1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/CodeGen/CodeGenOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/Basic/Builtins.h" 26 #include "clang/Basic/Diagnostic.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Basic/ConvertUTF.h" 30 #include "llvm/CallingConv.h" 31 #include "llvm/Module.h" 32 #include "llvm/Intrinsics.h" 33 #include "llvm/Target/TargetData.h" 34 #include "llvm/Support/ErrorHandling.h" 35 using namespace clang; 36 using namespace CodeGen; 37 38 39 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 40 llvm::Module &M, const llvm::TargetData &TD, 41 Diagnostic &diags) 42 : BlockModule(C, M, TD, Types, *this), Context(C), 43 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 44 TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C), 45 VtableInfo(*this), Runtime(0), 46 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 47 VMContext(M.getContext()) { 48 49 if (!Features.ObjC1) 50 Runtime = 0; 51 else if (!Features.NeXTRuntime) 52 Runtime = CreateGNUObjCRuntime(*this); 53 else if (Features.ObjCNonFragileABI) 54 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 55 else 56 Runtime = CreateMacObjCRuntime(*this); 57 58 // If debug info generation is enabled, create the CGDebugInfo object. 59 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 60 } 61 62 CodeGenModule::~CodeGenModule() { 63 delete Runtime; 64 delete DebugInfo; 65 } 66 67 void CodeGenModule::Release() { 68 // We need to call this first because it can add deferred declarations. 69 EmitCXXGlobalInitFunc(); 70 71 EmitDeferred(); 72 if (Runtime) 73 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 74 AddGlobalCtor(ObjCInitFunction); 75 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 76 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 77 EmitAnnotations(); 78 EmitLLVMUsed(); 79 } 80 81 /// ErrorUnsupported - Print out an error that codegen doesn't support the 82 /// specified stmt yet. 83 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 84 bool OmitOnError) { 85 if (OmitOnError && getDiags().hasErrorOccurred()) 86 return; 87 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 88 "cannot compile this %0 yet"); 89 std::string Msg = Type; 90 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 91 << Msg << S->getSourceRange(); 92 } 93 94 /// ErrorUnsupported - Print out an error that codegen doesn't support the 95 /// specified decl yet. 96 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 97 bool OmitOnError) { 98 if (OmitOnError && getDiags().hasErrorOccurred()) 99 return; 100 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 101 "cannot compile this %0 yet"); 102 std::string Msg = Type; 103 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 104 } 105 106 LangOptions::VisibilityMode 107 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 108 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 109 if (VD->getStorageClass() == VarDecl::PrivateExtern) 110 return LangOptions::Hidden; 111 112 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 113 switch (attr->getVisibility()) { 114 default: assert(0 && "Unknown visibility!"); 115 case VisibilityAttr::DefaultVisibility: 116 return LangOptions::Default; 117 case VisibilityAttr::HiddenVisibility: 118 return LangOptions::Hidden; 119 case VisibilityAttr::ProtectedVisibility: 120 return LangOptions::Protected; 121 } 122 } 123 124 return getLangOptions().getVisibilityMode(); 125 } 126 127 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 128 const Decl *D) const { 129 // Internal definitions always have default visibility. 130 if (GV->hasLocalLinkage()) { 131 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 132 return; 133 } 134 135 switch (getDeclVisibilityMode(D)) { 136 default: assert(0 && "Unknown visibility!"); 137 case LangOptions::Default: 138 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 139 case LangOptions::Hidden: 140 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 141 case LangOptions::Protected: 142 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 143 } 144 } 145 146 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 147 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 148 149 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 150 return getMangledCXXCtorName(D, GD.getCtorType()); 151 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 152 return getMangledCXXDtorName(D, GD.getDtorType()); 153 154 return getMangledName(ND); 155 } 156 157 /// \brief Retrieves the mangled name for the given declaration. 158 /// 159 /// If the given declaration requires a mangled name, returns an 160 /// const char* containing the mangled name. Otherwise, returns 161 /// the unmangled name. 162 /// 163 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 164 if (!getMangleContext().shouldMangleDeclName(ND)) { 165 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 166 return ND->getNameAsCString(); 167 } 168 169 llvm::SmallString<256> Name; 170 getMangleContext().mangleName(ND, Name); 171 Name += '\0'; 172 return UniqueMangledName(Name.begin(), Name.end()); 173 } 174 175 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 176 const char *NameEnd) { 177 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 178 179 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 180 } 181 182 /// AddGlobalCtor - Add a function to the list that will be called before 183 /// main() runs. 184 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 185 // FIXME: Type coercion of void()* types. 186 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 187 } 188 189 /// AddGlobalDtor - Add a function to the list that will be called 190 /// when the module is unloaded. 191 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 192 // FIXME: Type coercion of void()* types. 193 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 194 } 195 196 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 197 // Ctor function type is void()*. 198 llvm::FunctionType* CtorFTy = 199 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 200 std::vector<const llvm::Type*>(), 201 false); 202 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 203 204 // Get the type of a ctor entry, { i32, void ()* }. 205 llvm::StructType* CtorStructTy = 206 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 207 llvm::PointerType::getUnqual(CtorFTy), NULL); 208 209 // Construct the constructor and destructor arrays. 210 std::vector<llvm::Constant*> Ctors; 211 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 212 std::vector<llvm::Constant*> S; 213 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 214 I->second, false)); 215 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 216 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 217 } 218 219 if (!Ctors.empty()) { 220 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 221 new llvm::GlobalVariable(TheModule, AT, false, 222 llvm::GlobalValue::AppendingLinkage, 223 llvm::ConstantArray::get(AT, Ctors), 224 GlobalName); 225 } 226 } 227 228 void CodeGenModule::EmitAnnotations() { 229 if (Annotations.empty()) 230 return; 231 232 // Create a new global variable for the ConstantStruct in the Module. 233 llvm::Constant *Array = 234 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 235 Annotations.size()), 236 Annotations); 237 llvm::GlobalValue *gv = 238 new llvm::GlobalVariable(TheModule, Array->getType(), false, 239 llvm::GlobalValue::AppendingLinkage, Array, 240 "llvm.global.annotations"); 241 gv->setSection("llvm.metadata"); 242 } 243 244 static CodeGenModule::GVALinkage 245 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 246 const LangOptions &Features) { 247 // Everything located semantically within an anonymous namespace is 248 // always internal. 249 if (FD->isInAnonymousNamespace()) 250 return CodeGenModule::GVA_Internal; 251 252 // "static" functions get internal linkage. 253 if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD)) 254 return CodeGenModule::GVA_Internal; 255 256 // The kind of external linkage this function will have, if it is not 257 // inline or static. 258 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 259 if (Context.getLangOptions().CPlusPlus && 260 FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 261 External = CodeGenModule::GVA_TemplateInstantiation; 262 263 if (!FD->isInlined()) 264 return External; 265 266 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 267 // GNU or C99 inline semantics. Determine whether this symbol should be 268 // externally visible. 269 if (FD->isInlineDefinitionExternallyVisible()) 270 return External; 271 272 // C99 inline semantics, where the symbol is not externally visible. 273 return CodeGenModule::GVA_C99Inline; 274 } 275 276 // C++0x [temp.explicit]p9: 277 // [ Note: The intent is that an inline function that is the subject of 278 // an explicit instantiation declaration will still be implicitly 279 // instantiated when used so that the body can be considered for 280 // inlining, but that no out-of-line copy of the inline function would be 281 // generated in the translation unit. -- end note ] 282 if (FD->getTemplateSpecializationKind() 283 == TSK_ExplicitInstantiationDeclaration) 284 return CodeGenModule::GVA_C99Inline; 285 286 return CodeGenModule::GVA_CXXInline; 287 } 288 289 /// SetFunctionDefinitionAttributes - Set attributes for a global. 290 /// 291 /// FIXME: This is currently only done for aliases and functions, but not for 292 /// variables (these details are set in EmitGlobalVarDefinition for variables). 293 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 294 llvm::GlobalValue *GV) { 295 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 296 297 if (Linkage == GVA_Internal) { 298 GV->setLinkage(llvm::Function::InternalLinkage); 299 } else if (D->hasAttr<DLLExportAttr>()) { 300 GV->setLinkage(llvm::Function::DLLExportLinkage); 301 } else if (D->hasAttr<WeakAttr>()) { 302 GV->setLinkage(llvm::Function::WeakAnyLinkage); 303 } else if (Linkage == GVA_C99Inline) { 304 // In C99 mode, 'inline' functions are guaranteed to have a strong 305 // definition somewhere else, so we can use available_externally linkage. 306 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 307 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 308 // In C++, the compiler has to emit a definition in every translation unit 309 // that references the function. We should use linkonce_odr because 310 // a) if all references in this translation unit are optimized away, we 311 // don't need to codegen it. b) if the function persists, it needs to be 312 // merged with other definitions. c) C++ has the ODR, so we know the 313 // definition is dependable. 314 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 315 } else { 316 assert(Linkage == GVA_StrongExternal); 317 // Otherwise, we have strong external linkage. 318 GV->setLinkage(llvm::Function::ExternalLinkage); 319 } 320 321 SetCommonAttributes(D, GV); 322 } 323 324 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 325 const CGFunctionInfo &Info, 326 llvm::Function *F) { 327 unsigned CallingConv; 328 AttributeListType AttributeList; 329 ConstructAttributeList(Info, D, AttributeList, CallingConv); 330 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 331 AttributeList.size())); 332 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 333 } 334 335 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 336 llvm::Function *F) { 337 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 338 F->addFnAttr(llvm::Attribute::NoUnwind); 339 340 if (D->hasAttr<AlwaysInlineAttr>()) 341 F->addFnAttr(llvm::Attribute::AlwaysInline); 342 343 if (D->hasAttr<NoInlineAttr>()) 344 F->addFnAttr(llvm::Attribute::NoInline); 345 346 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 347 F->addFnAttr(llvm::Attribute::StackProtect); 348 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 349 F->addFnAttr(llvm::Attribute::StackProtectReq); 350 351 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 352 unsigned width = Context.Target.getCharWidth(); 353 F->setAlignment(AA->getAlignment() / width); 354 while ((AA = AA->getNext<AlignedAttr>())) 355 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 356 } 357 // C++ ABI requires 2-byte alignment for member functions. 358 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 359 F->setAlignment(2); 360 } 361 362 void CodeGenModule::SetCommonAttributes(const Decl *D, 363 llvm::GlobalValue *GV) { 364 setGlobalVisibility(GV, D); 365 366 if (D->hasAttr<UsedAttr>()) 367 AddUsedGlobal(GV); 368 369 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 370 GV->setSection(SA->getName()); 371 } 372 373 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 374 llvm::Function *F, 375 const CGFunctionInfo &FI) { 376 SetLLVMFunctionAttributes(D, FI, F); 377 SetLLVMFunctionAttributesForDefinition(D, F); 378 379 F->setLinkage(llvm::Function::InternalLinkage); 380 381 SetCommonAttributes(D, F); 382 } 383 384 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 385 llvm::Function *F, 386 bool IsIncompleteFunction) { 387 if (!IsIncompleteFunction) 388 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 389 390 // Only a few attributes are set on declarations; these may later be 391 // overridden by a definition. 392 393 if (FD->hasAttr<DLLImportAttr>()) { 394 F->setLinkage(llvm::Function::DLLImportLinkage); 395 } else if (FD->hasAttr<WeakAttr>() || 396 FD->hasAttr<WeakImportAttr>()) { 397 // "extern_weak" is overloaded in LLVM; we probably should have 398 // separate linkage types for this. 399 F->setLinkage(llvm::Function::ExternalWeakLinkage); 400 } else { 401 F->setLinkage(llvm::Function::ExternalLinkage); 402 } 403 404 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 405 F->setSection(SA->getName()); 406 } 407 408 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 409 assert(!GV->isDeclaration() && 410 "Only globals with definition can force usage."); 411 LLVMUsed.push_back(GV); 412 } 413 414 void CodeGenModule::EmitLLVMUsed() { 415 // Don't create llvm.used if there is no need. 416 if (LLVMUsed.empty()) 417 return; 418 419 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 420 421 // Convert LLVMUsed to what ConstantArray needs. 422 std::vector<llvm::Constant*> UsedArray; 423 UsedArray.resize(LLVMUsed.size()); 424 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 425 UsedArray[i] = 426 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 427 i8PTy); 428 } 429 430 if (UsedArray.empty()) 431 return; 432 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 433 434 llvm::GlobalVariable *GV = 435 new llvm::GlobalVariable(getModule(), ATy, false, 436 llvm::GlobalValue::AppendingLinkage, 437 llvm::ConstantArray::get(ATy, UsedArray), 438 "llvm.used"); 439 440 GV->setSection("llvm.metadata"); 441 } 442 443 void CodeGenModule::EmitDeferred() { 444 // Emit code for any potentially referenced deferred decls. Since a 445 // previously unused static decl may become used during the generation of code 446 // for a static function, iterate until no changes are made. 447 while (!DeferredDeclsToEmit.empty()) { 448 GlobalDecl D = DeferredDeclsToEmit.back(); 449 DeferredDeclsToEmit.pop_back(); 450 451 // The mangled name for the decl must have been emitted in GlobalDeclMap. 452 // Look it up to see if it was defined with a stronger definition (e.g. an 453 // extern inline function with a strong function redefinition). If so, 454 // just ignore the deferred decl. 455 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 456 assert(CGRef && "Deferred decl wasn't referenced?"); 457 458 if (!CGRef->isDeclaration()) 459 continue; 460 461 // Otherwise, emit the definition and move on to the next one. 462 EmitGlobalDefinition(D); 463 } 464 } 465 466 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 467 /// annotation information for a given GlobalValue. The annotation struct is 468 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 469 /// GlobalValue being annotated. The second field is the constant string 470 /// created from the AnnotateAttr's annotation. The third field is a constant 471 /// string containing the name of the translation unit. The fourth field is 472 /// the line number in the file of the annotated value declaration. 473 /// 474 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 475 /// appears to. 476 /// 477 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 478 const AnnotateAttr *AA, 479 unsigned LineNo) { 480 llvm::Module *M = &getModule(); 481 482 // get [N x i8] constants for the annotation string, and the filename string 483 // which are the 2nd and 3rd elements of the global annotation structure. 484 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 485 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 486 AA->getAnnotation(), true); 487 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 488 M->getModuleIdentifier(), 489 true); 490 491 // Get the two global values corresponding to the ConstantArrays we just 492 // created to hold the bytes of the strings. 493 llvm::GlobalValue *annoGV = 494 new llvm::GlobalVariable(*M, anno->getType(), false, 495 llvm::GlobalValue::PrivateLinkage, anno, 496 GV->getName()); 497 // translation unit name string, emitted into the llvm.metadata section. 498 llvm::GlobalValue *unitGV = 499 new llvm::GlobalVariable(*M, unit->getType(), false, 500 llvm::GlobalValue::PrivateLinkage, unit, 501 ".str"); 502 503 // Create the ConstantStruct for the global annotation. 504 llvm::Constant *Fields[4] = { 505 llvm::ConstantExpr::getBitCast(GV, SBP), 506 llvm::ConstantExpr::getBitCast(annoGV, SBP), 507 llvm::ConstantExpr::getBitCast(unitGV, SBP), 508 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 509 }; 510 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 511 } 512 513 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 514 // Never defer when EmitAllDecls is specified or the decl has 515 // attribute used. 516 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 517 return false; 518 519 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 520 // Constructors and destructors should never be deferred. 521 if (FD->hasAttr<ConstructorAttr>() || 522 FD->hasAttr<DestructorAttr>()) 523 return false; 524 525 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 526 527 // static, static inline, always_inline, and extern inline functions can 528 // always be deferred. Normal inline functions can be deferred in C99/C++. 529 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 530 Linkage == GVA_CXXInline) 531 return true; 532 return false; 533 } 534 535 const VarDecl *VD = cast<VarDecl>(Global); 536 assert(VD->isFileVarDecl() && "Invalid decl"); 537 538 // We never want to defer structs that have non-trivial constructors or 539 // destructors. 540 541 // FIXME: Handle references. 542 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 543 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 544 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 545 return false; 546 } 547 } 548 549 // Static data may be deferred, but out-of-line static data members 550 // cannot be. 551 if (VD->isInAnonymousNamespace()) 552 return true; 553 if (VD->getLinkage() == VarDecl::InternalLinkage) { 554 // Initializer has side effects? 555 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 556 return false; 557 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 558 } 559 return false; 560 } 561 562 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 563 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 564 565 // If this is an alias definition (which otherwise looks like a declaration) 566 // emit it now. 567 if (Global->hasAttr<AliasAttr>()) 568 return EmitAliasDefinition(Global); 569 570 // Ignore declarations, they will be emitted on their first use. 571 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 572 // Forward declarations are emitted lazily on first use. 573 if (!FD->isThisDeclarationADefinition()) 574 return; 575 } else { 576 const VarDecl *VD = cast<VarDecl>(Global); 577 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 578 579 if (getLangOptions().CPlusPlus && !VD->getInit()) { 580 // In C++, if this is marked "extern", defer code generation. 581 if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC()) 582 return; 583 584 // If this is a declaration of an explicit specialization of a static 585 // data member in a class template, don't emit it. 586 if (VD->isStaticDataMember() && 587 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 588 return; 589 } 590 591 // In C, if this isn't a definition, defer code generation. 592 if (!getLangOptions().CPlusPlus && !VD->getInit()) 593 return; 594 } 595 596 // Defer code generation when possible if this is a static definition, inline 597 // function etc. These we only want to emit if they are used. 598 if (MayDeferGeneration(Global)) { 599 // If the value has already been used, add it directly to the 600 // DeferredDeclsToEmit list. 601 const char *MangledName = getMangledName(GD); 602 if (GlobalDeclMap.count(MangledName)) 603 DeferredDeclsToEmit.push_back(GD); 604 else { 605 // Otherwise, remember that we saw a deferred decl with this name. The 606 // first use of the mangled name will cause it to move into 607 // DeferredDeclsToEmit. 608 DeferredDecls[MangledName] = GD; 609 } 610 return; 611 } 612 613 // Otherwise emit the definition. 614 EmitGlobalDefinition(GD); 615 } 616 617 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 618 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 619 620 PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(), 621 Context.getSourceManager(), 622 "Generating code for declaration"); 623 624 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 625 getVtableInfo().MaybeEmitVtable(GD); 626 if (MD->isVirtual() && MD->isOutOfLine() && 627 (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) { 628 BuildThunksForVirtual(GD); 629 } 630 } 631 632 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 633 EmitCXXConstructor(CD, GD.getCtorType()); 634 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 635 EmitCXXDestructor(DD, GD.getDtorType()); 636 else if (isa<FunctionDecl>(D)) 637 EmitGlobalFunctionDefinition(GD); 638 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 639 EmitGlobalVarDefinition(VD); 640 else { 641 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 642 } 643 } 644 645 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 646 /// module, create and return an llvm Function with the specified type. If there 647 /// is something in the module with the specified name, return it potentially 648 /// bitcasted to the right type. 649 /// 650 /// If D is non-null, it specifies a decl that correspond to this. This is used 651 /// to set the attributes on the function when it is first created. 652 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 653 const llvm::Type *Ty, 654 GlobalDecl D) { 655 // Lookup the entry, lazily creating it if necessary. 656 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 657 if (Entry) { 658 if (Entry->getType()->getElementType() == Ty) 659 return Entry; 660 661 // Make sure the result is of the correct type. 662 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 663 return llvm::ConstantExpr::getBitCast(Entry, PTy); 664 } 665 666 // This function doesn't have a complete type (for example, the return 667 // type is an incomplete struct). Use a fake type instead, and make 668 // sure not to try to set attributes. 669 bool IsIncompleteFunction = false; 670 if (!isa<llvm::FunctionType>(Ty)) { 671 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 672 std::vector<const llvm::Type*>(), false); 673 IsIncompleteFunction = true; 674 } 675 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 676 llvm::Function::ExternalLinkage, 677 "", &getModule()); 678 F->setName(MangledName); 679 if (D.getDecl()) 680 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 681 IsIncompleteFunction); 682 Entry = F; 683 684 // This is the first use or definition of a mangled name. If there is a 685 // deferred decl with this name, remember that we need to emit it at the end 686 // of the file. 687 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 688 DeferredDecls.find(MangledName); 689 if (DDI != DeferredDecls.end()) { 690 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 691 // list, and remove it from DeferredDecls (since we don't need it anymore). 692 DeferredDeclsToEmit.push_back(DDI->second); 693 DeferredDecls.erase(DDI); 694 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 695 // If this the first reference to a C++ inline function in a class, queue up 696 // the deferred function body for emission. These are not seen as 697 // top-level declarations. 698 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 699 DeferredDeclsToEmit.push_back(D); 700 // A called constructor which has no definition or declaration need be 701 // synthesized. 702 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 703 if (CD->isImplicit()) 704 DeferredDeclsToEmit.push_back(D); 705 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 706 if (DD->isImplicit()) 707 DeferredDeclsToEmit.push_back(D); 708 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 709 if (MD->isCopyAssignment() && MD->isImplicit()) 710 DeferredDeclsToEmit.push_back(D); 711 } 712 } 713 714 return F; 715 } 716 717 /// GetAddrOfFunction - Return the address of the given function. If Ty is 718 /// non-null, then this function will use the specified type if it has to 719 /// create it (this occurs when we see a definition of the function). 720 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 721 const llvm::Type *Ty) { 722 // If there was no specific requested type, just convert it now. 723 if (!Ty) 724 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 725 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 726 } 727 728 /// CreateRuntimeFunction - Create a new runtime function with the specified 729 /// type and name. 730 llvm::Constant * 731 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 732 const char *Name) { 733 // Convert Name to be a uniqued string from the IdentifierInfo table. 734 Name = getContext().Idents.get(Name).getNameStart(); 735 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 736 } 737 738 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 739 /// create and return an llvm GlobalVariable with the specified type. If there 740 /// is something in the module with the specified name, return it potentially 741 /// bitcasted to the right type. 742 /// 743 /// If D is non-null, it specifies a decl that correspond to this. This is used 744 /// to set the attributes on the global when it is first created. 745 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 746 const llvm::PointerType*Ty, 747 const VarDecl *D) { 748 // Lookup the entry, lazily creating it if necessary. 749 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 750 if (Entry) { 751 if (Entry->getType() == Ty) 752 return Entry; 753 754 // Make sure the result is of the correct type. 755 return llvm::ConstantExpr::getBitCast(Entry, Ty); 756 } 757 758 // This is the first use or definition of a mangled name. If there is a 759 // deferred decl with this name, remember that we need to emit it at the end 760 // of the file. 761 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 762 DeferredDecls.find(MangledName); 763 if (DDI != DeferredDecls.end()) { 764 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 765 // list, and remove it from DeferredDecls (since we don't need it anymore). 766 DeferredDeclsToEmit.push_back(DDI->second); 767 DeferredDecls.erase(DDI); 768 } 769 770 llvm::GlobalVariable *GV = 771 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 772 llvm::GlobalValue::ExternalLinkage, 773 0, "", 0, 774 false, Ty->getAddressSpace()); 775 GV->setName(MangledName); 776 777 // Handle things which are present even on external declarations. 778 if (D) { 779 // FIXME: This code is overly simple and should be merged with other global 780 // handling. 781 GV->setConstant(D->getType().isConstant(Context)); 782 783 // FIXME: Merge with other attribute handling code. 784 if (D->getStorageClass() == VarDecl::PrivateExtern) 785 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 786 787 if (D->hasAttr<WeakAttr>() || 788 D->hasAttr<WeakImportAttr>()) 789 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 790 791 GV->setThreadLocal(D->isThreadSpecified()); 792 } 793 794 return Entry = GV; 795 } 796 797 798 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 799 /// given global variable. If Ty is non-null and if the global doesn't exist, 800 /// then it will be greated with the specified type instead of whatever the 801 /// normal requested type would be. 802 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 803 const llvm::Type *Ty) { 804 assert(D->hasGlobalStorage() && "Not a global variable"); 805 QualType ASTTy = D->getType(); 806 if (Ty == 0) 807 Ty = getTypes().ConvertTypeForMem(ASTTy); 808 809 const llvm::PointerType *PTy = 810 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 811 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 812 } 813 814 /// CreateRuntimeVariable - Create a new runtime global variable with the 815 /// specified type and name. 816 llvm::Constant * 817 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 818 const char *Name) { 819 // Convert Name to be a uniqued string from the IdentifierInfo table. 820 Name = getContext().Idents.get(Name).getNameStart(); 821 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 822 } 823 824 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 825 assert(!D->getInit() && "Cannot emit definite definitions here!"); 826 827 if (MayDeferGeneration(D)) { 828 // If we have not seen a reference to this variable yet, place it 829 // into the deferred declarations table to be emitted if needed 830 // later. 831 const char *MangledName = getMangledName(D); 832 if (GlobalDeclMap.count(MangledName) == 0) { 833 DeferredDecls[MangledName] = D; 834 return; 835 } 836 } 837 838 // The tentative definition is the only definition. 839 EmitGlobalVarDefinition(D); 840 } 841 842 static CodeGenModule::GVALinkage 843 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 844 // Everything located semantically within an anonymous namespace is 845 // always internal. 846 if (VD->isInAnonymousNamespace()) 847 return CodeGenModule::GVA_Internal; 848 849 // Handle linkage for static data members. 850 if (VD->isStaticDataMember()) { 851 switch (VD->getTemplateSpecializationKind()) { 852 case TSK_Undeclared: 853 case TSK_ExplicitSpecialization: 854 case TSK_ExplicitInstantiationDefinition: 855 return CodeGenModule::GVA_StrongExternal; 856 857 case TSK_ExplicitInstantiationDeclaration: 858 llvm::llvm_unreachable("Variable should not be instantiated"); 859 // Fall through to treat this like any other instantiation. 860 861 case TSK_ImplicitInstantiation: 862 return CodeGenModule::GVA_TemplateInstantiation; 863 } 864 } 865 866 if (VD->getLinkage() == VarDecl::InternalLinkage) 867 return CodeGenModule::GVA_Internal; 868 869 return CodeGenModule::GVA_StrongExternal; 870 } 871 872 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 873 llvm::Constant *Init = 0; 874 QualType ASTTy = D->getType(); 875 876 if (D->getInit() == 0) { 877 // This is a tentative definition; tentative definitions are 878 // implicitly initialized with { 0 }. 879 // 880 // Note that tentative definitions are only emitted at the end of 881 // a translation unit, so they should never have incomplete 882 // type. In addition, EmitTentativeDefinition makes sure that we 883 // never attempt to emit a tentative definition if a real one 884 // exists. A use may still exists, however, so we still may need 885 // to do a RAUW. 886 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 887 Init = EmitNullConstant(D->getType()); 888 } else { 889 Init = EmitConstantExpr(D->getInit(), D->getType()); 890 891 if (!Init) { 892 QualType T = D->getInit()->getType(); 893 if (getLangOptions().CPlusPlus) { 894 CXXGlobalInits.push_back(D); 895 Init = EmitNullConstant(T); 896 } else { 897 ErrorUnsupported(D, "static initializer"); 898 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 899 } 900 } 901 } 902 903 const llvm::Type* InitType = Init->getType(); 904 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 905 906 // Strip off a bitcast if we got one back. 907 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 908 assert(CE->getOpcode() == llvm::Instruction::BitCast || 909 // all zero index gep. 910 CE->getOpcode() == llvm::Instruction::GetElementPtr); 911 Entry = CE->getOperand(0); 912 } 913 914 // Entry is now either a Function or GlobalVariable. 915 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 916 917 // We have a definition after a declaration with the wrong type. 918 // We must make a new GlobalVariable* and update everything that used OldGV 919 // (a declaration or tentative definition) with the new GlobalVariable* 920 // (which will be a definition). 921 // 922 // This happens if there is a prototype for a global (e.g. 923 // "extern int x[];") and then a definition of a different type (e.g. 924 // "int x[10];"). This also happens when an initializer has a different type 925 // from the type of the global (this happens with unions). 926 if (GV == 0 || 927 GV->getType()->getElementType() != InitType || 928 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 929 930 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 931 GlobalDeclMap.erase(getMangledName(D)); 932 933 // Make a new global with the correct type, this is now guaranteed to work. 934 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 935 GV->takeName(cast<llvm::GlobalValue>(Entry)); 936 937 // Replace all uses of the old global with the new global 938 llvm::Constant *NewPtrForOldDecl = 939 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 940 Entry->replaceAllUsesWith(NewPtrForOldDecl); 941 942 // Erase the old global, since it is no longer used. 943 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 944 } 945 946 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 947 SourceManager &SM = Context.getSourceManager(); 948 AddAnnotation(EmitAnnotateAttr(GV, AA, 949 SM.getInstantiationLineNumber(D->getLocation()))); 950 } 951 952 GV->setInitializer(Init); 953 954 // If it is safe to mark the global 'constant', do so now. 955 GV->setConstant(false); 956 if (D->getType().isConstant(Context)) { 957 // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable 958 // members, it cannot be declared "LLVM const". 959 GV->setConstant(true); 960 } 961 962 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 963 964 // Set the llvm linkage type as appropriate. 965 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 966 if (Linkage == GVA_Internal) 967 GV->setLinkage(llvm::Function::InternalLinkage); 968 else if (D->hasAttr<DLLImportAttr>()) 969 GV->setLinkage(llvm::Function::DLLImportLinkage); 970 else if (D->hasAttr<DLLExportAttr>()) 971 GV->setLinkage(llvm::Function::DLLExportLinkage); 972 else if (D->hasAttr<WeakAttr>()) { 973 if (GV->isConstant()) 974 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 975 else 976 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 977 } else if (Linkage == GVA_TemplateInstantiation) 978 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 979 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 980 !D->hasExternalStorage() && !D->getInit() && 981 !D->getAttr<SectionAttr>()) { 982 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 983 // common vars aren't constant even if declared const. 984 GV->setConstant(false); 985 } else 986 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 987 988 SetCommonAttributes(D, GV); 989 990 // Emit global variable debug information. 991 if (CGDebugInfo *DI = getDebugInfo()) { 992 DI->setLocation(D->getLocation()); 993 DI->EmitGlobalVariable(GV, D); 994 } 995 } 996 997 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 998 /// implement a function with no prototype, e.g. "int foo() {}". If there are 999 /// existing call uses of the old function in the module, this adjusts them to 1000 /// call the new function directly. 1001 /// 1002 /// This is not just a cleanup: the always_inline pass requires direct calls to 1003 /// functions to be able to inline them. If there is a bitcast in the way, it 1004 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1005 /// run at -O0. 1006 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1007 llvm::Function *NewFn) { 1008 // If we're redefining a global as a function, don't transform it. 1009 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1010 if (OldFn == 0) return; 1011 1012 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1013 llvm::SmallVector<llvm::Value*, 4> ArgList; 1014 1015 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1016 UI != E; ) { 1017 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1018 unsigned OpNo = UI.getOperandNo(); 1019 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1020 if (!CI || OpNo != 0) continue; 1021 1022 // If the return types don't match exactly, and if the call isn't dead, then 1023 // we can't transform this call. 1024 if (CI->getType() != NewRetTy && !CI->use_empty()) 1025 continue; 1026 1027 // If the function was passed too few arguments, don't transform. If extra 1028 // arguments were passed, we silently drop them. If any of the types 1029 // mismatch, we don't transform. 1030 unsigned ArgNo = 0; 1031 bool DontTransform = false; 1032 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1033 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1034 if (CI->getNumOperands()-1 == ArgNo || 1035 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1036 DontTransform = true; 1037 break; 1038 } 1039 } 1040 if (DontTransform) 1041 continue; 1042 1043 // Okay, we can transform this. Create the new call instruction and copy 1044 // over the required information. 1045 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1046 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1047 ArgList.end(), "", CI); 1048 ArgList.clear(); 1049 if (!NewCall->getType()->isVoidTy()) 1050 NewCall->takeName(CI); 1051 NewCall->setAttributes(CI->getAttributes()); 1052 NewCall->setCallingConv(CI->getCallingConv()); 1053 1054 // Finally, remove the old call, replacing any uses with the new one. 1055 if (!CI->use_empty()) 1056 CI->replaceAllUsesWith(NewCall); 1057 1058 // Copy any custom metadata attached with CI. 1059 llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata(); 1060 TheMetadata.copyMD(CI, NewCall); 1061 1062 CI->eraseFromParent(); 1063 } 1064 } 1065 1066 1067 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1068 const llvm::FunctionType *Ty; 1069 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1070 1071 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1072 bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic(); 1073 1074 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1075 } else { 1076 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1077 1078 // As a special case, make sure that definitions of K&R function 1079 // "type foo()" aren't declared as varargs (which forces the backend 1080 // to do unnecessary work). 1081 if (D->getType()->isFunctionNoProtoType()) { 1082 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1083 // Due to stret, the lowered function could have arguments. 1084 // Just create the same type as was lowered by ConvertType 1085 // but strip off the varargs bit. 1086 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1087 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1088 } 1089 } 1090 1091 // Get or create the prototype for the function. 1092 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1093 1094 // Strip off a bitcast if we got one back. 1095 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1096 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1097 Entry = CE->getOperand(0); 1098 } 1099 1100 1101 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1102 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1103 1104 // If the types mismatch then we have to rewrite the definition. 1105 assert(OldFn->isDeclaration() && 1106 "Shouldn't replace non-declaration"); 1107 1108 // F is the Function* for the one with the wrong type, we must make a new 1109 // Function* and update everything that used F (a declaration) with the new 1110 // Function* (which will be a definition). 1111 // 1112 // This happens if there is a prototype for a function 1113 // (e.g. "int f()") and then a definition of a different type 1114 // (e.g. "int f(int x)"). Start by making a new function of the 1115 // correct type, RAUW, then steal the name. 1116 GlobalDeclMap.erase(getMangledName(D)); 1117 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1118 NewFn->takeName(OldFn); 1119 1120 // If this is an implementation of a function without a prototype, try to 1121 // replace any existing uses of the function (which may be calls) with uses 1122 // of the new function 1123 if (D->getType()->isFunctionNoProtoType()) { 1124 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1125 OldFn->removeDeadConstantUsers(); 1126 } 1127 1128 // Replace uses of F with the Function we will endow with a body. 1129 if (!Entry->use_empty()) { 1130 llvm::Constant *NewPtrForOldDecl = 1131 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1132 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1133 } 1134 1135 // Ok, delete the old function now, which is dead. 1136 OldFn->eraseFromParent(); 1137 1138 Entry = NewFn; 1139 } 1140 1141 llvm::Function *Fn = cast<llvm::Function>(Entry); 1142 1143 CodeGenFunction(*this).GenerateCode(D, Fn); 1144 1145 SetFunctionDefinitionAttributes(D, Fn); 1146 SetLLVMFunctionAttributesForDefinition(D, Fn); 1147 1148 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1149 AddGlobalCtor(Fn, CA->getPriority()); 1150 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1151 AddGlobalDtor(Fn, DA->getPriority()); 1152 } 1153 1154 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1155 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1156 assert(AA && "Not an alias?"); 1157 1158 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1159 1160 // Unique the name through the identifier table. 1161 const char *AliaseeName = AA->getAliasee().c_str(); 1162 AliaseeName = getContext().Idents.get(AliaseeName).getNameStart(); 1163 1164 // Create a reference to the named value. This ensures that it is emitted 1165 // if a deferred decl. 1166 llvm::Constant *Aliasee; 1167 if (isa<llvm::FunctionType>(DeclTy)) 1168 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1169 else 1170 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1171 llvm::PointerType::getUnqual(DeclTy), 0); 1172 1173 // Create the new alias itself, but don't set a name yet. 1174 llvm::GlobalValue *GA = 1175 new llvm::GlobalAlias(Aliasee->getType(), 1176 llvm::Function::ExternalLinkage, 1177 "", Aliasee, &getModule()); 1178 1179 // See if there is already something with the alias' name in the module. 1180 const char *MangledName = getMangledName(D); 1181 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1182 1183 if (Entry && !Entry->isDeclaration()) { 1184 // If there is a definition in the module, then it wins over the alias. 1185 // This is dubious, but allow it to be safe. Just ignore the alias. 1186 GA->eraseFromParent(); 1187 return; 1188 } 1189 1190 if (Entry) { 1191 // If there is a declaration in the module, then we had an extern followed 1192 // by the alias, as in: 1193 // extern int test6(); 1194 // ... 1195 // int test6() __attribute__((alias("test7"))); 1196 // 1197 // Remove it and replace uses of it with the alias. 1198 1199 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1200 Entry->getType())); 1201 Entry->eraseFromParent(); 1202 } 1203 1204 // Now we know that there is no conflict, set the name. 1205 Entry = GA; 1206 GA->setName(MangledName); 1207 1208 // Set attributes which are particular to an alias; this is a 1209 // specialization of the attributes which may be set on a global 1210 // variable/function. 1211 if (D->hasAttr<DLLExportAttr>()) { 1212 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1213 // The dllexport attribute is ignored for undefined symbols. 1214 if (FD->getBody()) 1215 GA->setLinkage(llvm::Function::DLLExportLinkage); 1216 } else { 1217 GA->setLinkage(llvm::Function::DLLExportLinkage); 1218 } 1219 } else if (D->hasAttr<WeakAttr>() || 1220 D->hasAttr<WeakImportAttr>()) { 1221 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1222 } 1223 1224 SetCommonAttributes(D, GA); 1225 } 1226 1227 /// getBuiltinLibFunction - Given a builtin id for a function like 1228 /// "__builtin_fabsf", return a Function* for "fabsf". 1229 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1230 unsigned BuiltinID) { 1231 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1232 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1233 "isn't a lib fn"); 1234 1235 // Get the name, skip over the __builtin_ prefix (if necessary). 1236 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1237 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1238 Name += 10; 1239 1240 // Get the type for the builtin. 1241 ASTContext::GetBuiltinTypeError Error; 1242 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1243 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1244 1245 const llvm::FunctionType *Ty = 1246 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1247 1248 // Unique the name through the identifier table. 1249 Name = getContext().Idents.get(Name).getNameStart(); 1250 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1251 } 1252 1253 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1254 unsigned NumTys) { 1255 return llvm::Intrinsic::getDeclaration(&getModule(), 1256 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1257 } 1258 1259 llvm::Function *CodeGenModule::getMemCpyFn() { 1260 if (MemCpyFn) return MemCpyFn; 1261 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1262 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1263 } 1264 1265 llvm::Function *CodeGenModule::getMemMoveFn() { 1266 if (MemMoveFn) return MemMoveFn; 1267 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1268 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1269 } 1270 1271 llvm::Function *CodeGenModule::getMemSetFn() { 1272 if (MemSetFn) return MemSetFn; 1273 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1274 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1275 } 1276 1277 static llvm::StringMapEntry<llvm::Constant*> & 1278 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1279 const StringLiteral *Literal, 1280 bool TargetIsLSB, 1281 bool &IsUTF16, 1282 unsigned &StringLength) { 1283 unsigned NumBytes = Literal->getByteLength(); 1284 1285 // Check for simple case. 1286 if (!Literal->containsNonAsciiOrNull()) { 1287 StringLength = NumBytes; 1288 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1289 StringLength)); 1290 } 1291 1292 // Otherwise, convert the UTF8 literals into a byte string. 1293 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1294 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1295 UTF16 *ToPtr = &ToBuf[0]; 1296 1297 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1298 &ToPtr, ToPtr + NumBytes, 1299 strictConversion); 1300 1301 // Check for conversion failure. 1302 if (Result != conversionOK) { 1303 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1304 // this duplicate code. 1305 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1306 StringLength = NumBytes; 1307 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1308 StringLength)); 1309 } 1310 1311 // ConvertUTF8toUTF16 returns the length in ToPtr. 1312 StringLength = ToPtr - &ToBuf[0]; 1313 1314 // Render the UTF-16 string into a byte array and convert to the target byte 1315 // order. 1316 // 1317 // FIXME: This isn't something we should need to do here. 1318 llvm::SmallString<128> AsBytes; 1319 AsBytes.reserve(StringLength * 2); 1320 for (unsigned i = 0; i != StringLength; ++i) { 1321 unsigned short Val = ToBuf[i]; 1322 if (TargetIsLSB) { 1323 AsBytes.push_back(Val & 0xFF); 1324 AsBytes.push_back(Val >> 8); 1325 } else { 1326 AsBytes.push_back(Val >> 8); 1327 AsBytes.push_back(Val & 0xFF); 1328 } 1329 } 1330 // Append one extra null character, the second is automatically added by our 1331 // caller. 1332 AsBytes.push_back(0); 1333 1334 IsUTF16 = true; 1335 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1336 } 1337 1338 llvm::Constant * 1339 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1340 unsigned StringLength = 0; 1341 bool isUTF16 = false; 1342 llvm::StringMapEntry<llvm::Constant*> &Entry = 1343 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1344 getTargetData().isLittleEndian(), 1345 isUTF16, StringLength); 1346 1347 if (llvm::Constant *C = Entry.getValue()) 1348 return C; 1349 1350 llvm::Constant *Zero = 1351 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1352 llvm::Constant *Zeros[] = { Zero, Zero }; 1353 1354 // If we don't already have it, get __CFConstantStringClassReference. 1355 if (!CFConstantStringClassRef) { 1356 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1357 Ty = llvm::ArrayType::get(Ty, 0); 1358 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1359 "__CFConstantStringClassReference"); 1360 // Decay array -> ptr 1361 CFConstantStringClassRef = 1362 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1363 } 1364 1365 QualType CFTy = getContext().getCFConstantStringType(); 1366 1367 const llvm::StructType *STy = 1368 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1369 1370 std::vector<llvm::Constant*> Fields(4); 1371 1372 // Class pointer. 1373 Fields[0] = CFConstantStringClassRef; 1374 1375 // Flags. 1376 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1377 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1378 llvm::ConstantInt::get(Ty, 0x07C8); 1379 1380 // String pointer. 1381 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1382 1383 const char *Sect = 0; 1384 llvm::GlobalValue::LinkageTypes Linkage; 1385 bool isConstant; 1386 if (isUTF16) { 1387 Sect = getContext().Target.getUnicodeStringSection(); 1388 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1389 Linkage = llvm::GlobalValue::InternalLinkage; 1390 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1391 // does make plain ascii ones writable. 1392 isConstant = true; 1393 } else { 1394 Linkage = llvm::GlobalValue::PrivateLinkage; 1395 isConstant = !Features.WritableStrings; 1396 } 1397 1398 llvm::GlobalVariable *GV = 1399 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1400 ".str"); 1401 if (Sect) 1402 GV->setSection(Sect); 1403 if (isUTF16) { 1404 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1405 GV->setAlignment(Align); 1406 } 1407 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1408 1409 // String length. 1410 Ty = getTypes().ConvertType(getContext().LongTy); 1411 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1412 1413 // The struct. 1414 C = llvm::ConstantStruct::get(STy, Fields); 1415 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1416 llvm::GlobalVariable::PrivateLinkage, C, 1417 "_unnamed_cfstring_"); 1418 if (const char *Sect = getContext().Target.getCFStringSection()) 1419 GV->setSection(Sect); 1420 Entry.setValue(GV); 1421 1422 return GV; 1423 } 1424 1425 /// GetStringForStringLiteral - Return the appropriate bytes for a 1426 /// string literal, properly padded to match the literal type. 1427 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1428 const char *StrData = E->getStrData(); 1429 unsigned Len = E->getByteLength(); 1430 1431 const ConstantArrayType *CAT = 1432 getContext().getAsConstantArrayType(E->getType()); 1433 assert(CAT && "String isn't pointer or array!"); 1434 1435 // Resize the string to the right size. 1436 std::string Str(StrData, StrData+Len); 1437 uint64_t RealLen = CAT->getSize().getZExtValue(); 1438 1439 if (E->isWide()) 1440 RealLen *= getContext().Target.getWCharWidth()/8; 1441 1442 Str.resize(RealLen, '\0'); 1443 1444 return Str; 1445 } 1446 1447 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1448 /// constant array for the given string literal. 1449 llvm::Constant * 1450 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1451 // FIXME: This can be more efficient. 1452 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1453 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1454 if (S->isWide()) { 1455 llvm::Type *DestTy = 1456 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1457 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1458 } 1459 return C; 1460 } 1461 1462 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1463 /// array for the given ObjCEncodeExpr node. 1464 llvm::Constant * 1465 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1466 std::string Str; 1467 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1468 1469 return GetAddrOfConstantCString(Str); 1470 } 1471 1472 1473 /// GenerateWritableString -- Creates storage for a string literal. 1474 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1475 bool constant, 1476 CodeGenModule &CGM, 1477 const char *GlobalName) { 1478 // Create Constant for this string literal. Don't add a '\0'. 1479 llvm::Constant *C = 1480 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1481 1482 // Create a global variable for this string 1483 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1484 llvm::GlobalValue::PrivateLinkage, 1485 C, GlobalName); 1486 } 1487 1488 /// GetAddrOfConstantString - Returns a pointer to a character array 1489 /// containing the literal. This contents are exactly that of the 1490 /// given string, i.e. it will not be null terminated automatically; 1491 /// see GetAddrOfConstantCString. Note that whether the result is 1492 /// actually a pointer to an LLVM constant depends on 1493 /// Feature.WriteableStrings. 1494 /// 1495 /// The result has pointer to array type. 1496 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1497 const char *GlobalName) { 1498 bool IsConstant = !Features.WritableStrings; 1499 1500 // Get the default prefix if a name wasn't specified. 1501 if (!GlobalName) 1502 GlobalName = ".str"; 1503 1504 // Don't share any string literals if strings aren't constant. 1505 if (!IsConstant) 1506 return GenerateStringLiteral(str, false, *this, GlobalName); 1507 1508 llvm::StringMapEntry<llvm::Constant *> &Entry = 1509 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1510 1511 if (Entry.getValue()) 1512 return Entry.getValue(); 1513 1514 // Create a global variable for this. 1515 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1516 Entry.setValue(C); 1517 return C; 1518 } 1519 1520 /// GetAddrOfConstantCString - Returns a pointer to a character 1521 /// array containing the literal and a terminating '\-' 1522 /// character. The result has pointer to array type. 1523 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1524 const char *GlobalName){ 1525 return GetAddrOfConstantString(str + '\0', GlobalName); 1526 } 1527 1528 /// EmitObjCPropertyImplementations - Emit information for synthesized 1529 /// properties for an implementation. 1530 void CodeGenModule::EmitObjCPropertyImplementations(const 1531 ObjCImplementationDecl *D) { 1532 for (ObjCImplementationDecl::propimpl_iterator 1533 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1534 ObjCPropertyImplDecl *PID = *i; 1535 1536 // Dynamic is just for type-checking. 1537 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1538 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1539 1540 // Determine which methods need to be implemented, some may have 1541 // been overridden. Note that ::isSynthesized is not the method 1542 // we want, that just indicates if the decl came from a 1543 // property. What we want to know is if the method is defined in 1544 // this implementation. 1545 if (!D->getInstanceMethod(PD->getGetterName())) 1546 CodeGenFunction(*this).GenerateObjCGetter( 1547 const_cast<ObjCImplementationDecl *>(D), PID); 1548 if (!PD->isReadOnly() && 1549 !D->getInstanceMethod(PD->getSetterName())) 1550 CodeGenFunction(*this).GenerateObjCSetter( 1551 const_cast<ObjCImplementationDecl *>(D), PID); 1552 } 1553 } 1554 } 1555 1556 /// EmitNamespace - Emit all declarations in a namespace. 1557 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1558 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1559 I != E; ++I) 1560 EmitTopLevelDecl(*I); 1561 } 1562 1563 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1564 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1565 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1566 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1567 ErrorUnsupported(LSD, "linkage spec"); 1568 return; 1569 } 1570 1571 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1572 I != E; ++I) 1573 EmitTopLevelDecl(*I); 1574 } 1575 1576 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1577 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1578 // If an error has occurred, stop code generation, but continue 1579 // parsing and semantic analysis (to ensure all warnings and errors 1580 // are emitted). 1581 if (Diags.hasErrorOccurred()) 1582 return; 1583 1584 // Ignore dependent declarations. 1585 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1586 return; 1587 1588 switch (D->getKind()) { 1589 case Decl::CXXConversion: 1590 case Decl::CXXMethod: 1591 case Decl::Function: 1592 // Skip function templates 1593 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1594 return; 1595 1596 EmitGlobal(cast<FunctionDecl>(D)); 1597 break; 1598 1599 case Decl::Var: 1600 EmitGlobal(cast<VarDecl>(D)); 1601 break; 1602 1603 // C++ Decls 1604 case Decl::Namespace: 1605 EmitNamespace(cast<NamespaceDecl>(D)); 1606 break; 1607 // No code generation needed. 1608 case Decl::UsingShadow: 1609 case Decl::Using: 1610 case Decl::UsingDirective: 1611 case Decl::ClassTemplate: 1612 case Decl::FunctionTemplate: 1613 case Decl::NamespaceAlias: 1614 break; 1615 case Decl::CXXConstructor: 1616 // Skip function templates 1617 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1618 return; 1619 1620 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1621 break; 1622 case Decl::CXXDestructor: 1623 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1624 break; 1625 1626 case Decl::StaticAssert: 1627 // Nothing to do. 1628 break; 1629 1630 // Objective-C Decls 1631 1632 // Forward declarations, no (immediate) code generation. 1633 case Decl::ObjCClass: 1634 case Decl::ObjCForwardProtocol: 1635 case Decl::ObjCCategory: 1636 case Decl::ObjCInterface: 1637 break; 1638 1639 case Decl::ObjCProtocol: 1640 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1641 break; 1642 1643 case Decl::ObjCCategoryImpl: 1644 // Categories have properties but don't support synthesize so we 1645 // can ignore them here. 1646 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1647 break; 1648 1649 case Decl::ObjCImplementation: { 1650 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1651 EmitObjCPropertyImplementations(OMD); 1652 Runtime->GenerateClass(OMD); 1653 break; 1654 } 1655 case Decl::ObjCMethod: { 1656 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1657 // If this is not a prototype, emit the body. 1658 if (OMD->getBody()) 1659 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1660 break; 1661 } 1662 case Decl::ObjCCompatibleAlias: 1663 // compatibility-alias is a directive and has no code gen. 1664 break; 1665 1666 case Decl::LinkageSpec: 1667 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1668 break; 1669 1670 case Decl::FileScopeAsm: { 1671 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1672 std::string AsmString(AD->getAsmString()->getStrData(), 1673 AD->getAsmString()->getByteLength()); 1674 1675 const std::string &S = getModule().getModuleInlineAsm(); 1676 if (S.empty()) 1677 getModule().setModuleInlineAsm(AsmString); 1678 else 1679 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1680 break; 1681 } 1682 1683 default: 1684 // Make sure we handled everything we should, every other kind is a 1685 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1686 // function. Need to recode Decl::Kind to do that easily. 1687 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1688 } 1689 } 1690