1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Diagnostic.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Basic/ConvertUTF.h" 28 #include "llvm/CallingConv.h" 29 #include "llvm/Module.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/Target/TargetData.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 37 llvm::Module &M, const llvm::TargetData &TD, 38 Diagnostic &diags) 39 : BlockModule(C, M, TD, Types, *this), Context(C), 40 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 41 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 42 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 43 44 if (!Features.ObjC1) 45 Runtime = 0; 46 else if (!Features.NeXTRuntime) 47 Runtime = CreateGNUObjCRuntime(*this); 48 else if (Features.ObjCNonFragileABI) 49 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 50 else 51 Runtime = CreateMacObjCRuntime(*this); 52 53 // If debug info generation is enabled, create the CGDebugInfo object. 54 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 55 } 56 57 CodeGenModule::~CodeGenModule() { 58 delete Runtime; 59 delete DebugInfo; 60 } 61 62 void CodeGenModule::Release() { 63 EmitDeferred(); 64 if (Runtime) 65 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 66 AddGlobalCtor(ObjCInitFunction); 67 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 68 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 69 EmitAnnotations(); 70 EmitLLVMUsed(); 71 } 72 73 /// ErrorUnsupported - Print out an error that codegen doesn't support the 74 /// specified stmt yet. 75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 76 bool OmitOnError) { 77 if (OmitOnError && getDiags().hasErrorOccurred()) 78 return; 79 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 80 "cannot compile this %0 yet"); 81 std::string Msg = Type; 82 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 83 << Msg << S->getSourceRange(); 84 } 85 86 /// ErrorUnsupported - Print out an error that codegen doesn't support the 87 /// specified decl yet. 88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 89 bool OmitOnError) { 90 if (OmitOnError && getDiags().hasErrorOccurred()) 91 return; 92 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 93 "cannot compile this %0 yet"); 94 std::string Msg = Type; 95 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 96 } 97 98 /// setGlobalVisibility - Set the visibility for the given LLVM 99 /// GlobalValue according to the given clang AST visibility value. 100 static void setGlobalVisibility(llvm::GlobalValue *GV, 101 VisibilityAttr::VisibilityTypes Vis) { 102 switch (Vis) { 103 default: assert(0 && "Unknown visibility!"); 104 case VisibilityAttr::DefaultVisibility: 105 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 106 break; 107 case VisibilityAttr::HiddenVisibility: 108 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 109 break; 110 case VisibilityAttr::ProtectedVisibility: 111 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 112 break; 113 } 114 } 115 116 /// \brief Retrieves the mangled name for the given declaration. 117 /// 118 /// If the given declaration requires a mangled name, returns an 119 /// const char* containing the mangled name. Otherwise, returns 120 /// the unmangled name. 121 /// 122 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 123 // In C, functions with no attributes never need to be mangled. Fastpath them. 124 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 125 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 126 return ND->getNameAsCString(); 127 } 128 129 llvm::SmallString<256> Name; 130 llvm::raw_svector_ostream Out(Name); 131 if (!mangleName(ND, Context, Out)) { 132 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 133 return ND->getNameAsCString(); 134 } 135 136 Name += '\0'; 137 return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData(); 138 } 139 140 /// AddGlobalCtor - Add a function to the list that will be called before 141 /// main() runs. 142 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 143 // FIXME: Type coercion of void()* types. 144 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 145 } 146 147 /// AddGlobalDtor - Add a function to the list that will be called 148 /// when the module is unloaded. 149 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 150 // FIXME: Type coercion of void()* types. 151 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 152 } 153 154 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 155 // Ctor function type is void()*. 156 llvm::FunctionType* CtorFTy = 157 llvm::FunctionType::get(llvm::Type::VoidTy, 158 std::vector<const llvm::Type*>(), 159 false); 160 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 161 162 // Get the type of a ctor entry, { i32, void ()* }. 163 llvm::StructType* CtorStructTy = 164 llvm::StructType::get(llvm::Type::Int32Ty, 165 llvm::PointerType::getUnqual(CtorFTy), NULL); 166 167 // Construct the constructor and destructor arrays. 168 std::vector<llvm::Constant*> Ctors; 169 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 170 std::vector<llvm::Constant*> S; 171 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 172 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 173 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 174 } 175 176 if (!Ctors.empty()) { 177 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 178 new llvm::GlobalVariable(AT, false, 179 llvm::GlobalValue::AppendingLinkage, 180 llvm::ConstantArray::get(AT, Ctors), 181 GlobalName, 182 &TheModule); 183 } 184 } 185 186 void CodeGenModule::EmitAnnotations() { 187 if (Annotations.empty()) 188 return; 189 190 // Create a new global variable for the ConstantStruct in the Module. 191 llvm::Constant *Array = 192 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 193 Annotations.size()), 194 Annotations); 195 llvm::GlobalValue *gv = 196 new llvm::GlobalVariable(Array->getType(), false, 197 llvm::GlobalValue::AppendingLinkage, Array, 198 "llvm.global.annotations", &TheModule); 199 gv->setSection("llvm.metadata"); 200 } 201 202 void CodeGenModule::SetGlobalValueAttributes(const Decl *D, 203 bool IsInternal, 204 bool IsInline, 205 llvm::GlobalValue *GV, 206 bool ForDefinition) { 207 // FIXME: Set up linkage and many other things. Note, this is a simple 208 // approximation of what we really want. 209 if (!ForDefinition) { 210 // Only a few attributes are set on declarations. 211 if (D->getAttr<DLLImportAttr>()) { 212 // The dllimport attribute is overridden by a subsequent declaration as 213 // dllexport. 214 if (!D->getAttr<DLLExportAttr>()) { 215 // dllimport attribute can be applied only to function decls, not to 216 // definitions. 217 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 218 if (!FD->getBody()) 219 GV->setLinkage(llvm::Function::DLLImportLinkage); 220 } else 221 GV->setLinkage(llvm::Function::DLLImportLinkage); 222 } 223 } else if (D->getAttr<WeakAttr>() || 224 D->getAttr<WeakImportAttr>()) { 225 // "extern_weak" is overloaded in LLVM; we probably should have 226 // separate linkage types for this. 227 GV->setLinkage(llvm::Function::ExternalWeakLinkage); 228 } 229 } else { 230 if (IsInternal) { 231 GV->setLinkage(llvm::Function::InternalLinkage); 232 } else { 233 if (D->getAttr<DLLExportAttr>()) { 234 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 235 // The dllexport attribute is ignored for undefined symbols. 236 if (FD->getBody()) 237 GV->setLinkage(llvm::Function::DLLExportLinkage); 238 } else 239 GV->setLinkage(llvm::Function::DLLExportLinkage); 240 } else if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>() || 241 IsInline) 242 GV->setLinkage(llvm::Function::WeakAnyLinkage); 243 } 244 } 245 246 // FIXME: Figure out the relative priority of the attribute, 247 // -fvisibility, and private_extern. 248 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) 249 setGlobalVisibility(GV, attr->getVisibility()); 250 // FIXME: else handle -fvisibility 251 252 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 253 GV->setSection(SA->getName()); 254 255 // Only add to llvm.used when we see a definition, otherwise we 256 // might add multiple times or risk the value being replaced by a 257 // subsequent RAUW. 258 if (ForDefinition) { 259 if (D->getAttr<UsedAttr>()) 260 AddUsedGlobal(GV); 261 } 262 } 263 264 void CodeGenModule::SetFunctionAttributes(const Decl *D, 265 const CGFunctionInfo &Info, 266 llvm::Function *F) { 267 AttributeListType AttributeList; 268 ConstructAttributeList(Info, D, AttributeList); 269 270 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 271 AttributeList.size())); 272 273 // Set the appropriate calling convention for the Function. 274 if (D->getAttr<FastCallAttr>()) 275 F->setCallingConv(llvm::CallingConv::X86_FastCall); 276 277 if (D->getAttr<StdCallAttr>()) 278 F->setCallingConv(llvm::CallingConv::X86_StdCall); 279 280 if (D->getAttr<RegparmAttr>()) 281 ErrorUnsupported(D, "regparm attribute"); 282 } 283 284 /// SetFunctionAttributesForDefinition - Set function attributes 285 /// specific to a function definition. 286 void CodeGenModule::SetFunctionAttributesForDefinition(const Decl *D, 287 llvm::Function *F) { 288 if (isa<ObjCMethodDecl>(D)) { 289 SetGlobalValueAttributes(D, true, false, F, true); 290 } else { 291 const FunctionDecl *FD = cast<FunctionDecl>(D); 292 SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static, 293 FD->isInline(), F, true); 294 } 295 296 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 297 F->addFnAttr(llvm::Attribute::NoUnwind); 298 299 if (D->getAttr<AlwaysInlineAttr>()) 300 F->addFnAttr(llvm::Attribute::AlwaysInline); 301 302 if (D->getAttr<NoinlineAttr>()) 303 F->addFnAttr(llvm::Attribute::NoInline); 304 } 305 306 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD, 307 llvm::Function *F) { 308 SetFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F); 309 310 SetFunctionAttributesForDefinition(MD, F); 311 } 312 313 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 314 llvm::Function *F) { 315 SetFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 316 317 SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static, 318 FD->isInline(), F, false); 319 } 320 321 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 322 assert(!GV->isDeclaration() && 323 "Only globals with definition can force usage."); 324 LLVMUsed.push_back(GV); 325 } 326 327 void CodeGenModule::EmitLLVMUsed() { 328 // Don't create llvm.used if there is no need. 329 if (LLVMUsed.empty()) 330 return; 331 332 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 333 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size()); 334 335 // Convert LLVMUsed to what ConstantArray needs. 336 std::vector<llvm::Constant*> UsedArray; 337 UsedArray.resize(LLVMUsed.size()); 338 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 339 UsedArray[i] = 340 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 341 } 342 343 llvm::GlobalVariable *GV = 344 new llvm::GlobalVariable(ATy, false, 345 llvm::GlobalValue::AppendingLinkage, 346 llvm::ConstantArray::get(ATy, UsedArray), 347 "llvm.used", &getModule()); 348 349 GV->setSection("llvm.metadata"); 350 } 351 352 void CodeGenModule::EmitDeferred() { 353 // Emit code for any potentially referenced deferred decls. Since a 354 // previously unused static decl may become used during the generation of code 355 // for a static function, iterate until no changes are made. 356 while (!DeferredDeclsToEmit.empty()) { 357 const ValueDecl *D = DeferredDeclsToEmit.back(); 358 DeferredDeclsToEmit.pop_back(); 359 360 // The mangled name for the decl must have been emitted in GlobalDeclMap. 361 // Look it up to see if it was defined with a stronger definition (e.g. an 362 // extern inline function with a strong function redefinition). If so, 363 // just ignore the deferred decl. 364 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 365 assert(CGRef && "Deferred decl wasn't referenced?"); 366 367 if (!CGRef->isDeclaration()) 368 continue; 369 370 // Otherwise, emit the definition and move on to the next one. 371 EmitGlobalDefinition(D); 372 } 373 } 374 375 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 376 /// annotation information for a given GlobalValue. The annotation struct is 377 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 378 /// GlobalValue being annotated. The second field is the constant string 379 /// created from the AnnotateAttr's annotation. The third field is a constant 380 /// string containing the name of the translation unit. The fourth field is 381 /// the line number in the file of the annotated value declaration. 382 /// 383 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 384 /// appears to. 385 /// 386 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 387 const AnnotateAttr *AA, 388 unsigned LineNo) { 389 llvm::Module *M = &getModule(); 390 391 // get [N x i8] constants for the annotation string, and the filename string 392 // which are the 2nd and 3rd elements of the global annotation structure. 393 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 394 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 395 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 396 true); 397 398 // Get the two global values corresponding to the ConstantArrays we just 399 // created to hold the bytes of the strings. 400 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 401 llvm::GlobalValue *annoGV = 402 new llvm::GlobalVariable(anno->getType(), false, 403 llvm::GlobalValue::InternalLinkage, anno, 404 GV->getName() + StringPrefix, M); 405 // translation unit name string, emitted into the llvm.metadata section. 406 llvm::GlobalValue *unitGV = 407 new llvm::GlobalVariable(unit->getType(), false, 408 llvm::GlobalValue::InternalLinkage, unit, 409 StringPrefix, M); 410 411 // Create the ConstantStruct that is the global annotion. 412 llvm::Constant *Fields[4] = { 413 llvm::ConstantExpr::getBitCast(GV, SBP), 414 llvm::ConstantExpr::getBitCast(annoGV, SBP), 415 llvm::ConstantExpr::getBitCast(unitGV, SBP), 416 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 417 }; 418 return llvm::ConstantStruct::get(Fields, 4, false); 419 } 420 421 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 422 // Never defer when EmitAllDecls is specified or the decl has 423 // attribute used. 424 if (Features.EmitAllDecls || Global->getAttr<UsedAttr>()) 425 return false; 426 427 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 428 // Constructors and destructors should never be deferred. 429 if (FD->getAttr<ConstructorAttr>() || FD->getAttr<DestructorAttr>()) 430 return false; 431 432 // FIXME: What about inline, and/or extern inline? 433 if (FD->getStorageClass() != FunctionDecl::Static) 434 return false; 435 } else { 436 const VarDecl *VD = cast<VarDecl>(Global); 437 assert(VD->isFileVarDecl() && "Invalid decl"); 438 439 if (VD->getStorageClass() != VarDecl::Static) 440 return false; 441 } 442 443 return true; 444 } 445 446 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 447 // If this is an alias definition (which otherwise looks like a declaration) 448 // emit it now. 449 if (Global->getAttr<AliasAttr>()) 450 return EmitAliasDefinition(Global); 451 452 // Ignore declarations, they will be emitted on their first use. 453 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 454 // Forward declarations are emitted lazily on first use. 455 if (!FD->isThisDeclarationADefinition()) 456 return; 457 } else { 458 const VarDecl *VD = cast<VarDecl>(Global); 459 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 460 461 // Forward declarations are emitted lazily on first use. 462 if (!VD->getInit() && VD->hasExternalStorage()) 463 return; 464 } 465 466 // Defer code generation when possible if this is a static definition, inline 467 // function etc. These we only want to emit if they are used. 468 if (MayDeferGeneration(Global)) { 469 // If the value has already been used, add it directly to the 470 // DeferredDeclsToEmit list. 471 const char *MangledName = getMangledName(Global); 472 if (GlobalDeclMap.count(MangledName)) 473 DeferredDeclsToEmit.push_back(Global); 474 else { 475 // Otherwise, remember that we saw a deferred decl with this name. The 476 // first use of the mangled name will cause it to move into 477 // DeferredDeclsToEmit. 478 DeferredDecls[MangledName] = Global; 479 } 480 return; 481 } 482 483 // Otherwise emit the definition. 484 EmitGlobalDefinition(Global); 485 } 486 487 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 488 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 489 EmitGlobalFunctionDefinition(FD); 490 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 491 EmitGlobalVarDefinition(VD); 492 } else { 493 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 494 } 495 } 496 497 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 498 /// module, create and return an llvm Function with the specified type. If there 499 /// is something in the module with the specified name, return it potentially 500 /// bitcasted to the right type. 501 /// 502 /// If D is non-null, it specifies a decl that correspond to this. This is used 503 /// to set the attributes on the function when it is first created. 504 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 505 const llvm::Type *Ty, 506 const FunctionDecl *D) { 507 // Lookup the entry, lazily creating it if necessary. 508 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 509 if (Entry) { 510 if (Entry->getType()->getElementType() == Ty) 511 return Entry; 512 513 // Make sure the result is of the correct type. 514 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 515 return llvm::ConstantExpr::getBitCast(Entry, PTy); 516 } 517 518 // This is the first use or definition of a mangled name. If there is a 519 // deferred decl with this name, remember that we need to emit it at the end 520 // of the file. 521 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 522 DeferredDecls.find(MangledName); 523 if (DDI != DeferredDecls.end()) { 524 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 525 // list, and remove it from DeferredDecls (since we don't need it anymore). 526 DeferredDeclsToEmit.push_back(DDI->second); 527 DeferredDecls.erase(DDI); 528 } 529 530 // This function doesn't have a complete type (for example, the return 531 // type is an incomplete struct). Use a fake type instead, and make 532 // sure not to try to set attributes. 533 bool ShouldSetAttributes = true; 534 if (!isa<llvm::FunctionType>(Ty)) { 535 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 536 std::vector<const llvm::Type*>(), false); 537 ShouldSetAttributes = false; 538 } 539 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 540 llvm::Function::ExternalLinkage, 541 "", &getModule()); 542 F->setName(MangledName); 543 if (D && ShouldSetAttributes) 544 SetFunctionAttributes(D, F); 545 Entry = F; 546 return F; 547 } 548 549 /// GetAddrOfFunction - Return the address of the given function. If Ty is 550 /// non-null, then this function will use the specified type if it has to 551 /// create it (this occurs when we see a definition of the function). 552 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D, 553 const llvm::Type *Ty) { 554 // If there was no specific requested type, just convert it now. 555 if (!Ty) 556 Ty = getTypes().ConvertType(D->getType()); 557 return GetOrCreateLLVMFunction(getMangledName(D), Ty, D); 558 } 559 560 /// CreateRuntimeFunction - Create a new runtime function with the specified 561 /// type and name. 562 llvm::Constant * 563 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 564 const char *Name) { 565 // Convert Name to be a uniqued string from the IdentifierInfo table. 566 Name = getContext().Idents.get(Name).getName(); 567 return GetOrCreateLLVMFunction(Name, FTy, 0); 568 } 569 570 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 571 /// create and return an llvm GlobalVariable with the specified type. If there 572 /// is something in the module with the specified name, return it potentially 573 /// bitcasted to the right type. 574 /// 575 /// If D is non-null, it specifies a decl that correspond to this. This is used 576 /// to set the attributes on the global when it is first created. 577 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 578 const llvm::PointerType*Ty, 579 const VarDecl *D) { 580 // Lookup the entry, lazily creating it if necessary. 581 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 582 if (Entry) { 583 if (Entry->getType() == Ty) 584 return Entry; 585 586 // Make sure the result is of the correct type. 587 return llvm::ConstantExpr::getBitCast(Entry, Ty); 588 } 589 590 // This is the first use or definition of a mangled name. If there is a 591 // deferred decl with this name, remember that we need to emit it at the end 592 // of the file. 593 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 594 DeferredDecls.find(MangledName); 595 if (DDI != DeferredDecls.end()) { 596 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 597 // list, and remove it from DeferredDecls (since we don't need it anymore). 598 DeferredDeclsToEmit.push_back(DDI->second); 599 DeferredDecls.erase(DDI); 600 } 601 602 llvm::GlobalVariable *GV = 603 new llvm::GlobalVariable(Ty->getElementType(), false, 604 llvm::GlobalValue::ExternalLinkage, 605 0, "", &getModule(), 606 0, Ty->getAddressSpace()); 607 GV->setName(MangledName); 608 609 // Handle things which are present even on external declarations. 610 if (D) { 611 // FIXME: This code is overly simple and should be merged with 612 // other global handling. 613 GV->setConstant(D->getType().isConstant(Context)); 614 615 // FIXME: Merge with other attribute handling code. 616 if (D->getStorageClass() == VarDecl::PrivateExtern) 617 setGlobalVisibility(GV, VisibilityAttr::HiddenVisibility); 618 619 if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>()) 620 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 621 } 622 623 return Entry = GV; 624 } 625 626 627 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 628 /// given global variable. If Ty is non-null and if the global doesn't exist, 629 /// then it will be greated with the specified type instead of whatever the 630 /// normal requested type would be. 631 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 632 const llvm::Type *Ty) { 633 assert(D->hasGlobalStorage() && "Not a global variable"); 634 QualType ASTTy = D->getType(); 635 if (Ty == 0) 636 Ty = getTypes().ConvertTypeForMem(ASTTy); 637 638 const llvm::PointerType *PTy = 639 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 640 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 641 } 642 643 /// CreateRuntimeVariable - Create a new runtime global variable with the 644 /// specified type and name. 645 llvm::Constant * 646 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 647 const char *Name) { 648 // Convert Name to be a uniqued string from the IdentifierInfo table. 649 Name = getContext().Idents.get(Name).getName(); 650 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 651 } 652 653 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 654 llvm::Constant *Init = 0; 655 QualType ASTTy = D->getType(); 656 657 if (D->getInit() == 0) { 658 // This is a tentative definition; tentative definitions are 659 // implicitly initialized with { 0 } 660 const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy); 661 if (ASTTy->isIncompleteArrayType()) { 662 // An incomplete array is normally [ TYPE x 0 ], but we need 663 // to fix it to [ TYPE x 1 ]. 664 const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy); 665 InitTy = llvm::ArrayType::get(ATy->getElementType(), 1); 666 } 667 Init = llvm::Constant::getNullValue(InitTy); 668 } else { 669 Init = EmitConstantExpr(D->getInit()); 670 if (!Init) { 671 ErrorUnsupported(D, "static initializer"); 672 QualType T = D->getInit()->getType(); 673 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 674 } 675 } 676 677 const llvm::Type* InitType = Init->getType(); 678 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 679 680 // Strip off a bitcast if we got one back. 681 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 682 assert(CE->getOpcode() == llvm::Instruction::BitCast); 683 Entry = CE->getOperand(0); 684 } 685 686 // Entry is now either a Function or GlobalVariable. 687 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 688 689 // If we already have this global and it has an initializer, then 690 // we are in the rare situation where we emitted the defining 691 // declaration of the global and are now being asked to emit a 692 // definition which would be common. This occurs, for example, in 693 // the following situation because statics can be emitted out of 694 // order: 695 // 696 // static int x; 697 // static int *y = &x; 698 // static int x = 10; 699 // int **z = &y; 700 // 701 // Bail here so we don't blow away the definition. Note that if we 702 // can't distinguish here if we emitted a definition with a null 703 // initializer, but this case is safe. 704 if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) { 705 assert(!D->getInit() && "Emitting multiple definitions of a decl!"); 706 return; 707 } 708 709 // We have a definition after a declaration with the wrong type. 710 // We must make a new GlobalVariable* and update everything that used OldGV 711 // (a declaration or tentative definition) with the new GlobalVariable* 712 // (which will be a definition). 713 // 714 // This happens if there is a prototype for a global (e.g. 715 // "extern int x[];") and then a definition of a different type (e.g. 716 // "int x[10];"). This also happens when an initializer has a different type 717 // from the type of the global (this happens with unions). 718 // 719 // FIXME: This also ends up happening if there's a definition followed by 720 // a tentative definition! (Although Sema rejects that construct 721 // at the moment.) 722 if (GV == 0 || 723 GV->getType()->getElementType() != InitType || 724 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 725 726 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 727 GlobalDeclMap.erase(getMangledName(D)); 728 729 // Make a new global with the correct type, this is now guaranteed to work. 730 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 731 GV->takeName(cast<llvm::GlobalValue>(Entry)); 732 733 // Replace all uses of the old global with the new global 734 llvm::Constant *NewPtrForOldDecl = 735 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 736 Entry->replaceAllUsesWith(NewPtrForOldDecl); 737 738 // Erase the old global, since it is no longer used. 739 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 740 } 741 742 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 743 SourceManager &SM = Context.getSourceManager(); 744 AddAnnotation(EmitAnnotateAttr(GV, AA, 745 SM.getInstantiationLineNumber(D->getLocation()))); 746 } 747 748 GV->setInitializer(Init); 749 GV->setConstant(D->getType().isConstant(Context)); 750 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 751 752 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) 753 setGlobalVisibility(GV, attr->getVisibility()); 754 // FIXME: else handle -fvisibility 755 756 // Set the llvm linkage type as appropriate. 757 if (D->getStorageClass() == VarDecl::Static) 758 GV->setLinkage(llvm::Function::InternalLinkage); 759 else if (D->getAttr<DLLImportAttr>()) 760 GV->setLinkage(llvm::Function::DLLImportLinkage); 761 else if (D->getAttr<DLLExportAttr>()) 762 GV->setLinkage(llvm::Function::DLLExportLinkage); 763 else if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>()) 764 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 765 else { 766 // FIXME: This isn't right. This should handle common linkage and other 767 // stuff. 768 switch (D->getStorageClass()) { 769 case VarDecl::Static: assert(0 && "This case handled above"); 770 case VarDecl::Auto: 771 case VarDecl::Register: 772 assert(0 && "Can't have auto or register globals"); 773 case VarDecl::None: 774 if (!D->getInit() && !CompileOpts.NoCommon) 775 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 776 else 777 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 778 break; 779 case VarDecl::Extern: 780 // FIXME: common 781 break; 782 783 case VarDecl::PrivateExtern: 784 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 785 // FIXME: common 786 break; 787 } 788 } 789 790 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 791 GV->setSection(SA->getName()); 792 793 if (D->getAttr<UsedAttr>()) 794 AddUsedGlobal(GV); 795 796 // Emit global variable debug information. 797 if (CGDebugInfo *DI = getDebugInfo()) { 798 DI->setLocation(D->getLocation()); 799 DI->EmitGlobalVariable(GV, D); 800 } 801 } 802 803 804 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 805 const llvm::FunctionType *Ty = 806 cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 807 808 // As a special case, make sure that definitions of K&R function 809 // "type foo()" aren't declared as varargs (which forces the backend 810 // to do unnecessary work). 811 if (D->getType()->isFunctionNoProtoType()) { 812 assert(Ty->isVarArg() && "Didn't lower type as expected"); 813 // Due to stret, the lowered function could have arguments. Just create the 814 // same type as was lowered by ConvertType but strip off the varargs bit. 815 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 816 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 817 } 818 819 // Get or create the prototype for teh function. 820 llvm::Constant *Entry = GetAddrOfFunction(D, Ty); 821 822 // Strip off a bitcast if we got one back. 823 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 824 assert(CE->getOpcode() == llvm::Instruction::BitCast); 825 Entry = CE->getOperand(0); 826 } 827 828 829 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 830 // If the types mismatch then we have to rewrite the definition. 831 assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() && 832 "Shouldn't replace non-declaration"); 833 834 // F is the Function* for the one with the wrong type, we must make a new 835 // Function* and update everything that used F (a declaration) with the new 836 // Function* (which will be a definition). 837 // 838 // This happens if there is a prototype for a function 839 // (e.g. "int f()") and then a definition of a different type 840 // (e.g. "int f(int x)"). Start by making a new function of the 841 // correct type, RAUW, then steal the name. 842 GlobalDeclMap.erase(getMangledName(D)); 843 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty)); 844 NewFn->takeName(cast<llvm::GlobalValue>(Entry)); 845 846 // Replace uses of F with the Function we will endow with a body. 847 llvm::Constant *NewPtrForOldDecl = 848 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 849 Entry->replaceAllUsesWith(NewPtrForOldDecl); 850 851 // Ok, delete the old function now, which is dead. 852 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 853 854 Entry = NewFn; 855 } 856 857 llvm::Function *Fn = cast<llvm::Function>(Entry); 858 859 CodeGenFunction(*this).GenerateCode(D, Fn); 860 861 SetFunctionAttributesForDefinition(D, Fn); 862 863 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 864 AddGlobalCtor(Fn, CA->getPriority()); 865 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 866 AddGlobalDtor(Fn, DA->getPriority()); 867 } 868 869 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 870 const AliasAttr *AA = D->getAttr<AliasAttr>(); 871 assert(AA && "Not an alias?"); 872 873 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 874 875 // Unique the name through the identifier table. 876 const char *AliaseeName = AA->getAliasee().c_str(); 877 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 878 879 // Create a reference to the named value. This ensures that it is emitted 880 // if a deferred decl. 881 llvm::Constant *Aliasee; 882 if (isa<llvm::FunctionType>(DeclTy)) 883 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0); 884 else 885 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 886 llvm::PointerType::getUnqual(DeclTy), 0); 887 888 // Create the new alias itself, but don't set a name yet. 889 llvm::GlobalValue *GA = 890 new llvm::GlobalAlias(Aliasee->getType(), 891 llvm::Function::ExternalLinkage, 892 "", Aliasee, &getModule()); 893 894 // See if there is already something with the alias' name in the module. 895 const char *MangledName = getMangledName(D); 896 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 897 898 if (Entry && !Entry->isDeclaration()) { 899 // If there is a definition in the module, then it wins over the alias. 900 // This is dubious, but allow it to be safe. Just ignore the alias. 901 GA->eraseFromParent(); 902 return; 903 } 904 905 if (Entry) { 906 // If there is a declaration in the module, then we had an extern followed 907 // by the alias, as in: 908 // extern int test6(); 909 // ... 910 // int test6() __attribute__((alias("test7"))); 911 // 912 // Remove it and replace uses of it with the alias. 913 914 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 915 Entry->getType())); 916 Entry->eraseFromParent(); 917 } 918 919 // Now we know that there is no conflict, set the name. 920 Entry = GA; 921 GA->setName(MangledName); 922 923 // Alias should never be internal or inline. 924 SetGlobalValueAttributes(D, false, false, GA, true); 925 } 926 927 /// getBuiltinLibFunction - Given a builtin id for a function like 928 /// "__builtin_fabsf", return a Function* for "fabsf". 929 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 930 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 931 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 932 "isn't a lib fn"); 933 934 // Get the name, skip over the __builtin_ prefix (if necessary). 935 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 936 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 937 Name += 10; 938 939 // Get the type for the builtin. 940 Builtin::Context::GetBuiltinTypeError Error; 941 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); 942 assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); 943 944 const llvm::FunctionType *Ty = 945 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 946 947 // Unique the name through the identifier table. 948 Name = getContext().Idents.get(Name).getName(); 949 // FIXME: param attributes for sext/zext etc. 950 return GetOrCreateLLVMFunction(Name, Ty, 0); 951 } 952 953 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 954 unsigned NumTys) { 955 return llvm::Intrinsic::getDeclaration(&getModule(), 956 (llvm::Intrinsic::ID)IID, Tys, NumTys); 957 } 958 959 llvm::Function *CodeGenModule::getMemCpyFn() { 960 if (MemCpyFn) return MemCpyFn; 961 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 962 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 963 } 964 965 llvm::Function *CodeGenModule::getMemMoveFn() { 966 if (MemMoveFn) return MemMoveFn; 967 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 968 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 969 } 970 971 llvm::Function *CodeGenModule::getMemSetFn() { 972 if (MemSetFn) return MemSetFn; 973 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 974 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 975 } 976 977 static void appendFieldAndPadding(CodeGenModule &CGM, 978 std::vector<llvm::Constant*>& Fields, 979 FieldDecl *FieldD, FieldDecl *NextFieldD, 980 llvm::Constant* Field, 981 RecordDecl* RD, const llvm::StructType *STy) { 982 // Append the field. 983 Fields.push_back(Field); 984 985 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 986 987 int NextStructFieldNo; 988 if (!NextFieldD) { 989 NextStructFieldNo = STy->getNumElements(); 990 } else { 991 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 992 } 993 994 // Append padding 995 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 996 llvm::Constant *C = 997 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 998 999 Fields.push_back(C); 1000 } 1001 } 1002 1003 llvm::Constant *CodeGenModule:: 1004 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1005 std::string str; 1006 unsigned StringLength; 1007 1008 bool isUTF16 = false; 1009 if (Literal->containsNonAsciiOrNull()) { 1010 // Convert from UTF-8 to UTF-16. 1011 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1012 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1013 UTF16 *ToPtr = &ToBuf[0]; 1014 1015 ConversionResult Result; 1016 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1017 &ToPtr, ToPtr+Literal->getByteLength(), 1018 strictConversion); 1019 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1020 1021 StringLength = ToPtr-&ToBuf[0]; 1022 str.assign((char *)&ToBuf[0], StringLength*2); // Twice as many UTF8 chars. 1023 isUTF16 = true; 1024 } else { 1025 str.assign(Literal->getStrData(), Literal->getByteLength()); 1026 StringLength = str.length(); 1027 } 1028 llvm::StringMapEntry<llvm::Constant *> &Entry = 1029 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1030 1031 if (llvm::Constant *C = Entry.getValue()) 1032 return C; 1033 1034 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1035 llvm::Constant *Zeros[] = { Zero, Zero }; 1036 1037 if (!CFConstantStringClassRef) { 1038 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1039 Ty = llvm::ArrayType::get(Ty, 0); 1040 1041 // FIXME: This is fairly broken if 1042 // __CFConstantStringClassReference is already defined, in that it 1043 // will get renamed and the user will most likely see an opaque 1044 // error message. This is a general issue with relying on 1045 // particular names. 1046 llvm::GlobalVariable *GV = 1047 new llvm::GlobalVariable(Ty, false, 1048 llvm::GlobalVariable::ExternalLinkage, 0, 1049 "__CFConstantStringClassReference", 1050 &getModule()); 1051 1052 // Decay array -> ptr 1053 CFConstantStringClassRef = 1054 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1055 } 1056 1057 QualType CFTy = getContext().getCFConstantStringType(); 1058 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1059 1060 const llvm::StructType *STy = 1061 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1062 1063 std::vector<llvm::Constant*> Fields; 1064 RecordDecl::field_iterator Field = CFRD->field_begin(); 1065 1066 // Class pointer. 1067 FieldDecl *CurField = *Field++; 1068 FieldDecl *NextField = *Field++; 1069 appendFieldAndPadding(*this, Fields, CurField, NextField, 1070 CFConstantStringClassRef, CFRD, STy); 1071 1072 // Flags. 1073 CurField = NextField; 1074 NextField = *Field++; 1075 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1076 appendFieldAndPadding(*this, Fields, CurField, NextField, 1077 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1078 : llvm::ConstantInt::get(Ty, 0x07C8), 1079 CFRD, STy); 1080 1081 // String pointer. 1082 CurField = NextField; 1083 NextField = *Field++; 1084 llvm::Constant *C = llvm::ConstantArray::get(str); 1085 llvm::GlobalVariable *GV = 1086 new llvm::GlobalVariable(C->getType(), true, 1087 llvm::GlobalValue::InternalLinkage, 1088 C, getContext().Target.getStringSymbolPrefix(true), 1089 &getModule()); 1090 if (const char *Sect = getContext().Target.getCFStringDataSection()) 1091 GV->setSection(Sect); 1092 appendFieldAndPadding(*this, Fields, CurField, NextField, 1093 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1094 CFRD, STy); 1095 1096 // String length. 1097 CurField = NextField; 1098 NextField = 0; 1099 Ty = getTypes().ConvertType(getContext().LongTy); 1100 appendFieldAndPadding(*this, Fields, CurField, NextField, 1101 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1102 1103 // The struct. 1104 C = llvm::ConstantStruct::get(STy, Fields); 1105 GV = new llvm::GlobalVariable(C->getType(), true, 1106 llvm::GlobalVariable::InternalLinkage, C, 1107 getContext().Target.getCFStringSymbolPrefix(), 1108 &getModule()); 1109 if (const char *Sect = getContext().Target.getCFStringSection()) 1110 GV->setSection(Sect); 1111 Entry.setValue(GV); 1112 1113 return GV; 1114 } 1115 1116 /// GetStringForStringLiteral - Return the appropriate bytes for a 1117 /// string literal, properly padded to match the literal type. 1118 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1119 const char *StrData = E->getStrData(); 1120 unsigned Len = E->getByteLength(); 1121 1122 const ConstantArrayType *CAT = 1123 getContext().getAsConstantArrayType(E->getType()); 1124 assert(CAT && "String isn't pointer or array!"); 1125 1126 // Resize the string to the right size. 1127 std::string Str(StrData, StrData+Len); 1128 uint64_t RealLen = CAT->getSize().getZExtValue(); 1129 1130 if (E->isWide()) 1131 RealLen *= getContext().Target.getWCharWidth()/8; 1132 1133 Str.resize(RealLen, '\0'); 1134 1135 return Str; 1136 } 1137 1138 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1139 /// constant array for the given string literal. 1140 llvm::Constant * 1141 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1142 // FIXME: This can be more efficient. 1143 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1144 } 1145 1146 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1147 /// array for the given ObjCEncodeExpr node. 1148 llvm::Constant * 1149 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1150 std::string Str; 1151 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1152 1153 return GetAddrOfConstantCString(Str); 1154 } 1155 1156 1157 /// GenerateWritableString -- Creates storage for a string literal. 1158 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1159 bool constant, 1160 CodeGenModule &CGM, 1161 const char *GlobalName) { 1162 // Create Constant for this string literal. Don't add a '\0'. 1163 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1164 1165 // Create a global variable for this string 1166 return new llvm::GlobalVariable(C->getType(), constant, 1167 llvm::GlobalValue::InternalLinkage, 1168 C, GlobalName, &CGM.getModule()); 1169 } 1170 1171 /// GetAddrOfConstantString - Returns a pointer to a character array 1172 /// containing the literal. This contents are exactly that of the 1173 /// given string, i.e. it will not be null terminated automatically; 1174 /// see GetAddrOfConstantCString. Note that whether the result is 1175 /// actually a pointer to an LLVM constant depends on 1176 /// Feature.WriteableStrings. 1177 /// 1178 /// The result has pointer to array type. 1179 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1180 const char *GlobalName) { 1181 bool IsConstant = !Features.WritableStrings; 1182 1183 // Get the default prefix if a name wasn't specified. 1184 if (!GlobalName) 1185 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1186 1187 // Don't share any string literals if strings aren't constant. 1188 if (!IsConstant) 1189 return GenerateStringLiteral(str, false, *this, GlobalName); 1190 1191 llvm::StringMapEntry<llvm::Constant *> &Entry = 1192 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1193 1194 if (Entry.getValue()) 1195 return Entry.getValue(); 1196 1197 // Create a global variable for this. 1198 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1199 Entry.setValue(C); 1200 return C; 1201 } 1202 1203 /// GetAddrOfConstantCString - Returns a pointer to a character 1204 /// array containing the literal and a terminating '\-' 1205 /// character. The result has pointer to array type. 1206 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1207 const char *GlobalName){ 1208 return GetAddrOfConstantString(str + '\0', GlobalName); 1209 } 1210 1211 /// EmitObjCPropertyImplementations - Emit information for synthesized 1212 /// properties for an implementation. 1213 void CodeGenModule::EmitObjCPropertyImplementations(const 1214 ObjCImplementationDecl *D) { 1215 for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), 1216 e = D->propimpl_end(); i != e; ++i) { 1217 ObjCPropertyImplDecl *PID = *i; 1218 1219 // Dynamic is just for type-checking. 1220 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1221 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1222 1223 // Determine which methods need to be implemented, some may have 1224 // been overridden. Note that ::isSynthesized is not the method 1225 // we want, that just indicates if the decl came from a 1226 // property. What we want to know is if the method is defined in 1227 // this implementation. 1228 if (!D->getInstanceMethod(PD->getGetterName())) 1229 CodeGenFunction(*this).GenerateObjCGetter( 1230 const_cast<ObjCImplementationDecl *>(D), PID); 1231 if (!PD->isReadOnly() && 1232 !D->getInstanceMethod(PD->getSetterName())) 1233 CodeGenFunction(*this).GenerateObjCSetter( 1234 const_cast<ObjCImplementationDecl *>(D), PID); 1235 } 1236 } 1237 } 1238 1239 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1240 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1241 I != E; ++I) 1242 EmitTopLevelDecl(*I); 1243 } 1244 1245 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1246 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1247 // If an error has occurred, stop code generation, but continue 1248 // parsing and semantic analysis (to ensure all warnings and errors 1249 // are emitted). 1250 if (Diags.hasErrorOccurred()) 1251 return; 1252 1253 switch (D->getKind()) { 1254 case Decl::Function: 1255 case Decl::Var: 1256 EmitGlobal(cast<ValueDecl>(D)); 1257 break; 1258 1259 case Decl::Namespace: 1260 EmitNamespace(cast<NamespaceDecl>(D)); 1261 break; 1262 1263 // Objective-C Decls 1264 1265 // Forward declarations, no (immediate) code generation. 1266 case Decl::ObjCClass: 1267 case Decl::ObjCForwardProtocol: 1268 case Decl::ObjCCategory: 1269 break; 1270 case Decl::ObjCInterface: 1271 // If we already laid out this interface due to an @class, and if we 1272 // codegen'd a reference it, update the 'opaque' type to be a real type now. 1273 Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D)); 1274 break; 1275 1276 case Decl::ObjCProtocol: 1277 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1278 break; 1279 1280 case Decl::ObjCCategoryImpl: 1281 // Categories have properties but don't support synthesize so we 1282 // can ignore them here. 1283 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1284 break; 1285 1286 case Decl::ObjCImplementation: { 1287 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1288 EmitObjCPropertyImplementations(OMD); 1289 Runtime->GenerateClass(OMD); 1290 break; 1291 } 1292 case Decl::ObjCMethod: { 1293 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1294 // If this is not a prototype, emit the body. 1295 if (OMD->getBody()) 1296 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1297 break; 1298 } 1299 case Decl::ObjCCompatibleAlias: 1300 // compatibility-alias is a directive and has no code gen. 1301 break; 1302 1303 case Decl::LinkageSpec: { 1304 LinkageSpecDecl *LSD = cast<LinkageSpecDecl>(D); 1305 if (LSD->getLanguage() == LinkageSpecDecl::lang_cxx) 1306 ErrorUnsupported(LSD, "linkage spec"); 1307 // FIXME: implement C++ linkage, C linkage works mostly by C 1308 // language reuse already. 1309 break; 1310 } 1311 1312 case Decl::FileScopeAsm: { 1313 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1314 std::string AsmString(AD->getAsmString()->getStrData(), 1315 AD->getAsmString()->getByteLength()); 1316 1317 const std::string &S = getModule().getModuleInlineAsm(); 1318 if (S.empty()) 1319 getModule().setModuleInlineAsm(AsmString); 1320 else 1321 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1322 break; 1323 } 1324 1325 default: 1326 // Make sure we handled everything we should, every other kind is 1327 // a non-top-level decl. FIXME: Would be nice to have an 1328 // isTopLevelDeclKind function. Need to recode Decl::Kind to do 1329 // that easily. 1330 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1331 } 1332 } 1333