) {
3021       if (VD->getTLSKind()) {
3022         // A thread-local variable cannot be imported.
3023         SafeToInline = false;
3024         return SafeToInline;
3025       }
3026 
3027       // A variable definition might imply a destructor call.
3028       if (VD->isThisDeclarationADefinition())
3029         SafeToInline = !HasNonDllImportDtor(VD->getType());
3030 
3031       return SafeToInline;
3032     }
3033 
3034     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3035       if (const auto *D = E->getTemporary()->getDestructor())
3036         SafeToInline = D->hasAttr<DLLImportAttr>();
3037       return SafeToInline;
3038     }
3039 
3040     bool VisitDeclRefExpr(DeclRefExpr *E) {
3041       ValueDecl *VD = E->getDecl();
3042       if (isa<FunctionDecl>(VD))
3043         SafeToInline = VD->hasAttr<DLLImportAttr>();
3044       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3045         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3046       return SafeToInline;
3047     }
3048 
3049     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3050       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3051       return SafeToInline;
3052     }
3053 
3054     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3055       CXXMethodDecl *M = E->getMethodDecl();
3056       if (!M) {
3057         // Call through a pointer to member function. This is safe to inline.
3058         SafeToInline = true;
3059       } else {
3060         SafeToInline = M->hasAttr<DLLImportAttr>();
3061       }
3062       return SafeToInline;
3063     }
3064 
3065     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3066       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3067       return SafeToInline;
3068     }
3069 
3070     bool VisitCXXNewExpr(CXXNewExpr *E) {
3071       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3072       return SafeToInline;
3073     }
3074   };
3075 }
3076 
3077 // isTriviallyRecursive - Check if this function calls another
3078 // decl that, because of the asm attribute or the other decl being a builtin,
3079 // ends up pointing to itself.
3080 bool
3081 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3082   StringRef Name;
3083   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3084     // asm labels are a special kind of mangling we have to support.
3085     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3086     if (!Attr)
3087       return false;
3088     Name = Attr->getLabel();
3089   } else {
3090     Name = FD->getName();
3091   }
3092 
3093   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3094   const Stmt *Body = FD->getBody();
3095   return Body ? Walker.Visit(Body) : false;
3096 }
3097 
3098 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3099   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3100     return true;
3101   const auto *F = cast<FunctionDecl>(GD.getDecl());
3102   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3103     return false;
3104 
3105   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3106     // Check whether it would be safe to inline this dllimport function.
3107     DLLImportFunctionVisitor Visitor;
3108     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3109     if (!Visitor.SafeToInline)
3110       return false;
3111 
3112     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3113       // Implicit destructor invocations aren't captured in the AST, so the
3114       // check above can't see them. Check for them manually here.
3115       for (const Decl *Member : Dtor->getParent()->decls())
3116         if (isa<FieldDecl>(Member))
3117           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3118             return false;
3119       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3120         if (HasNonDllImportDtor(B.getType()))
3121           return false;
3122     }
3123   }
3124 
3125   // PR9614. Avoid cases where the source code is lying to us. An available
3126   // externally function should have an equivalent function somewhere else,
3127   // but a function that calls itself through asm label/`__builtin_` trickery is
3128   // clearly not equivalent to the real implementation.
3129   // This happens in glibc's btowc and in some configure checks.
3130   return !isTriviallyRecursive(F);
3131 }
3132 
3133 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3134   return CodeGenOpts.OptimizationLevel > 0;
3135 }
3136 
3137 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3138                                                        llvm::GlobalValue *GV) {
3139   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3140 
3141   if (FD->isCPUSpecificMultiVersion()) {
3142     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3143     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3144       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3145     // Requires multiple emits.
3146   } else
3147     EmitGlobalFunctionDefinition(GD, GV);
3148 }
3149 
3150 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3151   const auto *D = cast<ValueDecl>(GD.getDecl());
3152 
3153   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3154                                  Context.getSourceManager(),
3155                                  "Generating code for declaration");
3156 
3157   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3158     // At -O0, don't generate IR for functions with available_externally
3159     // linkage.
3160     if (!shouldEmitFunction(GD))
3161       return;
3162 
3163     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3164       std::string Name;
3165       llvm::raw_string_ostream OS(Name);
3166       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3167                                /*Qualified=*/true);
3168       return Name;
3169     });
3170 
3171     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3172       // Make sure to emit the definition(s) before we emit the thunks.
3173       // This is necessary for the generation of certain thunks.
3174       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3175         ABI->emitCXXStructor(GD);
3176       else if (FD->isMultiVersion())
3177         EmitMultiVersionFunctionDefinition(GD, GV);
3178       else
3179         EmitGlobalFunctionDefinition(GD, GV);
3180 
3181       if (Method->isVirtual())
3182         getVTables().EmitThunks(GD);
3183 
3184       return;
3185     }
3186 
3187     if (FD->isMultiVersion())
3188       return EmitMultiVersionFunctionDefinition(GD, GV);
3189     return EmitGlobalFunctionDefinition(GD, GV);
3190   }
3191 
3192   if (const auto *VD = dyn_cast<VarDecl>(D))
3193     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3194 
3195   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3196 }
3197 
3198 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3199                                                       llvm::Function *NewFn);
3200 
3201 static unsigned
3202 TargetMVPriority(const TargetInfo &TI,
3203                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3204   unsigned Priority = 0;
3205   for (StringRef Feat : RO.Conditions.Features)
3206     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3207 
3208   if (!RO.Conditions.Architecture.empty())
3209     Priority = std::max(
3210         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3211   return Priority;
3212 }
3213 
3214 void CodeGenModule::emitMultiVersionFunctions() {
3215   std::vector<GlobalDecl> MVFuncsToEmit;
3216   MultiVersionFuncs.swap(MVFuncsToEmit);
3217   for (GlobalDecl GD : MVFuncsToEmit) {
3218     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3219     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3220     getContext().forEachMultiversionedFunctionVersion(
3221         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3222           GlobalDecl CurGD{
3223               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3224           StringRef MangledName = getMangledName(CurGD);
3225           llvm::Constant *Func = GetGlobalValue(MangledName);
3226           if (!Func) {
3227             if (CurFD->isDefined()) {
3228               EmitGlobalFunctionDefinition(CurGD, nullptr);
3229               Func = GetGlobalValue(MangledName);
3230             } else {
3231               const CGFunctionInfo &FI =
3232                   getTypes().arrangeGlobalDeclaration(GD);
3233               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3234               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3235                                        /*DontDefer=*/false, ForDefinition);
3236             }
3237             assert(Func && "This should have just been created");
3238           }
3239 
3240           const auto *TA = CurFD->getAttr<TargetAttr>();
3241           llvm::SmallVector<StringRef, 8> Feats;
3242           TA->getAddedFeatures(Feats);
3243 
3244           Options.emplace_back(cast<llvm::Function>(Func),
3245                                TA->getArchitecture(), Feats);
3246         });
3247 
3248     llvm::Function *ResolverFunc;
3249     const TargetInfo &TI = getTarget();
3250 
3251     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3252       ResolverFunc = cast<llvm::Function>(
3253           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3254       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3255     } else {
3256       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3257     }
3258 
3259     if (supportsCOMDAT())
3260       ResolverFunc->setComdat(
3261           getModule().getOrInsertComdat(ResolverFunc->getName()));
3262 
3263     llvm::stable_sort(
3264         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3265                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3266           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3267         });
3268     CodeGenFunction CGF(*this);
3269     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3270   }
3271 
3272   // Ensure that any additions to the deferred decls list caused by emitting a
3273   // variant are emitted.  This can happen when the variant itself is inline and
3274   // calls a function without linkage.
3275   if (!MVFuncsToEmit.empty())
3276     EmitDeferred();
3277 
3278   // Ensure that any additions to the multiversion funcs list from either the
3279   // deferred decls or the multiversion functions themselves are emitted.
3280   if (!MultiVersionFuncs.empty())
3281     emitMultiVersionFunctions();
3282 }
3283 
3284 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3285   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3286   assert(FD && "Not a FunctionDecl?");
3287   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3288   assert(DD && "Not a cpu_dispatch Function?");
3289   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3290 
3291   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3292     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3293     DeclTy = getTypes().GetFunctionType(FInfo);
3294   }
3295 
3296   StringRef ResolverName = getMangledName(GD);
3297 
3298   llvm::Type *ResolverType;
3299   GlobalDecl ResolverGD;
3300   if (getTarget().supportsIFunc())
3301     ResolverType = llvm::FunctionType::get(
3302         llvm::PointerType::get(DeclTy,
3303                                Context.getTargetAddressSpace(FD->getType())),
3304         false);
3305   else {
3306     ResolverType = DeclTy;
3307     ResolverGD = GD;
3308   }
3309 
3310   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3311       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3312   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3313   if (supportsCOMDAT())
3314     ResolverFunc->setComdat(
3315         getModule().getOrInsertComdat(ResolverFunc->getName()));
3316 
3317   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3318   const TargetInfo &Target = getTarget();
3319   unsigned Index = 0;
3320   for (const IdentifierInfo *II : DD->cpus()) {
3321     // Get the name of the target function so we can look it up/create it.
3322     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3323                               getCPUSpecificMangling(*this, II->getName());
3324 
3325     llvm::Constant *Func = GetGlobalValue(MangledName);
3326 
3327     if (!Func) {
3328       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3329       if (ExistingDecl.getDecl() &&
3330           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3331         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3332         Func = GetGlobalValue(MangledName);
3333       } else {
3334         if (!ExistingDecl.getDecl())
3335           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3336 
3337       Func = GetOrCreateLLVMFunction(
3338           MangledName, DeclTy, ExistingDecl,
3339           /*ForVTable=*/false, /*DontDefer=*/true,
3340           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3341       }
3342     }
3343 
3344     llvm::SmallVector<StringRef, 32> Features;
3345     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3346     llvm::transform(Features, Features.begin(),
3347                     [](StringRef Str) { return Str.substr(1); });
3348     Features.erase(std::remove_if(
3349         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3350           return !Target.validateCpuSupports(Feat);
3351         }), Features.end());
3352     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3353     ++Index;
3354   }
3355 
3356   llvm::stable_sort(
3357       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3358                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3359         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3360                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3361       });
3362 
3363   // If the list contains multiple 'default' versions, such as when it contains
3364   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3365   // always run on at least a 'pentium'). We do this by deleting the 'least
3366   // advanced' (read, lowest mangling letter).
3367   while (Options.size() > 1 &&
3368          CodeGenFunction::GetX86CpuSupportsMask(
3369              (Options.end() - 2)->Conditions.Features) == 0) {
3370     StringRef LHSName = (Options.end() - 2)->Function->getName();
3371     StringRef RHSName = (Options.end() - 1)->Function->getName();
3372     if (LHSName.compare(RHSName) < 0)
3373       Options.erase(Options.end() - 2);
3374     else
3375       Options.erase(Options.end() - 1);
3376   }
3377 
3378   CodeGenFunction CGF(*this);
3379   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3380 
3381   if (getTarget().supportsIFunc()) {
3382     std::string AliasName = getMangledNameImpl(
3383         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3384     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3385     if (!AliasFunc) {
3386       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3387           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3388           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3389       auto *GA = llvm::GlobalAlias::create(
3390          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3391       GA->setLinkage(llvm::Function::WeakODRLinkage);
3392       SetCommonAttributes(GD, GA);
3393     }
3394   }
3395 }
3396 
3397 /// If a dispatcher for the specified mangled name is not in the module, create
3398 /// and return an llvm Function with the specified type.
3399 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3400     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3401   std::string MangledName =
3402       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3403 
3404   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3405   // a separate resolver).
3406   std::string ResolverName = MangledName;
3407   if (getTarget().supportsIFunc())
3408     ResolverName += ".ifunc";
3409   else if (FD->isTargetMultiVersion())
3410     ResolverName += ".resolver";
3411 
3412   // If this already exists, just return that one.
3413   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3414     return ResolverGV;
3415 
3416   // Since this is the first time we've created this IFunc, make sure
3417   // that we put this multiversioned function into the list to be
3418   // replaced later if necessary (target multiversioning only).
3419   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3420     MultiVersionFuncs.push_back(GD);
3421 
3422   if (getTarget().supportsIFunc()) {
3423     llvm::Type *ResolverType = llvm::FunctionType::get(
3424         llvm::PointerType::get(
3425             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3426         false);
3427     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3428         MangledName + ".resolver", ResolverType, GlobalDecl{},
3429         /*ForVTable=*/false);
3430     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3431         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3432     GIF->setName(ResolverName);
3433     SetCommonAttributes(FD, GIF);
3434 
3435     return GIF;
3436   }
3437 
3438   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3439       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3440   assert(isa<llvm::GlobalValue>(Resolver) &&
3441          "Resolver should be created for the first time");
3442   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3443   return Resolver;
3444 }
3445 
3446 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3447 /// module, create and return an llvm Function with the specified type. If there
3448 /// is something in the module with the specified name, return it potentially
3449 /// bitcasted to the right type.
3450 ///
3451 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3452 /// to set the attributes on the function when it is first created.
3453 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3454     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3455     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3456     ForDefinition_t IsForDefinition) {
3457   const Decl *D = GD.getDecl();
3458 
3459   // Any attempts to use a MultiVersion function should result in retrieving
3460   // the iFunc instead. Name Mangling will handle the rest of the changes.
3461   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3462     // For the device mark the function as one that should be emitted.
3463     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3464         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3465         !DontDefer && !IsForDefinition) {
3466       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3467         GlobalDecl GDDef;
3468         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3469           GDDef = GlobalDecl(CD, GD.getCtorType());
3470         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3471           GDDef = GlobalDecl(DD, GD.getDtorType());
3472         else
3473           GDDef = GlobalDecl(FDDef);
3474         EmitGlobal(GDDef);
3475       }
3476     }
3477 
3478     if (FD->isMultiVersion()) {
3479       if (FD->hasAttr<TargetAttr>())
3480         UpdateMultiVersionNames(GD, FD);
3481       if (!IsForDefinition)
3482         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3483     }
3484   }
3485 
3486   // Lookup the entry, lazily creating it if necessary.
3487   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3488   if (Entry) {
3489     if (WeakRefReferences.erase(Entry)) {
3490       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3491       if (FD && !FD->hasAttr<WeakAttr>())
3492         Entry->setLinkage(llvm::Function::ExternalLinkage);
3493     }
3494 
3495     // Handle dropped DLL attributes.
3496     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3497       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3498       setDSOLocal(Entry);
3499     }
3500 
3501     // If there are two attempts to define the same mangled name, issue an
3502     // error.
3503     if (IsForDefinition && !Entry->isDeclaration()) {
3504       GlobalDecl OtherGD;
3505       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3506       // to make sure that we issue an error only once.
3507       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3508           (GD.getCanonicalDecl().getDecl() !=
3509            OtherGD.getCanonicalDecl().getDecl()) &&
3510           DiagnosedConflictingDefinitions.insert(GD).second) {
3511         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3512             << MangledName;
3513         getDiags().Report(OtherGD.getDecl()->getLocation(),
3514                           diag::note_previous_definition);
3515       }
3516     }
3517 
3518     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3519         (Entry->getValueType() == Ty)) {
3520       return Entry;
3521     }
3522 
3523     // Make sure the result is of the correct type.
3524     // (If function is requested for a definition, we always need to create a new
3525     // function, not just return a bitcast.)
3526     if (!IsForDefinition)
3527       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3528   }
3529 
3530   // This function doesn't have a complete type (for example, the return
3531   // type is an incomplete struct). Use a fake type instead, and make
3532   // sure not to try to set attributes.
3533   bool IsIncompleteFunction = false;
3534 
3535   llvm::FunctionType *FTy;
3536   if (isa<llvm::FunctionType>(Ty)) {
3537     FTy = cast<llvm::FunctionType>(Ty);
3538   } else {
3539     FTy = llvm::FunctionType::get(VoidTy, false);
3540     IsIncompleteFunction = true;
3541   }
3542 
3543   llvm::Function *F =
3544       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3545                              Entry ? StringRef() : MangledName, &getModule());
3546 
3547   // If we already created a function with the same mangled name (but different
3548   // type) before, take its name and add it to the list of functions to be
3549   // replaced with F at the end of CodeGen.
3550   //
3551   // This happens if there is a prototype for a function (e.g. "int f()") and
3552   // then a definition of a different type (e.g. "int f(int x)").
3553   if (Entry) {
3554     F->takeName(Entry);
3555 
3556     // This might be an implementation of a function without a prototype, in
3557     // which case, try to do special replacement of calls which match the new
3558     // prototype.  The really key thing here is that we also potentially drop
3559     // arguments from the call site so as to make a direct call, which makes the
3560     // inliner happier and suppresses a number of optimizer warnings (!) about
3561     // dropping arguments.
3562     if (!Entry->use_empty()) {
3563       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3564       Entry->removeDeadConstantUsers();
3565     }
3566 
3567     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3568         F, Entry->getValueType()->getPointerTo());
3569     addGlobalValReplacement(Entry, BC);
3570   }
3571 
3572   assert(F->getName() == MangledName && "name was uniqued!");
3573   if (D)
3574     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3575   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3576     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3577     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3578   }
3579 
3580   if (!DontDefer) {
3581     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3582     // each other bottoming out with the base dtor.  Therefore we emit non-base
3583     // dtors on usage, even if there is no dtor definition in the TU.
3584     if (D && isa<CXXDestructorDecl>(D) &&
3585         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3586                                            GD.getDtorType()))
3587       addDeferredDeclToEmit(GD);
3588 
3589     // This is the first use or definition of a mangled name.  If there is a
3590     // deferred decl with this name, remember that we need to emit it at the end
3591     // of the file.
3592     auto DDI = DeferredDecls.find(MangledName);
3593     if (DDI != DeferredDecls.end()) {
3594       // Move the potentially referenced deferred decl to the
3595       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3596       // don't need it anymore).
3597       addDeferredDeclToEmit(DDI->second);
3598       DeferredDecls.erase(DDI);
3599 
3600       // Otherwise, there are cases we have to worry about where we're
3601       // using a declaration for which we must emit a definition but where
3602       // we might not find a top-level definition:
3603       //   - member functions defined inline in their classes
3604       //   - friend functions defined inline in some class
3605       //   - special member functions with implicit definitions
3606       // If we ever change our AST traversal to walk into class methods,
3607       // this will be unnecessary.
3608       //
3609       // We also don't emit a definition for a function if it's going to be an
3610       // entry in a vtable, unless it's already marked as used.
3611     } else if (getLangOpts().CPlusPlus && D) {
3612       // Look for a declaration that's lexically in a record.
3613       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3614            FD = FD->getPreviousDecl()) {
3615         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3616           if (FD->doesThisDeclarationHaveABody()) {
3617             addDeferredDeclToEmit(GD.getWithDecl(FD));
3618             break;
3619           }
3620         }
3621       }
3622     }
3623   }
3624 
3625   // Make sure the result is of the requested type.
3626   if (!IsIncompleteFunction) {
3627     assert(F->getFunctionType() == Ty);
3628     return F;
3629   }
3630 
3631   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3632   return llvm::ConstantExpr::getBitCast(F, PTy);
3633 }
3634 
3635 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3636 /// non-null, then this function will use the specified type if it has to
3637 /// create it (this occurs when we see a definition of the function).
3638 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3639                                                  llvm::Type *Ty,
3640                                                  bool ForVTable,
3641                                                  bool DontDefer,
3642                                               ForDefinition_t IsForDefinition) {
3643   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3644          "consteval function should never be emitted");
3645   // If there was no specific requested type, just convert it now.
3646   if (!Ty) {
3647     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3648     Ty = getTypes().ConvertType(FD->getType());
3649   }
3650 
3651   // Devirtualized destructor calls may come through here instead of via
3652   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3653   // of the complete destructor when necessary.
3654   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3655     if (getTarget().getCXXABI().isMicrosoft() &&
3656         GD.getDtorType() == Dtor_Complete &&
3657         DD->getParent()->getNumVBases() == 0)
3658       GD = GlobalDecl(DD, Dtor_Base);
3659   }
3660 
3661   StringRef MangledName = getMangledName(GD);
3662   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3663                                     /*IsThunk=*/false, llvm::AttributeList(),
3664                                     IsForDefinition);
3665   // Returns kernel handle for HIP kernel stub function.
3666   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3667       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3668     auto *Handle = getCUDARuntime().getKernelHandle(
3669         cast<llvm::Function>(F->stripPointerCasts()), GD);
3670     if (IsForDefinition)
3671       return F;
3672     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3673   }
3674   return F;
3675 }
3676 
3677 static const FunctionDecl *
3678 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3679   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3680   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3681 
3682   IdentifierInfo &CII = C.Idents.get(Name);
3683   for (const auto *Result : DC->lookup(&CII))
3684     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3685       return FD;
3686 
3687   if (!C.getLangOpts().CPlusPlus)
3688     return nullptr;
3689 
3690   // Demangle the premangled name from getTerminateFn()
3691   IdentifierInfo &CXXII =
3692       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3693           ? C.Idents.get("terminate")
3694           : C.Idents.get(Name);
3695 
3696   for (const auto &N : {"__cxxabiv1", "std"}) {
3697     IdentifierInfo &NS = C.Idents.get(N);
3698     for (const auto *Result : DC->lookup(&NS)) {
3699       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3700       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
3701         for (const auto *Result : LSD->lookup(&NS))
3702           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3703             break;
3704 
3705       if (ND)
3706         for (const auto *Result : ND->lookup(&CXXII))
3707           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3708             return FD;
3709     }
3710   }
3711 
3712   return nullptr;
3713 }
3714 
3715 /// CreateRuntimeFunction - Create a new runtime function with the specified
3716 /// type and name.
3717 llvm::FunctionCallee
3718 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3719                                      llvm::AttributeList ExtraAttrs, bool Local,
3720                                      bool AssumeConvergent) {
3721   if (AssumeConvergent) {
3722     ExtraAttrs =
3723         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3724                                 llvm::Attribute::Convergent);
3725   }
3726 
3727   llvm::Constant *C =
3728       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3729                               /*DontDefer=*/false, /*IsThunk=*/false,
3730                               ExtraAttrs);
3731 
3732   if (auto *F = dyn_cast<llvm::Function>(C)) {
3733     if (F->empty()) {
3734       F->setCallingConv(getRuntimeCC());
3735 
3736       // In Windows Itanium environments, try to mark runtime functions
3737       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3738       // will link their standard library statically or dynamically. Marking
3739       // functions imported when they are not imported can cause linker errors
3740       // and warnings.
3741       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3742           !getCodeGenOpts().LTOVisibilityPublicStd) {
3743         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3744         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3745           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3746           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3747         }
3748       }
3749       setDSOLocal(F);
3750     }
3751   }
3752 
3753   return {FTy, C};
3754 }
3755 
3756 /// isTypeConstant - Determine whether an object of this type can be emitted
3757 /// as a constant.
3758 ///
3759 /// If ExcludeCtor is true, the duration when the object's constructor runs
3760 /// will not be considered. The caller will need to verify that the object is
3761 /// not written to during its construction.
3762 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3763   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3764     return false;
3765 
3766   if (Context.getLangOpts().CPlusPlus) {
3767     if (const CXXRecordDecl *Record
3768           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3769       return ExcludeCtor && !Record->hasMutableFields() &&
3770              Record->hasTrivialDestructor();
3771   }
3772 
3773   return true;
3774 }
3775 
3776 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3777 /// create and return an llvm GlobalVariable with the specified type and address
3778 /// space. If there is something in the module with the specified name, return
3779 /// it potentially bitcasted to the right type.
3780 ///
3781 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3782 /// to set the attributes on the global when it is first created.
3783 ///
3784 /// If IsForDefinition is true, it is guaranteed that an actual global with
3785 /// type Ty will be returned, not conversion of a variable with the same
3786 /// mangled name but some other type.
3787 llvm::Constant *
3788 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
3789                                      unsigned AddrSpace, const VarDecl *D,
3790                                      ForDefinition_t IsForDefinition) {
3791   // Lookup the entry, lazily creating it if necessary.
3792   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3793   if (Entry) {
3794     if (WeakRefReferences.erase(Entry)) {
3795       if (D && !D->hasAttr<WeakAttr>())
3796         Entry->setLinkage(llvm::Function::ExternalLinkage);
3797     }
3798 
3799     // Handle dropped DLL attributes.
3800     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3801       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3802 
3803     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3804       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3805 
3806     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == AddrSpace)
3807       return Entry;
3808 
3809     // If there are two attempts to define the same mangled name, issue an
3810     // error.
3811     if (IsForDefinition && !Entry->isDeclaration()) {
3812       GlobalDecl OtherGD;
3813       const VarDecl *OtherD;
3814 
3815       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3816       // to make sure that we issue an error only once.
3817       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3818           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3819           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3820           OtherD->hasInit() &&
3821           DiagnosedConflictingDefinitions.insert(D).second) {
3822         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3823             << MangledName;
3824         getDiags().Report(OtherGD.getDecl()->getLocation(),
3825                           diag::note_previous_definition);
3826       }
3827     }
3828 
3829     // Make sure the result is of the correct type.
3830     if (Entry->getType()->getAddressSpace() != AddrSpace) {
3831       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
3832                                                   Ty->getPointerTo(AddrSpace));
3833     }
3834 
3835     // (If global is requested for a definition, we always need to create a new
3836     // global, not just return a bitcast.)
3837     if (!IsForDefinition)
3838       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(AddrSpace));
3839   }
3840 
3841   auto DAddrSpace = GetGlobalVarAddressSpace(D);
3842   auto TargetAddrSpace = getContext().getTargetAddressSpace(DAddrSpace);
3843 
3844   auto *GV = new llvm::GlobalVariable(
3845       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
3846       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
3847       TargetAddrSpace);
3848 
3849   // If we already created a global with the same mangled name (but different
3850   // type) before, take its name and remove it from its parent.
3851   if (Entry) {
3852     GV->takeName(Entry);
3853 
3854     if (!Entry->use_empty()) {
3855       llvm::Constant *NewPtrForOldDecl =
3856           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3857       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3858     }
3859 
3860     Entry->eraseFromParent();
3861   }
3862 
3863   // This is the first use or definition of a mangled name.  If there is a
3864   // deferred decl with this name, remember that we need to emit it at the end
3865   // of the file.
3866   auto DDI = DeferredDecls.find(MangledName);
3867   if (DDI != DeferredDecls.end()) {
3868     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3869     // list, and remove it from DeferredDecls (since we don't need it anymore).
3870     addDeferredDeclToEmit(DDI->second);
3871     DeferredDecls.erase(DDI);
3872   }
3873 
3874   // Handle things which are present even on external declarations.
3875   if (D) {
3876     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3877       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3878 
3879     // FIXME: This code is overly simple and should be merged with other global
3880     // handling.
3881     GV->setConstant(isTypeConstant(D->getType(), false));
3882 
3883     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3884 
3885     setLinkageForGV(GV, D);
3886 
3887     if (D->getTLSKind()) {
3888       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3889         CXXThreadLocals.push_back(D);
3890       setTLSMode(GV, *D);
3891     }
3892 
3893     setGVProperties(GV, D);
3894 
3895     // If required by the ABI, treat declarations of static data members with
3896     // inline initializers as definitions.
3897     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3898       EmitGlobalVarDefinition(D);
3899     }
3900 
3901     // Emit section information for extern variables.
3902     if (D->hasExternalStorage()) {
3903       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3904         GV->setSection(SA->getName());
3905     }
3906 
3907     // Handle XCore specific ABI requirements.
3908     if (getTriple().getArch() == llvm::Triple::xcore &&
3909         D->getLanguageLinkage() == CLanguageLinkage &&
3910         D->getType().isConstant(Context) &&
3911         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3912       GV->setSection(".cp.rodata");
3913 
3914     // Check if we a have a const declaration with an initializer, we may be
3915     // able to emit it as available_externally to expose it's value to the
3916     // optimizer.
3917     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3918         D->getType().isConstQualified() && !GV->hasInitializer() &&
3919         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3920       const auto *Record =
3921           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3922       bool HasMutableFields = Record && Record->hasMutableFields();
3923       if (!HasMutableFields) {
3924         const VarDecl *InitDecl;
3925         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3926         if (InitExpr) {
3927           ConstantEmitter emitter(*this);
3928           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3929           if (Init) {
3930             auto *InitType = Init->getType();
3931             if (GV->getValueType() != InitType) {
3932               // The type of the initializer does not match the definition.
3933               // This happens when an initializer has a different type from
3934               // the type of the global (because of padding at the end of a
3935               // structure for instance).
3936               GV->setName(StringRef());
3937               // Make a new global with the correct type, this is now guaranteed
3938               // to work.
3939               auto *NewGV = cast<llvm::GlobalVariable>(
3940                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3941                       ->stripPointerCasts());
3942 
3943               // Erase the old global, since it is no longer used.
3944               GV->eraseFromParent();
3945               GV = NewGV;
3946             } else {
3947               GV->setInitializer(Init);
3948               GV->setConstant(true);
3949               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3950             }
3951             emitter.finalize(GV);
3952           }
3953         }
3954       }
3955     }
3956   }
3957 
3958   if (GV->isDeclaration()) {
3959     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3960     // External HIP managed variables needed to be recorded for transformation
3961     // in both device and host compilations.
3962     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
3963         D->hasExternalStorage())
3964       getCUDARuntime().handleVarRegistration(D, *GV);
3965   }
3966 
3967   LangAS ExpectedAS =
3968       D ? D->getType().getAddressSpace()
3969         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3970   assert(getContext().getTargetAddressSpace(ExpectedAS) == AddrSpace);
3971   if (DAddrSpace != ExpectedAS) {
3972     return getTargetCodeGenInfo().performAddrSpaceCast(
3973         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(AddrSpace));
3974   }
3975 
3976   return GV;
3977 }
3978 
3979 llvm::Constant *
3980 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3981   const Decl *D = GD.getDecl();
3982 
3983   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3984     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3985                                 /*DontDefer=*/false, IsForDefinition);
3986 
3987   if (isa<CXXMethodDecl>(D)) {
3988     auto FInfo =
3989         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
3990     auto Ty = getTypes().GetFunctionType(*FInfo);
3991     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3992                              IsForDefinition);
3993   }
3994 
3995   if (isa<FunctionDecl>(D)) {
3996     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3997     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3998     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3999                              IsForDefinition);
4000   }
4001 
4002   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4003 }
4004 
4005 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4006     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4007     unsigned Alignment) {
4008   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4009   llvm::GlobalVariable *OldGV = nullptr;
4010 
4011   if (GV) {
4012     // Check if the variable has the right type.
4013     if (GV->getValueType() == Ty)
4014       return GV;
4015 
4016     // Because C++ name mangling, the only way we can end up with an already
4017     // existing global with the same name is if it has been declared extern "C".
4018     assert(GV->isDeclaration() && "Declaration has wrong type!");
4019     OldGV = GV;
4020   }
4021 
4022   // Create a new variable.
4023   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4024                                 Linkage, nullptr, Name);
4025 
4026   if (OldGV) {
4027     // Replace occurrences of the old variable if needed.
4028     GV->takeName(OldGV);
4029 
4030     if (!OldGV->use_empty()) {
4031       llvm::Constant *NewPtrForOldDecl =
4032       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4033       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4034     }
4035 
4036     OldGV->eraseFromParent();
4037   }
4038 
4039   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4040       !GV->hasAvailableExternallyLinkage())
4041     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4042 
4043   GV->setAlignment(llvm::MaybeAlign(Alignment));
4044 
4045   return GV;
4046 }
4047 
4048 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4049 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4050 /// then it will be created with the specified type instead of whatever the
4051 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4052 /// that an actual global with type Ty will be returned, not conversion of a
4053 /// variable with the same mangled name but some other type.
4054 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4055                                                   llvm::Type *Ty,
4056                                            ForDefinition_t IsForDefinition) {
4057   assert(D->hasGlobalStorage() && "Not a global variable");
4058   QualType ASTTy = D->getType();
4059   if (!Ty)
4060     Ty = getTypes().ConvertTypeForMem(ASTTy);
4061 
4062   StringRef MangledName = getMangledName(D);
4063   return GetOrCreateLLVMGlobal(MangledName, Ty,
4064                                getContext().getTargetAddressSpace(ASTTy), D,
4065                                IsForDefinition);
4066 }
4067 
4068 /// CreateRuntimeVariable - Create a new runtime global variable with the
4069 /// specified type and name.
4070 llvm::Constant *
4071 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4072                                      StringRef Name) {
4073   auto AddrSpace =
4074       getContext().getLangOpts().OpenCL
4075           ? getContext().getTargetAddressSpace(LangAS::opencl_global)
4076           : 0;
4077   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4078   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4079   return Ret;
4080 }
4081 
4082 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4083   assert(!D->getInit() && "Cannot emit definite definitions here!");
4084 
4085   StringRef MangledName = getMangledName(D);
4086   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4087 
4088   // We already have a definition, not declaration, with the same mangled name.
4089   // Emitting of declaration is not required (and actually overwrites emitted
4090   // definition).
4091   if (GV && !GV->isDeclaration())
4092     return;
4093 
4094   // If we have not seen a reference to this variable yet, place it into the
4095   // deferred declarations table to be emitted if needed later.
4096   if (!MustBeEmitted(D) && !GV) {
4097       DeferredDecls[MangledName] = D;
4098       return;
4099   }
4100 
4101   // The tentative definition is the only definition.
4102   EmitGlobalVarDefinition(D);
4103 }
4104 
4105 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4106   EmitExternalVarDeclaration(D);
4107 }
4108 
4109 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4110   return Context.toCharUnitsFromBits(
4111       getDataLayout().getTypeStoreSizeInBits(Ty));
4112 }
4113 
4114 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4115   LangAS AddrSpace = LangAS::Default;
4116   if (LangOpts.OpenCL) {
4117     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4118     assert(AddrSpace == LangAS::opencl_global ||
4119            AddrSpace == LangAS::opencl_global_device ||
4120            AddrSpace == LangAS::opencl_global_host ||
4121            AddrSpace == LangAS::opencl_constant ||
4122            AddrSpace == LangAS::opencl_local ||
4123            AddrSpace >= LangAS::FirstTargetAddressSpace);
4124     return AddrSpace;
4125   }
4126 
4127   if (LangOpts.SYCLIsDevice &&
4128       (!D || D->getType().getAddressSpace() == LangAS::Default))
4129     return LangAS::sycl_global;
4130 
4131   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4132     if (D && D->hasAttr<CUDAConstantAttr>())
4133       return LangAS::cuda_constant;
4134     else if (D && D->hasAttr<CUDASharedAttr>())
4135       return LangAS::cuda_shared;
4136     else if (D && D->hasAttr<CUDADeviceAttr>())
4137       return LangAS::cuda_device;
4138     else if (D && D->getType().isConstQualified())
4139       return LangAS::cuda_constant;
4140     else
4141       return LangAS::cuda_device;
4142   }
4143 
4144   if (LangOpts.OpenMP) {
4145     LangAS AS;
4146     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4147       return AS;
4148   }
4149   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4150 }
4151 
4152 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4153   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4154   if (LangOpts.OpenCL)
4155     return LangAS::opencl_constant;
4156   if (LangOpts.SYCLIsDevice)
4157     return LangAS::sycl_global;
4158   if (auto AS = getTarget().getConstantAddressSpace())
4159     return AS.getValue();
4160   return LangAS::Default;
4161 }
4162 
4163 // In address space agnostic languages, string literals are in default address
4164 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4165 // emitted in constant address space in LLVM IR. To be consistent with other
4166 // parts of AST, string literal global variables in constant address space
4167 // need to be casted to default address space before being put into address
4168 // map and referenced by other part of CodeGen.
4169 // In OpenCL, string literals are in constant address space in AST, therefore
4170 // they should not be casted to default address space.
4171 static llvm::Constant *
4172 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4173                                        llvm::GlobalVariable *GV) {
4174   llvm::Constant *Cast = GV;
4175   if (!CGM.getLangOpts().OpenCL) {
4176     auto AS = CGM.GetGlobalConstantAddressSpace();
4177     if (AS != LangAS::Default)
4178       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4179           CGM, GV, AS, LangAS::Default,
4180           GV->getValueType()->getPointerTo(
4181               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4182   }
4183   return Cast;
4184 }
4185 
4186 template<typename SomeDecl>
4187 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4188                                                llvm::GlobalValue *GV) {
4189   if (!getLangOpts().CPlusPlus)
4190     return;
4191 
4192   // Must have 'used' attribute, or else inline assembly can't rely on
4193   // the name existing.
4194   if (!D->template hasAttr<UsedAttr>())
4195     return;
4196 
4197   // Must have internal linkage and an ordinary name.
4198   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4199     return;
4200 
4201   // Must be in an extern "C" context. Entities declared directly within
4202   // a record are not extern "C" even if the record is in such a context.
4203   const SomeDecl *First = D->getFirstDecl();
4204   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4205     return;
4206 
4207   // OK, this is an internal linkage entity inside an extern "C" linkage
4208   // specification. Make a note of that so we can give it the "expected"
4209   // mangled name if nothing else is using that name.
4210   std::pair<StaticExternCMap::iterator, bool> R =
4211       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4212 
4213   // If we have multiple internal linkage entities with the same name
4214   // in extern "C" regions, none of them gets that name.
4215   if (!R.second)
4216     R.first->second = nullptr;
4217 }
4218 
4219 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4220   if (!CGM.supportsCOMDAT())
4221     return false;
4222 
4223   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
4224   // them being "merged" by the COMDAT Folding linker optimization.
4225   if (D.hasAttr<CUDAGlobalAttr>())
4226     return false;
4227 
4228   if (D.hasAttr<SelectAnyAttr>())
4229     return true;
4230 
4231   GVALinkage Linkage;
4232   if (auto *VD = dyn_cast<VarDecl>(&D))
4233     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4234   else
4235     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4236 
4237   switch (Linkage) {
4238   case GVA_Internal:
4239   case GVA_AvailableExternally:
4240   case GVA_StrongExternal:
4241     return false;
4242   case GVA_DiscardableODR:
4243   case GVA_StrongODR:
4244     return true;
4245   }
4246   llvm_unreachable("No such linkage");
4247 }
4248 
4249 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4250                                           llvm::GlobalObject &GO) {
4251   if (!shouldBeInCOMDAT(*this, D))
4252     return;
4253   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4254 }
4255 
4256 /// Pass IsTentative as true if you want to create a tentative definition.
4257 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4258                                             bool IsTentative) {
4259   // OpenCL global variables of sampler type are translated to function calls,
4260   // therefore no need to be translated.
4261   QualType ASTTy = D->getType();
4262   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4263     return;
4264 
4265   // If this is OpenMP device, check if it is legal to emit this global
4266   // normally.
4267   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4268       OpenMPRuntime->emitTargetGlobalVariable(D))
4269     return;
4270 
4271   llvm::Constant *Init = nullptr;
4272   bool NeedsGlobalCtor = false;
4273   bool NeedsGlobalDtor =
4274       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4275 
4276   const VarDecl *InitDecl;
4277   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4278 
4279   Optional<ConstantEmitter> emitter;
4280 
4281   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4282   // as part of their declaration."  Sema has already checked for
4283   // error cases, so we just need to set Init to UndefValue.
4284   bool IsCUDASharedVar =
4285       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4286   // Shadows of initialized device-side global variables are also left
4287   // undefined.
4288   // Managed Variables should be initialized on both host side and device side.
4289   bool IsCUDAShadowVar =
4290       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4291       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4292        D->hasAttr<CUDASharedAttr>());
4293   bool IsCUDADeviceShadowVar =
4294       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4295       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4296        D->getType()->isCUDADeviceBuiltinTextureType());
4297   if (getLangOpts().CUDA &&
4298       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4299     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4300   else if (D->hasAttr<LoaderUninitializedAttr>())
4301     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4302   else if (!InitExpr) {
4303     // This is a tentative definition; tentative definitions are
4304     // implicitly initialized with { 0 }.
4305     //
4306     // Note that tentative definitions are only emitted at the end of
4307     // a translation unit, so they should never have incomplete
4308     // type. In addition, EmitTentativeDefinition makes sure that we
4309     // never attempt to emit a tentative definition if a real one
4310     // exists. A use may still exists, however, so we still may need
4311     // to do a RAUW.
4312     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4313     Init = EmitNullConstant(D->getType());
4314   } else {
4315     initializedGlobalDecl = GlobalDecl(D);
4316     emitter.emplace(*this);
4317     Init = emitter->tryEmitForInitializer(*InitDecl);
4318 
4319     if (!Init) {
4320       QualType T = InitExpr->getType();
4321       if (D->getType()->isReferenceType())
4322         T = D->getType();
4323 
4324       if (getLangOpts().CPlusPlus) {
4325         Init = EmitNullConstant(T);
4326         NeedsGlobalCtor = true;
4327       } else {
4328         ErrorUnsupported(D, "static initializer");
4329         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4330       }
4331     } else {
4332       // We don't need an initializer, so remove the entry for the delayed
4333       // initializer position (just in case this entry was delayed) if we
4334       // also don't need to register a destructor.
4335       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4336         DelayedCXXInitPosition.erase(D);
4337     }
4338   }
4339 
4340   llvm::Type* InitType = Init->getType();
4341   llvm::Constant *Entry =
4342       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4343 
4344   // Strip off pointer casts if we got them.
4345   Entry = Entry->stripPointerCasts();
4346 
4347   // Entry is now either a Function or GlobalVariable.
4348   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4349 
4350   // We have a definition after a declaration with the wrong type.
4351   // We must make a new GlobalVariable* and update everything that used OldGV
4352   // (a declaration or tentative definition) with the new GlobalVariable*
4353   // (which will be a definition).
4354   //
4355   // This happens if there is a prototype for a global (e.g.
4356   // "extern int x[];") and then a definition of a different type (e.g.
4357   // "int x[10];"). This also happens when an initializer has a different type
4358   // from the type of the global (this happens with unions).
4359   if (!GV || GV->getValueType() != InitType ||
4360       GV->getType()->getAddressSpace() !=
4361           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4362 
4363     // Move the old entry aside so that we'll create a new one.
4364     Entry->setName(StringRef());
4365 
4366     // Make a new global with the correct type, this is now guaranteed to work.
4367     GV = cast<llvm::GlobalVariable>(
4368         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4369             ->stripPointerCasts());
4370 
4371     // Replace all uses of the old global with the new global
4372     llvm::Constant *NewPtrForOldDecl =
4373         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4374                                                              Entry->getType());
4375     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4376 
4377     // Erase the old global, since it is no longer used.
4378     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4379   }
4380 
4381   MaybeHandleStaticInExternC(D, GV);
4382 
4383   if (D->hasAttr<AnnotateAttr>())
4384     AddGlobalAnnotations(D, GV);
4385 
4386   // Set the llvm linkage type as appropriate.
4387   llvm::GlobalValue::LinkageTypes Linkage =
4388       getLLVMLinkageVarDefinition(D, GV->isConstant());
4389 
4390   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4391   // the device. [...]"
4392   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4393   // __device__, declares a variable that: [...]
4394   // Is accessible from all the threads within the grid and from the host
4395   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4396   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4397   if (GV && LangOpts.CUDA) {
4398     if (LangOpts.CUDAIsDevice) {
4399       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4400           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4401         GV->setExternallyInitialized(true);
4402     } else {
4403       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4404     }
4405     getCUDARuntime().handleVarRegistration(D, *GV);
4406   }
4407 
4408   GV->setInitializer(Init);
4409   if (emitter)
4410     emitter->finalize(GV);
4411 
4412   // If it is safe to mark the global 'constant', do so now.
4413   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4414                   isTypeConstant(D->getType(), true));
4415 
4416   // If it is in a read-only section, mark it 'constant'.
4417   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4418     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4419     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4420       GV->setConstant(true);
4421   }
4422 
4423   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4424 
4425   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4426   // function is only defined alongside the variable, not also alongside
4427   // callers. Normally, all accesses to a thread_local go through the
4428   // thread-wrapper in order to ensure initialization has occurred, underlying
4429   // variable will never be used other than the thread-wrapper, so it can be
4430   // converted to internal linkage.
4431   //
4432   // However, if the variable has the 'constinit' attribute, it _can_ be
4433   // referenced directly, without calling the thread-wrapper, so the linkage
4434   // must not be changed.
4435   //
4436   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4437   // weak or linkonce, the de-duplication semantics are important to preserve,
4438   // so we don't change the linkage.
4439   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4440       Linkage == llvm::GlobalValue::ExternalLinkage &&
4441       Context.getTargetInfo().getTriple().isOSDarwin() &&
4442       !D->hasAttr<ConstInitAttr>())
4443     Linkage = llvm::GlobalValue::InternalLinkage;
4444 
4445   GV->setLinkage(Linkage);
4446   if (D->hasAttr<DLLImportAttr>())
4447     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4448   else if (D->hasAttr<DLLExportAttr>())
4449     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4450   else
4451     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4452 
4453   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4454     // common vars aren't constant even if declared const.
4455     GV->setConstant(false);
4456     // Tentative definition of global variables may be initialized with
4457     // non-zero null pointers. In this case they should have weak linkage
4458     // since common linkage must have zero initializer and must not have
4459     // explicit section therefore cannot have non-zero initial value.
4460     if (!GV->getInitializer()->isNullValue())
4461       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4462   }
4463 
4464   setNonAliasAttributes(D, GV);
4465 
4466   if (D->getTLSKind() && !GV->isThreadLocal()) {
4467     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4468       CXXThreadLocals.push_back(D);
4469     setTLSMode(GV, *D);
4470   }
4471 
4472   maybeSetTrivialComdat(*D, *GV);
4473 
4474   // Emit the initializer function if necessary.
4475   if (NeedsGlobalCtor || NeedsGlobalDtor)
4476     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4477 
4478   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4479 
4480   // Emit global variable debug information.
4481   if (CGDebugInfo *DI = getModuleDebugInfo())
4482     if (getCodeGenOpts().hasReducedDebugInfo())
4483       DI->EmitGlobalVariable(GV, D);
4484 }
4485 
4486 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4487   if (CGDebugInfo *DI = getModuleDebugInfo())
4488     if (getCodeGenOpts().hasReducedDebugInfo()) {
4489       QualType ASTTy = D->getType();
4490       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4491       llvm::Constant *GV = GetOrCreateLLVMGlobal(
4492           D->getName(), Ty, getContext().getTargetAddressSpace(ASTTy), D);
4493       DI->EmitExternalVariable(
4494           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4495     }
4496 }
4497 
4498 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4499                                       CodeGenModule &CGM, const VarDecl *D,
4500                                       bool NoCommon) {
4501   // Don't give variables common linkage if -fno-common was specified unless it
4502   // was overridden by a NoCommon attribute.
4503   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4504     return true;
4505 
4506   // C11 6.9.2/2:
4507   //   A declaration of an identifier for an object that has file scope without
4508   //   an initializer, and without a storage-class specifier or with the
4509   //   storage-class specifier static, constitutes a tentative definition.
4510   if (D->getInit() || D->hasExternalStorage())
4511     return true;
4512 
4513   // A variable cannot be both common and exist in a section.
4514   if (D->hasAttr<SectionAttr>())
4515     return true;
4516 
4517   // A variable cannot be both common and exist in a section.
4518   // We don't try to determine which is the right section in the front-end.
4519   // If no specialized section name is applicable, it will resort to default.
4520   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4521       D->hasAttr<PragmaClangDataSectionAttr>() ||
4522       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4523       D->hasAttr<PragmaClangRodataSectionAttr>())
4524     return true;
4525 
4526   // Thread local vars aren't considered common linkage.
4527   if (D->getTLSKind())
4528     return true;
4529 
4530   // Tentative definitions marked with WeakImportAttr are true definitions.
4531   if (D->hasAttr<WeakImportAttr>())
4532     return true;
4533 
4534   // A variable cannot be both common and exist in a comdat.
4535   if (shouldBeInCOMDAT(CGM, *D))
4536     return true;
4537 
4538   // Declarations with a required alignment do not have common linkage in MSVC
4539   // mode.
4540   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4541     if (D->hasAttr<AlignedAttr>())
4542       return true;
4543     QualType VarType = D->getType();
4544     if (Context.isAlignmentRequired(VarType))
4545       return true;
4546 
4547     if (const auto *RT = VarType->getAs<RecordType>()) {
4548       const RecordDecl *RD = RT->getDecl();
4549       for (const FieldDecl *FD : RD->fields()) {
4550         if (FD->isBitField())
4551           continue;
4552         if (FD->hasAttr<AlignedAttr>())
4553           return true;
4554         if (Context.isAlignmentRequired(FD->getType()))
4555           return true;
4556       }
4557     }
4558   }
4559 
4560   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4561   // common symbols, so symbols with greater alignment requirements cannot be
4562   // common.
4563   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4564   // alignments for common symbols via the aligncomm directive, so this
4565   // restriction only applies to MSVC environments.
4566   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4567       Context.getTypeAlignIfKnown(D->getType()) >
4568           Context.toBits(CharUnits::fromQuantity(32)))
4569     return true;
4570 
4571   return false;
4572 }
4573 
4574 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4575     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4576   if (Linkage == GVA_Internal)
4577     return llvm::Function::InternalLinkage;
4578 
4579   if (D->hasAttr<WeakAttr>()) {
4580     if (IsConstantVariable)
4581       return llvm::GlobalVariable::WeakODRLinkage;
4582     else
4583       return llvm::GlobalVariable::WeakAnyLinkage;
4584   }
4585 
4586   if (const auto *FD = D->getAsFunction())
4587     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4588       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4589 
4590   // We are guaranteed to have a strong definition somewhere else,
4591   // so we can use available_externally linkage.
4592   if (Linkage == GVA_AvailableExternally)
4593     return llvm::GlobalValue::AvailableExternallyLinkage;
4594 
4595   // Note that Apple's kernel linker doesn't support symbol
4596   // coalescing, so we need to avoid linkonce and weak linkages there.
4597   // Normally, this means we just map to internal, but for explicit
4598   // instantiations we'll map to external.
4599 
4600   // In C++, the compiler has to emit a definition in every translation unit
4601   // that references the function.  We should use linkonce_odr because
4602   // a) if all references in this translation unit are optimized away, we
4603   // don't need to codegen it.  b) if the function persists, it needs to be
4604   // merged with other definitions. c) C++ has the ODR, so we know the
4605   // definition is dependable.
4606   if (Linkage == GVA_DiscardableODR)
4607     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4608                                             : llvm::Function::InternalLinkage;
4609 
4610   // An explicit instantiation of a template has weak linkage, since
4611   // explicit instantiations can occur in multiple translation units
4612   // and must all be equivalent. However, we are not allowed to
4613   // throw away these explicit instantiations.
4614   //
4615   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4616   // so say that CUDA templates are either external (for kernels) or internal.
4617   // This lets llvm perform aggressive inter-procedural optimizations. For
4618   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4619   // therefore we need to follow the normal linkage paradigm.
4620   if (Linkage == GVA_StrongODR) {
4621     if (getLangOpts().AppleKext)
4622       return llvm::Function::ExternalLinkage;
4623     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4624         !getLangOpts().GPURelocatableDeviceCode)
4625       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4626                                           : llvm::Function::InternalLinkage;
4627     return llvm::Function::WeakODRLinkage;
4628   }
4629 
4630   // C++ doesn't have tentative definitions and thus cannot have common
4631   // linkage.
4632   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4633       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4634                                  CodeGenOpts.NoCommon))
4635     return llvm::GlobalVariable::CommonLinkage;
4636 
4637   // selectany symbols are externally visible, so use weak instead of
4638   // linkonce.  MSVC optimizes away references to const selectany globals, so
4639   // all definitions should be the same and ODR linkage should be used.
4640   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4641   if (D->hasAttr<SelectAnyAttr>())
4642     return llvm::GlobalVariable::WeakODRLinkage;
4643 
4644   // Otherwise, we have strong external linkage.
4645   assert(Linkage == GVA_StrongExternal);
4646   return llvm::GlobalVariable::ExternalLinkage;
4647 }
4648 
4649 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4650     const VarDecl *VD, bool IsConstant) {
4651   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4652   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4653 }
4654 
4655 /// Replace the uses of a function that was declared with a non-proto type.
4656 /// We want to silently drop extra arguments from call sites
4657 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4658                                           llvm::Function *newFn) {
4659   // Fast path.
4660   if (old->use_empty()) return;
4661 
4662   llvm::Type *newRetTy = newFn->getReturnType();
4663   SmallVector<llvm::Value*, 4> newArgs;
4664 
4665   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4666          ui != ue; ) {
4667     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4668     llvm::User *user = use->getUser();
4669 
4670     // Recognize and replace uses of bitcasts.  Most calls to
4671     // unprototyped functions will use bitcasts.
4672     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4673       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4674         replaceUsesOfNonProtoConstant(bitcast, newFn);
4675       continue;
4676     }
4677 
4678     // Recognize calls to the function.
4679     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4680     if (!callSite) continue;
4681     if (!callSite->isCallee(&*use))
4682       continue;
4683 
4684     // If the return types don't match exactly, then we can't
4685     // transform this call unless it's dead.
4686     if (callSite->getType() != newRetTy && !callSite->use_empty())
4687       continue;
4688 
4689     // Get the call site's attribute list.
4690     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4691     llvm::AttributeList oldAttrs = callSite->getAttributes();
4692 
4693     // If the function was passed too few arguments, don't transform.
4694     unsigned newNumArgs = newFn->arg_size();
4695     if (callSite->arg_size() < newNumArgs)
4696       continue;
4697 
4698     // If extra arguments were passed, we silently drop them.
4699     // If any of the types mismatch, we don't transform.
4700     unsigned argNo = 0;
4701     bool dontTransform = false;
4702     for (llvm::Argument &A : newFn->args()) {
4703       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4704         dontTransform = true;
4705         break;
4706       }
4707 
4708       // Add any parameter attributes.
4709       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4710       argNo++;
4711     }
4712     if (dontTransform)
4713       continue;
4714 
4715     // Okay, we can transform this.  Create the new call instruction and copy
4716     // over the required information.
4717     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4718 
4719     // Copy over any operand bundles.
4720     SmallVector<llvm::OperandBundleDef, 1> newBundles;
4721     callSite->getOperandBundlesAsDefs(newBundles);
4722 
4723     llvm::CallBase *newCall;
4724     if (dyn_cast<llvm::CallInst>(callSite)) {
4725       newCall =
4726           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4727     } else {
4728       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4729       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4730                                          oldInvoke->getUnwindDest(), newArgs,
4731                                          newBundles, "", callSite);
4732     }
4733     newArgs.clear(); // for the next iteration
4734 
4735     if (!newCall->getType()->isVoidTy())
4736       newCall->takeName(callSite);
4737     newCall->setAttributes(llvm::AttributeList::get(
4738         newFn->getContext(), oldAttrs.getFnAttributes(),
4739         oldAttrs.getRetAttributes(), newArgAttrs));
4740     newCall->setCallingConv(callSite->getCallingConv());
4741 
4742     // Finally, remove the old call, replacing any uses with the new one.
4743     if (!callSite->use_empty())
4744       callSite->replaceAllUsesWith(newCall);
4745 
4746     // Copy debug location attached to CI.
4747     if (callSite->getDebugLoc())
4748       newCall->setDebugLoc(callSite->getDebugLoc());
4749 
4750     callSite->eraseFromParent();
4751   }
4752 }
4753 
4754 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4755 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4756 /// existing call uses of the old function in the module, this adjusts them to
4757 /// call the new function directly.
4758 ///
4759 /// This is not just a cleanup: the always_inline pass requires direct calls to
4760 /// functions to be able to inline them.  If there is a bitcast in the way, it
4761 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4762 /// run at -O0.
4763 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4764                                                       llvm::Function *NewFn) {
4765   // If we're redefining a global as a function, don't transform it.
4766   if (!isa<llvm::Function>(Old)) return;
4767 
4768   replaceUsesOfNonProtoConstant(Old, NewFn);
4769 }
4770 
4771 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4772   auto DK = VD->isThisDeclarationADefinition();
4773   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4774     return;
4775 
4776   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4777   // If we have a definition, this might be a deferred decl. If the
4778   // instantiation is explicit, make sure we emit it at the end.
4779   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4780     GetAddrOfGlobalVar(VD);
4781 
4782   EmitTopLevelDecl(VD);
4783 }
4784 
4785 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4786                                                  llvm::GlobalValue *GV) {
4787   const auto *D = cast<FunctionDecl>(GD.getDecl());
4788 
4789   // Compute the function info and LLVM type.
4790   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4791   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4792 
4793   // Get or create the prototype for the function.
4794   if (!GV || (GV->getValueType() != Ty))
4795     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4796                                                    /*DontDefer=*/true,
4797                                                    ForDefinition));
4798 
4799   // Already emitted.
4800   if (!GV->isDeclaration())
4801     return;
4802 
4803   // We need to set linkage and visibility on the function before
4804   // generating code for it because various parts of IR generation
4805   // want to propagate this information down (e.g. to local static
4806   // declarations).
4807   auto *Fn = cast<llvm::Function>(GV);
4808   setFunctionLinkage(GD, Fn);
4809 
4810   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4811   setGVProperties(Fn, GD);
4812 
4813   MaybeHandleStaticInExternC(D, Fn);
4814 
4815   maybeSetTrivialComdat(*D, *Fn);
4816 
4817   // Set CodeGen attributes that represent floating point environment.
4818   setLLVMFunctionFEnvAttributes(D, Fn);
4819 
4820   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4821 
4822   setNonAliasAttributes(GD, Fn);
4823   SetLLVMFunctionAttributesForDefinition(D, Fn);
4824 
4825   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4826     AddGlobalCtor(Fn, CA->getPriority());
4827   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4828     AddGlobalDtor(Fn, DA->getPriority(), true);
4829   if (D->hasAttr<AnnotateAttr>())
4830     AddGlobalAnnotations(D, Fn);
4831 }
4832 
4833 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4834   const auto *D = cast<ValueDecl>(GD.getDecl());
4835   const AliasAttr *AA = D->getAttr<AliasAttr>();
4836   assert(AA && "Not an alias?");
4837 
4838   StringRef MangledName = getMangledName(GD);
4839 
4840   if (AA->getAliasee() == MangledName) {
4841     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4842     return;
4843   }
4844 
4845   // If there is a definition in the module, then it wins over the alias.
4846   // This is dubious, but allow it to be safe.  Just ignore the alias.
4847   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4848   if (Entry && !Entry->isDeclaration())
4849     return;
4850 
4851   Aliases.push_back(GD);
4852 
4853   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4854 
4855   // Create a reference to the named value.  This ensures that it is emitted
4856   // if a deferred decl.
4857   llvm::Constant *Aliasee;
4858   llvm::GlobalValue::LinkageTypes LT;
4859   if (isa<llvm::FunctionType>(DeclTy)) {
4860     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4861                                       /*ForVTable=*/false);
4862     LT = getFunctionLinkage(GD);
4863   } else {
4864     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, 0,
4865                                     /*D=*/nullptr);
4866     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4867       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4868     else
4869       LT = getFunctionLinkage(GD);
4870   }
4871 
4872   // Create the new alias itself, but don't set a name yet.
4873   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4874   auto *GA =
4875       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4876 
4877   if (Entry) {
4878     if (GA->getAliasee() == Entry) {
4879       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4880       return;
4881     }
4882 
4883     assert(Entry->isDeclaration());
4884 
4885     // If there is a declaration in the module, then we had an extern followed
4886     // by the alias, as in:
4887     //   extern int test6();
4888     //   ...
4889     //   int test6() __attribute__((alias("test7")));
4890     //
4891     // Remove it and replace uses of it with the alias.
4892     GA->takeName(Entry);
4893 
4894     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4895                                                           Entry->getType()));
4896     Entry->eraseFromParent();
4897   } else {
4898     GA->setName(MangledName);
4899   }
4900 
4901   // Set attributes which are particular to an alias; this is a
4902   // specialization of the attributes which may be set on a global
4903   // variable/function.
4904   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4905       D->isWeakImported()) {
4906     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4907   }
4908 
4909   if (const auto *VD = dyn_cast<VarDecl>(D))
4910     if (VD->getTLSKind())
4911       setTLSMode(GA, *VD);
4912 
4913   SetCommonAttributes(GD, GA);
4914 }
4915 
4916 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4917   const auto *D = cast<ValueDecl>(GD.getDecl());
4918   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4919   assert(IFA && "Not an ifunc?");
4920 
4921   StringRef MangledName = getMangledName(GD);
4922 
4923   if (IFA->getResolver() == MangledName) {
4924     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4925     return;
4926   }
4927 
4928   // Report an error if some definition overrides ifunc.
4929   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4930   if (Entry && !Entry->isDeclaration()) {
4931     GlobalDecl OtherGD;
4932     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4933         DiagnosedConflictingDefinitions.insert(GD).second) {
4934       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4935           << MangledName;
4936       Diags.Report(OtherGD.getDecl()->getLocation(),
4937                    diag::note_previous_definition);
4938     }
4939     return;
4940   }
4941 
4942   Aliases.push_back(GD);
4943 
4944   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4945   llvm::Constant *Resolver =
4946       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4947                               /*ForVTable=*/false);
4948   llvm::GlobalIFunc *GIF =
4949       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4950                                 "", Resolver, &getModule());
4951   if (Entry) {
4952     if (GIF->getResolver() == Entry) {
4953       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4954       return;
4955     }
4956     assert(Entry->isDeclaration());
4957 
4958     // If there is a declaration in the module, then we had an extern followed
4959     // by the ifunc, as in:
4960     //   extern int test();
4961     //   ...
4962     //   int test() __attribute__((ifunc("resolver")));
4963     //
4964     // Remove it and replace uses of it with the ifunc.
4965     GIF->takeName(Entry);
4966 
4967     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4968                                                           Entry->getType()));
4969     Entry->eraseFromParent();
4970   } else
4971     GIF->setName(MangledName);
4972 
4973   SetCommonAttributes(GD, GIF);
4974 }
4975 
4976 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4977                                             ArrayRef<llvm::Type*> Tys) {
4978   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4979                                          Tys);
4980 }
4981 
4982 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4983 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4984                          const StringLiteral *Literal, bool TargetIsLSB,
4985                          bool &IsUTF16, unsigned &StringLength) {
4986   StringRef String = Literal->getString();
4987   unsigned NumBytes = String.size();
4988 
4989   // Check for simple case.
4990   if (!Literal->containsNonAsciiOrNull()) {
4991     StringLength = NumBytes;
4992     return *Map.insert(std::make_pair(String, nullptr)).first;
4993   }
4994 
4995   // Otherwise, convert the UTF8 literals into a string of shorts.
4996   IsUTF16 = true;
4997 
4998   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4999   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5000   llvm::UTF16 *ToPtr = &ToBuf[0];
5001 
5002   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5003                                  ToPtr + NumBytes, llvm::strictConversion);
5004 
5005   // ConvertUTF8toUTF16 returns the length in ToPtr.
5006   StringLength = ToPtr - &ToBuf[0];
5007 
5008   // Add an explicit null.
5009   *ToPtr = 0;
5010   return *Map.insert(std::make_pair(
5011                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5012                                    (StringLength + 1) * 2),
5013                          nullptr)).first;
5014 }
5015 
5016 ConstantAddress
5017 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5018   unsigned StringLength = 0;
5019   bool isUTF16 = false;
5020   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5021       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5022                                getDataLayout().isLittleEndian(), isUTF16,
5023                                StringLength);
5024 
5025   if (auto *C = Entry.second)
5026     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
5027 
5028   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5029   llvm::Constant *Zeros[] = { Zero, Zero };
5030 
5031   const ASTContext &Context = getContext();
5032   const llvm::Triple &Triple = getTriple();
5033 
5034   const auto CFRuntime = getLangOpts().CFRuntime;
5035   const bool IsSwiftABI =
5036       static_cast<unsigned>(CFRuntime) >=
5037       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5038   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5039 
5040   // If we don't already have it, get __CFConstantStringClassReference.
5041   if (!CFConstantStringClassRef) {
5042     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5043     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5044     Ty = llvm::ArrayType::get(Ty, 0);
5045 
5046     switch (CFRuntime) {
5047     default: break;
5048     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5049     case LangOptions::CoreFoundationABI::Swift5_0:
5050       CFConstantStringClassName =
5051           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5052                               : "$s10Foundation19_NSCFConstantStringCN";
5053       Ty = IntPtrTy;
5054       break;
5055     case LangOptions::CoreFoundationABI::Swift4_2:
5056       CFConstantStringClassName =
5057           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5058                               : "$S10Foundation19_NSCFConstantStringCN";
5059       Ty = IntPtrTy;
5060       break;
5061     case LangOptions::CoreFoundationABI::Swift4_1:
5062       CFConstantStringClassName =
5063           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5064                               : "__T010Foundation19_NSCFConstantStringCN";
5065       Ty = IntPtrTy;
5066       break;
5067     }
5068 
5069     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5070 
5071     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5072       llvm::GlobalValue *GV = nullptr;
5073 
5074       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5075         IdentifierInfo &II = Context.Idents.get(GV->getName());
5076         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5077         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5078 
5079         const VarDecl *VD = nullptr;
5080         for (const auto *Result : DC->lookup(&II))
5081           if ((VD = dyn_cast<VarDecl>(Result)))
5082             break;
5083 
5084         if (Triple.isOSBinFormatELF()) {
5085           if (!VD)
5086             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5087         } else {
5088           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5089           if (!VD || !VD->hasAttr<DLLExportAttr>())
5090             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5091           else
5092             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5093         }
5094 
5095         setDSOLocal(GV);
5096       }
5097     }
5098 
5099     // Decay array -> ptr
5100     CFConstantStringClassRef =
5101         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5102                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5103   }
5104 
5105   QualType CFTy = Context.getCFConstantStringType();
5106 
5107   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5108 
5109   ConstantInitBuilder Builder(*this);
5110   auto Fields = Builder.beginStruct(STy);
5111 
5112   // Class pointer.
5113   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5114 
5115   // Flags.
5116   if (IsSwiftABI) {
5117     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5118     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5119   } else {
5120     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5121   }
5122 
5123   // String pointer.
5124   llvm::Constant *C = nullptr;
5125   if (isUTF16) {
5126     auto Arr = llvm::makeArrayRef(
5127         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5128         Entry.first().size() / 2);
5129     C = llvm::ConstantDataArray::get(VMContext, Arr);
5130   } else {
5131     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5132   }
5133 
5134   // Note: -fwritable-strings doesn't make the backing store strings of
5135   // CFStrings writable. (See <rdar://problem/10657500>)
5136   auto *GV =
5137       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5138                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5139   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5140   // Don't enforce the target's minimum global alignment, since the only use
5141   // of the string is via this class initializer.
5142   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5143                             : Context.getTypeAlignInChars(Context.CharTy);
5144   GV->setAlignment(Align.getAsAlign());
5145 
5146   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5147   // Without it LLVM can merge the string with a non unnamed_addr one during
5148   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5149   if (Triple.isOSBinFormatMachO())
5150     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5151                            : "__TEXT,__cstring,cstring_literals");
5152   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5153   // the static linker to adjust permissions to read-only later on.
5154   else if (Triple.isOSBinFormatELF())
5155     GV->setSection(".rodata");
5156 
5157   // String.
5158   llvm::Constant *Str =
5159       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5160 
5161   if (isUTF16)
5162     // Cast the UTF16 string to the correct type.
5163     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5164   Fields.add(Str);
5165 
5166   // String length.
5167   llvm::IntegerType *LengthTy =
5168       llvm::IntegerType::get(getModule().getContext(),
5169                              Context.getTargetInfo().getLongWidth());
5170   if (IsSwiftABI) {
5171     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5172         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5173       LengthTy = Int32Ty;
5174     else
5175       LengthTy = IntPtrTy;
5176   }
5177   Fields.addInt(LengthTy, StringLength);
5178 
5179   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5180   // properly aligned on 32-bit platforms.
5181   CharUnits Alignment =
5182       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5183 
5184   // The struct.
5185   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5186                                     /*isConstant=*/false,
5187                                     llvm::GlobalVariable::PrivateLinkage);
5188   GV->addAttribute("objc_arc_inert");
5189   switch (Triple.getObjectFormat()) {
5190   case llvm::Triple::UnknownObjectFormat:
5191     llvm_unreachable("unknown file format");
5192   case llvm::Triple::GOFF:
5193     llvm_unreachable("GOFF is not yet implemented");
5194   case llvm::Triple::XCOFF:
5195     llvm_unreachable("XCOFF is not yet implemented");
5196   case llvm::Triple::COFF:
5197   case llvm::Triple::ELF:
5198   case llvm::Triple::Wasm:
5199     GV->setSection("cfstring");
5200     break;
5201   case llvm::Triple::MachO:
5202     GV->setSection("__DATA,__cfstring");
5203     break;
5204   }
5205   Entry.second = GV;
5206 
5207   return ConstantAddress(GV, Alignment);
5208 }
5209 
5210 bool CodeGenModule::getExpressionLocationsEnabled() const {
5211   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5212 }
5213 
5214 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5215   if (ObjCFastEnumerationStateType.isNull()) {
5216     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5217     D->startDefinition();
5218 
5219     QualType FieldTypes[] = {
5220       Context.UnsignedLongTy,
5221       Context.getPointerType(Context.getObjCIdType()),
5222       Context.getPointerType(Context.UnsignedLongTy),
5223       Context.getConstantArrayType(Context.UnsignedLongTy,
5224                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5225     };
5226 
5227     for (size_t i = 0; i < 4; ++i) {
5228       FieldDecl *Field = FieldDecl::Create(Context,
5229                                            D,
5230                                            SourceLocation(),
5231                                            SourceLocation(), nullptr,
5232                                            FieldTypes[i], /*TInfo=*/nullptr,
5233                                            /*BitWidth=*/nullptr,
5234                                            /*Mutable=*/false,
5235                                            ICIS_NoInit);
5236       Field->setAccess(AS_public);
5237       D->addDecl(Field);
5238     }
5239 
5240     D->completeDefinition();
5241     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5242   }
5243 
5244   return ObjCFastEnumerationStateType;
5245 }
5246 
5247 llvm::Constant *
5248 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5249   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5250 
5251   // Don't emit it as the address of the string, emit the string data itself
5252   // as an inline array.
5253   if (E->getCharByteWidth() == 1) {
5254     SmallString<64> Str(E->getString());
5255 
5256     // Resize the string to the right size, which is indicated by its type.
5257     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5258     Str.resize(CAT->getSize().getZExtValue());
5259     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5260   }
5261 
5262   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5263   llvm::Type *ElemTy = AType->getElementType();
5264   unsigned NumElements = AType->getNumElements();
5265 
5266   // Wide strings have either 2-byte or 4-byte elements.
5267   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5268     SmallVector<uint16_t, 32> Elements;
5269     Elements.reserve(NumElements);
5270 
5271     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5272       Elements.push_back(E->getCodeUnit(i));
5273     Elements.resize(NumElements);
5274     return llvm::ConstantDataArray::get(VMContext, Elements);
5275   }
5276 
5277   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5278   SmallVector<uint32_t, 32> Elements;
5279   Elements.reserve(NumElements);
5280 
5281   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5282     Elements.push_back(E->getCodeUnit(i));
5283   Elements.resize(NumElements);
5284   return llvm::ConstantDataArray::get(VMContext, Elements);
5285 }
5286 
5287 static llvm::GlobalVariable *
5288 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5289                       CodeGenModule &CGM, StringRef GlobalName,
5290                       CharUnits Alignment) {
5291   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5292       CGM.GetGlobalConstantAddressSpace());
5293 
5294   llvm::Module &M = CGM.getModule();
5295   // Create a global variable for this string
5296   auto *GV = new llvm::GlobalVariable(
5297       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5298       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5299   GV->setAlignment(Alignment.getAsAlign());
5300   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5301   if (GV->isWeakForLinker()) {
5302     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5303     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5304   }
5305   CGM.setDSOLocal(GV);
5306 
5307   return GV;
5308 }
5309 
5310 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5311 /// constant array for the given string literal.
5312 ConstantAddress
5313 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5314                                                   StringRef Name) {
5315   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5316 
5317   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5318   llvm::GlobalVariable **Entry = nullptr;
5319   if (!LangOpts.WritableStrings) {
5320     Entry = &ConstantStringMap[C];
5321     if (auto GV = *Entry) {
5322       if (Alignment.getQuantity() > GV->getAlignment())
5323         GV->setAlignment(Alignment.getAsAlign());
5324       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5325                              Alignment);
5326     }
5327   }
5328 
5329   SmallString<256> MangledNameBuffer;
5330   StringRef GlobalVariableName;
5331   llvm::GlobalValue::LinkageTypes LT;
5332 
5333   // Mangle the string literal if that's how the ABI merges duplicate strings.
5334   // Don't do it if they are writable, since we don't want writes in one TU to
5335   // affect strings in another.
5336   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5337       !LangOpts.WritableStrings) {
5338     llvm::raw_svector_ostream Out(MangledNameBuffer);
5339     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5340     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5341     GlobalVariableName = MangledNameBuffer;
5342   } else {
5343     LT = llvm::GlobalValue::PrivateLinkage;
5344     GlobalVariableName = Name;
5345   }
5346 
5347   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5348   if (Entry)
5349     *Entry = GV;
5350 
5351   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5352                                   QualType());
5353 
5354   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5355                          Alignment);
5356 }
5357 
5358 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5359 /// array for the given ObjCEncodeExpr node.
5360 ConstantAddress
5361 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5362   std::string Str;
5363   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5364 
5365   return GetAddrOfConstantCString(Str);
5366 }
5367 
5368 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5369 /// the literal and a terminating '\0' character.
5370 /// The result has pointer to array type.
5371 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5372     const std::string &Str, const char *GlobalName) {
5373   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5374   CharUnits Alignment =
5375     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5376 
5377   llvm::Constant *C =
5378       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5379 
5380   // Don't share any string literals if strings aren't constant.
5381   llvm::GlobalVariable **Entry = nullptr;
5382   if (!LangOpts.WritableStrings) {
5383     Entry = &ConstantStringMap[C];
5384     if (auto GV = *Entry) {
5385       if (Alignment.getQuantity() > GV->getAlignment())
5386         GV->setAlignment(Alignment.getAsAlign());
5387       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5388                              Alignment);
5389     }
5390   }
5391 
5392   // Get the default prefix if a name wasn't specified.
5393   if (!GlobalName)
5394     GlobalName = ".str";
5395   // Create a global variable for this.
5396   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5397                                   GlobalName, Alignment);
5398   if (Entry)
5399     *Entry = GV;
5400 
5401   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5402                          Alignment);
5403 }
5404 
5405 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5406     const MaterializeTemporaryExpr *E, const Expr *Init) {
5407   assert((E->getStorageDuration() == SD_Static ||
5408           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5409   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5410 
5411   // If we're not materializing a subobject of the temporary, keep the
5412   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5413   QualType MaterializedType = Init->getType();
5414   if (Init == E->getSubExpr())
5415     MaterializedType = E->getType();
5416 
5417   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5418 
5419   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5420   if (!InsertResult.second) {
5421     // We've seen this before: either we already created it or we're in the
5422     // process of doing so.
5423     if (!InsertResult.first->second) {
5424       // We recursively re-entered this function, probably during emission of
5425       // the initializer. Create a placeholder. We'll clean this up in the
5426       // outer call, at the end of this function.
5427       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5428       InsertResult.first->second = new llvm::GlobalVariable(
5429           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5430           nullptr);
5431     }
5432     return ConstantAddress(InsertResult.first->second, Align);
5433   }
5434 
5435   // FIXME: If an externally-visible declaration extends multiple temporaries,
5436   // we need to give each temporary the same name in every translation unit (and
5437   // we also need to make the temporaries externally-visible).
5438   SmallString<256> Name;
5439   llvm::raw_svector_ostream Out(Name);
5440   getCXXABI().getMangleContext().mangleReferenceTemporary(
5441       VD, E->getManglingNumber(), Out);
5442 
5443   APValue *Value = nullptr;
5444   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5445     // If the initializer of the extending declaration is a constant
5446     // initializer, we should have a cached constant initializer for this
5447     // temporary. Note that this might have a different value from the value
5448     // computed by evaluating the initializer if the surrounding constant
5449     // expression modifies the temporary.
5450     Value = E->getOrCreateValue(false);
5451   }
5452 
5453   // Try evaluating it now, it might have a constant initializer.
5454   Expr::EvalResult EvalResult;
5455   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5456       !EvalResult.hasSideEffects())
5457     Value = &EvalResult.Val;
5458 
5459   LangAS AddrSpace =
5460       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5461 
5462   Optional<ConstantEmitter> emitter;
5463   llvm::Constant *InitialValue = nullptr;
5464   bool Constant = false;
5465   llvm::Type *Type;
5466   if (Value) {
5467     // The temporary has a constant initializer, use it.
5468     emitter.emplace(*this);
5469     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5470                                                MaterializedType);
5471     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5472     Type = InitialValue->getType();
5473   } else {
5474     // No initializer, the initialization will be provided when we
5475     // initialize the declaration which performed lifetime extension.
5476     Type = getTypes().ConvertTypeForMem(MaterializedType);
5477   }
5478 
5479   // Create a global variable for this lifetime-extended temporary.
5480   llvm::GlobalValue::LinkageTypes Linkage =
5481       getLLVMLinkageVarDefinition(VD, Constant);
5482   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5483     const VarDecl *InitVD;
5484     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5485         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5486       // Temporaries defined inside a class get linkonce_odr linkage because the
5487       // class can be defined in multiple translation units.
5488       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5489     } else {
5490       // There is no need for this temporary to have external linkage if the
5491       // VarDecl has external linkage.
5492       Linkage = llvm::GlobalVariable::InternalLinkage;
5493     }
5494   }
5495   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5496   auto *GV = new llvm::GlobalVariable(
5497       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5498       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5499   if (emitter) emitter->finalize(GV);
5500   setGVProperties(GV, VD);
5501   GV->setAlignment(Align.getAsAlign());
5502   if (supportsCOMDAT() && GV->isWeakForLinker())
5503     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5504   if (VD->getTLSKind())
5505     setTLSMode(GV, *VD);
5506   llvm::Constant *CV = GV;
5507   if (AddrSpace != LangAS::Default)
5508     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5509         *this, GV, AddrSpace, LangAS::Default,
5510         Type->getPointerTo(
5511             getContext().getTargetAddressSpace(LangAS::Default)));
5512 
5513   // Update the map with the new temporary. If we created a placeholder above,
5514   // replace it with the new global now.
5515   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5516   if (Entry) {
5517     Entry->replaceAllUsesWith(
5518         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5519     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5520   }
5521   Entry = CV;
5522 
5523   return ConstantAddress(CV, Align);
5524 }
5525 
5526 /// EmitObjCPropertyImplementations - Emit information for synthesized
5527 /// properties for an implementation.
5528 void CodeGenModule::EmitObjCPropertyImplementations(const
5529                                                     ObjCImplementationDecl *D) {
5530   for (const auto *PID : D->property_impls()) {
5531     // Dynamic is just for type-checking.
5532     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5533       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5534 
5535       // Determine which methods need to be implemented, some may have
5536       // been overridden. Note that ::isPropertyAccessor is not the method
5537       // we want, that just indicates if the decl came from a
5538       // property. What we want to know is if the method is defined in
5539       // this implementation.
5540       auto *Getter = PID->getGetterMethodDecl();
5541       if (!Getter || Getter->isSynthesizedAccessorStub())
5542         CodeGenFunction(*this).GenerateObjCGetter(
5543             const_cast<ObjCImplementationDecl *>(D), PID);
5544       auto *Setter = PID->getSetterMethodDecl();
5545       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5546         CodeGenFunction(*this).GenerateObjCSetter(
5547                                  const_cast<ObjCImplementationDecl *>(D), PID);
5548     }
5549   }
5550 }
5551 
5552 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5553   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5554   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5555        ivar; ivar = ivar->getNextIvar())
5556     if (ivar->getType().isDestructedType())
5557       return true;
5558 
5559   return false;
5560 }
5561 
5562 static bool AllTrivialInitializers(CodeGenModule &CGM,
5563                                    ObjCImplementationDecl *D) {
5564   CodeGenFunction CGF(CGM);
5565   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5566        E = D->init_end(); B != E; ++B) {
5567     CXXCtorInitializer *CtorInitExp = *B;
5568     Expr *Init = CtorInitExp->getInit();
5569     if (!CGF.isTrivialInitializer(Init))
5570       return false;
5571   }
5572   return true;
5573 }
5574 
5575 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5576 /// for an implementation.
5577 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5578   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5579   if (needsDestructMethod(D)) {
5580     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5581     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5582     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5583         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5584         getContext().VoidTy, nullptr, D,
5585         /*isInstance=*/true, /*isVariadic=*/false,
5586         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5587         /*isImplicitlyDeclared=*/true,
5588         /*isDefined=*/false, ObjCMethodDecl::Required);
5589     D->addInstanceMethod(DTORMethod);
5590     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5591     D->setHasDestructors(true);
5592   }
5593 
5594   // If the implementation doesn't have any ivar initializers, we don't need
5595   // a .cxx_construct.
5596   if (D->getNumIvarInitializers() == 0 ||
5597       AllTrivialInitializers(*this, D))
5598     return;
5599 
5600   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5601   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5602   // The constructor returns 'self'.
5603   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5604       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5605       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5606       /*isVariadic=*/false,
5607       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5608       /*isImplicitlyDeclared=*/true,
5609       /*isDefined=*/false, ObjCMethodDecl::Required);
5610   D->addInstanceMethod(CTORMethod);
5611   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5612   D->setHasNonZeroConstructors(true);
5613 }
5614 
5615 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5616 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5617   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5618       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5619     ErrorUnsupported(LSD, "linkage spec");
5620     return;
5621   }
5622 
5623   EmitDeclContext(LSD);
5624 }
5625 
5626 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5627   for (auto *I : DC->decls()) {
5628     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5629     // are themselves considered "top-level", so EmitTopLevelDecl on an
5630     // ObjCImplDecl does not recursively visit them. We need to do that in
5631     // case they're nested inside another construct (LinkageSpecDecl /
5632     // ExportDecl) that does stop them from being considered "top-level".
5633     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5634       for (auto *M : OID->methods())
5635         EmitTopLevelDecl(M);
5636     }
5637 
5638     EmitTopLevelDecl(I);
5639   }
5640 }
5641 
5642 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5643 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5644   // Ignore dependent declarations.
5645   if (D->isTemplated())
5646     return;
5647 
5648   // Consteval function shouldn't be emitted.
5649   if (auto *FD = dyn_cast<FunctionDecl>(D))
5650     if (FD->isConsteval())
5651       return;
5652 
5653   switch (D->getKind()) {
5654   case Decl::CXXConversion:
5655   case Decl::CXXMethod:
5656   case Decl::Function:
5657     EmitGlobal(cast<FunctionDecl>(D));
5658     // Always provide some coverage mapping
5659     // even for the functions that aren't emitted.
5660     AddDeferredUnusedCoverageMapping(D);
5661     break;
5662 
5663   case Decl::CXXDeductionGuide:
5664     // Function-like, but does not result in code emission.
5665     break;
5666 
5667   case Decl::Var:
5668   case Decl::Decomposition:
5669   case Decl::VarTemplateSpecialization:
5670     EmitGlobal(cast<VarDecl>(D));
5671     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5672       for (auto *B : DD->bindings())
5673         if (auto *HD = B->getHoldingVar())
5674           EmitGlobal(HD);
5675     break;
5676 
5677   // Indirect fields from global anonymous structs and unions can be
5678   // ignored; only the actual variable requires IR gen support.
5679   case Decl::IndirectField:
5680     break;
5681 
5682   // C++ Decls
5683   case Decl::Namespace:
5684     EmitDeclContext(cast<NamespaceDecl>(D));
5685     break;
5686   case Decl::ClassTemplateSpecialization: {
5687     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5688     if (CGDebugInfo *DI = getModuleDebugInfo())
5689       if (Spec->getSpecializationKind() ==
5690               TSK_ExplicitInstantiationDefinition &&
5691           Spec->hasDefinition())
5692         DI->completeTemplateDefinition(*Spec);
5693   } LLVM_FALLTHROUGH;
5694   case Decl::CXXRecord: {
5695     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5696     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5697       if (CRD->hasDefinition())
5698         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5699       if (auto *ES = D->getASTContext().getExternalSource())
5700         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5701           DI->completeUnusedClass(*CRD);
5702     }
5703     // Emit any static data members, they may be definitions.
5704     for (auto *I : CRD->decls())
5705       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5706         EmitTopLevelDecl(I);
5707     break;
5708   }
5709     // No code generation needed.
5710   case Decl::UsingShadow:
5711   case Decl::ClassTemplate:
5712   case Decl::VarTemplate:
5713   case Decl::Concept:
5714   case Decl::VarTemplatePartialSpecialization:
5715   case Decl::FunctionTemplate:
5716   case Decl::TypeAliasTemplate:
5717   case Decl::Block:
5718   case Decl::Empty:
5719   case Decl::Binding:
5720     break;
5721   case Decl::Using:          // using X; [C++]
5722     if (CGDebugInfo *DI = getModuleDebugInfo())
5723         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5724     break;
5725   case Decl::NamespaceAlias:
5726     if (CGDebugInfo *DI = getModuleDebugInfo())
5727         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5728     break;
5729   case Decl::UsingDirective: // using namespace X; [C++]
5730     if (CGDebugInfo *DI = getModuleDebugInfo())
5731       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5732     break;
5733   case Decl::CXXConstructor:
5734     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5735     break;
5736   case Decl::CXXDestructor:
5737     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5738     break;
5739 
5740   case Decl::StaticAssert:
5741     // Nothing to do.
5742     break;
5743 
5744   // Objective-C Decls
5745 
5746   // Forward declarations, no (immediate) code generation.
5747   case Decl::ObjCInterface:
5748   case Decl::ObjCCategory:
5749     break;
5750 
5751   case Decl::ObjCProtocol: {
5752     auto *Proto = cast<ObjCProtocolDecl>(D);
5753     if (Proto->isThisDeclarationADefinition())
5754       ObjCRuntime->GenerateProtocol(Proto);
5755     break;
5756   }
5757 
5758   case Decl::ObjCCategoryImpl:
5759     // Categories have properties but don't support synthesize so we
5760     // can ignore them here.
5761     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5762     break;
5763 
5764   case Decl::ObjCImplementation: {
5765     auto *OMD = cast<ObjCImplementationDecl>(D);
5766     EmitObjCPropertyImplementations(OMD);
5767     EmitObjCIvarInitializations(OMD);
5768     ObjCRuntime->GenerateClass(OMD);
5769     // Emit global variable debug information.
5770     if (CGDebugInfo *DI = getModuleDebugInfo())
5771       if (getCodeGenOpts().hasReducedDebugInfo())
5772         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5773             OMD->getClassInterface()), OMD->getLocation());
5774     break;
5775   }
5776   case Decl::ObjCMethod: {
5777     auto *OMD = cast<ObjCMethodDecl>(D);
5778     // If this is not a prototype, emit the body.
5779     if (OMD->getBody())
5780       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5781     break;
5782   }
5783   case Decl::ObjCCompatibleAlias:
5784     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5785     break;
5786 
5787   case Decl::PragmaComment: {
5788     const auto *PCD = cast<PragmaCommentDecl>(D);
5789     switch (PCD->getCommentKind()) {
5790     case PCK_Unknown:
5791       llvm_unreachable("unexpected pragma comment kind");
5792     case PCK_Linker:
5793       AppendLinkerOptions(PCD->getArg());
5794       break;
5795     case PCK_Lib:
5796         AddDependentLib(PCD->getArg());
5797       break;
5798     case PCK_Compiler:
5799     case PCK_ExeStr:
5800     case PCK_User:
5801       break; // We ignore all of these.
5802     }
5803     break;
5804   }
5805 
5806   case Decl::PragmaDetectMismatch: {
5807     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5808     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5809     break;
5810   }
5811 
5812   case Decl::LinkageSpec:
5813     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5814     break;
5815 
5816   case Decl::FileScopeAsm: {
5817     // File-scope asm is ignored during device-side CUDA compilation.
5818     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5819       break;
5820     // File-scope asm is ignored during device-side OpenMP compilation.
5821     if (LangOpts.OpenMPIsDevice)
5822       break;
5823     // File-scope asm is ignored during device-side SYCL compilation.
5824     if (LangOpts.SYCLIsDevice)
5825       break;
5826     auto *AD = cast<FileScopeAsmDecl>(D);
5827     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5828     break;
5829   }
5830 
5831   case Decl::Import: {
5832     auto *Import = cast<ImportDecl>(D);
5833 
5834     // If we've already imported this module, we're done.
5835     if (!ImportedModules.insert(Import->getImportedModule()))
5836       break;
5837 
5838     // Emit debug information for direct imports.
5839     if (!Import->getImportedOwningModule()) {
5840       if (CGDebugInfo *DI = getModuleDebugInfo())
5841         DI->EmitImportDecl(*Import);
5842     }
5843 
5844     // Find all of the submodules and emit the module initializers.
5845     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5846     SmallVector<clang::Module *, 16> Stack;
5847     Visited.insert(Import->getImportedModule());
5848     Stack.push_back(Import->getImportedModule());
5849 
5850     while (!Stack.empty()) {
5851       clang::Module *Mod = Stack.pop_back_val();
5852       if (!EmittedModuleInitializers.insert(Mod).second)
5853         continue;
5854 
5855       for (auto *D : Context.getModuleInitializers(Mod))
5856         EmitTopLevelDecl(D);
5857 
5858       // Visit the submodules of this module.
5859       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5860                                              SubEnd = Mod->submodule_end();
5861            Sub != SubEnd; ++Sub) {
5862         // Skip explicit children; they need to be explicitly imported to emit
5863         // the initializers.
5864         if ((*Sub)->IsExplicit)
5865           continue;
5866 
5867         if (Visited.insert(*Sub).second)
5868           Stack.push_back(*Sub);
5869       }
5870     }
5871     break;
5872   }
5873 
5874   case Decl::Export:
5875     EmitDeclContext(cast<ExportDecl>(D));
5876     break;
5877 
5878   case Decl::OMPThreadPrivate:
5879     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5880     break;
5881 
5882   case Decl::OMPAllocate:
5883     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
5884     break;
5885 
5886   case Decl::OMPDeclareReduction:
5887     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5888     break;
5889 
5890   case Decl::OMPDeclareMapper:
5891     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5892     break;
5893 
5894   case Decl::OMPRequires:
5895     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5896     break;
5897 
5898   case Decl::Typedef:
5899   case Decl::TypeAlias: // using foo = bar; [C++11]
5900     if (CGDebugInfo *DI = getModuleDebugInfo())
5901       DI->EmitAndRetainType(
5902           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5903     break;
5904 
5905   case Decl::Record:
5906     if (CGDebugInfo *DI = getModuleDebugInfo())
5907       if (cast<RecordDecl>(D)->getDefinition())
5908         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5909     break;
5910 
5911   case Decl::Enum:
5912     if (CGDebugInfo *DI = getModuleDebugInfo())
5913       if (cast<EnumDecl>(D)->getDefinition())
5914         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5915     break;
5916 
5917   default:
5918     // Make sure we handled everything we should, every other kind is a
5919     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5920     // function. Need to recode Decl::Kind to do that easily.
5921     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5922     break;
5923   }
5924 }
5925 
5926 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5927   // Do we need to generate coverage mapping?
5928   if (!CodeGenOpts.CoverageMapping)
5929     return;
5930   switch (D->getKind()) {
5931   case Decl::CXXConversion:
5932   case Decl::CXXMethod:
5933   case Decl::Function:
5934   case Decl::ObjCMethod:
5935   case Decl::CXXConstructor:
5936   case Decl::CXXDestructor: {
5937     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5938       break;
5939     SourceManager &SM = getContext().getSourceManager();
5940     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5941       break;
5942     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5943     if (I == DeferredEmptyCoverageMappingDecls.end())
5944       DeferredEmptyCoverageMappingDecls[D] = true;
5945     break;
5946   }
5947   default:
5948     break;
5949   };
5950 }
5951 
5952 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5953   // Do we need to generate coverage mapping?
5954   if (!CodeGenOpts.CoverageMapping)
5955     return;
5956   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5957     if (Fn->isTemplateInstantiation())
5958       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5959   }
5960   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5961   if (I == DeferredEmptyCoverageMappingDecls.end())
5962     DeferredEmptyCoverageMappingDecls[D] = false;
5963   else
5964     I->second = false;
5965 }
5966 
5967 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5968   // We call takeVector() here to avoid use-after-free.
5969   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5970   // we deserialize function bodies to emit coverage info for them, and that
5971   // deserializes more declarations. How should we handle that case?
5972   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5973     if (!Entry.second)
5974       continue;
5975     const Decl *D = Entry.first;
5976     switch (D->getKind()) {
5977     case Decl::CXXConversion:
5978     case Decl::CXXMethod:
5979     case Decl::Function:
5980     case Decl::ObjCMethod: {
5981       CodeGenPGO PGO(*this);
5982       GlobalDecl GD(cast<FunctionDecl>(D));
5983       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5984                                   getFunctionLinkage(GD));
5985       break;
5986     }
5987     case Decl::CXXConstructor: {
5988       CodeGenPGO PGO(*this);
5989       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5990       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5991                                   getFunctionLinkage(GD));
5992       break;
5993     }
5994     case Decl::CXXDestructor: {
5995       CodeGenPGO PGO(*this);
5996       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5997       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5998                                   getFunctionLinkage(GD));
5999       break;
6000     }
6001     default:
6002       break;
6003     };
6004   }
6005 }
6006 
6007 void CodeGenModule::EmitMainVoidAlias() {
6008   // In order to transition away from "__original_main" gracefully, emit an
6009   // alias for "main" in the no-argument case so that libc can detect when
6010   // new-style no-argument main is in used.
6011   if (llvm::Function *F = getModule().getFunction("main")) {
6012     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6013         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
6014       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
6015   }
6016 }
6017 
6018 /// Turns the given pointer into a constant.
6019 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6020                                           const void *Ptr) {
6021   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6022   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6023   return llvm::ConstantInt::get(i64, PtrInt);
6024 }
6025 
6026 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6027                                    llvm::NamedMDNode *&GlobalMetadata,
6028                                    GlobalDecl D,
6029                                    llvm::GlobalValue *Addr) {
6030   if (!GlobalMetadata)
6031     GlobalMetadata =
6032       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6033 
6034   // TODO: should we report variant information for ctors/dtors?
6035   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6036                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6037                                CGM.getLLVMContext(), D.getDecl()))};
6038   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6039 }
6040 
6041 /// For each function which is declared within an extern "C" region and marked
6042 /// as 'used', but has internal linkage, create an alias from the unmangled
6043 /// name to the mangled name if possible. People expect to be able to refer
6044 /// to such functions with an unmangled name from inline assembly within the
6045 /// same translation unit.
6046 void CodeGenModule::EmitStaticExternCAliases() {
6047   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6048     return;
6049   for (auto &I : StaticExternCValues) {
6050     IdentifierInfo *Name = I.first;
6051     llvm::GlobalValue *Val = I.second;
6052     if (Val && !getModule().getNamedValue(Name->getName()))
6053       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6054   }
6055 }
6056 
6057 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6058                                              GlobalDecl &Result) const {
6059   auto Res = Manglings.find(MangledName);
6060   if (Res == Manglings.end())
6061     return false;
6062   Result = Res->getValue();
6063   return true;
6064 }
6065 
6066 /// Emits metadata nodes associating all the global values in the
6067 /// current module with the Decls they came from.  This is useful for
6068 /// projects using IR gen as a subroutine.
6069 ///
6070 /// Since there's currently no way to associate an MDNode directly
6071 /// with an llvm::GlobalValue, we create a global named metadata
6072 /// with the name 'clang.global.decl.ptrs'.
6073 void CodeGenModule::EmitDeclMetadata() {
6074   llvm::NamedMDNode *GlobalMetadata = nullptr;
6075 
6076   for (auto &I : MangledDeclNames) {
6077     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6078     // Some mangled names don't necessarily have an associated GlobalValue
6079     // in this module, e.g. if we mangled it for DebugInfo.
6080     if (Addr)
6081       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6082   }
6083 }
6084 
6085 /// Emits metadata nodes for all the local variables in the current
6086 /// function.
6087 void CodeGenFunction::EmitDeclMetadata() {
6088   if (LocalDeclMap.empty()) return;
6089 
6090   llvm::LLVMContext &Context = getLLVMContext();
6091 
6092   // Find the unique metadata ID for this name.
6093   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6094 
6095   llvm::NamedMDNode *GlobalMetadata = nullptr;
6096 
6097   for (auto &I : LocalDeclMap) {
6098     const Decl *D = I.first;
6099     llvm::Value *Addr = I.second.getPointer();
6100     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6101       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6102       Alloca->setMetadata(
6103           DeclPtrKind, llvm::MDNode::get(
6104                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6105     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6106       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6107       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6108     }
6109   }
6110 }
6111 
6112 void CodeGenModule::EmitVersionIdentMetadata() {
6113   llvm::NamedMDNode *IdentMetadata =
6114     TheModule.getOrInsertNamedMetadata("llvm.ident");
6115   std::string Version = getClangFullVersion();
6116   llvm::LLVMContext &Ctx = TheModule.getContext();
6117 
6118   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6119   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6120 }
6121 
6122 void CodeGenModule::EmitCommandLineMetadata() {
6123   llvm::NamedMDNode *CommandLineMetadata =
6124     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6125   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6126   llvm::LLVMContext &Ctx = TheModule.getContext();
6127 
6128   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6129   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6130 }
6131 
6132 void CodeGenModule::EmitCoverageFile() {
6133   if (getCodeGenOpts().CoverageDataFile.empty() &&
6134       getCodeGenOpts().CoverageNotesFile.empty())
6135     return;
6136 
6137   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6138   if (!CUNode)
6139     return;
6140 
6141   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6142   llvm::LLVMContext &Ctx = TheModule.getContext();
6143   auto *CoverageDataFile =
6144       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6145   auto *CoverageNotesFile =
6146       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6147   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6148     llvm::MDNode *CU = CUNode->getOperand(i);
6149     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6150     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6151   }
6152 }
6153 
6154 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6155                                                        bool ForEH) {
6156   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6157   // FIXME: should we even be calling this method if RTTI is disabled
6158   // and it's not for EH?
6159   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6160       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6161        getTriple().isNVPTX()))
6162     return llvm::Constant::getNullValue(Int8PtrTy);
6163 
6164   if (ForEH && Ty->isObjCObjectPointerType() &&
6165       LangOpts.ObjCRuntime.isGNUFamily())
6166     return ObjCRuntime->GetEHType(Ty);
6167 
6168   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6169 }
6170 
6171 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6172   // Do not emit threadprivates in simd-only mode.
6173   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6174     return;
6175   for (auto RefExpr : D->varlists()) {
6176     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6177     bool PerformInit =
6178         VD->getAnyInitializer() &&
6179         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6180                                                         /*ForRef=*/false);
6181 
6182     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6183     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6184             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6185       CXXGlobalInits.push_back(InitFunction);
6186   }
6187 }
6188 
6189 llvm::Metadata *
6190 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6191                                             StringRef Suffix) {
6192   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6193   if (InternalId)
6194     return InternalId;
6195 
6196   if (isExternallyVisible(T->getLinkage())) {
6197     std::string OutName;
6198     llvm::raw_string_ostream Out(OutName);
6199     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6200     Out << Suffix;
6201 
6202     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6203   } else {
6204     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6205                                            llvm::ArrayRef<llvm::Metadata *>());
6206   }
6207 
6208   return InternalId;
6209 }
6210 
6211 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6212   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6213 }
6214 
6215 llvm::Metadata *
6216 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6217   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6218 }
6219 
6220 // Generalize pointer types to a void pointer with the qualifiers of the
6221 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6222 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6223 // 'void *'.
6224 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6225   if (!Ty->isPointerType())
6226     return Ty;
6227 
6228   return Ctx.getPointerType(
6229       QualType(Ctx.VoidTy).withCVRQualifiers(
6230           Ty->getPointeeType().getCVRQualifiers()));
6231 }
6232 
6233 // Apply type generalization to a FunctionType's return and argument types
6234 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6235   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6236     SmallVector<QualType, 8> GeneralizedParams;
6237     for (auto &Param : FnType->param_types())
6238       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6239 
6240     return Ctx.getFunctionType(
6241         GeneralizeType(Ctx, FnType->getReturnType()),
6242         GeneralizedParams, FnType->getExtProtoInfo());
6243   }
6244 
6245   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6246     return Ctx.getFunctionNoProtoType(
6247         GeneralizeType(Ctx, FnType->getReturnType()));
6248 
6249   llvm_unreachable("Encountered unknown FunctionType");
6250 }
6251 
6252 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6253   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6254                                       GeneralizedMetadataIdMap, ".generalized");
6255 }
6256 
6257 /// Returns whether this module needs the "all-vtables" type identifier.
6258 bool CodeGenModule::NeedAllVtablesTypeId() const {
6259   // Returns true if at least one of vtable-based CFI checkers is enabled and
6260   // is not in the trapping mode.
6261   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6262            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6263           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6264            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6265           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6266            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6267           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6268            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6269 }
6270 
6271 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6272                                           CharUnits Offset,
6273                                           const CXXRecordDecl *RD) {
6274   llvm::Metadata *MD =
6275       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6276   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6277 
6278   if (CodeGenOpts.SanitizeCfiCrossDso)
6279     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6280       VTable->addTypeMetadata(Offset.getQuantity(),
6281                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6282 
6283   if (NeedAllVtablesTypeId()) {
6284     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6285     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6286   }
6287 }
6288 
6289 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6290   if (!SanStats)
6291     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6292 
6293   return *SanStats;
6294 }
6295 
6296 llvm::Value *
6297 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6298                                                   CodeGenFunction &CGF) {
6299   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6300   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6301   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6302   auto *Call = CGF.EmitRuntimeCall(
6303       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6304   return Call;
6305 }
6306 
6307 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6308     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6309   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6310                                  /* forPointeeType= */ true);
6311 }
6312 
6313 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6314                                                  LValueBaseInfo *BaseInfo,
6315                                                  TBAAAccessInfo *TBAAInfo,
6316                                                  bool forPointeeType) {
6317   if (TBAAInfo)
6318     *TBAAInfo = getTBAAAccessInfo(T);
6319 
6320   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6321   // that doesn't return the information we need to compute BaseInfo.
6322 
6323   // Honor alignment typedef attributes even on incomplete types.
6324   // We also honor them straight for C++ class types, even as pointees;
6325   // there's an expressivity gap here.
6326   if (auto TT = T->getAs<TypedefType>()) {
6327     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6328       if (BaseInfo)
6329         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6330       return getContext().toCharUnitsFromBits(Align);
6331     }
6332   }
6333 
6334   bool AlignForArray = T->isArrayType();
6335 
6336   // Analyze the base element type, so we don't get confused by incomplete
6337   // array types.
6338   T = getContext().getBaseElementType(T);
6339 
6340   if (T->isIncompleteType()) {
6341     // We could try to replicate the logic from
6342     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6343     // type is incomplete, so it's impossible to test. We could try to reuse
6344     // getTypeAlignIfKnown, but that doesn't return the information we need
6345     // to set BaseInfo.  So just ignore the possibility that the alignment is
6346     // greater than one.
6347     if (BaseInfo)
6348       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6349     return CharUnits::One();
6350   }
6351 
6352   if (BaseInfo)
6353     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6354 
6355   CharUnits Alignment;
6356   const CXXRecordDecl *RD;
6357   if (T.getQualifiers().hasUnaligned()) {
6358     Alignment = CharUnits::One();
6359   } else if (forPointeeType && !AlignForArray &&
6360              (RD = T->getAsCXXRecordDecl())) {
6361     // For C++ class pointees, we don't know whether we're pointing at a
6362     // base or a complete object, so we generally need to use the
6363     // non-virtual alignment.
6364     Alignment = getClassPointerAlignment(RD);
6365   } else {
6366     Alignment = getContext().getTypeAlignInChars(T);
6367   }
6368 
6369   // Cap to the global maximum type alignment unless the alignment
6370   // was somehow explicit on the type.
6371   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6372     if (Alignment.getQuantity() > MaxAlign &&
6373         !getContext().isAlignmentRequired(T))
6374       Alignment = CharUnits::fromQuantity(MaxAlign);
6375   }
6376   return Alignment;
6377 }
6378 
6379 bool CodeGenModule::stopAutoInit() {
6380   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6381   if (StopAfter) {
6382     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6383     // used
6384     if (NumAutoVarInit >= StopAfter) {
6385       return true;
6386     }
6387     if (!NumAutoVarInit) {
6388       unsigned DiagID = getDiags().getCustomDiagID(
6389           DiagnosticsEngine::Warning,
6390           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6391           "number of times ftrivial-auto-var-init=%1 gets applied.");
6392       getDiags().Report(DiagID)
6393           << StopAfter
6394           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6395                       LangOptions::TrivialAutoVarInitKind::Zero
6396                   ? "zero"
6397                   : "pattern");
6398     }
6399     ++NumAutoVarInit;
6400   }
6401   return false;
6402 }
6403 
6404 void CodeGenModule::printPostfixForExternalizedStaticVar(
6405     llvm::raw_ostream &OS) const {
6406   OS << ".static." << getContext().getCUIDHash();
6407 }
6408