1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   HalfTy = llvm::Type::getHalfTy(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126 
127   if (LangOpts.ObjC1)
128     createObjCRuntime();
129   if (LangOpts.OpenCL)
130     createOpenCLRuntime();
131   if (LangOpts.OpenMP)
132     createOpenMPRuntime();
133   if (LangOpts.CUDA)
134     createCUDARuntime();
135 
136   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
137   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
138       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
139     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
140                                getCXXABI().getMangleContext()));
141 
142   // If debug info or coverage generation is enabled, create the CGDebugInfo
143   // object.
144   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
145       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
146     DebugInfo.reset(new CGDebugInfo(*this));
147 
148   Block.GlobalUniqueCount = 0;
149 
150   if (C.getLangOpts().ObjC1)
151     ObjCData.reset(new ObjCEntrypoints());
152 
153   if (CodeGenOpts.hasProfileClangUse()) {
154     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
155         CodeGenOpts.ProfileInstrumentUsePath);
156     if (auto E = ReaderOrErr.takeError()) {
157       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
158                                               "Could not read profile %0: %1");
159       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
160         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
161                                   << EI.message();
162       });
163     } else
164       PGOReader = std::move(ReaderOrErr.get());
165   }
166 
167   // If coverage mapping generation is enabled, create the
168   // CoverageMappingModuleGen object.
169   if (CodeGenOpts.CoverageMapping)
170     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
171 }
172 
173 CodeGenModule::~CodeGenModule() {}
174 
175 void CodeGenModule::createObjCRuntime() {
176   // This is just isGNUFamily(), but we want to force implementors of
177   // new ABIs to decide how best to do this.
178   switch (LangOpts.ObjCRuntime.getKind()) {
179   case ObjCRuntime::GNUstep:
180   case ObjCRuntime::GCC:
181   case ObjCRuntime::ObjFW:
182     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
183     return;
184 
185   case ObjCRuntime::FragileMacOSX:
186   case ObjCRuntime::MacOSX:
187   case ObjCRuntime::iOS:
188   case ObjCRuntime::WatchOS:
189     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
190     return;
191   }
192   llvm_unreachable("bad runtime kind");
193 }
194 
195 void CodeGenModule::createOpenCLRuntime() {
196   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
197 }
198 
199 void CodeGenModule::createOpenMPRuntime() {
200   // Select a specialized code generation class based on the target, if any.
201   // If it does not exist use the default implementation.
202   switch (getTriple().getArch()) {
203   case llvm::Triple::nvptx:
204   case llvm::Triple::nvptx64:
205     assert(getLangOpts().OpenMPIsDevice &&
206            "OpenMP NVPTX is only prepared to deal with device code.");
207     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
208     break;
209   default:
210     if (LangOpts.OpenMPSimd)
211       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
212     else
213       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
214     break;
215   }
216 }
217 
218 void CodeGenModule::createCUDARuntime() {
219   CUDARuntime.reset(CreateNVCUDARuntime(*this));
220 }
221 
222 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
223   Replacements[Name] = C;
224 }
225 
226 void CodeGenModule::applyReplacements() {
227   for (auto &I : Replacements) {
228     StringRef MangledName = I.first();
229     llvm::Constant *Replacement = I.second;
230     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
231     if (!Entry)
232       continue;
233     auto *OldF = cast<llvm::Function>(Entry);
234     auto *NewF = dyn_cast<llvm::Function>(Replacement);
235     if (!NewF) {
236       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
237         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
238       } else {
239         auto *CE = cast<llvm::ConstantExpr>(Replacement);
240         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
241                CE->getOpcode() == llvm::Instruction::GetElementPtr);
242         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
243       }
244     }
245 
246     // Replace old with new, but keep the old order.
247     OldF->replaceAllUsesWith(Replacement);
248     if (NewF) {
249       NewF->removeFromParent();
250       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
251                                                        NewF);
252     }
253     OldF->eraseFromParent();
254   }
255 }
256 
257 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
258   GlobalValReplacements.push_back(std::make_pair(GV, C));
259 }
260 
261 void CodeGenModule::applyGlobalValReplacements() {
262   for (auto &I : GlobalValReplacements) {
263     llvm::GlobalValue *GV = I.first;
264     llvm::Constant *C = I.second;
265 
266     GV->replaceAllUsesWith(C);
267     GV->eraseFromParent();
268   }
269 }
270 
271 // This is only used in aliases that we created and we know they have a
272 // linear structure.
273 static const llvm::GlobalObject *getAliasedGlobal(
274     const llvm::GlobalIndirectSymbol &GIS) {
275   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
276   const llvm::Constant *C = &GIS;
277   for (;;) {
278     C = C->stripPointerCasts();
279     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
280       return GO;
281     // stripPointerCasts will not walk over weak aliases.
282     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
283     if (!GIS2)
284       return nullptr;
285     if (!Visited.insert(GIS2).second)
286       return nullptr;
287     C = GIS2->getIndirectSymbol();
288   }
289 }
290 
291 void CodeGenModule::checkAliases() {
292   // Check if the constructed aliases are well formed. It is really unfortunate
293   // that we have to do this in CodeGen, but we only construct mangled names
294   // and aliases during codegen.
295   bool Error = false;
296   DiagnosticsEngine &Diags = getDiags();
297   for (const GlobalDecl &GD : Aliases) {
298     const auto *D = cast<ValueDecl>(GD.getDecl());
299     SourceLocation Location;
300     bool IsIFunc = D->hasAttr<IFuncAttr>();
301     if (const Attr *A = D->getDefiningAttr())
302       Location = A->getLocation();
303     else
304       llvm_unreachable("Not an alias or ifunc?");
305     StringRef MangledName = getMangledName(GD);
306     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
307     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
308     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
309     if (!GV) {
310       Error = true;
311       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
312     } else if (GV->isDeclaration()) {
313       Error = true;
314       Diags.Report(Location, diag::err_alias_to_undefined)
315           << IsIFunc << IsIFunc;
316     } else if (IsIFunc) {
317       // Check resolver function type.
318       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
319           GV->getType()->getPointerElementType());
320       assert(FTy);
321       if (!FTy->getReturnType()->isPointerTy())
322         Diags.Report(Location, diag::err_ifunc_resolver_return);
323       if (FTy->getNumParams())
324         Diags.Report(Location, diag::err_ifunc_resolver_params);
325     }
326 
327     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
328     llvm::GlobalValue *AliaseeGV;
329     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
330       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
331     else
332       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
333 
334     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
335       StringRef AliasSection = SA->getName();
336       if (AliasSection != AliaseeGV->getSection())
337         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
338             << AliasSection << IsIFunc << IsIFunc;
339     }
340 
341     // We have to handle alias to weak aliases in here. LLVM itself disallows
342     // this since the object semantics would not match the IL one. For
343     // compatibility with gcc we implement it by just pointing the alias
344     // to its aliasee's aliasee. We also warn, since the user is probably
345     // expecting the link to be weak.
346     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
347       if (GA->isInterposable()) {
348         Diags.Report(Location, diag::warn_alias_to_weak_alias)
349             << GV->getName() << GA->getName() << IsIFunc;
350         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
351             GA->getIndirectSymbol(), Alias->getType());
352         Alias->setIndirectSymbol(Aliasee);
353       }
354     }
355   }
356   if (!Error)
357     return;
358 
359   for (const GlobalDecl &GD : Aliases) {
360     StringRef MangledName = getMangledName(GD);
361     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
362     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
363     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
364     Alias->eraseFromParent();
365   }
366 }
367 
368 void CodeGenModule::clear() {
369   DeferredDeclsToEmit.clear();
370   if (OpenMPRuntime)
371     OpenMPRuntime->clear();
372 }
373 
374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
375                                        StringRef MainFile) {
376   if (!hasDiagnostics())
377     return;
378   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
379     if (MainFile.empty())
380       MainFile = "<stdin>";
381     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
382   } else {
383     if (Mismatched > 0)
384       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
385 
386     if (Missing > 0)
387       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
388   }
389 }
390 
391 void CodeGenModule::Release() {
392   EmitDeferred();
393   EmitVTablesOpportunistically();
394   applyGlobalValReplacements();
395   applyReplacements();
396   checkAliases();
397   emitMultiVersionFunctions();
398   EmitCXXGlobalInitFunc();
399   EmitCXXGlobalDtorFunc();
400   registerGlobalDtorsWithAtExit();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction =
408             CUDARuntime->makeModuleCtorFunction())
409       AddGlobalCtor(CudaCtorFunction);
410   }
411   if (OpenMPRuntime) {
412     if (llvm::Function *OpenMPRegistrationFunction =
413             OpenMPRuntime->emitRegistrationFunction()) {
414       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
415         OpenMPRegistrationFunction : nullptr;
416       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
417     }
418     OpenMPRuntime->clear();
419   }
420   if (PGOReader) {
421     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
422     if (PGOStats.hasDiagnostics())
423       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
424   }
425   EmitCtorList(GlobalCtors, "llvm.global_ctors");
426   EmitCtorList(GlobalDtors, "llvm.global_dtors");
427   EmitGlobalAnnotations();
428   EmitStaticExternCAliases();
429   EmitDeferredUnusedCoverageMappings();
430   if (CoverageMapping)
431     CoverageMapping->emit();
432   if (CodeGenOpts.SanitizeCfiCrossDso) {
433     CodeGenFunction(*this).EmitCfiCheckFail();
434     CodeGenFunction(*this).EmitCfiCheckStub();
435   }
436   emitAtAvailableLinkGuard();
437   emitLLVMUsed();
438   if (SanStats)
439     SanStats->finish();
440 
441   if (CodeGenOpts.Autolink &&
442       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
443     EmitModuleLinkOptions();
444   }
445 
446   // Record mregparm value now so it is visible through rest of codegen.
447   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
448     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
449                               CodeGenOpts.NumRegisterParameters);
450 
451   if (CodeGenOpts.DwarfVersion) {
452     // We actually want the latest version when there are conflicts.
453     // We can change from Warning to Latest if such mode is supported.
454     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
455                               CodeGenOpts.DwarfVersion);
456   }
457   if (CodeGenOpts.EmitCodeView) {
458     // Indicate that we want CodeView in the metadata.
459     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
460   }
461   if (CodeGenOpts.ControlFlowGuard) {
462     // We want function ID tables for Control Flow Guard.
463     getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1);
464   }
465   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
466     // We don't support LTO with 2 with different StrictVTablePointers
467     // FIXME: we could support it by stripping all the information introduced
468     // by StrictVTablePointers.
469 
470     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
471 
472     llvm::Metadata *Ops[2] = {
473               llvm::MDString::get(VMContext, "StrictVTablePointers"),
474               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
475                   llvm::Type::getInt32Ty(VMContext), 1))};
476 
477     getModule().addModuleFlag(llvm::Module::Require,
478                               "StrictVTablePointersRequirement",
479                               llvm::MDNode::get(VMContext, Ops));
480   }
481   if (DebugInfo)
482     // We support a single version in the linked module. The LLVM
483     // parser will drop debug info with a different version number
484     // (and warn about it, too).
485     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
486                               llvm::DEBUG_METADATA_VERSION);
487 
488   // We need to record the widths of enums and wchar_t, so that we can generate
489   // the correct build attributes in the ARM backend. wchar_size is also used by
490   // TargetLibraryInfo.
491   uint64_t WCharWidth =
492       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
493   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
494 
495   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
496   if (   Arch == llvm::Triple::arm
497       || Arch == llvm::Triple::armeb
498       || Arch == llvm::Triple::thumb
499       || Arch == llvm::Triple::thumbeb) {
500     // The minimum width of an enum in bytes
501     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
502     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
503   }
504 
505   if (CodeGenOpts.SanitizeCfiCrossDso) {
506     // Indicate that we want cross-DSO control flow integrity checks.
507     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
508   }
509 
510   if (CodeGenOpts.CFProtectionReturn &&
511       Target.checkCFProtectionReturnSupported(getDiags())) {
512     // Indicate that we want to instrument return control flow protection.
513     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
514                               1);
515   }
516 
517   if (CodeGenOpts.CFProtectionBranch &&
518       Target.checkCFProtectionBranchSupported(getDiags())) {
519     // Indicate that we want to instrument branch control flow protection.
520     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
521                               1);
522   }
523 
524   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
525     // Indicate whether __nvvm_reflect should be configured to flush denormal
526     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
527     // property.)
528     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
529                               CodeGenOpts.FlushDenorm ? 1 : 0);
530   }
531 
532   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
533   if (LangOpts.OpenCL) {
534     EmitOpenCLMetadata();
535     // Emit SPIR version.
536     if (getTriple().getArch() == llvm::Triple::spir ||
537         getTriple().getArch() == llvm::Triple::spir64) {
538       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
539       // opencl.spir.version named metadata.
540       llvm::Metadata *SPIRVerElts[] = {
541           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
542               Int32Ty, LangOpts.OpenCLVersion / 100)),
543           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
544               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
545       llvm::NamedMDNode *SPIRVerMD =
546           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
547       llvm::LLVMContext &Ctx = TheModule.getContext();
548       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
549     }
550   }
551 
552   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
553     assert(PLevel < 3 && "Invalid PIC Level");
554     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
555     if (Context.getLangOpts().PIE)
556       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
557   }
558 
559   if (CodeGenOpts.NoPLT)
560     getModule().setRtLibUseGOT();
561 
562   SimplifyPersonality();
563 
564   if (getCodeGenOpts().EmitDeclMetadata)
565     EmitDeclMetadata();
566 
567   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
568     EmitCoverageFile();
569 
570   if (DebugInfo)
571     DebugInfo->finalize();
572 
573   if (getCodeGenOpts().EmitVersionIdentMetadata)
574     EmitVersionIdentMetadata();
575 
576   EmitTargetMetadata();
577 }
578 
579 void CodeGenModule::EmitOpenCLMetadata() {
580   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
581   // opencl.ocl.version named metadata node.
582   llvm::Metadata *OCLVerElts[] = {
583       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
584           Int32Ty, LangOpts.OpenCLVersion / 100)),
585       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
586           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
587   llvm::NamedMDNode *OCLVerMD =
588       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
589   llvm::LLVMContext &Ctx = TheModule.getContext();
590   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
591 }
592 
593 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
594   // Make sure that this type is translated.
595   Types.UpdateCompletedType(TD);
596 }
597 
598 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
599   // Make sure that this type is translated.
600   Types.RefreshTypeCacheForClass(RD);
601 }
602 
603 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
604   if (!TBAA)
605     return nullptr;
606   return TBAA->getTypeInfo(QTy);
607 }
608 
609 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
610   if (!TBAA)
611     return TBAAAccessInfo();
612   return TBAA->getAccessInfo(AccessType);
613 }
614 
615 TBAAAccessInfo
616 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
617   if (!TBAA)
618     return TBAAAccessInfo();
619   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
620 }
621 
622 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
623   if (!TBAA)
624     return nullptr;
625   return TBAA->getTBAAStructInfo(QTy);
626 }
627 
628 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
629   if (!TBAA)
630     return nullptr;
631   return TBAA->getBaseTypeInfo(QTy);
632 }
633 
634 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
635   if (!TBAA)
636     return nullptr;
637   return TBAA->getAccessTagInfo(Info);
638 }
639 
640 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
641                                                    TBAAAccessInfo TargetInfo) {
642   if (!TBAA)
643     return TBAAAccessInfo();
644   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
645 }
646 
647 TBAAAccessInfo
648 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
649                                                    TBAAAccessInfo InfoB) {
650   if (!TBAA)
651     return TBAAAccessInfo();
652   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
653 }
654 
655 TBAAAccessInfo
656 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
657                                               TBAAAccessInfo SrcInfo) {
658   if (!TBAA)
659     return TBAAAccessInfo();
660   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
661 }
662 
663 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
664                                                 TBAAAccessInfo TBAAInfo) {
665   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
666     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
667 }
668 
669 void CodeGenModule::DecorateInstructionWithInvariantGroup(
670     llvm::Instruction *I, const CXXRecordDecl *RD) {
671   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
672                  llvm::MDNode::get(getLLVMContext(), {}));
673 }
674 
675 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
676   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
677   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
678 }
679 
680 /// ErrorUnsupported - Print out an error that codegen doesn't support the
681 /// specified stmt yet.
682 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
683   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
684                                                "cannot compile this %0 yet");
685   std::string Msg = Type;
686   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
687       << Msg << S->getSourceRange();
688 }
689 
690 /// ErrorUnsupported - Print out an error that codegen doesn't support the
691 /// specified decl yet.
692 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
693   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
694                                                "cannot compile this %0 yet");
695   std::string Msg = Type;
696   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
697 }
698 
699 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
700   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
701 }
702 
703 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
704                                         const NamedDecl *D) const {
705   if (GV->hasDLLImportStorageClass())
706     return;
707   // Internal definitions always have default visibility.
708   if (GV->hasLocalLinkage()) {
709     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
710     return;
711   }
712   if (!D)
713     return;
714   // Set visibility for definitions.
715   LinkageInfo LV = D->getLinkageAndVisibility();
716   if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
717     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
718 }
719 
720 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
721                                  llvm::GlobalValue *GV) {
722   if (GV->hasLocalLinkage())
723     return true;
724 
725   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
726     return true;
727 
728   // DLLImport explicitly marks the GV as external.
729   if (GV->hasDLLImportStorageClass())
730     return false;
731 
732   const llvm::Triple &TT = CGM.getTriple();
733   // Every other GV is local on COFF.
734   // Make an exception for windows OS in the triple: Some firmware builds use
735   // *-win32-macho triples. This (accidentally?) produced windows relocations
736   // without GOT tables in older clang versions; Keep this behaviour.
737   // FIXME: even thread local variables?
738   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
739     return true;
740 
741   // Only handle COFF and ELF for now.
742   if (!TT.isOSBinFormatELF())
743     return false;
744 
745   // If this is not an executable, don't assume anything is local.
746   const auto &CGOpts = CGM.getCodeGenOpts();
747   llvm::Reloc::Model RM = CGOpts.RelocationModel;
748   const auto &LOpts = CGM.getLangOpts();
749   if (RM != llvm::Reloc::Static && !LOpts.PIE)
750     return false;
751 
752   // A definition cannot be preempted from an executable.
753   if (!GV->isDeclarationForLinker())
754     return true;
755 
756   // Most PIC code sequences that assume that a symbol is local cannot produce a
757   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
758   // depended, it seems worth it to handle it here.
759   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
760     return false;
761 
762   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
763   llvm::Triple::ArchType Arch = TT.getArch();
764   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
765       Arch == llvm::Triple::ppc64le)
766     return false;
767 
768   // If we can use copy relocations we can assume it is local.
769   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
770     if (!Var->isThreadLocal() &&
771         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
772       return true;
773 
774   // If we can use a plt entry as the symbol address we can assume it
775   // is local.
776   // FIXME: This should work for PIE, but the gold linker doesn't support it.
777   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
778     return true;
779 
780   // Otherwise don't assue it is local.
781   return false;
782 }
783 
784 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
785   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
786 }
787 
788 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
789                                           GlobalDecl GD) const {
790   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
791   // C++ destructors have a few C++ ABI specific special cases.
792   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
793     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
794     return;
795   }
796   setDLLImportDLLExport(GV, D);
797 }
798 
799 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
800                                           const NamedDecl *D) const {
801   if (D && D->isExternallyVisible()) {
802     if (D->hasAttr<DLLImportAttr>())
803       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
804     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
805       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
806   }
807 }
808 
809 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
810                                     GlobalDecl GD) const {
811   setDLLImportDLLExport(GV, GD);
812   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
813 }
814 
815 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
816                                     const NamedDecl *D) const {
817   setDLLImportDLLExport(GV, D);
818   setGlobalVisibilityAndLocal(GV, D);
819 }
820 
821 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
822                                                 const NamedDecl *D) const {
823   setGlobalVisibility(GV, D);
824   setDSOLocal(GV);
825 }
826 
827 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
828   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
829       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
830       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
831       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
832       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
833 }
834 
835 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
836     CodeGenOptions::TLSModel M) {
837   switch (M) {
838   case CodeGenOptions::GeneralDynamicTLSModel:
839     return llvm::GlobalVariable::GeneralDynamicTLSModel;
840   case CodeGenOptions::LocalDynamicTLSModel:
841     return llvm::GlobalVariable::LocalDynamicTLSModel;
842   case CodeGenOptions::InitialExecTLSModel:
843     return llvm::GlobalVariable::InitialExecTLSModel;
844   case CodeGenOptions::LocalExecTLSModel:
845     return llvm::GlobalVariable::LocalExecTLSModel;
846   }
847   llvm_unreachable("Invalid TLS model!");
848 }
849 
850 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
851   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
852 
853   llvm::GlobalValue::ThreadLocalMode TLM;
854   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
855 
856   // Override the TLS model if it is explicitly specified.
857   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
858     TLM = GetLLVMTLSModel(Attr->getModel());
859   }
860 
861   GV->setThreadLocalMode(TLM);
862 }
863 
864 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
865                                           StringRef Name) {
866   const TargetInfo &Target = CGM.getTarget();
867   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
868 }
869 
870 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
871                                                  const CPUSpecificAttr *Attr,
872                                                  raw_ostream &Out) {
873   // cpu_specific gets the current name, dispatch gets the resolver.
874   if (Attr)
875     Out << getCPUSpecificMangling(CGM, Attr->getCurCPUName()->getName());
876   else
877     Out << ".resolver";
878 }
879 
880 static void AppendTargetMangling(const CodeGenModule &CGM,
881                                  const TargetAttr *Attr, raw_ostream &Out) {
882   if (Attr->isDefaultVersion())
883     return;
884 
885   Out << '.';
886   const TargetInfo &Target = CGM.getTarget();
887   TargetAttr::ParsedTargetAttr Info =
888       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
889         // Multiversioning doesn't allow "no-${feature}", so we can
890         // only have "+" prefixes here.
891         assert(LHS.startswith("+") && RHS.startswith("+") &&
892                "Features should always have a prefix.");
893         return Target.multiVersionSortPriority(LHS.substr(1)) >
894                Target.multiVersionSortPriority(RHS.substr(1));
895       });
896 
897   bool IsFirst = true;
898 
899   if (!Info.Architecture.empty()) {
900     IsFirst = false;
901     Out << "arch_" << Info.Architecture;
902   }
903 
904   for (StringRef Feat : Info.Features) {
905     if (!IsFirst)
906       Out << '_';
907     IsFirst = false;
908     Out << Feat.substr(1);
909   }
910 }
911 
912 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
913                                       const NamedDecl *ND,
914                                       bool OmitMultiVersionMangling = false) {
915   SmallString<256> Buffer;
916   llvm::raw_svector_ostream Out(Buffer);
917   MangleContext &MC = CGM.getCXXABI().getMangleContext();
918   if (MC.shouldMangleDeclName(ND)) {
919     llvm::raw_svector_ostream Out(Buffer);
920     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
921       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
922     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
923       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
924     else
925       MC.mangleName(ND, Out);
926   } else {
927     IdentifierInfo *II = ND->getIdentifier();
928     assert(II && "Attempt to mangle unnamed decl.");
929     const auto *FD = dyn_cast<FunctionDecl>(ND);
930 
931     if (FD &&
932         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
933       llvm::raw_svector_ostream Out(Buffer);
934       Out << "__regcall3__" << II->getName();
935     } else {
936       Out << II->getName();
937     }
938   }
939 
940   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
941     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
942       if (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion())
943         AppendCPUSpecificCPUDispatchMangling(
944             CGM, FD->getAttr<CPUSpecificAttr>(), Out);
945       else
946         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
947     }
948 
949   return Out.str();
950 }
951 
952 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
953                                             const FunctionDecl *FD) {
954   if (!FD->isMultiVersion())
955     return;
956 
957   // Get the name of what this would be without the 'target' attribute.  This
958   // allows us to lookup the version that was emitted when this wasn't a
959   // multiversion function.
960   std::string NonTargetName =
961       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
962   GlobalDecl OtherGD;
963   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
964     assert(OtherGD.getCanonicalDecl()
965                .getDecl()
966                ->getAsFunction()
967                ->isMultiVersion() &&
968            "Other GD should now be a multiversioned function");
969     // OtherFD is the version of this function that was mangled BEFORE
970     // becoming a MultiVersion function.  It potentially needs to be updated.
971     const FunctionDecl *OtherFD =
972         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
973     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
974     // This is so that if the initial version was already the 'default'
975     // version, we don't try to update it.
976     if (OtherName != NonTargetName) {
977       // Remove instead of erase, since others may have stored the StringRef
978       // to this.
979       const auto ExistingRecord = Manglings.find(NonTargetName);
980       if (ExistingRecord != std::end(Manglings))
981         Manglings.remove(&(*ExistingRecord));
982       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
983       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
984       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
985         Entry->setName(OtherName);
986     }
987   }
988 }
989 
990 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
991   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
992 
993   // Some ABIs don't have constructor variants.  Make sure that base and
994   // complete constructors get mangled the same.
995   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
996     if (!getTarget().getCXXABI().hasConstructorVariants()) {
997       CXXCtorType OrigCtorType = GD.getCtorType();
998       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
999       if (OrigCtorType == Ctor_Base)
1000         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1001     }
1002   }
1003 
1004   const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl());
1005   // Since CPUSpecific can require multiple emits per decl, store the manglings
1006   // separately.
1007   if (FD &&
1008       (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion())) {
1009     const auto *SD = FD->getAttr<CPUSpecificAttr>();
1010 
1011     std::pair<GlobalDecl, unsigned> SpecCanonicalGD{
1012         CanonicalGD,
1013         SD ? SD->ActiveArgIndex : std::numeric_limits<unsigned>::max()};
1014 
1015     auto FoundName = CPUSpecificMangledDeclNames.find(SpecCanonicalGD);
1016     if (FoundName != CPUSpecificMangledDeclNames.end())
1017       return FoundName->second;
1018 
1019     auto Result = CPUSpecificManglings.insert(
1020         std::make_pair(getMangledNameImpl(*this, GD, FD), SpecCanonicalGD));
1021     return CPUSpecificMangledDeclNames[SpecCanonicalGD] = Result.first->first();
1022   }
1023 
1024   auto FoundName = MangledDeclNames.find(CanonicalGD);
1025   if (FoundName != MangledDeclNames.end())
1026     return FoundName->second;
1027 
1028   // Keep the first result in the case of a mangling collision.
1029   const auto *ND = cast<NamedDecl>(GD.getDecl());
1030   auto Result =
1031       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
1032   return MangledDeclNames[CanonicalGD] = Result.first->first();
1033 }
1034 
1035 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1036                                              const BlockDecl *BD) {
1037   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1038   const Decl *D = GD.getDecl();
1039 
1040   SmallString<256> Buffer;
1041   llvm::raw_svector_ostream Out(Buffer);
1042   if (!D)
1043     MangleCtx.mangleGlobalBlock(BD,
1044       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1045   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1046     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1047   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1048     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1049   else
1050     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1051 
1052   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1053   return Result.first->first();
1054 }
1055 
1056 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1057   return getModule().getNamedValue(Name);
1058 }
1059 
1060 /// AddGlobalCtor - Add a function to the list that will be called before
1061 /// main() runs.
1062 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1063                                   llvm::Constant *AssociatedData) {
1064   // FIXME: Type coercion of void()* types.
1065   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1066 }
1067 
1068 /// AddGlobalDtor - Add a function to the list that will be called
1069 /// when the module is unloaded.
1070 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1071   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1072     DtorsUsingAtExit[Priority].push_back(Dtor);
1073     return;
1074   }
1075 
1076   // FIXME: Type coercion of void()* types.
1077   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1078 }
1079 
1080 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1081   if (Fns.empty()) return;
1082 
1083   // Ctor function type is void()*.
1084   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1085   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
1086 
1087   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1088   llvm::StructType *CtorStructTy = llvm::StructType::get(
1089       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
1090 
1091   // Construct the constructor and destructor arrays.
1092   ConstantInitBuilder builder(*this);
1093   auto ctors = builder.beginArray(CtorStructTy);
1094   for (const auto &I : Fns) {
1095     auto ctor = ctors.beginStruct(CtorStructTy);
1096     ctor.addInt(Int32Ty, I.Priority);
1097     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1098     if (I.AssociatedData)
1099       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1100     else
1101       ctor.addNullPointer(VoidPtrTy);
1102     ctor.finishAndAddTo(ctors);
1103   }
1104 
1105   auto list =
1106     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1107                                 /*constant*/ false,
1108                                 llvm::GlobalValue::AppendingLinkage);
1109 
1110   // The LTO linker doesn't seem to like it when we set an alignment
1111   // on appending variables.  Take it off as a workaround.
1112   list->setAlignment(0);
1113 
1114   Fns.clear();
1115 }
1116 
1117 llvm::GlobalValue::LinkageTypes
1118 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1119   const auto *D = cast<FunctionDecl>(GD.getDecl());
1120 
1121   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1122 
1123   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1124     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1125 
1126   if (isa<CXXConstructorDecl>(D) &&
1127       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1128       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1129     // Our approach to inheriting constructors is fundamentally different from
1130     // that used by the MS ABI, so keep our inheriting constructor thunks
1131     // internal rather than trying to pick an unambiguous mangling for them.
1132     return llvm::GlobalValue::InternalLinkage;
1133   }
1134 
1135   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1136 }
1137 
1138 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1139   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1140   if (!MDS) return nullptr;
1141 
1142   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1143 }
1144 
1145 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1146                                               const CGFunctionInfo &Info,
1147                                               llvm::Function *F) {
1148   unsigned CallingConv;
1149   llvm::AttributeList PAL;
1150   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1151   F->setAttributes(PAL);
1152   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1153 }
1154 
1155 /// Determines whether the language options require us to model
1156 /// unwind exceptions.  We treat -fexceptions as mandating this
1157 /// except under the fragile ObjC ABI with only ObjC exceptions
1158 /// enabled.  This means, for example, that C with -fexceptions
1159 /// enables this.
1160 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1161   // If exceptions are completely disabled, obviously this is false.
1162   if (!LangOpts.Exceptions) return false;
1163 
1164   // If C++ exceptions are enabled, this is true.
1165   if (LangOpts.CXXExceptions) return true;
1166 
1167   // If ObjC exceptions are enabled, this depends on the ABI.
1168   if (LangOpts.ObjCExceptions) {
1169     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1170   }
1171 
1172   return true;
1173 }
1174 
1175 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1176                                                       const CXXMethodDecl *MD) {
1177   // Check that the type metadata can ever actually be used by a call.
1178   if (!CGM.getCodeGenOpts().LTOUnit ||
1179       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1180     return false;
1181 
1182   // Only functions whose address can be taken with a member function pointer
1183   // need this sort of type metadata.
1184   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1185          !isa<CXXDestructorDecl>(MD);
1186 }
1187 
1188 std::vector<const CXXRecordDecl *>
1189 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1190   llvm::SetVector<const CXXRecordDecl *> MostBases;
1191 
1192   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1193   CollectMostBases = [&](const CXXRecordDecl *RD) {
1194     if (RD->getNumBases() == 0)
1195       MostBases.insert(RD);
1196     for (const CXXBaseSpecifier &B : RD->bases())
1197       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1198   };
1199   CollectMostBases(RD);
1200   return MostBases.takeVector();
1201 }
1202 
1203 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1204                                                            llvm::Function *F) {
1205   llvm::AttrBuilder B;
1206 
1207   if (CodeGenOpts.UnwindTables)
1208     B.addAttribute(llvm::Attribute::UWTable);
1209 
1210   if (!hasUnwindExceptions(LangOpts))
1211     B.addAttribute(llvm::Attribute::NoUnwind);
1212 
1213   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1214     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1215       B.addAttribute(llvm::Attribute::StackProtect);
1216     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1217       B.addAttribute(llvm::Attribute::StackProtectStrong);
1218     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1219       B.addAttribute(llvm::Attribute::StackProtectReq);
1220   }
1221 
1222   if (!D) {
1223     // If we don't have a declaration to control inlining, the function isn't
1224     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1225     // disabled, mark the function as noinline.
1226     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1227         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1228       B.addAttribute(llvm::Attribute::NoInline);
1229 
1230     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1231     return;
1232   }
1233 
1234   // Track whether we need to add the optnone LLVM attribute,
1235   // starting with the default for this optimization level.
1236   bool ShouldAddOptNone =
1237       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1238   // We can't add optnone in the following cases, it won't pass the verifier.
1239   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1240   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1241   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1242 
1243   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1244     B.addAttribute(llvm::Attribute::OptimizeNone);
1245 
1246     // OptimizeNone implies noinline; we should not be inlining such functions.
1247     B.addAttribute(llvm::Attribute::NoInline);
1248     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1249            "OptimizeNone and AlwaysInline on same function!");
1250 
1251     // We still need to handle naked functions even though optnone subsumes
1252     // much of their semantics.
1253     if (D->hasAttr<NakedAttr>())
1254       B.addAttribute(llvm::Attribute::Naked);
1255 
1256     // OptimizeNone wins over OptimizeForSize and MinSize.
1257     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1258     F->removeFnAttr(llvm::Attribute::MinSize);
1259   } else if (D->hasAttr<NakedAttr>()) {
1260     // Naked implies noinline: we should not be inlining such functions.
1261     B.addAttribute(llvm::Attribute::Naked);
1262     B.addAttribute(llvm::Attribute::NoInline);
1263   } else if (D->hasAttr<NoDuplicateAttr>()) {
1264     B.addAttribute(llvm::Attribute::NoDuplicate);
1265   } else if (D->hasAttr<NoInlineAttr>()) {
1266     B.addAttribute(llvm::Attribute::NoInline);
1267   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1268              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1269     // (noinline wins over always_inline, and we can't specify both in IR)
1270     B.addAttribute(llvm::Attribute::AlwaysInline);
1271   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1272     // If we're not inlining, then force everything that isn't always_inline to
1273     // carry an explicit noinline attribute.
1274     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1275       B.addAttribute(llvm::Attribute::NoInline);
1276   } else {
1277     // Otherwise, propagate the inline hint attribute and potentially use its
1278     // absence to mark things as noinline.
1279     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1280       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1281             return Redecl->isInlineSpecified();
1282           })) {
1283         B.addAttribute(llvm::Attribute::InlineHint);
1284       } else if (CodeGenOpts.getInlining() ==
1285                      CodeGenOptions::OnlyHintInlining &&
1286                  !FD->isInlined() &&
1287                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1288         B.addAttribute(llvm::Attribute::NoInline);
1289       }
1290     }
1291   }
1292 
1293   // Add other optimization related attributes if we are optimizing this
1294   // function.
1295   if (!D->hasAttr<OptimizeNoneAttr>()) {
1296     if (D->hasAttr<ColdAttr>()) {
1297       if (!ShouldAddOptNone)
1298         B.addAttribute(llvm::Attribute::OptimizeForSize);
1299       B.addAttribute(llvm::Attribute::Cold);
1300     }
1301 
1302     if (D->hasAttr<MinSizeAttr>())
1303       B.addAttribute(llvm::Attribute::MinSize);
1304   }
1305 
1306   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1307 
1308   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1309   if (alignment)
1310     F->setAlignment(alignment);
1311 
1312   if (!D->hasAttr<AlignedAttr>())
1313     if (LangOpts.FunctionAlignment)
1314       F->setAlignment(1 << LangOpts.FunctionAlignment);
1315 
1316   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1317   // reserve a bit for differentiating between virtual and non-virtual member
1318   // functions. If the current target's C++ ABI requires this and this is a
1319   // member function, set its alignment accordingly.
1320   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1321     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1322       F->setAlignment(2);
1323   }
1324 
1325   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1326   if (CodeGenOpts.SanitizeCfiCrossDso)
1327     if (auto *FD = dyn_cast<FunctionDecl>(D))
1328       CreateFunctionTypeMetadataForIcall(FD, F);
1329 
1330   // Emit type metadata on member functions for member function pointer checks.
1331   // These are only ever necessary on definitions; we're guaranteed that the
1332   // definition will be present in the LTO unit as a result of LTO visibility.
1333   auto *MD = dyn_cast<CXXMethodDecl>(D);
1334   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1335     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1336       llvm::Metadata *Id =
1337           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1338               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1339       F->addTypeMetadata(0, Id);
1340     }
1341   }
1342 }
1343 
1344 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1345   const Decl *D = GD.getDecl();
1346   if (dyn_cast_or_null<NamedDecl>(D))
1347     setGVProperties(GV, GD);
1348   else
1349     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1350 
1351   if (D && D->hasAttr<UsedAttr>())
1352     addUsedGlobal(GV);
1353 }
1354 
1355 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D,
1356                                                 llvm::AttrBuilder &Attrs) {
1357   // Add target-cpu and target-features attributes to functions. If
1358   // we have a decl for the function and it has a target attribute then
1359   // parse that and add it to the feature set.
1360   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1361   std::vector<std::string> Features;
1362   const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
1363   FD = FD ? FD->getMostRecentDecl() : FD;
1364   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1365   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1366   bool AddedAttr = false;
1367   if (TD || SD) {
1368     llvm::StringMap<bool> FeatureMap;
1369     getFunctionFeatureMap(FeatureMap, FD);
1370 
1371     // Produce the canonical string for this set of features.
1372     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1373       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1374 
1375     // Now add the target-cpu and target-features to the function.
1376     // While we populated the feature map above, we still need to
1377     // get and parse the target attribute so we can get the cpu for
1378     // the function.
1379     if (TD) {
1380       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1381       if (ParsedAttr.Architecture != "" &&
1382           getTarget().isValidCPUName(ParsedAttr.Architecture))
1383         TargetCPU = ParsedAttr.Architecture;
1384     }
1385   } else {
1386     // Otherwise just add the existing target cpu and target features to the
1387     // function.
1388     Features = getTarget().getTargetOpts().Features;
1389   }
1390 
1391   if (TargetCPU != "") {
1392     Attrs.addAttribute("target-cpu", TargetCPU);
1393     AddedAttr = true;
1394   }
1395   if (!Features.empty()) {
1396     llvm::sort(Features.begin(), Features.end());
1397     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1398     AddedAttr = true;
1399   }
1400 
1401   return AddedAttr;
1402 }
1403 
1404 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1405                                           llvm::GlobalObject *GO) {
1406   const Decl *D = GD.getDecl();
1407   SetCommonAttributes(GD, GO);
1408 
1409   if (D) {
1410     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1411       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1412         GV->addAttribute("bss-section", SA->getName());
1413       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1414         GV->addAttribute("data-section", SA->getName());
1415       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1416         GV->addAttribute("rodata-section", SA->getName());
1417     }
1418 
1419     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1420       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1421         if (!D->getAttr<SectionAttr>())
1422           F->addFnAttr("implicit-section-name", SA->getName());
1423 
1424       llvm::AttrBuilder Attrs;
1425       if (GetCPUAndFeaturesAttributes(D, Attrs)) {
1426         // We know that GetCPUAndFeaturesAttributes will always have the
1427         // newest set, since it has the newest possible FunctionDecl, so the
1428         // new ones should replace the old.
1429         F->removeFnAttr("target-cpu");
1430         F->removeFnAttr("target-features");
1431         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1432       }
1433     }
1434 
1435     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1436       GO->setSection(CSA->getName());
1437     else if (const auto *SA = D->getAttr<SectionAttr>())
1438       GO->setSection(SA->getName());
1439   }
1440 
1441   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1442 }
1443 
1444 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1445                                                   llvm::Function *F,
1446                                                   const CGFunctionInfo &FI) {
1447   const Decl *D = GD.getDecl();
1448   SetLLVMFunctionAttributes(D, FI, F);
1449   SetLLVMFunctionAttributesForDefinition(D, F);
1450 
1451   F->setLinkage(llvm::Function::InternalLinkage);
1452 
1453   setNonAliasAttributes(GD, F);
1454 }
1455 
1456 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1457   // Set linkage and visibility in case we never see a definition.
1458   LinkageInfo LV = ND->getLinkageAndVisibility();
1459   // Don't set internal linkage on declarations.
1460   // "extern_weak" is overloaded in LLVM; we probably should have
1461   // separate linkage types for this.
1462   if (isExternallyVisible(LV.getLinkage()) &&
1463       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1464     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1465 }
1466 
1467 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1468                                                        llvm::Function *F) {
1469   // Only if we are checking indirect calls.
1470   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1471     return;
1472 
1473   // Non-static class methods are handled via vtable or member function pointer
1474   // checks elsewhere.
1475   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1476     return;
1477 
1478   // Additionally, if building with cross-DSO support...
1479   if (CodeGenOpts.SanitizeCfiCrossDso) {
1480     // Skip available_externally functions. They won't be codegen'ed in the
1481     // current module anyway.
1482     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1483       return;
1484   }
1485 
1486   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1487   F->addTypeMetadata(0, MD);
1488   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1489 
1490   // Emit a hash-based bit set entry for cross-DSO calls.
1491   if (CodeGenOpts.SanitizeCfiCrossDso)
1492     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1493       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1494 }
1495 
1496 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1497                                           bool IsIncompleteFunction,
1498                                           bool IsThunk) {
1499 
1500   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1501     // If this is an intrinsic function, set the function's attributes
1502     // to the intrinsic's attributes.
1503     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1504     return;
1505   }
1506 
1507   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1508 
1509   if (!IsIncompleteFunction) {
1510     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1511     // Setup target-specific attributes.
1512     if (F->isDeclaration())
1513       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1514   }
1515 
1516   // Add the Returned attribute for "this", except for iOS 5 and earlier
1517   // where substantial code, including the libstdc++ dylib, was compiled with
1518   // GCC and does not actually return "this".
1519   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1520       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1521     assert(!F->arg_empty() &&
1522            F->arg_begin()->getType()
1523              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1524            "unexpected this return");
1525     F->addAttribute(1, llvm::Attribute::Returned);
1526   }
1527 
1528   // Only a few attributes are set on declarations; these may later be
1529   // overridden by a definition.
1530 
1531   setLinkageForGV(F, FD);
1532   setGVProperties(F, FD);
1533 
1534   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1535     F->setSection(CSA->getName());
1536   else if (const auto *SA = FD->getAttr<SectionAttr>())
1537      F->setSection(SA->getName());
1538 
1539   if (FD->isReplaceableGlobalAllocationFunction()) {
1540     // A replaceable global allocation function does not act like a builtin by
1541     // default, only if it is invoked by a new-expression or delete-expression.
1542     F->addAttribute(llvm::AttributeList::FunctionIndex,
1543                     llvm::Attribute::NoBuiltin);
1544 
1545     // A sane operator new returns a non-aliasing pointer.
1546     // FIXME: Also add NonNull attribute to the return value
1547     // for the non-nothrow forms?
1548     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1549     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1550         (Kind == OO_New || Kind == OO_Array_New))
1551       F->addAttribute(llvm::AttributeList::ReturnIndex,
1552                       llvm::Attribute::NoAlias);
1553   }
1554 
1555   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1556     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1557   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1558     if (MD->isVirtual())
1559       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1560 
1561   // Don't emit entries for function declarations in the cross-DSO mode. This
1562   // is handled with better precision by the receiving DSO.
1563   if (!CodeGenOpts.SanitizeCfiCrossDso)
1564     CreateFunctionTypeMetadataForIcall(FD, F);
1565 
1566   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1567     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1568 }
1569 
1570 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1571   assert(!GV->isDeclaration() &&
1572          "Only globals with definition can force usage.");
1573   LLVMUsed.emplace_back(GV);
1574 }
1575 
1576 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1577   assert(!GV->isDeclaration() &&
1578          "Only globals with definition can force usage.");
1579   LLVMCompilerUsed.emplace_back(GV);
1580 }
1581 
1582 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1583                      std::vector<llvm::WeakTrackingVH> &List) {
1584   // Don't create llvm.used if there is no need.
1585   if (List.empty())
1586     return;
1587 
1588   // Convert List to what ConstantArray needs.
1589   SmallVector<llvm::Constant*, 8> UsedArray;
1590   UsedArray.resize(List.size());
1591   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1592     UsedArray[i] =
1593         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1594             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1595   }
1596 
1597   if (UsedArray.empty())
1598     return;
1599   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1600 
1601   auto *GV = new llvm::GlobalVariable(
1602       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1603       llvm::ConstantArray::get(ATy, UsedArray), Name);
1604 
1605   GV->setSection("llvm.metadata");
1606 }
1607 
1608 void CodeGenModule::emitLLVMUsed() {
1609   emitUsed(*this, "llvm.used", LLVMUsed);
1610   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1611 }
1612 
1613 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1614   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1615   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1616 }
1617 
1618 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1619   llvm::SmallString<32> Opt;
1620   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1621   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1622   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1623 }
1624 
1625 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1626   auto &C = getLLVMContext();
1627   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1628       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1629 }
1630 
1631 void CodeGenModule::AddDependentLib(StringRef Lib) {
1632   llvm::SmallString<24> Opt;
1633   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1634   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1635   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1636 }
1637 
1638 /// Add link options implied by the given module, including modules
1639 /// it depends on, using a postorder walk.
1640 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1641                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1642                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1643   // Import this module's parent.
1644   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1645     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1646   }
1647 
1648   // Import this module's dependencies.
1649   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1650     if (Visited.insert(Mod->Imports[I - 1]).second)
1651       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1652   }
1653 
1654   // Add linker options to link against the libraries/frameworks
1655   // described by this module.
1656   llvm::LLVMContext &Context = CGM.getLLVMContext();
1657 
1658   // For modules that use export_as for linking, use that module
1659   // name instead.
1660   if (Mod->UseExportAsModuleLinkName)
1661     return;
1662 
1663   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1664     // Link against a framework.  Frameworks are currently Darwin only, so we
1665     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1666     if (Mod->LinkLibraries[I-1].IsFramework) {
1667       llvm::Metadata *Args[2] = {
1668           llvm::MDString::get(Context, "-framework"),
1669           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1670 
1671       Metadata.push_back(llvm::MDNode::get(Context, Args));
1672       continue;
1673     }
1674 
1675     // Link against a library.
1676     llvm::SmallString<24> Opt;
1677     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1678       Mod->LinkLibraries[I-1].Library, Opt);
1679     auto *OptString = llvm::MDString::get(Context, Opt);
1680     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1681   }
1682 }
1683 
1684 void CodeGenModule::EmitModuleLinkOptions() {
1685   // Collect the set of all of the modules we want to visit to emit link
1686   // options, which is essentially the imported modules and all of their
1687   // non-explicit child modules.
1688   llvm::SetVector<clang::Module *> LinkModules;
1689   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1690   SmallVector<clang::Module *, 16> Stack;
1691 
1692   // Seed the stack with imported modules.
1693   for (Module *M : ImportedModules) {
1694     // Do not add any link flags when an implementation TU of a module imports
1695     // a header of that same module.
1696     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1697         !getLangOpts().isCompilingModule())
1698       continue;
1699     if (Visited.insert(M).second)
1700       Stack.push_back(M);
1701   }
1702 
1703   // Find all of the modules to import, making a little effort to prune
1704   // non-leaf modules.
1705   while (!Stack.empty()) {
1706     clang::Module *Mod = Stack.pop_back_val();
1707 
1708     bool AnyChildren = false;
1709 
1710     // Visit the submodules of this module.
1711     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1712                                         SubEnd = Mod->submodule_end();
1713          Sub != SubEnd; ++Sub) {
1714       // Skip explicit children; they need to be explicitly imported to be
1715       // linked against.
1716       if ((*Sub)->IsExplicit)
1717         continue;
1718 
1719       if (Visited.insert(*Sub).second) {
1720         Stack.push_back(*Sub);
1721         AnyChildren = true;
1722       }
1723     }
1724 
1725     // We didn't find any children, so add this module to the list of
1726     // modules to link against.
1727     if (!AnyChildren) {
1728       LinkModules.insert(Mod);
1729     }
1730   }
1731 
1732   // Add link options for all of the imported modules in reverse topological
1733   // order.  We don't do anything to try to order import link flags with respect
1734   // to linker options inserted by things like #pragma comment().
1735   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1736   Visited.clear();
1737   for (Module *M : LinkModules)
1738     if (Visited.insert(M).second)
1739       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1740   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1741   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1742 
1743   // Add the linker options metadata flag.
1744   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1745   for (auto *MD : LinkerOptionsMetadata)
1746     NMD->addOperand(MD);
1747 }
1748 
1749 void CodeGenModule::EmitDeferred() {
1750   // Emit deferred declare target declarations.
1751   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1752     getOpenMPRuntime().emitDeferredTargetDecls();
1753 
1754   // Emit code for any potentially referenced deferred decls.  Since a
1755   // previously unused static decl may become used during the generation of code
1756   // for a static function, iterate until no changes are made.
1757 
1758   if (!DeferredVTables.empty()) {
1759     EmitDeferredVTables();
1760 
1761     // Emitting a vtable doesn't directly cause more vtables to
1762     // become deferred, although it can cause functions to be
1763     // emitted that then need those vtables.
1764     assert(DeferredVTables.empty());
1765   }
1766 
1767   // Stop if we're out of both deferred vtables and deferred declarations.
1768   if (DeferredDeclsToEmit.empty())
1769     return;
1770 
1771   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1772   // work, it will not interfere with this.
1773   std::vector<GlobalDecl> CurDeclsToEmit;
1774   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1775 
1776   for (GlobalDecl &D : CurDeclsToEmit) {
1777     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1778     // to get GlobalValue with exactly the type we need, not something that
1779     // might had been created for another decl with the same mangled name but
1780     // different type.
1781     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1782         GetAddrOfGlobal(D, ForDefinition));
1783 
1784     // In case of different address spaces, we may still get a cast, even with
1785     // IsForDefinition equal to true. Query mangled names table to get
1786     // GlobalValue.
1787     if (!GV)
1788       GV = GetGlobalValue(getMangledName(D));
1789 
1790     // Make sure GetGlobalValue returned non-null.
1791     assert(GV);
1792 
1793     // Check to see if we've already emitted this.  This is necessary
1794     // for a couple of reasons: first, decls can end up in the
1795     // deferred-decls queue multiple times, and second, decls can end
1796     // up with definitions in unusual ways (e.g. by an extern inline
1797     // function acquiring a strong function redefinition).  Just
1798     // ignore these cases.
1799     if (!GV->isDeclaration())
1800       continue;
1801 
1802     // Otherwise, emit the definition and move on to the next one.
1803     EmitGlobalDefinition(D, GV);
1804 
1805     // If we found out that we need to emit more decls, do that recursively.
1806     // This has the advantage that the decls are emitted in a DFS and related
1807     // ones are close together, which is convenient for testing.
1808     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1809       EmitDeferred();
1810       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1811     }
1812   }
1813 }
1814 
1815 void CodeGenModule::EmitVTablesOpportunistically() {
1816   // Try to emit external vtables as available_externally if they have emitted
1817   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1818   // is not allowed to create new references to things that need to be emitted
1819   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1820 
1821   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1822          && "Only emit opportunistic vtables with optimizations");
1823 
1824   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1825     assert(getVTables().isVTableExternal(RD) &&
1826            "This queue should only contain external vtables");
1827     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1828       VTables.GenerateClassData(RD);
1829   }
1830   OpportunisticVTables.clear();
1831 }
1832 
1833 void CodeGenModule::EmitGlobalAnnotations() {
1834   if (Annotations.empty())
1835     return;
1836 
1837   // Create a new global variable for the ConstantStruct in the Module.
1838   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1839     Annotations[0]->getType(), Annotations.size()), Annotations);
1840   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1841                                       llvm::GlobalValue::AppendingLinkage,
1842                                       Array, "llvm.global.annotations");
1843   gv->setSection(AnnotationSection);
1844 }
1845 
1846 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1847   llvm::Constant *&AStr = AnnotationStrings[Str];
1848   if (AStr)
1849     return AStr;
1850 
1851   // Not found yet, create a new global.
1852   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1853   auto *gv =
1854       new llvm::GlobalVariable(getModule(), s->getType(), true,
1855                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1856   gv->setSection(AnnotationSection);
1857   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1858   AStr = gv;
1859   return gv;
1860 }
1861 
1862 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1863   SourceManager &SM = getContext().getSourceManager();
1864   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1865   if (PLoc.isValid())
1866     return EmitAnnotationString(PLoc.getFilename());
1867   return EmitAnnotationString(SM.getBufferName(Loc));
1868 }
1869 
1870 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1871   SourceManager &SM = getContext().getSourceManager();
1872   PresumedLoc PLoc = SM.getPresumedLoc(L);
1873   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1874     SM.getExpansionLineNumber(L);
1875   return llvm::ConstantInt::get(Int32Ty, LineNo);
1876 }
1877 
1878 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1879                                                 const AnnotateAttr *AA,
1880                                                 SourceLocation L) {
1881   // Get the globals for file name, annotation, and the line number.
1882   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1883                  *UnitGV = EmitAnnotationUnit(L),
1884                  *LineNoCst = EmitAnnotationLineNo(L);
1885 
1886   // Create the ConstantStruct for the global annotation.
1887   llvm::Constant *Fields[4] = {
1888     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1889     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1890     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1891     LineNoCst
1892   };
1893   return llvm::ConstantStruct::getAnon(Fields);
1894 }
1895 
1896 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1897                                          llvm::GlobalValue *GV) {
1898   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1899   // Get the struct elements for these annotations.
1900   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1901     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1902 }
1903 
1904 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1905                                            llvm::Function *Fn,
1906                                            SourceLocation Loc) const {
1907   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1908   // Blacklist by function name.
1909   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1910     return true;
1911   // Blacklist by location.
1912   if (Loc.isValid())
1913     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1914   // If location is unknown, this may be a compiler-generated function. Assume
1915   // it's located in the main file.
1916   auto &SM = Context.getSourceManager();
1917   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1918     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1919   }
1920   return false;
1921 }
1922 
1923 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1924                                            SourceLocation Loc, QualType Ty,
1925                                            StringRef Category) const {
1926   // For now globals can be blacklisted only in ASan and KASan.
1927   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1928       (SanitizerKind::Address | SanitizerKind::KernelAddress |
1929        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
1930   if (!EnabledAsanMask)
1931     return false;
1932   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1933   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1934     return true;
1935   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1936     return true;
1937   // Check global type.
1938   if (!Ty.isNull()) {
1939     // Drill down the array types: if global variable of a fixed type is
1940     // blacklisted, we also don't instrument arrays of them.
1941     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1942       Ty = AT->getElementType();
1943     Ty = Ty.getCanonicalType().getUnqualifiedType();
1944     // We allow to blacklist only record types (classes, structs etc.)
1945     if (Ty->isRecordType()) {
1946       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1947       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1948         return true;
1949     }
1950   }
1951   return false;
1952 }
1953 
1954 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1955                                    StringRef Category) const {
1956   if (!LangOpts.XRayInstrument)
1957     return false;
1958 
1959   const auto &XRayFilter = getContext().getXRayFilter();
1960   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1961   auto Attr = ImbueAttr::NONE;
1962   if (Loc.isValid())
1963     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1964   if (Attr == ImbueAttr::NONE)
1965     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1966   switch (Attr) {
1967   case ImbueAttr::NONE:
1968     return false;
1969   case ImbueAttr::ALWAYS:
1970     Fn->addFnAttr("function-instrument", "xray-always");
1971     break;
1972   case ImbueAttr::ALWAYS_ARG1:
1973     Fn->addFnAttr("function-instrument", "xray-always");
1974     Fn->addFnAttr("xray-log-args", "1");
1975     break;
1976   case ImbueAttr::NEVER:
1977     Fn->addFnAttr("function-instrument", "xray-never");
1978     break;
1979   }
1980   return true;
1981 }
1982 
1983 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1984   // Never defer when EmitAllDecls is specified.
1985   if (LangOpts.EmitAllDecls)
1986     return true;
1987 
1988   return getContext().DeclMustBeEmitted(Global);
1989 }
1990 
1991 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1992   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1993     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1994       // Implicit template instantiations may change linkage if they are later
1995       // explicitly instantiated, so they should not be emitted eagerly.
1996       return false;
1997   if (const auto *VD = dyn_cast<VarDecl>(Global))
1998     if (Context.getInlineVariableDefinitionKind(VD) ==
1999         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2000       // A definition of an inline constexpr static data member may change
2001       // linkage later if it's redeclared outside the class.
2002       return false;
2003   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2004   // codegen for global variables, because they may be marked as threadprivate.
2005   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2006       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2007       !isTypeConstant(Global->getType(), false) &&
2008       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2009     return false;
2010 
2011   return true;
2012 }
2013 
2014 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2015     const CXXUuidofExpr* E) {
2016   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2017   // well-formed.
2018   StringRef Uuid = E->getUuidStr();
2019   std::string Name = "_GUID_" + Uuid.lower();
2020   std::replace(Name.begin(), Name.end(), '-', '_');
2021 
2022   // The UUID descriptor should be pointer aligned.
2023   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2024 
2025   // Look for an existing global.
2026   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2027     return ConstantAddress(GV, Alignment);
2028 
2029   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2030   assert(Init && "failed to initialize as constant");
2031 
2032   auto *GV = new llvm::GlobalVariable(
2033       getModule(), Init->getType(),
2034       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2035   if (supportsCOMDAT())
2036     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2037   setDSOLocal(GV);
2038   return ConstantAddress(GV, Alignment);
2039 }
2040 
2041 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2042   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2043   assert(AA && "No alias?");
2044 
2045   CharUnits Alignment = getContext().getDeclAlign(VD);
2046   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2047 
2048   // See if there is already something with the target's name in the module.
2049   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2050   if (Entry) {
2051     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2052     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2053     return ConstantAddress(Ptr, Alignment);
2054   }
2055 
2056   llvm::Constant *Aliasee;
2057   if (isa<llvm::FunctionType>(DeclTy))
2058     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2059                                       GlobalDecl(cast<FunctionDecl>(VD)),
2060                                       /*ForVTable=*/false);
2061   else
2062     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2063                                     llvm::PointerType::getUnqual(DeclTy),
2064                                     nullptr);
2065 
2066   auto *F = cast<llvm::GlobalValue>(Aliasee);
2067   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2068   WeakRefReferences.insert(F);
2069 
2070   return ConstantAddress(Aliasee, Alignment);
2071 }
2072 
2073 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2074   const auto *Global = cast<ValueDecl>(GD.getDecl());
2075 
2076   // Weak references don't produce any output by themselves.
2077   if (Global->hasAttr<WeakRefAttr>())
2078     return;
2079 
2080   // If this is an alias definition (which otherwise looks like a declaration)
2081   // emit it now.
2082   if (Global->hasAttr<AliasAttr>())
2083     return EmitAliasDefinition(GD);
2084 
2085   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2086   if (Global->hasAttr<IFuncAttr>())
2087     return emitIFuncDefinition(GD);
2088 
2089   // If this is a cpu_dispatch multiversion function, emit the resolver.
2090   if (Global->hasAttr<CPUDispatchAttr>())
2091     return emitCPUDispatchDefinition(GD);
2092 
2093   // If this is CUDA, be selective about which declarations we emit.
2094   if (LangOpts.CUDA) {
2095     if (LangOpts.CUDAIsDevice) {
2096       if (!Global->hasAttr<CUDADeviceAttr>() &&
2097           !Global->hasAttr<CUDAGlobalAttr>() &&
2098           !Global->hasAttr<CUDAConstantAttr>() &&
2099           !Global->hasAttr<CUDASharedAttr>())
2100         return;
2101     } else {
2102       // We need to emit host-side 'shadows' for all global
2103       // device-side variables because the CUDA runtime needs their
2104       // size and host-side address in order to provide access to
2105       // their device-side incarnations.
2106 
2107       // So device-only functions are the only things we skip.
2108       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2109           Global->hasAttr<CUDADeviceAttr>())
2110         return;
2111 
2112       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2113              "Expected Variable or Function");
2114     }
2115   }
2116 
2117   if (LangOpts.OpenMP) {
2118     // If this is OpenMP device, check if it is legal to emit this global
2119     // normally.
2120     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2121       return;
2122     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2123       if (MustBeEmitted(Global))
2124         EmitOMPDeclareReduction(DRD);
2125       return;
2126     }
2127   }
2128 
2129   // Ignore declarations, they will be emitted on their first use.
2130   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2131     // Forward declarations are emitted lazily on first use.
2132     if (!FD->doesThisDeclarationHaveABody()) {
2133       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2134         return;
2135 
2136       StringRef MangledName = getMangledName(GD);
2137 
2138       // Compute the function info and LLVM type.
2139       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2140       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2141 
2142       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2143                               /*DontDefer=*/false);
2144       return;
2145     }
2146   } else {
2147     const auto *VD = cast<VarDecl>(Global);
2148     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2149     // We need to emit device-side global CUDA variables even if a
2150     // variable does not have a definition -- we still need to define
2151     // host-side shadow for it.
2152     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
2153                            !VD->hasDefinition() &&
2154                            (VD->hasAttr<CUDAConstantAttr>() ||
2155                             VD->hasAttr<CUDADeviceAttr>());
2156     if (!MustEmitForCuda &&
2157         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2158         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2159       if (LangOpts.OpenMP) {
2160         // Emit declaration of the must-be-emitted declare target variable.
2161         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2162                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2163           if (*Res == OMPDeclareTargetDeclAttr::MT_To) {
2164             (void)GetAddrOfGlobalVar(VD);
2165           } else {
2166             assert(*Res == OMPDeclareTargetDeclAttr::MT_Link &&
2167                    "link claue expected.");
2168             (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2169           }
2170           return;
2171         }
2172       }
2173       // If this declaration may have caused an inline variable definition to
2174       // change linkage, make sure that it's emitted.
2175       if (Context.getInlineVariableDefinitionKind(VD) ==
2176           ASTContext::InlineVariableDefinitionKind::Strong)
2177         GetAddrOfGlobalVar(VD);
2178       return;
2179     }
2180   }
2181 
2182   // Defer code generation to first use when possible, e.g. if this is an inline
2183   // function. If the global must always be emitted, do it eagerly if possible
2184   // to benefit from cache locality.
2185   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2186     // Emit the definition if it can't be deferred.
2187     EmitGlobalDefinition(GD);
2188     return;
2189   }
2190 
2191   // If we're deferring emission of a C++ variable with an
2192   // initializer, remember the order in which it appeared in the file.
2193   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2194       cast<VarDecl>(Global)->hasInit()) {
2195     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2196     CXXGlobalInits.push_back(nullptr);
2197   }
2198 
2199   StringRef MangledName = getMangledName(GD);
2200   if (GetGlobalValue(MangledName) != nullptr) {
2201     // The value has already been used and should therefore be emitted.
2202     addDeferredDeclToEmit(GD);
2203   } else if (MustBeEmitted(Global)) {
2204     // The value must be emitted, but cannot be emitted eagerly.
2205     assert(!MayBeEmittedEagerly(Global));
2206     addDeferredDeclToEmit(GD);
2207   } else {
2208     // Otherwise, remember that we saw a deferred decl with this name.  The
2209     // first use of the mangled name will cause it to move into
2210     // DeferredDeclsToEmit.
2211     DeferredDecls[MangledName] = GD;
2212   }
2213 }
2214 
2215 // Check if T is a class type with a destructor that's not dllimport.
2216 static bool HasNonDllImportDtor(QualType T) {
2217   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2218     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2219       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2220         return true;
2221 
2222   return false;
2223 }
2224 
2225 namespace {
2226   struct FunctionIsDirectlyRecursive :
2227     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2228     const StringRef Name;
2229     const Builtin::Context &BI;
2230     bool Result;
2231     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2232       Name(N), BI(C), Result(false) {
2233     }
2234     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2235 
2236     bool TraverseCallExpr(CallExpr *E) {
2237       const FunctionDecl *FD = E->getDirectCallee();
2238       if (!FD)
2239         return true;
2240       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2241       if (Attr && Name == Attr->getLabel()) {
2242         Result = true;
2243         return false;
2244       }
2245       unsigned BuiltinID = FD->getBuiltinID();
2246       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2247         return true;
2248       StringRef BuiltinName = BI.getName(BuiltinID);
2249       if (BuiltinName.startswith("__builtin_") &&
2250           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2251         Result = true;
2252         return false;
2253       }
2254       return true;
2255     }
2256   };
2257 
2258   // Make sure we're not referencing non-imported vars or functions.
2259   struct DLLImportFunctionVisitor
2260       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2261     bool SafeToInline = true;
2262 
2263     bool shouldVisitImplicitCode() const { return true; }
2264 
2265     bool VisitVarDecl(VarDecl *VD) {
2266       if (VD->getTLSKind()) {
2267         // A thread-local variable cannot be imported.
2268         SafeToInline = false;
2269         return SafeToInline;
2270       }
2271 
2272       // A variable definition might imply a destructor call.
2273       if (VD->isThisDeclarationADefinition())
2274         SafeToInline = !HasNonDllImportDtor(VD->getType());
2275 
2276       return SafeToInline;
2277     }
2278 
2279     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2280       if (const auto *D = E->getTemporary()->getDestructor())
2281         SafeToInline = D->hasAttr<DLLImportAttr>();
2282       return SafeToInline;
2283     }
2284 
2285     bool VisitDeclRefExpr(DeclRefExpr *E) {
2286       ValueDecl *VD = E->getDecl();
2287       if (isa<FunctionDecl>(VD))
2288         SafeToInline = VD->hasAttr<DLLImportAttr>();
2289       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2290         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2291       return SafeToInline;
2292     }
2293 
2294     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2295       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2296       return SafeToInline;
2297     }
2298 
2299     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2300       CXXMethodDecl *M = E->getMethodDecl();
2301       if (!M) {
2302         // Call through a pointer to member function. This is safe to inline.
2303         SafeToInline = true;
2304       } else {
2305         SafeToInline = M->hasAttr<DLLImportAttr>();
2306       }
2307       return SafeToInline;
2308     }
2309 
2310     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2311       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2312       return SafeToInline;
2313     }
2314 
2315     bool VisitCXXNewExpr(CXXNewExpr *E) {
2316       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2317       return SafeToInline;
2318     }
2319   };
2320 }
2321 
2322 // isTriviallyRecursive - Check if this function calls another
2323 // decl that, because of the asm attribute or the other decl being a builtin,
2324 // ends up pointing to itself.
2325 bool
2326 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2327   StringRef Name;
2328   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2329     // asm labels are a special kind of mangling we have to support.
2330     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2331     if (!Attr)
2332       return false;
2333     Name = Attr->getLabel();
2334   } else {
2335     Name = FD->getName();
2336   }
2337 
2338   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2339   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2340   return Walker.Result;
2341 }
2342 
2343 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2344   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2345     return true;
2346   const auto *F = cast<FunctionDecl>(GD.getDecl());
2347   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2348     return false;
2349 
2350   if (F->hasAttr<DLLImportAttr>()) {
2351     // Check whether it would be safe to inline this dllimport function.
2352     DLLImportFunctionVisitor Visitor;
2353     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2354     if (!Visitor.SafeToInline)
2355       return false;
2356 
2357     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2358       // Implicit destructor invocations aren't captured in the AST, so the
2359       // check above can't see them. Check for them manually here.
2360       for (const Decl *Member : Dtor->getParent()->decls())
2361         if (isa<FieldDecl>(Member))
2362           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2363             return false;
2364       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2365         if (HasNonDllImportDtor(B.getType()))
2366           return false;
2367     }
2368   }
2369 
2370   // PR9614. Avoid cases where the source code is lying to us. An available
2371   // externally function should have an equivalent function somewhere else,
2372   // but a function that calls itself is clearly not equivalent to the real
2373   // implementation.
2374   // This happens in glibc's btowc and in some configure checks.
2375   return !isTriviallyRecursive(F);
2376 }
2377 
2378 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2379   return CodeGenOpts.OptimizationLevel > 0;
2380 }
2381 
2382 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2383   const auto *D = cast<ValueDecl>(GD.getDecl());
2384 
2385   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2386                                  Context.getSourceManager(),
2387                                  "Generating code for declaration");
2388 
2389   if (isa<FunctionDecl>(D)) {
2390     // At -O0, don't generate IR for functions with available_externally
2391     // linkage.
2392     if (!shouldEmitFunction(GD))
2393       return;
2394 
2395     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2396       // Make sure to emit the definition(s) before we emit the thunks.
2397       // This is necessary for the generation of certain thunks.
2398       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2399         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2400       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2401         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2402       else
2403         EmitGlobalFunctionDefinition(GD, GV);
2404 
2405       if (Method->isVirtual())
2406         getVTables().EmitThunks(GD);
2407 
2408       return;
2409     }
2410 
2411     return EmitGlobalFunctionDefinition(GD, GV);
2412   }
2413 
2414   if (const auto *VD = dyn_cast<VarDecl>(D))
2415     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2416 
2417   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2418 }
2419 
2420 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2421                                                       llvm::Function *NewFn);
2422 
2423 void CodeGenModule::emitMultiVersionFunctions() {
2424   for (GlobalDecl GD : MultiVersionFuncs) {
2425     SmallVector<CodeGenFunction::TargetMultiVersionResolverOption, 10> Options;
2426     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2427     getContext().forEachMultiversionedFunctionVersion(
2428         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2429           GlobalDecl CurGD{
2430               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2431           StringRef MangledName = getMangledName(CurGD);
2432           llvm::Constant *Func = GetGlobalValue(MangledName);
2433           if (!Func) {
2434             if (CurFD->isDefined()) {
2435               EmitGlobalFunctionDefinition(CurGD, nullptr);
2436               Func = GetGlobalValue(MangledName);
2437             } else {
2438               const CGFunctionInfo &FI =
2439                   getTypes().arrangeGlobalDeclaration(GD);
2440               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2441               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2442                                        /*DontDefer=*/false, ForDefinition);
2443             }
2444             assert(Func && "This should have just been created");
2445           }
2446           Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2447                                CurFD->getAttr<TargetAttr>()->parse());
2448         });
2449 
2450     llvm::Function *ResolverFunc = cast<llvm::Function>(
2451         GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2452     if (supportsCOMDAT())
2453       ResolverFunc->setComdat(
2454           getModule().getOrInsertComdat(ResolverFunc->getName()));
2455     std::stable_sort(
2456         Options.begin(), Options.end(),
2457         std::greater<CodeGenFunction::TargetMultiVersionResolverOption>());
2458     CodeGenFunction CGF(*this);
2459     CGF.EmitTargetMultiVersionResolver(ResolverFunc, Options);
2460   }
2461 }
2462 
2463 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2464   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2465   assert(FD && "Not a FunctionDecl?");
2466   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2467   assert(DD && "Not a cpu_dispatch Function?");
2468   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(FD->getType());
2469 
2470   StringRef ResolverName = getMangledName(GD);
2471   llvm::Type *ResolverType = llvm::FunctionType::get(
2472       llvm::PointerType::get(DeclTy,
2473                              Context.getTargetAddressSpace(FD->getType())),
2474       false);
2475   auto *ResolverFunc = cast<llvm::Function>(
2476       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2477                               /*ForVTable=*/false));
2478 
2479   SmallVector<CodeGenFunction::CPUDispatchMultiVersionResolverOption, 10>
2480       Options;
2481   const TargetInfo &Target = getTarget();
2482   for (const IdentifierInfo *II : DD->cpus()) {
2483     // Get the name of the target function so we can look it up/create it.
2484     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2485                               getCPUSpecificMangling(*this, II->getName());
2486     llvm::Constant *Func = GetOrCreateLLVMFunction(
2487         MangledName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/false,
2488         /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2489     llvm::SmallVector<StringRef, 32> Features;
2490     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2491     llvm::transform(Features, Features.begin(),
2492                     [](StringRef Str) { return Str.substr(1); });
2493     Features.erase(std::remove_if(
2494         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2495           return !Target.validateCpuSupports(Feat);
2496         }), Features.end());
2497     Options.emplace_back(cast<llvm::Function>(Func),
2498                          CodeGenFunction::GetX86CpuSupportsMask(Features));
2499   }
2500 
2501   llvm::sort(
2502       Options.begin(), Options.end(),
2503       std::greater<CodeGenFunction::CPUDispatchMultiVersionResolverOption>());
2504   CodeGenFunction CGF(*this);
2505   CGF.EmitCPUDispatchMultiVersionResolver(ResolverFunc, Options);
2506 }
2507 
2508 /// If an ifunc for the specified mangled name is not in the module, create and
2509 /// return an llvm IFunc Function with the specified type.
2510 llvm::Constant *
2511 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2512                                             const FunctionDecl *FD) {
2513   std::string MangledName =
2514       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
2515   std::string IFuncName = MangledName + ".ifunc";
2516   if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2517     return IFuncGV;
2518 
2519   // Since this is the first time we've created this IFunc, make sure
2520   // that we put this multiversioned function into the list to be
2521   // replaced later if necessary (target multiversioning only).
2522   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
2523     MultiVersionFuncs.push_back(GD);
2524 
2525   std::string ResolverName = MangledName + ".resolver";
2526   llvm::Type *ResolverType = llvm::FunctionType::get(
2527       llvm::PointerType::get(DeclTy,
2528                              Context.getTargetAddressSpace(FD->getType())),
2529       false);
2530   llvm::Constant *Resolver =
2531       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2532                               /*ForVTable=*/false);
2533   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2534       DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2535   GIF->setName(IFuncName);
2536   SetCommonAttributes(FD, GIF);
2537 
2538   return GIF;
2539 }
2540 
2541 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2542 /// module, create and return an llvm Function with the specified type. If there
2543 /// is something in the module with the specified name, return it potentially
2544 /// bitcasted to the right type.
2545 ///
2546 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2547 /// to set the attributes on the function when it is first created.
2548 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2549     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2550     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2551     ForDefinition_t IsForDefinition) {
2552   const Decl *D = GD.getDecl();
2553 
2554   // Any attempts to use a MultiVersion function should result in retrieving
2555   // the iFunc instead. Name Mangling will handle the rest of the changes.
2556   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2557     // For the device mark the function as one that should be emitted.
2558     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2559         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
2560         !DontDefer && !IsForDefinition) {
2561       if (const FunctionDecl *FDDef = FD->getDefinition())
2562         if (getContext().DeclMustBeEmitted(FDDef)) {
2563           GlobalDecl GDDef;
2564           if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
2565             GDDef = GlobalDecl(CD, GD.getCtorType());
2566           else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
2567             GDDef = GlobalDecl(DD, GD.getDtorType());
2568           else
2569             GDDef = GlobalDecl(FDDef);
2570           addDeferredDeclToEmit(GDDef);
2571         }
2572     }
2573 
2574     if (FD->isMultiVersion()) {
2575       const auto *TA = FD->getAttr<TargetAttr>();
2576       if (TA && TA->isDefaultVersion())
2577         UpdateMultiVersionNames(GD, FD);
2578       if (!IsForDefinition)
2579         return GetOrCreateMultiVersionIFunc(GD, Ty, FD);
2580     }
2581   }
2582 
2583   // Lookup the entry, lazily creating it if necessary.
2584   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2585   if (Entry) {
2586     if (WeakRefReferences.erase(Entry)) {
2587       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2588       if (FD && !FD->hasAttr<WeakAttr>())
2589         Entry->setLinkage(llvm::Function::ExternalLinkage);
2590     }
2591 
2592     // Handle dropped DLL attributes.
2593     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
2594       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2595       setDSOLocal(Entry);
2596     }
2597 
2598     // If there are two attempts to define the same mangled name, issue an
2599     // error.
2600     if (IsForDefinition && !Entry->isDeclaration()) {
2601       GlobalDecl OtherGD;
2602       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2603       // to make sure that we issue an error only once.
2604       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2605           (GD.getCanonicalDecl().getDecl() !=
2606            OtherGD.getCanonicalDecl().getDecl()) &&
2607           DiagnosedConflictingDefinitions.insert(GD).second) {
2608         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2609             << MangledName;
2610         getDiags().Report(OtherGD.getDecl()->getLocation(),
2611                           diag::note_previous_definition);
2612       }
2613     }
2614 
2615     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2616         (Entry->getType()->getElementType() == Ty)) {
2617       return Entry;
2618     }
2619 
2620     // Make sure the result is of the correct type.
2621     // (If function is requested for a definition, we always need to create a new
2622     // function, not just return a bitcast.)
2623     if (!IsForDefinition)
2624       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2625   }
2626 
2627   // This function doesn't have a complete type (for example, the return
2628   // type is an incomplete struct). Use a fake type instead, and make
2629   // sure not to try to set attributes.
2630   bool IsIncompleteFunction = false;
2631 
2632   llvm::FunctionType *FTy;
2633   if (isa<llvm::FunctionType>(Ty)) {
2634     FTy = cast<llvm::FunctionType>(Ty);
2635   } else {
2636     FTy = llvm::FunctionType::get(VoidTy, false);
2637     IsIncompleteFunction = true;
2638   }
2639 
2640   llvm::Function *F =
2641       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2642                              Entry ? StringRef() : MangledName, &getModule());
2643 
2644   // If we already created a function with the same mangled name (but different
2645   // type) before, take its name and add it to the list of functions to be
2646   // replaced with F at the end of CodeGen.
2647   //
2648   // This happens if there is a prototype for a function (e.g. "int f()") and
2649   // then a definition of a different type (e.g. "int f(int x)").
2650   if (Entry) {
2651     F->takeName(Entry);
2652 
2653     // This might be an implementation of a function without a prototype, in
2654     // which case, try to do special replacement of calls which match the new
2655     // prototype.  The really key thing here is that we also potentially drop
2656     // arguments from the call site so as to make a direct call, which makes the
2657     // inliner happier and suppresses a number of optimizer warnings (!) about
2658     // dropping arguments.
2659     if (!Entry->use_empty()) {
2660       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2661       Entry->removeDeadConstantUsers();
2662     }
2663 
2664     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2665         F, Entry->getType()->getElementType()->getPointerTo());
2666     addGlobalValReplacement(Entry, BC);
2667   }
2668 
2669   assert(F->getName() == MangledName && "name was uniqued!");
2670   if (D)
2671     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2672   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2673     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2674     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2675   }
2676 
2677   if (!DontDefer) {
2678     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2679     // each other bottoming out with the base dtor.  Therefore we emit non-base
2680     // dtors on usage, even if there is no dtor definition in the TU.
2681     if (D && isa<CXXDestructorDecl>(D) &&
2682         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2683                                            GD.getDtorType()))
2684       addDeferredDeclToEmit(GD);
2685 
2686     // This is the first use or definition of a mangled name.  If there is a
2687     // deferred decl with this name, remember that we need to emit it at the end
2688     // of the file.
2689     auto DDI = DeferredDecls.find(MangledName);
2690     if (DDI != DeferredDecls.end()) {
2691       // Move the potentially referenced deferred decl to the
2692       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2693       // don't need it anymore).
2694       addDeferredDeclToEmit(DDI->second);
2695       DeferredDecls.erase(DDI);
2696 
2697       // Otherwise, there are cases we have to worry about where we're
2698       // using a declaration for which we must emit a definition but where
2699       // we might not find a top-level definition:
2700       //   - member functions defined inline in their classes
2701       //   - friend functions defined inline in some class
2702       //   - special member functions with implicit definitions
2703       // If we ever change our AST traversal to walk into class methods,
2704       // this will be unnecessary.
2705       //
2706       // We also don't emit a definition for a function if it's going to be an
2707       // entry in a vtable, unless it's already marked as used.
2708     } else if (getLangOpts().CPlusPlus && D) {
2709       // Look for a declaration that's lexically in a record.
2710       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2711            FD = FD->getPreviousDecl()) {
2712         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2713           if (FD->doesThisDeclarationHaveABody()) {
2714             addDeferredDeclToEmit(GD.getWithDecl(FD));
2715             break;
2716           }
2717         }
2718       }
2719     }
2720   }
2721 
2722   // Make sure the result is of the requested type.
2723   if (!IsIncompleteFunction) {
2724     assert(F->getType()->getElementType() == Ty);
2725     return F;
2726   }
2727 
2728   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2729   return llvm::ConstantExpr::getBitCast(F, PTy);
2730 }
2731 
2732 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2733 /// non-null, then this function will use the specified type if it has to
2734 /// create it (this occurs when we see a definition of the function).
2735 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2736                                                  llvm::Type *Ty,
2737                                                  bool ForVTable,
2738                                                  bool DontDefer,
2739                                               ForDefinition_t IsForDefinition) {
2740   // If there was no specific requested type, just convert it now.
2741   if (!Ty) {
2742     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2743     auto CanonTy = Context.getCanonicalType(FD->getType());
2744     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2745   }
2746 
2747   // Devirtualized destructor calls may come through here instead of via
2748   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
2749   // of the complete destructor when necessary.
2750   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
2751     if (getTarget().getCXXABI().isMicrosoft() &&
2752         GD.getDtorType() == Dtor_Complete &&
2753         DD->getParent()->getNumVBases() == 0)
2754       GD = GlobalDecl(DD, Dtor_Base);
2755   }
2756 
2757   StringRef MangledName = getMangledName(GD);
2758   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2759                                  /*IsThunk=*/false, llvm::AttributeList(),
2760                                  IsForDefinition);
2761 }
2762 
2763 static const FunctionDecl *
2764 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2765   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2766   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2767 
2768   IdentifierInfo &CII = C.Idents.get(Name);
2769   for (const auto &Result : DC->lookup(&CII))
2770     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2771       return FD;
2772 
2773   if (!C.getLangOpts().CPlusPlus)
2774     return nullptr;
2775 
2776   // Demangle the premangled name from getTerminateFn()
2777   IdentifierInfo &CXXII =
2778       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
2779           ? C.Idents.get("terminate")
2780           : C.Idents.get(Name);
2781 
2782   for (const auto &N : {"__cxxabiv1", "std"}) {
2783     IdentifierInfo &NS = C.Idents.get(N);
2784     for (const auto &Result : DC->lookup(&NS)) {
2785       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2786       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2787         for (const auto &Result : LSD->lookup(&NS))
2788           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2789             break;
2790 
2791       if (ND)
2792         for (const auto &Result : ND->lookup(&CXXII))
2793           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2794             return FD;
2795     }
2796   }
2797 
2798   return nullptr;
2799 }
2800 
2801 /// CreateRuntimeFunction - Create a new runtime function with the specified
2802 /// type and name.
2803 llvm::Constant *
2804 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2805                                      llvm::AttributeList ExtraAttrs,
2806                                      bool Local) {
2807   llvm::Constant *C =
2808       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2809                               /*DontDefer=*/false, /*IsThunk=*/false,
2810                               ExtraAttrs);
2811 
2812   if (auto *F = dyn_cast<llvm::Function>(C)) {
2813     if (F->empty()) {
2814       F->setCallingConv(getRuntimeCC());
2815 
2816       if (!Local && getTriple().isOSBinFormatCOFF() &&
2817           !getCodeGenOpts().LTOVisibilityPublicStd &&
2818           !getTriple().isWindowsGNUEnvironment()) {
2819         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2820         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2821           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2822           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2823         }
2824       }
2825       setDSOLocal(F);
2826     }
2827   }
2828 
2829   return C;
2830 }
2831 
2832 /// CreateBuiltinFunction - Create a new builtin function with the specified
2833 /// type and name.
2834 llvm::Constant *
2835 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2836                                      llvm::AttributeList ExtraAttrs) {
2837   return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true);
2838 }
2839 
2840 /// isTypeConstant - Determine whether an object of this type can be emitted
2841 /// as a constant.
2842 ///
2843 /// If ExcludeCtor is true, the duration when the object's constructor runs
2844 /// will not be considered. The caller will need to verify that the object is
2845 /// not written to during its construction.
2846 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2847   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2848     return false;
2849 
2850   if (Context.getLangOpts().CPlusPlus) {
2851     if (const CXXRecordDecl *Record
2852           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2853       return ExcludeCtor && !Record->hasMutableFields() &&
2854              Record->hasTrivialDestructor();
2855   }
2856 
2857   return true;
2858 }
2859 
2860 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2861 /// create and return an llvm GlobalVariable with the specified type.  If there
2862 /// is something in the module with the specified name, return it potentially
2863 /// bitcasted to the right type.
2864 ///
2865 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2866 /// to set the attributes on the global when it is first created.
2867 ///
2868 /// If IsForDefinition is true, it is guaranteed that an actual global with
2869 /// type Ty will be returned, not conversion of a variable with the same
2870 /// mangled name but some other type.
2871 llvm::Constant *
2872 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2873                                      llvm::PointerType *Ty,
2874                                      const VarDecl *D,
2875                                      ForDefinition_t IsForDefinition) {
2876   // Lookup the entry, lazily creating it if necessary.
2877   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2878   if (Entry) {
2879     if (WeakRefReferences.erase(Entry)) {
2880       if (D && !D->hasAttr<WeakAttr>())
2881         Entry->setLinkage(llvm::Function::ExternalLinkage);
2882     }
2883 
2884     // Handle dropped DLL attributes.
2885     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2886       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2887 
2888     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
2889       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
2890 
2891     if (Entry->getType() == Ty)
2892       return Entry;
2893 
2894     // If there are two attempts to define the same mangled name, issue an
2895     // error.
2896     if (IsForDefinition && !Entry->isDeclaration()) {
2897       GlobalDecl OtherGD;
2898       const VarDecl *OtherD;
2899 
2900       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2901       // to make sure that we issue an error only once.
2902       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2903           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2904           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2905           OtherD->hasInit() &&
2906           DiagnosedConflictingDefinitions.insert(D).second) {
2907         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2908             << MangledName;
2909         getDiags().Report(OtherGD.getDecl()->getLocation(),
2910                           diag::note_previous_definition);
2911       }
2912     }
2913 
2914     // Make sure the result is of the correct type.
2915     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2916       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2917 
2918     // (If global is requested for a definition, we always need to create a new
2919     // global, not just return a bitcast.)
2920     if (!IsForDefinition)
2921       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2922   }
2923 
2924   auto AddrSpace = GetGlobalVarAddressSpace(D);
2925   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2926 
2927   auto *GV = new llvm::GlobalVariable(
2928       getModule(), Ty->getElementType(), false,
2929       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2930       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2931 
2932   // If we already created a global with the same mangled name (but different
2933   // type) before, take its name and remove it from its parent.
2934   if (Entry) {
2935     GV->takeName(Entry);
2936 
2937     if (!Entry->use_empty()) {
2938       llvm::Constant *NewPtrForOldDecl =
2939           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2940       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2941     }
2942 
2943     Entry->eraseFromParent();
2944   }
2945 
2946   // This is the first use or definition of a mangled name.  If there is a
2947   // deferred decl with this name, remember that we need to emit it at the end
2948   // of the file.
2949   auto DDI = DeferredDecls.find(MangledName);
2950   if (DDI != DeferredDecls.end()) {
2951     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2952     // list, and remove it from DeferredDecls (since we don't need it anymore).
2953     addDeferredDeclToEmit(DDI->second);
2954     DeferredDecls.erase(DDI);
2955   }
2956 
2957   // Handle things which are present even on external declarations.
2958   if (D) {
2959     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
2960       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
2961 
2962     // FIXME: This code is overly simple and should be merged with other global
2963     // handling.
2964     GV->setConstant(isTypeConstant(D->getType(), false));
2965 
2966     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2967 
2968     setLinkageForGV(GV, D);
2969 
2970     if (D->getTLSKind()) {
2971       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2972         CXXThreadLocals.push_back(D);
2973       setTLSMode(GV, *D);
2974     }
2975 
2976     setGVProperties(GV, D);
2977 
2978     // If required by the ABI, treat declarations of static data members with
2979     // inline initializers as definitions.
2980     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2981       EmitGlobalVarDefinition(D);
2982     }
2983 
2984     // Emit section information for extern variables.
2985     if (D->hasExternalStorage()) {
2986       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2987         GV->setSection(SA->getName());
2988     }
2989 
2990     // Handle XCore specific ABI requirements.
2991     if (getTriple().getArch() == llvm::Triple::xcore &&
2992         D->getLanguageLinkage() == CLanguageLinkage &&
2993         D->getType().isConstant(Context) &&
2994         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2995       GV->setSection(".cp.rodata");
2996 
2997     // Check if we a have a const declaration with an initializer, we may be
2998     // able to emit it as available_externally to expose it's value to the
2999     // optimizer.
3000     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3001         D->getType().isConstQualified() && !GV->hasInitializer() &&
3002         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3003       const auto *Record =
3004           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3005       bool HasMutableFields = Record && Record->hasMutableFields();
3006       if (!HasMutableFields) {
3007         const VarDecl *InitDecl;
3008         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3009         if (InitExpr) {
3010           ConstantEmitter emitter(*this);
3011           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3012           if (Init) {
3013             auto *InitType = Init->getType();
3014             if (GV->getType()->getElementType() != InitType) {
3015               // The type of the initializer does not match the definition.
3016               // This happens when an initializer has a different type from
3017               // the type of the global (because of padding at the end of a
3018               // structure for instance).
3019               GV->setName(StringRef());
3020               // Make a new global with the correct type, this is now guaranteed
3021               // to work.
3022               auto *NewGV = cast<llvm::GlobalVariable>(
3023                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
3024 
3025               // Erase the old global, since it is no longer used.
3026               GV->eraseFromParent();
3027               GV = NewGV;
3028             } else {
3029               GV->setInitializer(Init);
3030               GV->setConstant(true);
3031               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3032             }
3033             emitter.finalize(GV);
3034           }
3035         }
3036       }
3037     }
3038   }
3039 
3040   LangAS ExpectedAS =
3041       D ? D->getType().getAddressSpace()
3042         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3043   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3044          Ty->getPointerAddressSpace());
3045   if (AddrSpace != ExpectedAS)
3046     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3047                                                        ExpectedAS, Ty);
3048 
3049   return GV;
3050 }
3051 
3052 llvm::Constant *
3053 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3054                                ForDefinition_t IsForDefinition) {
3055   const Decl *D = GD.getDecl();
3056   if (isa<CXXConstructorDecl>(D))
3057     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
3058                                 getFromCtorType(GD.getCtorType()),
3059                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3060                                 /*DontDefer=*/false, IsForDefinition);
3061   else if (isa<CXXDestructorDecl>(D))
3062     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
3063                                 getFromDtorType(GD.getDtorType()),
3064                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3065                                 /*DontDefer=*/false, IsForDefinition);
3066   else if (isa<CXXMethodDecl>(D)) {
3067     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3068         cast<CXXMethodDecl>(D));
3069     auto Ty = getTypes().GetFunctionType(*FInfo);
3070     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3071                              IsForDefinition);
3072   } else if (isa<FunctionDecl>(D)) {
3073     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3074     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3075     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3076                              IsForDefinition);
3077   } else
3078     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3079                               IsForDefinition);
3080 }
3081 
3082 llvm::GlobalVariable *
3083 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
3084                                       llvm::Type *Ty,
3085                                       llvm::GlobalValue::LinkageTypes Linkage) {
3086   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3087   llvm::GlobalVariable *OldGV = nullptr;
3088 
3089   if (GV) {
3090     // Check if the variable has the right type.
3091     if (GV->getType()->getElementType() == Ty)
3092       return GV;
3093 
3094     // Because C++ name mangling, the only way we can end up with an already
3095     // existing global with the same name is if it has been declared extern "C".
3096     assert(GV->isDeclaration() && "Declaration has wrong type!");
3097     OldGV = GV;
3098   }
3099 
3100   // Create a new variable.
3101   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3102                                 Linkage, nullptr, Name);
3103 
3104   if (OldGV) {
3105     // Replace occurrences of the old variable if needed.
3106     GV->takeName(OldGV);
3107 
3108     if (!OldGV->use_empty()) {
3109       llvm::Constant *NewPtrForOldDecl =
3110       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3111       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3112     }
3113 
3114     OldGV->eraseFromParent();
3115   }
3116 
3117   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3118       !GV->hasAvailableExternallyLinkage())
3119     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3120 
3121   return GV;
3122 }
3123 
3124 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3125 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3126 /// then it will be created with the specified type instead of whatever the
3127 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3128 /// that an actual global with type Ty will be returned, not conversion of a
3129 /// variable with the same mangled name but some other type.
3130 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3131                                                   llvm::Type *Ty,
3132                                            ForDefinition_t IsForDefinition) {
3133   assert(D->hasGlobalStorage() && "Not a global variable");
3134   QualType ASTTy = D->getType();
3135   if (!Ty)
3136     Ty = getTypes().ConvertTypeForMem(ASTTy);
3137 
3138   llvm::PointerType *PTy =
3139     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3140 
3141   StringRef MangledName = getMangledName(D);
3142   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3143 }
3144 
3145 /// CreateRuntimeVariable - Create a new runtime global variable with the
3146 /// specified type and name.
3147 llvm::Constant *
3148 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3149                                      StringRef Name) {
3150   auto *Ret =
3151       GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
3152   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3153   return Ret;
3154 }
3155 
3156 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3157   assert(!D->getInit() && "Cannot emit definite definitions here!");
3158 
3159   StringRef MangledName = getMangledName(D);
3160   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3161 
3162   // We already have a definition, not declaration, with the same mangled name.
3163   // Emitting of declaration is not required (and actually overwrites emitted
3164   // definition).
3165   if (GV && !GV->isDeclaration())
3166     return;
3167 
3168   // If we have not seen a reference to this variable yet, place it into the
3169   // deferred declarations table to be emitted if needed later.
3170   if (!MustBeEmitted(D) && !GV) {
3171       DeferredDecls[MangledName] = D;
3172       return;
3173   }
3174 
3175   // The tentative definition is the only definition.
3176   EmitGlobalVarDefinition(D);
3177 }
3178 
3179 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3180   return Context.toCharUnitsFromBits(
3181       getDataLayout().getTypeStoreSizeInBits(Ty));
3182 }
3183 
3184 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3185   LangAS AddrSpace = LangAS::Default;
3186   if (LangOpts.OpenCL) {
3187     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3188     assert(AddrSpace == LangAS::opencl_global ||
3189            AddrSpace == LangAS::opencl_constant ||
3190            AddrSpace == LangAS::opencl_local ||
3191            AddrSpace >= LangAS::FirstTargetAddressSpace);
3192     return AddrSpace;
3193   }
3194 
3195   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3196     if (D && D->hasAttr<CUDAConstantAttr>())
3197       return LangAS::cuda_constant;
3198     else if (D && D->hasAttr<CUDASharedAttr>())
3199       return LangAS::cuda_shared;
3200     else if (D && D->hasAttr<CUDADeviceAttr>())
3201       return LangAS::cuda_device;
3202     else if (D && D->getType().isConstQualified())
3203       return LangAS::cuda_constant;
3204     else
3205       return LangAS::cuda_device;
3206   }
3207 
3208   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3209 }
3210 
3211 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3212   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3213   if (LangOpts.OpenCL)
3214     return LangAS::opencl_constant;
3215   if (auto AS = getTarget().getConstantAddressSpace())
3216     return AS.getValue();
3217   return LangAS::Default;
3218 }
3219 
3220 // In address space agnostic languages, string literals are in default address
3221 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3222 // emitted in constant address space in LLVM IR. To be consistent with other
3223 // parts of AST, string literal global variables in constant address space
3224 // need to be casted to default address space before being put into address
3225 // map and referenced by other part of CodeGen.
3226 // In OpenCL, string literals are in constant address space in AST, therefore
3227 // they should not be casted to default address space.
3228 static llvm::Constant *
3229 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3230                                        llvm::GlobalVariable *GV) {
3231   llvm::Constant *Cast = GV;
3232   if (!CGM.getLangOpts().OpenCL) {
3233     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3234       if (AS != LangAS::Default)
3235         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3236             CGM, GV, AS.getValue(), LangAS::Default,
3237             GV->getValueType()->getPointerTo(
3238                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3239     }
3240   }
3241   return Cast;
3242 }
3243 
3244 template<typename SomeDecl>
3245 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3246                                                llvm::GlobalValue *GV) {
3247   if (!getLangOpts().CPlusPlus)
3248     return;
3249 
3250   // Must have 'used' attribute, or else inline assembly can't rely on
3251   // the name existing.
3252   if (!D->template hasAttr<UsedAttr>())
3253     return;
3254 
3255   // Must have internal linkage and an ordinary name.
3256   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3257     return;
3258 
3259   // Must be in an extern "C" context. Entities declared directly within
3260   // a record are not extern "C" even if the record is in such a context.
3261   const SomeDecl *First = D->getFirstDecl();
3262   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3263     return;
3264 
3265   // OK, this is an internal linkage entity inside an extern "C" linkage
3266   // specification. Make a note of that so we can give it the "expected"
3267   // mangled name if nothing else is using that name.
3268   std::pair<StaticExternCMap::iterator, bool> R =
3269       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3270 
3271   // If we have multiple internal linkage entities with the same name
3272   // in extern "C" regions, none of them gets that name.
3273   if (!R.second)
3274     R.first->second = nullptr;
3275 }
3276 
3277 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3278   if (!CGM.supportsCOMDAT())
3279     return false;
3280 
3281   if (D.hasAttr<SelectAnyAttr>())
3282     return true;
3283 
3284   GVALinkage Linkage;
3285   if (auto *VD = dyn_cast<VarDecl>(&D))
3286     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3287   else
3288     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3289 
3290   switch (Linkage) {
3291   case GVA_Internal:
3292   case GVA_AvailableExternally:
3293   case GVA_StrongExternal:
3294     return false;
3295   case GVA_DiscardableODR:
3296   case GVA_StrongODR:
3297     return true;
3298   }
3299   llvm_unreachable("No such linkage");
3300 }
3301 
3302 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3303                                           llvm::GlobalObject &GO) {
3304   if (!shouldBeInCOMDAT(*this, D))
3305     return;
3306   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3307 }
3308 
3309 /// Pass IsTentative as true if you want to create a tentative definition.
3310 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3311                                             bool IsTentative) {
3312   // OpenCL global variables of sampler type are translated to function calls,
3313   // therefore no need to be translated.
3314   QualType ASTTy = D->getType();
3315   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3316     return;
3317 
3318   // If this is OpenMP device, check if it is legal to emit this global
3319   // normally.
3320   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3321       OpenMPRuntime->emitTargetGlobalVariable(D))
3322     return;
3323 
3324   llvm::Constant *Init = nullptr;
3325   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3326   bool NeedsGlobalCtor = false;
3327   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3328 
3329   const VarDecl *InitDecl;
3330   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3331 
3332   Optional<ConstantEmitter> emitter;
3333 
3334   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3335   // as part of their declaration."  Sema has already checked for
3336   // error cases, so we just need to set Init to UndefValue.
3337   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3338       D->hasAttr<CUDASharedAttr>())
3339     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3340   else if (!InitExpr) {
3341     // This is a tentative definition; tentative definitions are
3342     // implicitly initialized with { 0 }.
3343     //
3344     // Note that tentative definitions are only emitted at the end of
3345     // a translation unit, so they should never have incomplete
3346     // type. In addition, EmitTentativeDefinition makes sure that we
3347     // never attempt to emit a tentative definition if a real one
3348     // exists. A use may still exists, however, so we still may need
3349     // to do a RAUW.
3350     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3351     Init = EmitNullConstant(D->getType());
3352   } else {
3353     initializedGlobalDecl = GlobalDecl(D);
3354     emitter.emplace(*this);
3355     Init = emitter->tryEmitForInitializer(*InitDecl);
3356 
3357     if (!Init) {
3358       QualType T = InitExpr->getType();
3359       if (D->getType()->isReferenceType())
3360         T = D->getType();
3361 
3362       if (getLangOpts().CPlusPlus) {
3363         Init = EmitNullConstant(T);
3364         NeedsGlobalCtor = true;
3365       } else {
3366         ErrorUnsupported(D, "static initializer");
3367         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3368       }
3369     } else {
3370       // We don't need an initializer, so remove the entry for the delayed
3371       // initializer position (just in case this entry was delayed) if we
3372       // also don't need to register a destructor.
3373       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3374         DelayedCXXInitPosition.erase(D);
3375     }
3376   }
3377 
3378   llvm::Type* InitType = Init->getType();
3379   llvm::Constant *Entry =
3380       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3381 
3382   // Strip off a bitcast if we got one back.
3383   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3384     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3385            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3386            // All zero index gep.
3387            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3388     Entry = CE->getOperand(0);
3389   }
3390 
3391   // Entry is now either a Function or GlobalVariable.
3392   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3393 
3394   // We have a definition after a declaration with the wrong type.
3395   // We must make a new GlobalVariable* and update everything that used OldGV
3396   // (a declaration or tentative definition) with the new GlobalVariable*
3397   // (which will be a definition).
3398   //
3399   // This happens if there is a prototype for a global (e.g.
3400   // "extern int x[];") and then a definition of a different type (e.g.
3401   // "int x[10];"). This also happens when an initializer has a different type
3402   // from the type of the global (this happens with unions).
3403   if (!GV || GV->getType()->getElementType() != InitType ||
3404       GV->getType()->getAddressSpace() !=
3405           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3406 
3407     // Move the old entry aside so that we'll create a new one.
3408     Entry->setName(StringRef());
3409 
3410     // Make a new global with the correct type, this is now guaranteed to work.
3411     GV = cast<llvm::GlobalVariable>(
3412         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3413 
3414     // Replace all uses of the old global with the new global
3415     llvm::Constant *NewPtrForOldDecl =
3416         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3417     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3418 
3419     // Erase the old global, since it is no longer used.
3420     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3421   }
3422 
3423   MaybeHandleStaticInExternC(D, GV);
3424 
3425   if (D->hasAttr<AnnotateAttr>())
3426     AddGlobalAnnotations(D, GV);
3427 
3428   // Set the llvm linkage type as appropriate.
3429   llvm::GlobalValue::LinkageTypes Linkage =
3430       getLLVMLinkageVarDefinition(D, GV->isConstant());
3431 
3432   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3433   // the device. [...]"
3434   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3435   // __device__, declares a variable that: [...]
3436   // Is accessible from all the threads within the grid and from the host
3437   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3438   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3439   if (GV && LangOpts.CUDA) {
3440     if (LangOpts.CUDAIsDevice) {
3441       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3442         GV->setExternallyInitialized(true);
3443     } else {
3444       // Host-side shadows of external declarations of device-side
3445       // global variables become internal definitions. These have to
3446       // be internal in order to prevent name conflicts with global
3447       // host variables with the same name in a different TUs.
3448       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3449         Linkage = llvm::GlobalValue::InternalLinkage;
3450 
3451         // Shadow variables and their properties must be registered
3452         // with CUDA runtime.
3453         unsigned Flags = 0;
3454         if (!D->hasDefinition())
3455           Flags |= CGCUDARuntime::ExternDeviceVar;
3456         if (D->hasAttr<CUDAConstantAttr>())
3457           Flags |= CGCUDARuntime::ConstantDeviceVar;
3458         getCUDARuntime().registerDeviceVar(*GV, Flags);
3459       } else if (D->hasAttr<CUDASharedAttr>())
3460         // __shared__ variables are odd. Shadows do get created, but
3461         // they are not registered with the CUDA runtime, so they
3462         // can't really be used to access their device-side
3463         // counterparts. It's not clear yet whether it's nvcc's bug or
3464         // a feature, but we've got to do the same for compatibility.
3465         Linkage = llvm::GlobalValue::InternalLinkage;
3466     }
3467   }
3468 
3469   GV->setInitializer(Init);
3470   if (emitter) emitter->finalize(GV);
3471 
3472   // If it is safe to mark the global 'constant', do so now.
3473   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3474                   isTypeConstant(D->getType(), true));
3475 
3476   // If it is in a read-only section, mark it 'constant'.
3477   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3478     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3479     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3480       GV->setConstant(true);
3481   }
3482 
3483   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3484 
3485 
3486   // On Darwin, if the normal linkage of a C++ thread_local variable is
3487   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3488   // copies within a linkage unit; otherwise, the backing variable has
3489   // internal linkage and all accesses should just be calls to the
3490   // Itanium-specified entry point, which has the normal linkage of the
3491   // variable. This is to preserve the ability to change the implementation
3492   // behind the scenes.
3493   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3494       Context.getTargetInfo().getTriple().isOSDarwin() &&
3495       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3496       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3497     Linkage = llvm::GlobalValue::InternalLinkage;
3498 
3499   GV->setLinkage(Linkage);
3500   if (D->hasAttr<DLLImportAttr>())
3501     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3502   else if (D->hasAttr<DLLExportAttr>())
3503     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3504   else
3505     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3506 
3507   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3508     // common vars aren't constant even if declared const.
3509     GV->setConstant(false);
3510     // Tentative definition of global variables may be initialized with
3511     // non-zero null pointers. In this case they should have weak linkage
3512     // since common linkage must have zero initializer and must not have
3513     // explicit section therefore cannot have non-zero initial value.
3514     if (!GV->getInitializer()->isNullValue())
3515       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3516   }
3517 
3518   setNonAliasAttributes(D, GV);
3519 
3520   if (D->getTLSKind() && !GV->isThreadLocal()) {
3521     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3522       CXXThreadLocals.push_back(D);
3523     setTLSMode(GV, *D);
3524   }
3525 
3526   maybeSetTrivialComdat(*D, *GV);
3527 
3528   // Emit the initializer function if necessary.
3529   if (NeedsGlobalCtor || NeedsGlobalDtor)
3530     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3531 
3532   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3533 
3534   // Emit global variable debug information.
3535   if (CGDebugInfo *DI = getModuleDebugInfo())
3536     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3537       DI->EmitGlobalVariable(GV, D);
3538 }
3539 
3540 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3541                                       CodeGenModule &CGM, const VarDecl *D,
3542                                       bool NoCommon) {
3543   // Don't give variables common linkage if -fno-common was specified unless it
3544   // was overridden by a NoCommon attribute.
3545   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3546     return true;
3547 
3548   // C11 6.9.2/2:
3549   //   A declaration of an identifier for an object that has file scope without
3550   //   an initializer, and without a storage-class specifier or with the
3551   //   storage-class specifier static, constitutes a tentative definition.
3552   if (D->getInit() || D->hasExternalStorage())
3553     return true;
3554 
3555   // A variable cannot be both common and exist in a section.
3556   if (D->hasAttr<SectionAttr>())
3557     return true;
3558 
3559   // A variable cannot be both common and exist in a section.
3560   // We don't try to determine which is the right section in the front-end.
3561   // If no specialized section name is applicable, it will resort to default.
3562   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3563       D->hasAttr<PragmaClangDataSectionAttr>() ||
3564       D->hasAttr<PragmaClangRodataSectionAttr>())
3565     return true;
3566 
3567   // Thread local vars aren't considered common linkage.
3568   if (D->getTLSKind())
3569     return true;
3570 
3571   // Tentative definitions marked with WeakImportAttr are true definitions.
3572   if (D->hasAttr<WeakImportAttr>())
3573     return true;
3574 
3575   // A variable cannot be both common and exist in a comdat.
3576   if (shouldBeInCOMDAT(CGM, *D))
3577     return true;
3578 
3579   // Declarations with a required alignment do not have common linkage in MSVC
3580   // mode.
3581   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3582     if (D->hasAttr<AlignedAttr>())
3583       return true;
3584     QualType VarType = D->getType();
3585     if (Context.isAlignmentRequired(VarType))
3586       return true;
3587 
3588     if (const auto *RT = VarType->getAs<RecordType>()) {
3589       const RecordDecl *RD = RT->getDecl();
3590       for (const FieldDecl *FD : RD->fields()) {
3591         if (FD->isBitField())
3592           continue;
3593         if (FD->hasAttr<AlignedAttr>())
3594           return true;
3595         if (Context.isAlignmentRequired(FD->getType()))
3596           return true;
3597       }
3598     }
3599   }
3600 
3601   return false;
3602 }
3603 
3604 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3605     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3606   if (Linkage == GVA_Internal)
3607     return llvm::Function::InternalLinkage;
3608 
3609   if (D->hasAttr<WeakAttr>()) {
3610     if (IsConstantVariable)
3611       return llvm::GlobalVariable::WeakODRLinkage;
3612     else
3613       return llvm::GlobalVariable::WeakAnyLinkage;
3614   }
3615 
3616   // We are guaranteed to have a strong definition somewhere else,
3617   // so we can use available_externally linkage.
3618   if (Linkage == GVA_AvailableExternally)
3619     return llvm::GlobalValue::AvailableExternallyLinkage;
3620 
3621   // Note that Apple's kernel linker doesn't support symbol
3622   // coalescing, so we need to avoid linkonce and weak linkages there.
3623   // Normally, this means we just map to internal, but for explicit
3624   // instantiations we'll map to external.
3625 
3626   // In C++, the compiler has to emit a definition in every translation unit
3627   // that references the function.  We should use linkonce_odr because
3628   // a) if all references in this translation unit are optimized away, we
3629   // don't need to codegen it.  b) if the function persists, it needs to be
3630   // merged with other definitions. c) C++ has the ODR, so we know the
3631   // definition is dependable.
3632   if (Linkage == GVA_DiscardableODR)
3633     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3634                                             : llvm::Function::InternalLinkage;
3635 
3636   // An explicit instantiation of a template has weak linkage, since
3637   // explicit instantiations can occur in multiple translation units
3638   // and must all be equivalent. However, we are not allowed to
3639   // throw away these explicit instantiations.
3640   //
3641   // We don't currently support CUDA device code spread out across multiple TUs,
3642   // so say that CUDA templates are either external (for kernels) or internal.
3643   // This lets llvm perform aggressive inter-procedural optimizations.
3644   if (Linkage == GVA_StrongODR) {
3645     if (Context.getLangOpts().AppleKext)
3646       return llvm::Function::ExternalLinkage;
3647     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3648       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3649                                           : llvm::Function::InternalLinkage;
3650     return llvm::Function::WeakODRLinkage;
3651   }
3652 
3653   // C++ doesn't have tentative definitions and thus cannot have common
3654   // linkage.
3655   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3656       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3657                                  CodeGenOpts.NoCommon))
3658     return llvm::GlobalVariable::CommonLinkage;
3659 
3660   // selectany symbols are externally visible, so use weak instead of
3661   // linkonce.  MSVC optimizes away references to const selectany globals, so
3662   // all definitions should be the same and ODR linkage should be used.
3663   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3664   if (D->hasAttr<SelectAnyAttr>())
3665     return llvm::GlobalVariable::WeakODRLinkage;
3666 
3667   // Otherwise, we have strong external linkage.
3668   assert(Linkage == GVA_StrongExternal);
3669   return llvm::GlobalVariable::ExternalLinkage;
3670 }
3671 
3672 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3673     const VarDecl *VD, bool IsConstant) {
3674   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3675   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3676 }
3677 
3678 /// Replace the uses of a function that was declared with a non-proto type.
3679 /// We want to silently drop extra arguments from call sites
3680 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3681                                           llvm::Function *newFn) {
3682   // Fast path.
3683   if (old->use_empty()) return;
3684 
3685   llvm::Type *newRetTy = newFn->getReturnType();
3686   SmallVector<llvm::Value*, 4> newArgs;
3687   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3688 
3689   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3690          ui != ue; ) {
3691     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3692     llvm::User *user = use->getUser();
3693 
3694     // Recognize and replace uses of bitcasts.  Most calls to
3695     // unprototyped functions will use bitcasts.
3696     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3697       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3698         replaceUsesOfNonProtoConstant(bitcast, newFn);
3699       continue;
3700     }
3701 
3702     // Recognize calls to the function.
3703     llvm::CallSite callSite(user);
3704     if (!callSite) continue;
3705     if (!callSite.isCallee(&*use)) continue;
3706 
3707     // If the return types don't match exactly, then we can't
3708     // transform this call unless it's dead.
3709     if (callSite->getType() != newRetTy && !callSite->use_empty())
3710       continue;
3711 
3712     // Get the call site's attribute list.
3713     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3714     llvm::AttributeList oldAttrs = callSite.getAttributes();
3715 
3716     // If the function was passed too few arguments, don't transform.
3717     unsigned newNumArgs = newFn->arg_size();
3718     if (callSite.arg_size() < newNumArgs) continue;
3719 
3720     // If extra arguments were passed, we silently drop them.
3721     // If any of the types mismatch, we don't transform.
3722     unsigned argNo = 0;
3723     bool dontTransform = false;
3724     for (llvm::Argument &A : newFn->args()) {
3725       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3726         dontTransform = true;
3727         break;
3728       }
3729 
3730       // Add any parameter attributes.
3731       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3732       argNo++;
3733     }
3734     if (dontTransform)
3735       continue;
3736 
3737     // Okay, we can transform this.  Create the new call instruction and copy
3738     // over the required information.
3739     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3740 
3741     // Copy over any operand bundles.
3742     callSite.getOperandBundlesAsDefs(newBundles);
3743 
3744     llvm::CallSite newCall;
3745     if (callSite.isCall()) {
3746       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3747                                        callSite.getInstruction());
3748     } else {
3749       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3750       newCall = llvm::InvokeInst::Create(newFn,
3751                                          oldInvoke->getNormalDest(),
3752                                          oldInvoke->getUnwindDest(),
3753                                          newArgs, newBundles, "",
3754                                          callSite.getInstruction());
3755     }
3756     newArgs.clear(); // for the next iteration
3757 
3758     if (!newCall->getType()->isVoidTy())
3759       newCall->takeName(callSite.getInstruction());
3760     newCall.setAttributes(llvm::AttributeList::get(
3761         newFn->getContext(), oldAttrs.getFnAttributes(),
3762         oldAttrs.getRetAttributes(), newArgAttrs));
3763     newCall.setCallingConv(callSite.getCallingConv());
3764 
3765     // Finally, remove the old call, replacing any uses with the new one.
3766     if (!callSite->use_empty())
3767       callSite->replaceAllUsesWith(newCall.getInstruction());
3768 
3769     // Copy debug location attached to CI.
3770     if (callSite->getDebugLoc())
3771       newCall->setDebugLoc(callSite->getDebugLoc());
3772 
3773     callSite->eraseFromParent();
3774   }
3775 }
3776 
3777 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3778 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3779 /// existing call uses of the old function in the module, this adjusts them to
3780 /// call the new function directly.
3781 ///
3782 /// This is not just a cleanup: the always_inline pass requires direct calls to
3783 /// functions to be able to inline them.  If there is a bitcast in the way, it
3784 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3785 /// run at -O0.
3786 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3787                                                       llvm::Function *NewFn) {
3788   // If we're redefining a global as a function, don't transform it.
3789   if (!isa<llvm::Function>(Old)) return;
3790 
3791   replaceUsesOfNonProtoConstant(Old, NewFn);
3792 }
3793 
3794 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3795   auto DK = VD->isThisDeclarationADefinition();
3796   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3797     return;
3798 
3799   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3800   // If we have a definition, this might be a deferred decl. If the
3801   // instantiation is explicit, make sure we emit it at the end.
3802   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3803     GetAddrOfGlobalVar(VD);
3804 
3805   EmitTopLevelDecl(VD);
3806 }
3807 
3808 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3809                                                  llvm::GlobalValue *GV) {
3810   const auto *D = cast<FunctionDecl>(GD.getDecl());
3811 
3812   // Compute the function info and LLVM type.
3813   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3814   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3815 
3816   // Get or create the prototype for the function.
3817   if (!GV || (GV->getType()->getElementType() != Ty))
3818     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3819                                                    /*DontDefer=*/true,
3820                                                    ForDefinition));
3821 
3822   // Already emitted.
3823   if (!GV->isDeclaration())
3824     return;
3825 
3826   // We need to set linkage and visibility on the function before
3827   // generating code for it because various parts of IR generation
3828   // want to propagate this information down (e.g. to local static
3829   // declarations).
3830   auto *Fn = cast<llvm::Function>(GV);
3831   setFunctionLinkage(GD, Fn);
3832 
3833   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3834   setGVProperties(Fn, GD);
3835 
3836   MaybeHandleStaticInExternC(D, Fn);
3837 
3838 
3839   maybeSetTrivialComdat(*D, *Fn);
3840 
3841   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3842 
3843   setNonAliasAttributes(GD, Fn);
3844   SetLLVMFunctionAttributesForDefinition(D, Fn);
3845 
3846   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3847     AddGlobalCtor(Fn, CA->getPriority());
3848   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3849     AddGlobalDtor(Fn, DA->getPriority());
3850   if (D->hasAttr<AnnotateAttr>())
3851     AddGlobalAnnotations(D, Fn);
3852 
3853   if (D->isCPUSpecificMultiVersion()) {
3854     auto *Spec = D->getAttr<CPUSpecificAttr>();
3855     // If there is another specific version we need to emit, do so here.
3856     if (Spec->ActiveArgIndex + 1 < Spec->cpus_size()) {
3857       ++Spec->ActiveArgIndex;
3858       EmitGlobalFunctionDefinition(GD, nullptr);
3859     }
3860   }
3861 }
3862 
3863 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3864   const auto *D = cast<ValueDecl>(GD.getDecl());
3865   const AliasAttr *AA = D->getAttr<AliasAttr>();
3866   assert(AA && "Not an alias?");
3867 
3868   StringRef MangledName = getMangledName(GD);
3869 
3870   if (AA->getAliasee() == MangledName) {
3871     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3872     return;
3873   }
3874 
3875   // If there is a definition in the module, then it wins over the alias.
3876   // This is dubious, but allow it to be safe.  Just ignore the alias.
3877   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3878   if (Entry && !Entry->isDeclaration())
3879     return;
3880 
3881   Aliases.push_back(GD);
3882 
3883   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3884 
3885   // Create a reference to the named value.  This ensures that it is emitted
3886   // if a deferred decl.
3887   llvm::Constant *Aliasee;
3888   if (isa<llvm::FunctionType>(DeclTy))
3889     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3890                                       /*ForVTable=*/false);
3891   else
3892     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3893                                     llvm::PointerType::getUnqual(DeclTy),
3894                                     /*D=*/nullptr);
3895 
3896   // Create the new alias itself, but don't set a name yet.
3897   auto *GA = llvm::GlobalAlias::create(
3898       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3899 
3900   if (Entry) {
3901     if (GA->getAliasee() == Entry) {
3902       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3903       return;
3904     }
3905 
3906     assert(Entry->isDeclaration());
3907 
3908     // If there is a declaration in the module, then we had an extern followed
3909     // by the alias, as in:
3910     //   extern int test6();
3911     //   ...
3912     //   int test6() __attribute__((alias("test7")));
3913     //
3914     // Remove it and replace uses of it with the alias.
3915     GA->takeName(Entry);
3916 
3917     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3918                                                           Entry->getType()));
3919     Entry->eraseFromParent();
3920   } else {
3921     GA->setName(MangledName);
3922   }
3923 
3924   // Set attributes which are particular to an alias; this is a
3925   // specialization of the attributes which may be set on a global
3926   // variable/function.
3927   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3928       D->isWeakImported()) {
3929     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3930   }
3931 
3932   if (const auto *VD = dyn_cast<VarDecl>(D))
3933     if (VD->getTLSKind())
3934       setTLSMode(GA, *VD);
3935 
3936   SetCommonAttributes(GD, GA);
3937 }
3938 
3939 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3940   const auto *D = cast<ValueDecl>(GD.getDecl());
3941   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3942   assert(IFA && "Not an ifunc?");
3943 
3944   StringRef MangledName = getMangledName(GD);
3945 
3946   if (IFA->getResolver() == MangledName) {
3947     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3948     return;
3949   }
3950 
3951   // Report an error if some definition overrides ifunc.
3952   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3953   if (Entry && !Entry->isDeclaration()) {
3954     GlobalDecl OtherGD;
3955     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3956         DiagnosedConflictingDefinitions.insert(GD).second) {
3957       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
3958           << MangledName;
3959       Diags.Report(OtherGD.getDecl()->getLocation(),
3960                    diag::note_previous_definition);
3961     }
3962     return;
3963   }
3964 
3965   Aliases.push_back(GD);
3966 
3967   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3968   llvm::Constant *Resolver =
3969       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3970                               /*ForVTable=*/false);
3971   llvm::GlobalIFunc *GIF =
3972       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3973                                 "", Resolver, &getModule());
3974   if (Entry) {
3975     if (GIF->getResolver() == Entry) {
3976       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3977       return;
3978     }
3979     assert(Entry->isDeclaration());
3980 
3981     // If there is a declaration in the module, then we had an extern followed
3982     // by the ifunc, as in:
3983     //   extern int test();
3984     //   ...
3985     //   int test() __attribute__((ifunc("resolver")));
3986     //
3987     // Remove it and replace uses of it with the ifunc.
3988     GIF->takeName(Entry);
3989 
3990     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3991                                                           Entry->getType()));
3992     Entry->eraseFromParent();
3993   } else
3994     GIF->setName(MangledName);
3995 
3996   SetCommonAttributes(GD, GIF);
3997 }
3998 
3999 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4000                                             ArrayRef<llvm::Type*> Tys) {
4001   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4002                                          Tys);
4003 }
4004 
4005 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4006 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4007                          const StringLiteral *Literal, bool TargetIsLSB,
4008                          bool &IsUTF16, unsigned &StringLength) {
4009   StringRef String = Literal->getString();
4010   unsigned NumBytes = String.size();
4011 
4012   // Check for simple case.
4013   if (!Literal->containsNonAsciiOrNull()) {
4014     StringLength = NumBytes;
4015     return *Map.insert(std::make_pair(String, nullptr)).first;
4016   }
4017 
4018   // Otherwise, convert the UTF8 literals into a string of shorts.
4019   IsUTF16 = true;
4020 
4021   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4022   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4023   llvm::UTF16 *ToPtr = &ToBuf[0];
4024 
4025   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4026                                  ToPtr + NumBytes, llvm::strictConversion);
4027 
4028   // ConvertUTF8toUTF16 returns the length in ToPtr.
4029   StringLength = ToPtr - &ToBuf[0];
4030 
4031   // Add an explicit null.
4032   *ToPtr = 0;
4033   return *Map.insert(std::make_pair(
4034                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4035                                    (StringLength + 1) * 2),
4036                          nullptr)).first;
4037 }
4038 
4039 ConstantAddress
4040 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4041   unsigned StringLength = 0;
4042   bool isUTF16 = false;
4043   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4044       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4045                                getDataLayout().isLittleEndian(), isUTF16,
4046                                StringLength);
4047 
4048   if (auto *C = Entry.second)
4049     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4050 
4051   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4052   llvm::Constant *Zeros[] = { Zero, Zero };
4053 
4054   // If we don't already have it, get __CFConstantStringClassReference.
4055   if (!CFConstantStringClassRef) {
4056     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4057     Ty = llvm::ArrayType::get(Ty, 0);
4058     llvm::GlobalValue *GV = cast<llvm::GlobalValue>(
4059         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"));
4060 
4061     if (getTriple().isOSBinFormatCOFF()) {
4062       IdentifierInfo &II = getContext().Idents.get(GV->getName());
4063       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
4064       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4065 
4066       const VarDecl *VD = nullptr;
4067       for (const auto &Result : DC->lookup(&II))
4068         if ((VD = dyn_cast<VarDecl>(Result)))
4069           break;
4070 
4071       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
4072         GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4073         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4074       } else {
4075         GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4076         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4077       }
4078     }
4079     setDSOLocal(GV);
4080 
4081     // Decay array -> ptr
4082     CFConstantStringClassRef =
4083         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
4084   }
4085 
4086   QualType CFTy = getContext().getCFConstantStringType();
4087 
4088   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4089 
4090   ConstantInitBuilder Builder(*this);
4091   auto Fields = Builder.beginStruct(STy);
4092 
4093   // Class pointer.
4094   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4095 
4096   // Flags.
4097   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4098 
4099   // String pointer.
4100   llvm::Constant *C = nullptr;
4101   if (isUTF16) {
4102     auto Arr = llvm::makeArrayRef(
4103         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4104         Entry.first().size() / 2);
4105     C = llvm::ConstantDataArray::get(VMContext, Arr);
4106   } else {
4107     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4108   }
4109 
4110   // Note: -fwritable-strings doesn't make the backing store strings of
4111   // CFStrings writable. (See <rdar://problem/10657500>)
4112   auto *GV =
4113       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4114                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4115   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4116   // Don't enforce the target's minimum global alignment, since the only use
4117   // of the string is via this class initializer.
4118   CharUnits Align = isUTF16
4119                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
4120                         : getContext().getTypeAlignInChars(getContext().CharTy);
4121   GV->setAlignment(Align.getQuantity());
4122 
4123   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4124   // Without it LLVM can merge the string with a non unnamed_addr one during
4125   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4126   if (getTriple().isOSBinFormatMachO())
4127     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4128                            : "__TEXT,__cstring,cstring_literals");
4129 
4130   // String.
4131   llvm::Constant *Str =
4132       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4133 
4134   if (isUTF16)
4135     // Cast the UTF16 string to the correct type.
4136     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4137   Fields.add(Str);
4138 
4139   // String length.
4140   auto Ty = getTypes().ConvertType(getContext().LongTy);
4141   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
4142 
4143   CharUnits Alignment = getPointerAlign();
4144 
4145   // The struct.
4146   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4147                                     /*isConstant=*/false,
4148                                     llvm::GlobalVariable::PrivateLinkage);
4149   switch (getTriple().getObjectFormat()) {
4150   case llvm::Triple::UnknownObjectFormat:
4151     llvm_unreachable("unknown file format");
4152   case llvm::Triple::COFF:
4153   case llvm::Triple::ELF:
4154   case llvm::Triple::Wasm:
4155     GV->setSection("cfstring");
4156     break;
4157   case llvm::Triple::MachO:
4158     GV->setSection("__DATA,__cfstring");
4159     break;
4160   }
4161   Entry.second = GV;
4162 
4163   return ConstantAddress(GV, Alignment);
4164 }
4165 
4166 bool CodeGenModule::getExpressionLocationsEnabled() const {
4167   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4168 }
4169 
4170 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4171   if (ObjCFastEnumerationStateType.isNull()) {
4172     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4173     D->startDefinition();
4174 
4175     QualType FieldTypes[] = {
4176       Context.UnsignedLongTy,
4177       Context.getPointerType(Context.getObjCIdType()),
4178       Context.getPointerType(Context.UnsignedLongTy),
4179       Context.getConstantArrayType(Context.UnsignedLongTy,
4180                            llvm::APInt(32, 5), ArrayType::Normal, 0)
4181     };
4182 
4183     for (size_t i = 0; i < 4; ++i) {
4184       FieldDecl *Field = FieldDecl::Create(Context,
4185                                            D,
4186                                            SourceLocation(),
4187                                            SourceLocation(), nullptr,
4188                                            FieldTypes[i], /*TInfo=*/nullptr,
4189                                            /*BitWidth=*/nullptr,
4190                                            /*Mutable=*/false,
4191                                            ICIS_NoInit);
4192       Field->setAccess(AS_public);
4193       D->addDecl(Field);
4194     }
4195 
4196     D->completeDefinition();
4197     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4198   }
4199 
4200   return ObjCFastEnumerationStateType;
4201 }
4202 
4203 llvm::Constant *
4204 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4205   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4206 
4207   // Don't emit it as the address of the string, emit the string data itself
4208   // as an inline array.
4209   if (E->getCharByteWidth() == 1) {
4210     SmallString<64> Str(E->getString());
4211 
4212     // Resize the string to the right size, which is indicated by its type.
4213     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4214     Str.resize(CAT->getSize().getZExtValue());
4215     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4216   }
4217 
4218   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4219   llvm::Type *ElemTy = AType->getElementType();
4220   unsigned NumElements = AType->getNumElements();
4221 
4222   // Wide strings have either 2-byte or 4-byte elements.
4223   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4224     SmallVector<uint16_t, 32> Elements;
4225     Elements.reserve(NumElements);
4226 
4227     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4228       Elements.push_back(E->getCodeUnit(i));
4229     Elements.resize(NumElements);
4230     return llvm::ConstantDataArray::get(VMContext, Elements);
4231   }
4232 
4233   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4234   SmallVector<uint32_t, 32> Elements;
4235   Elements.reserve(NumElements);
4236 
4237   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4238     Elements.push_back(E->getCodeUnit(i));
4239   Elements.resize(NumElements);
4240   return llvm::ConstantDataArray::get(VMContext, Elements);
4241 }
4242 
4243 static llvm::GlobalVariable *
4244 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4245                       CodeGenModule &CGM, StringRef GlobalName,
4246                       CharUnits Alignment) {
4247   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4248       CGM.getStringLiteralAddressSpace());
4249 
4250   llvm::Module &M = CGM.getModule();
4251   // Create a global variable for this string
4252   auto *GV = new llvm::GlobalVariable(
4253       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4254       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4255   GV->setAlignment(Alignment.getQuantity());
4256   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4257   if (GV->isWeakForLinker()) {
4258     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4259     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4260   }
4261   CGM.setDSOLocal(GV);
4262 
4263   return GV;
4264 }
4265 
4266 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4267 /// constant array for the given string literal.
4268 ConstantAddress
4269 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4270                                                   StringRef Name) {
4271   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4272 
4273   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4274   llvm::GlobalVariable **Entry = nullptr;
4275   if (!LangOpts.WritableStrings) {
4276     Entry = &ConstantStringMap[C];
4277     if (auto GV = *Entry) {
4278       if (Alignment.getQuantity() > GV->getAlignment())
4279         GV->setAlignment(Alignment.getQuantity());
4280       return ConstantAddress(GV, Alignment);
4281     }
4282   }
4283 
4284   SmallString<256> MangledNameBuffer;
4285   StringRef GlobalVariableName;
4286   llvm::GlobalValue::LinkageTypes LT;
4287 
4288   // Mangle the string literal if the ABI allows for it.  However, we cannot
4289   // do this if  we are compiling with ASan or -fwritable-strings because they
4290   // rely on strings having normal linkage.
4291   if (!LangOpts.WritableStrings &&
4292       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
4293       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
4294     llvm::raw_svector_ostream Out(MangledNameBuffer);
4295     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4296 
4297     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4298     GlobalVariableName = MangledNameBuffer;
4299   } else {
4300     LT = llvm::GlobalValue::PrivateLinkage;
4301     GlobalVariableName = Name;
4302   }
4303 
4304   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4305   if (Entry)
4306     *Entry = GV;
4307 
4308   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4309                                   QualType());
4310 
4311   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4312                          Alignment);
4313 }
4314 
4315 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4316 /// array for the given ObjCEncodeExpr node.
4317 ConstantAddress
4318 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4319   std::string Str;
4320   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4321 
4322   return GetAddrOfConstantCString(Str);
4323 }
4324 
4325 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4326 /// the literal and a terminating '\0' character.
4327 /// The result has pointer to array type.
4328 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4329     const std::string &Str, const char *GlobalName) {
4330   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4331   CharUnits Alignment =
4332     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4333 
4334   llvm::Constant *C =
4335       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4336 
4337   // Don't share any string literals if strings aren't constant.
4338   llvm::GlobalVariable **Entry = nullptr;
4339   if (!LangOpts.WritableStrings) {
4340     Entry = &ConstantStringMap[C];
4341     if (auto GV = *Entry) {
4342       if (Alignment.getQuantity() > GV->getAlignment())
4343         GV->setAlignment(Alignment.getQuantity());
4344       return ConstantAddress(GV, Alignment);
4345     }
4346   }
4347 
4348   // Get the default prefix if a name wasn't specified.
4349   if (!GlobalName)
4350     GlobalName = ".str";
4351   // Create a global variable for this.
4352   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4353                                   GlobalName, Alignment);
4354   if (Entry)
4355     *Entry = GV;
4356 
4357   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4358                          Alignment);
4359 }
4360 
4361 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4362     const MaterializeTemporaryExpr *E, const Expr *Init) {
4363   assert((E->getStorageDuration() == SD_Static ||
4364           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4365   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4366 
4367   // If we're not materializing a subobject of the temporary, keep the
4368   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4369   QualType MaterializedType = Init->getType();
4370   if (Init == E->GetTemporaryExpr())
4371     MaterializedType = E->getType();
4372 
4373   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4374 
4375   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4376     return ConstantAddress(Slot, Align);
4377 
4378   // FIXME: If an externally-visible declaration extends multiple temporaries,
4379   // we need to give each temporary the same name in every translation unit (and
4380   // we also need to make the temporaries externally-visible).
4381   SmallString<256> Name;
4382   llvm::raw_svector_ostream Out(Name);
4383   getCXXABI().getMangleContext().mangleReferenceTemporary(
4384       VD, E->getManglingNumber(), Out);
4385 
4386   APValue *Value = nullptr;
4387   if (E->getStorageDuration() == SD_Static) {
4388     // We might have a cached constant initializer for this temporary. Note
4389     // that this might have a different value from the value computed by
4390     // evaluating the initializer if the surrounding constant expression
4391     // modifies the temporary.
4392     Value = getContext().getMaterializedTemporaryValue(E, false);
4393     if (Value && Value->isUninit())
4394       Value = nullptr;
4395   }
4396 
4397   // Try evaluating it now, it might have a constant initializer.
4398   Expr::EvalResult EvalResult;
4399   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4400       !EvalResult.hasSideEffects())
4401     Value = &EvalResult.Val;
4402 
4403   LangAS AddrSpace =
4404       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4405 
4406   Optional<ConstantEmitter> emitter;
4407   llvm::Constant *InitialValue = nullptr;
4408   bool Constant = false;
4409   llvm::Type *Type;
4410   if (Value) {
4411     // The temporary has a constant initializer, use it.
4412     emitter.emplace(*this);
4413     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4414                                                MaterializedType);
4415     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4416     Type = InitialValue->getType();
4417   } else {
4418     // No initializer, the initialization will be provided when we
4419     // initialize the declaration which performed lifetime extension.
4420     Type = getTypes().ConvertTypeForMem(MaterializedType);
4421   }
4422 
4423   // Create a global variable for this lifetime-extended temporary.
4424   llvm::GlobalValue::LinkageTypes Linkage =
4425       getLLVMLinkageVarDefinition(VD, Constant);
4426   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4427     const VarDecl *InitVD;
4428     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4429         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4430       // Temporaries defined inside a class get linkonce_odr linkage because the
4431       // class can be defined in multiple translation units.
4432       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4433     } else {
4434       // There is no need for this temporary to have external linkage if the
4435       // VarDecl has external linkage.
4436       Linkage = llvm::GlobalVariable::InternalLinkage;
4437     }
4438   }
4439   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4440   auto *GV = new llvm::GlobalVariable(
4441       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4442       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4443   if (emitter) emitter->finalize(GV);
4444   setGVProperties(GV, VD);
4445   GV->setAlignment(Align.getQuantity());
4446   if (supportsCOMDAT() && GV->isWeakForLinker())
4447     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4448   if (VD->getTLSKind())
4449     setTLSMode(GV, *VD);
4450   llvm::Constant *CV = GV;
4451   if (AddrSpace != LangAS::Default)
4452     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4453         *this, GV, AddrSpace, LangAS::Default,
4454         Type->getPointerTo(
4455             getContext().getTargetAddressSpace(LangAS::Default)));
4456   MaterializedGlobalTemporaryMap[E] = CV;
4457   return ConstantAddress(CV, Align);
4458 }
4459 
4460 /// EmitObjCPropertyImplementations - Emit information for synthesized
4461 /// properties for an implementation.
4462 void CodeGenModule::EmitObjCPropertyImplementations(const
4463                                                     ObjCImplementationDecl *D) {
4464   for (const auto *PID : D->property_impls()) {
4465     // Dynamic is just for type-checking.
4466     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4467       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4468 
4469       // Determine which methods need to be implemented, some may have
4470       // been overridden. Note that ::isPropertyAccessor is not the method
4471       // we want, that just indicates if the decl came from a
4472       // property. What we want to know is if the method is defined in
4473       // this implementation.
4474       if (!D->getInstanceMethod(PD->getGetterName()))
4475         CodeGenFunction(*this).GenerateObjCGetter(
4476                                  const_cast<ObjCImplementationDecl *>(D), PID);
4477       if (!PD->isReadOnly() &&
4478           !D->getInstanceMethod(PD->getSetterName()))
4479         CodeGenFunction(*this).GenerateObjCSetter(
4480                                  const_cast<ObjCImplementationDecl *>(D), PID);
4481     }
4482   }
4483 }
4484 
4485 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4486   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4487   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4488        ivar; ivar = ivar->getNextIvar())
4489     if (ivar->getType().isDestructedType())
4490       return true;
4491 
4492   return false;
4493 }
4494 
4495 static bool AllTrivialInitializers(CodeGenModule &CGM,
4496                                    ObjCImplementationDecl *D) {
4497   CodeGenFunction CGF(CGM);
4498   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4499        E = D->init_end(); B != E; ++B) {
4500     CXXCtorInitializer *CtorInitExp = *B;
4501     Expr *Init = CtorInitExp->getInit();
4502     if (!CGF.isTrivialInitializer(Init))
4503       return false;
4504   }
4505   return true;
4506 }
4507 
4508 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4509 /// for an implementation.
4510 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4511   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4512   if (needsDestructMethod(D)) {
4513     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4514     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4515     ObjCMethodDecl *DTORMethod =
4516       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4517                              cxxSelector, getContext().VoidTy, nullptr, D,
4518                              /*isInstance=*/true, /*isVariadic=*/false,
4519                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4520                              /*isDefined=*/false, ObjCMethodDecl::Required);
4521     D->addInstanceMethod(DTORMethod);
4522     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4523     D->setHasDestructors(true);
4524   }
4525 
4526   // If the implementation doesn't have any ivar initializers, we don't need
4527   // a .cxx_construct.
4528   if (D->getNumIvarInitializers() == 0 ||
4529       AllTrivialInitializers(*this, D))
4530     return;
4531 
4532   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4533   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4534   // The constructor returns 'self'.
4535   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4536                                                 D->getLocation(),
4537                                                 D->getLocation(),
4538                                                 cxxSelector,
4539                                                 getContext().getObjCIdType(),
4540                                                 nullptr, D, /*isInstance=*/true,
4541                                                 /*isVariadic=*/false,
4542                                                 /*isPropertyAccessor=*/true,
4543                                                 /*isImplicitlyDeclared=*/true,
4544                                                 /*isDefined=*/false,
4545                                                 ObjCMethodDecl::Required);
4546   D->addInstanceMethod(CTORMethod);
4547   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4548   D->setHasNonZeroConstructors(true);
4549 }
4550 
4551 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4552 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4553   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4554       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4555     ErrorUnsupported(LSD, "linkage spec");
4556     return;
4557   }
4558 
4559   EmitDeclContext(LSD);
4560 }
4561 
4562 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4563   for (auto *I : DC->decls()) {
4564     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4565     // are themselves considered "top-level", so EmitTopLevelDecl on an
4566     // ObjCImplDecl does not recursively visit them. We need to do that in
4567     // case they're nested inside another construct (LinkageSpecDecl /
4568     // ExportDecl) that does stop them from being considered "top-level".
4569     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4570       for (auto *M : OID->methods())
4571         EmitTopLevelDecl(M);
4572     }
4573 
4574     EmitTopLevelDecl(I);
4575   }
4576 }
4577 
4578 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4579 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4580   // Ignore dependent declarations.
4581   if (D->isTemplated())
4582     return;
4583 
4584   switch (D->getKind()) {
4585   case Decl::CXXConversion:
4586   case Decl::CXXMethod:
4587   case Decl::Function:
4588     EmitGlobal(cast<FunctionDecl>(D));
4589     // Always provide some coverage mapping
4590     // even for the functions that aren't emitted.
4591     AddDeferredUnusedCoverageMapping(D);
4592     break;
4593 
4594   case Decl::CXXDeductionGuide:
4595     // Function-like, but does not result in code emission.
4596     break;
4597 
4598   case Decl::Var:
4599   case Decl::Decomposition:
4600   case Decl::VarTemplateSpecialization:
4601     EmitGlobal(cast<VarDecl>(D));
4602     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4603       for (auto *B : DD->bindings())
4604         if (auto *HD = B->getHoldingVar())
4605           EmitGlobal(HD);
4606     break;
4607 
4608   // Indirect fields from global anonymous structs and unions can be
4609   // ignored; only the actual variable requires IR gen support.
4610   case Decl::IndirectField:
4611     break;
4612 
4613   // C++ Decls
4614   case Decl::Namespace:
4615     EmitDeclContext(cast<NamespaceDecl>(D));
4616     break;
4617   case Decl::ClassTemplateSpecialization: {
4618     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4619     if (DebugInfo &&
4620         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4621         Spec->hasDefinition())
4622       DebugInfo->completeTemplateDefinition(*Spec);
4623   } LLVM_FALLTHROUGH;
4624   case Decl::CXXRecord:
4625     if (DebugInfo) {
4626       if (auto *ES = D->getASTContext().getExternalSource())
4627         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4628           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4629     }
4630     // Emit any static data members, they may be definitions.
4631     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4632       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4633         EmitTopLevelDecl(I);
4634     break;
4635     // No code generation needed.
4636   case Decl::UsingShadow:
4637   case Decl::ClassTemplate:
4638   case Decl::VarTemplate:
4639   case Decl::VarTemplatePartialSpecialization:
4640   case Decl::FunctionTemplate:
4641   case Decl::TypeAliasTemplate:
4642   case Decl::Block:
4643   case Decl::Empty:
4644     break;
4645   case Decl::Using:          // using X; [C++]
4646     if (CGDebugInfo *DI = getModuleDebugInfo())
4647         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4648     return;
4649   case Decl::NamespaceAlias:
4650     if (CGDebugInfo *DI = getModuleDebugInfo())
4651         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4652     return;
4653   case Decl::UsingDirective: // using namespace X; [C++]
4654     if (CGDebugInfo *DI = getModuleDebugInfo())
4655       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4656     return;
4657   case Decl::CXXConstructor:
4658     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4659     break;
4660   case Decl::CXXDestructor:
4661     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4662     break;
4663 
4664   case Decl::StaticAssert:
4665     // Nothing to do.
4666     break;
4667 
4668   // Objective-C Decls
4669 
4670   // Forward declarations, no (immediate) code generation.
4671   case Decl::ObjCInterface:
4672   case Decl::ObjCCategory:
4673     break;
4674 
4675   case Decl::ObjCProtocol: {
4676     auto *Proto = cast<ObjCProtocolDecl>(D);
4677     if (Proto->isThisDeclarationADefinition())
4678       ObjCRuntime->GenerateProtocol(Proto);
4679     break;
4680   }
4681 
4682   case Decl::ObjCCategoryImpl:
4683     // Categories have properties but don't support synthesize so we
4684     // can ignore them here.
4685     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4686     break;
4687 
4688   case Decl::ObjCImplementation: {
4689     auto *OMD = cast<ObjCImplementationDecl>(D);
4690     EmitObjCPropertyImplementations(OMD);
4691     EmitObjCIvarInitializations(OMD);
4692     ObjCRuntime->GenerateClass(OMD);
4693     // Emit global variable debug information.
4694     if (CGDebugInfo *DI = getModuleDebugInfo())
4695       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4696         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4697             OMD->getClassInterface()), OMD->getLocation());
4698     break;
4699   }
4700   case Decl::ObjCMethod: {
4701     auto *OMD = cast<ObjCMethodDecl>(D);
4702     // If this is not a prototype, emit the body.
4703     if (OMD->getBody())
4704       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4705     break;
4706   }
4707   case Decl::ObjCCompatibleAlias:
4708     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4709     break;
4710 
4711   case Decl::PragmaComment: {
4712     const auto *PCD = cast<PragmaCommentDecl>(D);
4713     switch (PCD->getCommentKind()) {
4714     case PCK_Unknown:
4715       llvm_unreachable("unexpected pragma comment kind");
4716     case PCK_Linker:
4717       AppendLinkerOptions(PCD->getArg());
4718       break;
4719     case PCK_Lib:
4720       if (getTarget().getTriple().isOSBinFormatELF() &&
4721           !getTarget().getTriple().isPS4())
4722         AddELFLibDirective(PCD->getArg());
4723       else
4724         AddDependentLib(PCD->getArg());
4725       break;
4726     case PCK_Compiler:
4727     case PCK_ExeStr:
4728     case PCK_User:
4729       break; // We ignore all of these.
4730     }
4731     break;
4732   }
4733 
4734   case Decl::PragmaDetectMismatch: {
4735     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4736     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4737     break;
4738   }
4739 
4740   case Decl::LinkageSpec:
4741     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4742     break;
4743 
4744   case Decl::FileScopeAsm: {
4745     // File-scope asm is ignored during device-side CUDA compilation.
4746     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4747       break;
4748     // File-scope asm is ignored during device-side OpenMP compilation.
4749     if (LangOpts.OpenMPIsDevice)
4750       break;
4751     auto *AD = cast<FileScopeAsmDecl>(D);
4752     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4753     break;
4754   }
4755 
4756   case Decl::Import: {
4757     auto *Import = cast<ImportDecl>(D);
4758 
4759     // If we've already imported this module, we're done.
4760     if (!ImportedModules.insert(Import->getImportedModule()))
4761       break;
4762 
4763     // Emit debug information for direct imports.
4764     if (!Import->getImportedOwningModule()) {
4765       if (CGDebugInfo *DI = getModuleDebugInfo())
4766         DI->EmitImportDecl(*Import);
4767     }
4768 
4769     // Find all of the submodules and emit the module initializers.
4770     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4771     SmallVector<clang::Module *, 16> Stack;
4772     Visited.insert(Import->getImportedModule());
4773     Stack.push_back(Import->getImportedModule());
4774 
4775     while (!Stack.empty()) {
4776       clang::Module *Mod = Stack.pop_back_val();
4777       if (!EmittedModuleInitializers.insert(Mod).second)
4778         continue;
4779 
4780       for (auto *D : Context.getModuleInitializers(Mod))
4781         EmitTopLevelDecl(D);
4782 
4783       // Visit the submodules of this module.
4784       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4785                                              SubEnd = Mod->submodule_end();
4786            Sub != SubEnd; ++Sub) {
4787         // Skip explicit children; they need to be explicitly imported to emit
4788         // the initializers.
4789         if ((*Sub)->IsExplicit)
4790           continue;
4791 
4792         if (Visited.insert(*Sub).second)
4793           Stack.push_back(*Sub);
4794       }
4795     }
4796     break;
4797   }
4798 
4799   case Decl::Export:
4800     EmitDeclContext(cast<ExportDecl>(D));
4801     break;
4802 
4803   case Decl::OMPThreadPrivate:
4804     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4805     break;
4806 
4807   case Decl::OMPDeclareReduction:
4808     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4809     break;
4810 
4811   default:
4812     // Make sure we handled everything we should, every other kind is a
4813     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4814     // function. Need to recode Decl::Kind to do that easily.
4815     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4816     break;
4817   }
4818 }
4819 
4820 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4821   // Do we need to generate coverage mapping?
4822   if (!CodeGenOpts.CoverageMapping)
4823     return;
4824   switch (D->getKind()) {
4825   case Decl::CXXConversion:
4826   case Decl::CXXMethod:
4827   case Decl::Function:
4828   case Decl::ObjCMethod:
4829   case Decl::CXXConstructor:
4830   case Decl::CXXDestructor: {
4831     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4832       return;
4833     SourceManager &SM = getContext().getSourceManager();
4834     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
4835       return;
4836     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4837     if (I == DeferredEmptyCoverageMappingDecls.end())
4838       DeferredEmptyCoverageMappingDecls[D] = true;
4839     break;
4840   }
4841   default:
4842     break;
4843   };
4844 }
4845 
4846 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4847   // Do we need to generate coverage mapping?
4848   if (!CodeGenOpts.CoverageMapping)
4849     return;
4850   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4851     if (Fn->isTemplateInstantiation())
4852       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4853   }
4854   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4855   if (I == DeferredEmptyCoverageMappingDecls.end())
4856     DeferredEmptyCoverageMappingDecls[D] = false;
4857   else
4858     I->second = false;
4859 }
4860 
4861 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4862   // We call takeVector() here to avoid use-after-free.
4863   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4864   // we deserialize function bodies to emit coverage info for them, and that
4865   // deserializes more declarations. How should we handle that case?
4866   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4867     if (!Entry.second)
4868       continue;
4869     const Decl *D = Entry.first;
4870     switch (D->getKind()) {
4871     case Decl::CXXConversion:
4872     case Decl::CXXMethod:
4873     case Decl::Function:
4874     case Decl::ObjCMethod: {
4875       CodeGenPGO PGO(*this);
4876       GlobalDecl GD(cast<FunctionDecl>(D));
4877       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4878                                   getFunctionLinkage(GD));
4879       break;
4880     }
4881     case Decl::CXXConstructor: {
4882       CodeGenPGO PGO(*this);
4883       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4884       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4885                                   getFunctionLinkage(GD));
4886       break;
4887     }
4888     case Decl::CXXDestructor: {
4889       CodeGenPGO PGO(*this);
4890       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4891       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4892                                   getFunctionLinkage(GD));
4893       break;
4894     }
4895     default:
4896       break;
4897     };
4898   }
4899 }
4900 
4901 /// Turns the given pointer into a constant.
4902 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4903                                           const void *Ptr) {
4904   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4905   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4906   return llvm::ConstantInt::get(i64, PtrInt);
4907 }
4908 
4909 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4910                                    llvm::NamedMDNode *&GlobalMetadata,
4911                                    GlobalDecl D,
4912                                    llvm::GlobalValue *Addr) {
4913   if (!GlobalMetadata)
4914     GlobalMetadata =
4915       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4916 
4917   // TODO: should we report variant information for ctors/dtors?
4918   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4919                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4920                                CGM.getLLVMContext(), D.getDecl()))};
4921   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4922 }
4923 
4924 /// For each function which is declared within an extern "C" region and marked
4925 /// as 'used', but has internal linkage, create an alias from the unmangled
4926 /// name to the mangled name if possible. People expect to be able to refer
4927 /// to such functions with an unmangled name from inline assembly within the
4928 /// same translation unit.
4929 void CodeGenModule::EmitStaticExternCAliases() {
4930   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
4931     return;
4932   for (auto &I : StaticExternCValues) {
4933     IdentifierInfo *Name = I.first;
4934     llvm::GlobalValue *Val = I.second;
4935     if (Val && !getModule().getNamedValue(Name->getName()))
4936       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4937   }
4938 }
4939 
4940 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4941                                              GlobalDecl &Result) const {
4942   auto Res = Manglings.find(MangledName);
4943   if (Res == Manglings.end())
4944     return false;
4945   Result = Res->getValue();
4946   return true;
4947 }
4948 
4949 /// Emits metadata nodes associating all the global values in the
4950 /// current module with the Decls they came from.  This is useful for
4951 /// projects using IR gen as a subroutine.
4952 ///
4953 /// Since there's currently no way to associate an MDNode directly
4954 /// with an llvm::GlobalValue, we create a global named metadata
4955 /// with the name 'clang.global.decl.ptrs'.
4956 void CodeGenModule::EmitDeclMetadata() {
4957   llvm::NamedMDNode *GlobalMetadata = nullptr;
4958 
4959   for (auto &I : MangledDeclNames) {
4960     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4961     // Some mangled names don't necessarily have an associated GlobalValue
4962     // in this module, e.g. if we mangled it for DebugInfo.
4963     if (Addr)
4964       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4965   }
4966 }
4967 
4968 /// Emits metadata nodes for all the local variables in the current
4969 /// function.
4970 void CodeGenFunction::EmitDeclMetadata() {
4971   if (LocalDeclMap.empty()) return;
4972 
4973   llvm::LLVMContext &Context = getLLVMContext();
4974 
4975   // Find the unique metadata ID for this name.
4976   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4977 
4978   llvm::NamedMDNode *GlobalMetadata = nullptr;
4979 
4980   for (auto &I : LocalDeclMap) {
4981     const Decl *D = I.first;
4982     llvm::Value *Addr = I.second.getPointer();
4983     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4984       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4985       Alloca->setMetadata(
4986           DeclPtrKind, llvm::MDNode::get(
4987                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4988     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4989       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4990       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4991     }
4992   }
4993 }
4994 
4995 void CodeGenModule::EmitVersionIdentMetadata() {
4996   llvm::NamedMDNode *IdentMetadata =
4997     TheModule.getOrInsertNamedMetadata("llvm.ident");
4998   std::string Version = getClangFullVersion();
4999   llvm::LLVMContext &Ctx = TheModule.getContext();
5000 
5001   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5002   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5003 }
5004 
5005 void CodeGenModule::EmitTargetMetadata() {
5006   // Warning, new MangledDeclNames may be appended within this loop.
5007   // We rely on MapVector insertions adding new elements to the end
5008   // of the container.
5009   // FIXME: Move this loop into the one target that needs it, and only
5010   // loop over those declarations for which we couldn't emit the target
5011   // metadata when we emitted the declaration.
5012   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5013     auto Val = *(MangledDeclNames.begin() + I);
5014     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5015     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5016     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5017   }
5018 }
5019 
5020 void CodeGenModule::EmitCoverageFile() {
5021   if (getCodeGenOpts().CoverageDataFile.empty() &&
5022       getCodeGenOpts().CoverageNotesFile.empty())
5023     return;
5024 
5025   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5026   if (!CUNode)
5027     return;
5028 
5029   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5030   llvm::LLVMContext &Ctx = TheModule.getContext();
5031   auto *CoverageDataFile =
5032       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5033   auto *CoverageNotesFile =
5034       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5035   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5036     llvm::MDNode *CU = CUNode->getOperand(i);
5037     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5038     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5039   }
5040 }
5041 
5042 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5043   // Sema has checked that all uuid strings are of the form
5044   // "12345678-1234-1234-1234-1234567890ab".
5045   assert(Uuid.size() == 36);
5046   for (unsigned i = 0; i < 36; ++i) {
5047     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5048     else                                         assert(isHexDigit(Uuid[i]));
5049   }
5050 
5051   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5052   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5053 
5054   llvm::Constant *Field3[8];
5055   for (unsigned Idx = 0; Idx < 8; ++Idx)
5056     Field3[Idx] = llvm::ConstantInt::get(
5057         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5058 
5059   llvm::Constant *Fields[4] = {
5060     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5061     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5062     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5063     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5064   };
5065 
5066   return llvm::ConstantStruct::getAnon(Fields);
5067 }
5068 
5069 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5070                                                        bool ForEH) {
5071   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5072   // FIXME: should we even be calling this method if RTTI is disabled
5073   // and it's not for EH?
5074   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5075     return llvm::Constant::getNullValue(Int8PtrTy);
5076 
5077   if (ForEH && Ty->isObjCObjectPointerType() &&
5078       LangOpts.ObjCRuntime.isGNUFamily())
5079     return ObjCRuntime->GetEHType(Ty);
5080 
5081   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5082 }
5083 
5084 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5085   // Do not emit threadprivates in simd-only mode.
5086   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5087     return;
5088   for (auto RefExpr : D->varlists()) {
5089     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5090     bool PerformInit =
5091         VD->getAnyInitializer() &&
5092         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5093                                                         /*ForRef=*/false);
5094 
5095     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5096     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5097             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5098       CXXGlobalInits.push_back(InitFunction);
5099   }
5100 }
5101 
5102 llvm::Metadata *
5103 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5104                                             StringRef Suffix) {
5105   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5106   if (InternalId)
5107     return InternalId;
5108 
5109   if (isExternallyVisible(T->getLinkage())) {
5110     std::string OutName;
5111     llvm::raw_string_ostream Out(OutName);
5112     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5113     Out << Suffix;
5114 
5115     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5116   } else {
5117     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5118                                            llvm::ArrayRef<llvm::Metadata *>());
5119   }
5120 
5121   return InternalId;
5122 }
5123 
5124 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5125   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5126 }
5127 
5128 llvm::Metadata *
5129 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5130   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5131 }
5132 
5133 // Generalize pointer types to a void pointer with the qualifiers of the
5134 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5135 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5136 // 'void *'.
5137 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5138   if (!Ty->isPointerType())
5139     return Ty;
5140 
5141   return Ctx.getPointerType(
5142       QualType(Ctx.VoidTy).withCVRQualifiers(
5143           Ty->getPointeeType().getCVRQualifiers()));
5144 }
5145 
5146 // Apply type generalization to a FunctionType's return and argument types
5147 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5148   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5149     SmallVector<QualType, 8> GeneralizedParams;
5150     for (auto &Param : FnType->param_types())
5151       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5152 
5153     return Ctx.getFunctionType(
5154         GeneralizeType(Ctx, FnType->getReturnType()),
5155         GeneralizedParams, FnType->getExtProtoInfo());
5156   }
5157 
5158   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5159     return Ctx.getFunctionNoProtoType(
5160         GeneralizeType(Ctx, FnType->getReturnType()));
5161 
5162   llvm_unreachable("Encountered unknown FunctionType");
5163 }
5164 
5165 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5166   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5167                                       GeneralizedMetadataIdMap, ".generalized");
5168 }
5169 
5170 /// Returns whether this module needs the "all-vtables" type identifier.
5171 bool CodeGenModule::NeedAllVtablesTypeId() const {
5172   // Returns true if at least one of vtable-based CFI checkers is enabled and
5173   // is not in the trapping mode.
5174   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5175            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5176           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5177            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5178           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5179            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5180           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5181            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5182 }
5183 
5184 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5185                                           CharUnits Offset,
5186                                           const CXXRecordDecl *RD) {
5187   llvm::Metadata *MD =
5188       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5189   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5190 
5191   if (CodeGenOpts.SanitizeCfiCrossDso)
5192     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5193       VTable->addTypeMetadata(Offset.getQuantity(),
5194                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5195 
5196   if (NeedAllVtablesTypeId()) {
5197     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5198     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5199   }
5200 }
5201 
5202 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5203   assert(TD != nullptr);
5204   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5205 
5206   ParsedAttr.Features.erase(
5207       llvm::remove_if(ParsedAttr.Features,
5208                       [&](const std::string &Feat) {
5209                         return !Target.isValidFeatureName(
5210                             StringRef{Feat}.substr(1));
5211                       }),
5212       ParsedAttr.Features.end());
5213   return ParsedAttr;
5214 }
5215 
5216 
5217 // Fills in the supplied string map with the set of target features for the
5218 // passed in function.
5219 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5220                                           const FunctionDecl *FD) {
5221   StringRef TargetCPU = Target.getTargetOpts().CPU;
5222   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5223     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5224 
5225     // Make a copy of the features as passed on the command line into the
5226     // beginning of the additional features from the function to override.
5227     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5228                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5229                             Target.getTargetOpts().FeaturesAsWritten.end());
5230 
5231     if (ParsedAttr.Architecture != "" &&
5232         Target.isValidCPUName(ParsedAttr.Architecture))
5233       TargetCPU = ParsedAttr.Architecture;
5234 
5235     // Now populate the feature map, first with the TargetCPU which is either
5236     // the default or a new one from the target attribute string. Then we'll use
5237     // the passed in features (FeaturesAsWritten) along with the new ones from
5238     // the attribute.
5239     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5240                           ParsedAttr.Features);
5241   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5242     llvm::SmallVector<StringRef, 32> FeaturesTmp;
5243     Target.getCPUSpecificCPUDispatchFeatures(SD->getCurCPUName()->getName(),
5244                                              FeaturesTmp);
5245     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5246     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5247   } else {
5248     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5249                           Target.getTargetOpts().Features);
5250   }
5251 }
5252 
5253 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5254   if (!SanStats)
5255     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5256 
5257   return *SanStats;
5258 }
5259 llvm::Value *
5260 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5261                                                   CodeGenFunction &CGF) {
5262   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5263   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5264   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5265   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5266                                 "__translate_sampler_initializer"),
5267                                 {C});
5268 }
5269