1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Diagnostic.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Basic/ConvertUTF.h" 28 #include "llvm/CallingConv.h" 29 #include "llvm/Module.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/Target/TargetData.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 37 llvm::Module &M, const llvm::TargetData &TD, 38 Diagnostic &diags) 39 : BlockModule(C, M, TD, Types, *this), Context(C), 40 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 41 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 42 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 43 44 if (!Features.ObjC1) 45 Runtime = 0; 46 else if (!Features.NeXTRuntime) 47 Runtime = CreateGNUObjCRuntime(*this); 48 else if (Features.ObjCNonFragileABI) 49 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 50 else 51 Runtime = CreateMacObjCRuntime(*this); 52 53 // If debug info generation is enabled, create the CGDebugInfo object. 54 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 55 } 56 57 CodeGenModule::~CodeGenModule() { 58 delete Runtime; 59 delete DebugInfo; 60 } 61 62 void CodeGenModule::Release() { 63 EmitDeferred(); 64 if (Runtime) 65 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 66 AddGlobalCtor(ObjCInitFunction); 67 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 68 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 69 EmitAnnotations(); 70 EmitLLVMUsed(); 71 } 72 73 /// ErrorUnsupported - Print out an error that codegen doesn't support the 74 /// specified stmt yet. 75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 76 bool OmitOnError) { 77 if (OmitOnError && getDiags().hasErrorOccurred()) 78 return; 79 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 80 "cannot compile this %0 yet"); 81 std::string Msg = Type; 82 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 83 << Msg << S->getSourceRange(); 84 } 85 86 /// ErrorUnsupported - Print out an error that codegen doesn't support the 87 /// specified decl yet. 88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 89 bool OmitOnError) { 90 if (OmitOnError && getDiags().hasErrorOccurred()) 91 return; 92 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 93 "cannot compile this %0 yet"); 94 std::string Msg = Type; 95 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 96 } 97 98 LangOptions::VisibilityMode 99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 100 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 101 if (VD->getStorageClass() == VarDecl::PrivateExtern) 102 return LangOptions::Hidden; 103 104 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 105 switch (attr->getVisibility()) { 106 default: assert(0 && "Unknown visibility!"); 107 case VisibilityAttr::DefaultVisibility: 108 return LangOptions::Default; 109 case VisibilityAttr::HiddenVisibility: 110 return LangOptions::Hidden; 111 case VisibilityAttr::ProtectedVisibility: 112 return LangOptions::Protected; 113 } 114 } 115 116 return getLangOptions().getVisibilityMode(); 117 } 118 119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 120 const Decl *D) const { 121 // Internal definitions always have default visibility. 122 if (GV->hasLocalLinkage()) { 123 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 124 return; 125 } 126 127 switch (getDeclVisibilityMode(D)) { 128 default: assert(0 && "Unknown visibility!"); 129 case LangOptions::Default: 130 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 131 case LangOptions::Hidden: 132 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 133 case LangOptions::Protected: 134 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 135 } 136 } 137 138 /// \brief Retrieves the mangled name for the given declaration. 139 /// 140 /// If the given declaration requires a mangled name, returns an 141 /// const char* containing the mangled name. Otherwise, returns 142 /// the unmangled name. 143 /// 144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 145 // In C, functions with no attributes never need to be mangled. Fastpath them. 146 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 147 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 148 return ND->getNameAsCString(); 149 } 150 151 llvm::SmallString<256> Name; 152 llvm::raw_svector_ostream Out(Name); 153 if (!mangleName(ND, Context, Out)) { 154 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 155 return ND->getNameAsCString(); 156 } 157 158 Name += '\0'; 159 return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData(); 160 } 161 162 /// AddGlobalCtor - Add a function to the list that will be called before 163 /// main() runs. 164 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 165 // FIXME: Type coercion of void()* types. 166 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 167 } 168 169 /// AddGlobalDtor - Add a function to the list that will be called 170 /// when the module is unloaded. 171 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 172 // FIXME: Type coercion of void()* types. 173 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 174 } 175 176 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 177 // Ctor function type is void()*. 178 llvm::FunctionType* CtorFTy = 179 llvm::FunctionType::get(llvm::Type::VoidTy, 180 std::vector<const llvm::Type*>(), 181 false); 182 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 183 184 // Get the type of a ctor entry, { i32, void ()* }. 185 llvm::StructType* CtorStructTy = 186 llvm::StructType::get(llvm::Type::Int32Ty, 187 llvm::PointerType::getUnqual(CtorFTy), NULL); 188 189 // Construct the constructor and destructor arrays. 190 std::vector<llvm::Constant*> Ctors; 191 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 192 std::vector<llvm::Constant*> S; 193 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 194 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 195 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 196 } 197 198 if (!Ctors.empty()) { 199 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 200 new llvm::GlobalVariable(AT, false, 201 llvm::GlobalValue::AppendingLinkage, 202 llvm::ConstantArray::get(AT, Ctors), 203 GlobalName, 204 &TheModule); 205 } 206 } 207 208 void CodeGenModule::EmitAnnotations() { 209 if (Annotations.empty()) 210 return; 211 212 // Create a new global variable for the ConstantStruct in the Module. 213 llvm::Constant *Array = 214 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 215 Annotations.size()), 216 Annotations); 217 llvm::GlobalValue *gv = 218 new llvm::GlobalVariable(Array->getType(), false, 219 llvm::GlobalValue::AppendingLinkage, Array, 220 "llvm.global.annotations", &TheModule); 221 gv->setSection("llvm.metadata"); 222 } 223 224 /// SetGlobalValueAttributes - Set attributes for a global. 225 /// 226 /// FIXME: This is currently only done for aliases and functions, but 227 /// not for variables (these details are set in 228 /// EmitGlobalVarDefinition for variables). 229 void CodeGenModule::SetGVDefinitionAttributes(const Decl *D, 230 GVALinkage Linkage, 231 llvm::GlobalValue *GV) { 232 if (Linkage == GVA_Internal) { 233 GV->setLinkage(llvm::Function::InternalLinkage); 234 } else if (D->hasAttr<DLLExportAttr>()) { 235 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 236 // The dllexport attribute is ignored for undefined symbols. 237 if (FD->getBody()) 238 GV->setLinkage(llvm::Function::DLLExportLinkage); 239 } else { 240 GV->setLinkage(llvm::Function::DLLExportLinkage); 241 } 242 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 243 GV->setLinkage(llvm::Function::WeakAnyLinkage); 244 } else if (Linkage == GVA_ExternInline) { 245 // "extern inline" always gets available_externally linkage, which is the 246 // strongest linkage type we can give an inline function: we don't have to 247 // codegen the definition at all, yet we know that it is "ODR". 248 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 249 } else if (Linkage == GVA_Inline) { 250 // The definition of inline changes based on the language. Note that we 251 // have already handled "static inline" above, with the GVA_Internal case. 252 if (Features.CPlusPlus) { 253 // In C++, the compiler has to emit a definition in every translation unit 254 // that references the function. We should use linkonce_odr because 255 // a) if all references in this translation unit are optimized away, we 256 // don't need to codegen it. b) if the function persists, it needs to be 257 // merged with other definitions. c) C++ has the ODR, so we know the 258 // definition is dependable. 259 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 260 } else if (Features.C99) { 261 // In C99 mode, 'inline' functions are guaranteed to have a strong 262 // definition somewhere else, so we can use available_externally linkage. 263 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 264 } else { 265 // In C89 mode, an 'inline' function may only occur in one translation 266 // unit in the program, but may be extern'd in others. Give it strong 267 // external linkage. 268 GV->setLinkage(llvm::Function::ExternalLinkage); 269 } 270 } 271 272 setGlobalVisibility(GV, D); 273 274 // Only add to llvm.used when we see a definition, otherwise we 275 // might add it multiple times or risk the value being replaced by 276 // a subsequent RAUW. 277 if (D->hasAttr<UsedAttr>()) 278 AddUsedGlobal(GV); 279 280 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 281 GV->setSection(SA->getName()); 282 } 283 284 void CodeGenModule::SetGVDeclarationAttributes(const Decl *D, 285 llvm::GlobalValue *GV) { 286 // Only a few attributes are set on declarations; these may later be 287 // overridden by a definition. 288 289 // The dllimport attribute is overridden by a subsequent declaration as 290 // dllexport. 291 if (D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 292 // dllimport attribute can be applied only to function decls, not to 293 // definitions. 294 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 295 if (!FD->getBody()) 296 GV->setLinkage(llvm::Function::DLLImportLinkage); 297 } else 298 GV->setLinkage(llvm::Function::DLLImportLinkage); 299 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 300 // "extern_weak" is overloaded in LLVM; we probably should have 301 // separate linkage types for this. 302 GV->setLinkage(llvm::Function::ExternalWeakLinkage); 303 } 304 305 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 306 GV->setSection(SA->getName()); 307 } 308 309 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 310 const CGFunctionInfo &Info, 311 llvm::Function *F) { 312 AttributeListType AttributeList; 313 ConstructAttributeList(Info, D, AttributeList); 314 315 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 316 AttributeList.size())); 317 318 // Set the appropriate calling convention for the Function. 319 if (D->hasAttr<FastCallAttr>()) 320 F->setCallingConv(llvm::CallingConv::X86_FastCall); 321 322 if (D->hasAttr<StdCallAttr>()) 323 F->setCallingConv(llvm::CallingConv::X86_StdCall); 324 } 325 326 327 static CodeGenModule::GVALinkage 328 GetLinkageForFunctionOrMethodDecl(const Decl *D) { 329 if (isa<ObjCMethodDecl>(D)) 330 return CodeGenModule::GVA_Internal; 331 332 const FunctionDecl *FD = cast<FunctionDecl>(D); 333 // "static" and attr(always_inline) functions get internal linkage. 334 if (FD->getStorageClass() == FunctionDecl::Static || 335 FD->hasAttr<AlwaysInlineAttr>()) 336 return CodeGenModule::GVA_Internal; 337 338 if (FD->isInline()) { 339 if (FD->getStorageClass() == FunctionDecl::Extern) 340 return CodeGenModule::GVA_ExternInline; 341 return CodeGenModule::GVA_Inline; 342 } 343 344 return CodeGenModule::GVA_Normal; 345 } 346 347 /// SetFunctionAttributesForDefinition - Set function attributes 348 /// specific to a function definition. 349 void CodeGenModule::SetFunctionAttributesForDefinition(const Decl *D, 350 llvm::Function *F) { 351 SetGVDefinitionAttributes(D, GetLinkageForFunctionOrMethodDecl(D), F); 352 353 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 354 F->addFnAttr(llvm::Attribute::NoUnwind); 355 356 if (D->hasAttr<AlwaysInlineAttr>()) 357 F->addFnAttr(llvm::Attribute::AlwaysInline); 358 359 if (D->hasAttr<NoinlineAttr>()) 360 F->addFnAttr(llvm::Attribute::NoInline); 361 } 362 363 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD, 364 llvm::Function *F) { 365 SetLLVMFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F); 366 367 SetFunctionAttributesForDefinition(MD, F); 368 } 369 370 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 371 llvm::Function *F) { 372 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 373 374 SetGVDeclarationAttributes(FD, F); 375 } 376 377 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 378 assert(!GV->isDeclaration() && 379 "Only globals with definition can force usage."); 380 LLVMUsed.push_back(GV); 381 } 382 383 void CodeGenModule::EmitLLVMUsed() { 384 // Don't create llvm.used if there is no need. 385 if (LLVMUsed.empty()) 386 return; 387 388 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 389 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size()); 390 391 // Convert LLVMUsed to what ConstantArray needs. 392 std::vector<llvm::Constant*> UsedArray; 393 UsedArray.resize(LLVMUsed.size()); 394 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 395 UsedArray[i] = 396 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 397 } 398 399 llvm::GlobalVariable *GV = 400 new llvm::GlobalVariable(ATy, false, 401 llvm::GlobalValue::AppendingLinkage, 402 llvm::ConstantArray::get(ATy, UsedArray), 403 "llvm.used", &getModule()); 404 405 GV->setSection("llvm.metadata"); 406 } 407 408 void CodeGenModule::EmitDeferred() { 409 // Emit code for any potentially referenced deferred decls. Since a 410 // previously unused static decl may become used during the generation of code 411 // for a static function, iterate until no changes are made. 412 while (!DeferredDeclsToEmit.empty()) { 413 const ValueDecl *D = DeferredDeclsToEmit.back(); 414 DeferredDeclsToEmit.pop_back(); 415 416 // The mangled name for the decl must have been emitted in GlobalDeclMap. 417 // Look it up to see if it was defined with a stronger definition (e.g. an 418 // extern inline function with a strong function redefinition). If so, 419 // just ignore the deferred decl. 420 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 421 assert(CGRef && "Deferred decl wasn't referenced?"); 422 423 if (!CGRef->isDeclaration()) 424 continue; 425 426 // Otherwise, emit the definition and move on to the next one. 427 EmitGlobalDefinition(D); 428 } 429 } 430 431 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 432 /// annotation information for a given GlobalValue. The annotation struct is 433 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 434 /// GlobalValue being annotated. The second field is the constant string 435 /// created from the AnnotateAttr's annotation. The third field is a constant 436 /// string containing the name of the translation unit. The fourth field is 437 /// the line number in the file of the annotated value declaration. 438 /// 439 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 440 /// appears to. 441 /// 442 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 443 const AnnotateAttr *AA, 444 unsigned LineNo) { 445 llvm::Module *M = &getModule(); 446 447 // get [N x i8] constants for the annotation string, and the filename string 448 // which are the 2nd and 3rd elements of the global annotation structure. 449 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 450 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 451 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 452 true); 453 454 // Get the two global values corresponding to the ConstantArrays we just 455 // created to hold the bytes of the strings. 456 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 457 llvm::GlobalValue *annoGV = 458 new llvm::GlobalVariable(anno->getType(), false, 459 llvm::GlobalValue::InternalLinkage, anno, 460 GV->getName() + StringPrefix, M); 461 // translation unit name string, emitted into the llvm.metadata section. 462 llvm::GlobalValue *unitGV = 463 new llvm::GlobalVariable(unit->getType(), false, 464 llvm::GlobalValue::InternalLinkage, unit, 465 StringPrefix, M); 466 467 // Create the ConstantStruct that is the global annotion. 468 llvm::Constant *Fields[4] = { 469 llvm::ConstantExpr::getBitCast(GV, SBP), 470 llvm::ConstantExpr::getBitCast(annoGV, SBP), 471 llvm::ConstantExpr::getBitCast(unitGV, SBP), 472 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 473 }; 474 return llvm::ConstantStruct::get(Fields, 4, false); 475 } 476 477 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 478 // Never defer when EmitAllDecls is specified or the decl has 479 // attribute used. 480 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 481 return false; 482 483 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 484 // Constructors and destructors should never be deferred. 485 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 486 return false; 487 488 GVALinkage Linkage = GetLinkageForFunctionOrMethodDecl(FD); 489 490 // static, static inline, always_inline, and extern inline functions can 491 // always be deferred. 492 if (Linkage == GVA_Internal || Linkage == GVA_ExternInline) 493 return true; 494 495 // inline functions can be deferred unless we're in C89 mode. 496 if (Linkage == GVA_Inline && (Features.C99 || Features.CPlusPlus)) 497 return true; 498 499 return false; 500 } 501 502 const VarDecl *VD = cast<VarDecl>(Global); 503 assert(VD->isFileVarDecl() && "Invalid decl"); 504 return VD->getStorageClass() == VarDecl::Static; 505 } 506 507 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 508 // If this is an alias definition (which otherwise looks like a declaration) 509 // emit it now. 510 if (Global->hasAttr<AliasAttr>()) 511 return EmitAliasDefinition(Global); 512 513 // Ignore declarations, they will be emitted on their first use. 514 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 515 // Forward declarations are emitted lazily on first use. 516 if (!FD->isThisDeclarationADefinition()) 517 return; 518 } else { 519 const VarDecl *VD = cast<VarDecl>(Global); 520 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 521 522 // Forward declarations are emitted lazily on first use. 523 if (!VD->getInit() && VD->hasExternalStorage()) 524 return; 525 } 526 527 // Defer code generation when possible if this is a static definition, inline 528 // function etc. These we only want to emit if they are used. 529 if (MayDeferGeneration(Global)) { 530 // If the value has already been used, add it directly to the 531 // DeferredDeclsToEmit list. 532 const char *MangledName = getMangledName(Global); 533 if (GlobalDeclMap.count(MangledName)) 534 DeferredDeclsToEmit.push_back(Global); 535 else { 536 // Otherwise, remember that we saw a deferred decl with this name. The 537 // first use of the mangled name will cause it to move into 538 // DeferredDeclsToEmit. 539 DeferredDecls[MangledName] = Global; 540 } 541 return; 542 } 543 544 // Otherwise emit the definition. 545 EmitGlobalDefinition(Global); 546 } 547 548 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 549 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 550 EmitGlobalFunctionDefinition(FD); 551 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 552 EmitGlobalVarDefinition(VD); 553 } else { 554 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 555 } 556 } 557 558 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 559 /// module, create and return an llvm Function with the specified type. If there 560 /// is something in the module with the specified name, return it potentially 561 /// bitcasted to the right type. 562 /// 563 /// If D is non-null, it specifies a decl that correspond to this. This is used 564 /// to set the attributes on the function when it is first created. 565 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 566 const llvm::Type *Ty, 567 const FunctionDecl *D) { 568 // Lookup the entry, lazily creating it if necessary. 569 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 570 if (Entry) { 571 if (Entry->getType()->getElementType() == Ty) 572 return Entry; 573 574 // Make sure the result is of the correct type. 575 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 576 return llvm::ConstantExpr::getBitCast(Entry, PTy); 577 } 578 579 // This is the first use or definition of a mangled name. If there is a 580 // deferred decl with this name, remember that we need to emit it at the end 581 // of the file. 582 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 583 DeferredDecls.find(MangledName); 584 if (DDI != DeferredDecls.end()) { 585 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 586 // list, and remove it from DeferredDecls (since we don't need it anymore). 587 DeferredDeclsToEmit.push_back(DDI->second); 588 DeferredDecls.erase(DDI); 589 } 590 591 // This function doesn't have a complete type (for example, the return 592 // type is an incomplete struct). Use a fake type instead, and make 593 // sure not to try to set attributes. 594 bool ShouldSetAttributes = true; 595 if (!isa<llvm::FunctionType>(Ty)) { 596 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 597 std::vector<const llvm::Type*>(), false); 598 ShouldSetAttributes = false; 599 } 600 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 601 llvm::Function::ExternalLinkage, 602 "", &getModule()); 603 F->setName(MangledName); 604 if (D && ShouldSetAttributes) 605 SetFunctionAttributes(D, F); 606 Entry = F; 607 return F; 608 } 609 610 /// GetAddrOfFunction - Return the address of the given function. If Ty is 611 /// non-null, then this function will use the specified type if it has to 612 /// create it (this occurs when we see a definition of the function). 613 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D, 614 const llvm::Type *Ty) { 615 // If there was no specific requested type, just convert it now. 616 if (!Ty) 617 Ty = getTypes().ConvertType(D->getType()); 618 return GetOrCreateLLVMFunction(getMangledName(D), Ty, D); 619 } 620 621 /// CreateRuntimeFunction - Create a new runtime function with the specified 622 /// type and name. 623 llvm::Constant * 624 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 625 const char *Name) { 626 // Convert Name to be a uniqued string from the IdentifierInfo table. 627 Name = getContext().Idents.get(Name).getName(); 628 return GetOrCreateLLVMFunction(Name, FTy, 0); 629 } 630 631 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 632 /// create and return an llvm GlobalVariable with the specified type. If there 633 /// is something in the module with the specified name, return it potentially 634 /// bitcasted to the right type. 635 /// 636 /// If D is non-null, it specifies a decl that correspond to this. This is used 637 /// to set the attributes on the global when it is first created. 638 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 639 const llvm::PointerType*Ty, 640 const VarDecl *D) { 641 // Lookup the entry, lazily creating it if necessary. 642 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 643 if (Entry) { 644 if (Entry->getType() == Ty) 645 return Entry; 646 647 // Make sure the result is of the correct type. 648 return llvm::ConstantExpr::getBitCast(Entry, Ty); 649 } 650 651 // We don't support __thread yet. 652 if (D && D->isThreadSpecified()) 653 ErrorUnsupported(D, "thread local ('__thread') variable", true); 654 655 // This is the first use or definition of a mangled name. If there is a 656 // deferred decl with this name, remember that we need to emit it at the end 657 // of the file. 658 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 659 DeferredDecls.find(MangledName); 660 if (DDI != DeferredDecls.end()) { 661 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 662 // list, and remove it from DeferredDecls (since we don't need it anymore). 663 DeferredDeclsToEmit.push_back(DDI->second); 664 DeferredDecls.erase(DDI); 665 } 666 667 llvm::GlobalVariable *GV = 668 new llvm::GlobalVariable(Ty->getElementType(), false, 669 llvm::GlobalValue::ExternalLinkage, 670 0, "", &getModule(), 671 0, Ty->getAddressSpace()); 672 GV->setName(MangledName); 673 674 // Handle things which are present even on external declarations. 675 if (D) { 676 // FIXME: This code is overly simple and should be merged with 677 // other global handling. 678 GV->setConstant(D->getType().isConstant(Context)); 679 680 // FIXME: Merge with other attribute handling code. 681 if (D->getStorageClass() == VarDecl::PrivateExtern) 682 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 683 684 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 685 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 686 } 687 688 return Entry = GV; 689 } 690 691 692 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 693 /// given global variable. If Ty is non-null and if the global doesn't exist, 694 /// then it will be greated with the specified type instead of whatever the 695 /// normal requested type would be. 696 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 697 const llvm::Type *Ty) { 698 assert(D->hasGlobalStorage() && "Not a global variable"); 699 QualType ASTTy = D->getType(); 700 if (Ty == 0) 701 Ty = getTypes().ConvertTypeForMem(ASTTy); 702 703 const llvm::PointerType *PTy = 704 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 705 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 706 } 707 708 /// CreateRuntimeVariable - Create a new runtime global variable with the 709 /// specified type and name. 710 llvm::Constant * 711 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 712 const char *Name) { 713 // Convert Name to be a uniqued string from the IdentifierInfo table. 714 Name = getContext().Idents.get(Name).getName(); 715 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 716 } 717 718 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 719 llvm::Constant *Init = 0; 720 QualType ASTTy = D->getType(); 721 722 if (D->getInit() == 0) { 723 // This is a tentative definition; tentative definitions are 724 // implicitly initialized with { 0 } 725 const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy); 726 if (ASTTy->isIncompleteArrayType()) { 727 // An incomplete array is normally [ TYPE x 0 ], but we need 728 // to fix it to [ TYPE x 1 ]. 729 const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy); 730 InitTy = llvm::ArrayType::get(ATy->getElementType(), 1); 731 } 732 Init = llvm::Constant::getNullValue(InitTy); 733 } else { 734 Init = EmitConstantExpr(D->getInit(), D->getType()); 735 if (!Init) { 736 ErrorUnsupported(D, "static initializer"); 737 QualType T = D->getInit()->getType(); 738 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 739 } 740 } 741 742 const llvm::Type* InitType = Init->getType(); 743 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 744 745 // Strip off a bitcast if we got one back. 746 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 747 assert(CE->getOpcode() == llvm::Instruction::BitCast); 748 Entry = CE->getOperand(0); 749 } 750 751 // Entry is now either a Function or GlobalVariable. 752 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 753 754 // If we already have this global and it has an initializer, then 755 // we are in the rare situation where we emitted the defining 756 // declaration of the global and are now being asked to emit a 757 // definition which would be common. This occurs, for example, in 758 // the following situation because statics can be emitted out of 759 // order: 760 // 761 // static int x; 762 // static int *y = &x; 763 // static int x = 10; 764 // int **z = &y; 765 // 766 // Bail here so we don't blow away the definition. Note that if we 767 // can't distinguish here if we emitted a definition with a null 768 // initializer, but this case is safe. 769 if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) { 770 assert(!D->getInit() && "Emitting multiple definitions of a decl!"); 771 return; 772 } 773 774 // We have a definition after a declaration with the wrong type. 775 // We must make a new GlobalVariable* and update everything that used OldGV 776 // (a declaration or tentative definition) with the new GlobalVariable* 777 // (which will be a definition). 778 // 779 // This happens if there is a prototype for a global (e.g. 780 // "extern int x[];") and then a definition of a different type (e.g. 781 // "int x[10];"). This also happens when an initializer has a different type 782 // from the type of the global (this happens with unions). 783 if (GV == 0 || 784 GV->getType()->getElementType() != InitType || 785 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 786 787 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 788 GlobalDeclMap.erase(getMangledName(D)); 789 790 // Make a new global with the correct type, this is now guaranteed to work. 791 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 792 GV->takeName(cast<llvm::GlobalValue>(Entry)); 793 794 // Replace all uses of the old global with the new global 795 llvm::Constant *NewPtrForOldDecl = 796 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 797 Entry->replaceAllUsesWith(NewPtrForOldDecl); 798 799 // Erase the old global, since it is no longer used. 800 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 801 } 802 803 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 804 SourceManager &SM = Context.getSourceManager(); 805 AddAnnotation(EmitAnnotateAttr(GV, AA, 806 SM.getInstantiationLineNumber(D->getLocation()))); 807 } 808 809 GV->setInitializer(Init); 810 GV->setConstant(D->getType().isConstant(Context)); 811 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 812 813 // Set the llvm linkage type as appropriate. 814 if (D->getStorageClass() == VarDecl::Static) 815 GV->setLinkage(llvm::Function::InternalLinkage); 816 else if (D->hasAttr<DLLImportAttr>()) 817 GV->setLinkage(llvm::Function::DLLImportLinkage); 818 else if (D->hasAttr<DLLExportAttr>()) 819 GV->setLinkage(llvm::Function::DLLExportLinkage); 820 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 821 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 822 else if (!CompileOpts.NoCommon && 823 (!D->hasExternalStorage() && !D->getInit())) 824 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 825 else 826 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 827 828 setGlobalVisibility(GV, D); 829 830 if (D->hasAttr<UsedAttr>()) 831 AddUsedGlobal(GV); 832 833 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 834 GV->setSection(SA->getName()); 835 836 // Emit global variable debug information. 837 if (CGDebugInfo *DI = getDebugInfo()) { 838 DI->setLocation(D->getLocation()); 839 DI->EmitGlobalVariable(GV, D); 840 } 841 } 842 843 844 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 845 const llvm::FunctionType *Ty; 846 847 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 848 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 849 850 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 851 } else { 852 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 853 854 // As a special case, make sure that definitions of K&R function 855 // "type foo()" aren't declared as varargs (which forces the backend 856 // to do unnecessary work). 857 if (D->getType()->isFunctionNoProtoType()) { 858 assert(Ty->isVarArg() && "Didn't lower type as expected"); 859 // Due to stret, the lowered function could have arguments. 860 // Just create the same type as was lowered by ConvertType 861 // but strip off the varargs bit. 862 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 863 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 864 } 865 } 866 867 // Get or create the prototype for teh function. 868 llvm::Constant *Entry = GetAddrOfFunction(D, Ty); 869 870 // Strip off a bitcast if we got one back. 871 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 872 assert(CE->getOpcode() == llvm::Instruction::BitCast); 873 Entry = CE->getOperand(0); 874 } 875 876 877 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 878 // If the types mismatch then we have to rewrite the definition. 879 assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() && 880 "Shouldn't replace non-declaration"); 881 882 // F is the Function* for the one with the wrong type, we must make a new 883 // Function* and update everything that used F (a declaration) with the new 884 // Function* (which will be a definition). 885 // 886 // This happens if there is a prototype for a function 887 // (e.g. "int f()") and then a definition of a different type 888 // (e.g. "int f(int x)"). Start by making a new function of the 889 // correct type, RAUW, then steal the name. 890 GlobalDeclMap.erase(getMangledName(D)); 891 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty)); 892 NewFn->takeName(cast<llvm::GlobalValue>(Entry)); 893 894 // Replace uses of F with the Function we will endow with a body. 895 llvm::Constant *NewPtrForOldDecl = 896 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 897 Entry->replaceAllUsesWith(NewPtrForOldDecl); 898 899 // Ok, delete the old function now, which is dead. 900 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 901 902 Entry = NewFn; 903 } 904 905 llvm::Function *Fn = cast<llvm::Function>(Entry); 906 907 CodeGenFunction(*this).GenerateCode(D, Fn); 908 909 SetFunctionAttributesForDefinition(D, Fn); 910 911 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 912 AddGlobalCtor(Fn, CA->getPriority()); 913 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 914 AddGlobalDtor(Fn, DA->getPriority()); 915 } 916 917 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 918 const AliasAttr *AA = D->getAttr<AliasAttr>(); 919 assert(AA && "Not an alias?"); 920 921 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 922 923 // Unique the name through the identifier table. 924 const char *AliaseeName = AA->getAliasee().c_str(); 925 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 926 927 // Create a reference to the named value. This ensures that it is emitted 928 // if a deferred decl. 929 llvm::Constant *Aliasee; 930 if (isa<llvm::FunctionType>(DeclTy)) 931 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0); 932 else 933 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 934 llvm::PointerType::getUnqual(DeclTy), 0); 935 936 // Create the new alias itself, but don't set a name yet. 937 llvm::GlobalValue *GA = 938 new llvm::GlobalAlias(Aliasee->getType(), 939 llvm::Function::ExternalLinkage, 940 "", Aliasee, &getModule()); 941 942 // See if there is already something with the alias' name in the module. 943 const char *MangledName = getMangledName(D); 944 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 945 946 if (Entry && !Entry->isDeclaration()) { 947 // If there is a definition in the module, then it wins over the alias. 948 // This is dubious, but allow it to be safe. Just ignore the alias. 949 GA->eraseFromParent(); 950 return; 951 } 952 953 if (Entry) { 954 // If there is a declaration in the module, then we had an extern followed 955 // by the alias, as in: 956 // extern int test6(); 957 // ... 958 // int test6() __attribute__((alias("test7"))); 959 // 960 // Remove it and replace uses of it with the alias. 961 962 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 963 Entry->getType())); 964 Entry->eraseFromParent(); 965 } 966 967 // Now we know that there is no conflict, set the name. 968 Entry = GA; 969 GA->setName(MangledName); 970 971 // Alias should never be internal or inline. 972 SetGVDefinitionAttributes(D, GVA_Normal, GA); 973 } 974 975 /// getBuiltinLibFunction - Given a builtin id for a function like 976 /// "__builtin_fabsf", return a Function* for "fabsf". 977 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 978 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 979 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 980 "isn't a lib fn"); 981 982 // Get the name, skip over the __builtin_ prefix (if necessary). 983 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 984 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 985 Name += 10; 986 987 // Get the type for the builtin. 988 Builtin::Context::GetBuiltinTypeError Error; 989 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); 990 assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); 991 992 const llvm::FunctionType *Ty = 993 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 994 995 // Unique the name through the identifier table. 996 Name = getContext().Idents.get(Name).getName(); 997 // FIXME: param attributes for sext/zext etc. 998 return GetOrCreateLLVMFunction(Name, Ty, 0); 999 } 1000 1001 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1002 unsigned NumTys) { 1003 return llvm::Intrinsic::getDeclaration(&getModule(), 1004 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1005 } 1006 1007 llvm::Function *CodeGenModule::getMemCpyFn() { 1008 if (MemCpyFn) return MemCpyFn; 1009 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1010 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1011 } 1012 1013 llvm::Function *CodeGenModule::getMemMoveFn() { 1014 if (MemMoveFn) return MemMoveFn; 1015 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1016 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1017 } 1018 1019 llvm::Function *CodeGenModule::getMemSetFn() { 1020 if (MemSetFn) return MemSetFn; 1021 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1022 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1023 } 1024 1025 static void appendFieldAndPadding(CodeGenModule &CGM, 1026 std::vector<llvm::Constant*>& Fields, 1027 FieldDecl *FieldD, FieldDecl *NextFieldD, 1028 llvm::Constant* Field, 1029 RecordDecl* RD, const llvm::StructType *STy) { 1030 // Append the field. 1031 Fields.push_back(Field); 1032 1033 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1034 1035 int NextStructFieldNo; 1036 if (!NextFieldD) { 1037 NextStructFieldNo = STy->getNumElements(); 1038 } else { 1039 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1040 } 1041 1042 // Append padding 1043 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1044 llvm::Constant *C = 1045 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1046 1047 Fields.push_back(C); 1048 } 1049 } 1050 1051 llvm::Constant *CodeGenModule:: 1052 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1053 std::string str; 1054 unsigned StringLength; 1055 1056 bool isUTF16 = false; 1057 if (Literal->containsNonAsciiOrNull()) { 1058 // Convert from UTF-8 to UTF-16. 1059 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1060 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1061 UTF16 *ToPtr = &ToBuf[0]; 1062 1063 ConversionResult Result; 1064 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1065 &ToPtr, ToPtr+Literal->getByteLength(), 1066 strictConversion); 1067 if (Result == conversionOK) { 1068 // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings 1069 // without doing more surgery to this routine. Since we aren't explicitly 1070 // checking for endianness here, it's also a bug (when generating code for 1071 // a target that doesn't match the host endianness). Modeling this as an 1072 // i16 array is likely the cleanest solution. 1073 StringLength = ToPtr-&ToBuf[0]; 1074 str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars. 1075 isUTF16 = true; 1076 } else if (Result == sourceIllegal) { 1077 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string. 1078 str.assign(Literal->getStrData(), Literal->getByteLength()); 1079 StringLength = str.length(); 1080 } else 1081 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1082 1083 } else { 1084 str.assign(Literal->getStrData(), Literal->getByteLength()); 1085 StringLength = str.length(); 1086 } 1087 llvm::StringMapEntry<llvm::Constant *> &Entry = 1088 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1089 1090 if (llvm::Constant *C = Entry.getValue()) 1091 return C; 1092 1093 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1094 llvm::Constant *Zeros[] = { Zero, Zero }; 1095 1096 if (!CFConstantStringClassRef) { 1097 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1098 Ty = llvm::ArrayType::get(Ty, 0); 1099 1100 // FIXME: This is fairly broken if 1101 // __CFConstantStringClassReference is already defined, in that it 1102 // will get renamed and the user will most likely see an opaque 1103 // error message. This is a general issue with relying on 1104 // particular names. 1105 llvm::GlobalVariable *GV = 1106 new llvm::GlobalVariable(Ty, false, 1107 llvm::GlobalVariable::ExternalLinkage, 0, 1108 "__CFConstantStringClassReference", 1109 &getModule()); 1110 1111 // Decay array -> ptr 1112 CFConstantStringClassRef = 1113 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1114 } 1115 1116 QualType CFTy = getContext().getCFConstantStringType(); 1117 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1118 1119 const llvm::StructType *STy = 1120 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1121 1122 std::vector<llvm::Constant*> Fields; 1123 RecordDecl::field_iterator Field = CFRD->field_begin(getContext()); 1124 1125 // Class pointer. 1126 FieldDecl *CurField = *Field++; 1127 FieldDecl *NextField = *Field++; 1128 appendFieldAndPadding(*this, Fields, CurField, NextField, 1129 CFConstantStringClassRef, CFRD, STy); 1130 1131 // Flags. 1132 CurField = NextField; 1133 NextField = *Field++; 1134 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1135 appendFieldAndPadding(*this, Fields, CurField, NextField, 1136 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1137 : llvm::ConstantInt::get(Ty, 0x07C8), 1138 CFRD, STy); 1139 1140 // String pointer. 1141 CurField = NextField; 1142 NextField = *Field++; 1143 llvm::Constant *C = llvm::ConstantArray::get(str); 1144 1145 const char *Sect, *Prefix; 1146 bool isConstant; 1147 if (isUTF16) { 1148 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1149 Sect = getContext().Target.getUnicodeStringSection(); 1150 // FIXME: Why does GCC not set constant here? 1151 isConstant = false; 1152 } else { 1153 Prefix = getContext().Target.getStringSymbolPrefix(true); 1154 Sect = getContext().Target.getCFStringDataSection(); 1155 // FIXME: -fwritable-strings should probably affect this, but we 1156 // are following gcc here. 1157 isConstant = true; 1158 } 1159 llvm::GlobalVariable *GV = 1160 new llvm::GlobalVariable(C->getType(), isConstant, 1161 llvm::GlobalValue::InternalLinkage, 1162 C, Prefix, &getModule()); 1163 if (Sect) 1164 GV->setSection(Sect); 1165 if (isUTF16) { 1166 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1167 GV->setAlignment(Align); 1168 } 1169 appendFieldAndPadding(*this, Fields, CurField, NextField, 1170 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1171 CFRD, STy); 1172 1173 // String length. 1174 CurField = NextField; 1175 NextField = 0; 1176 Ty = getTypes().ConvertType(getContext().LongTy); 1177 appendFieldAndPadding(*this, Fields, CurField, NextField, 1178 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1179 1180 // The struct. 1181 C = llvm::ConstantStruct::get(STy, Fields); 1182 GV = new llvm::GlobalVariable(C->getType(), true, 1183 llvm::GlobalVariable::InternalLinkage, C, 1184 getContext().Target.getCFStringSymbolPrefix(), 1185 &getModule()); 1186 if (const char *Sect = getContext().Target.getCFStringSection()) 1187 GV->setSection(Sect); 1188 Entry.setValue(GV); 1189 1190 return GV; 1191 } 1192 1193 /// GetStringForStringLiteral - Return the appropriate bytes for a 1194 /// string literal, properly padded to match the literal type. 1195 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1196 const char *StrData = E->getStrData(); 1197 unsigned Len = E->getByteLength(); 1198 1199 const ConstantArrayType *CAT = 1200 getContext().getAsConstantArrayType(E->getType()); 1201 assert(CAT && "String isn't pointer or array!"); 1202 1203 // Resize the string to the right size. 1204 std::string Str(StrData, StrData+Len); 1205 uint64_t RealLen = CAT->getSize().getZExtValue(); 1206 1207 if (E->isWide()) 1208 RealLen *= getContext().Target.getWCharWidth()/8; 1209 1210 Str.resize(RealLen, '\0'); 1211 1212 return Str; 1213 } 1214 1215 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1216 /// constant array for the given string literal. 1217 llvm::Constant * 1218 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1219 // FIXME: This can be more efficient. 1220 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1221 } 1222 1223 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1224 /// array for the given ObjCEncodeExpr node. 1225 llvm::Constant * 1226 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1227 std::string Str; 1228 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1229 1230 return GetAddrOfConstantCString(Str); 1231 } 1232 1233 1234 /// GenerateWritableString -- Creates storage for a string literal. 1235 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1236 bool constant, 1237 CodeGenModule &CGM, 1238 const char *GlobalName) { 1239 // Create Constant for this string literal. Don't add a '\0'. 1240 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1241 1242 // Create a global variable for this string 1243 return new llvm::GlobalVariable(C->getType(), constant, 1244 llvm::GlobalValue::InternalLinkage, 1245 C, GlobalName, &CGM.getModule()); 1246 } 1247 1248 /// GetAddrOfConstantString - Returns a pointer to a character array 1249 /// containing the literal. This contents are exactly that of the 1250 /// given string, i.e. it will not be null terminated automatically; 1251 /// see GetAddrOfConstantCString. Note that whether the result is 1252 /// actually a pointer to an LLVM constant depends on 1253 /// Feature.WriteableStrings. 1254 /// 1255 /// The result has pointer to array type. 1256 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1257 const char *GlobalName) { 1258 bool IsConstant = !Features.WritableStrings; 1259 1260 // Get the default prefix if a name wasn't specified. 1261 if (!GlobalName) 1262 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1263 1264 // Don't share any string literals if strings aren't constant. 1265 if (!IsConstant) 1266 return GenerateStringLiteral(str, false, *this, GlobalName); 1267 1268 llvm::StringMapEntry<llvm::Constant *> &Entry = 1269 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1270 1271 if (Entry.getValue()) 1272 return Entry.getValue(); 1273 1274 // Create a global variable for this. 1275 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1276 Entry.setValue(C); 1277 return C; 1278 } 1279 1280 /// GetAddrOfConstantCString - Returns a pointer to a character 1281 /// array containing the literal and a terminating '\-' 1282 /// character. The result has pointer to array type. 1283 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1284 const char *GlobalName){ 1285 return GetAddrOfConstantString(str + '\0', GlobalName); 1286 } 1287 1288 /// EmitObjCPropertyImplementations - Emit information for synthesized 1289 /// properties for an implementation. 1290 void CodeGenModule::EmitObjCPropertyImplementations(const 1291 ObjCImplementationDecl *D) { 1292 for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), 1293 e = D->propimpl_end(); i != e; ++i) { 1294 ObjCPropertyImplDecl *PID = *i; 1295 1296 // Dynamic is just for type-checking. 1297 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1298 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1299 1300 // Determine which methods need to be implemented, some may have 1301 // been overridden. Note that ::isSynthesized is not the method 1302 // we want, that just indicates if the decl came from a 1303 // property. What we want to know is if the method is defined in 1304 // this implementation. 1305 if (!D->getInstanceMethod(PD->getGetterName())) 1306 CodeGenFunction(*this).GenerateObjCGetter( 1307 const_cast<ObjCImplementationDecl *>(D), PID); 1308 if (!PD->isReadOnly() && 1309 !D->getInstanceMethod(PD->getSetterName())) 1310 CodeGenFunction(*this).GenerateObjCSetter( 1311 const_cast<ObjCImplementationDecl *>(D), PID); 1312 } 1313 } 1314 } 1315 1316 /// EmitNamespace - Emit all declarations in a namespace. 1317 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1318 for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()), 1319 E = ND->decls_end(getContext()); 1320 I != E; ++I) 1321 EmitTopLevelDecl(*I); 1322 } 1323 1324 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1325 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1326 if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { 1327 ErrorUnsupported(LSD, "linkage spec"); 1328 return; 1329 } 1330 1331 for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()), 1332 E = LSD->decls_end(getContext()); 1333 I != E; ++I) 1334 EmitTopLevelDecl(*I); 1335 } 1336 1337 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1338 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1339 // If an error has occurred, stop code generation, but continue 1340 // parsing and semantic analysis (to ensure all warnings and errors 1341 // are emitted). 1342 if (Diags.hasErrorOccurred()) 1343 return; 1344 1345 switch (D->getKind()) { 1346 case Decl::CXXMethod: 1347 case Decl::Function: 1348 case Decl::Var: 1349 EmitGlobal(cast<ValueDecl>(D)); 1350 break; 1351 1352 case Decl::Namespace: 1353 EmitNamespace(cast<NamespaceDecl>(D)); 1354 break; 1355 1356 // Objective-C Decls 1357 1358 // Forward declarations, no (immediate) code generation. 1359 case Decl::ObjCClass: 1360 case Decl::ObjCForwardProtocol: 1361 case Decl::ObjCCategory: 1362 break; 1363 case Decl::ObjCInterface: 1364 // If we already laid out this interface due to an @class, and if we 1365 // codegen'd a reference it, update the 'opaque' type to be a real type now. 1366 Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D)); 1367 break; 1368 1369 case Decl::ObjCProtocol: 1370 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1371 break; 1372 1373 case Decl::ObjCCategoryImpl: 1374 // Categories have properties but don't support synthesize so we 1375 // can ignore them here. 1376 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1377 break; 1378 1379 case Decl::ObjCImplementation: { 1380 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1381 EmitObjCPropertyImplementations(OMD); 1382 Runtime->GenerateClass(OMD); 1383 break; 1384 } 1385 case Decl::ObjCMethod: { 1386 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1387 // If this is not a prototype, emit the body. 1388 if (OMD->getBody()) 1389 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1390 break; 1391 } 1392 case Decl::ObjCCompatibleAlias: 1393 // compatibility-alias is a directive and has no code gen. 1394 break; 1395 1396 case Decl::LinkageSpec: 1397 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1398 break; 1399 1400 case Decl::FileScopeAsm: { 1401 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1402 std::string AsmString(AD->getAsmString()->getStrData(), 1403 AD->getAsmString()->getByteLength()); 1404 1405 const std::string &S = getModule().getModuleInlineAsm(); 1406 if (S.empty()) 1407 getModule().setModuleInlineAsm(AsmString); 1408 else 1409 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1410 break; 1411 } 1412 1413 default: 1414 // Make sure we handled everything we should, every other kind is 1415 // a non-top-level decl. FIXME: Would be nice to have an 1416 // isTopLevelDeclKind function. Need to recode Decl::Kind to do 1417 // that easily. 1418 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1419 } 1420 } 1421