1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "TargetInfo.h" 21 #include "clang/CodeGen/CodeGenOptions.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/CharUnits.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/Basic/Builtins.h" 28 #include "clang/Basic/Diagnostic.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/Basic/ConvertUTF.h" 32 #include "llvm/CallingConv.h" 33 #include "llvm/Module.h" 34 #include "llvm/Intrinsics.h" 35 #include "llvm/LLVMContext.h" 36 #include "llvm/ADT/Triple.h" 37 #include "llvm/Target/TargetData.h" 38 #include "llvm/Support/ErrorHandling.h" 39 using namespace clang; 40 using namespace CodeGen; 41 42 43 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 44 llvm::Module &M, const llvm::TargetData &TD, 45 Diagnostic &diags) 46 : BlockModule(C, M, TD, Types, *this), Context(C), 47 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 48 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 49 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), 50 MangleCtx(C), VtableInfo(*this), Runtime(0), 51 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 52 VMContext(M.getContext()) { 53 54 if (!Features.ObjC1) 55 Runtime = 0; 56 else if (!Features.NeXTRuntime) 57 Runtime = CreateGNUObjCRuntime(*this); 58 else if (Features.ObjCNonFragileABI) 59 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 60 else 61 Runtime = CreateMacObjCRuntime(*this); 62 63 // If debug info generation is enabled, create the CGDebugInfo object. 64 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 65 } 66 67 CodeGenModule::~CodeGenModule() { 68 delete Runtime; 69 delete DebugInfo; 70 } 71 72 void CodeGenModule::createObjCRuntime() { 73 if (!Features.NeXTRuntime) 74 Runtime = CreateGNUObjCRuntime(*this); 75 else if (Features.ObjCNonFragileABI) 76 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 77 else 78 Runtime = CreateMacObjCRuntime(*this); 79 } 80 81 void CodeGenModule::Release() { 82 EmitDeferred(); 83 EmitCXXGlobalInitFunc(); 84 if (Runtime) 85 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 86 AddGlobalCtor(ObjCInitFunction); 87 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 88 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 89 EmitAnnotations(); 90 EmitLLVMUsed(); 91 } 92 93 bool CodeGenModule::isTargetDarwin() const { 94 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 95 } 96 97 /// ErrorUnsupported - Print out an error that codegen doesn't support the 98 /// specified stmt yet. 99 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 100 bool OmitOnError) { 101 if (OmitOnError && getDiags().hasErrorOccurred()) 102 return; 103 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 104 "cannot compile this %0 yet"); 105 std::string Msg = Type; 106 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 107 << Msg << S->getSourceRange(); 108 } 109 110 /// ErrorUnsupported - Print out an error that codegen doesn't support the 111 /// specified decl yet. 112 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 113 bool OmitOnError) { 114 if (OmitOnError && getDiags().hasErrorOccurred()) 115 return; 116 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 117 "cannot compile this %0 yet"); 118 std::string Msg = Type; 119 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 120 } 121 122 LangOptions::VisibilityMode 123 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 124 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 125 if (VD->getStorageClass() == VarDecl::PrivateExtern) 126 return LangOptions::Hidden; 127 128 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 129 switch (attr->getVisibility()) { 130 default: assert(0 && "Unknown visibility!"); 131 case VisibilityAttr::DefaultVisibility: 132 return LangOptions::Default; 133 case VisibilityAttr::HiddenVisibility: 134 return LangOptions::Hidden; 135 case VisibilityAttr::ProtectedVisibility: 136 return LangOptions::Protected; 137 } 138 } 139 140 // This decl should have the same visibility as its parent. 141 if (const DeclContext *DC = D->getDeclContext()) 142 return getDeclVisibilityMode(cast<Decl>(DC)); 143 144 return getLangOptions().getVisibilityMode(); 145 } 146 147 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 148 const Decl *D) const { 149 // Internal definitions always have default visibility. 150 if (GV->hasLocalLinkage()) { 151 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 152 return; 153 } 154 155 switch (getDeclVisibilityMode(D)) { 156 default: assert(0 && "Unknown visibility!"); 157 case LangOptions::Default: 158 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 159 case LangOptions::Hidden: 160 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 161 case LangOptions::Protected: 162 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 163 } 164 } 165 166 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 167 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 168 169 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 170 return getMangledCXXCtorName(D, GD.getCtorType()); 171 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 172 return getMangledCXXDtorName(D, GD.getDtorType()); 173 174 return getMangledName(ND); 175 } 176 177 /// \brief Retrieves the mangled name for the given declaration. 178 /// 179 /// If the given declaration requires a mangled name, returns an 180 /// const char* containing the mangled name. Otherwise, returns 181 /// the unmangled name. 182 /// 183 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 184 if (!getMangleContext().shouldMangleDeclName(ND)) { 185 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 186 return ND->getNameAsCString(); 187 } 188 189 llvm::SmallString<256> Name; 190 getMangleContext().mangleName(ND, Name); 191 Name += '\0'; 192 return UniqueMangledName(Name.begin(), Name.end()); 193 } 194 195 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 196 const char *NameEnd) { 197 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 198 199 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 200 } 201 202 /// AddGlobalCtor - Add a function to the list that will be called before 203 /// main() runs. 204 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 205 // FIXME: Type coercion of void()* types. 206 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 207 } 208 209 /// AddGlobalDtor - Add a function to the list that will be called 210 /// when the module is unloaded. 211 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 212 // FIXME: Type coercion of void()* types. 213 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 214 } 215 216 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 217 // Ctor function type is void()*. 218 llvm::FunctionType* CtorFTy = 219 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 220 std::vector<const llvm::Type*>(), 221 false); 222 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 223 224 // Get the type of a ctor entry, { i32, void ()* }. 225 llvm::StructType* CtorStructTy = 226 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 227 llvm::PointerType::getUnqual(CtorFTy), NULL); 228 229 // Construct the constructor and destructor arrays. 230 std::vector<llvm::Constant*> Ctors; 231 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 232 std::vector<llvm::Constant*> S; 233 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 234 I->second, false)); 235 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 236 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 237 } 238 239 if (!Ctors.empty()) { 240 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 241 new llvm::GlobalVariable(TheModule, AT, false, 242 llvm::GlobalValue::AppendingLinkage, 243 llvm::ConstantArray::get(AT, Ctors), 244 GlobalName); 245 } 246 } 247 248 void CodeGenModule::EmitAnnotations() { 249 if (Annotations.empty()) 250 return; 251 252 // Create a new global variable for the ConstantStruct in the Module. 253 llvm::Constant *Array = 254 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 255 Annotations.size()), 256 Annotations); 257 llvm::GlobalValue *gv = 258 new llvm::GlobalVariable(TheModule, Array->getType(), false, 259 llvm::GlobalValue::AppendingLinkage, Array, 260 "llvm.global.annotations"); 261 gv->setSection("llvm.metadata"); 262 } 263 264 static CodeGenModule::GVALinkage 265 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 266 const LangOptions &Features) { 267 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 268 269 Linkage L = FD->getLinkage(); 270 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 271 FD->getType()->getLinkage() == UniqueExternalLinkage) 272 L = UniqueExternalLinkage; 273 274 switch (L) { 275 case NoLinkage: 276 case InternalLinkage: 277 case UniqueExternalLinkage: 278 return CodeGenModule::GVA_Internal; 279 280 case ExternalLinkage: 281 switch (FD->getTemplateSpecializationKind()) { 282 case TSK_Undeclared: 283 case TSK_ExplicitSpecialization: 284 External = CodeGenModule::GVA_StrongExternal; 285 break; 286 287 case TSK_ExplicitInstantiationDefinition: 288 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 289 290 case TSK_ExplicitInstantiationDeclaration: 291 case TSK_ImplicitInstantiation: 292 External = CodeGenModule::GVA_TemplateInstantiation; 293 break; 294 } 295 } 296 297 if (!FD->isInlined()) 298 return External; 299 300 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 301 // GNU or C99 inline semantics. Determine whether this symbol should be 302 // externally visible. 303 if (FD->isInlineDefinitionExternallyVisible()) 304 return External; 305 306 // C99 inline semantics, where the symbol is not externally visible. 307 return CodeGenModule::GVA_C99Inline; 308 } 309 310 // C++0x [temp.explicit]p9: 311 // [ Note: The intent is that an inline function that is the subject of 312 // an explicit instantiation declaration will still be implicitly 313 // instantiated when used so that the body can be considered for 314 // inlining, but that no out-of-line copy of the inline function would be 315 // generated in the translation unit. -- end note ] 316 if (FD->getTemplateSpecializationKind() 317 == TSK_ExplicitInstantiationDeclaration) 318 return CodeGenModule::GVA_C99Inline; 319 320 return CodeGenModule::GVA_CXXInline; 321 } 322 323 llvm::GlobalValue::LinkageTypes 324 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 325 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 326 327 if (Linkage == GVA_Internal) { 328 return llvm::Function::InternalLinkage; 329 } else if (D->hasAttr<DLLExportAttr>()) { 330 return llvm::Function::DLLExportLinkage; 331 } else if (D->hasAttr<WeakAttr>()) { 332 return llvm::Function::WeakAnyLinkage; 333 } else if (Linkage == GVA_C99Inline) { 334 // In C99 mode, 'inline' functions are guaranteed to have a strong 335 // definition somewhere else, so we can use available_externally linkage. 336 return llvm::Function::AvailableExternallyLinkage; 337 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation || 338 Linkage == GVA_ExplicitTemplateInstantiation) { 339 // In C++, the compiler has to emit a definition in every translation unit 340 // that references the function. We should use linkonce_odr because 341 // a) if all references in this translation unit are optimized away, we 342 // don't need to codegen it. b) if the function persists, it needs to be 343 // merged with other definitions. c) C++ has the ODR, so we know the 344 // definition is dependable. 345 return llvm::Function::LinkOnceODRLinkage; 346 } else { 347 assert(Linkage == GVA_StrongExternal); 348 // Otherwise, we have strong external linkage. 349 return llvm::Function::ExternalLinkage; 350 } 351 } 352 353 354 /// SetFunctionDefinitionAttributes - Set attributes for a global. 355 /// 356 /// FIXME: This is currently only done for aliases and functions, but not for 357 /// variables (these details are set in EmitGlobalVarDefinition for variables). 358 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 359 llvm::GlobalValue *GV) { 360 GV->setLinkage(getFunctionLinkage(D)); 361 SetCommonAttributes(D, GV); 362 } 363 364 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 365 const CGFunctionInfo &Info, 366 llvm::Function *F) { 367 unsigned CallingConv; 368 AttributeListType AttributeList; 369 ConstructAttributeList(Info, D, AttributeList, CallingConv); 370 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 371 AttributeList.size())); 372 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 373 } 374 375 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 376 llvm::Function *F) { 377 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 378 F->addFnAttr(llvm::Attribute::NoUnwind); 379 380 if (D->hasAttr<AlwaysInlineAttr>()) 381 F->addFnAttr(llvm::Attribute::AlwaysInline); 382 383 if (D->hasAttr<NoInlineAttr>()) 384 F->addFnAttr(llvm::Attribute::NoInline); 385 386 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 387 F->addFnAttr(llvm::Attribute::StackProtect); 388 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 389 F->addFnAttr(llvm::Attribute::StackProtectReq); 390 391 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 392 unsigned width = Context.Target.getCharWidth(); 393 F->setAlignment(AA->getAlignment() / width); 394 while ((AA = AA->getNext<AlignedAttr>())) 395 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 396 } 397 // C++ ABI requires 2-byte alignment for member functions. 398 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 399 F->setAlignment(2); 400 } 401 402 void CodeGenModule::SetCommonAttributes(const Decl *D, 403 llvm::GlobalValue *GV) { 404 setGlobalVisibility(GV, D); 405 406 if (D->hasAttr<UsedAttr>()) 407 AddUsedGlobal(GV); 408 409 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 410 GV->setSection(SA->getName()); 411 412 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 413 } 414 415 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 416 llvm::Function *F, 417 const CGFunctionInfo &FI) { 418 SetLLVMFunctionAttributes(D, FI, F); 419 SetLLVMFunctionAttributesForDefinition(D, F); 420 421 F->setLinkage(llvm::Function::InternalLinkage); 422 423 SetCommonAttributes(D, F); 424 } 425 426 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 427 llvm::Function *F, 428 bool IsIncompleteFunction) { 429 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 430 431 if (!IsIncompleteFunction) 432 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 433 434 // Only a few attributes are set on declarations; these may later be 435 // overridden by a definition. 436 437 if (FD->hasAttr<DLLImportAttr>()) { 438 F->setLinkage(llvm::Function::DLLImportLinkage); 439 } else if (FD->hasAttr<WeakAttr>() || 440 FD->hasAttr<WeakImportAttr>()) { 441 // "extern_weak" is overloaded in LLVM; we probably should have 442 // separate linkage types for this. 443 F->setLinkage(llvm::Function::ExternalWeakLinkage); 444 } else { 445 F->setLinkage(llvm::Function::ExternalLinkage); 446 } 447 448 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 449 F->setSection(SA->getName()); 450 } 451 452 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 453 assert(!GV->isDeclaration() && 454 "Only globals with definition can force usage."); 455 LLVMUsed.push_back(GV); 456 } 457 458 void CodeGenModule::EmitLLVMUsed() { 459 // Don't create llvm.used if there is no need. 460 if (LLVMUsed.empty()) 461 return; 462 463 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 464 465 // Convert LLVMUsed to what ConstantArray needs. 466 std::vector<llvm::Constant*> UsedArray; 467 UsedArray.resize(LLVMUsed.size()); 468 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 469 UsedArray[i] = 470 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 471 i8PTy); 472 } 473 474 if (UsedArray.empty()) 475 return; 476 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 477 478 llvm::GlobalVariable *GV = 479 new llvm::GlobalVariable(getModule(), ATy, false, 480 llvm::GlobalValue::AppendingLinkage, 481 llvm::ConstantArray::get(ATy, UsedArray), 482 "llvm.used"); 483 484 GV->setSection("llvm.metadata"); 485 } 486 487 void CodeGenModule::EmitDeferred() { 488 // Emit code for any potentially referenced deferred decls. Since a 489 // previously unused static decl may become used during the generation of code 490 // for a static function, iterate until no changes are made. 491 492 while (!DeferredDeclsToEmit.empty() || !DeferredVtables.empty()) { 493 if (!DeferredVtables.empty()) { 494 const CXXRecordDecl *RD = DeferredVtables.back(); 495 DeferredVtables.pop_back(); 496 getVtableInfo().GenerateClassData(getVtableLinkage(RD), RD); 497 continue; 498 } 499 500 GlobalDecl D = DeferredDeclsToEmit.back(); 501 DeferredDeclsToEmit.pop_back(); 502 503 // The mangled name for the decl must have been emitted in GlobalDeclMap. 504 // Look it up to see if it was defined with a stronger definition (e.g. an 505 // extern inline function with a strong function redefinition). If so, 506 // just ignore the deferred decl. 507 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 508 assert(CGRef && "Deferred decl wasn't referenced?"); 509 510 if (!CGRef->isDeclaration()) 511 continue; 512 513 // Otherwise, emit the definition and move on to the next one. 514 EmitGlobalDefinition(D); 515 } 516 } 517 518 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 519 /// annotation information for a given GlobalValue. The annotation struct is 520 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 521 /// GlobalValue being annotated. The second field is the constant string 522 /// created from the AnnotateAttr's annotation. The third field is a constant 523 /// string containing the name of the translation unit. The fourth field is 524 /// the line number in the file of the annotated value declaration. 525 /// 526 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 527 /// appears to. 528 /// 529 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 530 const AnnotateAttr *AA, 531 unsigned LineNo) { 532 llvm::Module *M = &getModule(); 533 534 // get [N x i8] constants for the annotation string, and the filename string 535 // which are the 2nd and 3rd elements of the global annotation structure. 536 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 537 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 538 AA->getAnnotation(), true); 539 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 540 M->getModuleIdentifier(), 541 true); 542 543 // Get the two global values corresponding to the ConstantArrays we just 544 // created to hold the bytes of the strings. 545 llvm::GlobalValue *annoGV = 546 new llvm::GlobalVariable(*M, anno->getType(), false, 547 llvm::GlobalValue::PrivateLinkage, anno, 548 GV->getName()); 549 // translation unit name string, emitted into the llvm.metadata section. 550 llvm::GlobalValue *unitGV = 551 new llvm::GlobalVariable(*M, unit->getType(), false, 552 llvm::GlobalValue::PrivateLinkage, unit, 553 ".str"); 554 555 // Create the ConstantStruct for the global annotation. 556 llvm::Constant *Fields[4] = { 557 llvm::ConstantExpr::getBitCast(GV, SBP), 558 llvm::ConstantExpr::getBitCast(annoGV, SBP), 559 llvm::ConstantExpr::getBitCast(unitGV, SBP), 560 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 561 }; 562 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 563 } 564 565 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 566 // Never defer when EmitAllDecls is specified or the decl has 567 // attribute used. 568 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 569 return false; 570 571 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 572 // Constructors and destructors should never be deferred. 573 if (FD->hasAttr<ConstructorAttr>() || 574 FD->hasAttr<DestructorAttr>()) 575 return false; 576 577 // The key function for a class must never be deferred. 578 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 579 const CXXRecordDecl *RD = MD->getParent(); 580 if (MD->isOutOfLine() && RD->isDynamicClass()) { 581 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 582 if (KeyFunction && 583 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 584 return false; 585 } 586 } 587 588 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 589 590 // static, static inline, always_inline, and extern inline functions can 591 // always be deferred. Normal inline functions can be deferred in C99/C++. 592 // Implicit template instantiations can also be deferred in C++. 593 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 594 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 595 return true; 596 return false; 597 } 598 599 const VarDecl *VD = cast<VarDecl>(Global); 600 assert(VD->isFileVarDecl() && "Invalid decl"); 601 602 // We never want to defer structs that have non-trivial constructors or 603 // destructors. 604 605 // FIXME: Handle references. 606 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 607 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 608 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 609 return false; 610 } 611 } 612 613 // Static data may be deferred, but out-of-line static data members 614 // cannot be. 615 Linkage L = VD->getLinkage(); 616 if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus && 617 VD->getType()->getLinkage() == UniqueExternalLinkage) 618 L = UniqueExternalLinkage; 619 620 switch (L) { 621 case NoLinkage: 622 case InternalLinkage: 623 case UniqueExternalLinkage: 624 // Initializer has side effects? 625 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 626 return false; 627 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 628 629 case ExternalLinkage: 630 break; 631 } 632 633 return false; 634 } 635 636 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 637 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 638 assert(AA && "No alias?"); 639 640 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 641 642 // Unique the name through the identifier table. 643 const char *AliaseeName = 644 getContext().Idents.get(AA->getAliasee()).getNameStart(); 645 646 // See if there is already something with the target's name in the module. 647 llvm::GlobalValue *Entry = GlobalDeclMap[AliaseeName]; 648 649 llvm::Constant *Aliasee; 650 if (isa<llvm::FunctionType>(DeclTy)) 651 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 652 else 653 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 654 llvm::PointerType::getUnqual(DeclTy), 0); 655 if (!Entry) { 656 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 657 F->setLinkage(llvm::Function::ExternalWeakLinkage); 658 WeakRefReferences.insert(F); 659 } 660 661 return Aliasee; 662 } 663 664 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 665 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 666 667 // Weak references don't produce any output by themselves. 668 if (Global->hasAttr<WeakRefAttr>()) 669 return; 670 671 // If this is an alias definition (which otherwise looks like a declaration) 672 // emit it now. 673 if (Global->hasAttr<AliasAttr>()) 674 return EmitAliasDefinition(Global); 675 676 // Ignore declarations, they will be emitted on their first use. 677 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 678 // Forward declarations are emitted lazily on first use. 679 if (!FD->isThisDeclarationADefinition()) 680 return; 681 } else { 682 const VarDecl *VD = cast<VarDecl>(Global); 683 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 684 685 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 686 return; 687 } 688 689 // Defer code generation when possible if this is a static definition, inline 690 // function etc. These we only want to emit if they are used. 691 if (MayDeferGeneration(Global)) { 692 // If the value has already been used, add it directly to the 693 // DeferredDeclsToEmit list. 694 const char *MangledName = getMangledName(GD); 695 if (GlobalDeclMap.count(MangledName)) 696 DeferredDeclsToEmit.push_back(GD); 697 else { 698 // Otherwise, remember that we saw a deferred decl with this name. The 699 // first use of the mangled name will cause it to move into 700 // DeferredDeclsToEmit. 701 DeferredDecls[MangledName] = GD; 702 } 703 return; 704 } 705 706 // Otherwise emit the definition. 707 EmitGlobalDefinition(GD); 708 } 709 710 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 711 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 712 713 PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(), 714 Context.getSourceManager(), 715 "Generating code for declaration"); 716 717 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 718 getVtableInfo().MaybeEmitVtable(GD); 719 if (MD->isVirtual() && MD->isOutOfLine() && 720 (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) { 721 if (isa<CXXDestructorDecl>(D)) { 722 GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()), 723 GD.getDtorType()); 724 BuildThunksForVirtual(CanonGD); 725 } else { 726 BuildThunksForVirtual(MD->getCanonicalDecl()); 727 } 728 } 729 } 730 731 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 732 EmitCXXConstructor(CD, GD.getCtorType()); 733 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 734 EmitCXXDestructor(DD, GD.getDtorType()); 735 else if (isa<FunctionDecl>(D)) 736 EmitGlobalFunctionDefinition(GD); 737 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 738 EmitGlobalVarDefinition(VD); 739 else { 740 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 741 } 742 } 743 744 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 745 /// module, create and return an llvm Function with the specified type. If there 746 /// is something in the module with the specified name, return it potentially 747 /// bitcasted to the right type. 748 /// 749 /// If D is non-null, it specifies a decl that correspond to this. This is used 750 /// to set the attributes on the function when it is first created. 751 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 752 const llvm::Type *Ty, 753 GlobalDecl D) { 754 // Lookup the entry, lazily creating it if necessary. 755 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 756 if (Entry) { 757 if (WeakRefReferences.count(Entry)) { 758 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 759 if (FD && !FD->hasAttr<WeakAttr>()) 760 Entry->setLinkage(llvm::Function::ExternalLinkage); 761 762 WeakRefReferences.erase(Entry); 763 } 764 765 if (Entry->getType()->getElementType() == Ty) 766 return Entry; 767 768 // Make sure the result is of the correct type. 769 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 770 return llvm::ConstantExpr::getBitCast(Entry, PTy); 771 } 772 773 // This function doesn't have a complete type (for example, the return 774 // type is an incomplete struct). Use a fake type instead, and make 775 // sure not to try to set attributes. 776 bool IsIncompleteFunction = false; 777 if (!isa<llvm::FunctionType>(Ty)) { 778 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 779 std::vector<const llvm::Type*>(), false); 780 IsIncompleteFunction = true; 781 } 782 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 783 llvm::Function::ExternalLinkage, 784 "", &getModule()); 785 F->setName(MangledName); 786 if (D.getDecl()) 787 SetFunctionAttributes(D, F, IsIncompleteFunction); 788 Entry = F; 789 790 // This is the first use or definition of a mangled name. If there is a 791 // deferred decl with this name, remember that we need to emit it at the end 792 // of the file. 793 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 794 DeferredDecls.find(MangledName); 795 if (DDI != DeferredDecls.end()) { 796 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 797 // list, and remove it from DeferredDecls (since we don't need it anymore). 798 DeferredDeclsToEmit.push_back(DDI->second); 799 DeferredDecls.erase(DDI); 800 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 801 // If this the first reference to a C++ inline function in a class, queue up 802 // the deferred function body for emission. These are not seen as 803 // top-level declarations. 804 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 805 DeferredDeclsToEmit.push_back(D); 806 // A called constructor which has no definition or declaration need be 807 // synthesized. 808 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 809 if (CD->isImplicit()) { 810 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 811 DeferredDeclsToEmit.push_back(D); 812 } 813 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 814 if (DD->isImplicit()) { 815 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 816 DeferredDeclsToEmit.push_back(D); 817 } 818 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 819 if (MD->isCopyAssignment() && MD->isImplicit()) { 820 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 821 DeferredDeclsToEmit.push_back(D); 822 } 823 } 824 } 825 826 return F; 827 } 828 829 /// GetAddrOfFunction - Return the address of the given function. If Ty is 830 /// non-null, then this function will use the specified type if it has to 831 /// create it (this occurs when we see a definition of the function). 832 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 833 const llvm::Type *Ty) { 834 // If there was no specific requested type, just convert it now. 835 if (!Ty) 836 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 837 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 838 } 839 840 /// CreateRuntimeFunction - Create a new runtime function with the specified 841 /// type and name. 842 llvm::Constant * 843 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 844 const char *Name) { 845 // Convert Name to be a uniqued string from the IdentifierInfo table. 846 Name = getContext().Idents.get(Name).getNameStart(); 847 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 848 } 849 850 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 851 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 852 return false; 853 if (Context.getLangOptions().CPlusPlus && 854 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 855 // FIXME: We should do something fancier here! 856 return false; 857 } 858 return true; 859 } 860 861 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 862 /// create and return an llvm GlobalVariable with the specified type. If there 863 /// is something in the module with the specified name, return it potentially 864 /// bitcasted to the right type. 865 /// 866 /// If D is non-null, it specifies a decl that correspond to this. This is used 867 /// to set the attributes on the global when it is first created. 868 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 869 const llvm::PointerType*Ty, 870 const VarDecl *D) { 871 // Lookup the entry, lazily creating it if necessary. 872 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 873 if (Entry) { 874 if (WeakRefReferences.count(Entry)) { 875 if (D && !D->hasAttr<WeakAttr>()) 876 Entry->setLinkage(llvm::Function::ExternalLinkage); 877 878 WeakRefReferences.erase(Entry); 879 } 880 881 if (Entry->getType() == Ty) 882 return Entry; 883 884 // Make sure the result is of the correct type. 885 return llvm::ConstantExpr::getBitCast(Entry, Ty); 886 } 887 888 // This is the first use or definition of a mangled name. If there is a 889 // deferred decl with this name, remember that we need to emit it at the end 890 // of the file. 891 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 892 DeferredDecls.find(MangledName); 893 if (DDI != DeferredDecls.end()) { 894 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 895 // list, and remove it from DeferredDecls (since we don't need it anymore). 896 DeferredDeclsToEmit.push_back(DDI->second); 897 DeferredDecls.erase(DDI); 898 } 899 900 llvm::GlobalVariable *GV = 901 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 902 llvm::GlobalValue::ExternalLinkage, 903 0, "", 0, 904 false, Ty->getAddressSpace()); 905 GV->setName(MangledName); 906 907 // Handle things which are present even on external declarations. 908 if (D) { 909 // FIXME: This code is overly simple and should be merged with other global 910 // handling. 911 GV->setConstant(DeclIsConstantGlobal(Context, D)); 912 913 // FIXME: Merge with other attribute handling code. 914 if (D->getStorageClass() == VarDecl::PrivateExtern) 915 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 916 917 if (D->hasAttr<WeakAttr>() || 918 D->hasAttr<WeakImportAttr>()) 919 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 920 921 GV->setThreadLocal(D->isThreadSpecified()); 922 } 923 924 return Entry = GV; 925 } 926 927 928 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 929 /// given global variable. If Ty is non-null and if the global doesn't exist, 930 /// then it will be greated with the specified type instead of whatever the 931 /// normal requested type would be. 932 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 933 const llvm::Type *Ty) { 934 assert(D->hasGlobalStorage() && "Not a global variable"); 935 QualType ASTTy = D->getType(); 936 if (Ty == 0) 937 Ty = getTypes().ConvertTypeForMem(ASTTy); 938 939 const llvm::PointerType *PTy = 940 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 941 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 942 } 943 944 /// CreateRuntimeVariable - Create a new runtime global variable with the 945 /// specified type and name. 946 llvm::Constant * 947 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 948 const char *Name) { 949 // Convert Name to be a uniqued string from the IdentifierInfo table. 950 Name = getContext().Idents.get(Name).getNameStart(); 951 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 952 } 953 954 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 955 assert(!D->getInit() && "Cannot emit definite definitions here!"); 956 957 if (MayDeferGeneration(D)) { 958 // If we have not seen a reference to this variable yet, place it 959 // into the deferred declarations table to be emitted if needed 960 // later. 961 const char *MangledName = getMangledName(D); 962 if (GlobalDeclMap.count(MangledName) == 0) { 963 DeferredDecls[MangledName] = D; 964 return; 965 } 966 } 967 968 // The tentative definition is the only definition. 969 EmitGlobalVarDefinition(D); 970 } 971 972 llvm::GlobalVariable::LinkageTypes 973 CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) { 974 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 975 return llvm::GlobalVariable::InternalLinkage; 976 977 if (const CXXMethodDecl *KeyFunction 978 = RD->getASTContext().getKeyFunction(RD)) { 979 // If this class has a key function, use that to determine the linkage of 980 // the vtable. 981 const FunctionDecl *Def = 0; 982 if (KeyFunction->getBody(Def)) 983 KeyFunction = cast<CXXMethodDecl>(Def); 984 985 switch (KeyFunction->getTemplateSpecializationKind()) { 986 case TSK_Undeclared: 987 case TSK_ExplicitSpecialization: 988 if (KeyFunction->isInlined()) 989 return llvm::GlobalVariable::WeakODRLinkage; 990 991 return llvm::GlobalVariable::ExternalLinkage; 992 993 case TSK_ImplicitInstantiation: 994 case TSK_ExplicitInstantiationDefinition: 995 return llvm::GlobalVariable::WeakODRLinkage; 996 997 case TSK_ExplicitInstantiationDeclaration: 998 // FIXME: Use available_externally linkage. However, this currently 999 // breaks LLVM's build due to undefined symbols. 1000 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1001 return llvm::GlobalVariable::WeakODRLinkage; 1002 } 1003 } 1004 1005 switch (RD->getTemplateSpecializationKind()) { 1006 case TSK_Undeclared: 1007 case TSK_ExplicitSpecialization: 1008 case TSK_ImplicitInstantiation: 1009 case TSK_ExplicitInstantiationDefinition: 1010 return llvm::GlobalVariable::WeakODRLinkage; 1011 1012 case TSK_ExplicitInstantiationDeclaration: 1013 // FIXME: Use available_externally linkage. However, this currently 1014 // breaks LLVM's build due to undefined symbols. 1015 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1016 return llvm::GlobalVariable::WeakODRLinkage; 1017 } 1018 1019 // Silence GCC warning. 1020 return llvm::GlobalVariable::WeakODRLinkage; 1021 } 1022 1023 static CodeGenModule::GVALinkage 1024 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 1025 // If this is a static data member, compute the kind of template 1026 // specialization. Otherwise, this variable is not part of a 1027 // template. 1028 TemplateSpecializationKind TSK = TSK_Undeclared; 1029 if (VD->isStaticDataMember()) 1030 TSK = VD->getTemplateSpecializationKind(); 1031 1032 Linkage L = VD->getLinkage(); 1033 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 1034 VD->getType()->getLinkage() == UniqueExternalLinkage) 1035 L = UniqueExternalLinkage; 1036 1037 switch (L) { 1038 case NoLinkage: 1039 case InternalLinkage: 1040 case UniqueExternalLinkage: 1041 return CodeGenModule::GVA_Internal; 1042 1043 case ExternalLinkage: 1044 switch (TSK) { 1045 case TSK_Undeclared: 1046 case TSK_ExplicitSpecialization: 1047 return CodeGenModule::GVA_StrongExternal; 1048 1049 case TSK_ExplicitInstantiationDeclaration: 1050 llvm_unreachable("Variable should not be instantiated"); 1051 // Fall through to treat this like any other instantiation. 1052 1053 case TSK_ExplicitInstantiationDefinition: 1054 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 1055 1056 case TSK_ImplicitInstantiation: 1057 return CodeGenModule::GVA_TemplateInstantiation; 1058 } 1059 } 1060 1061 return CodeGenModule::GVA_StrongExternal; 1062 } 1063 1064 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1065 return CharUnits::fromQuantity( 1066 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1067 } 1068 1069 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1070 llvm::Constant *Init = 0; 1071 QualType ASTTy = D->getType(); 1072 bool NonConstInit = false; 1073 1074 const Expr *InitExpr = D->getAnyInitializer(); 1075 1076 if (!InitExpr) { 1077 // This is a tentative definition; tentative definitions are 1078 // implicitly initialized with { 0 }. 1079 // 1080 // Note that tentative definitions are only emitted at the end of 1081 // a translation unit, so they should never have incomplete 1082 // type. In addition, EmitTentativeDefinition makes sure that we 1083 // never attempt to emit a tentative definition if a real one 1084 // exists. A use may still exists, however, so we still may need 1085 // to do a RAUW. 1086 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1087 Init = EmitNullConstant(D->getType()); 1088 } else { 1089 Init = EmitConstantExpr(InitExpr, D->getType()); 1090 1091 if (!Init) { 1092 QualType T = InitExpr->getType(); 1093 if (getLangOptions().CPlusPlus) { 1094 EmitCXXGlobalVarDeclInitFunc(D); 1095 Init = EmitNullConstant(T); 1096 NonConstInit = true; 1097 } else { 1098 ErrorUnsupported(D, "static initializer"); 1099 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1100 } 1101 } 1102 } 1103 1104 const llvm::Type* InitType = Init->getType(); 1105 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1106 1107 // Strip off a bitcast if we got one back. 1108 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1109 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1110 // all zero index gep. 1111 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1112 Entry = CE->getOperand(0); 1113 } 1114 1115 // Entry is now either a Function or GlobalVariable. 1116 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1117 1118 // We have a definition after a declaration with the wrong type. 1119 // We must make a new GlobalVariable* and update everything that used OldGV 1120 // (a declaration or tentative definition) with the new GlobalVariable* 1121 // (which will be a definition). 1122 // 1123 // This happens if there is a prototype for a global (e.g. 1124 // "extern int x[];") and then a definition of a different type (e.g. 1125 // "int x[10];"). This also happens when an initializer has a different type 1126 // from the type of the global (this happens with unions). 1127 if (GV == 0 || 1128 GV->getType()->getElementType() != InitType || 1129 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1130 1131 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 1132 GlobalDeclMap.erase(getMangledName(D)); 1133 1134 // Make a new global with the correct type, this is now guaranteed to work. 1135 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1136 GV->takeName(cast<llvm::GlobalValue>(Entry)); 1137 1138 // Replace all uses of the old global with the new global 1139 llvm::Constant *NewPtrForOldDecl = 1140 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1141 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1142 1143 // Erase the old global, since it is no longer used. 1144 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1145 } 1146 1147 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1148 SourceManager &SM = Context.getSourceManager(); 1149 AddAnnotation(EmitAnnotateAttr(GV, AA, 1150 SM.getInstantiationLineNumber(D->getLocation()))); 1151 } 1152 1153 GV->setInitializer(Init); 1154 1155 // If it is safe to mark the global 'constant', do so now. 1156 GV->setConstant(false); 1157 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1158 GV->setConstant(true); 1159 1160 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1161 1162 // Set the llvm linkage type as appropriate. 1163 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1164 if (Linkage == GVA_Internal) 1165 GV->setLinkage(llvm::Function::InternalLinkage); 1166 else if (D->hasAttr<DLLImportAttr>()) 1167 GV->setLinkage(llvm::Function::DLLImportLinkage); 1168 else if (D->hasAttr<DLLExportAttr>()) 1169 GV->setLinkage(llvm::Function::DLLExportLinkage); 1170 else if (D->hasAttr<WeakAttr>()) { 1171 if (GV->isConstant()) 1172 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1173 else 1174 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1175 } else if (Linkage == GVA_TemplateInstantiation || 1176 Linkage == GVA_ExplicitTemplateInstantiation) 1177 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1178 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1179 !D->hasExternalStorage() && !D->getInit() && 1180 !D->getAttr<SectionAttr>()) { 1181 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1182 // common vars aren't constant even if declared const. 1183 GV->setConstant(false); 1184 } else 1185 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1186 1187 SetCommonAttributes(D, GV); 1188 1189 // Emit global variable debug information. 1190 if (CGDebugInfo *DI = getDebugInfo()) { 1191 DI->setLocation(D->getLocation()); 1192 DI->EmitGlobalVariable(GV, D); 1193 } 1194 } 1195 1196 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1197 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1198 /// existing call uses of the old function in the module, this adjusts them to 1199 /// call the new function directly. 1200 /// 1201 /// This is not just a cleanup: the always_inline pass requires direct calls to 1202 /// functions to be able to inline them. If there is a bitcast in the way, it 1203 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1204 /// run at -O0. 1205 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1206 llvm::Function *NewFn) { 1207 // If we're redefining a global as a function, don't transform it. 1208 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1209 if (OldFn == 0) return; 1210 1211 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1212 llvm::SmallVector<llvm::Value*, 4> ArgList; 1213 1214 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1215 UI != E; ) { 1216 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1217 unsigned OpNo = UI.getOperandNo(); 1218 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1219 if (!CI || OpNo != 0) continue; 1220 1221 // If the return types don't match exactly, and if the call isn't dead, then 1222 // we can't transform this call. 1223 if (CI->getType() != NewRetTy && !CI->use_empty()) 1224 continue; 1225 1226 // If the function was passed too few arguments, don't transform. If extra 1227 // arguments were passed, we silently drop them. If any of the types 1228 // mismatch, we don't transform. 1229 unsigned ArgNo = 0; 1230 bool DontTransform = false; 1231 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1232 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1233 if (CI->getNumOperands()-1 == ArgNo || 1234 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1235 DontTransform = true; 1236 break; 1237 } 1238 } 1239 if (DontTransform) 1240 continue; 1241 1242 // Okay, we can transform this. Create the new call instruction and copy 1243 // over the required information. 1244 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1245 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1246 ArgList.end(), "", CI); 1247 ArgList.clear(); 1248 if (!NewCall->getType()->isVoidTy()) 1249 NewCall->takeName(CI); 1250 NewCall->setAttributes(CI->getAttributes()); 1251 NewCall->setCallingConv(CI->getCallingConv()); 1252 1253 // Finally, remove the old call, replacing any uses with the new one. 1254 if (!CI->use_empty()) 1255 CI->replaceAllUsesWith(NewCall); 1256 1257 // Copy any custom metadata attached with CI. 1258 if (llvm::MDNode *DbgNode = CI->getMetadata("dbg")) 1259 NewCall->setMetadata("dbg", DbgNode); 1260 CI->eraseFromParent(); 1261 } 1262 } 1263 1264 1265 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1266 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1267 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1268 getMangleContext().mangleInitDiscriminator(); 1269 // Get or create the prototype for the function. 1270 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1271 1272 // Strip off a bitcast if we got one back. 1273 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1274 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1275 Entry = CE->getOperand(0); 1276 } 1277 1278 1279 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1280 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1281 1282 // If the types mismatch then we have to rewrite the definition. 1283 assert(OldFn->isDeclaration() && 1284 "Shouldn't replace non-declaration"); 1285 1286 // F is the Function* for the one with the wrong type, we must make a new 1287 // Function* and update everything that used F (a declaration) with the new 1288 // Function* (which will be a definition). 1289 // 1290 // This happens if there is a prototype for a function 1291 // (e.g. "int f()") and then a definition of a different type 1292 // (e.g. "int f(int x)"). Start by making a new function of the 1293 // correct type, RAUW, then steal the name. 1294 GlobalDeclMap.erase(getMangledName(D)); 1295 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1296 NewFn->takeName(OldFn); 1297 1298 // If this is an implementation of a function without a prototype, try to 1299 // replace any existing uses of the function (which may be calls) with uses 1300 // of the new function 1301 if (D->getType()->isFunctionNoProtoType()) { 1302 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1303 OldFn->removeDeadConstantUsers(); 1304 } 1305 1306 // Replace uses of F with the Function we will endow with a body. 1307 if (!Entry->use_empty()) { 1308 llvm::Constant *NewPtrForOldDecl = 1309 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1310 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1311 } 1312 1313 // Ok, delete the old function now, which is dead. 1314 OldFn->eraseFromParent(); 1315 1316 Entry = NewFn; 1317 } 1318 1319 llvm::Function *Fn = cast<llvm::Function>(Entry); 1320 1321 CodeGenFunction(*this).GenerateCode(D, Fn); 1322 1323 SetFunctionDefinitionAttributes(D, Fn); 1324 SetLLVMFunctionAttributesForDefinition(D, Fn); 1325 1326 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1327 AddGlobalCtor(Fn, CA->getPriority()); 1328 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1329 AddGlobalDtor(Fn, DA->getPriority()); 1330 } 1331 1332 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1333 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1334 assert(AA && "Not an alias?"); 1335 1336 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1337 1338 // Unique the name through the identifier table. 1339 const char *AliaseeName = 1340 getContext().Idents.get(AA->getAliasee()).getNameStart(); 1341 1342 // Create a reference to the named value. This ensures that it is emitted 1343 // if a deferred decl. 1344 llvm::Constant *Aliasee; 1345 if (isa<llvm::FunctionType>(DeclTy)) 1346 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1347 else 1348 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1349 llvm::PointerType::getUnqual(DeclTy), 0); 1350 1351 // Create the new alias itself, but don't set a name yet. 1352 llvm::GlobalValue *GA = 1353 new llvm::GlobalAlias(Aliasee->getType(), 1354 llvm::Function::ExternalLinkage, 1355 "", Aliasee, &getModule()); 1356 1357 // See if there is already something with the alias' name in the module. 1358 const char *MangledName = getMangledName(D); 1359 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1360 1361 if (Entry && !Entry->isDeclaration()) { 1362 // If there is a definition in the module, then it wins over the alias. 1363 // This is dubious, but allow it to be safe. Just ignore the alias. 1364 GA->eraseFromParent(); 1365 return; 1366 } 1367 1368 if (Entry) { 1369 // If there is a declaration in the module, then we had an extern followed 1370 // by the alias, as in: 1371 // extern int test6(); 1372 // ... 1373 // int test6() __attribute__((alias("test7"))); 1374 // 1375 // Remove it and replace uses of it with the alias. 1376 1377 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1378 Entry->getType())); 1379 Entry->eraseFromParent(); 1380 } 1381 1382 // Now we know that there is no conflict, set the name. 1383 Entry = GA; 1384 GA->setName(MangledName); 1385 1386 // Set attributes which are particular to an alias; this is a 1387 // specialization of the attributes which may be set on a global 1388 // variable/function. 1389 if (D->hasAttr<DLLExportAttr>()) { 1390 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1391 // The dllexport attribute is ignored for undefined symbols. 1392 if (FD->getBody()) 1393 GA->setLinkage(llvm::Function::DLLExportLinkage); 1394 } else { 1395 GA->setLinkage(llvm::Function::DLLExportLinkage); 1396 } 1397 } else if (D->hasAttr<WeakAttr>() || 1398 D->hasAttr<WeakRefAttr>() || 1399 D->hasAttr<WeakImportAttr>()) { 1400 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1401 } 1402 1403 SetCommonAttributes(D, GA); 1404 } 1405 1406 /// getBuiltinLibFunction - Given a builtin id for a function like 1407 /// "__builtin_fabsf", return a Function* for "fabsf". 1408 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1409 unsigned BuiltinID) { 1410 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1411 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1412 "isn't a lib fn"); 1413 1414 // Get the name, skip over the __builtin_ prefix (if necessary). 1415 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1416 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1417 Name += 10; 1418 1419 const llvm::FunctionType *Ty = 1420 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1421 1422 // Unique the name through the identifier table. 1423 Name = getContext().Idents.get(Name).getNameStart(); 1424 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1425 } 1426 1427 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1428 unsigned NumTys) { 1429 return llvm::Intrinsic::getDeclaration(&getModule(), 1430 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1431 } 1432 1433 llvm::Function *CodeGenModule::getMemCpyFn() { 1434 if (MemCpyFn) return MemCpyFn; 1435 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1436 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1437 } 1438 1439 llvm::Function *CodeGenModule::getMemMoveFn() { 1440 if (MemMoveFn) return MemMoveFn; 1441 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1442 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1443 } 1444 1445 llvm::Function *CodeGenModule::getMemSetFn() { 1446 if (MemSetFn) return MemSetFn; 1447 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1448 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1449 } 1450 1451 static llvm::StringMapEntry<llvm::Constant*> & 1452 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1453 const StringLiteral *Literal, 1454 bool TargetIsLSB, 1455 bool &IsUTF16, 1456 unsigned &StringLength) { 1457 unsigned NumBytes = Literal->getByteLength(); 1458 1459 // Check for simple case. 1460 if (!Literal->containsNonAsciiOrNull()) { 1461 StringLength = NumBytes; 1462 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1463 StringLength)); 1464 } 1465 1466 // Otherwise, convert the UTF8 literals into a byte string. 1467 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1468 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1469 UTF16 *ToPtr = &ToBuf[0]; 1470 1471 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1472 &ToPtr, ToPtr + NumBytes, 1473 strictConversion); 1474 1475 // Check for conversion failure. 1476 if (Result != conversionOK) { 1477 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1478 // this duplicate code. 1479 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1480 StringLength = NumBytes; 1481 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1482 StringLength)); 1483 } 1484 1485 // ConvertUTF8toUTF16 returns the length in ToPtr. 1486 StringLength = ToPtr - &ToBuf[0]; 1487 1488 // Render the UTF-16 string into a byte array and convert to the target byte 1489 // order. 1490 // 1491 // FIXME: This isn't something we should need to do here. 1492 llvm::SmallString<128> AsBytes; 1493 AsBytes.reserve(StringLength * 2); 1494 for (unsigned i = 0; i != StringLength; ++i) { 1495 unsigned short Val = ToBuf[i]; 1496 if (TargetIsLSB) { 1497 AsBytes.push_back(Val & 0xFF); 1498 AsBytes.push_back(Val >> 8); 1499 } else { 1500 AsBytes.push_back(Val >> 8); 1501 AsBytes.push_back(Val & 0xFF); 1502 } 1503 } 1504 // Append one extra null character, the second is automatically added by our 1505 // caller. 1506 AsBytes.push_back(0); 1507 1508 IsUTF16 = true; 1509 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1510 } 1511 1512 llvm::Constant * 1513 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1514 unsigned StringLength = 0; 1515 bool isUTF16 = false; 1516 llvm::StringMapEntry<llvm::Constant*> &Entry = 1517 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1518 getTargetData().isLittleEndian(), 1519 isUTF16, StringLength); 1520 1521 if (llvm::Constant *C = Entry.getValue()) 1522 return C; 1523 1524 llvm::Constant *Zero = 1525 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1526 llvm::Constant *Zeros[] = { Zero, Zero }; 1527 1528 // If we don't already have it, get __CFConstantStringClassReference. 1529 if (!CFConstantStringClassRef) { 1530 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1531 Ty = llvm::ArrayType::get(Ty, 0); 1532 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1533 "__CFConstantStringClassReference"); 1534 // Decay array -> ptr 1535 CFConstantStringClassRef = 1536 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1537 } 1538 1539 QualType CFTy = getContext().getCFConstantStringType(); 1540 1541 const llvm::StructType *STy = 1542 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1543 1544 std::vector<llvm::Constant*> Fields(4); 1545 1546 // Class pointer. 1547 Fields[0] = CFConstantStringClassRef; 1548 1549 // Flags. 1550 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1551 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1552 llvm::ConstantInt::get(Ty, 0x07C8); 1553 1554 // String pointer. 1555 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1556 1557 llvm::GlobalValue::LinkageTypes Linkage; 1558 bool isConstant; 1559 if (isUTF16) { 1560 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1561 Linkage = llvm::GlobalValue::InternalLinkage; 1562 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1563 // does make plain ascii ones writable. 1564 isConstant = true; 1565 } else { 1566 Linkage = llvm::GlobalValue::PrivateLinkage; 1567 isConstant = !Features.WritableStrings; 1568 } 1569 1570 llvm::GlobalVariable *GV = 1571 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1572 ".str"); 1573 if (isUTF16) { 1574 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1575 GV->setAlignment(Align.getQuantity()); 1576 } 1577 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1578 1579 // String length. 1580 Ty = getTypes().ConvertType(getContext().LongTy); 1581 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1582 1583 // The struct. 1584 C = llvm::ConstantStruct::get(STy, Fields); 1585 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1586 llvm::GlobalVariable::PrivateLinkage, C, 1587 "_unnamed_cfstring_"); 1588 if (const char *Sect = getContext().Target.getCFStringSection()) 1589 GV->setSection(Sect); 1590 Entry.setValue(GV); 1591 1592 return GV; 1593 } 1594 1595 /// GetStringForStringLiteral - Return the appropriate bytes for a 1596 /// string literal, properly padded to match the literal type. 1597 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1598 const char *StrData = E->getStrData(); 1599 unsigned Len = E->getByteLength(); 1600 1601 const ConstantArrayType *CAT = 1602 getContext().getAsConstantArrayType(E->getType()); 1603 assert(CAT && "String isn't pointer or array!"); 1604 1605 // Resize the string to the right size. 1606 std::string Str(StrData, StrData+Len); 1607 uint64_t RealLen = CAT->getSize().getZExtValue(); 1608 1609 if (E->isWide()) 1610 RealLen *= getContext().Target.getWCharWidth()/8; 1611 1612 Str.resize(RealLen, '\0'); 1613 1614 return Str; 1615 } 1616 1617 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1618 /// constant array for the given string literal. 1619 llvm::Constant * 1620 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1621 // FIXME: This can be more efficient. 1622 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1623 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1624 if (S->isWide()) { 1625 llvm::Type *DestTy = 1626 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1627 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1628 } 1629 return C; 1630 } 1631 1632 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1633 /// array for the given ObjCEncodeExpr node. 1634 llvm::Constant * 1635 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1636 std::string Str; 1637 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1638 1639 return GetAddrOfConstantCString(Str); 1640 } 1641 1642 1643 /// GenerateWritableString -- Creates storage for a string literal. 1644 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1645 bool constant, 1646 CodeGenModule &CGM, 1647 const char *GlobalName) { 1648 // Create Constant for this string literal. Don't add a '\0'. 1649 llvm::Constant *C = 1650 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1651 1652 // Create a global variable for this string 1653 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1654 llvm::GlobalValue::PrivateLinkage, 1655 C, GlobalName); 1656 } 1657 1658 /// GetAddrOfConstantString - Returns a pointer to a character array 1659 /// containing the literal. This contents are exactly that of the 1660 /// given string, i.e. it will not be null terminated automatically; 1661 /// see GetAddrOfConstantCString. Note that whether the result is 1662 /// actually a pointer to an LLVM constant depends on 1663 /// Feature.WriteableStrings. 1664 /// 1665 /// The result has pointer to array type. 1666 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1667 const char *GlobalName) { 1668 bool IsConstant = !Features.WritableStrings; 1669 1670 // Get the default prefix if a name wasn't specified. 1671 if (!GlobalName) 1672 GlobalName = ".str"; 1673 1674 // Don't share any string literals if strings aren't constant. 1675 if (!IsConstant) 1676 return GenerateStringLiteral(str, false, *this, GlobalName); 1677 1678 llvm::StringMapEntry<llvm::Constant *> &Entry = 1679 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1680 1681 if (Entry.getValue()) 1682 return Entry.getValue(); 1683 1684 // Create a global variable for this. 1685 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1686 Entry.setValue(C); 1687 return C; 1688 } 1689 1690 /// GetAddrOfConstantCString - Returns a pointer to a character 1691 /// array containing the literal and a terminating '\-' 1692 /// character. The result has pointer to array type. 1693 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1694 const char *GlobalName){ 1695 return GetAddrOfConstantString(str + '\0', GlobalName); 1696 } 1697 1698 /// EmitObjCPropertyImplementations - Emit information for synthesized 1699 /// properties for an implementation. 1700 void CodeGenModule::EmitObjCPropertyImplementations(const 1701 ObjCImplementationDecl *D) { 1702 for (ObjCImplementationDecl::propimpl_iterator 1703 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1704 ObjCPropertyImplDecl *PID = *i; 1705 1706 // Dynamic is just for type-checking. 1707 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1708 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1709 1710 // Determine which methods need to be implemented, some may have 1711 // been overridden. Note that ::isSynthesized is not the method 1712 // we want, that just indicates if the decl came from a 1713 // property. What we want to know is if the method is defined in 1714 // this implementation. 1715 if (!D->getInstanceMethod(PD->getGetterName())) 1716 CodeGenFunction(*this).GenerateObjCGetter( 1717 const_cast<ObjCImplementationDecl *>(D), PID); 1718 if (!PD->isReadOnly() && 1719 !D->getInstanceMethod(PD->getSetterName())) 1720 CodeGenFunction(*this).GenerateObjCSetter( 1721 const_cast<ObjCImplementationDecl *>(D), PID); 1722 } 1723 } 1724 } 1725 1726 /// EmitNamespace - Emit all declarations in a namespace. 1727 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1728 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1729 I != E; ++I) 1730 EmitTopLevelDecl(*I); 1731 } 1732 1733 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1734 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1735 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1736 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1737 ErrorUnsupported(LSD, "linkage spec"); 1738 return; 1739 } 1740 1741 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1742 I != E; ++I) 1743 EmitTopLevelDecl(*I); 1744 } 1745 1746 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1747 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1748 // If an error has occurred, stop code generation, but continue 1749 // parsing and semantic analysis (to ensure all warnings and errors 1750 // are emitted). 1751 if (Diags.hasErrorOccurred()) 1752 return; 1753 1754 // Ignore dependent declarations. 1755 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1756 return; 1757 1758 switch (D->getKind()) { 1759 case Decl::CXXConversion: 1760 case Decl::CXXMethod: 1761 case Decl::Function: 1762 // Skip function templates 1763 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1764 return; 1765 1766 EmitGlobal(cast<FunctionDecl>(D)); 1767 break; 1768 1769 case Decl::Var: 1770 EmitGlobal(cast<VarDecl>(D)); 1771 break; 1772 1773 // C++ Decls 1774 case Decl::Namespace: 1775 EmitNamespace(cast<NamespaceDecl>(D)); 1776 break; 1777 // No code generation needed. 1778 case Decl::UsingShadow: 1779 case Decl::Using: 1780 case Decl::UsingDirective: 1781 case Decl::ClassTemplate: 1782 case Decl::FunctionTemplate: 1783 case Decl::NamespaceAlias: 1784 break; 1785 case Decl::CXXConstructor: 1786 // Skip function templates 1787 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1788 return; 1789 1790 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1791 break; 1792 case Decl::CXXDestructor: 1793 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1794 break; 1795 1796 case Decl::StaticAssert: 1797 // Nothing to do. 1798 break; 1799 1800 // Objective-C Decls 1801 1802 // Forward declarations, no (immediate) code generation. 1803 case Decl::ObjCClass: 1804 case Decl::ObjCForwardProtocol: 1805 case Decl::ObjCCategory: 1806 case Decl::ObjCInterface: 1807 break; 1808 1809 case Decl::ObjCProtocol: 1810 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1811 break; 1812 1813 case Decl::ObjCCategoryImpl: 1814 // Categories have properties but don't support synthesize so we 1815 // can ignore them here. 1816 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1817 break; 1818 1819 case Decl::ObjCImplementation: { 1820 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1821 EmitObjCPropertyImplementations(OMD); 1822 Runtime->GenerateClass(OMD); 1823 break; 1824 } 1825 case Decl::ObjCMethod: { 1826 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1827 // If this is not a prototype, emit the body. 1828 if (OMD->getBody()) 1829 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1830 break; 1831 } 1832 case Decl::ObjCCompatibleAlias: 1833 // compatibility-alias is a directive and has no code gen. 1834 break; 1835 1836 case Decl::LinkageSpec: 1837 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1838 break; 1839 1840 case Decl::FileScopeAsm: { 1841 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1842 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1843 1844 const std::string &S = getModule().getModuleInlineAsm(); 1845 if (S.empty()) 1846 getModule().setModuleInlineAsm(AsmString); 1847 else 1848 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 1849 break; 1850 } 1851 1852 default: 1853 // Make sure we handled everything we should, every other kind is a 1854 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1855 // function. Need to recode Decl::Kind to do that easily. 1856 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1857 } 1858 } 1859