1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/CodeGen/CodeGenOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/Basic/Diagnostic.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Basic/ConvertUTF.h"
30 #include "llvm/CallingConv.h"
31 #include "llvm/Module.h"
32 #include "llvm/Intrinsics.h"
33 #include "llvm/Target/TargetData.h"
34 #include "llvm/Support/ErrorHandling.h"
35 using namespace clang;
36 using namespace CodeGen;
37 
38 
39 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
40                              llvm::Module &M, const llvm::TargetData &TD,
41                              Diagnostic &diags)
42   : BlockModule(C, M, TD, Types, *this), Context(C),
43     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
44     TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C),
45     VtableInfo(*this), Runtime(0),
46     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
47     VMContext(M.getContext()) {
48 
49   if (!Features.ObjC1)
50     Runtime = 0;
51   else if (!Features.NeXTRuntime)
52     Runtime = CreateGNUObjCRuntime(*this);
53   else if (Features.ObjCNonFragileABI)
54     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
55   else
56     Runtime = CreateMacObjCRuntime(*this);
57 
58   // If debug info generation is enabled, create the CGDebugInfo object.
59   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
60 }
61 
62 CodeGenModule::~CodeGenModule() {
63   delete Runtime;
64   delete DebugInfo;
65 }
66 
67 void CodeGenModule::Release() {
68   // We need to call this first because it can add deferred declarations.
69   EmitCXXGlobalInitFunc();
70 
71   EmitDeferred();
72   if (Runtime)
73     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
74       AddGlobalCtor(ObjCInitFunction);
75   EmitCtorList(GlobalCtors, "llvm.global_ctors");
76   EmitCtorList(GlobalDtors, "llvm.global_dtors");
77   EmitAnnotations();
78   EmitLLVMUsed();
79 }
80 
81 /// ErrorUnsupported - Print out an error that codegen doesn't support the
82 /// specified stmt yet.
83 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
84                                      bool OmitOnError) {
85   if (OmitOnError && getDiags().hasErrorOccurred())
86     return;
87   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
88                                                "cannot compile this %0 yet");
89   std::string Msg = Type;
90   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
91     << Msg << S->getSourceRange();
92 }
93 
94 /// ErrorUnsupported - Print out an error that codegen doesn't support the
95 /// specified decl yet.
96 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
97                                      bool OmitOnError) {
98   if (OmitOnError && getDiags().hasErrorOccurred())
99     return;
100   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
101                                                "cannot compile this %0 yet");
102   std::string Msg = Type;
103   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
104 }
105 
106 LangOptions::VisibilityMode
107 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
108   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
109     if (VD->getStorageClass() == VarDecl::PrivateExtern)
110       return LangOptions::Hidden;
111 
112   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
113     switch (attr->getVisibility()) {
114     default: assert(0 && "Unknown visibility!");
115     case VisibilityAttr::DefaultVisibility:
116       return LangOptions::Default;
117     case VisibilityAttr::HiddenVisibility:
118       return LangOptions::Hidden;
119     case VisibilityAttr::ProtectedVisibility:
120       return LangOptions::Protected;
121     }
122   }
123 
124   return getLangOptions().getVisibilityMode();
125 }
126 
127 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
128                                         const Decl *D) const {
129   // Internal definitions always have default visibility.
130   if (GV->hasLocalLinkage()) {
131     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
132     return;
133   }
134 
135   switch (getDeclVisibilityMode(D)) {
136   default: assert(0 && "Unknown visibility!");
137   case LangOptions::Default:
138     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
139   case LangOptions::Hidden:
140     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
141   case LangOptions::Protected:
142     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
143   }
144 }
145 
146 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
147   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
148 
149   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
150     return getMangledCXXCtorName(D, GD.getCtorType());
151   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
152     return getMangledCXXDtorName(D, GD.getDtorType());
153 
154   return getMangledName(ND);
155 }
156 
157 /// \brief Retrieves the mangled name for the given declaration.
158 ///
159 /// If the given declaration requires a mangled name, returns an
160 /// const char* containing the mangled name.  Otherwise, returns
161 /// the unmangled name.
162 ///
163 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
164   if (!getMangleContext().shouldMangleDeclName(ND)) {
165     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
166     return ND->getNameAsCString();
167   }
168 
169   llvm::SmallString<256> Name;
170   getMangleContext().mangleName(ND, Name);
171   Name += '\0';
172   return UniqueMangledName(Name.begin(), Name.end());
173 }
174 
175 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
176                                              const char *NameEnd) {
177   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
178 
179   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
180 }
181 
182 /// AddGlobalCtor - Add a function to the list that will be called before
183 /// main() runs.
184 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
185   // FIXME: Type coercion of void()* types.
186   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
187 }
188 
189 /// AddGlobalDtor - Add a function to the list that will be called
190 /// when the module is unloaded.
191 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
192   // FIXME: Type coercion of void()* types.
193   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
194 }
195 
196 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
197   // Ctor function type is void()*.
198   llvm::FunctionType* CtorFTy =
199     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
200                             std::vector<const llvm::Type*>(),
201                             false);
202   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
203 
204   // Get the type of a ctor entry, { i32, void ()* }.
205   llvm::StructType* CtorStructTy =
206     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
207                           llvm::PointerType::getUnqual(CtorFTy), NULL);
208 
209   // Construct the constructor and destructor arrays.
210   std::vector<llvm::Constant*> Ctors;
211   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
212     std::vector<llvm::Constant*> S;
213     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
214                 I->second, false));
215     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
216     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
217   }
218 
219   if (!Ctors.empty()) {
220     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
221     new llvm::GlobalVariable(TheModule, AT, false,
222                              llvm::GlobalValue::AppendingLinkage,
223                              llvm::ConstantArray::get(AT, Ctors),
224                              GlobalName);
225   }
226 }
227 
228 void CodeGenModule::EmitAnnotations() {
229   if (Annotations.empty())
230     return;
231 
232   // Create a new global variable for the ConstantStruct in the Module.
233   llvm::Constant *Array =
234   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
235                                                 Annotations.size()),
236                            Annotations);
237   llvm::GlobalValue *gv =
238   new llvm::GlobalVariable(TheModule, Array->getType(), false,
239                            llvm::GlobalValue::AppendingLinkage, Array,
240                            "llvm.global.annotations");
241   gv->setSection("llvm.metadata");
242 }
243 
244 static CodeGenModule::GVALinkage
245 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
246                       const LangOptions &Features) {
247   // Everything located semantically within an anonymous namespace is
248   // always internal.
249   if (FD->isInAnonymousNamespace())
250     return CodeGenModule::GVA_Internal;
251 
252   // "static" functions get internal linkage.
253   if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD))
254     return CodeGenModule::GVA_Internal;
255 
256   // The kind of external linkage this function will have, if it is not
257   // inline or static.
258   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
259   if (Context.getLangOptions().CPlusPlus &&
260       FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
261     External = CodeGenModule::GVA_TemplateInstantiation;
262 
263   if (!FD->isInlined())
264     return External;
265 
266   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
267     // GNU or C99 inline semantics. Determine whether this symbol should be
268     // externally visible.
269     if (FD->isInlineDefinitionExternallyVisible())
270       return External;
271 
272     // C99 inline semantics, where the symbol is not externally visible.
273     return CodeGenModule::GVA_C99Inline;
274   }
275 
276   // C++0x [temp.explicit]p9:
277   //   [ Note: The intent is that an inline function that is the subject of
278   //   an explicit instantiation declaration will still be implicitly
279   //   instantiated when used so that the body can be considered for
280   //   inlining, but that no out-of-line copy of the inline function would be
281   //   generated in the translation unit. -- end note ]
282   if (FD->getTemplateSpecializationKind()
283                                        == TSK_ExplicitInstantiationDeclaration)
284     return CodeGenModule::GVA_C99Inline;
285 
286   return CodeGenModule::GVA_CXXInline;
287 }
288 
289 /// SetFunctionDefinitionAttributes - Set attributes for a global.
290 ///
291 /// FIXME: This is currently only done for aliases and functions, but not for
292 /// variables (these details are set in EmitGlobalVarDefinition for variables).
293 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
294                                                     llvm::GlobalValue *GV) {
295   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
296 
297   if (Linkage == GVA_Internal) {
298     GV->setLinkage(llvm::Function::InternalLinkage);
299   } else if (D->hasAttr<DLLExportAttr>()) {
300     GV->setLinkage(llvm::Function::DLLExportLinkage);
301   } else if (D->hasAttr<WeakAttr>()) {
302     GV->setLinkage(llvm::Function::WeakAnyLinkage);
303   } else if (Linkage == GVA_C99Inline) {
304     // In C99 mode, 'inline' functions are guaranteed to have a strong
305     // definition somewhere else, so we can use available_externally linkage.
306     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
307   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
308     // In C++, the compiler has to emit a definition in every translation unit
309     // that references the function.  We should use linkonce_odr because
310     // a) if all references in this translation unit are optimized away, we
311     // don't need to codegen it.  b) if the function persists, it needs to be
312     // merged with other definitions. c) C++ has the ODR, so we know the
313     // definition is dependable.
314     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
315   } else {
316     assert(Linkage == GVA_StrongExternal);
317     // Otherwise, we have strong external linkage.
318     GV->setLinkage(llvm::Function::ExternalLinkage);
319   }
320 
321   SetCommonAttributes(D, GV);
322 }
323 
324 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
325                                               const CGFunctionInfo &Info,
326                                               llvm::Function *F) {
327   unsigned CallingConv;
328   AttributeListType AttributeList;
329   ConstructAttributeList(Info, D, AttributeList, CallingConv);
330   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
331                                           AttributeList.size()));
332   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
333 }
334 
335 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
336                                                            llvm::Function *F) {
337   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
338     F->addFnAttr(llvm::Attribute::NoUnwind);
339 
340   if (D->hasAttr<AlwaysInlineAttr>())
341     F->addFnAttr(llvm::Attribute::AlwaysInline);
342 
343   if (D->hasAttr<NoInlineAttr>())
344     F->addFnAttr(llvm::Attribute::NoInline);
345 
346   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
347     F->addFnAttr(llvm::Attribute::StackProtect);
348   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
349     F->addFnAttr(llvm::Attribute::StackProtectReq);
350 
351   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
352     unsigned width = Context.Target.getCharWidth();
353     F->setAlignment(AA->getAlignment() / width);
354     while ((AA = AA->getNext<AlignedAttr>()))
355       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
356   }
357   // C++ ABI requires 2-byte alignment for member functions.
358   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
359     F->setAlignment(2);
360 }
361 
362 void CodeGenModule::SetCommonAttributes(const Decl *D,
363                                         llvm::GlobalValue *GV) {
364   setGlobalVisibility(GV, D);
365 
366   if (D->hasAttr<UsedAttr>())
367     AddUsedGlobal(GV);
368 
369   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
370     GV->setSection(SA->getName());
371 }
372 
373 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
374                                                   llvm::Function *F,
375                                                   const CGFunctionInfo &FI) {
376   SetLLVMFunctionAttributes(D, FI, F);
377   SetLLVMFunctionAttributesForDefinition(D, F);
378 
379   F->setLinkage(llvm::Function::InternalLinkage);
380 
381   SetCommonAttributes(D, F);
382 }
383 
384 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
385                                           llvm::Function *F,
386                                           bool IsIncompleteFunction) {
387   if (!IsIncompleteFunction)
388     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
389 
390   // Only a few attributes are set on declarations; these may later be
391   // overridden by a definition.
392 
393   if (FD->hasAttr<DLLImportAttr>()) {
394     F->setLinkage(llvm::Function::DLLImportLinkage);
395   } else if (FD->hasAttr<WeakAttr>() ||
396              FD->hasAttr<WeakImportAttr>()) {
397     // "extern_weak" is overloaded in LLVM; we probably should have
398     // separate linkage types for this.
399     F->setLinkage(llvm::Function::ExternalWeakLinkage);
400   } else {
401     F->setLinkage(llvm::Function::ExternalLinkage);
402   }
403 
404   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
405     F->setSection(SA->getName());
406 }
407 
408 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
409   assert(!GV->isDeclaration() &&
410          "Only globals with definition can force usage.");
411   LLVMUsed.push_back(GV);
412 }
413 
414 void CodeGenModule::EmitLLVMUsed() {
415   // Don't create llvm.used if there is no need.
416   if (LLVMUsed.empty())
417     return;
418 
419   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
420 
421   // Convert LLVMUsed to what ConstantArray needs.
422   std::vector<llvm::Constant*> UsedArray;
423   UsedArray.resize(LLVMUsed.size());
424   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
425     UsedArray[i] =
426      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
427                                       i8PTy);
428   }
429 
430   if (UsedArray.empty())
431     return;
432   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
433 
434   llvm::GlobalVariable *GV =
435     new llvm::GlobalVariable(getModule(), ATy, false,
436                              llvm::GlobalValue::AppendingLinkage,
437                              llvm::ConstantArray::get(ATy, UsedArray),
438                              "llvm.used");
439 
440   GV->setSection("llvm.metadata");
441 }
442 
443 void CodeGenModule::EmitDeferred() {
444   // Emit code for any potentially referenced deferred decls.  Since a
445   // previously unused static decl may become used during the generation of code
446   // for a static function, iterate until no  changes are made.
447   while (!DeferredDeclsToEmit.empty()) {
448     GlobalDecl D = DeferredDeclsToEmit.back();
449     DeferredDeclsToEmit.pop_back();
450 
451     // The mangled name for the decl must have been emitted in GlobalDeclMap.
452     // Look it up to see if it was defined with a stronger definition (e.g. an
453     // extern inline function with a strong function redefinition).  If so,
454     // just ignore the deferred decl.
455     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
456     assert(CGRef && "Deferred decl wasn't referenced?");
457 
458     if (!CGRef->isDeclaration())
459       continue;
460 
461     // Otherwise, emit the definition and move on to the next one.
462     EmitGlobalDefinition(D);
463   }
464 }
465 
466 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
467 /// annotation information for a given GlobalValue.  The annotation struct is
468 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
469 /// GlobalValue being annotated.  The second field is the constant string
470 /// created from the AnnotateAttr's annotation.  The third field is a constant
471 /// string containing the name of the translation unit.  The fourth field is
472 /// the line number in the file of the annotated value declaration.
473 ///
474 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
475 ///        appears to.
476 ///
477 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
478                                                 const AnnotateAttr *AA,
479                                                 unsigned LineNo) {
480   llvm::Module *M = &getModule();
481 
482   // get [N x i8] constants for the annotation string, and the filename string
483   // which are the 2nd and 3rd elements of the global annotation structure.
484   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
485   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
486                                                   AA->getAnnotation(), true);
487   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
488                                                   M->getModuleIdentifier(),
489                                                   true);
490 
491   // Get the two global values corresponding to the ConstantArrays we just
492   // created to hold the bytes of the strings.
493   llvm::GlobalValue *annoGV =
494     new llvm::GlobalVariable(*M, anno->getType(), false,
495                              llvm::GlobalValue::PrivateLinkage, anno,
496                              GV->getName());
497   // translation unit name string, emitted into the llvm.metadata section.
498   llvm::GlobalValue *unitGV =
499     new llvm::GlobalVariable(*M, unit->getType(), false,
500                              llvm::GlobalValue::PrivateLinkage, unit,
501                              ".str");
502 
503   // Create the ConstantStruct for the global annotation.
504   llvm::Constant *Fields[4] = {
505     llvm::ConstantExpr::getBitCast(GV, SBP),
506     llvm::ConstantExpr::getBitCast(annoGV, SBP),
507     llvm::ConstantExpr::getBitCast(unitGV, SBP),
508     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
509   };
510   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
511 }
512 
513 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
514   // Never defer when EmitAllDecls is specified or the decl has
515   // attribute used.
516   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
517     return false;
518 
519   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
520     // Constructors and destructors should never be deferred.
521     if (FD->hasAttr<ConstructorAttr>() ||
522         FD->hasAttr<DestructorAttr>())
523       return false;
524 
525     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
526 
527     // static, static inline, always_inline, and extern inline functions can
528     // always be deferred.  Normal inline functions can be deferred in C99/C++.
529     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
530         Linkage == GVA_CXXInline)
531       return true;
532     return false;
533   }
534 
535   const VarDecl *VD = cast<VarDecl>(Global);
536   assert(VD->isFileVarDecl() && "Invalid decl");
537 
538   // We never want to defer structs that have non-trivial constructors or
539   // destructors.
540 
541   // FIXME: Handle references.
542   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
543     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
544       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
545         return false;
546     }
547   }
548 
549   // Static data may be deferred, but out-of-line static data members
550   // cannot be.
551   if (VD->isInAnonymousNamespace())
552     return true;
553   if (VD->getLinkage() == VarDecl::InternalLinkage) {
554     // Initializer has side effects?
555     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
556       return false;
557     return !(VD->isStaticDataMember() && VD->isOutOfLine());
558   }
559   return false;
560 }
561 
562 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
563   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
564 
565   // If this is an alias definition (which otherwise looks like a declaration)
566   // emit it now.
567   if (Global->hasAttr<AliasAttr>())
568     return EmitAliasDefinition(Global);
569 
570   // Ignore declarations, they will be emitted on their first use.
571   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
572     // Forward declarations are emitted lazily on first use.
573     if (!FD->isThisDeclarationADefinition())
574       return;
575   } else {
576     const VarDecl *VD = cast<VarDecl>(Global);
577     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
578 
579     if (getLangOptions().CPlusPlus && !VD->getInit()) {
580       // In C++, if this is marked "extern", defer code generation.
581       if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC())
582         return;
583 
584       // If this is a declaration of an explicit specialization of a static
585       // data member in a class template, don't emit it.
586       if (VD->isStaticDataMember() &&
587           VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
588         return;
589     }
590 
591     // In C, if this isn't a definition, defer code generation.
592     if (!getLangOptions().CPlusPlus && !VD->getInit())
593       return;
594   }
595 
596   // Defer code generation when possible if this is a static definition, inline
597   // function etc.  These we only want to emit if they are used.
598   if (MayDeferGeneration(Global)) {
599     // If the value has already been used, add it directly to the
600     // DeferredDeclsToEmit list.
601     const char *MangledName = getMangledName(GD);
602     if (GlobalDeclMap.count(MangledName))
603       DeferredDeclsToEmit.push_back(GD);
604     else {
605       // Otherwise, remember that we saw a deferred decl with this name.  The
606       // first use of the mangled name will cause it to move into
607       // DeferredDeclsToEmit.
608       DeferredDecls[MangledName] = GD;
609     }
610     return;
611   }
612 
613   // Otherwise emit the definition.
614   EmitGlobalDefinition(GD);
615 }
616 
617 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
618   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
619 
620   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
621                                  Context.getSourceManager(),
622                                  "Generating code for declaration");
623 
624   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
625     getVtableInfo().MaybeEmitVtable(GD);
626     if (MD->isVirtual() && MD->isOutOfLine() &&
627         (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) {
628       BuildThunksForVirtual(GD);
629     }
630   }
631 
632   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
633     EmitCXXConstructor(CD, GD.getCtorType());
634   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
635     EmitCXXDestructor(DD, GD.getDtorType());
636   else if (isa<FunctionDecl>(D))
637     EmitGlobalFunctionDefinition(GD);
638   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
639     EmitGlobalVarDefinition(VD);
640   else {
641     assert(0 && "Invalid argument to EmitGlobalDefinition()");
642   }
643 }
644 
645 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
646 /// module, create and return an llvm Function with the specified type. If there
647 /// is something in the module with the specified name, return it potentially
648 /// bitcasted to the right type.
649 ///
650 /// If D is non-null, it specifies a decl that correspond to this.  This is used
651 /// to set the attributes on the function when it is first created.
652 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
653                                                        const llvm::Type *Ty,
654                                                        GlobalDecl D) {
655   // Lookup the entry, lazily creating it if necessary.
656   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
657   if (Entry) {
658     if (Entry->getType()->getElementType() == Ty)
659       return Entry;
660 
661     // Make sure the result is of the correct type.
662     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
663     return llvm::ConstantExpr::getBitCast(Entry, PTy);
664   }
665 
666   // This function doesn't have a complete type (for example, the return
667   // type is an incomplete struct). Use a fake type instead, and make
668   // sure not to try to set attributes.
669   bool IsIncompleteFunction = false;
670   if (!isa<llvm::FunctionType>(Ty)) {
671     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
672                                  std::vector<const llvm::Type*>(), false);
673     IsIncompleteFunction = true;
674   }
675   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
676                                              llvm::Function::ExternalLinkage,
677                                              "", &getModule());
678   F->setName(MangledName);
679   if (D.getDecl())
680     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
681                           IsIncompleteFunction);
682   Entry = F;
683 
684   // This is the first use or definition of a mangled name.  If there is a
685   // deferred decl with this name, remember that we need to emit it at the end
686   // of the file.
687   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
688     DeferredDecls.find(MangledName);
689   if (DDI != DeferredDecls.end()) {
690     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
691     // list, and remove it from DeferredDecls (since we don't need it anymore).
692     DeferredDeclsToEmit.push_back(DDI->second);
693     DeferredDecls.erase(DDI);
694   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
695     // If this the first reference to a C++ inline function in a class, queue up
696     // the deferred function body for emission.  These are not seen as
697     // top-level declarations.
698     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
699       DeferredDeclsToEmit.push_back(D);
700     // A called constructor which has no definition or declaration need be
701     // synthesized.
702     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
703       if (CD->isImplicit())
704         DeferredDeclsToEmit.push_back(D);
705     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
706       if (DD->isImplicit())
707         DeferredDeclsToEmit.push_back(D);
708     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
709       if (MD->isCopyAssignment() && MD->isImplicit())
710         DeferredDeclsToEmit.push_back(D);
711     }
712   }
713 
714   return F;
715 }
716 
717 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
718 /// non-null, then this function will use the specified type if it has to
719 /// create it (this occurs when we see a definition of the function).
720 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
721                                                  const llvm::Type *Ty) {
722   // If there was no specific requested type, just convert it now.
723   if (!Ty)
724     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
725   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
726 }
727 
728 /// CreateRuntimeFunction - Create a new runtime function with the specified
729 /// type and name.
730 llvm::Constant *
731 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
732                                      const char *Name) {
733   // Convert Name to be a uniqued string from the IdentifierInfo table.
734   Name = getContext().Idents.get(Name).getNameStart();
735   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
736 }
737 
738 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
739 /// create and return an llvm GlobalVariable with the specified type.  If there
740 /// is something in the module with the specified name, return it potentially
741 /// bitcasted to the right type.
742 ///
743 /// If D is non-null, it specifies a decl that correspond to this.  This is used
744 /// to set the attributes on the global when it is first created.
745 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
746                                                      const llvm::PointerType*Ty,
747                                                      const VarDecl *D) {
748   // Lookup the entry, lazily creating it if necessary.
749   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
750   if (Entry) {
751     if (Entry->getType() == Ty)
752       return Entry;
753 
754     // Make sure the result is of the correct type.
755     return llvm::ConstantExpr::getBitCast(Entry, Ty);
756   }
757 
758   // This is the first use or definition of a mangled name.  If there is a
759   // deferred decl with this name, remember that we need to emit it at the end
760   // of the file.
761   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
762     DeferredDecls.find(MangledName);
763   if (DDI != DeferredDecls.end()) {
764     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
765     // list, and remove it from DeferredDecls (since we don't need it anymore).
766     DeferredDeclsToEmit.push_back(DDI->second);
767     DeferredDecls.erase(DDI);
768   }
769 
770   llvm::GlobalVariable *GV =
771     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
772                              llvm::GlobalValue::ExternalLinkage,
773                              0, "", 0,
774                              false, Ty->getAddressSpace());
775   GV->setName(MangledName);
776 
777   // Handle things which are present even on external declarations.
778   if (D) {
779     // FIXME: This code is overly simple and should be merged with other global
780     // handling.
781     GV->setConstant(D->getType().isConstant(Context));
782 
783     // FIXME: Merge with other attribute handling code.
784     if (D->getStorageClass() == VarDecl::PrivateExtern)
785       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
786 
787     if (D->hasAttr<WeakAttr>() ||
788         D->hasAttr<WeakImportAttr>())
789       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
790 
791     GV->setThreadLocal(D->isThreadSpecified());
792   }
793 
794   return Entry = GV;
795 }
796 
797 
798 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
799 /// given global variable.  If Ty is non-null and if the global doesn't exist,
800 /// then it will be greated with the specified type instead of whatever the
801 /// normal requested type would be.
802 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
803                                                   const llvm::Type *Ty) {
804   assert(D->hasGlobalStorage() && "Not a global variable");
805   QualType ASTTy = D->getType();
806   if (Ty == 0)
807     Ty = getTypes().ConvertTypeForMem(ASTTy);
808 
809   const llvm::PointerType *PTy =
810     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
811   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
812 }
813 
814 /// CreateRuntimeVariable - Create a new runtime global variable with the
815 /// specified type and name.
816 llvm::Constant *
817 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
818                                      const char *Name) {
819   // Convert Name to be a uniqued string from the IdentifierInfo table.
820   Name = getContext().Idents.get(Name).getNameStart();
821   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
822 }
823 
824 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
825   assert(!D->getInit() && "Cannot emit definite definitions here!");
826 
827   if (MayDeferGeneration(D)) {
828     // If we have not seen a reference to this variable yet, place it
829     // into the deferred declarations table to be emitted if needed
830     // later.
831     const char *MangledName = getMangledName(D);
832     if (GlobalDeclMap.count(MangledName) == 0) {
833       DeferredDecls[MangledName] = D;
834       return;
835     }
836   }
837 
838   // The tentative definition is the only definition.
839   EmitGlobalVarDefinition(D);
840 }
841 
842 static CodeGenModule::GVALinkage
843 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
844   // Everything located semantically within an anonymous namespace is
845   // always internal.
846   if (VD->isInAnonymousNamespace())
847     return CodeGenModule::GVA_Internal;
848 
849   // Handle linkage for static data members.
850   if (VD->isStaticDataMember()) {
851     switch (VD->getTemplateSpecializationKind()) {
852     case TSK_Undeclared:
853     case TSK_ExplicitSpecialization:
854     case TSK_ExplicitInstantiationDefinition:
855       return CodeGenModule::GVA_StrongExternal;
856 
857     case TSK_ExplicitInstantiationDeclaration:
858       llvm::llvm_unreachable("Variable should not be instantiated");
859       // Fall through to treat this like any other instantiation.
860 
861     case TSK_ImplicitInstantiation:
862       return CodeGenModule::GVA_TemplateInstantiation;
863     }
864   }
865 
866   if (VD->getLinkage() == VarDecl::InternalLinkage)
867     return CodeGenModule::GVA_Internal;
868 
869   return CodeGenModule::GVA_StrongExternal;
870 }
871 
872 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
873   llvm::Constant *Init = 0;
874   QualType ASTTy = D->getType();
875 
876   if (D->getInit() == 0) {
877     // This is a tentative definition; tentative definitions are
878     // implicitly initialized with { 0 }.
879     //
880     // Note that tentative definitions are only emitted at the end of
881     // a translation unit, so they should never have incomplete
882     // type. In addition, EmitTentativeDefinition makes sure that we
883     // never attempt to emit a tentative definition if a real one
884     // exists. A use may still exists, however, so we still may need
885     // to do a RAUW.
886     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
887     Init = EmitNullConstant(D->getType());
888   } else {
889     Init = EmitConstantExpr(D->getInit(), D->getType());
890 
891     if (!Init) {
892       QualType T = D->getInit()->getType();
893       if (getLangOptions().CPlusPlus) {
894         CXXGlobalInits.push_back(D);
895         Init = EmitNullConstant(T);
896       } else {
897         ErrorUnsupported(D, "static initializer");
898         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
899       }
900     }
901   }
902 
903   const llvm::Type* InitType = Init->getType();
904   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
905 
906   // Strip off a bitcast if we got one back.
907   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
908     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
909            // all zero index gep.
910            CE->getOpcode() == llvm::Instruction::GetElementPtr);
911     Entry = CE->getOperand(0);
912   }
913 
914   // Entry is now either a Function or GlobalVariable.
915   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
916 
917   // We have a definition after a declaration with the wrong type.
918   // We must make a new GlobalVariable* and update everything that used OldGV
919   // (a declaration or tentative definition) with the new GlobalVariable*
920   // (which will be a definition).
921   //
922   // This happens if there is a prototype for a global (e.g.
923   // "extern int x[];") and then a definition of a different type (e.g.
924   // "int x[10];"). This also happens when an initializer has a different type
925   // from the type of the global (this happens with unions).
926   if (GV == 0 ||
927       GV->getType()->getElementType() != InitType ||
928       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
929 
930     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
931     GlobalDeclMap.erase(getMangledName(D));
932 
933     // Make a new global with the correct type, this is now guaranteed to work.
934     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
935     GV->takeName(cast<llvm::GlobalValue>(Entry));
936 
937     // Replace all uses of the old global with the new global
938     llvm::Constant *NewPtrForOldDecl =
939         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
940     Entry->replaceAllUsesWith(NewPtrForOldDecl);
941 
942     // Erase the old global, since it is no longer used.
943     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
944   }
945 
946   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
947     SourceManager &SM = Context.getSourceManager();
948     AddAnnotation(EmitAnnotateAttr(GV, AA,
949                               SM.getInstantiationLineNumber(D->getLocation())));
950   }
951 
952   GV->setInitializer(Init);
953 
954   // If it is safe to mark the global 'constant', do so now.
955   GV->setConstant(false);
956   if (D->getType().isConstant(Context)) {
957     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
958     // members, it cannot be declared "LLVM const".
959     GV->setConstant(true);
960   }
961 
962   GV->setAlignment(getContext().getDeclAlignInBytes(D));
963 
964   // Set the llvm linkage type as appropriate.
965   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
966   if (Linkage == GVA_Internal)
967     GV->setLinkage(llvm::Function::InternalLinkage);
968   else if (D->hasAttr<DLLImportAttr>())
969     GV->setLinkage(llvm::Function::DLLImportLinkage);
970   else if (D->hasAttr<DLLExportAttr>())
971     GV->setLinkage(llvm::Function::DLLExportLinkage);
972   else if (D->hasAttr<WeakAttr>()) {
973     if (GV->isConstant())
974       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
975     else
976       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
977   } else if (Linkage == GVA_TemplateInstantiation)
978     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
979   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
980            !D->hasExternalStorage() && !D->getInit() &&
981            !D->getAttr<SectionAttr>()) {
982     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
983     // common vars aren't constant even if declared const.
984     GV->setConstant(false);
985   } else
986     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
987 
988   SetCommonAttributes(D, GV);
989 
990   // Emit global variable debug information.
991   if (CGDebugInfo *DI = getDebugInfo()) {
992     DI->setLocation(D->getLocation());
993     DI->EmitGlobalVariable(GV, D);
994   }
995 }
996 
997 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
998 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
999 /// existing call uses of the old function in the module, this adjusts them to
1000 /// call the new function directly.
1001 ///
1002 /// This is not just a cleanup: the always_inline pass requires direct calls to
1003 /// functions to be able to inline them.  If there is a bitcast in the way, it
1004 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1005 /// run at -O0.
1006 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1007                                                       llvm::Function *NewFn) {
1008   // If we're redefining a global as a function, don't transform it.
1009   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1010   if (OldFn == 0) return;
1011 
1012   const llvm::Type *NewRetTy = NewFn->getReturnType();
1013   llvm::SmallVector<llvm::Value*, 4> ArgList;
1014 
1015   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1016        UI != E; ) {
1017     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1018     unsigned OpNo = UI.getOperandNo();
1019     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1020     if (!CI || OpNo != 0) continue;
1021 
1022     // If the return types don't match exactly, and if the call isn't dead, then
1023     // we can't transform this call.
1024     if (CI->getType() != NewRetTy && !CI->use_empty())
1025       continue;
1026 
1027     // If the function was passed too few arguments, don't transform.  If extra
1028     // arguments were passed, we silently drop them.  If any of the types
1029     // mismatch, we don't transform.
1030     unsigned ArgNo = 0;
1031     bool DontTransform = false;
1032     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1033          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1034       if (CI->getNumOperands()-1 == ArgNo ||
1035           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1036         DontTransform = true;
1037         break;
1038       }
1039     }
1040     if (DontTransform)
1041       continue;
1042 
1043     // Okay, we can transform this.  Create the new call instruction and copy
1044     // over the required information.
1045     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1046     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1047                                                      ArgList.end(), "", CI);
1048     ArgList.clear();
1049     if (!NewCall->getType()->isVoidTy())
1050       NewCall->takeName(CI);
1051     NewCall->setAttributes(CI->getAttributes());
1052     NewCall->setCallingConv(CI->getCallingConv());
1053 
1054     // Finally, remove the old call, replacing any uses with the new one.
1055     if (!CI->use_empty())
1056       CI->replaceAllUsesWith(NewCall);
1057 
1058     // Copy any custom metadata attached with CI.
1059     llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata();
1060     TheMetadata.copyMD(CI, NewCall);
1061 
1062     CI->eraseFromParent();
1063   }
1064 }
1065 
1066 
1067 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1068   const llvm::FunctionType *Ty;
1069   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1070 
1071   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1072     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1073 
1074     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1075   } else {
1076     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1077 
1078     // As a special case, make sure that definitions of K&R function
1079     // "type foo()" aren't declared as varargs (which forces the backend
1080     // to do unnecessary work).
1081     if (D->getType()->isFunctionNoProtoType()) {
1082       assert(Ty->isVarArg() && "Didn't lower type as expected");
1083       // Due to stret, the lowered function could have arguments.
1084       // Just create the same type as was lowered by ConvertType
1085       // but strip off the varargs bit.
1086       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1087       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1088     }
1089   }
1090 
1091   // Get or create the prototype for the function.
1092   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1093 
1094   // Strip off a bitcast if we got one back.
1095   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1096     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1097     Entry = CE->getOperand(0);
1098   }
1099 
1100 
1101   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1102     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1103 
1104     // If the types mismatch then we have to rewrite the definition.
1105     assert(OldFn->isDeclaration() &&
1106            "Shouldn't replace non-declaration");
1107 
1108     // F is the Function* for the one with the wrong type, we must make a new
1109     // Function* and update everything that used F (a declaration) with the new
1110     // Function* (which will be a definition).
1111     //
1112     // This happens if there is a prototype for a function
1113     // (e.g. "int f()") and then a definition of a different type
1114     // (e.g. "int f(int x)").  Start by making a new function of the
1115     // correct type, RAUW, then steal the name.
1116     GlobalDeclMap.erase(getMangledName(D));
1117     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1118     NewFn->takeName(OldFn);
1119 
1120     // If this is an implementation of a function without a prototype, try to
1121     // replace any existing uses of the function (which may be calls) with uses
1122     // of the new function
1123     if (D->getType()->isFunctionNoProtoType()) {
1124       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1125       OldFn->removeDeadConstantUsers();
1126     }
1127 
1128     // Replace uses of F with the Function we will endow with a body.
1129     if (!Entry->use_empty()) {
1130       llvm::Constant *NewPtrForOldDecl =
1131         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1132       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1133     }
1134 
1135     // Ok, delete the old function now, which is dead.
1136     OldFn->eraseFromParent();
1137 
1138     Entry = NewFn;
1139   }
1140 
1141   llvm::Function *Fn = cast<llvm::Function>(Entry);
1142 
1143   CodeGenFunction(*this).GenerateCode(D, Fn);
1144 
1145   SetFunctionDefinitionAttributes(D, Fn);
1146   SetLLVMFunctionAttributesForDefinition(D, Fn);
1147 
1148   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1149     AddGlobalCtor(Fn, CA->getPriority());
1150   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1151     AddGlobalDtor(Fn, DA->getPriority());
1152 }
1153 
1154 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1155   const AliasAttr *AA = D->getAttr<AliasAttr>();
1156   assert(AA && "Not an alias?");
1157 
1158   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1159 
1160   // Unique the name through the identifier table.
1161   const char *AliaseeName = AA->getAliasee().c_str();
1162   AliaseeName = getContext().Idents.get(AliaseeName).getNameStart();
1163 
1164   // Create a reference to the named value.  This ensures that it is emitted
1165   // if a deferred decl.
1166   llvm::Constant *Aliasee;
1167   if (isa<llvm::FunctionType>(DeclTy))
1168     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1169   else
1170     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1171                                     llvm::PointerType::getUnqual(DeclTy), 0);
1172 
1173   // Create the new alias itself, but don't set a name yet.
1174   llvm::GlobalValue *GA =
1175     new llvm::GlobalAlias(Aliasee->getType(),
1176                           llvm::Function::ExternalLinkage,
1177                           "", Aliasee, &getModule());
1178 
1179   // See if there is already something with the alias' name in the module.
1180   const char *MangledName = getMangledName(D);
1181   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1182 
1183   if (Entry && !Entry->isDeclaration()) {
1184     // If there is a definition in the module, then it wins over the alias.
1185     // This is dubious, but allow it to be safe.  Just ignore the alias.
1186     GA->eraseFromParent();
1187     return;
1188   }
1189 
1190   if (Entry) {
1191     // If there is a declaration in the module, then we had an extern followed
1192     // by the alias, as in:
1193     //   extern int test6();
1194     //   ...
1195     //   int test6() __attribute__((alias("test7")));
1196     //
1197     // Remove it and replace uses of it with the alias.
1198 
1199     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1200                                                           Entry->getType()));
1201     Entry->eraseFromParent();
1202   }
1203 
1204   // Now we know that there is no conflict, set the name.
1205   Entry = GA;
1206   GA->setName(MangledName);
1207 
1208   // Set attributes which are particular to an alias; this is a
1209   // specialization of the attributes which may be set on a global
1210   // variable/function.
1211   if (D->hasAttr<DLLExportAttr>()) {
1212     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1213       // The dllexport attribute is ignored for undefined symbols.
1214       if (FD->getBody())
1215         GA->setLinkage(llvm::Function::DLLExportLinkage);
1216     } else {
1217       GA->setLinkage(llvm::Function::DLLExportLinkage);
1218     }
1219   } else if (D->hasAttr<WeakAttr>() ||
1220              D->hasAttr<WeakImportAttr>()) {
1221     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1222   }
1223 
1224   SetCommonAttributes(D, GA);
1225 }
1226 
1227 /// getBuiltinLibFunction - Given a builtin id for a function like
1228 /// "__builtin_fabsf", return a Function* for "fabsf".
1229 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1230                                                   unsigned BuiltinID) {
1231   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1232           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1233          "isn't a lib fn");
1234 
1235   // Get the name, skip over the __builtin_ prefix (if necessary).
1236   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1237   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1238     Name += 10;
1239 
1240   // Get the type for the builtin.
1241   ASTContext::GetBuiltinTypeError Error;
1242   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1243   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1244 
1245   const llvm::FunctionType *Ty =
1246     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1247 
1248   // Unique the name through the identifier table.
1249   Name = getContext().Idents.get(Name).getNameStart();
1250   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1251 }
1252 
1253 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1254                                             unsigned NumTys) {
1255   return llvm::Intrinsic::getDeclaration(&getModule(),
1256                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1257 }
1258 
1259 llvm::Function *CodeGenModule::getMemCpyFn() {
1260   if (MemCpyFn) return MemCpyFn;
1261   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1262   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1263 }
1264 
1265 llvm::Function *CodeGenModule::getMemMoveFn() {
1266   if (MemMoveFn) return MemMoveFn;
1267   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1268   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1269 }
1270 
1271 llvm::Function *CodeGenModule::getMemSetFn() {
1272   if (MemSetFn) return MemSetFn;
1273   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1274   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1275 }
1276 
1277 static llvm::StringMapEntry<llvm::Constant*> &
1278 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1279                          const StringLiteral *Literal,
1280                          bool TargetIsLSB,
1281                          bool &IsUTF16,
1282                          unsigned &StringLength) {
1283   unsigned NumBytes = Literal->getByteLength();
1284 
1285   // Check for simple case.
1286   if (!Literal->containsNonAsciiOrNull()) {
1287     StringLength = NumBytes;
1288     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1289                                                 StringLength));
1290   }
1291 
1292   // Otherwise, convert the UTF8 literals into a byte string.
1293   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1294   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1295   UTF16 *ToPtr = &ToBuf[0];
1296 
1297   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1298                                                &ToPtr, ToPtr + NumBytes,
1299                                                strictConversion);
1300 
1301   // Check for conversion failure.
1302   if (Result != conversionOK) {
1303     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1304     // this duplicate code.
1305     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1306     StringLength = NumBytes;
1307     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1308                                                 StringLength));
1309   }
1310 
1311   // ConvertUTF8toUTF16 returns the length in ToPtr.
1312   StringLength = ToPtr - &ToBuf[0];
1313 
1314   // Render the UTF-16 string into a byte array and convert to the target byte
1315   // order.
1316   //
1317   // FIXME: This isn't something we should need to do here.
1318   llvm::SmallString<128> AsBytes;
1319   AsBytes.reserve(StringLength * 2);
1320   for (unsigned i = 0; i != StringLength; ++i) {
1321     unsigned short Val = ToBuf[i];
1322     if (TargetIsLSB) {
1323       AsBytes.push_back(Val & 0xFF);
1324       AsBytes.push_back(Val >> 8);
1325     } else {
1326       AsBytes.push_back(Val >> 8);
1327       AsBytes.push_back(Val & 0xFF);
1328     }
1329   }
1330   // Append one extra null character, the second is automatically added by our
1331   // caller.
1332   AsBytes.push_back(0);
1333 
1334   IsUTF16 = true;
1335   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1336 }
1337 
1338 llvm::Constant *
1339 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1340   unsigned StringLength = 0;
1341   bool isUTF16 = false;
1342   llvm::StringMapEntry<llvm::Constant*> &Entry =
1343     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1344                              getTargetData().isLittleEndian(),
1345                              isUTF16, StringLength);
1346 
1347   if (llvm::Constant *C = Entry.getValue())
1348     return C;
1349 
1350   llvm::Constant *Zero =
1351       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1352   llvm::Constant *Zeros[] = { Zero, Zero };
1353 
1354   // If we don't already have it, get __CFConstantStringClassReference.
1355   if (!CFConstantStringClassRef) {
1356     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1357     Ty = llvm::ArrayType::get(Ty, 0);
1358     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1359                                            "__CFConstantStringClassReference");
1360     // Decay array -> ptr
1361     CFConstantStringClassRef =
1362       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1363   }
1364 
1365   QualType CFTy = getContext().getCFConstantStringType();
1366 
1367   const llvm::StructType *STy =
1368     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1369 
1370   std::vector<llvm::Constant*> Fields(4);
1371 
1372   // Class pointer.
1373   Fields[0] = CFConstantStringClassRef;
1374 
1375   // Flags.
1376   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1377   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1378     llvm::ConstantInt::get(Ty, 0x07C8);
1379 
1380   // String pointer.
1381   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1382 
1383   const char *Sect = 0;
1384   llvm::GlobalValue::LinkageTypes Linkage;
1385   bool isConstant;
1386   if (isUTF16) {
1387     Sect = getContext().Target.getUnicodeStringSection();
1388     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1389     Linkage = llvm::GlobalValue::InternalLinkage;
1390     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1391     // does make plain ascii ones writable.
1392     isConstant = true;
1393   } else {
1394     Linkage = llvm::GlobalValue::PrivateLinkage;
1395     isConstant = !Features.WritableStrings;
1396   }
1397 
1398   llvm::GlobalVariable *GV =
1399     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1400                              ".str");
1401   if (Sect)
1402     GV->setSection(Sect);
1403   if (isUTF16) {
1404     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1405     GV->setAlignment(Align);
1406   }
1407   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1408 
1409   // String length.
1410   Ty = getTypes().ConvertType(getContext().LongTy);
1411   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1412 
1413   // The struct.
1414   C = llvm::ConstantStruct::get(STy, Fields);
1415   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1416                                 llvm::GlobalVariable::PrivateLinkage, C,
1417                                 "_unnamed_cfstring_");
1418   if (const char *Sect = getContext().Target.getCFStringSection())
1419     GV->setSection(Sect);
1420   Entry.setValue(GV);
1421 
1422   return GV;
1423 }
1424 
1425 /// GetStringForStringLiteral - Return the appropriate bytes for a
1426 /// string literal, properly padded to match the literal type.
1427 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1428   const char *StrData = E->getStrData();
1429   unsigned Len = E->getByteLength();
1430 
1431   const ConstantArrayType *CAT =
1432     getContext().getAsConstantArrayType(E->getType());
1433   assert(CAT && "String isn't pointer or array!");
1434 
1435   // Resize the string to the right size.
1436   std::string Str(StrData, StrData+Len);
1437   uint64_t RealLen = CAT->getSize().getZExtValue();
1438 
1439   if (E->isWide())
1440     RealLen *= getContext().Target.getWCharWidth()/8;
1441 
1442   Str.resize(RealLen, '\0');
1443 
1444   return Str;
1445 }
1446 
1447 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1448 /// constant array for the given string literal.
1449 llvm::Constant *
1450 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1451   // FIXME: This can be more efficient.
1452   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1453   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1454   if (S->isWide()) {
1455     llvm::Type *DestTy =
1456         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1457     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1458   }
1459   return C;
1460 }
1461 
1462 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1463 /// array for the given ObjCEncodeExpr node.
1464 llvm::Constant *
1465 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1466   std::string Str;
1467   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1468 
1469   return GetAddrOfConstantCString(Str);
1470 }
1471 
1472 
1473 /// GenerateWritableString -- Creates storage for a string literal.
1474 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1475                                              bool constant,
1476                                              CodeGenModule &CGM,
1477                                              const char *GlobalName) {
1478   // Create Constant for this string literal. Don't add a '\0'.
1479   llvm::Constant *C =
1480       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1481 
1482   // Create a global variable for this string
1483   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1484                                   llvm::GlobalValue::PrivateLinkage,
1485                                   C, GlobalName);
1486 }
1487 
1488 /// GetAddrOfConstantString - Returns a pointer to a character array
1489 /// containing the literal. This contents are exactly that of the
1490 /// given string, i.e. it will not be null terminated automatically;
1491 /// see GetAddrOfConstantCString. Note that whether the result is
1492 /// actually a pointer to an LLVM constant depends on
1493 /// Feature.WriteableStrings.
1494 ///
1495 /// The result has pointer to array type.
1496 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1497                                                        const char *GlobalName) {
1498   bool IsConstant = !Features.WritableStrings;
1499 
1500   // Get the default prefix if a name wasn't specified.
1501   if (!GlobalName)
1502     GlobalName = ".str";
1503 
1504   // Don't share any string literals if strings aren't constant.
1505   if (!IsConstant)
1506     return GenerateStringLiteral(str, false, *this, GlobalName);
1507 
1508   llvm::StringMapEntry<llvm::Constant *> &Entry =
1509     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1510 
1511   if (Entry.getValue())
1512     return Entry.getValue();
1513 
1514   // Create a global variable for this.
1515   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1516   Entry.setValue(C);
1517   return C;
1518 }
1519 
1520 /// GetAddrOfConstantCString - Returns a pointer to a character
1521 /// array containing the literal and a terminating '\-'
1522 /// character. The result has pointer to array type.
1523 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1524                                                         const char *GlobalName){
1525   return GetAddrOfConstantString(str + '\0', GlobalName);
1526 }
1527 
1528 /// EmitObjCPropertyImplementations - Emit information for synthesized
1529 /// properties for an implementation.
1530 void CodeGenModule::EmitObjCPropertyImplementations(const
1531                                                     ObjCImplementationDecl *D) {
1532   for (ObjCImplementationDecl::propimpl_iterator
1533          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1534     ObjCPropertyImplDecl *PID = *i;
1535 
1536     // Dynamic is just for type-checking.
1537     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1538       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1539 
1540       // Determine which methods need to be implemented, some may have
1541       // been overridden. Note that ::isSynthesized is not the method
1542       // we want, that just indicates if the decl came from a
1543       // property. What we want to know is if the method is defined in
1544       // this implementation.
1545       if (!D->getInstanceMethod(PD->getGetterName()))
1546         CodeGenFunction(*this).GenerateObjCGetter(
1547                                  const_cast<ObjCImplementationDecl *>(D), PID);
1548       if (!PD->isReadOnly() &&
1549           !D->getInstanceMethod(PD->getSetterName()))
1550         CodeGenFunction(*this).GenerateObjCSetter(
1551                                  const_cast<ObjCImplementationDecl *>(D), PID);
1552     }
1553   }
1554 }
1555 
1556 /// EmitNamespace - Emit all declarations in a namespace.
1557 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1558   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1559        I != E; ++I)
1560     EmitTopLevelDecl(*I);
1561 }
1562 
1563 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1564 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1565   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1566       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1567     ErrorUnsupported(LSD, "linkage spec");
1568     return;
1569   }
1570 
1571   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1572        I != E; ++I)
1573     EmitTopLevelDecl(*I);
1574 }
1575 
1576 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1577 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1578   // If an error has occurred, stop code generation, but continue
1579   // parsing and semantic analysis (to ensure all warnings and errors
1580   // are emitted).
1581   if (Diags.hasErrorOccurred())
1582     return;
1583 
1584   // Ignore dependent declarations.
1585   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1586     return;
1587 
1588   switch (D->getKind()) {
1589   case Decl::CXXConversion:
1590   case Decl::CXXMethod:
1591   case Decl::Function:
1592     // Skip function templates
1593     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1594       return;
1595 
1596     EmitGlobal(cast<FunctionDecl>(D));
1597     break;
1598 
1599   case Decl::Var:
1600     EmitGlobal(cast<VarDecl>(D));
1601     break;
1602 
1603   // C++ Decls
1604   case Decl::Namespace:
1605     EmitNamespace(cast<NamespaceDecl>(D));
1606     break;
1607     // No code generation needed.
1608   case Decl::UsingShadow:
1609   case Decl::Using:
1610   case Decl::UsingDirective:
1611   case Decl::ClassTemplate:
1612   case Decl::FunctionTemplate:
1613   case Decl::NamespaceAlias:
1614     break;
1615   case Decl::CXXConstructor:
1616     // Skip function templates
1617     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1618       return;
1619 
1620     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1621     break;
1622   case Decl::CXXDestructor:
1623     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1624     break;
1625 
1626   case Decl::StaticAssert:
1627     // Nothing to do.
1628     break;
1629 
1630   // Objective-C Decls
1631 
1632   // Forward declarations, no (immediate) code generation.
1633   case Decl::ObjCClass:
1634   case Decl::ObjCForwardProtocol:
1635   case Decl::ObjCCategory:
1636   case Decl::ObjCInterface:
1637     break;
1638 
1639   case Decl::ObjCProtocol:
1640     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1641     break;
1642 
1643   case Decl::ObjCCategoryImpl:
1644     // Categories have properties but don't support synthesize so we
1645     // can ignore them here.
1646     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1647     break;
1648 
1649   case Decl::ObjCImplementation: {
1650     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1651     EmitObjCPropertyImplementations(OMD);
1652     Runtime->GenerateClass(OMD);
1653     break;
1654   }
1655   case Decl::ObjCMethod: {
1656     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1657     // If this is not a prototype, emit the body.
1658     if (OMD->getBody())
1659       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1660     break;
1661   }
1662   case Decl::ObjCCompatibleAlias:
1663     // compatibility-alias is a directive and has no code gen.
1664     break;
1665 
1666   case Decl::LinkageSpec:
1667     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1668     break;
1669 
1670   case Decl::FileScopeAsm: {
1671     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1672     std::string AsmString(AD->getAsmString()->getStrData(),
1673                           AD->getAsmString()->getByteLength());
1674 
1675     const std::string &S = getModule().getModuleInlineAsm();
1676     if (S.empty())
1677       getModule().setModuleInlineAsm(AsmString);
1678     else
1679       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1680     break;
1681   }
1682 
1683   default:
1684     // Make sure we handled everything we should, every other kind is a
1685     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1686     // function. Need to recode Decl::Kind to do that easily.
1687     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1688   }
1689 }
1690