1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeGPU.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/FileManager.h"
42 #include "clang/Basic/Module.h"
43 #include "clang/Basic/SourceManager.h"
44 #include "clang/Basic/TargetInfo.h"
45 #include "clang/Basic/Version.h"
46 #include "clang/CodeGen/ConstantInitBuilder.h"
47 #include "clang/Frontend/FrontendDiagnostic.h"
48 #include "llvm/ADT/StringSwitch.h"
49 #include "llvm/ADT/Triple.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
52 #include "llvm/IR/CallingConv.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ProfileSummary.h"
58 #include "llvm/ProfileData/InstrProfReader.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/ConvertUTF.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/MD5.h"
64 #include "llvm/Support/TimeProfiler.h"
65 #include "llvm/Support/X86TargetParser.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getContext().getCXXABIKind()) {
79   case TargetCXXABI::AppleARM64:
80   case TargetCXXABI::Fuchsia:
81   case TargetCXXABI::GenericAArch64:
82   case TargetCXXABI::GenericARM:
83   case TargetCXXABI::iOS:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   CharTy =
127     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
128   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
129   IntPtrTy = llvm::IntegerType::get(LLVMContext,
130     C.getTargetInfo().getMaxPointerWidth());
131   Int8PtrTy = Int8Ty->getPointerTo(0);
132   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
133   const llvm::DataLayout &DL = M.getDataLayout();
134   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
135   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
136   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
137 
138   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
139 
140   if (LangOpts.ObjC)
141     createObjCRuntime();
142   if (LangOpts.OpenCL)
143     createOpenCLRuntime();
144   if (LangOpts.OpenMP)
145     createOpenMPRuntime();
146   if (LangOpts.CUDA)
147     createCUDARuntime();
148 
149   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
150   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
151       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
152     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
153                                getCXXABI().getMangleContext()));
154 
155   // If debug info or coverage generation is enabled, create the CGDebugInfo
156   // object.
157   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
158       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
159     DebugInfo.reset(new CGDebugInfo(*this));
160 
161   Block.GlobalUniqueCount = 0;
162 
163   if (C.getLangOpts().ObjC)
164     ObjCData.reset(new ObjCEntrypoints());
165 
166   if (CodeGenOpts.hasProfileClangUse()) {
167     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
168         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
169     if (auto E = ReaderOrErr.takeError()) {
170       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
171                                               "Could not read profile %0: %1");
172       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
173         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
174                                   << EI.message();
175       });
176     } else
177       PGOReader = std::move(ReaderOrErr.get());
178   }
179 
180   // If coverage mapping generation is enabled, create the
181   // CoverageMappingModuleGen object.
182   if (CodeGenOpts.CoverageMapping)
183     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
184 
185   // Generate the module name hash here if needed.
186   if (CodeGenOpts.UniqueInternalLinkageNames &&
187       !getModule().getSourceFileName().empty()) {
188     std::string Path = getModule().getSourceFileName();
189     // Check if a path substitution is needed from the MacroPrefixMap.
190     for (const auto &Entry : LangOpts.MacroPrefixMap)
191       if (Path.rfind(Entry.first, 0) != std::string::npos) {
192         Path = Entry.second + Path.substr(Entry.first.size());
193         break;
194       }
195     llvm::MD5 Md5;
196     Md5.update(Path);
197     llvm::MD5::MD5Result R;
198     Md5.final(R);
199     SmallString<32> Str;
200     llvm::MD5::stringifyResult(R, Str);
201     // Convert MD5hash to Decimal. Demangler suffixes can either contain
202     // numbers or characters but not both.
203     llvm::APInt IntHash(128, Str.str(), 16);
204     // Prepend "__uniq" before the hash for tools like profilers to understand
205     // that this symbol is of internal linkage type.  The "__uniq" is the
206     // pre-determined prefix that is used to tell tools that this symbol was
207     // created with -funique-internal-linakge-symbols and the tools can strip or
208     // keep the prefix as needed.
209     ModuleNameHash = (Twine(".__uniq.") +
210         Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
211   }
212 }
213 
214 CodeGenModule::~CodeGenModule() {}
215 
216 void CodeGenModule::createObjCRuntime() {
217   // This is just isGNUFamily(), but we want to force implementors of
218   // new ABIs to decide how best to do this.
219   switch (LangOpts.ObjCRuntime.getKind()) {
220   case ObjCRuntime::GNUstep:
221   case ObjCRuntime::GCC:
222   case ObjCRuntime::ObjFW:
223     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
224     return;
225 
226   case ObjCRuntime::FragileMacOSX:
227   case ObjCRuntime::MacOSX:
228   case ObjCRuntime::iOS:
229   case ObjCRuntime::WatchOS:
230     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
231     return;
232   }
233   llvm_unreachable("bad runtime kind");
234 }
235 
236 void CodeGenModule::createOpenCLRuntime() {
237   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
238 }
239 
240 void CodeGenModule::createOpenMPRuntime() {
241   // Select a specialized code generation class based on the target, if any.
242   // If it does not exist use the default implementation.
243   switch (getTriple().getArch()) {
244   case llvm::Triple::nvptx:
245   case llvm::Triple::nvptx64:
246   case llvm::Triple::amdgcn:
247     assert(getLangOpts().OpenMPIsDevice &&
248            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
249     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
250     break;
251   default:
252     if (LangOpts.OpenMPSimd)
253       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
254     else
255       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
256     break;
257   }
258 }
259 
260 void CodeGenModule::createCUDARuntime() {
261   CUDARuntime.reset(CreateNVCUDARuntime(*this));
262 }
263 
264 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
265   Replacements[Name] = C;
266 }
267 
268 void CodeGenModule::applyReplacements() {
269   for (auto &I : Replacements) {
270     StringRef MangledName = I.first();
271     llvm::Constant *Replacement = I.second;
272     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
273     if (!Entry)
274       continue;
275     auto *OldF = cast<llvm::Function>(Entry);
276     auto *NewF = dyn_cast<llvm::Function>(Replacement);
277     if (!NewF) {
278       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
279         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
280       } else {
281         auto *CE = cast<llvm::ConstantExpr>(Replacement);
282         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
283                CE->getOpcode() == llvm::Instruction::GetElementPtr);
284         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
285       }
286     }
287 
288     // Replace old with new, but keep the old order.
289     OldF->replaceAllUsesWith(Replacement);
290     if (NewF) {
291       NewF->removeFromParent();
292       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
293                                                        NewF);
294     }
295     OldF->eraseFromParent();
296   }
297 }
298 
299 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
300   GlobalValReplacements.push_back(std::make_pair(GV, C));
301 }
302 
303 void CodeGenModule::applyGlobalValReplacements() {
304   for (auto &I : GlobalValReplacements) {
305     llvm::GlobalValue *GV = I.first;
306     llvm::Constant *C = I.second;
307 
308     GV->replaceAllUsesWith(C);
309     GV->eraseFromParent();
310   }
311 }
312 
313 // This is only used in aliases that we created and we know they have a
314 // linear structure.
315 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
316   const llvm::Constant *C;
317   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
318     C = GA->getAliasee();
319   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
320     C = GI->getResolver();
321   else
322     return GV;
323 
324   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
325   if (!AliaseeGV)
326     return nullptr;
327 
328   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
329   if (FinalGV == GV)
330     return nullptr;
331 
332   return FinalGV;
333 }
334 
335 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
336                                SourceLocation Location, bool IsIFunc,
337                                const llvm::GlobalValue *Alias,
338                                const llvm::GlobalValue *&GV) {
339   GV = getAliasedGlobal(Alias);
340   if (!GV) {
341     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
342     return false;
343   }
344 
345   if (GV->isDeclaration()) {
346     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
347     return false;
348   }
349 
350   if (IsIFunc) {
351     // Check resolver function type.
352     const auto *F = dyn_cast<llvm::Function>(GV);
353     if (!F) {
354       Diags.Report(Location, diag::err_alias_to_undefined)
355           << IsIFunc << IsIFunc;
356       return false;
357     }
358 
359     llvm::FunctionType *FTy = F->getFunctionType();
360     if (!FTy->getReturnType()->isPointerTy()) {
361       Diags.Report(Location, diag::err_ifunc_resolver_return);
362       return false;
363     }
364   }
365 
366   return true;
367 }
368 
369 void CodeGenModule::checkAliases() {
370   // Check if the constructed aliases are well formed. It is really unfortunate
371   // that we have to do this in CodeGen, but we only construct mangled names
372   // and aliases during codegen.
373   bool Error = false;
374   DiagnosticsEngine &Diags = getDiags();
375   for (const GlobalDecl &GD : Aliases) {
376     const auto *D = cast<ValueDecl>(GD.getDecl());
377     SourceLocation Location;
378     bool IsIFunc = D->hasAttr<IFuncAttr>();
379     if (const Attr *A = D->getDefiningAttr())
380       Location = A->getLocation();
381     else
382       llvm_unreachable("Not an alias or ifunc?");
383 
384     StringRef MangledName = getMangledName(GD);
385     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
386     const llvm::GlobalValue *GV = nullptr;
387     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
388       Error = true;
389       continue;
390     }
391 
392     llvm::Constant *Aliasee =
393         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
394                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
395 
396     llvm::GlobalValue *AliaseeGV;
397     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
398       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
399     else
400       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
401 
402     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
403       StringRef AliasSection = SA->getName();
404       if (AliasSection != AliaseeGV->getSection())
405         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
406             << AliasSection << IsIFunc << IsIFunc;
407     }
408 
409     // We have to handle alias to weak aliases in here. LLVM itself disallows
410     // this since the object semantics would not match the IL one. For
411     // compatibility with gcc we implement it by just pointing the alias
412     // to its aliasee's aliasee. We also warn, since the user is probably
413     // expecting the link to be weak.
414     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
415       if (GA->isInterposable()) {
416         Diags.Report(Location, diag::warn_alias_to_weak_alias)
417             << GV->getName() << GA->getName() << IsIFunc;
418         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
419             GA->getAliasee(), Alias->getType());
420 
421         if (IsIFunc)
422           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
423         else
424           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
425       }
426     }
427   }
428   if (!Error)
429     return;
430 
431   for (const GlobalDecl &GD : Aliases) {
432     StringRef MangledName = getMangledName(GD);
433     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
434     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
435     Alias->eraseFromParent();
436   }
437 }
438 
439 void CodeGenModule::clear() {
440   DeferredDeclsToEmit.clear();
441   if (OpenMPRuntime)
442     OpenMPRuntime->clear();
443 }
444 
445 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
446                                        StringRef MainFile) {
447   if (!hasDiagnostics())
448     return;
449   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
450     if (MainFile.empty())
451       MainFile = "<stdin>";
452     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
453   } else {
454     if (Mismatched > 0)
455       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
456 
457     if (Missing > 0)
458       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
459   }
460 }
461 
462 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
463                                              llvm::Module &M) {
464   if (!LO.VisibilityFromDLLStorageClass)
465     return;
466 
467   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
468       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
469   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
470       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
471   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
472       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
473   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
474       CodeGenModule::GetLLVMVisibility(
475           LO.getExternDeclNoDLLStorageClassVisibility());
476 
477   for (llvm::GlobalValue &GV : M.global_values()) {
478     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
479       continue;
480 
481     // Reset DSO locality before setting the visibility. This removes
482     // any effects that visibility options and annotations may have
483     // had on the DSO locality. Setting the visibility will implicitly set
484     // appropriate globals to DSO Local; however, this will be pessimistic
485     // w.r.t. to the normal compiler IRGen.
486     GV.setDSOLocal(false);
487 
488     if (GV.isDeclarationForLinker()) {
489       GV.setVisibility(GV.getDLLStorageClass() ==
490                                llvm::GlobalValue::DLLImportStorageClass
491                            ? ExternDeclDLLImportVisibility
492                            : ExternDeclNoDLLStorageClassVisibility);
493     } else {
494       GV.setVisibility(GV.getDLLStorageClass() ==
495                                llvm::GlobalValue::DLLExportStorageClass
496                            ? DLLExportVisibility
497                            : NoDLLStorageClassVisibility);
498     }
499 
500     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
501   }
502 }
503 
504 void CodeGenModule::Release() {
505   EmitDeferred();
506   EmitVTablesOpportunistically();
507   applyGlobalValReplacements();
508   applyReplacements();
509   checkAliases();
510   emitMultiVersionFunctions();
511   EmitCXXGlobalInitFunc();
512   EmitCXXGlobalCleanUpFunc();
513   registerGlobalDtorsWithAtExit();
514   EmitCXXThreadLocalInitFunc();
515   if (ObjCRuntime)
516     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
517       AddGlobalCtor(ObjCInitFunction);
518   if (Context.getLangOpts().CUDA && CUDARuntime) {
519     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
520       AddGlobalCtor(CudaCtorFunction);
521   }
522   if (OpenMPRuntime) {
523     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
524             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
525       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
526     }
527     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
528     OpenMPRuntime->clear();
529   }
530   if (PGOReader) {
531     getModule().setProfileSummary(
532         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
533         llvm::ProfileSummary::PSK_Instr);
534     if (PGOStats.hasDiagnostics())
535       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
536   }
537   EmitCtorList(GlobalCtors, "llvm.global_ctors");
538   EmitCtorList(GlobalDtors, "llvm.global_dtors");
539   EmitGlobalAnnotations();
540   EmitStaticExternCAliases();
541   EmitDeferredUnusedCoverageMappings();
542   CodeGenPGO(*this).setValueProfilingFlag(getModule());
543   if (CoverageMapping)
544     CoverageMapping->emit();
545   if (CodeGenOpts.SanitizeCfiCrossDso) {
546     CodeGenFunction(*this).EmitCfiCheckFail();
547     CodeGenFunction(*this).EmitCfiCheckStub();
548   }
549   emitAtAvailableLinkGuard();
550   if (Context.getTargetInfo().getTriple().isWasm() &&
551       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
552     EmitMainVoidAlias();
553   }
554 
555   // Emit reference of __amdgpu_device_library_preserve_asan_functions to
556   // preserve ASAN functions in bitcode libraries.
557   if (LangOpts.Sanitize.has(SanitizerKind::Address) && getTriple().isAMDGPU()) {
558     auto *FT = llvm::FunctionType::get(VoidTy, {});
559     auto *F = llvm::Function::Create(
560         FT, llvm::GlobalValue::ExternalLinkage,
561         "__amdgpu_device_library_preserve_asan_functions", &getModule());
562     auto *Var = new llvm::GlobalVariable(
563         getModule(), FT->getPointerTo(),
564         /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
565         "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
566         llvm::GlobalVariable::NotThreadLocal);
567     addCompilerUsedGlobal(Var);
568     if (!getModule().getModuleFlag("amdgpu_hostcall")) {
569       getModule().addModuleFlag(llvm::Module::Override, "amdgpu_hostcall", 1);
570     }
571   }
572 
573   emitLLVMUsed();
574   if (SanStats)
575     SanStats->finish();
576 
577   if (CodeGenOpts.Autolink &&
578       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
579     EmitModuleLinkOptions();
580   }
581 
582   // On ELF we pass the dependent library specifiers directly to the linker
583   // without manipulating them. This is in contrast to other platforms where
584   // they are mapped to a specific linker option by the compiler. This
585   // difference is a result of the greater variety of ELF linkers and the fact
586   // that ELF linkers tend to handle libraries in a more complicated fashion
587   // than on other platforms. This forces us to defer handling the dependent
588   // libs to the linker.
589   //
590   // CUDA/HIP device and host libraries are different. Currently there is no
591   // way to differentiate dependent libraries for host or device. Existing
592   // usage of #pragma comment(lib, *) is intended for host libraries on
593   // Windows. Therefore emit llvm.dependent-libraries only for host.
594   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
595     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
596     for (auto *MD : ELFDependentLibraries)
597       NMD->addOperand(MD);
598   }
599 
600   // Record mregparm value now so it is visible through rest of codegen.
601   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
602     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
603                               CodeGenOpts.NumRegisterParameters);
604 
605   if (CodeGenOpts.DwarfVersion) {
606     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
607                               CodeGenOpts.DwarfVersion);
608   }
609 
610   if (CodeGenOpts.Dwarf64)
611     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
612 
613   if (Context.getLangOpts().SemanticInterposition)
614     // Require various optimization to respect semantic interposition.
615     getModule().setSemanticInterposition(true);
616 
617   if (CodeGenOpts.EmitCodeView) {
618     // Indicate that we want CodeView in the metadata.
619     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
620   }
621   if (CodeGenOpts.CodeViewGHash) {
622     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
623   }
624   if (CodeGenOpts.ControlFlowGuard) {
625     // Function ID tables and checks for Control Flow Guard (cfguard=2).
626     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
627   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
628     // Function ID tables for Control Flow Guard (cfguard=1).
629     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
630   }
631   if (CodeGenOpts.EHContGuard) {
632     // Function ID tables for EH Continuation Guard.
633     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
634   }
635   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
636     // We don't support LTO with 2 with different StrictVTablePointers
637     // FIXME: we could support it by stripping all the information introduced
638     // by StrictVTablePointers.
639 
640     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
641 
642     llvm::Metadata *Ops[2] = {
643               llvm::MDString::get(VMContext, "StrictVTablePointers"),
644               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
645                   llvm::Type::getInt32Ty(VMContext), 1))};
646 
647     getModule().addModuleFlag(llvm::Module::Require,
648                               "StrictVTablePointersRequirement",
649                               llvm::MDNode::get(VMContext, Ops));
650   }
651   if (getModuleDebugInfo())
652     // We support a single version in the linked module. The LLVM
653     // parser will drop debug info with a different version number
654     // (and warn about it, too).
655     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
656                               llvm::DEBUG_METADATA_VERSION);
657 
658   // We need to record the widths of enums and wchar_t, so that we can generate
659   // the correct build attributes in the ARM backend. wchar_size is also used by
660   // TargetLibraryInfo.
661   uint64_t WCharWidth =
662       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
663   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
664 
665   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
666   if (   Arch == llvm::Triple::arm
667       || Arch == llvm::Triple::armeb
668       || Arch == llvm::Triple::thumb
669       || Arch == llvm::Triple::thumbeb) {
670     // The minimum width of an enum in bytes
671     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
672     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
673   }
674 
675   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
676     StringRef ABIStr = Target.getABI();
677     llvm::LLVMContext &Ctx = TheModule.getContext();
678     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
679                               llvm::MDString::get(Ctx, ABIStr));
680   }
681 
682   if (CodeGenOpts.SanitizeCfiCrossDso) {
683     // Indicate that we want cross-DSO control flow integrity checks.
684     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
685   }
686 
687   if (CodeGenOpts.WholeProgramVTables) {
688     // Indicate whether VFE was enabled for this module, so that the
689     // vcall_visibility metadata added under whole program vtables is handled
690     // appropriately in the optimizer.
691     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
692                               CodeGenOpts.VirtualFunctionElimination);
693   }
694 
695   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
696     getModule().addModuleFlag(llvm::Module::Override,
697                               "CFI Canonical Jump Tables",
698                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
699   }
700 
701   if (CodeGenOpts.CFProtectionReturn &&
702       Target.checkCFProtectionReturnSupported(getDiags())) {
703     // Indicate that we want to instrument return control flow protection.
704     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
705                               1);
706   }
707 
708   if (CodeGenOpts.CFProtectionBranch &&
709       Target.checkCFProtectionBranchSupported(getDiags())) {
710     // Indicate that we want to instrument branch control flow protection.
711     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
712                               1);
713   }
714 
715   // Add module metadata for return address signing (ignoring
716   // non-leaf/all) and stack tagging. These are actually turned on by function
717   // attributes, but we use module metadata to emit build attributes. This is
718   // needed for LTO, where the function attributes are inside bitcode
719   // serialised into a global variable by the time build attributes are
720   // emitted, so we can't access them.
721   if (Context.getTargetInfo().hasFeature("ptrauth") &&
722       LangOpts.getSignReturnAddressScope() !=
723           LangOptions::SignReturnAddressScopeKind::None)
724     getModule().addModuleFlag(llvm::Module::Override,
725                               "sign-return-address-buildattr", 1);
726   if (LangOpts.Sanitize.has(SanitizerKind::MemTag))
727     getModule().addModuleFlag(llvm::Module::Override,
728                               "tag-stack-memory-buildattr", 1);
729 
730   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
731       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
732       Arch == llvm::Triple::aarch64_be) {
733     getModule().addModuleFlag(llvm::Module::Error, "branch-target-enforcement",
734                               LangOpts.BranchTargetEnforcement);
735 
736     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
737                               LangOpts.hasSignReturnAddress());
738 
739     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
740                               LangOpts.isSignReturnAddressScopeAll());
741 
742     if (Arch != llvm::Triple::thumb && Arch != llvm::Triple::thumbeb) {
743       getModule().addModuleFlag(llvm::Module::Error,
744                                 "sign-return-address-with-bkey",
745                                 !LangOpts.isSignReturnAddressWithAKey());
746     }
747   }
748 
749   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
750     llvm::LLVMContext &Ctx = TheModule.getContext();
751     getModule().addModuleFlag(
752         llvm::Module::Error, "MemProfProfileFilename",
753         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
754   }
755 
756   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
757     // Indicate whether __nvvm_reflect should be configured to flush denormal
758     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
759     // property.)
760     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
761                               CodeGenOpts.FP32DenormalMode.Output !=
762                                   llvm::DenormalMode::IEEE);
763   }
764 
765   if (LangOpts.EHAsynch)
766     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
767 
768   // Indicate whether this Module was compiled with -fopenmp
769   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
770     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
771   if (getLangOpts().OpenMPIsDevice)
772     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
773                               LangOpts.OpenMP);
774 
775   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
776   if (LangOpts.OpenCL) {
777     EmitOpenCLMetadata();
778     // Emit SPIR version.
779     if (getTriple().isSPIR()) {
780       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
781       // opencl.spir.version named metadata.
782       // C++ for OpenCL has a distinct mapping for version compatibility with
783       // OpenCL.
784       auto Version = LangOpts.getOpenCLCompatibleVersion();
785       llvm::Metadata *SPIRVerElts[] = {
786           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
787               Int32Ty, Version / 100)),
788           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
789               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
790       llvm::NamedMDNode *SPIRVerMD =
791           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
792       llvm::LLVMContext &Ctx = TheModule.getContext();
793       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
794     }
795   }
796 
797   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
798     assert(PLevel < 3 && "Invalid PIC Level");
799     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
800     if (Context.getLangOpts().PIE)
801       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
802   }
803 
804   if (getCodeGenOpts().CodeModel.size() > 0) {
805     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
806                   .Case("tiny", llvm::CodeModel::Tiny)
807                   .Case("small", llvm::CodeModel::Small)
808                   .Case("kernel", llvm::CodeModel::Kernel)
809                   .Case("medium", llvm::CodeModel::Medium)
810                   .Case("large", llvm::CodeModel::Large)
811                   .Default(~0u);
812     if (CM != ~0u) {
813       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
814       getModule().setCodeModel(codeModel);
815     }
816   }
817 
818   if (CodeGenOpts.NoPLT)
819     getModule().setRtLibUseGOT();
820   if (CodeGenOpts.UnwindTables)
821     getModule().setUwtable();
822 
823   switch (CodeGenOpts.getFramePointer()) {
824   case CodeGenOptions::FramePointerKind::None:
825     // 0 ("none") is the default.
826     break;
827   case CodeGenOptions::FramePointerKind::NonLeaf:
828     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
829     break;
830   case CodeGenOptions::FramePointerKind::All:
831     getModule().setFramePointer(llvm::FramePointerKind::All);
832     break;
833   }
834 
835   SimplifyPersonality();
836 
837   if (getCodeGenOpts().EmitDeclMetadata)
838     EmitDeclMetadata();
839 
840   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
841     EmitCoverageFile();
842 
843   if (CGDebugInfo *DI = getModuleDebugInfo())
844     DI->finalize();
845 
846   if (getCodeGenOpts().EmitVersionIdentMetadata)
847     EmitVersionIdentMetadata();
848 
849   if (!getCodeGenOpts().RecordCommandLine.empty())
850     EmitCommandLineMetadata();
851 
852   if (!getCodeGenOpts().StackProtectorGuard.empty())
853     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
854   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
855     getModule().setStackProtectorGuardReg(
856         getCodeGenOpts().StackProtectorGuardReg);
857   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
858     getModule().setStackProtectorGuardOffset(
859         getCodeGenOpts().StackProtectorGuardOffset);
860   if (getCodeGenOpts().StackAlignment)
861     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
862   if (getCodeGenOpts().SkipRaxSetup)
863     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
864 
865   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
866 
867   EmitBackendOptionsMetadata(getCodeGenOpts());
868 
869   // Set visibility from DLL storage class
870   // We do this at the end of LLVM IR generation; after any operation
871   // that might affect the DLL storage class or the visibility, and
872   // before anything that might act on these.
873   setVisibilityFromDLLStorageClass(LangOpts, getModule());
874 }
875 
876 void CodeGenModule::EmitOpenCLMetadata() {
877   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
878   // opencl.ocl.version named metadata node.
879   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
880   auto Version = LangOpts.getOpenCLCompatibleVersion();
881   llvm::Metadata *OCLVerElts[] = {
882       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
883           Int32Ty, Version / 100)),
884       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
885           Int32Ty, (Version % 100) / 10))};
886   llvm::NamedMDNode *OCLVerMD =
887       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
888   llvm::LLVMContext &Ctx = TheModule.getContext();
889   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
890 }
891 
892 void CodeGenModule::EmitBackendOptionsMetadata(
893     const CodeGenOptions CodeGenOpts) {
894   switch (getTriple().getArch()) {
895   default:
896     break;
897   case llvm::Triple::riscv32:
898   case llvm::Triple::riscv64:
899     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
900                               CodeGenOpts.SmallDataLimit);
901     break;
902   }
903 }
904 
905 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
906   // Make sure that this type is translated.
907   Types.UpdateCompletedType(TD);
908 }
909 
910 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
911   // Make sure that this type is translated.
912   Types.RefreshTypeCacheForClass(RD);
913 }
914 
915 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
916   if (!TBAA)
917     return nullptr;
918   return TBAA->getTypeInfo(QTy);
919 }
920 
921 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
922   if (!TBAA)
923     return TBAAAccessInfo();
924   if (getLangOpts().CUDAIsDevice) {
925     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
926     // access info.
927     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
928       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
929           nullptr)
930         return TBAAAccessInfo();
931     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
932       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
933           nullptr)
934         return TBAAAccessInfo();
935     }
936   }
937   return TBAA->getAccessInfo(AccessType);
938 }
939 
940 TBAAAccessInfo
941 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
942   if (!TBAA)
943     return TBAAAccessInfo();
944   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
945 }
946 
947 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
948   if (!TBAA)
949     return nullptr;
950   return TBAA->getTBAAStructInfo(QTy);
951 }
952 
953 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
954   if (!TBAA)
955     return nullptr;
956   return TBAA->getBaseTypeInfo(QTy);
957 }
958 
959 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
960   if (!TBAA)
961     return nullptr;
962   return TBAA->getAccessTagInfo(Info);
963 }
964 
965 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
966                                                    TBAAAccessInfo TargetInfo) {
967   if (!TBAA)
968     return TBAAAccessInfo();
969   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
970 }
971 
972 TBAAAccessInfo
973 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
974                                                    TBAAAccessInfo InfoB) {
975   if (!TBAA)
976     return TBAAAccessInfo();
977   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
978 }
979 
980 TBAAAccessInfo
981 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
982                                               TBAAAccessInfo SrcInfo) {
983   if (!TBAA)
984     return TBAAAccessInfo();
985   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
986 }
987 
988 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
989                                                 TBAAAccessInfo TBAAInfo) {
990   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
991     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
992 }
993 
994 void CodeGenModule::DecorateInstructionWithInvariantGroup(
995     llvm::Instruction *I, const CXXRecordDecl *RD) {
996   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
997                  llvm::MDNode::get(getLLVMContext(), {}));
998 }
999 
1000 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1001   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1002   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1003 }
1004 
1005 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1006 /// specified stmt yet.
1007 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1008   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1009                                                "cannot compile this %0 yet");
1010   std::string Msg = Type;
1011   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1012       << Msg << S->getSourceRange();
1013 }
1014 
1015 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1016 /// specified decl yet.
1017 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1018   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1019                                                "cannot compile this %0 yet");
1020   std::string Msg = Type;
1021   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1022 }
1023 
1024 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1025   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1026 }
1027 
1028 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1029                                         const NamedDecl *D) const {
1030   if (GV->hasDLLImportStorageClass())
1031     return;
1032   // Internal definitions always have default visibility.
1033   if (GV->hasLocalLinkage()) {
1034     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1035     return;
1036   }
1037   if (!D)
1038     return;
1039   // Set visibility for definitions, and for declarations if requested globally
1040   // or set explicitly.
1041   LinkageInfo LV = D->getLinkageAndVisibility();
1042   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1043       !GV->isDeclarationForLinker())
1044     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1045 }
1046 
1047 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1048                                  llvm::GlobalValue *GV) {
1049   if (GV->hasLocalLinkage())
1050     return true;
1051 
1052   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1053     return true;
1054 
1055   // DLLImport explicitly marks the GV as external.
1056   if (GV->hasDLLImportStorageClass())
1057     return false;
1058 
1059   const llvm::Triple &TT = CGM.getTriple();
1060   if (TT.isWindowsGNUEnvironment()) {
1061     // In MinGW, variables without DLLImport can still be automatically
1062     // imported from a DLL by the linker; don't mark variables that
1063     // potentially could come from another DLL as DSO local.
1064 
1065     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1066     // (and this actually happens in the public interface of libstdc++), so
1067     // such variables can't be marked as DSO local. (Native TLS variables
1068     // can't be dllimported at all, though.)
1069     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1070         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1071       return false;
1072   }
1073 
1074   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1075   // remain unresolved in the link, they can be resolved to zero, which is
1076   // outside the current DSO.
1077   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1078     return false;
1079 
1080   // Every other GV is local on COFF.
1081   // Make an exception for windows OS in the triple: Some firmware builds use
1082   // *-win32-macho triples. This (accidentally?) produced windows relocations
1083   // without GOT tables in older clang versions; Keep this behaviour.
1084   // FIXME: even thread local variables?
1085   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1086     return true;
1087 
1088   // Only handle COFF and ELF for now.
1089   if (!TT.isOSBinFormatELF())
1090     return false;
1091 
1092   // If this is not an executable, don't assume anything is local.
1093   const auto &CGOpts = CGM.getCodeGenOpts();
1094   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1095   const auto &LOpts = CGM.getLangOpts();
1096   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1097     // On ELF, if -fno-semantic-interposition is specified and the target
1098     // supports local aliases, there will be neither CC1
1099     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1100     // dso_local on the function if using a local alias is preferable (can avoid
1101     // PLT indirection).
1102     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1103       return false;
1104     return !(CGM.getLangOpts().SemanticInterposition ||
1105              CGM.getLangOpts().HalfNoSemanticInterposition);
1106   }
1107 
1108   // A definition cannot be preempted from an executable.
1109   if (!GV->isDeclarationForLinker())
1110     return true;
1111 
1112   // Most PIC code sequences that assume that a symbol is local cannot produce a
1113   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1114   // depended, it seems worth it to handle it here.
1115   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1116     return false;
1117 
1118   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1119   if (TT.isPPC64())
1120     return false;
1121 
1122   if (CGOpts.DirectAccessExternalData) {
1123     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1124     // for non-thread-local variables. If the symbol is not defined in the
1125     // executable, a copy relocation will be needed at link time. dso_local is
1126     // excluded for thread-local variables because they generally don't support
1127     // copy relocations.
1128     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1129       if (!Var->isThreadLocal())
1130         return true;
1131 
1132     // -fno-pic sets dso_local on a function declaration to allow direct
1133     // accesses when taking its address (similar to a data symbol). If the
1134     // function is not defined in the executable, a canonical PLT entry will be
1135     // needed at link time. -fno-direct-access-external-data can avoid the
1136     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1137     // it could just cause trouble without providing perceptible benefits.
1138     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1139       return true;
1140   }
1141 
1142   // If we can use copy relocations we can assume it is local.
1143 
1144   // Otherwise don't assume it is local.
1145   return false;
1146 }
1147 
1148 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1149   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1150 }
1151 
1152 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1153                                           GlobalDecl GD) const {
1154   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1155   // C++ destructors have a few C++ ABI specific special cases.
1156   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1157     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1158     return;
1159   }
1160   setDLLImportDLLExport(GV, D);
1161 }
1162 
1163 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1164                                           const NamedDecl *D) const {
1165   if (D && D->isExternallyVisible()) {
1166     if (D->hasAttr<DLLImportAttr>())
1167       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1168     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1169       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1170   }
1171 }
1172 
1173 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1174                                     GlobalDecl GD) const {
1175   setDLLImportDLLExport(GV, GD);
1176   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1177 }
1178 
1179 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1180                                     const NamedDecl *D) const {
1181   setDLLImportDLLExport(GV, D);
1182   setGVPropertiesAux(GV, D);
1183 }
1184 
1185 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1186                                        const NamedDecl *D) const {
1187   setGlobalVisibility(GV, D);
1188   setDSOLocal(GV);
1189   GV->setPartition(CodeGenOpts.SymbolPartition);
1190 }
1191 
1192 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1193   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1194       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1195       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1196       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1197       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1198 }
1199 
1200 llvm::GlobalVariable::ThreadLocalMode
1201 CodeGenModule::GetDefaultLLVMTLSModel() const {
1202   switch (CodeGenOpts.getDefaultTLSModel()) {
1203   case CodeGenOptions::GeneralDynamicTLSModel:
1204     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1205   case CodeGenOptions::LocalDynamicTLSModel:
1206     return llvm::GlobalVariable::LocalDynamicTLSModel;
1207   case CodeGenOptions::InitialExecTLSModel:
1208     return llvm::GlobalVariable::InitialExecTLSModel;
1209   case CodeGenOptions::LocalExecTLSModel:
1210     return llvm::GlobalVariable::LocalExecTLSModel;
1211   }
1212   llvm_unreachable("Invalid TLS model!");
1213 }
1214 
1215 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1216   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1217 
1218   llvm::GlobalValue::ThreadLocalMode TLM;
1219   TLM = GetDefaultLLVMTLSModel();
1220 
1221   // Override the TLS model if it is explicitly specified.
1222   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1223     TLM = GetLLVMTLSModel(Attr->getModel());
1224   }
1225 
1226   GV->setThreadLocalMode(TLM);
1227 }
1228 
1229 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1230                                           StringRef Name) {
1231   const TargetInfo &Target = CGM.getTarget();
1232   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1233 }
1234 
1235 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1236                                                  const CPUSpecificAttr *Attr,
1237                                                  unsigned CPUIndex,
1238                                                  raw_ostream &Out) {
1239   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1240   // supported.
1241   if (Attr)
1242     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1243   else if (CGM.getTarget().supportsIFunc())
1244     Out << ".resolver";
1245 }
1246 
1247 static void AppendTargetMangling(const CodeGenModule &CGM,
1248                                  const TargetAttr *Attr, raw_ostream &Out) {
1249   if (Attr->isDefaultVersion())
1250     return;
1251 
1252   Out << '.';
1253   const TargetInfo &Target = CGM.getTarget();
1254   ParsedTargetAttr Info =
1255       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1256         // Multiversioning doesn't allow "no-${feature}", so we can
1257         // only have "+" prefixes here.
1258         assert(LHS.startswith("+") && RHS.startswith("+") &&
1259                "Features should always have a prefix.");
1260         return Target.multiVersionSortPriority(LHS.substr(1)) >
1261                Target.multiVersionSortPriority(RHS.substr(1));
1262       });
1263 
1264   bool IsFirst = true;
1265 
1266   if (!Info.Architecture.empty()) {
1267     IsFirst = false;
1268     Out << "arch_" << Info.Architecture;
1269   }
1270 
1271   for (StringRef Feat : Info.Features) {
1272     if (!IsFirst)
1273       Out << '_';
1274     IsFirst = false;
1275     Out << Feat.substr(1);
1276   }
1277 }
1278 
1279 // Returns true if GD is a function decl with internal linkage and
1280 // needs a unique suffix after the mangled name.
1281 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1282                                         CodeGenModule &CGM) {
1283   const Decl *D = GD.getDecl();
1284   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1285          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1286 }
1287 
1288 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1289                                        const TargetClonesAttr *Attr,
1290                                        unsigned VersionIndex,
1291                                        raw_ostream &Out) {
1292   Out << '.';
1293   StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1294   if (FeatureStr.startswith("arch="))
1295     Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1296   else
1297     Out << FeatureStr;
1298 
1299   Out << '.' << Attr->getMangledIndex(VersionIndex);
1300 }
1301 
1302 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1303                                       const NamedDecl *ND,
1304                                       bool OmitMultiVersionMangling = false) {
1305   SmallString<256> Buffer;
1306   llvm::raw_svector_ostream Out(Buffer);
1307   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1308   if (!CGM.getModuleNameHash().empty())
1309     MC.needsUniqueInternalLinkageNames();
1310   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1311   if (ShouldMangle)
1312     MC.mangleName(GD.getWithDecl(ND), Out);
1313   else {
1314     IdentifierInfo *II = ND->getIdentifier();
1315     assert(II && "Attempt to mangle unnamed decl.");
1316     const auto *FD = dyn_cast<FunctionDecl>(ND);
1317 
1318     if (FD &&
1319         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1320       Out << "__regcall3__" << II->getName();
1321     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1322                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1323       Out << "__device_stub__" << II->getName();
1324     } else {
1325       Out << II->getName();
1326     }
1327   }
1328 
1329   // Check if the module name hash should be appended for internal linkage
1330   // symbols.   This should come before multi-version target suffixes are
1331   // appended. This is to keep the name and module hash suffix of the
1332   // internal linkage function together.  The unique suffix should only be
1333   // added when name mangling is done to make sure that the final name can
1334   // be properly demangled.  For example, for C functions without prototypes,
1335   // name mangling is not done and the unique suffix should not be appeneded
1336   // then.
1337   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1338     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1339            "Hash computed when not explicitly requested");
1340     Out << CGM.getModuleNameHash();
1341   }
1342 
1343   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1344     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1345       switch (FD->getMultiVersionKind()) {
1346       case MultiVersionKind::CPUDispatch:
1347       case MultiVersionKind::CPUSpecific:
1348         AppendCPUSpecificCPUDispatchMangling(CGM,
1349                                              FD->getAttr<CPUSpecificAttr>(),
1350                                              GD.getMultiVersionIndex(), Out);
1351         break;
1352       case MultiVersionKind::Target:
1353         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1354         break;
1355       case MultiVersionKind::TargetClones:
1356         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1357                                    GD.getMultiVersionIndex(), Out);
1358         break;
1359       case MultiVersionKind::None:
1360         llvm_unreachable("None multiversion type isn't valid here");
1361       }
1362     }
1363 
1364   // Make unique name for device side static file-scope variable for HIP.
1365   if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
1366       CGM.getLangOpts().GPURelocatableDeviceCode &&
1367       CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty())
1368     CGM.printPostfixForExternalizedStaticVar(Out);
1369   return std::string(Out.str());
1370 }
1371 
1372 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1373                                             const FunctionDecl *FD,
1374                                             StringRef &CurName) {
1375   if (!FD->isMultiVersion())
1376     return;
1377 
1378   // Get the name of what this would be without the 'target' attribute.  This
1379   // allows us to lookup the version that was emitted when this wasn't a
1380   // multiversion function.
1381   std::string NonTargetName =
1382       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1383   GlobalDecl OtherGD;
1384   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1385     assert(OtherGD.getCanonicalDecl()
1386                .getDecl()
1387                ->getAsFunction()
1388                ->isMultiVersion() &&
1389            "Other GD should now be a multiversioned function");
1390     // OtherFD is the version of this function that was mangled BEFORE
1391     // becoming a MultiVersion function.  It potentially needs to be updated.
1392     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1393                                       .getDecl()
1394                                       ->getAsFunction()
1395                                       ->getMostRecentDecl();
1396     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1397     // This is so that if the initial version was already the 'default'
1398     // version, we don't try to update it.
1399     if (OtherName != NonTargetName) {
1400       // Remove instead of erase, since others may have stored the StringRef
1401       // to this.
1402       const auto ExistingRecord = Manglings.find(NonTargetName);
1403       if (ExistingRecord != std::end(Manglings))
1404         Manglings.remove(&(*ExistingRecord));
1405       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1406       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1407           Result.first->first();
1408       // If this is the current decl is being created, make sure we update the name.
1409       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1410         CurName = OtherNameRef;
1411       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1412         Entry->setName(OtherName);
1413     }
1414   }
1415 }
1416 
1417 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1418   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1419 
1420   // Some ABIs don't have constructor variants.  Make sure that base and
1421   // complete constructors get mangled the same.
1422   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1423     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1424       CXXCtorType OrigCtorType = GD.getCtorType();
1425       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1426       if (OrigCtorType == Ctor_Base)
1427         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1428     }
1429   }
1430 
1431   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1432   // static device variable depends on whether the variable is referenced by
1433   // a host or device host function. Therefore the mangled name cannot be
1434   // cached.
1435   if (!LangOpts.CUDAIsDevice ||
1436       !getContext().mayExternalizeStaticVar(GD.getDecl())) {
1437     auto FoundName = MangledDeclNames.find(CanonicalGD);
1438     if (FoundName != MangledDeclNames.end())
1439       return FoundName->second;
1440   }
1441 
1442   // Keep the first result in the case of a mangling collision.
1443   const auto *ND = cast<NamedDecl>(GD.getDecl());
1444   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1445 
1446   // Ensure either we have different ABIs between host and device compilations,
1447   // says host compilation following MSVC ABI but device compilation follows
1448   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1449   // mangling should be the same after name stubbing. The later checking is
1450   // very important as the device kernel name being mangled in host-compilation
1451   // is used to resolve the device binaries to be executed. Inconsistent naming
1452   // result in undefined behavior. Even though we cannot check that naming
1453   // directly between host- and device-compilations, the host- and
1454   // device-mangling in host compilation could help catching certain ones.
1455   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1456          getLangOpts().CUDAIsDevice ||
1457          (getContext().getAuxTargetInfo() &&
1458           (getContext().getAuxTargetInfo()->getCXXABI() !=
1459            getContext().getTargetInfo().getCXXABI())) ||
1460          getCUDARuntime().getDeviceSideName(ND) ==
1461              getMangledNameImpl(
1462                  *this,
1463                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1464                  ND));
1465 
1466   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1467   return MangledDeclNames[CanonicalGD] = Result.first->first();
1468 }
1469 
1470 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1471                                              const BlockDecl *BD) {
1472   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1473   const Decl *D = GD.getDecl();
1474 
1475   SmallString<256> Buffer;
1476   llvm::raw_svector_ostream Out(Buffer);
1477   if (!D)
1478     MangleCtx.mangleGlobalBlock(BD,
1479       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1480   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1481     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1482   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1483     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1484   else
1485     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1486 
1487   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1488   return Result.first->first();
1489 }
1490 
1491 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1492   return getModule().getNamedValue(Name);
1493 }
1494 
1495 /// AddGlobalCtor - Add a function to the list that will be called before
1496 /// main() runs.
1497 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1498                                   llvm::Constant *AssociatedData) {
1499   // FIXME: Type coercion of void()* types.
1500   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1501 }
1502 
1503 /// AddGlobalDtor - Add a function to the list that will be called
1504 /// when the module is unloaded.
1505 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1506                                   bool IsDtorAttrFunc) {
1507   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1508       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1509     DtorsUsingAtExit[Priority].push_back(Dtor);
1510     return;
1511   }
1512 
1513   // FIXME: Type coercion of void()* types.
1514   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1515 }
1516 
1517 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1518   if (Fns.empty()) return;
1519 
1520   // Ctor function type is void()*.
1521   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1522   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1523       TheModule.getDataLayout().getProgramAddressSpace());
1524 
1525   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1526   llvm::StructType *CtorStructTy = llvm::StructType::get(
1527       Int32Ty, CtorPFTy, VoidPtrTy);
1528 
1529   // Construct the constructor and destructor arrays.
1530   ConstantInitBuilder builder(*this);
1531   auto ctors = builder.beginArray(CtorStructTy);
1532   for (const auto &I : Fns) {
1533     auto ctor = ctors.beginStruct(CtorStructTy);
1534     ctor.addInt(Int32Ty, I.Priority);
1535     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1536     if (I.AssociatedData)
1537       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1538     else
1539       ctor.addNullPointer(VoidPtrTy);
1540     ctor.finishAndAddTo(ctors);
1541   }
1542 
1543   auto list =
1544     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1545                                 /*constant*/ false,
1546                                 llvm::GlobalValue::AppendingLinkage);
1547 
1548   // The LTO linker doesn't seem to like it when we set an alignment
1549   // on appending variables.  Take it off as a workaround.
1550   list->setAlignment(llvm::None);
1551 
1552   Fns.clear();
1553 }
1554 
1555 llvm::GlobalValue::LinkageTypes
1556 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1557   const auto *D = cast<FunctionDecl>(GD.getDecl());
1558 
1559   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1560 
1561   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1562     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1563 
1564   if (isa<CXXConstructorDecl>(D) &&
1565       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1566       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1567     // Our approach to inheriting constructors is fundamentally different from
1568     // that used by the MS ABI, so keep our inheriting constructor thunks
1569     // internal rather than trying to pick an unambiguous mangling for them.
1570     return llvm::GlobalValue::InternalLinkage;
1571   }
1572 
1573   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1574 }
1575 
1576 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1577   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1578   if (!MDS) return nullptr;
1579 
1580   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1581 }
1582 
1583 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1584                                               const CGFunctionInfo &Info,
1585                                               llvm::Function *F, bool IsThunk) {
1586   unsigned CallingConv;
1587   llvm::AttributeList PAL;
1588   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1589                          /*AttrOnCallSite=*/false, IsThunk);
1590   F->setAttributes(PAL);
1591   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1592 }
1593 
1594 static void removeImageAccessQualifier(std::string& TyName) {
1595   std::string ReadOnlyQual("__read_only");
1596   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1597   if (ReadOnlyPos != std::string::npos)
1598     // "+ 1" for the space after access qualifier.
1599     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1600   else {
1601     std::string WriteOnlyQual("__write_only");
1602     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1603     if (WriteOnlyPos != std::string::npos)
1604       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1605     else {
1606       std::string ReadWriteQual("__read_write");
1607       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1608       if (ReadWritePos != std::string::npos)
1609         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1610     }
1611   }
1612 }
1613 
1614 // Returns the address space id that should be produced to the
1615 // kernel_arg_addr_space metadata. This is always fixed to the ids
1616 // as specified in the SPIR 2.0 specification in order to differentiate
1617 // for example in clGetKernelArgInfo() implementation between the address
1618 // spaces with targets without unique mapping to the OpenCL address spaces
1619 // (basically all single AS CPUs).
1620 static unsigned ArgInfoAddressSpace(LangAS AS) {
1621   switch (AS) {
1622   case LangAS::opencl_global:
1623     return 1;
1624   case LangAS::opencl_constant:
1625     return 2;
1626   case LangAS::opencl_local:
1627     return 3;
1628   case LangAS::opencl_generic:
1629     return 4; // Not in SPIR 2.0 specs.
1630   case LangAS::opencl_global_device:
1631     return 5;
1632   case LangAS::opencl_global_host:
1633     return 6;
1634   default:
1635     return 0; // Assume private.
1636   }
1637 }
1638 
1639 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1640                                          const FunctionDecl *FD,
1641                                          CodeGenFunction *CGF) {
1642   assert(((FD && CGF) || (!FD && !CGF)) &&
1643          "Incorrect use - FD and CGF should either be both null or not!");
1644   // Create MDNodes that represent the kernel arg metadata.
1645   // Each MDNode is a list in the form of "key", N number of values which is
1646   // the same number of values as their are kernel arguments.
1647 
1648   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1649 
1650   // MDNode for the kernel argument address space qualifiers.
1651   SmallVector<llvm::Metadata *, 8> addressQuals;
1652 
1653   // MDNode for the kernel argument access qualifiers (images only).
1654   SmallVector<llvm::Metadata *, 8> accessQuals;
1655 
1656   // MDNode for the kernel argument type names.
1657   SmallVector<llvm::Metadata *, 8> argTypeNames;
1658 
1659   // MDNode for the kernel argument base type names.
1660   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1661 
1662   // MDNode for the kernel argument type qualifiers.
1663   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1664 
1665   // MDNode for the kernel argument names.
1666   SmallVector<llvm::Metadata *, 8> argNames;
1667 
1668   if (FD && CGF)
1669     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1670       const ParmVarDecl *parm = FD->getParamDecl(i);
1671       QualType ty = parm->getType();
1672       std::string typeQuals;
1673 
1674       // Get image and pipe access qualifier:
1675       if (ty->isImageType() || ty->isPipeType()) {
1676         const Decl *PDecl = parm;
1677         if (auto *TD = dyn_cast<TypedefType>(ty))
1678           PDecl = TD->getDecl();
1679         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1680         if (A && A->isWriteOnly())
1681           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1682         else if (A && A->isReadWrite())
1683           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1684         else
1685           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1686       } else
1687         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1688 
1689       // Get argument name.
1690       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1691 
1692       auto getTypeSpelling = [&](QualType Ty) {
1693         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1694 
1695         if (Ty.isCanonical()) {
1696           StringRef typeNameRef = typeName;
1697           // Turn "unsigned type" to "utype"
1698           if (typeNameRef.consume_front("unsigned "))
1699             return std::string("u") + typeNameRef.str();
1700           if (typeNameRef.consume_front("signed "))
1701             return typeNameRef.str();
1702         }
1703 
1704         return typeName;
1705       };
1706 
1707       if (ty->isPointerType()) {
1708         QualType pointeeTy = ty->getPointeeType();
1709 
1710         // Get address qualifier.
1711         addressQuals.push_back(
1712             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1713                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1714 
1715         // Get argument type name.
1716         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1717         std::string baseTypeName =
1718             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1719         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1720         argBaseTypeNames.push_back(
1721             llvm::MDString::get(VMContext, baseTypeName));
1722 
1723         // Get argument type qualifiers:
1724         if (ty.isRestrictQualified())
1725           typeQuals = "restrict";
1726         if (pointeeTy.isConstQualified() ||
1727             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1728           typeQuals += typeQuals.empty() ? "const" : " const";
1729         if (pointeeTy.isVolatileQualified())
1730           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1731       } else {
1732         uint32_t AddrSpc = 0;
1733         bool isPipe = ty->isPipeType();
1734         if (ty->isImageType() || isPipe)
1735           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1736 
1737         addressQuals.push_back(
1738             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1739 
1740         // Get argument type name.
1741         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1742         std::string typeName = getTypeSpelling(ty);
1743         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1744 
1745         // Remove access qualifiers on images
1746         // (as they are inseparable from type in clang implementation,
1747         // but OpenCL spec provides a special query to get access qualifier
1748         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1749         if (ty->isImageType()) {
1750           removeImageAccessQualifier(typeName);
1751           removeImageAccessQualifier(baseTypeName);
1752         }
1753 
1754         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1755         argBaseTypeNames.push_back(
1756             llvm::MDString::get(VMContext, baseTypeName));
1757 
1758         if (isPipe)
1759           typeQuals = "pipe";
1760       }
1761       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1762     }
1763 
1764   Fn->setMetadata("kernel_arg_addr_space",
1765                   llvm::MDNode::get(VMContext, addressQuals));
1766   Fn->setMetadata("kernel_arg_access_qual",
1767                   llvm::MDNode::get(VMContext, accessQuals));
1768   Fn->setMetadata("kernel_arg_type",
1769                   llvm::MDNode::get(VMContext, argTypeNames));
1770   Fn->setMetadata("kernel_arg_base_type",
1771                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1772   Fn->setMetadata("kernel_arg_type_qual",
1773                   llvm::MDNode::get(VMContext, argTypeQuals));
1774   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1775     Fn->setMetadata("kernel_arg_name",
1776                     llvm::MDNode::get(VMContext, argNames));
1777 }
1778 
1779 /// Determines whether the language options require us to model
1780 /// unwind exceptions.  We treat -fexceptions as mandating this
1781 /// except under the fragile ObjC ABI with only ObjC exceptions
1782 /// enabled.  This means, for example, that C with -fexceptions
1783 /// enables this.
1784 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1785   // If exceptions are completely disabled, obviously this is false.
1786   if (!LangOpts.Exceptions) return false;
1787 
1788   // If C++ exceptions are enabled, this is true.
1789   if (LangOpts.CXXExceptions) return true;
1790 
1791   // If ObjC exceptions are enabled, this depends on the ABI.
1792   if (LangOpts.ObjCExceptions) {
1793     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1794   }
1795 
1796   return true;
1797 }
1798 
1799 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1800                                                       const CXXMethodDecl *MD) {
1801   // Check that the type metadata can ever actually be used by a call.
1802   if (!CGM.getCodeGenOpts().LTOUnit ||
1803       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1804     return false;
1805 
1806   // Only functions whose address can be taken with a member function pointer
1807   // need this sort of type metadata.
1808   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1809          !isa<CXXDestructorDecl>(MD);
1810 }
1811 
1812 std::vector<const CXXRecordDecl *>
1813 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1814   llvm::SetVector<const CXXRecordDecl *> MostBases;
1815 
1816   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1817   CollectMostBases = [&](const CXXRecordDecl *RD) {
1818     if (RD->getNumBases() == 0)
1819       MostBases.insert(RD);
1820     for (const CXXBaseSpecifier &B : RD->bases())
1821       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1822   };
1823   CollectMostBases(RD);
1824   return MostBases.takeVector();
1825 }
1826 
1827 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1828                                                            llvm::Function *F) {
1829   llvm::AttrBuilder B(F->getContext());
1830 
1831   if (CodeGenOpts.UnwindTables)
1832     B.addAttribute(llvm::Attribute::UWTable);
1833 
1834   if (CodeGenOpts.StackClashProtector)
1835     B.addAttribute("probe-stack", "inline-asm");
1836 
1837   if (!hasUnwindExceptions(LangOpts))
1838     B.addAttribute(llvm::Attribute::NoUnwind);
1839 
1840   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1841     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1842       B.addAttribute(llvm::Attribute::StackProtect);
1843     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1844       B.addAttribute(llvm::Attribute::StackProtectStrong);
1845     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1846       B.addAttribute(llvm::Attribute::StackProtectReq);
1847   }
1848 
1849   if (!D) {
1850     // If we don't have a declaration to control inlining, the function isn't
1851     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1852     // disabled, mark the function as noinline.
1853     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1854         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1855       B.addAttribute(llvm::Attribute::NoInline);
1856 
1857     F->addFnAttrs(B);
1858     return;
1859   }
1860 
1861   // Track whether we need to add the optnone LLVM attribute,
1862   // starting with the default for this optimization level.
1863   bool ShouldAddOptNone =
1864       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1865   // We can't add optnone in the following cases, it won't pass the verifier.
1866   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1867   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1868 
1869   // Add optnone, but do so only if the function isn't always_inline.
1870   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1871       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1872     B.addAttribute(llvm::Attribute::OptimizeNone);
1873 
1874     // OptimizeNone implies noinline; we should not be inlining such functions.
1875     B.addAttribute(llvm::Attribute::NoInline);
1876 
1877     // We still need to handle naked functions even though optnone subsumes
1878     // much of their semantics.
1879     if (D->hasAttr<NakedAttr>())
1880       B.addAttribute(llvm::Attribute::Naked);
1881 
1882     // OptimizeNone wins over OptimizeForSize and MinSize.
1883     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1884     F->removeFnAttr(llvm::Attribute::MinSize);
1885   } else if (D->hasAttr<NakedAttr>()) {
1886     // Naked implies noinline: we should not be inlining such functions.
1887     B.addAttribute(llvm::Attribute::Naked);
1888     B.addAttribute(llvm::Attribute::NoInline);
1889   } else if (D->hasAttr<NoDuplicateAttr>()) {
1890     B.addAttribute(llvm::Attribute::NoDuplicate);
1891   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1892     // Add noinline if the function isn't always_inline.
1893     B.addAttribute(llvm::Attribute::NoInline);
1894   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1895              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1896     // (noinline wins over always_inline, and we can't specify both in IR)
1897     B.addAttribute(llvm::Attribute::AlwaysInline);
1898   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1899     // If we're not inlining, then force everything that isn't always_inline to
1900     // carry an explicit noinline attribute.
1901     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1902       B.addAttribute(llvm::Attribute::NoInline);
1903   } else {
1904     // Otherwise, propagate the inline hint attribute and potentially use its
1905     // absence to mark things as noinline.
1906     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1907       // Search function and template pattern redeclarations for inline.
1908       auto CheckForInline = [](const FunctionDecl *FD) {
1909         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1910           return Redecl->isInlineSpecified();
1911         };
1912         if (any_of(FD->redecls(), CheckRedeclForInline))
1913           return true;
1914         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1915         if (!Pattern)
1916           return false;
1917         return any_of(Pattern->redecls(), CheckRedeclForInline);
1918       };
1919       if (CheckForInline(FD)) {
1920         B.addAttribute(llvm::Attribute::InlineHint);
1921       } else if (CodeGenOpts.getInlining() ==
1922                      CodeGenOptions::OnlyHintInlining &&
1923                  !FD->isInlined() &&
1924                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1925         B.addAttribute(llvm::Attribute::NoInline);
1926       }
1927     }
1928   }
1929 
1930   // Add other optimization related attributes if we are optimizing this
1931   // function.
1932   if (!D->hasAttr<OptimizeNoneAttr>()) {
1933     if (D->hasAttr<ColdAttr>()) {
1934       if (!ShouldAddOptNone)
1935         B.addAttribute(llvm::Attribute::OptimizeForSize);
1936       B.addAttribute(llvm::Attribute::Cold);
1937     }
1938     if (D->hasAttr<HotAttr>())
1939       B.addAttribute(llvm::Attribute::Hot);
1940     if (D->hasAttr<MinSizeAttr>())
1941       B.addAttribute(llvm::Attribute::MinSize);
1942   }
1943 
1944   F->addFnAttrs(B);
1945 
1946   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1947   if (alignment)
1948     F->setAlignment(llvm::Align(alignment));
1949 
1950   if (!D->hasAttr<AlignedAttr>())
1951     if (LangOpts.FunctionAlignment)
1952       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1953 
1954   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1955   // reserve a bit for differentiating between virtual and non-virtual member
1956   // functions. If the current target's C++ ABI requires this and this is a
1957   // member function, set its alignment accordingly.
1958   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1959     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1960       F->setAlignment(llvm::Align(2));
1961   }
1962 
1963   // In the cross-dso CFI mode with canonical jump tables, we want !type
1964   // attributes on definitions only.
1965   if (CodeGenOpts.SanitizeCfiCrossDso &&
1966       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1967     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1968       // Skip available_externally functions. They won't be codegen'ed in the
1969       // current module anyway.
1970       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1971         CreateFunctionTypeMetadataForIcall(FD, F);
1972     }
1973   }
1974 
1975   // Emit type metadata on member functions for member function pointer checks.
1976   // These are only ever necessary on definitions; we're guaranteed that the
1977   // definition will be present in the LTO unit as a result of LTO visibility.
1978   auto *MD = dyn_cast<CXXMethodDecl>(D);
1979   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1980     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1981       llvm::Metadata *Id =
1982           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1983               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1984       F->addTypeMetadata(0, Id);
1985     }
1986   }
1987 }
1988 
1989 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1990                                                   llvm::Function *F) {
1991   if (D->hasAttr<StrictFPAttr>()) {
1992     llvm::AttrBuilder FuncAttrs(F->getContext());
1993     FuncAttrs.addAttribute("strictfp");
1994     F->addFnAttrs(FuncAttrs);
1995   }
1996 }
1997 
1998 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1999   const Decl *D = GD.getDecl();
2000   if (isa_and_nonnull<NamedDecl>(D))
2001     setGVProperties(GV, GD);
2002   else
2003     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2004 
2005   if (D && D->hasAttr<UsedAttr>())
2006     addUsedOrCompilerUsedGlobal(GV);
2007 
2008   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2009     const auto *VD = cast<VarDecl>(D);
2010     if (VD->getType().isConstQualified() &&
2011         VD->getStorageDuration() == SD_Static)
2012       addUsedOrCompilerUsedGlobal(GV);
2013   }
2014 }
2015 
2016 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2017                                                 llvm::AttrBuilder &Attrs) {
2018   // Add target-cpu and target-features attributes to functions. If
2019   // we have a decl for the function and it has a target attribute then
2020   // parse that and add it to the feature set.
2021   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2022   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2023   std::vector<std::string> Features;
2024   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2025   FD = FD ? FD->getMostRecentDecl() : FD;
2026   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2027   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2028   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2029   bool AddedAttr = false;
2030   if (TD || SD || TC) {
2031     llvm::StringMap<bool> FeatureMap;
2032     getContext().getFunctionFeatureMap(FeatureMap, GD);
2033 
2034     // Produce the canonical string for this set of features.
2035     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2036       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2037 
2038     // Now add the target-cpu and target-features to the function.
2039     // While we populated the feature map above, we still need to
2040     // get and parse the target attribute so we can get the cpu for
2041     // the function.
2042     if (TD) {
2043       ParsedTargetAttr ParsedAttr = TD->parse();
2044       if (!ParsedAttr.Architecture.empty() &&
2045           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2046         TargetCPU = ParsedAttr.Architecture;
2047         TuneCPU = ""; // Clear the tune CPU.
2048       }
2049       if (!ParsedAttr.Tune.empty() &&
2050           getTarget().isValidCPUName(ParsedAttr.Tune))
2051         TuneCPU = ParsedAttr.Tune;
2052     }
2053   } else {
2054     // Otherwise just add the existing target cpu and target features to the
2055     // function.
2056     Features = getTarget().getTargetOpts().Features;
2057   }
2058 
2059   if (!TargetCPU.empty()) {
2060     Attrs.addAttribute("target-cpu", TargetCPU);
2061     AddedAttr = true;
2062   }
2063   if (!TuneCPU.empty()) {
2064     Attrs.addAttribute("tune-cpu", TuneCPU);
2065     AddedAttr = true;
2066   }
2067   if (!Features.empty()) {
2068     llvm::sort(Features);
2069     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2070     AddedAttr = true;
2071   }
2072 
2073   return AddedAttr;
2074 }
2075 
2076 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2077                                           llvm::GlobalObject *GO) {
2078   const Decl *D = GD.getDecl();
2079   SetCommonAttributes(GD, GO);
2080 
2081   if (D) {
2082     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2083       if (D->hasAttr<RetainAttr>())
2084         addUsedGlobal(GV);
2085       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2086         GV->addAttribute("bss-section", SA->getName());
2087       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2088         GV->addAttribute("data-section", SA->getName());
2089       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2090         GV->addAttribute("rodata-section", SA->getName());
2091       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2092         GV->addAttribute("relro-section", SA->getName());
2093     }
2094 
2095     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2096       if (D->hasAttr<RetainAttr>())
2097         addUsedGlobal(F);
2098       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2099         if (!D->getAttr<SectionAttr>())
2100           F->addFnAttr("implicit-section-name", SA->getName());
2101 
2102       llvm::AttrBuilder Attrs(F->getContext());
2103       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2104         // We know that GetCPUAndFeaturesAttributes will always have the
2105         // newest set, since it has the newest possible FunctionDecl, so the
2106         // new ones should replace the old.
2107         llvm::AttributeMask RemoveAttrs;
2108         RemoveAttrs.addAttribute("target-cpu");
2109         RemoveAttrs.addAttribute("target-features");
2110         RemoveAttrs.addAttribute("tune-cpu");
2111         F->removeFnAttrs(RemoveAttrs);
2112         F->addFnAttrs(Attrs);
2113       }
2114     }
2115 
2116     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2117       GO->setSection(CSA->getName());
2118     else if (const auto *SA = D->getAttr<SectionAttr>())
2119       GO->setSection(SA->getName());
2120   }
2121 
2122   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2123 }
2124 
2125 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2126                                                   llvm::Function *F,
2127                                                   const CGFunctionInfo &FI) {
2128   const Decl *D = GD.getDecl();
2129   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2130   SetLLVMFunctionAttributesForDefinition(D, F);
2131 
2132   F->setLinkage(llvm::Function::InternalLinkage);
2133 
2134   setNonAliasAttributes(GD, F);
2135 }
2136 
2137 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2138   // Set linkage and visibility in case we never see a definition.
2139   LinkageInfo LV = ND->getLinkageAndVisibility();
2140   // Don't set internal linkage on declarations.
2141   // "extern_weak" is overloaded in LLVM; we probably should have
2142   // separate linkage types for this.
2143   if (isExternallyVisible(LV.getLinkage()) &&
2144       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2145     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2146 }
2147 
2148 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2149                                                        llvm::Function *F) {
2150   // Only if we are checking indirect calls.
2151   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2152     return;
2153 
2154   // Non-static class methods are handled via vtable or member function pointer
2155   // checks elsewhere.
2156   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2157     return;
2158 
2159   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2160   F->addTypeMetadata(0, MD);
2161   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2162 
2163   // Emit a hash-based bit set entry for cross-DSO calls.
2164   if (CodeGenOpts.SanitizeCfiCrossDso)
2165     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2166       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2167 }
2168 
2169 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2170                                           bool IsIncompleteFunction,
2171                                           bool IsThunk) {
2172 
2173   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2174     // If this is an intrinsic function, set the function's attributes
2175     // to the intrinsic's attributes.
2176     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2177     return;
2178   }
2179 
2180   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2181 
2182   if (!IsIncompleteFunction)
2183     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2184                               IsThunk);
2185 
2186   // Add the Returned attribute for "this", except for iOS 5 and earlier
2187   // where substantial code, including the libstdc++ dylib, was compiled with
2188   // GCC and does not actually return "this".
2189   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2190       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2191     assert(!F->arg_empty() &&
2192            F->arg_begin()->getType()
2193              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2194            "unexpected this return");
2195     F->addParamAttr(0, llvm::Attribute::Returned);
2196   }
2197 
2198   // Only a few attributes are set on declarations; these may later be
2199   // overridden by a definition.
2200 
2201   setLinkageForGV(F, FD);
2202   setGVProperties(F, FD);
2203 
2204   // Setup target-specific attributes.
2205   if (!IsIncompleteFunction && F->isDeclaration())
2206     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2207 
2208   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2209     F->setSection(CSA->getName());
2210   else if (const auto *SA = FD->getAttr<SectionAttr>())
2211      F->setSection(SA->getName());
2212 
2213   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2214     if (EA->isError())
2215       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2216     else if (EA->isWarning())
2217       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2218   }
2219 
2220   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2221   if (FD->isInlineBuiltinDeclaration()) {
2222     const FunctionDecl *FDBody;
2223     bool HasBody = FD->hasBody(FDBody);
2224     (void)HasBody;
2225     assert(HasBody && "Inline builtin declarations should always have an "
2226                       "available body!");
2227     if (shouldEmitFunction(FDBody))
2228       F->addFnAttr(llvm::Attribute::NoBuiltin);
2229   }
2230 
2231   if (FD->isReplaceableGlobalAllocationFunction()) {
2232     // A replaceable global allocation function does not act like a builtin by
2233     // default, only if it is invoked by a new-expression or delete-expression.
2234     F->addFnAttr(llvm::Attribute::NoBuiltin);
2235   }
2236 
2237   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2238     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2239   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2240     if (MD->isVirtual())
2241       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2242 
2243   // Don't emit entries for function declarations in the cross-DSO mode. This
2244   // is handled with better precision by the receiving DSO. But if jump tables
2245   // are non-canonical then we need type metadata in order to produce the local
2246   // jump table.
2247   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2248       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2249     CreateFunctionTypeMetadataForIcall(FD, F);
2250 
2251   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2252     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2253 
2254   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2255     // Annotate the callback behavior as metadata:
2256     //  - The callback callee (as argument number).
2257     //  - The callback payloads (as argument numbers).
2258     llvm::LLVMContext &Ctx = F->getContext();
2259     llvm::MDBuilder MDB(Ctx);
2260 
2261     // The payload indices are all but the first one in the encoding. The first
2262     // identifies the callback callee.
2263     int CalleeIdx = *CB->encoding_begin();
2264     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2265     F->addMetadata(llvm::LLVMContext::MD_callback,
2266                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2267                                                CalleeIdx, PayloadIndices,
2268                                                /* VarArgsArePassed */ false)}));
2269   }
2270 }
2271 
2272 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2273   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2274          "Only globals with definition can force usage.");
2275   LLVMUsed.emplace_back(GV);
2276 }
2277 
2278 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2279   assert(!GV->isDeclaration() &&
2280          "Only globals with definition can force usage.");
2281   LLVMCompilerUsed.emplace_back(GV);
2282 }
2283 
2284 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2285   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2286          "Only globals with definition can force usage.");
2287   if (getTriple().isOSBinFormatELF())
2288     LLVMCompilerUsed.emplace_back(GV);
2289   else
2290     LLVMUsed.emplace_back(GV);
2291 }
2292 
2293 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2294                      std::vector<llvm::WeakTrackingVH> &List) {
2295   // Don't create llvm.used if there is no need.
2296   if (List.empty())
2297     return;
2298 
2299   // Convert List to what ConstantArray needs.
2300   SmallVector<llvm::Constant*, 8> UsedArray;
2301   UsedArray.resize(List.size());
2302   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2303     UsedArray[i] =
2304         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2305             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2306   }
2307 
2308   if (UsedArray.empty())
2309     return;
2310   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2311 
2312   auto *GV = new llvm::GlobalVariable(
2313       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2314       llvm::ConstantArray::get(ATy, UsedArray), Name);
2315 
2316   GV->setSection("llvm.metadata");
2317 }
2318 
2319 void CodeGenModule::emitLLVMUsed() {
2320   emitUsed(*this, "llvm.used", LLVMUsed);
2321   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2322 }
2323 
2324 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2325   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2326   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2327 }
2328 
2329 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2330   llvm::SmallString<32> Opt;
2331   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2332   if (Opt.empty())
2333     return;
2334   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2335   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2336 }
2337 
2338 void CodeGenModule::AddDependentLib(StringRef Lib) {
2339   auto &C = getLLVMContext();
2340   if (getTarget().getTriple().isOSBinFormatELF()) {
2341       ELFDependentLibraries.push_back(
2342         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2343     return;
2344   }
2345 
2346   llvm::SmallString<24> Opt;
2347   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2348   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2349   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2350 }
2351 
2352 /// Add link options implied by the given module, including modules
2353 /// it depends on, using a postorder walk.
2354 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2355                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2356                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2357   // Import this module's parent.
2358   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2359     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2360   }
2361 
2362   // Import this module's dependencies.
2363   for (Module *Import : llvm::reverse(Mod->Imports)) {
2364     if (Visited.insert(Import).second)
2365       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2366   }
2367 
2368   // Add linker options to link against the libraries/frameworks
2369   // described by this module.
2370   llvm::LLVMContext &Context = CGM.getLLVMContext();
2371   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2372 
2373   // For modules that use export_as for linking, use that module
2374   // name instead.
2375   if (Mod->UseExportAsModuleLinkName)
2376     return;
2377 
2378   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2379     // Link against a framework.  Frameworks are currently Darwin only, so we
2380     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2381     if (LL.IsFramework) {
2382       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2383                                  llvm::MDString::get(Context, LL.Library)};
2384 
2385       Metadata.push_back(llvm::MDNode::get(Context, Args));
2386       continue;
2387     }
2388 
2389     // Link against a library.
2390     if (IsELF) {
2391       llvm::Metadata *Args[2] = {
2392           llvm::MDString::get(Context, "lib"),
2393           llvm::MDString::get(Context, LL.Library),
2394       };
2395       Metadata.push_back(llvm::MDNode::get(Context, Args));
2396     } else {
2397       llvm::SmallString<24> Opt;
2398       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2399       auto *OptString = llvm::MDString::get(Context, Opt);
2400       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2401     }
2402   }
2403 }
2404 
2405 void CodeGenModule::EmitModuleLinkOptions() {
2406   // Collect the set of all of the modules we want to visit to emit link
2407   // options, which is essentially the imported modules and all of their
2408   // non-explicit child modules.
2409   llvm::SetVector<clang::Module *> LinkModules;
2410   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2411   SmallVector<clang::Module *, 16> Stack;
2412 
2413   // Seed the stack with imported modules.
2414   for (Module *M : ImportedModules) {
2415     // Do not add any link flags when an implementation TU of a module imports
2416     // a header of that same module.
2417     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2418         !getLangOpts().isCompilingModule())
2419       continue;
2420     if (Visited.insert(M).second)
2421       Stack.push_back(M);
2422   }
2423 
2424   // Find all of the modules to import, making a little effort to prune
2425   // non-leaf modules.
2426   while (!Stack.empty()) {
2427     clang::Module *Mod = Stack.pop_back_val();
2428 
2429     bool AnyChildren = false;
2430 
2431     // Visit the submodules of this module.
2432     for (const auto &SM : Mod->submodules()) {
2433       // Skip explicit children; they need to be explicitly imported to be
2434       // linked against.
2435       if (SM->IsExplicit)
2436         continue;
2437 
2438       if (Visited.insert(SM).second) {
2439         Stack.push_back(SM);
2440         AnyChildren = true;
2441       }
2442     }
2443 
2444     // We didn't find any children, so add this module to the list of
2445     // modules to link against.
2446     if (!AnyChildren) {
2447       LinkModules.insert(Mod);
2448     }
2449   }
2450 
2451   // Add link options for all of the imported modules in reverse topological
2452   // order.  We don't do anything to try to order import link flags with respect
2453   // to linker options inserted by things like #pragma comment().
2454   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2455   Visited.clear();
2456   for (Module *M : LinkModules)
2457     if (Visited.insert(M).second)
2458       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2459   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2460   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2461 
2462   // Add the linker options metadata flag.
2463   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2464   for (auto *MD : LinkerOptionsMetadata)
2465     NMD->addOperand(MD);
2466 }
2467 
2468 void CodeGenModule::EmitDeferred() {
2469   // Emit deferred declare target declarations.
2470   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2471     getOpenMPRuntime().emitDeferredTargetDecls();
2472 
2473   // Emit code for any potentially referenced deferred decls.  Since a
2474   // previously unused static decl may become used during the generation of code
2475   // for a static function, iterate until no changes are made.
2476 
2477   if (!DeferredVTables.empty()) {
2478     EmitDeferredVTables();
2479 
2480     // Emitting a vtable doesn't directly cause more vtables to
2481     // become deferred, although it can cause functions to be
2482     // emitted that then need those vtables.
2483     assert(DeferredVTables.empty());
2484   }
2485 
2486   // Emit CUDA/HIP static device variables referenced by host code only.
2487   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2488   // needed for further handling.
2489   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2490     for (const auto *V : getContext().CUDADeviceVarODRUsedByHost)
2491       DeferredDeclsToEmit.push_back(V);
2492 
2493   // Stop if we're out of both deferred vtables and deferred declarations.
2494   if (DeferredDeclsToEmit.empty())
2495     return;
2496 
2497   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2498   // work, it will not interfere with this.
2499   std::vector<GlobalDecl> CurDeclsToEmit;
2500   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2501 
2502   for (GlobalDecl &D : CurDeclsToEmit) {
2503     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2504     // to get GlobalValue with exactly the type we need, not something that
2505     // might had been created for another decl with the same mangled name but
2506     // different type.
2507     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2508         GetAddrOfGlobal(D, ForDefinition));
2509 
2510     // In case of different address spaces, we may still get a cast, even with
2511     // IsForDefinition equal to true. Query mangled names table to get
2512     // GlobalValue.
2513     if (!GV)
2514       GV = GetGlobalValue(getMangledName(D));
2515 
2516     // Make sure GetGlobalValue returned non-null.
2517     assert(GV);
2518 
2519     // Check to see if we've already emitted this.  This is necessary
2520     // for a couple of reasons: first, decls can end up in the
2521     // deferred-decls queue multiple times, and second, decls can end
2522     // up with definitions in unusual ways (e.g. by an extern inline
2523     // function acquiring a strong function redefinition).  Just
2524     // ignore these cases.
2525     if (!GV->isDeclaration())
2526       continue;
2527 
2528     // If this is OpenMP, check if it is legal to emit this global normally.
2529     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2530       continue;
2531 
2532     // Otherwise, emit the definition and move on to the next one.
2533     EmitGlobalDefinition(D, GV);
2534 
2535     // If we found out that we need to emit more decls, do that recursively.
2536     // This has the advantage that the decls are emitted in a DFS and related
2537     // ones are close together, which is convenient for testing.
2538     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2539       EmitDeferred();
2540       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2541     }
2542   }
2543 }
2544 
2545 void CodeGenModule::EmitVTablesOpportunistically() {
2546   // Try to emit external vtables as available_externally if they have emitted
2547   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2548   // is not allowed to create new references to things that need to be emitted
2549   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2550 
2551   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2552          && "Only emit opportunistic vtables with optimizations");
2553 
2554   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2555     assert(getVTables().isVTableExternal(RD) &&
2556            "This queue should only contain external vtables");
2557     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2558       VTables.GenerateClassData(RD);
2559   }
2560   OpportunisticVTables.clear();
2561 }
2562 
2563 void CodeGenModule::EmitGlobalAnnotations() {
2564   if (Annotations.empty())
2565     return;
2566 
2567   // Create a new global variable for the ConstantStruct in the Module.
2568   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2569     Annotations[0]->getType(), Annotations.size()), Annotations);
2570   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2571                                       llvm::GlobalValue::AppendingLinkage,
2572                                       Array, "llvm.global.annotations");
2573   gv->setSection(AnnotationSection);
2574 }
2575 
2576 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2577   llvm::Constant *&AStr = AnnotationStrings[Str];
2578   if (AStr)
2579     return AStr;
2580 
2581   // Not found yet, create a new global.
2582   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2583   auto *gv =
2584       new llvm::GlobalVariable(getModule(), s->getType(), true,
2585                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2586   gv->setSection(AnnotationSection);
2587   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2588   AStr = gv;
2589   return gv;
2590 }
2591 
2592 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2593   SourceManager &SM = getContext().getSourceManager();
2594   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2595   if (PLoc.isValid())
2596     return EmitAnnotationString(PLoc.getFilename());
2597   return EmitAnnotationString(SM.getBufferName(Loc));
2598 }
2599 
2600 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2601   SourceManager &SM = getContext().getSourceManager();
2602   PresumedLoc PLoc = SM.getPresumedLoc(L);
2603   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2604     SM.getExpansionLineNumber(L);
2605   return llvm::ConstantInt::get(Int32Ty, LineNo);
2606 }
2607 
2608 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2609   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2610   if (Exprs.empty())
2611     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2612 
2613   llvm::FoldingSetNodeID ID;
2614   for (Expr *E : Exprs) {
2615     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2616   }
2617   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2618   if (Lookup)
2619     return Lookup;
2620 
2621   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2622   LLVMArgs.reserve(Exprs.size());
2623   ConstantEmitter ConstEmiter(*this);
2624   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2625     const auto *CE = cast<clang::ConstantExpr>(E);
2626     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2627                                     CE->getType());
2628   });
2629   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2630   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2631                                       llvm::GlobalValue::PrivateLinkage, Struct,
2632                                       ".args");
2633   GV->setSection(AnnotationSection);
2634   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2635   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2636 
2637   Lookup = Bitcasted;
2638   return Bitcasted;
2639 }
2640 
2641 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2642                                                 const AnnotateAttr *AA,
2643                                                 SourceLocation L) {
2644   // Get the globals for file name, annotation, and the line number.
2645   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2646                  *UnitGV = EmitAnnotationUnit(L),
2647                  *LineNoCst = EmitAnnotationLineNo(L),
2648                  *Args = EmitAnnotationArgs(AA);
2649 
2650   llvm::Constant *GVInGlobalsAS = GV;
2651   if (GV->getAddressSpace() !=
2652       getDataLayout().getDefaultGlobalsAddressSpace()) {
2653     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2654         GV, GV->getValueType()->getPointerTo(
2655                 getDataLayout().getDefaultGlobalsAddressSpace()));
2656   }
2657 
2658   // Create the ConstantStruct for the global annotation.
2659   llvm::Constant *Fields[] = {
2660       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2661       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2662       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2663       LineNoCst,
2664       Args,
2665   };
2666   return llvm::ConstantStruct::getAnon(Fields);
2667 }
2668 
2669 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2670                                          llvm::GlobalValue *GV) {
2671   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2672   // Get the struct elements for these annotations.
2673   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2674     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2675 }
2676 
2677 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2678                                        SourceLocation Loc) const {
2679   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2680   // NoSanitize by function name.
2681   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2682     return true;
2683   // NoSanitize by location.
2684   if (Loc.isValid())
2685     return NoSanitizeL.containsLocation(Kind, Loc);
2686   // If location is unknown, this may be a compiler-generated function. Assume
2687   // it's located in the main file.
2688   auto &SM = Context.getSourceManager();
2689   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2690     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2691   }
2692   return false;
2693 }
2694 
2695 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV,
2696                                        SourceLocation Loc, QualType Ty,
2697                                        StringRef Category) const {
2698   // For now globals can be ignored only in ASan and KASan.
2699   const SanitizerMask EnabledAsanMask =
2700       LangOpts.Sanitize.Mask &
2701       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2702        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2703        SanitizerKind::MemTag);
2704   if (!EnabledAsanMask)
2705     return false;
2706   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2707   if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category))
2708     return true;
2709   if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category))
2710     return true;
2711   // Check global type.
2712   if (!Ty.isNull()) {
2713     // Drill down the array types: if global variable of a fixed type is
2714     // not sanitized, we also don't instrument arrays of them.
2715     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2716       Ty = AT->getElementType();
2717     Ty = Ty.getCanonicalType().getUnqualifiedType();
2718     // Only record types (classes, structs etc.) are ignored.
2719     if (Ty->isRecordType()) {
2720       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2721       if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category))
2722         return true;
2723     }
2724   }
2725   return false;
2726 }
2727 
2728 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2729                                    StringRef Category) const {
2730   const auto &XRayFilter = getContext().getXRayFilter();
2731   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2732   auto Attr = ImbueAttr::NONE;
2733   if (Loc.isValid())
2734     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2735   if (Attr == ImbueAttr::NONE)
2736     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2737   switch (Attr) {
2738   case ImbueAttr::NONE:
2739     return false;
2740   case ImbueAttr::ALWAYS:
2741     Fn->addFnAttr("function-instrument", "xray-always");
2742     break;
2743   case ImbueAttr::ALWAYS_ARG1:
2744     Fn->addFnAttr("function-instrument", "xray-always");
2745     Fn->addFnAttr("xray-log-args", "1");
2746     break;
2747   case ImbueAttr::NEVER:
2748     Fn->addFnAttr("function-instrument", "xray-never");
2749     break;
2750   }
2751   return true;
2752 }
2753 
2754 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2755                                            SourceLocation Loc) const {
2756   const auto &ProfileList = getContext().getProfileList();
2757   // If the profile list is empty, then instrument everything.
2758   if (ProfileList.isEmpty())
2759     return false;
2760   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2761   // First, check the function name.
2762   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2763   if (V.hasValue())
2764     return *V;
2765   // Next, check the source location.
2766   if (Loc.isValid()) {
2767     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2768     if (V.hasValue())
2769       return *V;
2770   }
2771   // If location is unknown, this may be a compiler-generated function. Assume
2772   // it's located in the main file.
2773   auto &SM = Context.getSourceManager();
2774   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2775     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2776     if (V.hasValue())
2777       return *V;
2778   }
2779   return ProfileList.getDefault();
2780 }
2781 
2782 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2783   // Never defer when EmitAllDecls is specified.
2784   if (LangOpts.EmitAllDecls)
2785     return true;
2786 
2787   if (CodeGenOpts.KeepStaticConsts) {
2788     const auto *VD = dyn_cast<VarDecl>(Global);
2789     if (VD && VD->getType().isConstQualified() &&
2790         VD->getStorageDuration() == SD_Static)
2791       return true;
2792   }
2793 
2794   return getContext().DeclMustBeEmitted(Global);
2795 }
2796 
2797 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2798   // In OpenMP 5.0 variables and function may be marked as
2799   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2800   // that they must be emitted on the host/device. To be sure we need to have
2801   // seen a declare target with an explicit mentioning of the function, we know
2802   // we have if the level of the declare target attribute is -1. Note that we
2803   // check somewhere else if we should emit this at all.
2804   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2805     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2806         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2807     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2808       return false;
2809   }
2810 
2811   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2812     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2813       // Implicit template instantiations may change linkage if they are later
2814       // explicitly instantiated, so they should not be emitted eagerly.
2815       return false;
2816   }
2817   if (const auto *VD = dyn_cast<VarDecl>(Global))
2818     if (Context.getInlineVariableDefinitionKind(VD) ==
2819         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2820       // A definition of an inline constexpr static data member may change
2821       // linkage later if it's redeclared outside the class.
2822       return false;
2823   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2824   // codegen for global variables, because they may be marked as threadprivate.
2825   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2826       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2827       !isTypeConstant(Global->getType(), false) &&
2828       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2829     return false;
2830 
2831   return true;
2832 }
2833 
2834 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2835   StringRef Name = getMangledName(GD);
2836 
2837   // The UUID descriptor should be pointer aligned.
2838   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2839 
2840   // Look for an existing global.
2841   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2842     return ConstantAddress(GV, GV->getValueType(), Alignment);
2843 
2844   ConstantEmitter Emitter(*this);
2845   llvm::Constant *Init;
2846 
2847   APValue &V = GD->getAsAPValue();
2848   if (!V.isAbsent()) {
2849     // If possible, emit the APValue version of the initializer. In particular,
2850     // this gets the type of the constant right.
2851     Init = Emitter.emitForInitializer(
2852         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2853   } else {
2854     // As a fallback, directly construct the constant.
2855     // FIXME: This may get padding wrong under esoteric struct layout rules.
2856     // MSVC appears to create a complete type 'struct __s_GUID' that it
2857     // presumably uses to represent these constants.
2858     MSGuidDecl::Parts Parts = GD->getParts();
2859     llvm::Constant *Fields[4] = {
2860         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2861         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2862         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2863         llvm::ConstantDataArray::getRaw(
2864             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2865             Int8Ty)};
2866     Init = llvm::ConstantStruct::getAnon(Fields);
2867   }
2868 
2869   auto *GV = new llvm::GlobalVariable(
2870       getModule(), Init->getType(),
2871       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2872   if (supportsCOMDAT())
2873     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2874   setDSOLocal(GV);
2875 
2876   if (!V.isAbsent()) {
2877     Emitter.finalize(GV);
2878     return ConstantAddress(GV, GV->getValueType(), Alignment);
2879   }
2880 
2881   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2882   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
2883       GV, Ty->getPointerTo(GV->getAddressSpace()));
2884   return ConstantAddress(Addr, Ty, Alignment);
2885 }
2886 
2887 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2888     const TemplateParamObjectDecl *TPO) {
2889   StringRef Name = getMangledName(TPO);
2890   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2891 
2892   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2893     return ConstantAddress(GV, GV->getValueType(), Alignment);
2894 
2895   ConstantEmitter Emitter(*this);
2896   llvm::Constant *Init = Emitter.emitForInitializer(
2897         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2898 
2899   if (!Init) {
2900     ErrorUnsupported(TPO, "template parameter object");
2901     return ConstantAddress::invalid();
2902   }
2903 
2904   auto *GV = new llvm::GlobalVariable(
2905       getModule(), Init->getType(),
2906       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2907   if (supportsCOMDAT())
2908     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2909   Emitter.finalize(GV);
2910 
2911   return ConstantAddress(GV, GV->getValueType(), Alignment);
2912 }
2913 
2914 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2915   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2916   assert(AA && "No alias?");
2917 
2918   CharUnits Alignment = getContext().getDeclAlign(VD);
2919   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2920 
2921   // See if there is already something with the target's name in the module.
2922   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2923   if (Entry) {
2924     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2925     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2926     return ConstantAddress(Ptr, DeclTy, Alignment);
2927   }
2928 
2929   llvm::Constant *Aliasee;
2930   if (isa<llvm::FunctionType>(DeclTy))
2931     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2932                                       GlobalDecl(cast<FunctionDecl>(VD)),
2933                                       /*ForVTable=*/false);
2934   else
2935     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
2936                                     nullptr);
2937 
2938   auto *F = cast<llvm::GlobalValue>(Aliasee);
2939   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2940   WeakRefReferences.insert(F);
2941 
2942   return ConstantAddress(Aliasee, DeclTy, Alignment);
2943 }
2944 
2945 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2946   const auto *Global = cast<ValueDecl>(GD.getDecl());
2947 
2948   // Weak references don't produce any output by themselves.
2949   if (Global->hasAttr<WeakRefAttr>())
2950     return;
2951 
2952   // If this is an alias definition (which otherwise looks like a declaration)
2953   // emit it now.
2954   if (Global->hasAttr<AliasAttr>())
2955     return EmitAliasDefinition(GD);
2956 
2957   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2958   if (Global->hasAttr<IFuncAttr>())
2959     return emitIFuncDefinition(GD);
2960 
2961   // If this is a cpu_dispatch multiversion function, emit the resolver.
2962   if (Global->hasAttr<CPUDispatchAttr>())
2963     return emitCPUDispatchDefinition(GD);
2964 
2965   // If this is CUDA, be selective about which declarations we emit.
2966   if (LangOpts.CUDA) {
2967     if (LangOpts.CUDAIsDevice) {
2968       if (!Global->hasAttr<CUDADeviceAttr>() &&
2969           !Global->hasAttr<CUDAGlobalAttr>() &&
2970           !Global->hasAttr<CUDAConstantAttr>() &&
2971           !Global->hasAttr<CUDASharedAttr>() &&
2972           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2973           !Global->getType()->isCUDADeviceBuiltinTextureType())
2974         return;
2975     } else {
2976       // We need to emit host-side 'shadows' for all global
2977       // device-side variables because the CUDA runtime needs their
2978       // size and host-side address in order to provide access to
2979       // their device-side incarnations.
2980 
2981       // So device-only functions are the only things we skip.
2982       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2983           Global->hasAttr<CUDADeviceAttr>())
2984         return;
2985 
2986       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2987              "Expected Variable or Function");
2988     }
2989   }
2990 
2991   if (LangOpts.OpenMP) {
2992     // If this is OpenMP, check if it is legal to emit this global normally.
2993     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2994       return;
2995     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2996       if (MustBeEmitted(Global))
2997         EmitOMPDeclareReduction(DRD);
2998       return;
2999     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3000       if (MustBeEmitted(Global))
3001         EmitOMPDeclareMapper(DMD);
3002       return;
3003     }
3004   }
3005 
3006   // Ignore declarations, they will be emitted on their first use.
3007   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3008     // Forward declarations are emitted lazily on first use.
3009     if (!FD->doesThisDeclarationHaveABody()) {
3010       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3011         return;
3012 
3013       StringRef MangledName = getMangledName(GD);
3014 
3015       // Compute the function info and LLVM type.
3016       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3017       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3018 
3019       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3020                               /*DontDefer=*/false);
3021       return;
3022     }
3023   } else {
3024     const auto *VD = cast<VarDecl>(Global);
3025     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3026     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3027         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3028       if (LangOpts.OpenMP) {
3029         // Emit declaration of the must-be-emitted declare target variable.
3030         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3031                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3032           bool UnifiedMemoryEnabled =
3033               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3034           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3035               !UnifiedMemoryEnabled) {
3036             (void)GetAddrOfGlobalVar(VD);
3037           } else {
3038             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3039                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3040                      UnifiedMemoryEnabled)) &&
3041                    "Link clause or to clause with unified memory expected.");
3042             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3043           }
3044 
3045           return;
3046         }
3047       }
3048       // If this declaration may have caused an inline variable definition to
3049       // change linkage, make sure that it's emitted.
3050       if (Context.getInlineVariableDefinitionKind(VD) ==
3051           ASTContext::InlineVariableDefinitionKind::Strong)
3052         GetAddrOfGlobalVar(VD);
3053       return;
3054     }
3055   }
3056 
3057   // Defer code generation to first use when possible, e.g. if this is an inline
3058   // function. If the global must always be emitted, do it eagerly if possible
3059   // to benefit from cache locality.
3060   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3061     // Emit the definition if it can't be deferred.
3062     EmitGlobalDefinition(GD);
3063     return;
3064   }
3065 
3066   // If we're deferring emission of a C++ variable with an
3067   // initializer, remember the order in which it appeared in the file.
3068   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3069       cast<VarDecl>(Global)->hasInit()) {
3070     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3071     CXXGlobalInits.push_back(nullptr);
3072   }
3073 
3074   StringRef MangledName = getMangledName(GD);
3075   if (GetGlobalValue(MangledName) != nullptr) {
3076     // The value has already been used and should therefore be emitted.
3077     addDeferredDeclToEmit(GD);
3078   } else if (MustBeEmitted(Global)) {
3079     // The value must be emitted, but cannot be emitted eagerly.
3080     assert(!MayBeEmittedEagerly(Global));
3081     addDeferredDeclToEmit(GD);
3082   } else {
3083     // Otherwise, remember that we saw a deferred decl with this name.  The
3084     // first use of the mangled name will cause it to move into
3085     // DeferredDeclsToEmit.
3086     DeferredDecls[MangledName] = GD;
3087   }
3088 }
3089 
3090 // Check if T is a class type with a destructor that's not dllimport.
3091 static bool HasNonDllImportDtor(QualType T) {
3092   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3093     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3094       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3095         return true;
3096 
3097   return false;
3098 }
3099 
3100 namespace {
3101   struct FunctionIsDirectlyRecursive
3102       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3103     const StringRef Name;
3104     const Builtin::Context &BI;
3105     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3106         : Name(N), BI(C) {}
3107 
3108     bool VisitCallExpr(const CallExpr *E) {
3109       const FunctionDecl *FD = E->getDirectCallee();
3110       if (!FD)
3111         return false;
3112       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3113       if (Attr && Name == Attr->getLabel())
3114         return true;
3115       unsigned BuiltinID = FD->getBuiltinID();
3116       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3117         return false;
3118       StringRef BuiltinName = BI.getName(BuiltinID);
3119       if (BuiltinName.startswith("__builtin_") &&
3120           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3121         return true;
3122       }
3123       return false;
3124     }
3125 
3126     bool VisitStmt(const Stmt *S) {
3127       for (const Stmt *Child : S->children())
3128         if (Child && this->Visit(Child))
3129           return true;
3130       return false;
3131     }
3132   };
3133 
3134   // Make sure we're not referencing non-imported vars or functions.
3135   struct DLLImportFunctionVisitor
3136       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3137     bool SafeToInline = true;
3138 
3139     bool shouldVisitImplicitCode() const { return true; }
3140 
3141     bool VisitVarDecl(VarDecl *VD) {
3142       if (VD->getTLSKind()) {
3143         // A thread-local variable cannot be imported.
3144         SafeToInline = false;
3145         return SafeToInline;
3146       }
3147 
3148       // A variable definition might imply a destructor call.
3149       if (VD->isThisDeclarationADefinition())
3150         SafeToInline = !HasNonDllImportDtor(VD->getType());
3151 
3152       return SafeToInline;
3153     }
3154 
3155     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3156       if (const auto *D = E->getTemporary()->getDestructor())
3157         SafeToInline = D->hasAttr<DLLImportAttr>();
3158       return SafeToInline;
3159     }
3160 
3161     bool VisitDeclRefExpr(DeclRefExpr *E) {
3162       ValueDecl *VD = E->getDecl();
3163       if (isa<FunctionDecl>(VD))
3164         SafeToInline = VD->hasAttr<DLLImportAttr>();
3165       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3166         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3167       return SafeToInline;
3168     }
3169 
3170     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3171       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3172       return SafeToInline;
3173     }
3174 
3175     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3176       CXXMethodDecl *M = E->getMethodDecl();
3177       if (!M) {
3178         // Call through a pointer to member function. This is safe to inline.
3179         SafeToInline = true;
3180       } else {
3181         SafeToInline = M->hasAttr<DLLImportAttr>();
3182       }
3183       return SafeToInline;
3184     }
3185 
3186     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3187       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3188       return SafeToInline;
3189     }
3190 
3191     bool VisitCXXNewExpr(CXXNewExpr *E) {
3192       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3193       return SafeToInline;
3194     }
3195   };
3196 }
3197 
3198 // isTriviallyRecursive - Check if this function calls another
3199 // decl that, because of the asm attribute or the other decl being a builtin,
3200 // ends up pointing to itself.
3201 bool
3202 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3203   StringRef Name;
3204   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3205     // asm labels are a special kind of mangling we have to support.
3206     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3207     if (!Attr)
3208       return false;
3209     Name = Attr->getLabel();
3210   } else {
3211     Name = FD->getName();
3212   }
3213 
3214   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3215   const Stmt *Body = FD->getBody();
3216   return Body ? Walker.Visit(Body) : false;
3217 }
3218 
3219 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3220   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3221     return true;
3222   const auto *F = cast<FunctionDecl>(GD.getDecl());
3223   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3224     return false;
3225 
3226   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3227     // Check whether it would be safe to inline this dllimport function.
3228     DLLImportFunctionVisitor Visitor;
3229     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3230     if (!Visitor.SafeToInline)
3231       return false;
3232 
3233     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3234       // Implicit destructor invocations aren't captured in the AST, so the
3235       // check above can't see them. Check for them manually here.
3236       for (const Decl *Member : Dtor->getParent()->decls())
3237         if (isa<FieldDecl>(Member))
3238           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3239             return false;
3240       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3241         if (HasNonDllImportDtor(B.getType()))
3242           return false;
3243     }
3244   }
3245 
3246   // Inline builtins declaration must be emitted. They often are fortified
3247   // functions.
3248   if (F->isInlineBuiltinDeclaration())
3249     return true;
3250 
3251   // PR9614. Avoid cases where the source code is lying to us. An available
3252   // externally function should have an equivalent function somewhere else,
3253   // but a function that calls itself through asm label/`__builtin_` trickery is
3254   // clearly not equivalent to the real implementation.
3255   // This happens in glibc's btowc and in some configure checks.
3256   return !isTriviallyRecursive(F);
3257 }
3258 
3259 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3260   return CodeGenOpts.OptimizationLevel > 0;
3261 }
3262 
3263 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3264                                                        llvm::GlobalValue *GV) {
3265   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3266 
3267   if (FD->isCPUSpecificMultiVersion()) {
3268     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3269     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3270       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3271     // Requires multiple emits.
3272   } else if (FD->isTargetClonesMultiVersion()) {
3273     auto *Clone = FD->getAttr<TargetClonesAttr>();
3274     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3275       if (Clone->isFirstOfVersion(I))
3276         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3277     EmitTargetClonesResolver(GD);
3278   } else
3279     EmitGlobalFunctionDefinition(GD, GV);
3280 }
3281 
3282 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3283   const auto *D = cast<ValueDecl>(GD.getDecl());
3284 
3285   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3286                                  Context.getSourceManager(),
3287                                  "Generating code for declaration");
3288 
3289   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3290     // At -O0, don't generate IR for functions with available_externally
3291     // linkage.
3292     if (!shouldEmitFunction(GD))
3293       return;
3294 
3295     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3296       std::string Name;
3297       llvm::raw_string_ostream OS(Name);
3298       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3299                                /*Qualified=*/true);
3300       return Name;
3301     });
3302 
3303     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3304       // Make sure to emit the definition(s) before we emit the thunks.
3305       // This is necessary for the generation of certain thunks.
3306       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3307         ABI->emitCXXStructor(GD);
3308       else if (FD->isMultiVersion())
3309         EmitMultiVersionFunctionDefinition(GD, GV);
3310       else
3311         EmitGlobalFunctionDefinition(GD, GV);
3312 
3313       if (Method->isVirtual())
3314         getVTables().EmitThunks(GD);
3315 
3316       return;
3317     }
3318 
3319     if (FD->isMultiVersion())
3320       return EmitMultiVersionFunctionDefinition(GD, GV);
3321     return EmitGlobalFunctionDefinition(GD, GV);
3322   }
3323 
3324   if (const auto *VD = dyn_cast<VarDecl>(D))
3325     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3326 
3327   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3328 }
3329 
3330 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3331                                                       llvm::Function *NewFn);
3332 
3333 static unsigned
3334 TargetMVPriority(const TargetInfo &TI,
3335                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3336   unsigned Priority = 0;
3337   for (StringRef Feat : RO.Conditions.Features)
3338     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3339 
3340   if (!RO.Conditions.Architecture.empty())
3341     Priority = std::max(
3342         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3343   return Priority;
3344 }
3345 
3346 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3347 // TU can forward declare the function without causing problems.  Particularly
3348 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3349 // work with internal linkage functions, so that the same function name can be
3350 // used with internal linkage in multiple TUs.
3351 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3352                                                        GlobalDecl GD) {
3353   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3354   if (FD->getFormalLinkage() == InternalLinkage)
3355     return llvm::GlobalValue::InternalLinkage;
3356   return llvm::GlobalValue::WeakODRLinkage;
3357 }
3358 
3359 void CodeGenModule::EmitTargetClonesResolver(GlobalDecl GD) {
3360   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3361   assert(FD && "Not a FunctionDecl?");
3362   const auto *TC = FD->getAttr<TargetClonesAttr>();
3363   assert(TC && "Not a target_clones Function?");
3364 
3365   QualType CanonTy = Context.getCanonicalType(FD->getType());
3366   llvm::Type *DeclTy = getTypes().ConvertType(CanonTy);
3367 
3368   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3369     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3370     DeclTy = getTypes().GetFunctionType(FInfo);
3371   }
3372 
3373   llvm::Function *ResolverFunc;
3374   if (getTarget().supportsIFunc()) {
3375     auto *IFunc = cast<llvm::GlobalIFunc>(
3376         GetOrCreateMultiVersionResolver(GD, DeclTy, FD));
3377     ResolverFunc = cast<llvm::Function>(IFunc->getResolver());
3378   } else
3379     ResolverFunc =
3380         cast<llvm::Function>(GetOrCreateMultiVersionResolver(GD, DeclTy, FD));
3381 
3382   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3383   for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3384        ++VersionIndex) {
3385     if (!TC->isFirstOfVersion(VersionIndex))
3386       continue;
3387     StringRef Version = TC->getFeatureStr(VersionIndex);
3388     StringRef MangledName =
3389         getMangledName(GD.getWithMultiVersionIndex(VersionIndex));
3390     llvm::Constant *Func = GetGlobalValue(MangledName);
3391     assert(Func &&
3392            "Should have already been created before calling resolver emit");
3393 
3394     StringRef Architecture;
3395     llvm::SmallVector<StringRef, 1> Feature;
3396 
3397     if (Version.startswith("arch="))
3398       Architecture = Version.drop_front(sizeof("arch=") - 1);
3399     else if (Version != "default")
3400       Feature.push_back(Version);
3401 
3402     Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3403   }
3404 
3405   const TargetInfo &TI = getTarget();
3406   std::stable_sort(
3407       Options.begin(), Options.end(),
3408       [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3409             const CodeGenFunction::MultiVersionResolverOption &RHS) {
3410         return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3411       });
3412   CodeGenFunction CGF(*this);
3413   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3414 }
3415 
3416 void CodeGenModule::emitMultiVersionFunctions() {
3417   std::vector<GlobalDecl> MVFuncsToEmit;
3418   MultiVersionFuncs.swap(MVFuncsToEmit);
3419   for (GlobalDecl GD : MVFuncsToEmit) {
3420     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3421     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3422     getContext().forEachMultiversionedFunctionVersion(
3423         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3424           GlobalDecl CurGD{
3425               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3426           StringRef MangledName = getMangledName(CurGD);
3427           llvm::Constant *Func = GetGlobalValue(MangledName);
3428           if (!Func) {
3429             if (CurFD->isDefined()) {
3430               EmitGlobalFunctionDefinition(CurGD, nullptr);
3431               Func = GetGlobalValue(MangledName);
3432             } else {
3433               const CGFunctionInfo &FI =
3434                   getTypes().arrangeGlobalDeclaration(GD);
3435               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3436               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3437                                        /*DontDefer=*/false, ForDefinition);
3438             }
3439             assert(Func && "This should have just been created");
3440           }
3441 
3442           const auto *TA = CurFD->getAttr<TargetAttr>();
3443           llvm::SmallVector<StringRef, 8> Feats;
3444           TA->getAddedFeatures(Feats);
3445 
3446           Options.emplace_back(cast<llvm::Function>(Func),
3447                                TA->getArchitecture(), Feats);
3448         });
3449 
3450     llvm::Function *ResolverFunc;
3451     const TargetInfo &TI = getTarget();
3452 
3453     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3454       ResolverFunc = cast<llvm::Function>(
3455           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3456       ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3457     } else {
3458       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3459     }
3460 
3461     if (supportsCOMDAT())
3462       ResolverFunc->setComdat(
3463           getModule().getOrInsertComdat(ResolverFunc->getName()));
3464 
3465     llvm::stable_sort(
3466         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3467                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3468           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3469         });
3470     CodeGenFunction CGF(*this);
3471     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3472   }
3473 
3474   // Ensure that any additions to the deferred decls list caused by emitting a
3475   // variant are emitted.  This can happen when the variant itself is inline and
3476   // calls a function without linkage.
3477   if (!MVFuncsToEmit.empty())
3478     EmitDeferred();
3479 
3480   // Ensure that any additions to the multiversion funcs list from either the
3481   // deferred decls or the multiversion functions themselves are emitted.
3482   if (!MultiVersionFuncs.empty())
3483     emitMultiVersionFunctions();
3484 }
3485 
3486 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3487   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3488   assert(FD && "Not a FunctionDecl?");
3489   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3490   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3491   assert(DD && "Not a cpu_dispatch Function?");
3492   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3493 
3494   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3495     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3496     DeclTy = getTypes().GetFunctionType(FInfo);
3497   }
3498 
3499   StringRef ResolverName = getMangledName(GD);
3500   UpdateMultiVersionNames(GD, FD, ResolverName);
3501 
3502   llvm::Type *ResolverType;
3503   GlobalDecl ResolverGD;
3504   if (getTarget().supportsIFunc()) {
3505     ResolverType = llvm::FunctionType::get(
3506         llvm::PointerType::get(DeclTy,
3507                                Context.getTargetAddressSpace(FD->getType())),
3508         false);
3509   }
3510   else {
3511     ResolverType = DeclTy;
3512     ResolverGD = GD;
3513   }
3514 
3515   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3516       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3517   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3518   if (supportsCOMDAT())
3519     ResolverFunc->setComdat(
3520         getModule().getOrInsertComdat(ResolverFunc->getName()));
3521 
3522   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3523   const TargetInfo &Target = getTarget();
3524   unsigned Index = 0;
3525   for (const IdentifierInfo *II : DD->cpus()) {
3526     // Get the name of the target function so we can look it up/create it.
3527     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3528                               getCPUSpecificMangling(*this, II->getName());
3529 
3530     llvm::Constant *Func = GetGlobalValue(MangledName);
3531 
3532     if (!Func) {
3533       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3534       if (ExistingDecl.getDecl() &&
3535           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3536         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3537         Func = GetGlobalValue(MangledName);
3538       } else {
3539         if (!ExistingDecl.getDecl())
3540           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3541 
3542       Func = GetOrCreateLLVMFunction(
3543           MangledName, DeclTy, ExistingDecl,
3544           /*ForVTable=*/false, /*DontDefer=*/true,
3545           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3546       }
3547     }
3548 
3549     llvm::SmallVector<StringRef, 32> Features;
3550     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3551     llvm::transform(Features, Features.begin(),
3552                     [](StringRef Str) { return Str.substr(1); });
3553     llvm::erase_if(Features, [&Target](StringRef Feat) {
3554       return !Target.validateCpuSupports(Feat);
3555     });
3556     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3557     ++Index;
3558   }
3559 
3560   llvm::stable_sort(
3561       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3562                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3563         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3564                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3565       });
3566 
3567   // If the list contains multiple 'default' versions, such as when it contains
3568   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3569   // always run on at least a 'pentium'). We do this by deleting the 'least
3570   // advanced' (read, lowest mangling letter).
3571   while (Options.size() > 1 &&
3572          llvm::X86::getCpuSupportsMask(
3573              (Options.end() - 2)->Conditions.Features) == 0) {
3574     StringRef LHSName = (Options.end() - 2)->Function->getName();
3575     StringRef RHSName = (Options.end() - 1)->Function->getName();
3576     if (LHSName.compare(RHSName) < 0)
3577       Options.erase(Options.end() - 2);
3578     else
3579       Options.erase(Options.end() - 1);
3580   }
3581 
3582   CodeGenFunction CGF(*this);
3583   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3584 
3585   if (getTarget().supportsIFunc()) {
3586     std::string AliasName = getMangledNameImpl(
3587         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3588     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3589     if (!AliasFunc) {
3590       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3591           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3592           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3593       auto *GA = llvm::GlobalAlias::create(DeclTy, 0,
3594                                            getMultiversionLinkage(*this, GD),
3595                                            AliasName, IFunc, &getModule());
3596       SetCommonAttributes(GD, GA);
3597     }
3598   }
3599 }
3600 
3601 /// If a dispatcher for the specified mangled name is not in the module, create
3602 /// and return an llvm Function with the specified type.
3603 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3604     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3605   std::string MangledName =
3606       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3607 
3608   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3609   // a separate resolver).
3610   std::string ResolverName = MangledName;
3611   if (getTarget().supportsIFunc())
3612     ResolverName += ".ifunc";
3613   else if (FD->isTargetMultiVersion())
3614     ResolverName += ".resolver";
3615 
3616   // If this already exists, just return that one.
3617   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3618     return ResolverGV;
3619 
3620   // Since this is the first time we've created this IFunc, make sure
3621   // that we put this multiversioned function into the list to be
3622   // replaced later if necessary (target multiversioning only).
3623   if (FD->isTargetMultiVersion())
3624     MultiVersionFuncs.push_back(GD);
3625   else if (FD->isTargetClonesMultiVersion()) {
3626     // In target_clones multiversioning, make sure we emit this if used.
3627     auto DDI =
3628         DeferredDecls.find(getMangledName(GD.getWithMultiVersionIndex(0)));
3629     if (DDI != DeferredDecls.end()) {
3630       addDeferredDeclToEmit(GD);
3631       DeferredDecls.erase(DDI);
3632     } else {
3633       // Emit the symbol of the 1st variant, so that the deferred decls know we
3634       // need it, otherwise the only global value will be the resolver/ifunc,
3635       // which end up getting broken if we search for them with GetGlobalValue'.
3636       GetOrCreateLLVMFunction(
3637           getMangledName(GD.getWithMultiVersionIndex(0)), DeclTy, FD,
3638           /*ForVTable=*/false, /*DontDefer=*/true,
3639           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3640     }
3641   }
3642 
3643   if (getTarget().supportsIFunc()) {
3644     llvm::Type *ResolverType = llvm::FunctionType::get(
3645         llvm::PointerType::get(
3646             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3647         false);
3648     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3649         MangledName + ".resolver", ResolverType, GlobalDecl{},
3650         /*ForVTable=*/false);
3651     llvm::GlobalIFunc *GIF =
3652         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3653                                   "", Resolver, &getModule());
3654     GIF->setName(ResolverName);
3655     SetCommonAttributes(FD, GIF);
3656 
3657     return GIF;
3658   }
3659 
3660   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3661       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3662   assert(isa<llvm::GlobalValue>(Resolver) &&
3663          "Resolver should be created for the first time");
3664   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3665   return Resolver;
3666 }
3667 
3668 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3669 /// module, create and return an llvm Function with the specified type. If there
3670 /// is something in the module with the specified name, return it potentially
3671 /// bitcasted to the right type.
3672 ///
3673 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3674 /// to set the attributes on the function when it is first created.
3675 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3676     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3677     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3678     ForDefinition_t IsForDefinition) {
3679   const Decl *D = GD.getDecl();
3680 
3681   // Any attempts to use a MultiVersion function should result in retrieving
3682   // the iFunc instead. Name Mangling will handle the rest of the changes.
3683   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3684     // For the device mark the function as one that should be emitted.
3685     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3686         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3687         !DontDefer && !IsForDefinition) {
3688       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3689         GlobalDecl GDDef;
3690         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3691           GDDef = GlobalDecl(CD, GD.getCtorType());
3692         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3693           GDDef = GlobalDecl(DD, GD.getDtorType());
3694         else
3695           GDDef = GlobalDecl(FDDef);
3696         EmitGlobal(GDDef);
3697       }
3698     }
3699 
3700     if (FD->isMultiVersion()) {
3701         UpdateMultiVersionNames(GD, FD, MangledName);
3702       if (!IsForDefinition)
3703         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3704     }
3705   }
3706 
3707   // Lookup the entry, lazily creating it if necessary.
3708   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3709   if (Entry) {
3710     if (WeakRefReferences.erase(Entry)) {
3711       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3712       if (FD && !FD->hasAttr<WeakAttr>())
3713         Entry->setLinkage(llvm::Function::ExternalLinkage);
3714     }
3715 
3716     // Handle dropped DLL attributes.
3717     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3718       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3719       setDSOLocal(Entry);
3720     }
3721 
3722     // If there are two attempts to define the same mangled name, issue an
3723     // error.
3724     if (IsForDefinition && !Entry->isDeclaration()) {
3725       GlobalDecl OtherGD;
3726       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3727       // to make sure that we issue an error only once.
3728       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3729           (GD.getCanonicalDecl().getDecl() !=
3730            OtherGD.getCanonicalDecl().getDecl()) &&
3731           DiagnosedConflictingDefinitions.insert(GD).second) {
3732         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3733             << MangledName;
3734         getDiags().Report(OtherGD.getDecl()->getLocation(),
3735                           diag::note_previous_definition);
3736       }
3737     }
3738 
3739     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3740         (Entry->getValueType() == Ty)) {
3741       return Entry;
3742     }
3743 
3744     // Make sure the result is of the correct type.
3745     // (If function is requested for a definition, we always need to create a new
3746     // function, not just return a bitcast.)
3747     if (!IsForDefinition)
3748       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3749   }
3750 
3751   // This function doesn't have a complete type (for example, the return
3752   // type is an incomplete struct). Use a fake type instead, and make
3753   // sure not to try to set attributes.
3754   bool IsIncompleteFunction = false;
3755 
3756   llvm::FunctionType *FTy;
3757   if (isa<llvm::FunctionType>(Ty)) {
3758     FTy = cast<llvm::FunctionType>(Ty);
3759   } else {
3760     FTy = llvm::FunctionType::get(VoidTy, false);
3761     IsIncompleteFunction = true;
3762   }
3763 
3764   llvm::Function *F =
3765       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3766                              Entry ? StringRef() : MangledName, &getModule());
3767 
3768   // If we already created a function with the same mangled name (but different
3769   // type) before, take its name and add it to the list of functions to be
3770   // replaced with F at the end of CodeGen.
3771   //
3772   // This happens if there is a prototype for a function (e.g. "int f()") and
3773   // then a definition of a different type (e.g. "int f(int x)").
3774   if (Entry) {
3775     F->takeName(Entry);
3776 
3777     // This might be an implementation of a function without a prototype, in
3778     // which case, try to do special replacement of calls which match the new
3779     // prototype.  The really key thing here is that we also potentially drop
3780     // arguments from the call site so as to make a direct call, which makes the
3781     // inliner happier and suppresses a number of optimizer warnings (!) about
3782     // dropping arguments.
3783     if (!Entry->use_empty()) {
3784       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3785       Entry->removeDeadConstantUsers();
3786     }
3787 
3788     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3789         F, Entry->getValueType()->getPointerTo());
3790     addGlobalValReplacement(Entry, BC);
3791   }
3792 
3793   assert(F->getName() == MangledName && "name was uniqued!");
3794   if (D)
3795     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3796   if (ExtraAttrs.hasFnAttrs()) {
3797     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
3798     F->addFnAttrs(B);
3799   }
3800 
3801   if (!DontDefer) {
3802     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3803     // each other bottoming out with the base dtor.  Therefore we emit non-base
3804     // dtors on usage, even if there is no dtor definition in the TU.
3805     if (D && isa<CXXDestructorDecl>(D) &&
3806         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3807                                            GD.getDtorType()))
3808       addDeferredDeclToEmit(GD);
3809 
3810     // This is the first use or definition of a mangled name.  If there is a
3811     // deferred decl with this name, remember that we need to emit it at the end
3812     // of the file.
3813     auto DDI = DeferredDecls.find(MangledName);
3814     if (DDI != DeferredDecls.end()) {
3815       // Move the potentially referenced deferred decl to the
3816       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3817       // don't need it anymore).
3818       addDeferredDeclToEmit(DDI->second);
3819       DeferredDecls.erase(DDI);
3820 
3821       // Otherwise, there are cases we have to worry about where we're
3822       // using a declaration for which we must emit a definition but where
3823       // we might not find a top-level definition:
3824       //   - member functions defined inline in their classes
3825       //   - friend functions defined inline in some class
3826       //   - special member functions with implicit definitions
3827       // If we ever change our AST traversal to walk into class methods,
3828       // this will be unnecessary.
3829       //
3830       // We also don't emit a definition for a function if it's going to be an
3831       // entry in a vtable, unless it's already marked as used.
3832     } else if (getLangOpts().CPlusPlus && D) {
3833       // Look for a declaration that's lexically in a record.
3834       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3835            FD = FD->getPreviousDecl()) {
3836         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3837           if (FD->doesThisDeclarationHaveABody()) {
3838             addDeferredDeclToEmit(GD.getWithDecl(FD));
3839             break;
3840           }
3841         }
3842       }
3843     }
3844   }
3845 
3846   // Make sure the result is of the requested type.
3847   if (!IsIncompleteFunction) {
3848     assert(F->getFunctionType() == Ty);
3849     return F;
3850   }
3851 
3852   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3853   return llvm::ConstantExpr::getBitCast(F, PTy);
3854 }
3855 
3856 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3857 /// non-null, then this function will use the specified type if it has to
3858 /// create it (this occurs when we see a definition of the function).
3859 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3860                                                  llvm::Type *Ty,
3861                                                  bool ForVTable,
3862                                                  bool DontDefer,
3863                                               ForDefinition_t IsForDefinition) {
3864   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3865          "consteval function should never be emitted");
3866   // If there was no specific requested type, just convert it now.
3867   if (!Ty) {
3868     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3869     Ty = getTypes().ConvertType(FD->getType());
3870   }
3871 
3872   // Devirtualized destructor calls may come through here instead of via
3873   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3874   // of the complete destructor when necessary.
3875   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3876     if (getTarget().getCXXABI().isMicrosoft() &&
3877         GD.getDtorType() == Dtor_Complete &&
3878         DD->getParent()->getNumVBases() == 0)
3879       GD = GlobalDecl(DD, Dtor_Base);
3880   }
3881 
3882   StringRef MangledName = getMangledName(GD);
3883   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3884                                     /*IsThunk=*/false, llvm::AttributeList(),
3885                                     IsForDefinition);
3886   // Returns kernel handle for HIP kernel stub function.
3887   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3888       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3889     auto *Handle = getCUDARuntime().getKernelHandle(
3890         cast<llvm::Function>(F->stripPointerCasts()), GD);
3891     if (IsForDefinition)
3892       return F;
3893     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3894   }
3895   return F;
3896 }
3897 
3898 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
3899   llvm::GlobalValue *F =
3900       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
3901 
3902   return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
3903                                         llvm::Type::getInt8PtrTy(VMContext));
3904 }
3905 
3906 static const FunctionDecl *
3907 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3908   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3909   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3910 
3911   IdentifierInfo &CII = C.Idents.get(Name);
3912   for (const auto *Result : DC->lookup(&CII))
3913     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3914       return FD;
3915 
3916   if (!C.getLangOpts().CPlusPlus)
3917     return nullptr;
3918 
3919   // Demangle the premangled name from getTerminateFn()
3920   IdentifierInfo &CXXII =
3921       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3922           ? C.Idents.get("terminate")
3923           : C.Idents.get(Name);
3924 
3925   for (const auto &N : {"__cxxabiv1", "std"}) {
3926     IdentifierInfo &NS = C.Idents.get(N);
3927     for (const auto *Result : DC->lookup(&NS)) {
3928       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3929       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
3930         for (const auto *Result : LSD->lookup(&NS))
3931           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3932             break;
3933 
3934       if (ND)
3935         for (const auto *Result : ND->lookup(&CXXII))
3936           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3937             return FD;
3938     }
3939   }
3940 
3941   return nullptr;
3942 }
3943 
3944 /// CreateRuntimeFunction - Create a new runtime function with the specified
3945 /// type and name.
3946 llvm::FunctionCallee
3947 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3948                                      llvm::AttributeList ExtraAttrs, bool Local,
3949                                      bool AssumeConvergent) {
3950   if (AssumeConvergent) {
3951     ExtraAttrs =
3952         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
3953   }
3954 
3955   llvm::Constant *C =
3956       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3957                               /*DontDefer=*/false, /*IsThunk=*/false,
3958                               ExtraAttrs);
3959 
3960   if (auto *F = dyn_cast<llvm::Function>(C)) {
3961     if (F->empty()) {
3962       F->setCallingConv(getRuntimeCC());
3963 
3964       // In Windows Itanium environments, try to mark runtime functions
3965       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3966       // will link their standard library statically or dynamically. Marking
3967       // functions imported when they are not imported can cause linker errors
3968       // and warnings.
3969       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3970           !getCodeGenOpts().LTOVisibilityPublicStd) {
3971         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3972         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3973           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3974           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3975         }
3976       }
3977       setDSOLocal(F);
3978     }
3979   }
3980 
3981   return {FTy, C};
3982 }
3983 
3984 /// isTypeConstant - Determine whether an object of this type can be emitted
3985 /// as a constant.
3986 ///
3987 /// If ExcludeCtor is true, the duration when the object's constructor runs
3988 /// will not be considered. The caller will need to verify that the object is
3989 /// not written to during its construction.
3990 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3991   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3992     return false;
3993 
3994   if (Context.getLangOpts().CPlusPlus) {
3995     if (const CXXRecordDecl *Record
3996           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3997       return ExcludeCtor && !Record->hasMutableFields() &&
3998              Record->hasTrivialDestructor();
3999   }
4000 
4001   return true;
4002 }
4003 
4004 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4005 /// create and return an llvm GlobalVariable with the specified type and address
4006 /// space. If there is something in the module with the specified name, return
4007 /// it potentially bitcasted to the right type.
4008 ///
4009 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4010 /// to set the attributes on the global when it is first created.
4011 ///
4012 /// If IsForDefinition is true, it is guaranteed that an actual global with
4013 /// type Ty will be returned, not conversion of a variable with the same
4014 /// mangled name but some other type.
4015 llvm::Constant *
4016 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4017                                      LangAS AddrSpace, const VarDecl *D,
4018                                      ForDefinition_t IsForDefinition) {
4019   // Lookup the entry, lazily creating it if necessary.
4020   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4021   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4022   if (Entry) {
4023     if (WeakRefReferences.erase(Entry)) {
4024       if (D && !D->hasAttr<WeakAttr>())
4025         Entry->setLinkage(llvm::Function::ExternalLinkage);
4026     }
4027 
4028     // Handle dropped DLL attributes.
4029     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
4030       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4031 
4032     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4033       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4034 
4035     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4036       return Entry;
4037 
4038     // If there are two attempts to define the same mangled name, issue an
4039     // error.
4040     if (IsForDefinition && !Entry->isDeclaration()) {
4041       GlobalDecl OtherGD;
4042       const VarDecl *OtherD;
4043 
4044       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4045       // to make sure that we issue an error only once.
4046       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4047           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4048           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4049           OtherD->hasInit() &&
4050           DiagnosedConflictingDefinitions.insert(D).second) {
4051         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4052             << MangledName;
4053         getDiags().Report(OtherGD.getDecl()->getLocation(),
4054                           diag::note_previous_definition);
4055       }
4056     }
4057 
4058     // Make sure the result is of the correct type.
4059     if (Entry->getType()->getAddressSpace() != TargetAS) {
4060       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4061                                                   Ty->getPointerTo(TargetAS));
4062     }
4063 
4064     // (If global is requested for a definition, we always need to create a new
4065     // global, not just return a bitcast.)
4066     if (!IsForDefinition)
4067       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4068   }
4069 
4070   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4071 
4072   auto *GV = new llvm::GlobalVariable(
4073       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4074       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4075       getContext().getTargetAddressSpace(DAddrSpace));
4076 
4077   // If we already created a global with the same mangled name (but different
4078   // type) before, take its name and remove it from its parent.
4079   if (Entry) {
4080     GV->takeName(Entry);
4081 
4082     if (!Entry->use_empty()) {
4083       llvm::Constant *NewPtrForOldDecl =
4084           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4085       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4086     }
4087 
4088     Entry->eraseFromParent();
4089   }
4090 
4091   // This is the first use or definition of a mangled name.  If there is a
4092   // deferred decl with this name, remember that we need to emit it at the end
4093   // of the file.
4094   auto DDI = DeferredDecls.find(MangledName);
4095   if (DDI != DeferredDecls.end()) {
4096     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4097     // list, and remove it from DeferredDecls (since we don't need it anymore).
4098     addDeferredDeclToEmit(DDI->second);
4099     DeferredDecls.erase(DDI);
4100   }
4101 
4102   // Handle things which are present even on external declarations.
4103   if (D) {
4104     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4105       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4106 
4107     // FIXME: This code is overly simple and should be merged with other global
4108     // handling.
4109     GV->setConstant(isTypeConstant(D->getType(), false));
4110 
4111     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4112 
4113     setLinkageForGV(GV, D);
4114 
4115     if (D->getTLSKind()) {
4116       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4117         CXXThreadLocals.push_back(D);
4118       setTLSMode(GV, *D);
4119     }
4120 
4121     setGVProperties(GV, D);
4122 
4123     // If required by the ABI, treat declarations of static data members with
4124     // inline initializers as definitions.
4125     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4126       EmitGlobalVarDefinition(D);
4127     }
4128 
4129     // Emit section information for extern variables.
4130     if (D->hasExternalStorage()) {
4131       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4132         GV->setSection(SA->getName());
4133     }
4134 
4135     // Handle XCore specific ABI requirements.
4136     if (getTriple().getArch() == llvm::Triple::xcore &&
4137         D->getLanguageLinkage() == CLanguageLinkage &&
4138         D->getType().isConstant(Context) &&
4139         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4140       GV->setSection(".cp.rodata");
4141 
4142     // Check if we a have a const declaration with an initializer, we may be
4143     // able to emit it as available_externally to expose it's value to the
4144     // optimizer.
4145     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4146         D->getType().isConstQualified() && !GV->hasInitializer() &&
4147         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4148       const auto *Record =
4149           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4150       bool HasMutableFields = Record && Record->hasMutableFields();
4151       if (!HasMutableFields) {
4152         const VarDecl *InitDecl;
4153         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4154         if (InitExpr) {
4155           ConstantEmitter emitter(*this);
4156           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4157           if (Init) {
4158             auto *InitType = Init->getType();
4159             if (GV->getValueType() != InitType) {
4160               // The type of the initializer does not match the definition.
4161               // This happens when an initializer has a different type from
4162               // the type of the global (because of padding at the end of a
4163               // structure for instance).
4164               GV->setName(StringRef());
4165               // Make a new global with the correct type, this is now guaranteed
4166               // to work.
4167               auto *NewGV = cast<llvm::GlobalVariable>(
4168                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4169                       ->stripPointerCasts());
4170 
4171               // Erase the old global, since it is no longer used.
4172               GV->eraseFromParent();
4173               GV = NewGV;
4174             } else {
4175               GV->setInitializer(Init);
4176               GV->setConstant(true);
4177               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4178             }
4179             emitter.finalize(GV);
4180           }
4181         }
4182       }
4183     }
4184   }
4185 
4186   if (GV->isDeclaration()) {
4187     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4188     // External HIP managed variables needed to be recorded for transformation
4189     // in both device and host compilations.
4190     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4191         D->hasExternalStorage())
4192       getCUDARuntime().handleVarRegistration(D, *GV);
4193   }
4194 
4195   LangAS ExpectedAS =
4196       D ? D->getType().getAddressSpace()
4197         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4198   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4199   if (DAddrSpace != ExpectedAS) {
4200     return getTargetCodeGenInfo().performAddrSpaceCast(
4201         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4202   }
4203 
4204   return GV;
4205 }
4206 
4207 llvm::Constant *
4208 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4209   const Decl *D = GD.getDecl();
4210 
4211   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4212     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4213                                 /*DontDefer=*/false, IsForDefinition);
4214 
4215   if (isa<CXXMethodDecl>(D)) {
4216     auto FInfo =
4217         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4218     auto Ty = getTypes().GetFunctionType(*FInfo);
4219     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4220                              IsForDefinition);
4221   }
4222 
4223   if (isa<FunctionDecl>(D)) {
4224     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4225     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4226     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4227                              IsForDefinition);
4228   }
4229 
4230   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4231 }
4232 
4233 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4234     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4235     unsigned Alignment) {
4236   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4237   llvm::GlobalVariable *OldGV = nullptr;
4238 
4239   if (GV) {
4240     // Check if the variable has the right type.
4241     if (GV->getValueType() == Ty)
4242       return GV;
4243 
4244     // Because C++ name mangling, the only way we can end up with an already
4245     // existing global with the same name is if it has been declared extern "C".
4246     assert(GV->isDeclaration() && "Declaration has wrong type!");
4247     OldGV = GV;
4248   }
4249 
4250   // Create a new variable.
4251   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4252                                 Linkage, nullptr, Name);
4253 
4254   if (OldGV) {
4255     // Replace occurrences of the old variable if needed.
4256     GV->takeName(OldGV);
4257 
4258     if (!OldGV->use_empty()) {
4259       llvm::Constant *NewPtrForOldDecl =
4260       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4261       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4262     }
4263 
4264     OldGV->eraseFromParent();
4265   }
4266 
4267   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4268       !GV->hasAvailableExternallyLinkage())
4269     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4270 
4271   GV->setAlignment(llvm::MaybeAlign(Alignment));
4272 
4273   return GV;
4274 }
4275 
4276 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4277 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4278 /// then it will be created with the specified type instead of whatever the
4279 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4280 /// that an actual global with type Ty will be returned, not conversion of a
4281 /// variable with the same mangled name but some other type.
4282 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4283                                                   llvm::Type *Ty,
4284                                            ForDefinition_t IsForDefinition) {
4285   assert(D->hasGlobalStorage() && "Not a global variable");
4286   QualType ASTTy = D->getType();
4287   if (!Ty)
4288     Ty = getTypes().ConvertTypeForMem(ASTTy);
4289 
4290   StringRef MangledName = getMangledName(D);
4291   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4292                                IsForDefinition);
4293 }
4294 
4295 /// CreateRuntimeVariable - Create a new runtime global variable with the
4296 /// specified type and name.
4297 llvm::Constant *
4298 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4299                                      StringRef Name) {
4300   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4301                                                        : LangAS::Default;
4302   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4303   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4304   return Ret;
4305 }
4306 
4307 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4308   assert(!D->getInit() && "Cannot emit definite definitions here!");
4309 
4310   StringRef MangledName = getMangledName(D);
4311   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4312 
4313   // We already have a definition, not declaration, with the same mangled name.
4314   // Emitting of declaration is not required (and actually overwrites emitted
4315   // definition).
4316   if (GV && !GV->isDeclaration())
4317     return;
4318 
4319   // If we have not seen a reference to this variable yet, place it into the
4320   // deferred declarations table to be emitted if needed later.
4321   if (!MustBeEmitted(D) && !GV) {
4322       DeferredDecls[MangledName] = D;
4323       return;
4324   }
4325 
4326   // The tentative definition is the only definition.
4327   EmitGlobalVarDefinition(D);
4328 }
4329 
4330 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4331   EmitExternalVarDeclaration(D);
4332 }
4333 
4334 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4335   return Context.toCharUnitsFromBits(
4336       getDataLayout().getTypeStoreSizeInBits(Ty));
4337 }
4338 
4339 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4340   if (LangOpts.OpenCL) {
4341     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4342     assert(AS == LangAS::opencl_global ||
4343            AS == LangAS::opencl_global_device ||
4344            AS == LangAS::opencl_global_host ||
4345            AS == LangAS::opencl_constant ||
4346            AS == LangAS::opencl_local ||
4347            AS >= LangAS::FirstTargetAddressSpace);
4348     return AS;
4349   }
4350 
4351   if (LangOpts.SYCLIsDevice &&
4352       (!D || D->getType().getAddressSpace() == LangAS::Default))
4353     return LangAS::sycl_global;
4354 
4355   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4356     if (D && D->hasAttr<CUDAConstantAttr>())
4357       return LangAS::cuda_constant;
4358     else if (D && D->hasAttr<CUDASharedAttr>())
4359       return LangAS::cuda_shared;
4360     else if (D && D->hasAttr<CUDADeviceAttr>())
4361       return LangAS::cuda_device;
4362     else if (D && D->getType().isConstQualified())
4363       return LangAS::cuda_constant;
4364     else
4365       return LangAS::cuda_device;
4366   }
4367 
4368   if (LangOpts.OpenMP) {
4369     LangAS AS;
4370     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4371       return AS;
4372   }
4373   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4374 }
4375 
4376 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4377   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4378   if (LangOpts.OpenCL)
4379     return LangAS::opencl_constant;
4380   if (LangOpts.SYCLIsDevice)
4381     return LangAS::sycl_global;
4382   if (auto AS = getTarget().getConstantAddressSpace())
4383     return AS.getValue();
4384   return LangAS::Default;
4385 }
4386 
4387 // In address space agnostic languages, string literals are in default address
4388 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4389 // emitted in constant address space in LLVM IR. To be consistent with other
4390 // parts of AST, string literal global variables in constant address space
4391 // need to be casted to default address space before being put into address
4392 // map and referenced by other part of CodeGen.
4393 // In OpenCL, string literals are in constant address space in AST, therefore
4394 // they should not be casted to default address space.
4395 static llvm::Constant *
4396 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4397                                        llvm::GlobalVariable *GV) {
4398   llvm::Constant *Cast = GV;
4399   if (!CGM.getLangOpts().OpenCL) {
4400     auto AS = CGM.GetGlobalConstantAddressSpace();
4401     if (AS != LangAS::Default)
4402       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4403           CGM, GV, AS, LangAS::Default,
4404           GV->getValueType()->getPointerTo(
4405               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4406   }
4407   return Cast;
4408 }
4409 
4410 template<typename SomeDecl>
4411 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4412                                                llvm::GlobalValue *GV) {
4413   if (!getLangOpts().CPlusPlus)
4414     return;
4415 
4416   // Must have 'used' attribute, or else inline assembly can't rely on
4417   // the name existing.
4418   if (!D->template hasAttr<UsedAttr>())
4419     return;
4420 
4421   // Must have internal linkage and an ordinary name.
4422   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4423     return;
4424 
4425   // Must be in an extern "C" context. Entities declared directly within
4426   // a record are not extern "C" even if the record is in such a context.
4427   const SomeDecl *First = D->getFirstDecl();
4428   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4429     return;
4430 
4431   // OK, this is an internal linkage entity inside an extern "C" linkage
4432   // specification. Make a note of that so we can give it the "expected"
4433   // mangled name if nothing else is using that name.
4434   std::pair<StaticExternCMap::iterator, bool> R =
4435       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4436 
4437   // If we have multiple internal linkage entities with the same name
4438   // in extern "C" regions, none of them gets that name.
4439   if (!R.second)
4440     R.first->second = nullptr;
4441 }
4442 
4443 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4444   if (!CGM.supportsCOMDAT())
4445     return false;
4446 
4447   if (D.hasAttr<SelectAnyAttr>())
4448     return true;
4449 
4450   GVALinkage Linkage;
4451   if (auto *VD = dyn_cast<VarDecl>(&D))
4452     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4453   else
4454     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4455 
4456   switch (Linkage) {
4457   case GVA_Internal:
4458   case GVA_AvailableExternally:
4459   case GVA_StrongExternal:
4460     return false;
4461   case GVA_DiscardableODR:
4462   case GVA_StrongODR:
4463     return true;
4464   }
4465   llvm_unreachable("No such linkage");
4466 }
4467 
4468 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4469                                           llvm::GlobalObject &GO) {
4470   if (!shouldBeInCOMDAT(*this, D))
4471     return;
4472   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4473 }
4474 
4475 /// Pass IsTentative as true if you want to create a tentative definition.
4476 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4477                                             bool IsTentative) {
4478   // OpenCL global variables of sampler type are translated to function calls,
4479   // therefore no need to be translated.
4480   QualType ASTTy = D->getType();
4481   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4482     return;
4483 
4484   // If this is OpenMP device, check if it is legal to emit this global
4485   // normally.
4486   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4487       OpenMPRuntime->emitTargetGlobalVariable(D))
4488     return;
4489 
4490   llvm::TrackingVH<llvm::Constant> Init;
4491   bool NeedsGlobalCtor = false;
4492   bool NeedsGlobalDtor =
4493       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4494 
4495   const VarDecl *InitDecl;
4496   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4497 
4498   Optional<ConstantEmitter> emitter;
4499 
4500   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4501   // as part of their declaration."  Sema has already checked for
4502   // error cases, so we just need to set Init to UndefValue.
4503   bool IsCUDASharedVar =
4504       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4505   // Shadows of initialized device-side global variables are also left
4506   // undefined.
4507   // Managed Variables should be initialized on both host side and device side.
4508   bool IsCUDAShadowVar =
4509       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4510       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4511        D->hasAttr<CUDASharedAttr>());
4512   bool IsCUDADeviceShadowVar =
4513       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4514       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4515        D->getType()->isCUDADeviceBuiltinTextureType());
4516   if (getLangOpts().CUDA &&
4517       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4518     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4519   else if (D->hasAttr<LoaderUninitializedAttr>())
4520     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4521   else if (!InitExpr) {
4522     // This is a tentative definition; tentative definitions are
4523     // implicitly initialized with { 0 }.
4524     //
4525     // Note that tentative definitions are only emitted at the end of
4526     // a translation unit, so they should never have incomplete
4527     // type. In addition, EmitTentativeDefinition makes sure that we
4528     // never attempt to emit a tentative definition if a real one
4529     // exists. A use may still exists, however, so we still may need
4530     // to do a RAUW.
4531     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4532     Init = EmitNullConstant(D->getType());
4533   } else {
4534     initializedGlobalDecl = GlobalDecl(D);
4535     emitter.emplace(*this);
4536     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4537     if (!Initializer) {
4538       QualType T = InitExpr->getType();
4539       if (D->getType()->isReferenceType())
4540         T = D->getType();
4541 
4542       if (getLangOpts().CPlusPlus) {
4543         Init = EmitNullConstant(T);
4544         NeedsGlobalCtor = true;
4545       } else {
4546         ErrorUnsupported(D, "static initializer");
4547         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4548       }
4549     } else {
4550       Init = Initializer;
4551       // We don't need an initializer, so remove the entry for the delayed
4552       // initializer position (just in case this entry was delayed) if we
4553       // also don't need to register a destructor.
4554       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4555         DelayedCXXInitPosition.erase(D);
4556     }
4557   }
4558 
4559   llvm::Type* InitType = Init->getType();
4560   llvm::Constant *Entry =
4561       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4562 
4563   // Strip off pointer casts if we got them.
4564   Entry = Entry->stripPointerCasts();
4565 
4566   // Entry is now either a Function or GlobalVariable.
4567   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4568 
4569   // We have a definition after a declaration with the wrong type.
4570   // We must make a new GlobalVariable* and update everything that used OldGV
4571   // (a declaration or tentative definition) with the new GlobalVariable*
4572   // (which will be a definition).
4573   //
4574   // This happens if there is a prototype for a global (e.g.
4575   // "extern int x[];") and then a definition of a different type (e.g.
4576   // "int x[10];"). This also happens when an initializer has a different type
4577   // from the type of the global (this happens with unions).
4578   if (!GV || GV->getValueType() != InitType ||
4579       GV->getType()->getAddressSpace() !=
4580           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4581 
4582     // Move the old entry aside so that we'll create a new one.
4583     Entry->setName(StringRef());
4584 
4585     // Make a new global with the correct type, this is now guaranteed to work.
4586     GV = cast<llvm::GlobalVariable>(
4587         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4588             ->stripPointerCasts());
4589 
4590     // Replace all uses of the old global with the new global
4591     llvm::Constant *NewPtrForOldDecl =
4592         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4593                                                              Entry->getType());
4594     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4595 
4596     // Erase the old global, since it is no longer used.
4597     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4598   }
4599 
4600   MaybeHandleStaticInExternC(D, GV);
4601 
4602   if (D->hasAttr<AnnotateAttr>())
4603     AddGlobalAnnotations(D, GV);
4604 
4605   // Set the llvm linkage type as appropriate.
4606   llvm::GlobalValue::LinkageTypes Linkage =
4607       getLLVMLinkageVarDefinition(D, GV->isConstant());
4608 
4609   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4610   // the device. [...]"
4611   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4612   // __device__, declares a variable that: [...]
4613   // Is accessible from all the threads within the grid and from the host
4614   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4615   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4616   if (GV && LangOpts.CUDA) {
4617     if (LangOpts.CUDAIsDevice) {
4618       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4619           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4620            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4621            D->getType()->isCUDADeviceBuiltinTextureType()))
4622         GV->setExternallyInitialized(true);
4623     } else {
4624       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4625     }
4626     getCUDARuntime().handleVarRegistration(D, *GV);
4627   }
4628 
4629   GV->setInitializer(Init);
4630   if (emitter)
4631     emitter->finalize(GV);
4632 
4633   // If it is safe to mark the global 'constant', do so now.
4634   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4635                   isTypeConstant(D->getType(), true));
4636 
4637   // If it is in a read-only section, mark it 'constant'.
4638   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4639     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4640     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4641       GV->setConstant(true);
4642   }
4643 
4644   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4645 
4646   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4647   // function is only defined alongside the variable, not also alongside
4648   // callers. Normally, all accesses to a thread_local go through the
4649   // thread-wrapper in order to ensure initialization has occurred, underlying
4650   // variable will never be used other than the thread-wrapper, so it can be
4651   // converted to internal linkage.
4652   //
4653   // However, if the variable has the 'constinit' attribute, it _can_ be
4654   // referenced directly, without calling the thread-wrapper, so the linkage
4655   // must not be changed.
4656   //
4657   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4658   // weak or linkonce, the de-duplication semantics are important to preserve,
4659   // so we don't change the linkage.
4660   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4661       Linkage == llvm::GlobalValue::ExternalLinkage &&
4662       Context.getTargetInfo().getTriple().isOSDarwin() &&
4663       !D->hasAttr<ConstInitAttr>())
4664     Linkage = llvm::GlobalValue::InternalLinkage;
4665 
4666   GV->setLinkage(Linkage);
4667   if (D->hasAttr<DLLImportAttr>())
4668     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4669   else if (D->hasAttr<DLLExportAttr>())
4670     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4671   else
4672     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4673 
4674   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4675     // common vars aren't constant even if declared const.
4676     GV->setConstant(false);
4677     // Tentative definition of global variables may be initialized with
4678     // non-zero null pointers. In this case they should have weak linkage
4679     // since common linkage must have zero initializer and must not have
4680     // explicit section therefore cannot have non-zero initial value.
4681     if (!GV->getInitializer()->isNullValue())
4682       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4683   }
4684 
4685   setNonAliasAttributes(D, GV);
4686 
4687   if (D->getTLSKind() && !GV->isThreadLocal()) {
4688     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4689       CXXThreadLocals.push_back(D);
4690     setTLSMode(GV, *D);
4691   }
4692 
4693   maybeSetTrivialComdat(*D, *GV);
4694 
4695   // Emit the initializer function if necessary.
4696   if (NeedsGlobalCtor || NeedsGlobalDtor)
4697     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4698 
4699   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4700 
4701   // Emit global variable debug information.
4702   if (CGDebugInfo *DI = getModuleDebugInfo())
4703     if (getCodeGenOpts().hasReducedDebugInfo())
4704       DI->EmitGlobalVariable(GV, D);
4705 }
4706 
4707 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4708   if (CGDebugInfo *DI = getModuleDebugInfo())
4709     if (getCodeGenOpts().hasReducedDebugInfo()) {
4710       QualType ASTTy = D->getType();
4711       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4712       llvm::Constant *GV =
4713           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4714       DI->EmitExternalVariable(
4715           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4716     }
4717 }
4718 
4719 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4720                                       CodeGenModule &CGM, const VarDecl *D,
4721                                       bool NoCommon) {
4722   // Don't give variables common linkage if -fno-common was specified unless it
4723   // was overridden by a NoCommon attribute.
4724   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4725     return true;
4726 
4727   // C11 6.9.2/2:
4728   //   A declaration of an identifier for an object that has file scope without
4729   //   an initializer, and without a storage-class specifier or with the
4730   //   storage-class specifier static, constitutes a tentative definition.
4731   if (D->getInit() || D->hasExternalStorage())
4732     return true;
4733 
4734   // A variable cannot be both common and exist in a section.
4735   if (D->hasAttr<SectionAttr>())
4736     return true;
4737 
4738   // A variable cannot be both common and exist in a section.
4739   // We don't try to determine which is the right section in the front-end.
4740   // If no specialized section name is applicable, it will resort to default.
4741   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4742       D->hasAttr<PragmaClangDataSectionAttr>() ||
4743       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4744       D->hasAttr<PragmaClangRodataSectionAttr>())
4745     return true;
4746 
4747   // Thread local vars aren't considered common linkage.
4748   if (D->getTLSKind())
4749     return true;
4750 
4751   // Tentative definitions marked with WeakImportAttr are true definitions.
4752   if (D->hasAttr<WeakImportAttr>())
4753     return true;
4754 
4755   // A variable cannot be both common and exist in a comdat.
4756   if (shouldBeInCOMDAT(CGM, *D))
4757     return true;
4758 
4759   // Declarations with a required alignment do not have common linkage in MSVC
4760   // mode.
4761   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4762     if (D->hasAttr<AlignedAttr>())
4763       return true;
4764     QualType VarType = D->getType();
4765     if (Context.isAlignmentRequired(VarType))
4766       return true;
4767 
4768     if (const auto *RT = VarType->getAs<RecordType>()) {
4769       const RecordDecl *RD = RT->getDecl();
4770       for (const FieldDecl *FD : RD->fields()) {
4771         if (FD->isBitField())
4772           continue;
4773         if (FD->hasAttr<AlignedAttr>())
4774           return true;
4775         if (Context.isAlignmentRequired(FD->getType()))
4776           return true;
4777       }
4778     }
4779   }
4780 
4781   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4782   // common symbols, so symbols with greater alignment requirements cannot be
4783   // common.
4784   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4785   // alignments for common symbols via the aligncomm directive, so this
4786   // restriction only applies to MSVC environments.
4787   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4788       Context.getTypeAlignIfKnown(D->getType()) >
4789           Context.toBits(CharUnits::fromQuantity(32)))
4790     return true;
4791 
4792   return false;
4793 }
4794 
4795 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4796     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4797   if (Linkage == GVA_Internal)
4798     return llvm::Function::InternalLinkage;
4799 
4800   if (D->hasAttr<WeakAttr>()) {
4801     if (IsConstantVariable)
4802       return llvm::GlobalVariable::WeakODRLinkage;
4803     else
4804       return llvm::GlobalVariable::WeakAnyLinkage;
4805   }
4806 
4807   if (const auto *FD = D->getAsFunction())
4808     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4809       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4810 
4811   // We are guaranteed to have a strong definition somewhere else,
4812   // so we can use available_externally linkage.
4813   if (Linkage == GVA_AvailableExternally)
4814     return llvm::GlobalValue::AvailableExternallyLinkage;
4815 
4816   // Note that Apple's kernel linker doesn't support symbol
4817   // coalescing, so we need to avoid linkonce and weak linkages there.
4818   // Normally, this means we just map to internal, but for explicit
4819   // instantiations we'll map to external.
4820 
4821   // In C++, the compiler has to emit a definition in every translation unit
4822   // that references the function.  We should use linkonce_odr because
4823   // a) if all references in this translation unit are optimized away, we
4824   // don't need to codegen it.  b) if the function persists, it needs to be
4825   // merged with other definitions. c) C++ has the ODR, so we know the
4826   // definition is dependable.
4827   if (Linkage == GVA_DiscardableODR)
4828     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4829                                             : llvm::Function::InternalLinkage;
4830 
4831   // An explicit instantiation of a template has weak linkage, since
4832   // explicit instantiations can occur in multiple translation units
4833   // and must all be equivalent. However, we are not allowed to
4834   // throw away these explicit instantiations.
4835   //
4836   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4837   // so say that CUDA templates are either external (for kernels) or internal.
4838   // This lets llvm perform aggressive inter-procedural optimizations. For
4839   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4840   // therefore we need to follow the normal linkage paradigm.
4841   if (Linkage == GVA_StrongODR) {
4842     if (getLangOpts().AppleKext)
4843       return llvm::Function::ExternalLinkage;
4844     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4845         !getLangOpts().GPURelocatableDeviceCode)
4846       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4847                                           : llvm::Function::InternalLinkage;
4848     return llvm::Function::WeakODRLinkage;
4849   }
4850 
4851   // C++ doesn't have tentative definitions and thus cannot have common
4852   // linkage.
4853   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4854       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4855                                  CodeGenOpts.NoCommon))
4856     return llvm::GlobalVariable::CommonLinkage;
4857 
4858   // selectany symbols are externally visible, so use weak instead of
4859   // linkonce.  MSVC optimizes away references to const selectany globals, so
4860   // all definitions should be the same and ODR linkage should be used.
4861   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4862   if (D->hasAttr<SelectAnyAttr>())
4863     return llvm::GlobalVariable::WeakODRLinkage;
4864 
4865   // Otherwise, we have strong external linkage.
4866   assert(Linkage == GVA_StrongExternal);
4867   return llvm::GlobalVariable::ExternalLinkage;
4868 }
4869 
4870 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4871     const VarDecl *VD, bool IsConstant) {
4872   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4873   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4874 }
4875 
4876 /// Replace the uses of a function that was declared with a non-proto type.
4877 /// We want to silently drop extra arguments from call sites
4878 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4879                                           llvm::Function *newFn) {
4880   // Fast path.
4881   if (old->use_empty()) return;
4882 
4883   llvm::Type *newRetTy = newFn->getReturnType();
4884   SmallVector<llvm::Value*, 4> newArgs;
4885 
4886   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4887          ui != ue; ) {
4888     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4889     llvm::User *user = use->getUser();
4890 
4891     // Recognize and replace uses of bitcasts.  Most calls to
4892     // unprototyped functions will use bitcasts.
4893     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4894       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4895         replaceUsesOfNonProtoConstant(bitcast, newFn);
4896       continue;
4897     }
4898 
4899     // Recognize calls to the function.
4900     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4901     if (!callSite) continue;
4902     if (!callSite->isCallee(&*use))
4903       continue;
4904 
4905     // If the return types don't match exactly, then we can't
4906     // transform this call unless it's dead.
4907     if (callSite->getType() != newRetTy && !callSite->use_empty())
4908       continue;
4909 
4910     // Get the call site's attribute list.
4911     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4912     llvm::AttributeList oldAttrs = callSite->getAttributes();
4913 
4914     // If the function was passed too few arguments, don't transform.
4915     unsigned newNumArgs = newFn->arg_size();
4916     if (callSite->arg_size() < newNumArgs)
4917       continue;
4918 
4919     // If extra arguments were passed, we silently drop them.
4920     // If any of the types mismatch, we don't transform.
4921     unsigned argNo = 0;
4922     bool dontTransform = false;
4923     for (llvm::Argument &A : newFn->args()) {
4924       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4925         dontTransform = true;
4926         break;
4927       }
4928 
4929       // Add any parameter attributes.
4930       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
4931       argNo++;
4932     }
4933     if (dontTransform)
4934       continue;
4935 
4936     // Okay, we can transform this.  Create the new call instruction and copy
4937     // over the required information.
4938     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4939 
4940     // Copy over any operand bundles.
4941     SmallVector<llvm::OperandBundleDef, 1> newBundles;
4942     callSite->getOperandBundlesAsDefs(newBundles);
4943 
4944     llvm::CallBase *newCall;
4945     if (isa<llvm::CallInst>(callSite)) {
4946       newCall =
4947           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4948     } else {
4949       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4950       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4951                                          oldInvoke->getUnwindDest(), newArgs,
4952                                          newBundles, "", callSite);
4953     }
4954     newArgs.clear(); // for the next iteration
4955 
4956     if (!newCall->getType()->isVoidTy())
4957       newCall->takeName(callSite);
4958     newCall->setAttributes(
4959         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
4960                                  oldAttrs.getRetAttrs(), newArgAttrs));
4961     newCall->setCallingConv(callSite->getCallingConv());
4962 
4963     // Finally, remove the old call, replacing any uses with the new one.
4964     if (!callSite->use_empty())
4965       callSite->replaceAllUsesWith(newCall);
4966 
4967     // Copy debug location attached to CI.
4968     if (callSite->getDebugLoc())
4969       newCall->setDebugLoc(callSite->getDebugLoc());
4970 
4971     callSite->eraseFromParent();
4972   }
4973 }
4974 
4975 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4976 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4977 /// existing call uses of the old function in the module, this adjusts them to
4978 /// call the new function directly.
4979 ///
4980 /// This is not just a cleanup: the always_inline pass requires direct calls to
4981 /// functions to be able to inline them.  If there is a bitcast in the way, it
4982 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4983 /// run at -O0.
4984 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4985                                                       llvm::Function *NewFn) {
4986   // If we're redefining a global as a function, don't transform it.
4987   if (!isa<llvm::Function>(Old)) return;
4988 
4989   replaceUsesOfNonProtoConstant(Old, NewFn);
4990 }
4991 
4992 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4993   auto DK = VD->isThisDeclarationADefinition();
4994   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4995     return;
4996 
4997   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4998   // If we have a definition, this might be a deferred decl. If the
4999   // instantiation is explicit, make sure we emit it at the end.
5000   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5001     GetAddrOfGlobalVar(VD);
5002 
5003   EmitTopLevelDecl(VD);
5004 }
5005 
5006 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5007                                                  llvm::GlobalValue *GV) {
5008   const auto *D = cast<FunctionDecl>(GD.getDecl());
5009 
5010   // Compute the function info and LLVM type.
5011   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5012   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5013 
5014   // Get or create the prototype for the function.
5015   if (!GV || (GV->getValueType() != Ty))
5016     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5017                                                    /*DontDefer=*/true,
5018                                                    ForDefinition));
5019 
5020   // Already emitted.
5021   if (!GV->isDeclaration())
5022     return;
5023 
5024   // We need to set linkage and visibility on the function before
5025   // generating code for it because various parts of IR generation
5026   // want to propagate this information down (e.g. to local static
5027   // declarations).
5028   auto *Fn = cast<llvm::Function>(GV);
5029   setFunctionLinkage(GD, Fn);
5030 
5031   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5032   setGVProperties(Fn, GD);
5033 
5034   MaybeHandleStaticInExternC(D, Fn);
5035 
5036   maybeSetTrivialComdat(*D, *Fn);
5037 
5038   // Set CodeGen attributes that represent floating point environment.
5039   setLLVMFunctionFEnvAttributes(D, Fn);
5040 
5041   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5042 
5043   setNonAliasAttributes(GD, Fn);
5044   SetLLVMFunctionAttributesForDefinition(D, Fn);
5045 
5046   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5047     AddGlobalCtor(Fn, CA->getPriority());
5048   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5049     AddGlobalDtor(Fn, DA->getPriority(), true);
5050   if (D->hasAttr<AnnotateAttr>())
5051     AddGlobalAnnotations(D, Fn);
5052 }
5053 
5054 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5055   const auto *D = cast<ValueDecl>(GD.getDecl());
5056   const AliasAttr *AA = D->getAttr<AliasAttr>();
5057   assert(AA && "Not an alias?");
5058 
5059   StringRef MangledName = getMangledName(GD);
5060 
5061   if (AA->getAliasee() == MangledName) {
5062     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5063     return;
5064   }
5065 
5066   // If there is a definition in the module, then it wins over the alias.
5067   // This is dubious, but allow it to be safe.  Just ignore the alias.
5068   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5069   if (Entry && !Entry->isDeclaration())
5070     return;
5071 
5072   Aliases.push_back(GD);
5073 
5074   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5075 
5076   // Create a reference to the named value.  This ensures that it is emitted
5077   // if a deferred decl.
5078   llvm::Constant *Aliasee;
5079   llvm::GlobalValue::LinkageTypes LT;
5080   if (isa<llvm::FunctionType>(DeclTy)) {
5081     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5082                                       /*ForVTable=*/false);
5083     LT = getFunctionLinkage(GD);
5084   } else {
5085     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5086                                     /*D=*/nullptr);
5087     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5088       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5089     else
5090       LT = getFunctionLinkage(GD);
5091   }
5092 
5093   // Create the new alias itself, but don't set a name yet.
5094   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5095   auto *GA =
5096       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5097 
5098   if (Entry) {
5099     if (GA->getAliasee() == Entry) {
5100       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5101       return;
5102     }
5103 
5104     assert(Entry->isDeclaration());
5105 
5106     // If there is a declaration in the module, then we had an extern followed
5107     // by the alias, as in:
5108     //   extern int test6();
5109     //   ...
5110     //   int test6() __attribute__((alias("test7")));
5111     //
5112     // Remove it and replace uses of it with the alias.
5113     GA->takeName(Entry);
5114 
5115     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5116                                                           Entry->getType()));
5117     Entry->eraseFromParent();
5118   } else {
5119     GA->setName(MangledName);
5120   }
5121 
5122   // Set attributes which are particular to an alias; this is a
5123   // specialization of the attributes which may be set on a global
5124   // variable/function.
5125   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5126       D->isWeakImported()) {
5127     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5128   }
5129 
5130   if (const auto *VD = dyn_cast<VarDecl>(D))
5131     if (VD->getTLSKind())
5132       setTLSMode(GA, *VD);
5133 
5134   SetCommonAttributes(GD, GA);
5135 }
5136 
5137 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5138   const auto *D = cast<ValueDecl>(GD.getDecl());
5139   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5140   assert(IFA && "Not an ifunc?");
5141 
5142   StringRef MangledName = getMangledName(GD);
5143 
5144   if (IFA->getResolver() == MangledName) {
5145     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5146     return;
5147   }
5148 
5149   // Report an error if some definition overrides ifunc.
5150   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5151   if (Entry && !Entry->isDeclaration()) {
5152     GlobalDecl OtherGD;
5153     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5154         DiagnosedConflictingDefinitions.insert(GD).second) {
5155       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5156           << MangledName;
5157       Diags.Report(OtherGD.getDecl()->getLocation(),
5158                    diag::note_previous_definition);
5159     }
5160     return;
5161   }
5162 
5163   Aliases.push_back(GD);
5164 
5165   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5166   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5167   llvm::Constant *Resolver =
5168       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5169                               /*ForVTable=*/false);
5170   llvm::GlobalIFunc *GIF =
5171       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5172                                 "", Resolver, &getModule());
5173   if (Entry) {
5174     if (GIF->getResolver() == Entry) {
5175       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5176       return;
5177     }
5178     assert(Entry->isDeclaration());
5179 
5180     // If there is a declaration in the module, then we had an extern followed
5181     // by the ifunc, as in:
5182     //   extern int test();
5183     //   ...
5184     //   int test() __attribute__((ifunc("resolver")));
5185     //
5186     // Remove it and replace uses of it with the ifunc.
5187     GIF->takeName(Entry);
5188 
5189     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5190                                                           Entry->getType()));
5191     Entry->eraseFromParent();
5192   } else
5193     GIF->setName(MangledName);
5194 
5195   SetCommonAttributes(GD, GIF);
5196 }
5197 
5198 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5199                                             ArrayRef<llvm::Type*> Tys) {
5200   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5201                                          Tys);
5202 }
5203 
5204 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5205 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5206                          const StringLiteral *Literal, bool TargetIsLSB,
5207                          bool &IsUTF16, unsigned &StringLength) {
5208   StringRef String = Literal->getString();
5209   unsigned NumBytes = String.size();
5210 
5211   // Check for simple case.
5212   if (!Literal->containsNonAsciiOrNull()) {
5213     StringLength = NumBytes;
5214     return *Map.insert(std::make_pair(String, nullptr)).first;
5215   }
5216 
5217   // Otherwise, convert the UTF8 literals into a string of shorts.
5218   IsUTF16 = true;
5219 
5220   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5221   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5222   llvm::UTF16 *ToPtr = &ToBuf[0];
5223 
5224   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5225                                  ToPtr + NumBytes, llvm::strictConversion);
5226 
5227   // ConvertUTF8toUTF16 returns the length in ToPtr.
5228   StringLength = ToPtr - &ToBuf[0];
5229 
5230   // Add an explicit null.
5231   *ToPtr = 0;
5232   return *Map.insert(std::make_pair(
5233                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5234                                    (StringLength + 1) * 2),
5235                          nullptr)).first;
5236 }
5237 
5238 ConstantAddress
5239 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5240   unsigned StringLength = 0;
5241   bool isUTF16 = false;
5242   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5243       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5244                                getDataLayout().isLittleEndian(), isUTF16,
5245                                StringLength);
5246 
5247   if (auto *C = Entry.second)
5248     return ConstantAddress(
5249         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5250 
5251   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5252   llvm::Constant *Zeros[] = { Zero, Zero };
5253 
5254   const ASTContext &Context = getContext();
5255   const llvm::Triple &Triple = getTriple();
5256 
5257   const auto CFRuntime = getLangOpts().CFRuntime;
5258   const bool IsSwiftABI =
5259       static_cast<unsigned>(CFRuntime) >=
5260       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5261   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5262 
5263   // If we don't already have it, get __CFConstantStringClassReference.
5264   if (!CFConstantStringClassRef) {
5265     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5266     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5267     Ty = llvm::ArrayType::get(Ty, 0);
5268 
5269     switch (CFRuntime) {
5270     default: break;
5271     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5272     case LangOptions::CoreFoundationABI::Swift5_0:
5273       CFConstantStringClassName =
5274           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5275                               : "$s10Foundation19_NSCFConstantStringCN";
5276       Ty = IntPtrTy;
5277       break;
5278     case LangOptions::CoreFoundationABI::Swift4_2:
5279       CFConstantStringClassName =
5280           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5281                               : "$S10Foundation19_NSCFConstantStringCN";
5282       Ty = IntPtrTy;
5283       break;
5284     case LangOptions::CoreFoundationABI::Swift4_1:
5285       CFConstantStringClassName =
5286           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5287                               : "__T010Foundation19_NSCFConstantStringCN";
5288       Ty = IntPtrTy;
5289       break;
5290     }
5291 
5292     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5293 
5294     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5295       llvm::GlobalValue *GV = nullptr;
5296 
5297       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5298         IdentifierInfo &II = Context.Idents.get(GV->getName());
5299         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5300         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5301 
5302         const VarDecl *VD = nullptr;
5303         for (const auto *Result : DC->lookup(&II))
5304           if ((VD = dyn_cast<VarDecl>(Result)))
5305             break;
5306 
5307         if (Triple.isOSBinFormatELF()) {
5308           if (!VD)
5309             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5310         } else {
5311           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5312           if (!VD || !VD->hasAttr<DLLExportAttr>())
5313             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5314           else
5315             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5316         }
5317 
5318         setDSOLocal(GV);
5319       }
5320     }
5321 
5322     // Decay array -> ptr
5323     CFConstantStringClassRef =
5324         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5325                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5326   }
5327 
5328   QualType CFTy = Context.getCFConstantStringType();
5329 
5330   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5331 
5332   ConstantInitBuilder Builder(*this);
5333   auto Fields = Builder.beginStruct(STy);
5334 
5335   // Class pointer.
5336   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5337 
5338   // Flags.
5339   if (IsSwiftABI) {
5340     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5341     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5342   } else {
5343     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5344   }
5345 
5346   // String pointer.
5347   llvm::Constant *C = nullptr;
5348   if (isUTF16) {
5349     auto Arr = llvm::makeArrayRef(
5350         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5351         Entry.first().size() / 2);
5352     C = llvm::ConstantDataArray::get(VMContext, Arr);
5353   } else {
5354     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5355   }
5356 
5357   // Note: -fwritable-strings doesn't make the backing store strings of
5358   // CFStrings writable. (See <rdar://problem/10657500>)
5359   auto *GV =
5360       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5361                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5362   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5363   // Don't enforce the target's minimum global alignment, since the only use
5364   // of the string is via this class initializer.
5365   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5366                             : Context.getTypeAlignInChars(Context.CharTy);
5367   GV->setAlignment(Align.getAsAlign());
5368 
5369   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5370   // Without it LLVM can merge the string with a non unnamed_addr one during
5371   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5372   if (Triple.isOSBinFormatMachO())
5373     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5374                            : "__TEXT,__cstring,cstring_literals");
5375   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5376   // the static linker to adjust permissions to read-only later on.
5377   else if (Triple.isOSBinFormatELF())
5378     GV->setSection(".rodata");
5379 
5380   // String.
5381   llvm::Constant *Str =
5382       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5383 
5384   if (isUTF16)
5385     // Cast the UTF16 string to the correct type.
5386     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5387   Fields.add(Str);
5388 
5389   // String length.
5390   llvm::IntegerType *LengthTy =
5391       llvm::IntegerType::get(getModule().getContext(),
5392                              Context.getTargetInfo().getLongWidth());
5393   if (IsSwiftABI) {
5394     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5395         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5396       LengthTy = Int32Ty;
5397     else
5398       LengthTy = IntPtrTy;
5399   }
5400   Fields.addInt(LengthTy, StringLength);
5401 
5402   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5403   // properly aligned on 32-bit platforms.
5404   CharUnits Alignment =
5405       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5406 
5407   // The struct.
5408   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5409                                     /*isConstant=*/false,
5410                                     llvm::GlobalVariable::PrivateLinkage);
5411   GV->addAttribute("objc_arc_inert");
5412   switch (Triple.getObjectFormat()) {
5413   case llvm::Triple::UnknownObjectFormat:
5414     llvm_unreachable("unknown file format");
5415   case llvm::Triple::GOFF:
5416     llvm_unreachable("GOFF is not yet implemented");
5417   case llvm::Triple::XCOFF:
5418     llvm_unreachable("XCOFF is not yet implemented");
5419   case llvm::Triple::COFF:
5420   case llvm::Triple::ELF:
5421   case llvm::Triple::Wasm:
5422     GV->setSection("cfstring");
5423     break;
5424   case llvm::Triple::MachO:
5425     GV->setSection("__DATA,__cfstring");
5426     break;
5427   }
5428   Entry.second = GV;
5429 
5430   return ConstantAddress(GV, GV->getValueType(), Alignment);
5431 }
5432 
5433 bool CodeGenModule::getExpressionLocationsEnabled() const {
5434   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5435 }
5436 
5437 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5438   if (ObjCFastEnumerationStateType.isNull()) {
5439     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5440     D->startDefinition();
5441 
5442     QualType FieldTypes[] = {
5443       Context.UnsignedLongTy,
5444       Context.getPointerType(Context.getObjCIdType()),
5445       Context.getPointerType(Context.UnsignedLongTy),
5446       Context.getConstantArrayType(Context.UnsignedLongTy,
5447                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5448     };
5449 
5450     for (size_t i = 0; i < 4; ++i) {
5451       FieldDecl *Field = FieldDecl::Create(Context,
5452                                            D,
5453                                            SourceLocation(),
5454                                            SourceLocation(), nullptr,
5455                                            FieldTypes[i], /*TInfo=*/nullptr,
5456                                            /*BitWidth=*/nullptr,
5457                                            /*Mutable=*/false,
5458                                            ICIS_NoInit);
5459       Field->setAccess(AS_public);
5460       D->addDecl(Field);
5461     }
5462 
5463     D->completeDefinition();
5464     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5465   }
5466 
5467   return ObjCFastEnumerationStateType;
5468 }
5469 
5470 llvm::Constant *
5471 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5472   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5473 
5474   // Don't emit it as the address of the string, emit the string data itself
5475   // as an inline array.
5476   if (E->getCharByteWidth() == 1) {
5477     SmallString<64> Str(E->getString());
5478 
5479     // Resize the string to the right size, which is indicated by its type.
5480     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5481     Str.resize(CAT->getSize().getZExtValue());
5482     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5483   }
5484 
5485   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5486   llvm::Type *ElemTy = AType->getElementType();
5487   unsigned NumElements = AType->getNumElements();
5488 
5489   // Wide strings have either 2-byte or 4-byte elements.
5490   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5491     SmallVector<uint16_t, 32> Elements;
5492     Elements.reserve(NumElements);
5493 
5494     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5495       Elements.push_back(E->getCodeUnit(i));
5496     Elements.resize(NumElements);
5497     return llvm::ConstantDataArray::get(VMContext, Elements);
5498   }
5499 
5500   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5501   SmallVector<uint32_t, 32> Elements;
5502   Elements.reserve(NumElements);
5503 
5504   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5505     Elements.push_back(E->getCodeUnit(i));
5506   Elements.resize(NumElements);
5507   return llvm::ConstantDataArray::get(VMContext, Elements);
5508 }
5509 
5510 static llvm::GlobalVariable *
5511 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5512                       CodeGenModule &CGM, StringRef GlobalName,
5513                       CharUnits Alignment) {
5514   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5515       CGM.GetGlobalConstantAddressSpace());
5516 
5517   llvm::Module &M = CGM.getModule();
5518   // Create a global variable for this string
5519   auto *GV = new llvm::GlobalVariable(
5520       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5521       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5522   GV->setAlignment(Alignment.getAsAlign());
5523   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5524   if (GV->isWeakForLinker()) {
5525     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5526     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5527   }
5528   CGM.setDSOLocal(GV);
5529 
5530   return GV;
5531 }
5532 
5533 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5534 /// constant array for the given string literal.
5535 ConstantAddress
5536 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5537                                                   StringRef Name) {
5538   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5539 
5540   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5541   llvm::GlobalVariable **Entry = nullptr;
5542   if (!LangOpts.WritableStrings) {
5543     Entry = &ConstantStringMap[C];
5544     if (auto GV = *Entry) {
5545       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5546         GV->setAlignment(Alignment.getAsAlign());
5547       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5548                              GV->getValueType(), Alignment);
5549     }
5550   }
5551 
5552   SmallString<256> MangledNameBuffer;
5553   StringRef GlobalVariableName;
5554   llvm::GlobalValue::LinkageTypes LT;
5555 
5556   // Mangle the string literal if that's how the ABI merges duplicate strings.
5557   // Don't do it if they are writable, since we don't want writes in one TU to
5558   // affect strings in another.
5559   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5560       !LangOpts.WritableStrings) {
5561     llvm::raw_svector_ostream Out(MangledNameBuffer);
5562     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5563     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5564     GlobalVariableName = MangledNameBuffer;
5565   } else {
5566     LT = llvm::GlobalValue::PrivateLinkage;
5567     GlobalVariableName = Name;
5568   }
5569 
5570   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5571   if (Entry)
5572     *Entry = GV;
5573 
5574   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5575                                   QualType());
5576 
5577   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5578                          GV->getValueType(), Alignment);
5579 }
5580 
5581 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5582 /// array for the given ObjCEncodeExpr node.
5583 ConstantAddress
5584 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5585   std::string Str;
5586   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5587 
5588   return GetAddrOfConstantCString(Str);
5589 }
5590 
5591 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5592 /// the literal and a terminating '\0' character.
5593 /// The result has pointer to array type.
5594 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5595     const std::string &Str, const char *GlobalName) {
5596   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5597   CharUnits Alignment =
5598     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5599 
5600   llvm::Constant *C =
5601       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5602 
5603   // Don't share any string literals if strings aren't constant.
5604   llvm::GlobalVariable **Entry = nullptr;
5605   if (!LangOpts.WritableStrings) {
5606     Entry = &ConstantStringMap[C];
5607     if (auto GV = *Entry) {
5608       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5609         GV->setAlignment(Alignment.getAsAlign());
5610       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5611                              GV->getValueType(), Alignment);
5612     }
5613   }
5614 
5615   // Get the default prefix if a name wasn't specified.
5616   if (!GlobalName)
5617     GlobalName = ".str";
5618   // Create a global variable for this.
5619   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5620                                   GlobalName, Alignment);
5621   if (Entry)
5622     *Entry = GV;
5623 
5624   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5625                          GV->getValueType(), Alignment);
5626 }
5627 
5628 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5629     const MaterializeTemporaryExpr *E, const Expr *Init) {
5630   assert((E->getStorageDuration() == SD_Static ||
5631           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5632   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5633 
5634   // If we're not materializing a subobject of the temporary, keep the
5635   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5636   QualType MaterializedType = Init->getType();
5637   if (Init == E->getSubExpr())
5638     MaterializedType = E->getType();
5639 
5640   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5641 
5642   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5643   if (!InsertResult.second) {
5644     // We've seen this before: either we already created it or we're in the
5645     // process of doing so.
5646     if (!InsertResult.first->second) {
5647       // We recursively re-entered this function, probably during emission of
5648       // the initializer. Create a placeholder. We'll clean this up in the
5649       // outer call, at the end of this function.
5650       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5651       InsertResult.first->second = new llvm::GlobalVariable(
5652           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5653           nullptr);
5654     }
5655     return ConstantAddress(
5656         InsertResult.first->second,
5657         InsertResult.first->second->getType()->getPointerElementType(), Align);
5658   }
5659 
5660   // FIXME: If an externally-visible declaration extends multiple temporaries,
5661   // we need to give each temporary the same name in every translation unit (and
5662   // we also need to make the temporaries externally-visible).
5663   SmallString<256> Name;
5664   llvm::raw_svector_ostream Out(Name);
5665   getCXXABI().getMangleContext().mangleReferenceTemporary(
5666       VD, E->getManglingNumber(), Out);
5667 
5668   APValue *Value = nullptr;
5669   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5670     // If the initializer of the extending declaration is a constant
5671     // initializer, we should have a cached constant initializer for this
5672     // temporary. Note that this might have a different value from the value
5673     // computed by evaluating the initializer if the surrounding constant
5674     // expression modifies the temporary.
5675     Value = E->getOrCreateValue(false);
5676   }
5677 
5678   // Try evaluating it now, it might have a constant initializer.
5679   Expr::EvalResult EvalResult;
5680   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5681       !EvalResult.hasSideEffects())
5682     Value = &EvalResult.Val;
5683 
5684   LangAS AddrSpace =
5685       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5686 
5687   Optional<ConstantEmitter> emitter;
5688   llvm::Constant *InitialValue = nullptr;
5689   bool Constant = false;
5690   llvm::Type *Type;
5691   if (Value) {
5692     // The temporary has a constant initializer, use it.
5693     emitter.emplace(*this);
5694     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5695                                                MaterializedType);
5696     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5697     Type = InitialValue->getType();
5698   } else {
5699     // No initializer, the initialization will be provided when we
5700     // initialize the declaration which performed lifetime extension.
5701     Type = getTypes().ConvertTypeForMem(MaterializedType);
5702   }
5703 
5704   // Create a global variable for this lifetime-extended temporary.
5705   llvm::GlobalValue::LinkageTypes Linkage =
5706       getLLVMLinkageVarDefinition(VD, Constant);
5707   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5708     const VarDecl *InitVD;
5709     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5710         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5711       // Temporaries defined inside a class get linkonce_odr linkage because the
5712       // class can be defined in multiple translation units.
5713       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5714     } else {
5715       // There is no need for this temporary to have external linkage if the
5716       // VarDecl has external linkage.
5717       Linkage = llvm::GlobalVariable::InternalLinkage;
5718     }
5719   }
5720   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5721   auto *GV = new llvm::GlobalVariable(
5722       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5723       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5724   if (emitter) emitter->finalize(GV);
5725   setGVProperties(GV, VD);
5726   GV->setAlignment(Align.getAsAlign());
5727   if (supportsCOMDAT() && GV->isWeakForLinker())
5728     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5729   if (VD->getTLSKind())
5730     setTLSMode(GV, *VD);
5731   llvm::Constant *CV = GV;
5732   if (AddrSpace != LangAS::Default)
5733     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5734         *this, GV, AddrSpace, LangAS::Default,
5735         Type->getPointerTo(
5736             getContext().getTargetAddressSpace(LangAS::Default)));
5737 
5738   // Update the map with the new temporary. If we created a placeholder above,
5739   // replace it with the new global now.
5740   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5741   if (Entry) {
5742     Entry->replaceAllUsesWith(
5743         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5744     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5745   }
5746   Entry = CV;
5747 
5748   return ConstantAddress(CV, Type, Align);
5749 }
5750 
5751 /// EmitObjCPropertyImplementations - Emit information for synthesized
5752 /// properties for an implementation.
5753 void CodeGenModule::EmitObjCPropertyImplementations(const
5754                                                     ObjCImplementationDecl *D) {
5755   for (const auto *PID : D->property_impls()) {
5756     // Dynamic is just for type-checking.
5757     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5758       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5759 
5760       // Determine which methods need to be implemented, some may have
5761       // been overridden. Note that ::isPropertyAccessor is not the method
5762       // we want, that just indicates if the decl came from a
5763       // property. What we want to know is if the method is defined in
5764       // this implementation.
5765       auto *Getter = PID->getGetterMethodDecl();
5766       if (!Getter || Getter->isSynthesizedAccessorStub())
5767         CodeGenFunction(*this).GenerateObjCGetter(
5768             const_cast<ObjCImplementationDecl *>(D), PID);
5769       auto *Setter = PID->getSetterMethodDecl();
5770       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5771         CodeGenFunction(*this).GenerateObjCSetter(
5772                                  const_cast<ObjCImplementationDecl *>(D), PID);
5773     }
5774   }
5775 }
5776 
5777 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5778   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5779   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5780        ivar; ivar = ivar->getNextIvar())
5781     if (ivar->getType().isDestructedType())
5782       return true;
5783 
5784   return false;
5785 }
5786 
5787 static bool AllTrivialInitializers(CodeGenModule &CGM,
5788                                    ObjCImplementationDecl *D) {
5789   CodeGenFunction CGF(CGM);
5790   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5791        E = D->init_end(); B != E; ++B) {
5792     CXXCtorInitializer *CtorInitExp = *B;
5793     Expr *Init = CtorInitExp->getInit();
5794     if (!CGF.isTrivialInitializer(Init))
5795       return false;
5796   }
5797   return true;
5798 }
5799 
5800 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5801 /// for an implementation.
5802 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5803   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5804   if (needsDestructMethod(D)) {
5805     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5806     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5807     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5808         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5809         getContext().VoidTy, nullptr, D,
5810         /*isInstance=*/true, /*isVariadic=*/false,
5811         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5812         /*isImplicitlyDeclared=*/true,
5813         /*isDefined=*/false, ObjCMethodDecl::Required);
5814     D->addInstanceMethod(DTORMethod);
5815     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5816     D->setHasDestructors(true);
5817   }
5818 
5819   // If the implementation doesn't have any ivar initializers, we don't need
5820   // a .cxx_construct.
5821   if (D->getNumIvarInitializers() == 0 ||
5822       AllTrivialInitializers(*this, D))
5823     return;
5824 
5825   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5826   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5827   // The constructor returns 'self'.
5828   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5829       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5830       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5831       /*isVariadic=*/false,
5832       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5833       /*isImplicitlyDeclared=*/true,
5834       /*isDefined=*/false, ObjCMethodDecl::Required);
5835   D->addInstanceMethod(CTORMethod);
5836   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5837   D->setHasNonZeroConstructors(true);
5838 }
5839 
5840 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5841 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5842   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5843       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5844     ErrorUnsupported(LSD, "linkage spec");
5845     return;
5846   }
5847 
5848   EmitDeclContext(LSD);
5849 }
5850 
5851 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5852   for (auto *I : DC->decls()) {
5853     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5854     // are themselves considered "top-level", so EmitTopLevelDecl on an
5855     // ObjCImplDecl does not recursively visit them. We need to do that in
5856     // case they're nested inside another construct (LinkageSpecDecl /
5857     // ExportDecl) that does stop them from being considered "top-level".
5858     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5859       for (auto *M : OID->methods())
5860         EmitTopLevelDecl(M);
5861     }
5862 
5863     EmitTopLevelDecl(I);
5864   }
5865 }
5866 
5867 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5868 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5869   // Ignore dependent declarations.
5870   if (D->isTemplated())
5871     return;
5872 
5873   // Consteval function shouldn't be emitted.
5874   if (auto *FD = dyn_cast<FunctionDecl>(D))
5875     if (FD->isConsteval())
5876       return;
5877 
5878   switch (D->getKind()) {
5879   case Decl::CXXConversion:
5880   case Decl::CXXMethod:
5881   case Decl::Function:
5882     EmitGlobal(cast<FunctionDecl>(D));
5883     // Always provide some coverage mapping
5884     // even for the functions that aren't emitted.
5885     AddDeferredUnusedCoverageMapping(D);
5886     break;
5887 
5888   case Decl::CXXDeductionGuide:
5889     // Function-like, but does not result in code emission.
5890     break;
5891 
5892   case Decl::Var:
5893   case Decl::Decomposition:
5894   case Decl::VarTemplateSpecialization:
5895     EmitGlobal(cast<VarDecl>(D));
5896     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5897       for (auto *B : DD->bindings())
5898         if (auto *HD = B->getHoldingVar())
5899           EmitGlobal(HD);
5900     break;
5901 
5902   // Indirect fields from global anonymous structs and unions can be
5903   // ignored; only the actual variable requires IR gen support.
5904   case Decl::IndirectField:
5905     break;
5906 
5907   // C++ Decls
5908   case Decl::Namespace:
5909     EmitDeclContext(cast<NamespaceDecl>(D));
5910     break;
5911   case Decl::ClassTemplateSpecialization: {
5912     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5913     if (CGDebugInfo *DI = getModuleDebugInfo())
5914       if (Spec->getSpecializationKind() ==
5915               TSK_ExplicitInstantiationDefinition &&
5916           Spec->hasDefinition())
5917         DI->completeTemplateDefinition(*Spec);
5918   } LLVM_FALLTHROUGH;
5919   case Decl::CXXRecord: {
5920     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5921     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5922       if (CRD->hasDefinition())
5923         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5924       if (auto *ES = D->getASTContext().getExternalSource())
5925         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5926           DI->completeUnusedClass(*CRD);
5927     }
5928     // Emit any static data members, they may be definitions.
5929     for (auto *I : CRD->decls())
5930       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5931         EmitTopLevelDecl(I);
5932     break;
5933   }
5934     // No code generation needed.
5935   case Decl::UsingShadow:
5936   case Decl::ClassTemplate:
5937   case Decl::VarTemplate:
5938   case Decl::Concept:
5939   case Decl::VarTemplatePartialSpecialization:
5940   case Decl::FunctionTemplate:
5941   case Decl::TypeAliasTemplate:
5942   case Decl::Block:
5943   case Decl::Empty:
5944   case Decl::Binding:
5945     break;
5946   case Decl::Using:          // using X; [C++]
5947     if (CGDebugInfo *DI = getModuleDebugInfo())
5948         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5949     break;
5950   case Decl::UsingEnum: // using enum X; [C++]
5951     if (CGDebugInfo *DI = getModuleDebugInfo())
5952       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
5953     break;
5954   case Decl::NamespaceAlias:
5955     if (CGDebugInfo *DI = getModuleDebugInfo())
5956         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5957     break;
5958   case Decl::UsingDirective: // using namespace X; [C++]
5959     if (CGDebugInfo *DI = getModuleDebugInfo())
5960       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5961     break;
5962   case Decl::CXXConstructor:
5963     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5964     break;
5965   case Decl::CXXDestructor:
5966     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5967     break;
5968 
5969   case Decl::StaticAssert:
5970     // Nothing to do.
5971     break;
5972 
5973   // Objective-C Decls
5974 
5975   // Forward declarations, no (immediate) code generation.
5976   case Decl::ObjCInterface:
5977   case Decl::ObjCCategory:
5978     break;
5979 
5980   case Decl::ObjCProtocol: {
5981     auto *Proto = cast<ObjCProtocolDecl>(D);
5982     if (Proto->isThisDeclarationADefinition())
5983       ObjCRuntime->GenerateProtocol(Proto);
5984     break;
5985   }
5986 
5987   case Decl::ObjCCategoryImpl:
5988     // Categories have properties but don't support synthesize so we
5989     // can ignore them here.
5990     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5991     break;
5992 
5993   case Decl::ObjCImplementation: {
5994     auto *OMD = cast<ObjCImplementationDecl>(D);
5995     EmitObjCPropertyImplementations(OMD);
5996     EmitObjCIvarInitializations(OMD);
5997     ObjCRuntime->GenerateClass(OMD);
5998     // Emit global variable debug information.
5999     if (CGDebugInfo *DI = getModuleDebugInfo())
6000       if (getCodeGenOpts().hasReducedDebugInfo())
6001         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6002             OMD->getClassInterface()), OMD->getLocation());
6003     break;
6004   }
6005   case Decl::ObjCMethod: {
6006     auto *OMD = cast<ObjCMethodDecl>(D);
6007     // If this is not a prototype, emit the body.
6008     if (OMD->getBody())
6009       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6010     break;
6011   }
6012   case Decl::ObjCCompatibleAlias:
6013     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6014     break;
6015 
6016   case Decl::PragmaComment: {
6017     const auto *PCD = cast<PragmaCommentDecl>(D);
6018     switch (PCD->getCommentKind()) {
6019     case PCK_Unknown:
6020       llvm_unreachable("unexpected pragma comment kind");
6021     case PCK_Linker:
6022       AppendLinkerOptions(PCD->getArg());
6023       break;
6024     case PCK_Lib:
6025         AddDependentLib(PCD->getArg());
6026       break;
6027     case PCK_Compiler:
6028     case PCK_ExeStr:
6029     case PCK_User:
6030       break; // We ignore all of these.
6031     }
6032     break;
6033   }
6034 
6035   case Decl::PragmaDetectMismatch: {
6036     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6037     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6038     break;
6039   }
6040 
6041   case Decl::LinkageSpec:
6042     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6043     break;
6044 
6045   case Decl::FileScopeAsm: {
6046     // File-scope asm is ignored during device-side CUDA compilation.
6047     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6048       break;
6049     // File-scope asm is ignored during device-side OpenMP compilation.
6050     if (LangOpts.OpenMPIsDevice)
6051       break;
6052     // File-scope asm is ignored during device-side SYCL compilation.
6053     if (LangOpts.SYCLIsDevice)
6054       break;
6055     auto *AD = cast<FileScopeAsmDecl>(D);
6056     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6057     break;
6058   }
6059 
6060   case Decl::Import: {
6061     auto *Import = cast<ImportDecl>(D);
6062 
6063     // If we've already imported this module, we're done.
6064     if (!ImportedModules.insert(Import->getImportedModule()))
6065       break;
6066 
6067     // Emit debug information for direct imports.
6068     if (!Import->getImportedOwningModule()) {
6069       if (CGDebugInfo *DI = getModuleDebugInfo())
6070         DI->EmitImportDecl(*Import);
6071     }
6072 
6073     // Find all of the submodules and emit the module initializers.
6074     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6075     SmallVector<clang::Module *, 16> Stack;
6076     Visited.insert(Import->getImportedModule());
6077     Stack.push_back(Import->getImportedModule());
6078 
6079     while (!Stack.empty()) {
6080       clang::Module *Mod = Stack.pop_back_val();
6081       if (!EmittedModuleInitializers.insert(Mod).second)
6082         continue;
6083 
6084       for (auto *D : Context.getModuleInitializers(Mod))
6085         EmitTopLevelDecl(D);
6086 
6087       // Visit the submodules of this module.
6088       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6089                                              SubEnd = Mod->submodule_end();
6090            Sub != SubEnd; ++Sub) {
6091         // Skip explicit children; they need to be explicitly imported to emit
6092         // the initializers.
6093         if ((*Sub)->IsExplicit)
6094           continue;
6095 
6096         if (Visited.insert(*Sub).second)
6097           Stack.push_back(*Sub);
6098       }
6099     }
6100     break;
6101   }
6102 
6103   case Decl::Export:
6104     EmitDeclContext(cast<ExportDecl>(D));
6105     break;
6106 
6107   case Decl::OMPThreadPrivate:
6108     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6109     break;
6110 
6111   case Decl::OMPAllocate:
6112     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6113     break;
6114 
6115   case Decl::OMPDeclareReduction:
6116     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6117     break;
6118 
6119   case Decl::OMPDeclareMapper:
6120     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6121     break;
6122 
6123   case Decl::OMPRequires:
6124     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6125     break;
6126 
6127   case Decl::Typedef:
6128   case Decl::TypeAlias: // using foo = bar; [C++11]
6129     if (CGDebugInfo *DI = getModuleDebugInfo())
6130       DI->EmitAndRetainType(
6131           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6132     break;
6133 
6134   case Decl::Record:
6135     if (CGDebugInfo *DI = getModuleDebugInfo())
6136       if (cast<RecordDecl>(D)->getDefinition())
6137         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6138     break;
6139 
6140   case Decl::Enum:
6141     if (CGDebugInfo *DI = getModuleDebugInfo())
6142       if (cast<EnumDecl>(D)->getDefinition())
6143         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6144     break;
6145 
6146   default:
6147     // Make sure we handled everything we should, every other kind is a
6148     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6149     // function. Need to recode Decl::Kind to do that easily.
6150     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6151     break;
6152   }
6153 }
6154 
6155 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6156   // Do we need to generate coverage mapping?
6157   if (!CodeGenOpts.CoverageMapping)
6158     return;
6159   switch (D->getKind()) {
6160   case Decl::CXXConversion:
6161   case Decl::CXXMethod:
6162   case Decl::Function:
6163   case Decl::ObjCMethod:
6164   case Decl::CXXConstructor:
6165   case Decl::CXXDestructor: {
6166     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6167       break;
6168     SourceManager &SM = getContext().getSourceManager();
6169     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6170       break;
6171     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6172     if (I == DeferredEmptyCoverageMappingDecls.end())
6173       DeferredEmptyCoverageMappingDecls[D] = true;
6174     break;
6175   }
6176   default:
6177     break;
6178   };
6179 }
6180 
6181 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6182   // Do we need to generate coverage mapping?
6183   if (!CodeGenOpts.CoverageMapping)
6184     return;
6185   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6186     if (Fn->isTemplateInstantiation())
6187       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6188   }
6189   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6190   if (I == DeferredEmptyCoverageMappingDecls.end())
6191     DeferredEmptyCoverageMappingDecls[D] = false;
6192   else
6193     I->second = false;
6194 }
6195 
6196 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6197   // We call takeVector() here to avoid use-after-free.
6198   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6199   // we deserialize function bodies to emit coverage info for them, and that
6200   // deserializes more declarations. How should we handle that case?
6201   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6202     if (!Entry.second)
6203       continue;
6204     const Decl *D = Entry.first;
6205     switch (D->getKind()) {
6206     case Decl::CXXConversion:
6207     case Decl::CXXMethod:
6208     case Decl::Function:
6209     case Decl::ObjCMethod: {
6210       CodeGenPGO PGO(*this);
6211       GlobalDecl GD(cast<FunctionDecl>(D));
6212       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6213                                   getFunctionLinkage(GD));
6214       break;
6215     }
6216     case Decl::CXXConstructor: {
6217       CodeGenPGO PGO(*this);
6218       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6219       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6220                                   getFunctionLinkage(GD));
6221       break;
6222     }
6223     case Decl::CXXDestructor: {
6224       CodeGenPGO PGO(*this);
6225       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6226       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6227                                   getFunctionLinkage(GD));
6228       break;
6229     }
6230     default:
6231       break;
6232     };
6233   }
6234 }
6235 
6236 void CodeGenModule::EmitMainVoidAlias() {
6237   // In order to transition away from "__original_main" gracefully, emit an
6238   // alias for "main" in the no-argument case so that libc can detect when
6239   // new-style no-argument main is in used.
6240   if (llvm::Function *F = getModule().getFunction("main")) {
6241     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6242         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
6243       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
6244   }
6245 }
6246 
6247 /// Turns the given pointer into a constant.
6248 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6249                                           const void *Ptr) {
6250   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6251   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6252   return llvm::ConstantInt::get(i64, PtrInt);
6253 }
6254 
6255 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6256                                    llvm::NamedMDNode *&GlobalMetadata,
6257                                    GlobalDecl D,
6258                                    llvm::GlobalValue *Addr) {
6259   if (!GlobalMetadata)
6260     GlobalMetadata =
6261       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6262 
6263   // TODO: should we report variant information for ctors/dtors?
6264   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6265                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6266                                CGM.getLLVMContext(), D.getDecl()))};
6267   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6268 }
6269 
6270 /// For each function which is declared within an extern "C" region and marked
6271 /// as 'used', but has internal linkage, create an alias from the unmangled
6272 /// name to the mangled name if possible. People expect to be able to refer
6273 /// to such functions with an unmangled name from inline assembly within the
6274 /// same translation unit.
6275 void CodeGenModule::EmitStaticExternCAliases() {
6276   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6277     return;
6278   for (auto &I : StaticExternCValues) {
6279     IdentifierInfo *Name = I.first;
6280     llvm::GlobalValue *Val = I.second;
6281     if (Val && !getModule().getNamedValue(Name->getName()))
6282       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6283   }
6284 }
6285 
6286 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6287                                              GlobalDecl &Result) const {
6288   auto Res = Manglings.find(MangledName);
6289   if (Res == Manglings.end())
6290     return false;
6291   Result = Res->getValue();
6292   return true;
6293 }
6294 
6295 /// Emits metadata nodes associating all the global values in the
6296 /// current module with the Decls they came from.  This is useful for
6297 /// projects using IR gen as a subroutine.
6298 ///
6299 /// Since there's currently no way to associate an MDNode directly
6300 /// with an llvm::GlobalValue, we create a global named metadata
6301 /// with the name 'clang.global.decl.ptrs'.
6302 void CodeGenModule::EmitDeclMetadata() {
6303   llvm::NamedMDNode *GlobalMetadata = nullptr;
6304 
6305   for (auto &I : MangledDeclNames) {
6306     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6307     // Some mangled names don't necessarily have an associated GlobalValue
6308     // in this module, e.g. if we mangled it for DebugInfo.
6309     if (Addr)
6310       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6311   }
6312 }
6313 
6314 /// Emits metadata nodes for all the local variables in the current
6315 /// function.
6316 void CodeGenFunction::EmitDeclMetadata() {
6317   if (LocalDeclMap.empty()) return;
6318 
6319   llvm::LLVMContext &Context = getLLVMContext();
6320 
6321   // Find the unique metadata ID for this name.
6322   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6323 
6324   llvm::NamedMDNode *GlobalMetadata = nullptr;
6325 
6326   for (auto &I : LocalDeclMap) {
6327     const Decl *D = I.first;
6328     llvm::Value *Addr = I.second.getPointer();
6329     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6330       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6331       Alloca->setMetadata(
6332           DeclPtrKind, llvm::MDNode::get(
6333                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6334     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6335       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6336       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6337     }
6338   }
6339 }
6340 
6341 void CodeGenModule::EmitVersionIdentMetadata() {
6342   llvm::NamedMDNode *IdentMetadata =
6343     TheModule.getOrInsertNamedMetadata("llvm.ident");
6344   std::string Version = getClangFullVersion();
6345   llvm::LLVMContext &Ctx = TheModule.getContext();
6346 
6347   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6348   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6349 }
6350 
6351 void CodeGenModule::EmitCommandLineMetadata() {
6352   llvm::NamedMDNode *CommandLineMetadata =
6353     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6354   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6355   llvm::LLVMContext &Ctx = TheModule.getContext();
6356 
6357   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6358   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6359 }
6360 
6361 void CodeGenModule::EmitCoverageFile() {
6362   if (getCodeGenOpts().CoverageDataFile.empty() &&
6363       getCodeGenOpts().CoverageNotesFile.empty())
6364     return;
6365 
6366   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6367   if (!CUNode)
6368     return;
6369 
6370   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6371   llvm::LLVMContext &Ctx = TheModule.getContext();
6372   auto *CoverageDataFile =
6373       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6374   auto *CoverageNotesFile =
6375       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6376   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6377     llvm::MDNode *CU = CUNode->getOperand(i);
6378     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6379     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6380   }
6381 }
6382 
6383 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6384                                                        bool ForEH) {
6385   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6386   // FIXME: should we even be calling this method if RTTI is disabled
6387   // and it's not for EH?
6388   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6389       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6390        getTriple().isNVPTX()))
6391     return llvm::Constant::getNullValue(Int8PtrTy);
6392 
6393   if (ForEH && Ty->isObjCObjectPointerType() &&
6394       LangOpts.ObjCRuntime.isGNUFamily())
6395     return ObjCRuntime->GetEHType(Ty);
6396 
6397   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6398 }
6399 
6400 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6401   // Do not emit threadprivates in simd-only mode.
6402   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6403     return;
6404   for (auto RefExpr : D->varlists()) {
6405     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6406     bool PerformInit =
6407         VD->getAnyInitializer() &&
6408         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6409                                                         /*ForRef=*/false);
6410 
6411     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6412     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6413             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6414       CXXGlobalInits.push_back(InitFunction);
6415   }
6416 }
6417 
6418 llvm::Metadata *
6419 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6420                                             StringRef Suffix) {
6421   if (auto *FnType = T->getAs<FunctionProtoType>())
6422     T = getContext().getFunctionType(
6423         FnType->getReturnType(), FnType->getParamTypes(),
6424         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6425 
6426   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6427   if (InternalId)
6428     return InternalId;
6429 
6430   if (isExternallyVisible(T->getLinkage())) {
6431     std::string OutName;
6432     llvm::raw_string_ostream Out(OutName);
6433     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6434     Out << Suffix;
6435 
6436     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6437   } else {
6438     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6439                                            llvm::ArrayRef<llvm::Metadata *>());
6440   }
6441 
6442   return InternalId;
6443 }
6444 
6445 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6446   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6447 }
6448 
6449 llvm::Metadata *
6450 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6451   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6452 }
6453 
6454 // Generalize pointer types to a void pointer with the qualifiers of the
6455 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6456 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6457 // 'void *'.
6458 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6459   if (!Ty->isPointerType())
6460     return Ty;
6461 
6462   return Ctx.getPointerType(
6463       QualType(Ctx.VoidTy).withCVRQualifiers(
6464           Ty->getPointeeType().getCVRQualifiers()));
6465 }
6466 
6467 // Apply type generalization to a FunctionType's return and argument types
6468 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6469   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6470     SmallVector<QualType, 8> GeneralizedParams;
6471     for (auto &Param : FnType->param_types())
6472       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6473 
6474     return Ctx.getFunctionType(
6475         GeneralizeType(Ctx, FnType->getReturnType()),
6476         GeneralizedParams, FnType->getExtProtoInfo());
6477   }
6478 
6479   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6480     return Ctx.getFunctionNoProtoType(
6481         GeneralizeType(Ctx, FnType->getReturnType()));
6482 
6483   llvm_unreachable("Encountered unknown FunctionType");
6484 }
6485 
6486 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6487   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6488                                       GeneralizedMetadataIdMap, ".generalized");
6489 }
6490 
6491 /// Returns whether this module needs the "all-vtables" type identifier.
6492 bool CodeGenModule::NeedAllVtablesTypeId() const {
6493   // Returns true if at least one of vtable-based CFI checkers is enabled and
6494   // is not in the trapping mode.
6495   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6496            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6497           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6498            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6499           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6500            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6501           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6502            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6503 }
6504 
6505 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6506                                           CharUnits Offset,
6507                                           const CXXRecordDecl *RD) {
6508   llvm::Metadata *MD =
6509       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6510   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6511 
6512   if (CodeGenOpts.SanitizeCfiCrossDso)
6513     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6514       VTable->addTypeMetadata(Offset.getQuantity(),
6515                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6516 
6517   if (NeedAllVtablesTypeId()) {
6518     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6519     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6520   }
6521 }
6522 
6523 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6524   if (!SanStats)
6525     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6526 
6527   return *SanStats;
6528 }
6529 
6530 llvm::Value *
6531 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6532                                                   CodeGenFunction &CGF) {
6533   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6534   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6535   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6536   auto *Call = CGF.EmitRuntimeCall(
6537       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6538   return Call;
6539 }
6540 
6541 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6542     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6543   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6544                                  /* forPointeeType= */ true);
6545 }
6546 
6547 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6548                                                  LValueBaseInfo *BaseInfo,
6549                                                  TBAAAccessInfo *TBAAInfo,
6550                                                  bool forPointeeType) {
6551   if (TBAAInfo)
6552     *TBAAInfo = getTBAAAccessInfo(T);
6553 
6554   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6555   // that doesn't return the information we need to compute BaseInfo.
6556 
6557   // Honor alignment typedef attributes even on incomplete types.
6558   // We also honor them straight for C++ class types, even as pointees;
6559   // there's an expressivity gap here.
6560   if (auto TT = T->getAs<TypedefType>()) {
6561     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6562       if (BaseInfo)
6563         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6564       return getContext().toCharUnitsFromBits(Align);
6565     }
6566   }
6567 
6568   bool AlignForArray = T->isArrayType();
6569 
6570   // Analyze the base element type, so we don't get confused by incomplete
6571   // array types.
6572   T = getContext().getBaseElementType(T);
6573 
6574   if (T->isIncompleteType()) {
6575     // We could try to replicate the logic from
6576     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6577     // type is incomplete, so it's impossible to test. We could try to reuse
6578     // getTypeAlignIfKnown, but that doesn't return the information we need
6579     // to set BaseInfo.  So just ignore the possibility that the alignment is
6580     // greater than one.
6581     if (BaseInfo)
6582       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6583     return CharUnits::One();
6584   }
6585 
6586   if (BaseInfo)
6587     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6588 
6589   CharUnits Alignment;
6590   const CXXRecordDecl *RD;
6591   if (T.getQualifiers().hasUnaligned()) {
6592     Alignment = CharUnits::One();
6593   } else if (forPointeeType && !AlignForArray &&
6594              (RD = T->getAsCXXRecordDecl())) {
6595     // For C++ class pointees, we don't know whether we're pointing at a
6596     // base or a complete object, so we generally need to use the
6597     // non-virtual alignment.
6598     Alignment = getClassPointerAlignment(RD);
6599   } else {
6600     Alignment = getContext().getTypeAlignInChars(T);
6601   }
6602 
6603   // Cap to the global maximum type alignment unless the alignment
6604   // was somehow explicit on the type.
6605   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6606     if (Alignment.getQuantity() > MaxAlign &&
6607         !getContext().isAlignmentRequired(T))
6608       Alignment = CharUnits::fromQuantity(MaxAlign);
6609   }
6610   return Alignment;
6611 }
6612 
6613 bool CodeGenModule::stopAutoInit() {
6614   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6615   if (StopAfter) {
6616     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6617     // used
6618     if (NumAutoVarInit >= StopAfter) {
6619       return true;
6620     }
6621     if (!NumAutoVarInit) {
6622       unsigned DiagID = getDiags().getCustomDiagID(
6623           DiagnosticsEngine::Warning,
6624           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6625           "number of times ftrivial-auto-var-init=%1 gets applied.");
6626       getDiags().Report(DiagID)
6627           << StopAfter
6628           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6629                       LangOptions::TrivialAutoVarInitKind::Zero
6630                   ? "zero"
6631                   : "pattern");
6632     }
6633     ++NumAutoVarInit;
6634   }
6635   return false;
6636 }
6637 
6638 void CodeGenModule::printPostfixForExternalizedStaticVar(
6639     llvm::raw_ostream &OS) const {
6640   OS << "__static__" << getContext().getCUIDHash();
6641 }
6642