1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Diagnostic.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Basic/ConvertUTF.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Module.h"
30 #include "llvm/Intrinsics.h"
31 #include "llvm/Target/TargetData.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 
36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
37                              llvm::Module &M, const llvm::TargetData &TD,
38                              Diagnostic &diags)
39   : BlockModule(C, M, TD, Types, *this), Context(C),
40     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
41     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
42     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
43 
44   if (!Features.ObjC1)
45     Runtime = 0;
46   else if (!Features.NeXTRuntime)
47     Runtime = CreateGNUObjCRuntime(*this);
48   else if (Features.ObjCNonFragileABI)
49     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
50   else
51     Runtime = CreateMacObjCRuntime(*this);
52 
53   // If debug info generation is enabled, create the CGDebugInfo object.
54   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
55 }
56 
57 CodeGenModule::~CodeGenModule() {
58   delete Runtime;
59   delete DebugInfo;
60 }
61 
62 void CodeGenModule::Release() {
63   EmitDeferred();
64   if (Runtime)
65     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
66       AddGlobalCtor(ObjCInitFunction);
67   EmitCtorList(GlobalCtors, "llvm.global_ctors");
68   EmitCtorList(GlobalDtors, "llvm.global_dtors");
69   EmitAnnotations();
70   EmitLLVMUsed();
71 }
72 
73 /// ErrorUnsupported - Print out an error that codegen doesn't support the
74 /// specified stmt yet.
75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
76                                      bool OmitOnError) {
77   if (OmitOnError && getDiags().hasErrorOccurred())
78     return;
79   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
80                                                "cannot compile this %0 yet");
81   std::string Msg = Type;
82   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
83     << Msg << S->getSourceRange();
84 }
85 
86 /// ErrorUnsupported - Print out an error that codegen doesn't support the
87 /// specified decl yet.
88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
89                                      bool OmitOnError) {
90   if (OmitOnError && getDiags().hasErrorOccurred())
91     return;
92   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
93                                                "cannot compile this %0 yet");
94   std::string Msg = Type;
95   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
96 }
97 
98 LangOptions::VisibilityMode
99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
100   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
101     if (VD->getStorageClass() == VarDecl::PrivateExtern)
102       return LangOptions::Hidden;
103 
104   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
105     switch (attr->getVisibility()) {
106     default: assert(0 && "Unknown visibility!");
107     case VisibilityAttr::DefaultVisibility:
108       return LangOptions::Default;
109     case VisibilityAttr::HiddenVisibility:
110       return LangOptions::Hidden;
111     case VisibilityAttr::ProtectedVisibility:
112       return LangOptions::Protected;
113     }
114   }
115 
116   return getLangOptions().getVisibilityMode();
117 }
118 
119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
120                                         const Decl *D) const {
121   // Internal definitions always have default visibility.
122   if (GV->hasLocalLinkage()) {
123     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
124     return;
125   }
126 
127   switch (getDeclVisibilityMode(D)) {
128   default: assert(0 && "Unknown visibility!");
129   case LangOptions::Default:
130     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131   case LangOptions::Hidden:
132     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
133   case LangOptions::Protected:
134     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
135   }
136 }
137 
138 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
139   const NamedDecl *ND = GD.getDecl();
140 
141   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
142     return getMangledCXXCtorName(D, GD.getCtorType());
143   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
144     return getMangledCXXDtorName(D, GD.getDtorType());
145 
146   return getMangledName(ND);
147 }
148 
149 /// \brief Retrieves the mangled name for the given declaration.
150 ///
151 /// If the given declaration requires a mangled name, returns an
152 /// const char* containing the mangled name.  Otherwise, returns
153 /// the unmangled name.
154 ///
155 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
156   // In C, functions with no attributes never need to be mangled. Fastpath them.
157   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
158     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
159     return ND->getNameAsCString();
160   }
161 
162   llvm::SmallString<256> Name;
163   llvm::raw_svector_ostream Out(Name);
164   if (!mangleName(ND, Context, Out)) {
165     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
166     return ND->getNameAsCString();
167   }
168 
169   Name += '\0';
170   return UniqueMangledName(Name.begin(), Name.end());
171 }
172 
173 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
174                                              const char *NameEnd) {
175   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
176 
177   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
178 }
179 
180 /// AddGlobalCtor - Add a function to the list that will be called before
181 /// main() runs.
182 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
183   // FIXME: Type coercion of void()* types.
184   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
185 }
186 
187 /// AddGlobalDtor - Add a function to the list that will be called
188 /// when the module is unloaded.
189 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
190   // FIXME: Type coercion of void()* types.
191   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
192 }
193 
194 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
195   // Ctor function type is void()*.
196   llvm::FunctionType* CtorFTy =
197     llvm::FunctionType::get(llvm::Type::VoidTy,
198                             std::vector<const llvm::Type*>(),
199                             false);
200   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
201 
202   // Get the type of a ctor entry, { i32, void ()* }.
203   llvm::StructType* CtorStructTy =
204     llvm::StructType::get(llvm::Type::Int32Ty,
205                           llvm::PointerType::getUnqual(CtorFTy), NULL);
206 
207   // Construct the constructor and destructor arrays.
208   std::vector<llvm::Constant*> Ctors;
209   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
210     std::vector<llvm::Constant*> S;
211     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
212     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
213     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
214   }
215 
216   if (!Ctors.empty()) {
217     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
218     new llvm::GlobalVariable(AT, false,
219                              llvm::GlobalValue::AppendingLinkage,
220                              llvm::ConstantArray::get(AT, Ctors),
221                              GlobalName,
222                              &TheModule);
223   }
224 }
225 
226 void CodeGenModule::EmitAnnotations() {
227   if (Annotations.empty())
228     return;
229 
230   // Create a new global variable for the ConstantStruct in the Module.
231   llvm::Constant *Array =
232   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
233                                                 Annotations.size()),
234                            Annotations);
235   llvm::GlobalValue *gv =
236   new llvm::GlobalVariable(Array->getType(), false,
237                            llvm::GlobalValue::AppendingLinkage, Array,
238                            "llvm.global.annotations", &TheModule);
239   gv->setSection("llvm.metadata");
240 }
241 
242 static CodeGenModule::GVALinkage
243 GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) {
244   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
245     // C++ member functions defined inside the class are always inline.
246     if (MD->isInline() || !MD->isOutOfLineDefinition())
247       return CodeGenModule::GVA_CXXInline;
248 
249     return CodeGenModule::GVA_StrongExternal;
250   }
251 
252   // "static" functions get internal linkage.
253   if (FD->getStorageClass() == FunctionDecl::Static)
254     return CodeGenModule::GVA_Internal;
255 
256   if (!FD->isInline())
257     return CodeGenModule::GVA_StrongExternal;
258 
259   // If the inline function explicitly has the GNU inline attribute on it, or if
260   // this is C89 mode, we use to GNU semantics.
261   if (!Features.C99 && !Features.CPlusPlus) {
262     // extern inline in GNU mode is like C99 inline.
263     if (FD->getStorageClass() == FunctionDecl::Extern)
264       return CodeGenModule::GVA_C99Inline;
265     // Normal inline is a strong symbol.
266     return CodeGenModule::GVA_StrongExternal;
267   } else if (FD->hasActiveGNUInlineAttribute()) {
268     // GCC in C99 mode seems to use a different decision-making
269     // process for extern inline, which factors in previous
270     // declarations.
271     if (FD->isExternGNUInline())
272       return CodeGenModule::GVA_C99Inline;
273     // Normal inline is a strong symbol.
274     return CodeGenModule::GVA_StrongExternal;
275   }
276 
277   // The definition of inline changes based on the language.  Note that we
278   // have already handled "static inline" above, with the GVA_Internal case.
279   if (Features.CPlusPlus)  // inline and extern inline.
280     return CodeGenModule::GVA_CXXInline;
281 
282   assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
283   if (FD->isC99InlineDefinition())
284     return CodeGenModule::GVA_C99Inline;
285 
286   return CodeGenModule::GVA_StrongExternal;
287 }
288 
289 /// SetFunctionDefinitionAttributes - Set attributes for a global.
290 ///
291 /// FIXME: This is currently only done for aliases and functions, but not for
292 /// variables (these details are set in EmitGlobalVarDefinition for variables).
293 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
294                                                     llvm::GlobalValue *GV) {
295   GVALinkage Linkage = GetLinkageForFunction(D, Features);
296 
297   if (Linkage == GVA_Internal) {
298     GV->setLinkage(llvm::Function::InternalLinkage);
299   } else if (D->hasAttr<DLLExportAttr>()) {
300     GV->setLinkage(llvm::Function::DLLExportLinkage);
301   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
302     GV->setLinkage(llvm::Function::WeakAnyLinkage);
303   } else if (Linkage == GVA_C99Inline) {
304     // In C99 mode, 'inline' functions are guaranteed to have a strong
305     // definition somewhere else, so we can use available_externally linkage.
306     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
307   } else if (Linkage == GVA_CXXInline) {
308     // In C++, the compiler has to emit a definition in every translation unit
309     // that references the function.  We should use linkonce_odr because
310     // a) if all references in this translation unit are optimized away, we
311     // don't need to codegen it.  b) if the function persists, it needs to be
312     // merged with other definitions. c) C++ has the ODR, so we know the
313     // definition is dependable.
314     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
315   } else {
316     assert(Linkage == GVA_StrongExternal);
317     // Otherwise, we have strong external linkage.
318     GV->setLinkage(llvm::Function::ExternalLinkage);
319   }
320 
321   SetCommonAttributes(D, GV);
322 }
323 
324 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
325                                               const CGFunctionInfo &Info,
326                                               llvm::Function *F) {
327   AttributeListType AttributeList;
328   ConstructAttributeList(Info, D, AttributeList);
329 
330   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
331                                         AttributeList.size()));
332 
333   // Set the appropriate calling convention for the Function.
334   if (D->hasAttr<FastCallAttr>())
335     F->setCallingConv(llvm::CallingConv::X86_FastCall);
336 
337   if (D->hasAttr<StdCallAttr>())
338     F->setCallingConv(llvm::CallingConv::X86_StdCall);
339 }
340 
341 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
342                                                            llvm::Function *F) {
343   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
344     F->addFnAttr(llvm::Attribute::NoUnwind);
345 
346   if (D->hasAttr<AlwaysInlineAttr>())
347     F->addFnAttr(llvm::Attribute::AlwaysInline);
348 
349   if (D->hasAttr<NoinlineAttr>())
350     F->addFnAttr(llvm::Attribute::NoInline);
351 }
352 
353 void CodeGenModule::SetCommonAttributes(const Decl *D,
354                                         llvm::GlobalValue *GV) {
355   setGlobalVisibility(GV, D);
356 
357   if (D->hasAttr<UsedAttr>())
358     AddUsedGlobal(GV);
359 
360   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
361     GV->setSection(SA->getName());
362 }
363 
364 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
365                                                   llvm::Function *F,
366                                                   const CGFunctionInfo &FI) {
367   SetLLVMFunctionAttributes(D, FI, F);
368   SetLLVMFunctionAttributesForDefinition(D, F);
369 
370   F->setLinkage(llvm::Function::InternalLinkage);
371 
372   SetCommonAttributes(D, F);
373 }
374 
375 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
376                                           llvm::Function *F,
377                                           bool IsIncompleteFunction) {
378   if (!IsIncompleteFunction)
379     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
380 
381   // Only a few attributes are set on declarations; these may later be
382   // overridden by a definition.
383 
384   if (FD->hasAttr<DLLImportAttr>()) {
385     F->setLinkage(llvm::Function::DLLImportLinkage);
386   } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) {
387     // "extern_weak" is overloaded in LLVM; we probably should have
388     // separate linkage types for this.
389     F->setLinkage(llvm::Function::ExternalWeakLinkage);
390   } else {
391     F->setLinkage(llvm::Function::ExternalLinkage);
392   }
393 
394   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
395     F->setSection(SA->getName());
396 }
397 
398 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
399   assert(!GV->isDeclaration() &&
400          "Only globals with definition can force usage.");
401   LLVMUsed.push_back(GV);
402 }
403 
404 void CodeGenModule::EmitLLVMUsed() {
405   // Don't create llvm.used if there is no need.
406   if (LLVMUsed.empty())
407     return;
408 
409   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
410   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size());
411 
412   // Convert LLVMUsed to what ConstantArray needs.
413   std::vector<llvm::Constant*> UsedArray;
414   UsedArray.resize(LLVMUsed.size());
415   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
416     UsedArray[i] =
417      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
418   }
419 
420   llvm::GlobalVariable *GV =
421     new llvm::GlobalVariable(ATy, false,
422                              llvm::GlobalValue::AppendingLinkage,
423                              llvm::ConstantArray::get(ATy, UsedArray),
424                              "llvm.used", &getModule());
425 
426   GV->setSection("llvm.metadata");
427 }
428 
429 void CodeGenModule::EmitDeferred() {
430   // Emit code for any potentially referenced deferred decls.  Since a
431   // previously unused static decl may become used during the generation of code
432   // for a static function, iterate until no  changes are made.
433   while (!DeferredDeclsToEmit.empty()) {
434     GlobalDecl D = DeferredDeclsToEmit.back();
435     DeferredDeclsToEmit.pop_back();
436 
437     // The mangled name for the decl must have been emitted in GlobalDeclMap.
438     // Look it up to see if it was defined with a stronger definition (e.g. an
439     // extern inline function with a strong function redefinition).  If so,
440     // just ignore the deferred decl.
441     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
442     assert(CGRef && "Deferred decl wasn't referenced?");
443 
444     if (!CGRef->isDeclaration())
445       continue;
446 
447     // Otherwise, emit the definition and move on to the next one.
448     EmitGlobalDefinition(D);
449   }
450 }
451 
452 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
453 /// annotation information for a given GlobalValue.  The annotation struct is
454 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
455 /// GlobalValue being annotated.  The second field is the constant string
456 /// created from the AnnotateAttr's annotation.  The third field is a constant
457 /// string containing the name of the translation unit.  The fourth field is
458 /// the line number in the file of the annotated value declaration.
459 ///
460 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
461 ///        appears to.
462 ///
463 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
464                                                 const AnnotateAttr *AA,
465                                                 unsigned LineNo) {
466   llvm::Module *M = &getModule();
467 
468   // get [N x i8] constants for the annotation string, and the filename string
469   // which are the 2nd and 3rd elements of the global annotation structure.
470   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
471   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
472   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
473                                                   true);
474 
475   // Get the two global values corresponding to the ConstantArrays we just
476   // created to hold the bytes of the strings.
477   const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
478   llvm::GlobalValue *annoGV =
479   new llvm::GlobalVariable(anno->getType(), false,
480                            llvm::GlobalValue::InternalLinkage, anno,
481                            GV->getName() + StringPrefix, M);
482   // translation unit name string, emitted into the llvm.metadata section.
483   llvm::GlobalValue *unitGV =
484   new llvm::GlobalVariable(unit->getType(), false,
485                            llvm::GlobalValue::InternalLinkage, unit,
486                            StringPrefix, M);
487 
488   // Create the ConstantStruct for the global annotation.
489   llvm::Constant *Fields[4] = {
490     llvm::ConstantExpr::getBitCast(GV, SBP),
491     llvm::ConstantExpr::getBitCast(annoGV, SBP),
492     llvm::ConstantExpr::getBitCast(unitGV, SBP),
493     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
494   };
495   return llvm::ConstantStruct::get(Fields, 4, false);
496 }
497 
498 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
499   // Never defer when EmitAllDecls is specified or the decl has
500   // attribute used.
501   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
502     return false;
503 
504   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
505     // Constructors and destructors should never be deferred.
506     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
507       return false;
508 
509     GVALinkage Linkage = GetLinkageForFunction(FD, Features);
510 
511     // static, static inline, always_inline, and extern inline functions can
512     // always be deferred.  Normal inline functions can be deferred in C99/C++.
513     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
514         Linkage == GVA_CXXInline)
515       return true;
516     return false;
517   }
518 
519   const VarDecl *VD = cast<VarDecl>(Global);
520   assert(VD->isFileVarDecl() && "Invalid decl");
521 
522   return VD->getStorageClass() == VarDecl::Static;
523 }
524 
525 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
526   const ValueDecl *Global = GD.getDecl();
527 
528   // If this is an alias definition (which otherwise looks like a declaration)
529   // emit it now.
530   if (Global->hasAttr<AliasAttr>())
531     return EmitAliasDefinition(Global);
532 
533   // Ignore declarations, they will be emitted on their first use.
534   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
535     // Forward declarations are emitted lazily on first use.
536     if (!FD->isThisDeclarationADefinition())
537       return;
538   } else {
539     const VarDecl *VD = cast<VarDecl>(Global);
540     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
541 
542     // In C++, if this is marked "extern", defer code generation.
543     if (getLangOptions().CPlusPlus && !VD->getInit() &&
544         (VD->getStorageClass() == VarDecl::Extern ||
545          VD->isExternC(getContext())))
546       return;
547 
548     // In C, if this isn't a definition, defer code generation.
549     if (!getLangOptions().CPlusPlus && !VD->getInit())
550       return;
551   }
552 
553   // Defer code generation when possible if this is a static definition, inline
554   // function etc.  These we only want to emit if they are used.
555   if (MayDeferGeneration(Global)) {
556     // If the value has already been used, add it directly to the
557     // DeferredDeclsToEmit list.
558     const char *MangledName = getMangledName(GD);
559     if (GlobalDeclMap.count(MangledName))
560       DeferredDeclsToEmit.push_back(GD);
561     else {
562       // Otherwise, remember that we saw a deferred decl with this name.  The
563       // first use of the mangled name will cause it to move into
564       // DeferredDeclsToEmit.
565       DeferredDecls[MangledName] = GD;
566     }
567     return;
568   }
569 
570   // Otherwise emit the definition.
571   EmitGlobalDefinition(GD);
572 }
573 
574 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
575   const ValueDecl *D = GD.getDecl();
576 
577   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
578     EmitCXXConstructor(CD, GD.getCtorType());
579   else if (isa<FunctionDecl>(D))
580     EmitGlobalFunctionDefinition(GD);
581   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
582     EmitGlobalVarDefinition(VD);
583   else {
584     assert(0 && "Invalid argument to EmitGlobalDefinition()");
585   }
586 }
587 
588 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
589 /// module, create and return an llvm Function with the specified type. If there
590 /// is something in the module with the specified name, return it potentially
591 /// bitcasted to the right type.
592 ///
593 /// If D is non-null, it specifies a decl that correspond to this.  This is used
594 /// to set the attributes on the function when it is first created.
595 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
596                                                        const llvm::Type *Ty,
597                                                        GlobalDecl D) {
598   // Lookup the entry, lazily creating it if necessary.
599   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
600   if (Entry) {
601     if (Entry->getType()->getElementType() == Ty)
602       return Entry;
603 
604     // Make sure the result is of the correct type.
605     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
606     return llvm::ConstantExpr::getBitCast(Entry, PTy);
607   }
608 
609   // This is the first use or definition of a mangled name.  If there is a
610   // deferred decl with this name, remember that we need to emit it at the end
611   // of the file.
612   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
613     DeferredDecls.find(MangledName);
614   if (DDI != DeferredDecls.end()) {
615     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
616     // list, and remove it from DeferredDecls (since we don't need it anymore).
617     DeferredDeclsToEmit.push_back(DDI->second);
618     DeferredDecls.erase(DDI);
619   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
620     // If this the first reference to a C++ inline function in a class, queue up
621     // the deferred function body for emission.  These are not seen as
622     // top-level declarations.
623     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
624       DeferredDeclsToEmit.push_back(D);
625   }
626 
627   // This function doesn't have a complete type (for example, the return
628   // type is an incomplete struct). Use a fake type instead, and make
629   // sure not to try to set attributes.
630   bool IsIncompleteFunction = false;
631   if (!isa<llvm::FunctionType>(Ty)) {
632     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
633                                  std::vector<const llvm::Type*>(), false);
634     IsIncompleteFunction = true;
635   }
636   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
637                                              llvm::Function::ExternalLinkage,
638                                              "", &getModule());
639   F->setName(MangledName);
640   if (D.getDecl())
641     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
642                           IsIncompleteFunction);
643   Entry = F;
644   return F;
645 }
646 
647 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
648 /// non-null, then this function will use the specified type if it has to
649 /// create it (this occurs when we see a definition of the function).
650 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
651                                                  const llvm::Type *Ty) {
652   // If there was no specific requested type, just convert it now.
653   if (!Ty)
654     Ty = getTypes().ConvertType(GD.getDecl()->getType());
655   return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD);
656 }
657 
658 /// CreateRuntimeFunction - Create a new runtime function with the specified
659 /// type and name.
660 llvm::Constant *
661 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
662                                      const char *Name) {
663   // Convert Name to be a uniqued string from the IdentifierInfo table.
664   Name = getContext().Idents.get(Name).getName();
665   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
666 }
667 
668 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
669 /// create and return an llvm GlobalVariable with the specified type.  If there
670 /// is something in the module with the specified name, return it potentially
671 /// bitcasted to the right type.
672 ///
673 /// If D is non-null, it specifies a decl that correspond to this.  This is used
674 /// to set the attributes on the global when it is first created.
675 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
676                                                      const llvm::PointerType*Ty,
677                                                      const VarDecl *D) {
678   // Lookup the entry, lazily creating it if necessary.
679   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
680   if (Entry) {
681     if (Entry->getType() == Ty)
682       return Entry;
683 
684     // Make sure the result is of the correct type.
685     return llvm::ConstantExpr::getBitCast(Entry, Ty);
686   }
687 
688   // This is the first use or definition of a mangled name.  If there is a
689   // deferred decl with this name, remember that we need to emit it at the end
690   // of the file.
691   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
692     DeferredDecls.find(MangledName);
693   if (DDI != DeferredDecls.end()) {
694     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
695     // list, and remove it from DeferredDecls (since we don't need it anymore).
696     DeferredDeclsToEmit.push_back(DDI->second);
697     DeferredDecls.erase(DDI);
698   }
699 
700   llvm::GlobalVariable *GV =
701     new llvm::GlobalVariable(Ty->getElementType(), false,
702                              llvm::GlobalValue::ExternalLinkage,
703                              0, "", &getModule(),
704                              false, Ty->getAddressSpace());
705   GV->setName(MangledName);
706 
707   // Handle things which are present even on external declarations.
708   if (D) {
709     // FIXME: This code is overly simple and should be merged with other global
710     // handling.
711     GV->setConstant(D->getType().isConstant(Context));
712 
713     // FIXME: Merge with other attribute handling code.
714     if (D->getStorageClass() == VarDecl::PrivateExtern)
715       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
716 
717     if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
718       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
719 
720     GV->setThreadLocal(D->isThreadSpecified());
721   }
722 
723   return Entry = GV;
724 }
725 
726 
727 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
728 /// given global variable.  If Ty is non-null and if the global doesn't exist,
729 /// then it will be greated with the specified type instead of whatever the
730 /// normal requested type would be.
731 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
732                                                   const llvm::Type *Ty) {
733   assert(D->hasGlobalStorage() && "Not a global variable");
734   QualType ASTTy = D->getType();
735   if (Ty == 0)
736     Ty = getTypes().ConvertTypeForMem(ASTTy);
737 
738   const llvm::PointerType *PTy =
739     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
740   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
741 }
742 
743 /// CreateRuntimeVariable - Create a new runtime global variable with the
744 /// specified type and name.
745 llvm::Constant *
746 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
747                                      const char *Name) {
748   // Convert Name to be a uniqued string from the IdentifierInfo table.
749   Name = getContext().Idents.get(Name).getName();
750   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
751 }
752 
753 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
754   assert(!D->getInit() && "Cannot emit definite definitions here!");
755 
756   if (MayDeferGeneration(D)) {
757     // If we have not seen a reference to this variable yet, place it
758     // into the deferred declarations table to be emitted if needed
759     // later.
760     const char *MangledName = getMangledName(D);
761     if (GlobalDeclMap.count(MangledName) == 0) {
762       DeferredDecls[MangledName] = GlobalDecl(D);
763       return;
764     }
765   }
766 
767   // The tentative definition is the only definition.
768   EmitGlobalVarDefinition(D);
769 }
770 
771 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
772   llvm::Constant *Init = 0;
773   QualType ASTTy = D->getType();
774 
775   if (D->getInit() == 0) {
776     // This is a tentative definition; tentative definitions are
777     // implicitly initialized with { 0 }.
778     //
779     // Note that tentative definitions are only emitted at the end of
780     // a translation unit, so they should never have incomplete
781     // type. In addition, EmitTentativeDefinition makes sure that we
782     // never attempt to emit a tentative definition if a real one
783     // exists. A use may still exists, however, so we still may need
784     // to do a RAUW.
785     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
786     Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy));
787   } else {
788     Init = EmitConstantExpr(D->getInit(), D->getType());
789     if (!Init) {
790       ErrorUnsupported(D, "static initializer");
791       QualType T = D->getInit()->getType();
792       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
793     }
794   }
795 
796   const llvm::Type* InitType = Init->getType();
797   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
798 
799   // Strip off a bitcast if we got one back.
800   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
801     assert(CE->getOpcode() == llvm::Instruction::BitCast);
802     Entry = CE->getOperand(0);
803   }
804 
805   // Entry is now either a Function or GlobalVariable.
806   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
807 
808   // We have a definition after a declaration with the wrong type.
809   // We must make a new GlobalVariable* and update everything that used OldGV
810   // (a declaration or tentative definition) with the new GlobalVariable*
811   // (which will be a definition).
812   //
813   // This happens if there is a prototype for a global (e.g.
814   // "extern int x[];") and then a definition of a different type (e.g.
815   // "int x[10];"). This also happens when an initializer has a different type
816   // from the type of the global (this happens with unions).
817   if (GV == 0 ||
818       GV->getType()->getElementType() != InitType ||
819       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
820 
821     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
822     GlobalDeclMap.erase(getMangledName(D));
823 
824     // Make a new global with the correct type, this is now guaranteed to work.
825     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
826     GV->takeName(cast<llvm::GlobalValue>(Entry));
827 
828     // Replace all uses of the old global with the new global
829     llvm::Constant *NewPtrForOldDecl =
830         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
831     Entry->replaceAllUsesWith(NewPtrForOldDecl);
832 
833     // Erase the old global, since it is no longer used.
834     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
835   }
836 
837   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
838     SourceManager &SM = Context.getSourceManager();
839     AddAnnotation(EmitAnnotateAttr(GV, AA,
840                               SM.getInstantiationLineNumber(D->getLocation())));
841   }
842 
843   GV->setInitializer(Init);
844   GV->setConstant(D->getType().isConstant(Context));
845   GV->setAlignment(getContext().getDeclAlignInBytes(D));
846 
847   // Set the llvm linkage type as appropriate.
848   if (D->getStorageClass() == VarDecl::Static)
849     GV->setLinkage(llvm::Function::InternalLinkage);
850   else if (D->hasAttr<DLLImportAttr>())
851     GV->setLinkage(llvm::Function::DLLImportLinkage);
852   else if (D->hasAttr<DLLExportAttr>())
853     GV->setLinkage(llvm::Function::DLLExportLinkage);
854   else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
855     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
856   else if (!CompileOpts.NoCommon &&
857            (!D->hasExternalStorage() && !D->getInit()))
858     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
859   else
860     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
861 
862   SetCommonAttributes(D, GV);
863 
864   // Emit global variable debug information.
865   if (CGDebugInfo *DI = getDebugInfo()) {
866     DI->setLocation(D->getLocation());
867     DI->EmitGlobalVariable(GV, D);
868   }
869 }
870 
871 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
872 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
873 /// existing call uses of the old function in the module, this adjusts them to
874 /// call the new function directly.
875 ///
876 /// This is not just a cleanup: the always_inline pass requires direct calls to
877 /// functions to be able to inline them.  If there is a bitcast in the way, it
878 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
879 /// run at -O0.
880 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
881                                                       llvm::Function *NewFn) {
882   // If we're redefining a global as a function, don't transform it.
883   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
884   if (OldFn == 0) return;
885 
886   const llvm::Type *NewRetTy = NewFn->getReturnType();
887   llvm::SmallVector<llvm::Value*, 4> ArgList;
888 
889   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
890        UI != E; ) {
891     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
892     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
893     if (!CI) continue;
894 
895     // If the return types don't match exactly, and if the call isn't dead, then
896     // we can't transform this call.
897     if (CI->getType() != NewRetTy && !CI->use_empty())
898       continue;
899 
900     // If the function was passed too few arguments, don't transform.  If extra
901     // arguments were passed, we silently drop them.  If any of the types
902     // mismatch, we don't transform.
903     unsigned ArgNo = 0;
904     bool DontTransform = false;
905     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
906          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
907       if (CI->getNumOperands()-1 == ArgNo ||
908           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
909         DontTransform = true;
910         break;
911       }
912     }
913     if (DontTransform)
914       continue;
915 
916     // Okay, we can transform this.  Create the new call instruction and copy
917     // over the required information.
918     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
919     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
920                                                      ArgList.end(), "", CI);
921     ArgList.clear();
922     if (NewCall->getType() != llvm::Type::VoidTy)
923       NewCall->takeName(CI);
924     NewCall->setCallingConv(CI->getCallingConv());
925     NewCall->setAttributes(CI->getAttributes());
926 
927     // Finally, remove the old call, replacing any uses with the new one.
928     if (!CI->use_empty())
929       CI->replaceAllUsesWith(NewCall);
930     CI->eraseFromParent();
931   }
932 }
933 
934 
935 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
936   const llvm::FunctionType *Ty;
937   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
938 
939   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
940     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
941 
942     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
943   } else {
944     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
945 
946     // As a special case, make sure that definitions of K&R function
947     // "type foo()" aren't declared as varargs (which forces the backend
948     // to do unnecessary work).
949     if (D->getType()->isFunctionNoProtoType()) {
950       assert(Ty->isVarArg() && "Didn't lower type as expected");
951       // Due to stret, the lowered function could have arguments.
952       // Just create the same type as was lowered by ConvertType
953       // but strip off the varargs bit.
954       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
955       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
956     }
957   }
958 
959   // Get or create the prototype for the function.
960   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
961 
962   // Strip off a bitcast if we got one back.
963   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
964     assert(CE->getOpcode() == llvm::Instruction::BitCast);
965     Entry = CE->getOperand(0);
966   }
967 
968 
969   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
970     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
971 
972     // If the types mismatch then we have to rewrite the definition.
973     assert(OldFn->isDeclaration() &&
974            "Shouldn't replace non-declaration");
975 
976     // F is the Function* for the one with the wrong type, we must make a new
977     // Function* and update everything that used F (a declaration) with the new
978     // Function* (which will be a definition).
979     //
980     // This happens if there is a prototype for a function
981     // (e.g. "int f()") and then a definition of a different type
982     // (e.g. "int f(int x)").  Start by making a new function of the
983     // correct type, RAUW, then steal the name.
984     GlobalDeclMap.erase(getMangledName(D));
985     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
986     NewFn->takeName(OldFn);
987 
988     // If this is an implementation of a function without a prototype, try to
989     // replace any existing uses of the function (which may be calls) with uses
990     // of the new function
991     if (D->getType()->isFunctionNoProtoType()) {
992       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
993       OldFn->removeDeadConstantUsers();
994     }
995 
996     // Replace uses of F with the Function we will endow with a body.
997     if (!Entry->use_empty()) {
998       llvm::Constant *NewPtrForOldDecl =
999         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1000       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1001     }
1002 
1003     // Ok, delete the old function now, which is dead.
1004     OldFn->eraseFromParent();
1005 
1006     Entry = NewFn;
1007   }
1008 
1009   llvm::Function *Fn = cast<llvm::Function>(Entry);
1010 
1011   CodeGenFunction(*this).GenerateCode(D, Fn);
1012 
1013   SetFunctionDefinitionAttributes(D, Fn);
1014   SetLLVMFunctionAttributesForDefinition(D, Fn);
1015 
1016   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1017     AddGlobalCtor(Fn, CA->getPriority());
1018   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1019     AddGlobalDtor(Fn, DA->getPriority());
1020 }
1021 
1022 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1023   const AliasAttr *AA = D->getAttr<AliasAttr>();
1024   assert(AA && "Not an alias?");
1025 
1026   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1027 
1028   // Unique the name through the identifier table.
1029   const char *AliaseeName = AA->getAliasee().c_str();
1030   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1031 
1032   // Create a reference to the named value.  This ensures that it is emitted
1033   // if a deferred decl.
1034   llvm::Constant *Aliasee;
1035   if (isa<llvm::FunctionType>(DeclTy))
1036     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1037   else
1038     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1039                                     llvm::PointerType::getUnqual(DeclTy), 0);
1040 
1041   // Create the new alias itself, but don't set a name yet.
1042   llvm::GlobalValue *GA =
1043     new llvm::GlobalAlias(Aliasee->getType(),
1044                           llvm::Function::ExternalLinkage,
1045                           "", Aliasee, &getModule());
1046 
1047   // See if there is already something with the alias' name in the module.
1048   const char *MangledName = getMangledName(D);
1049   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1050 
1051   if (Entry && !Entry->isDeclaration()) {
1052     // If there is a definition in the module, then it wins over the alias.
1053     // This is dubious, but allow it to be safe.  Just ignore the alias.
1054     GA->eraseFromParent();
1055     return;
1056   }
1057 
1058   if (Entry) {
1059     // If there is a declaration in the module, then we had an extern followed
1060     // by the alias, as in:
1061     //   extern int test6();
1062     //   ...
1063     //   int test6() __attribute__((alias("test7")));
1064     //
1065     // Remove it and replace uses of it with the alias.
1066 
1067     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1068                                                           Entry->getType()));
1069     Entry->eraseFromParent();
1070   }
1071 
1072   // Now we know that there is no conflict, set the name.
1073   Entry = GA;
1074   GA->setName(MangledName);
1075 
1076   // Set attributes which are particular to an alias; this is a
1077   // specialization of the attributes which may be set on a global
1078   // variable/function.
1079   if (D->hasAttr<DLLExportAttr>()) {
1080     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1081       // The dllexport attribute is ignored for undefined symbols.
1082       if (FD->getBody(getContext()))
1083         GA->setLinkage(llvm::Function::DLLExportLinkage);
1084     } else {
1085       GA->setLinkage(llvm::Function::DLLExportLinkage);
1086     }
1087   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
1088     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1089   }
1090 
1091   SetCommonAttributes(D, GA);
1092 }
1093 
1094 /// getBuiltinLibFunction - Given a builtin id for a function like
1095 /// "__builtin_fabsf", return a Function* for "fabsf".
1096 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1097   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1098           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1099          "isn't a lib fn");
1100 
1101   // Get the name, skip over the __builtin_ prefix (if necessary).
1102   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1103   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1104     Name += 10;
1105 
1106   // Get the type for the builtin.
1107   Builtin::Context::GetBuiltinTypeError Error;
1108   QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error);
1109   assert(Error == Builtin::Context::GE_None && "Can't get builtin type");
1110 
1111   const llvm::FunctionType *Ty =
1112     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1113 
1114   // Unique the name through the identifier table.
1115   Name = getContext().Idents.get(Name).getName();
1116   // FIXME: param attributes for sext/zext etc.
1117   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1118 }
1119 
1120 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1121                                             unsigned NumTys) {
1122   return llvm::Intrinsic::getDeclaration(&getModule(),
1123                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1124 }
1125 
1126 llvm::Function *CodeGenModule::getMemCpyFn() {
1127   if (MemCpyFn) return MemCpyFn;
1128   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1129   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1130 }
1131 
1132 llvm::Function *CodeGenModule::getMemMoveFn() {
1133   if (MemMoveFn) return MemMoveFn;
1134   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1135   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1136 }
1137 
1138 llvm::Function *CodeGenModule::getMemSetFn() {
1139   if (MemSetFn) return MemSetFn;
1140   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1141   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1142 }
1143 
1144 static void appendFieldAndPadding(CodeGenModule &CGM,
1145                                   std::vector<llvm::Constant*>& Fields,
1146                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1147                                   llvm::Constant* Field,
1148                                   RecordDecl* RD, const llvm::StructType *STy) {
1149   // Append the field.
1150   Fields.push_back(Field);
1151 
1152   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1153 
1154   int NextStructFieldNo;
1155   if (!NextFieldD) {
1156     NextStructFieldNo = STy->getNumElements();
1157   } else {
1158     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1159   }
1160 
1161   // Append padding
1162   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1163     llvm::Constant *C =
1164       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1165 
1166     Fields.push_back(C);
1167   }
1168 }
1169 
1170 llvm::Constant *CodeGenModule::
1171 GetAddrOfConstantCFString(const StringLiteral *Literal) {
1172   std::string str;
1173   unsigned StringLength = 0;
1174 
1175   bool isUTF16 = false;
1176   if (Literal->containsNonAsciiOrNull()) {
1177     // Convert from UTF-8 to UTF-16.
1178     llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1179     const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1180     UTF16 *ToPtr = &ToBuf[0];
1181 
1182     ConversionResult Result;
1183     Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1184                                 &ToPtr, ToPtr+Literal->getByteLength(),
1185                                 strictConversion);
1186     if (Result == conversionOK) {
1187       // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1188       // without doing more surgery to this routine. Since we aren't explicitly
1189       // checking for endianness here, it's also a bug (when generating code for
1190       // a target that doesn't match the host endianness). Modeling this as an
1191       // i16 array is likely the cleanest solution.
1192       StringLength = ToPtr-&ToBuf[0];
1193       str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1194       isUTF16 = true;
1195     } else if (Result == sourceIllegal) {
1196       // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1197       str.assign(Literal->getStrData(), Literal->getByteLength());
1198       StringLength = str.length();
1199     } else
1200       assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1201 
1202   } else {
1203     str.assign(Literal->getStrData(), Literal->getByteLength());
1204     StringLength = str.length();
1205   }
1206   llvm::StringMapEntry<llvm::Constant *> &Entry =
1207     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1208 
1209   if (llvm::Constant *C = Entry.getValue())
1210     return C;
1211 
1212   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1213   llvm::Constant *Zeros[] = { Zero, Zero };
1214 
1215   if (!CFConstantStringClassRef) {
1216     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1217     Ty = llvm::ArrayType::get(Ty, 0);
1218 
1219     // FIXME: This is fairly broken if __CFConstantStringClassReference is
1220     // already defined, in that it will get renamed and the user will most
1221     // likely see an opaque error message. This is a general issue with relying
1222     // on particular names.
1223     llvm::GlobalVariable *GV =
1224       new llvm::GlobalVariable(Ty, false,
1225                                llvm::GlobalVariable::ExternalLinkage, 0,
1226                                "__CFConstantStringClassReference",
1227                                &getModule());
1228 
1229     // Decay array -> ptr
1230     CFConstantStringClassRef =
1231       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1232   }
1233 
1234   QualType CFTy = getContext().getCFConstantStringType();
1235   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1236 
1237   const llvm::StructType *STy =
1238     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1239 
1240   std::vector<llvm::Constant*> Fields;
1241   RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
1242 
1243   // Class pointer.
1244   FieldDecl *CurField = *Field++;
1245   FieldDecl *NextField = *Field++;
1246   appendFieldAndPadding(*this, Fields, CurField, NextField,
1247                         CFConstantStringClassRef, CFRD, STy);
1248 
1249   // Flags.
1250   CurField = NextField;
1251   NextField = *Field++;
1252   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1253   appendFieldAndPadding(*this, Fields, CurField, NextField,
1254                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1255                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1256                         CFRD, STy);
1257 
1258   // String pointer.
1259   CurField = NextField;
1260   NextField = *Field++;
1261   llvm::Constant *C = llvm::ConstantArray::get(str);
1262 
1263   const char *Sect, *Prefix;
1264   bool isConstant;
1265   if (isUTF16) {
1266     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1267     Sect = getContext().Target.getUnicodeStringSection();
1268     // FIXME: Why does GCC not set constant here?
1269     isConstant = false;
1270   } else {
1271     Prefix = getContext().Target.getStringSymbolPrefix(true);
1272     Sect = getContext().Target.getCFStringDataSection();
1273     // FIXME: -fwritable-strings should probably affect this, but we
1274     // are following gcc here.
1275     isConstant = true;
1276   }
1277   llvm::GlobalVariable *GV =
1278     new llvm::GlobalVariable(C->getType(), isConstant,
1279                              llvm::GlobalValue::InternalLinkage,
1280                              C, Prefix, &getModule());
1281   if (Sect)
1282     GV->setSection(Sect);
1283   if (isUTF16) {
1284     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1285     GV->setAlignment(Align);
1286   }
1287   appendFieldAndPadding(*this, Fields, CurField, NextField,
1288                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1289                         CFRD, STy);
1290 
1291   // String length.
1292   CurField = NextField;
1293   NextField = 0;
1294   Ty = getTypes().ConvertType(getContext().LongTy);
1295   appendFieldAndPadding(*this, Fields, CurField, NextField,
1296                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1297 
1298   // The struct.
1299   C = llvm::ConstantStruct::get(STy, Fields);
1300   GV = new llvm::GlobalVariable(C->getType(), true,
1301                                 llvm::GlobalVariable::InternalLinkage, C,
1302                                 getContext().Target.getCFStringSymbolPrefix(),
1303                                 &getModule());
1304   if (const char *Sect = getContext().Target.getCFStringSection())
1305     GV->setSection(Sect);
1306   Entry.setValue(GV);
1307 
1308   return GV;
1309 }
1310 
1311 /// GetStringForStringLiteral - Return the appropriate bytes for a
1312 /// string literal, properly padded to match the literal type.
1313 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1314   const char *StrData = E->getStrData();
1315   unsigned Len = E->getByteLength();
1316 
1317   const ConstantArrayType *CAT =
1318     getContext().getAsConstantArrayType(E->getType());
1319   assert(CAT && "String isn't pointer or array!");
1320 
1321   // Resize the string to the right size.
1322   std::string Str(StrData, StrData+Len);
1323   uint64_t RealLen = CAT->getSize().getZExtValue();
1324 
1325   if (E->isWide())
1326     RealLen *= getContext().Target.getWCharWidth()/8;
1327 
1328   Str.resize(RealLen, '\0');
1329 
1330   return Str;
1331 }
1332 
1333 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1334 /// constant array for the given string literal.
1335 llvm::Constant *
1336 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1337   // FIXME: This can be more efficient.
1338   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1339 }
1340 
1341 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1342 /// array for the given ObjCEncodeExpr node.
1343 llvm::Constant *
1344 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1345   std::string Str;
1346   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1347 
1348   return GetAddrOfConstantCString(Str);
1349 }
1350 
1351 
1352 /// GenerateWritableString -- Creates storage for a string literal.
1353 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1354                                              bool constant,
1355                                              CodeGenModule &CGM,
1356                                              const char *GlobalName) {
1357   // Create Constant for this string literal. Don't add a '\0'.
1358   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1359 
1360   // Create a global variable for this string
1361   return new llvm::GlobalVariable(C->getType(), constant,
1362                                   llvm::GlobalValue::InternalLinkage,
1363                                   C, GlobalName, &CGM.getModule());
1364 }
1365 
1366 /// GetAddrOfConstantString - Returns a pointer to a character array
1367 /// containing the literal. This contents are exactly that of the
1368 /// given string, i.e. it will not be null terminated automatically;
1369 /// see GetAddrOfConstantCString. Note that whether the result is
1370 /// actually a pointer to an LLVM constant depends on
1371 /// Feature.WriteableStrings.
1372 ///
1373 /// The result has pointer to array type.
1374 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1375                                                        const char *GlobalName) {
1376   bool IsConstant = !Features.WritableStrings;
1377 
1378   // Get the default prefix if a name wasn't specified.
1379   if (!GlobalName)
1380     GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1381 
1382   // Don't share any string literals if strings aren't constant.
1383   if (!IsConstant)
1384     return GenerateStringLiteral(str, false, *this, GlobalName);
1385 
1386   llvm::StringMapEntry<llvm::Constant *> &Entry =
1387   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1388 
1389   if (Entry.getValue())
1390     return Entry.getValue();
1391 
1392   // Create a global variable for this.
1393   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1394   Entry.setValue(C);
1395   return C;
1396 }
1397 
1398 /// GetAddrOfConstantCString - Returns a pointer to a character
1399 /// array containing the literal and a terminating '\-'
1400 /// character. The result has pointer to array type.
1401 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1402                                                         const char *GlobalName){
1403   return GetAddrOfConstantString(str + '\0', GlobalName);
1404 }
1405 
1406 /// EmitObjCPropertyImplementations - Emit information for synthesized
1407 /// properties for an implementation.
1408 void CodeGenModule::EmitObjCPropertyImplementations(const
1409                                                     ObjCImplementationDecl *D) {
1410   for (ObjCImplementationDecl::propimpl_iterator
1411          i = D->propimpl_begin(getContext()),
1412          e = D->propimpl_end(getContext()); i != e; ++i) {
1413     ObjCPropertyImplDecl *PID = *i;
1414 
1415     // Dynamic is just for type-checking.
1416     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1417       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1418 
1419       // Determine which methods need to be implemented, some may have
1420       // been overridden. Note that ::isSynthesized is not the method
1421       // we want, that just indicates if the decl came from a
1422       // property. What we want to know is if the method is defined in
1423       // this implementation.
1424       if (!D->getInstanceMethod(getContext(), PD->getGetterName()))
1425         CodeGenFunction(*this).GenerateObjCGetter(
1426                                  const_cast<ObjCImplementationDecl *>(D), PID);
1427       if (!PD->isReadOnly() &&
1428           !D->getInstanceMethod(getContext(), PD->getSetterName()))
1429         CodeGenFunction(*this).GenerateObjCSetter(
1430                                  const_cast<ObjCImplementationDecl *>(D), PID);
1431     }
1432   }
1433 }
1434 
1435 /// EmitNamespace - Emit all declarations in a namespace.
1436 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1437   for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
1438          E = ND->decls_end(getContext());
1439        I != E; ++I)
1440     EmitTopLevelDecl(*I);
1441 }
1442 
1443 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1444 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1445   if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1446     ErrorUnsupported(LSD, "linkage spec");
1447     return;
1448   }
1449 
1450   for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
1451          E = LSD->decls_end(getContext());
1452        I != E; ++I)
1453     EmitTopLevelDecl(*I);
1454 }
1455 
1456 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1457 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1458   // If an error has occurred, stop code generation, but continue
1459   // parsing and semantic analysis (to ensure all warnings and errors
1460   // are emitted).
1461   if (Diags.hasErrorOccurred())
1462     return;
1463 
1464   switch (D->getKind()) {
1465   case Decl::CXXMethod:
1466   case Decl::Function:
1467   case Decl::Var:
1468     EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
1469     break;
1470 
1471   // C++ Decls
1472   case Decl::Namespace:
1473     EmitNamespace(cast<NamespaceDecl>(D));
1474     break;
1475   case Decl::CXXConstructor:
1476     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1477     break;
1478   case Decl::CXXDestructor:
1479     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1480     break;
1481 
1482   // Objective-C Decls
1483 
1484   // Forward declarations, no (immediate) code generation.
1485   case Decl::ObjCClass:
1486   case Decl::ObjCForwardProtocol:
1487   case Decl::ObjCCategory:
1488   case Decl::ObjCInterface:
1489     break;
1490 
1491   case Decl::ObjCProtocol:
1492     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1493     break;
1494 
1495   case Decl::ObjCCategoryImpl:
1496     // Categories have properties but don't support synthesize so we
1497     // can ignore them here.
1498     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1499     break;
1500 
1501   case Decl::ObjCImplementation: {
1502     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1503     EmitObjCPropertyImplementations(OMD);
1504     Runtime->GenerateClass(OMD);
1505     break;
1506   }
1507   case Decl::ObjCMethod: {
1508     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1509     // If this is not a prototype, emit the body.
1510     if (OMD->getBody(getContext()))
1511       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1512     break;
1513   }
1514   case Decl::ObjCCompatibleAlias:
1515     // compatibility-alias is a directive and has no code gen.
1516     break;
1517 
1518   case Decl::LinkageSpec:
1519     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1520     break;
1521 
1522   case Decl::FileScopeAsm: {
1523     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1524     std::string AsmString(AD->getAsmString()->getStrData(),
1525                           AD->getAsmString()->getByteLength());
1526 
1527     const std::string &S = getModule().getModuleInlineAsm();
1528     if (S.empty())
1529       getModule().setModuleInlineAsm(AsmString);
1530     else
1531       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1532     break;
1533   }
1534 
1535   default:
1536     // Make sure we handled everything we should, every other kind is a
1537     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1538     // function. Need to recode Decl::Kind to do that easily.
1539     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1540   }
1541 }
1542