1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Diagnostic.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Basic/ConvertUTF.h" 28 #include "llvm/CallingConv.h" 29 #include "llvm/Module.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/Target/TargetData.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 37 llvm::Module &M, const llvm::TargetData &TD, 38 Diagnostic &diags) 39 : BlockModule(C, M, TD, Types, *this), Context(C), 40 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 41 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 42 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 43 44 if (!Features.ObjC1) 45 Runtime = 0; 46 else if (!Features.NeXTRuntime) 47 Runtime = CreateGNUObjCRuntime(*this); 48 else if (Features.ObjCNonFragileABI) 49 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 50 else 51 Runtime = CreateMacObjCRuntime(*this); 52 53 // If debug info generation is enabled, create the CGDebugInfo object. 54 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 55 } 56 57 CodeGenModule::~CodeGenModule() { 58 delete Runtime; 59 delete DebugInfo; 60 } 61 62 void CodeGenModule::Release() { 63 EmitDeferred(); 64 if (Runtime) 65 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 66 AddGlobalCtor(ObjCInitFunction); 67 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 68 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 69 EmitAnnotations(); 70 EmitLLVMUsed(); 71 } 72 73 /// ErrorUnsupported - Print out an error that codegen doesn't support the 74 /// specified stmt yet. 75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 76 bool OmitOnError) { 77 if (OmitOnError && getDiags().hasErrorOccurred()) 78 return; 79 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 80 "cannot compile this %0 yet"); 81 std::string Msg = Type; 82 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 83 << Msg << S->getSourceRange(); 84 } 85 86 /// ErrorUnsupported - Print out an error that codegen doesn't support the 87 /// specified decl yet. 88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 89 bool OmitOnError) { 90 if (OmitOnError && getDiags().hasErrorOccurred()) 91 return; 92 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 93 "cannot compile this %0 yet"); 94 std::string Msg = Type; 95 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 96 } 97 98 LangOptions::VisibilityMode 99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 100 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 101 if (VD->getStorageClass() == VarDecl::PrivateExtern) 102 return LangOptions::Hidden; 103 104 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 105 switch (attr->getVisibility()) { 106 default: assert(0 && "Unknown visibility!"); 107 case VisibilityAttr::DefaultVisibility: 108 return LangOptions::Default; 109 case VisibilityAttr::HiddenVisibility: 110 return LangOptions::Hidden; 111 case VisibilityAttr::ProtectedVisibility: 112 return LangOptions::Protected; 113 } 114 } 115 116 return getLangOptions().getVisibilityMode(); 117 } 118 119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 120 const Decl *D) const { 121 // Internal definitions always have default visibility. 122 if (GV->hasLocalLinkage()) { 123 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 124 return; 125 } 126 127 switch (getDeclVisibilityMode(D)) { 128 default: assert(0 && "Unknown visibility!"); 129 case LangOptions::Default: 130 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 131 case LangOptions::Hidden: 132 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 133 case LangOptions::Protected: 134 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 135 } 136 } 137 138 /// \brief Retrieves the mangled name for the given declaration. 139 /// 140 /// If the given declaration requires a mangled name, returns an 141 /// const char* containing the mangled name. Otherwise, returns 142 /// the unmangled name. 143 /// 144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 145 // In C, functions with no attributes never need to be mangled. Fastpath them. 146 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 147 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 148 return ND->getNameAsCString(); 149 } 150 151 llvm::SmallString<256> Name; 152 llvm::raw_svector_ostream Out(Name); 153 if (!mangleName(ND, Context, Out)) { 154 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 155 return ND->getNameAsCString(); 156 } 157 158 Name += '\0'; 159 return UniqueMangledName(Name.begin(), Name.end()); 160 } 161 162 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 163 const char *NameEnd) { 164 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 165 166 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 167 } 168 169 /// AddGlobalCtor - Add a function to the list that will be called before 170 /// main() runs. 171 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 172 // FIXME: Type coercion of void()* types. 173 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 174 } 175 176 /// AddGlobalDtor - Add a function to the list that will be called 177 /// when the module is unloaded. 178 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 179 // FIXME: Type coercion of void()* types. 180 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 181 } 182 183 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 184 // Ctor function type is void()*. 185 llvm::FunctionType* CtorFTy = 186 llvm::FunctionType::get(llvm::Type::VoidTy, 187 std::vector<const llvm::Type*>(), 188 false); 189 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 190 191 // Get the type of a ctor entry, { i32, void ()* }. 192 llvm::StructType* CtorStructTy = 193 llvm::StructType::get(llvm::Type::Int32Ty, 194 llvm::PointerType::getUnqual(CtorFTy), NULL); 195 196 // Construct the constructor and destructor arrays. 197 std::vector<llvm::Constant*> Ctors; 198 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 199 std::vector<llvm::Constant*> S; 200 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 201 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 202 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 203 } 204 205 if (!Ctors.empty()) { 206 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 207 new llvm::GlobalVariable(AT, false, 208 llvm::GlobalValue::AppendingLinkage, 209 llvm::ConstantArray::get(AT, Ctors), 210 GlobalName, 211 &TheModule); 212 } 213 } 214 215 void CodeGenModule::EmitAnnotations() { 216 if (Annotations.empty()) 217 return; 218 219 // Create a new global variable for the ConstantStruct in the Module. 220 llvm::Constant *Array = 221 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 222 Annotations.size()), 223 Annotations); 224 llvm::GlobalValue *gv = 225 new llvm::GlobalVariable(Array->getType(), false, 226 llvm::GlobalValue::AppendingLinkage, Array, 227 "llvm.global.annotations", &TheModule); 228 gv->setSection("llvm.metadata"); 229 } 230 231 static CodeGenModule::GVALinkage 232 GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) { 233 // "static" and attr(always_inline) functions get internal linkage. 234 if (FD->getStorageClass() == FunctionDecl::Static || 235 FD->hasAttr<AlwaysInlineAttr>()) 236 return CodeGenModule::GVA_Internal; 237 238 if (!FD->isInline()) 239 return CodeGenModule::GVA_StrongExternal; 240 241 // If the inline function explicitly has the GNU inline attribute on it, then 242 // force to GNUC semantics (which is strong external), regardless of language. 243 if (FD->hasAttr<GNUCInlineAttr>()) 244 return CodeGenModule::GVA_StrongExternal; 245 246 // The definition of inline changes based on the language. Note that we 247 // have already handled "static inline" above, with the GVA_Internal case. 248 if (Features.CPlusPlus) // inline and extern inline. 249 return CodeGenModule::GVA_CXXInline; 250 251 if (FD->getStorageClass() == FunctionDecl::Extern) { 252 // extern inline in C99 is a strong definition. In C89, it is extern inline. 253 if (Features.C99) 254 return CodeGenModule::GVA_StrongExternal; 255 256 // In C89 mode, an 'extern inline' works like a C99 inline function. 257 return CodeGenModule::GVA_C99Inline; 258 } 259 260 if (Features.C99) 261 return CodeGenModule::GVA_C99Inline; 262 263 // Otherwise, this is the GNU inline extension in K&R and GNU C89 mode. 264 return CodeGenModule::GVA_StrongExternal; 265 } 266 267 /// SetFunctionDefinitionAttributes - Set attributes for a global. 268 /// 269 /// FIXME: This is currently only done for aliases and functions, but 270 /// not for variables (these details are set in 271 /// EmitGlobalVarDefinition for variables). 272 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 273 llvm::GlobalValue *GV) { 274 GVALinkage Linkage = GetLinkageForFunction(D, Features); 275 276 if (Linkage == GVA_Internal) { 277 GV->setLinkage(llvm::Function::InternalLinkage); 278 } else if (D->hasAttr<DLLExportAttr>()) { 279 GV->setLinkage(llvm::Function::DLLExportLinkage); 280 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 281 GV->setLinkage(llvm::Function::WeakAnyLinkage); 282 } else if (Linkage == GVA_C99Inline) { 283 // In C99 mode, 'inline' functions are guaranteed to have a strong 284 // definition somewhere else, so we can use available_externally linkage. 285 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 286 } else if (Linkage == GVA_CXXInline) { 287 // In C++, the compiler has to emit a definition in every translation unit 288 // that references the function. We should use linkonce_odr because 289 // a) if all references in this translation unit are optimized away, we 290 // don't need to codegen it. b) if the function persists, it needs to be 291 // merged with other definitions. c) C++ has the ODR, so we know the 292 // definition is dependable. 293 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 294 } else { 295 assert(Linkage == GVA_StrongExternal); 296 // Otherwise, we have strong external linkage. 297 GV->setLinkage(llvm::Function::ExternalLinkage); 298 } 299 300 SetCommonAttributes(D, GV); 301 } 302 303 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 304 const CGFunctionInfo &Info, 305 llvm::Function *F) { 306 AttributeListType AttributeList; 307 ConstructAttributeList(Info, D, AttributeList); 308 309 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 310 AttributeList.size())); 311 312 // Set the appropriate calling convention for the Function. 313 if (D->hasAttr<FastCallAttr>()) 314 F->setCallingConv(llvm::CallingConv::X86_FastCall); 315 316 if (D->hasAttr<StdCallAttr>()) 317 F->setCallingConv(llvm::CallingConv::X86_StdCall); 318 } 319 320 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 321 llvm::Function *F) { 322 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 323 F->addFnAttr(llvm::Attribute::NoUnwind); 324 325 if (D->hasAttr<AlwaysInlineAttr>()) 326 F->addFnAttr(llvm::Attribute::AlwaysInline); 327 328 if (D->hasAttr<NoinlineAttr>()) 329 F->addFnAttr(llvm::Attribute::NoInline); 330 } 331 332 void CodeGenModule::SetCommonAttributes(const Decl *D, 333 llvm::GlobalValue *GV) { 334 setGlobalVisibility(GV, D); 335 336 if (D->hasAttr<UsedAttr>()) 337 AddUsedGlobal(GV); 338 339 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 340 GV->setSection(SA->getName()); 341 } 342 343 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD, 344 llvm::Function *F) { 345 SetLLVMFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F); 346 SetLLVMFunctionAttributesForDefinition(MD, F); 347 348 F->setLinkage(llvm::Function::InternalLinkage); 349 350 SetCommonAttributes(MD, F); 351 } 352 353 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 354 llvm::Function *F) { 355 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 356 357 // Only a few attributes are set on declarations; these may later be 358 // overridden by a definition. 359 360 if (FD->hasAttr<DLLImportAttr>()) { 361 F->setLinkage(llvm::Function::DLLImportLinkage); 362 } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) { 363 // "extern_weak" is overloaded in LLVM; we probably should have 364 // separate linkage types for this. 365 F->setLinkage(llvm::Function::ExternalWeakLinkage); 366 } else { 367 F->setLinkage(llvm::Function::ExternalLinkage); 368 } 369 370 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 371 F->setSection(SA->getName()); 372 } 373 374 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 375 assert(!GV->isDeclaration() && 376 "Only globals with definition can force usage."); 377 LLVMUsed.push_back(GV); 378 } 379 380 void CodeGenModule::EmitLLVMUsed() { 381 // Don't create llvm.used if there is no need. 382 if (LLVMUsed.empty()) 383 return; 384 385 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 386 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size()); 387 388 // Convert LLVMUsed to what ConstantArray needs. 389 std::vector<llvm::Constant*> UsedArray; 390 UsedArray.resize(LLVMUsed.size()); 391 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 392 UsedArray[i] = 393 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 394 } 395 396 llvm::GlobalVariable *GV = 397 new llvm::GlobalVariable(ATy, false, 398 llvm::GlobalValue::AppendingLinkage, 399 llvm::ConstantArray::get(ATy, UsedArray), 400 "llvm.used", &getModule()); 401 402 GV->setSection("llvm.metadata"); 403 } 404 405 void CodeGenModule::EmitDeferred() { 406 // Emit code for any potentially referenced deferred decls. Since a 407 // previously unused static decl may become used during the generation of code 408 // for a static function, iterate until no changes are made. 409 while (!DeferredDeclsToEmit.empty()) { 410 const ValueDecl *D = DeferredDeclsToEmit.back(); 411 DeferredDeclsToEmit.pop_back(); 412 413 // The mangled name for the decl must have been emitted in GlobalDeclMap. 414 // Look it up to see if it was defined with a stronger definition (e.g. an 415 // extern inline function with a strong function redefinition). If so, 416 // just ignore the deferred decl. 417 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 418 assert(CGRef && "Deferred decl wasn't referenced?"); 419 420 if (!CGRef->isDeclaration()) 421 continue; 422 423 // Otherwise, emit the definition and move on to the next one. 424 EmitGlobalDefinition(D); 425 } 426 427 // Emit any tentative definitions. 428 for (std::vector<const VarDecl*>::iterator it = TentativeDefinitions.begin(), 429 ie = TentativeDefinitions.end(); it != ie; ++it) 430 EmitTentativeDefinition(*it); 431 } 432 433 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 434 /// annotation information for a given GlobalValue. The annotation struct is 435 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 436 /// GlobalValue being annotated. The second field is the constant string 437 /// created from the AnnotateAttr's annotation. The third field is a constant 438 /// string containing the name of the translation unit. The fourth field is 439 /// the line number in the file of the annotated value declaration. 440 /// 441 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 442 /// appears to. 443 /// 444 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 445 const AnnotateAttr *AA, 446 unsigned LineNo) { 447 llvm::Module *M = &getModule(); 448 449 // get [N x i8] constants for the annotation string, and the filename string 450 // which are the 2nd and 3rd elements of the global annotation structure. 451 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 452 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 453 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 454 true); 455 456 // Get the two global values corresponding to the ConstantArrays we just 457 // created to hold the bytes of the strings. 458 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 459 llvm::GlobalValue *annoGV = 460 new llvm::GlobalVariable(anno->getType(), false, 461 llvm::GlobalValue::InternalLinkage, anno, 462 GV->getName() + StringPrefix, M); 463 // translation unit name string, emitted into the llvm.metadata section. 464 llvm::GlobalValue *unitGV = 465 new llvm::GlobalVariable(unit->getType(), false, 466 llvm::GlobalValue::InternalLinkage, unit, 467 StringPrefix, M); 468 469 // Create the ConstantStruct for the global annotation. 470 llvm::Constant *Fields[4] = { 471 llvm::ConstantExpr::getBitCast(GV, SBP), 472 llvm::ConstantExpr::getBitCast(annoGV, SBP), 473 llvm::ConstantExpr::getBitCast(unitGV, SBP), 474 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 475 }; 476 return llvm::ConstantStruct::get(Fields, 4, false); 477 } 478 479 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 480 // Never defer when EmitAllDecls is specified or the decl has 481 // attribute used. 482 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 483 return false; 484 485 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 486 // Constructors and destructors should never be deferred. 487 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 488 return false; 489 490 GVALinkage Linkage = GetLinkageForFunction(FD, Features); 491 492 // static, static inline, always_inline, and extern inline functions can 493 // always be deferred. Normal inline functions can be deferred in C99/C++. 494 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 495 Linkage == GVA_CXXInline) 496 return true; 497 return false; 498 } 499 500 const VarDecl *VD = cast<VarDecl>(Global); 501 assert(VD->isFileVarDecl() && "Invalid decl"); 502 return VD->getStorageClass() == VarDecl::Static; 503 } 504 505 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 506 // If this is an alias definition (which otherwise looks like a declaration) 507 // emit it now. 508 if (Global->hasAttr<AliasAttr>()) 509 return EmitAliasDefinition(Global); 510 511 // Ignore declarations, they will be emitted on their first use. 512 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 513 // Forward declarations are emitted lazily on first use. 514 if (!FD->isThisDeclarationADefinition()) 515 return; 516 } else { 517 const VarDecl *VD = cast<VarDecl>(Global); 518 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 519 520 // If this isn't a definition, defer code generation. 521 if (!VD->getInit()) { 522 // If this is a tentative definition, remember it so that we can 523 // emit the common definition if needed. It is important to 524 // defer tentative definitions, since they may have incomplete 525 // type. 526 if (!VD->hasExternalStorage()) 527 TentativeDefinitions.push_back(VD); 528 return; 529 } 530 } 531 532 // Defer code generation when possible if this is a static definition, inline 533 // function etc. These we only want to emit if they are used. 534 if (MayDeferGeneration(Global)) { 535 // If the value has already been used, add it directly to the 536 // DeferredDeclsToEmit list. 537 const char *MangledName = getMangledName(Global); 538 if (GlobalDeclMap.count(MangledName)) 539 DeferredDeclsToEmit.push_back(Global); 540 else { 541 // Otherwise, remember that we saw a deferred decl with this name. The 542 // first use of the mangled name will cause it to move into 543 // DeferredDeclsToEmit. 544 DeferredDecls[MangledName] = Global; 545 } 546 return; 547 } 548 549 // Otherwise emit the definition. 550 EmitGlobalDefinition(Global); 551 } 552 553 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 554 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 555 EmitGlobalFunctionDefinition(FD); 556 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 557 EmitGlobalVarDefinition(VD); 558 } else { 559 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 560 } 561 } 562 563 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 564 /// module, create and return an llvm Function with the specified type. If there 565 /// is something in the module with the specified name, return it potentially 566 /// bitcasted to the right type. 567 /// 568 /// If D is non-null, it specifies a decl that correspond to this. This is used 569 /// to set the attributes on the function when it is first created. 570 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 571 const llvm::Type *Ty, 572 const FunctionDecl *D) { 573 // Lookup the entry, lazily creating it if necessary. 574 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 575 if (Entry) { 576 if (Entry->getType()->getElementType() == Ty) 577 return Entry; 578 579 // Make sure the result is of the correct type. 580 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 581 return llvm::ConstantExpr::getBitCast(Entry, PTy); 582 } 583 584 // This is the first use or definition of a mangled name. If there is a 585 // deferred decl with this name, remember that we need to emit it at the end 586 // of the file. 587 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 588 DeferredDecls.find(MangledName); 589 if (DDI != DeferredDecls.end()) { 590 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 591 // list, and remove it from DeferredDecls (since we don't need it anymore). 592 DeferredDeclsToEmit.push_back(DDI->second); 593 DeferredDecls.erase(DDI); 594 } 595 596 // This function doesn't have a complete type (for example, the return 597 // type is an incomplete struct). Use a fake type instead, and make 598 // sure not to try to set attributes. 599 bool ShouldSetAttributes = true; 600 if (!isa<llvm::FunctionType>(Ty)) { 601 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 602 std::vector<const llvm::Type*>(), false); 603 ShouldSetAttributes = false; 604 } 605 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 606 llvm::Function::ExternalLinkage, 607 "", &getModule()); 608 F->setName(MangledName); 609 if (D && ShouldSetAttributes) 610 SetFunctionAttributes(D, F); 611 Entry = F; 612 return F; 613 } 614 615 /// GetAddrOfFunction - Return the address of the given function. If Ty is 616 /// non-null, then this function will use the specified type if it has to 617 /// create it (this occurs when we see a definition of the function). 618 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D, 619 const llvm::Type *Ty) { 620 // If there was no specific requested type, just convert it now. 621 if (!Ty) 622 Ty = getTypes().ConvertType(D->getType()); 623 return GetOrCreateLLVMFunction(getMangledName(D), Ty, D); 624 } 625 626 /// CreateRuntimeFunction - Create a new runtime function with the specified 627 /// type and name. 628 llvm::Constant * 629 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 630 const char *Name) { 631 // Convert Name to be a uniqued string from the IdentifierInfo table. 632 Name = getContext().Idents.get(Name).getName(); 633 return GetOrCreateLLVMFunction(Name, FTy, 0); 634 } 635 636 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 637 /// create and return an llvm GlobalVariable with the specified type. If there 638 /// is something in the module with the specified name, return it potentially 639 /// bitcasted to the right type. 640 /// 641 /// If D is non-null, it specifies a decl that correspond to this. This is used 642 /// to set the attributes on the global when it is first created. 643 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 644 const llvm::PointerType*Ty, 645 const VarDecl *D) { 646 // Lookup the entry, lazily creating it if necessary. 647 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 648 if (Entry) { 649 if (Entry->getType() == Ty) 650 return Entry; 651 652 // Make sure the result is of the correct type. 653 return llvm::ConstantExpr::getBitCast(Entry, Ty); 654 } 655 656 // We don't support __thread yet. 657 if (D && D->isThreadSpecified()) 658 ErrorUnsupported(D, "thread local ('__thread') variable", true); 659 660 // This is the first use or definition of a mangled name. If there is a 661 // deferred decl with this name, remember that we need to emit it at the end 662 // of the file. 663 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 664 DeferredDecls.find(MangledName); 665 if (DDI != DeferredDecls.end()) { 666 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 667 // list, and remove it from DeferredDecls (since we don't need it anymore). 668 DeferredDeclsToEmit.push_back(DDI->second); 669 DeferredDecls.erase(DDI); 670 } 671 672 llvm::GlobalVariable *GV = 673 new llvm::GlobalVariable(Ty->getElementType(), false, 674 llvm::GlobalValue::ExternalLinkage, 675 0, "", &getModule(), 676 0, Ty->getAddressSpace()); 677 GV->setName(MangledName); 678 679 // Handle things which are present even on external declarations. 680 if (D) { 681 // FIXME: This code is overly simple and should be merged with 682 // other global handling. 683 GV->setConstant(D->getType().isConstant(Context)); 684 685 // FIXME: Merge with other attribute handling code. 686 if (D->getStorageClass() == VarDecl::PrivateExtern) 687 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 688 689 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 690 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 691 } 692 693 return Entry = GV; 694 } 695 696 697 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 698 /// given global variable. If Ty is non-null and if the global doesn't exist, 699 /// then it will be greated with the specified type instead of whatever the 700 /// normal requested type would be. 701 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 702 const llvm::Type *Ty) { 703 assert(D->hasGlobalStorage() && "Not a global variable"); 704 QualType ASTTy = D->getType(); 705 if (Ty == 0) 706 Ty = getTypes().ConvertTypeForMem(ASTTy); 707 708 const llvm::PointerType *PTy = 709 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 710 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 711 } 712 713 /// CreateRuntimeVariable - Create a new runtime global variable with the 714 /// specified type and name. 715 llvm::Constant * 716 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 717 const char *Name) { 718 // Convert Name to be a uniqued string from the IdentifierInfo table. 719 Name = getContext().Idents.get(Name).getName(); 720 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 721 } 722 723 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 724 assert(!D->getInit() && "Cannot emit definite definitions here!"); 725 726 // See if we have already defined this (as a variable), if so we do 727 // not need to do anything. 728 llvm::GlobalValue *GV = GlobalDeclMap[getMangledName(D)]; 729 if (llvm::GlobalVariable *Var = dyn_cast_or_null<llvm::GlobalVariable>(GV)) 730 if (Var->hasInitializer()) 731 return; 732 733 EmitGlobalVarDefinition(D); 734 } 735 736 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 737 llvm::Constant *Init = 0; 738 QualType ASTTy = D->getType(); 739 740 if (D->getInit() == 0) { 741 // This is a tentative definition; tentative definitions are 742 // implicitly initialized with { 0 }. 743 // 744 // Note that tentative definitions are only emitted at the end of 745 // a translation unit, so they should never have incomplete 746 // type. In addition, EmitTentativeDefinition makes sure that we 747 // never attempt to emit a tentative definition if a real one 748 // exists. A use may still exists, however, so we still may need 749 // to do a RAUW. 750 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 751 Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy)); 752 } else { 753 Init = EmitConstantExpr(D->getInit(), D->getType()); 754 if (!Init) { 755 ErrorUnsupported(D, "static initializer"); 756 QualType T = D->getInit()->getType(); 757 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 758 } 759 } 760 761 const llvm::Type* InitType = Init->getType(); 762 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 763 764 // Strip off a bitcast if we got one back. 765 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 766 assert(CE->getOpcode() == llvm::Instruction::BitCast); 767 Entry = CE->getOperand(0); 768 } 769 770 // Entry is now either a Function or GlobalVariable. 771 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 772 773 // We have a definition after a declaration with the wrong type. 774 // We must make a new GlobalVariable* and update everything that used OldGV 775 // (a declaration or tentative definition) with the new GlobalVariable* 776 // (which will be a definition). 777 // 778 // This happens if there is a prototype for a global (e.g. 779 // "extern int x[];") and then a definition of a different type (e.g. 780 // "int x[10];"). This also happens when an initializer has a different type 781 // from the type of the global (this happens with unions). 782 if (GV == 0 || 783 GV->getType()->getElementType() != InitType || 784 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 785 786 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 787 GlobalDeclMap.erase(getMangledName(D)); 788 789 // Make a new global with the correct type, this is now guaranteed to work. 790 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 791 GV->takeName(cast<llvm::GlobalValue>(Entry)); 792 793 // Replace all uses of the old global with the new global 794 llvm::Constant *NewPtrForOldDecl = 795 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 796 Entry->replaceAllUsesWith(NewPtrForOldDecl); 797 798 // Erase the old global, since it is no longer used. 799 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 800 } 801 802 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 803 SourceManager &SM = Context.getSourceManager(); 804 AddAnnotation(EmitAnnotateAttr(GV, AA, 805 SM.getInstantiationLineNumber(D->getLocation()))); 806 } 807 808 GV->setInitializer(Init); 809 GV->setConstant(D->getType().isConstant(Context)); 810 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 811 812 // Set the llvm linkage type as appropriate. 813 if (D->getStorageClass() == VarDecl::Static) 814 GV->setLinkage(llvm::Function::InternalLinkage); 815 else if (D->hasAttr<DLLImportAttr>()) 816 GV->setLinkage(llvm::Function::DLLImportLinkage); 817 else if (D->hasAttr<DLLExportAttr>()) 818 GV->setLinkage(llvm::Function::DLLExportLinkage); 819 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 820 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 821 else if (!CompileOpts.NoCommon && 822 (!D->hasExternalStorage() && !D->getInit())) 823 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 824 else 825 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 826 827 SetCommonAttributes(D, GV); 828 829 // Emit global variable debug information. 830 if (CGDebugInfo *DI = getDebugInfo()) { 831 DI->setLocation(D->getLocation()); 832 DI->EmitGlobalVariable(GV, D); 833 } 834 } 835 836 837 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 838 const llvm::FunctionType *Ty; 839 840 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 841 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 842 843 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 844 } else { 845 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 846 847 // As a special case, make sure that definitions of K&R function 848 // "type foo()" aren't declared as varargs (which forces the backend 849 // to do unnecessary work). 850 if (D->getType()->isFunctionNoProtoType()) { 851 assert(Ty->isVarArg() && "Didn't lower type as expected"); 852 // Due to stret, the lowered function could have arguments. 853 // Just create the same type as was lowered by ConvertType 854 // but strip off the varargs bit. 855 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 856 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 857 } 858 } 859 860 // Get or create the prototype for teh function. 861 llvm::Constant *Entry = GetAddrOfFunction(D, Ty); 862 863 // Strip off a bitcast if we got one back. 864 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 865 assert(CE->getOpcode() == llvm::Instruction::BitCast); 866 Entry = CE->getOperand(0); 867 } 868 869 870 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 871 // If the types mismatch then we have to rewrite the definition. 872 assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() && 873 "Shouldn't replace non-declaration"); 874 875 // F is the Function* for the one with the wrong type, we must make a new 876 // Function* and update everything that used F (a declaration) with the new 877 // Function* (which will be a definition). 878 // 879 // This happens if there is a prototype for a function 880 // (e.g. "int f()") and then a definition of a different type 881 // (e.g. "int f(int x)"). Start by making a new function of the 882 // correct type, RAUW, then steal the name. 883 GlobalDeclMap.erase(getMangledName(D)); 884 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty)); 885 NewFn->takeName(cast<llvm::GlobalValue>(Entry)); 886 887 // Replace uses of F with the Function we will endow with a body. 888 llvm::Constant *NewPtrForOldDecl = 889 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 890 Entry->replaceAllUsesWith(NewPtrForOldDecl); 891 892 // Ok, delete the old function now, which is dead. 893 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 894 895 Entry = NewFn; 896 } 897 898 llvm::Function *Fn = cast<llvm::Function>(Entry); 899 900 CodeGenFunction(*this).GenerateCode(D, Fn); 901 902 SetFunctionDefinitionAttributes(D, Fn); 903 SetLLVMFunctionAttributesForDefinition(D, Fn); 904 905 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 906 AddGlobalCtor(Fn, CA->getPriority()); 907 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 908 AddGlobalDtor(Fn, DA->getPriority()); 909 } 910 911 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 912 const AliasAttr *AA = D->getAttr<AliasAttr>(); 913 assert(AA && "Not an alias?"); 914 915 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 916 917 // Unique the name through the identifier table. 918 const char *AliaseeName = AA->getAliasee().c_str(); 919 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 920 921 // Create a reference to the named value. This ensures that it is emitted 922 // if a deferred decl. 923 llvm::Constant *Aliasee; 924 if (isa<llvm::FunctionType>(DeclTy)) 925 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0); 926 else 927 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 928 llvm::PointerType::getUnqual(DeclTy), 0); 929 930 // Create the new alias itself, but don't set a name yet. 931 llvm::GlobalValue *GA = 932 new llvm::GlobalAlias(Aliasee->getType(), 933 llvm::Function::ExternalLinkage, 934 "", Aliasee, &getModule()); 935 936 // See if there is already something with the alias' name in the module. 937 const char *MangledName = getMangledName(D); 938 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 939 940 if (Entry && !Entry->isDeclaration()) { 941 // If there is a definition in the module, then it wins over the alias. 942 // This is dubious, but allow it to be safe. Just ignore the alias. 943 GA->eraseFromParent(); 944 return; 945 } 946 947 if (Entry) { 948 // If there is a declaration in the module, then we had an extern followed 949 // by the alias, as in: 950 // extern int test6(); 951 // ... 952 // int test6() __attribute__((alias("test7"))); 953 // 954 // Remove it and replace uses of it with the alias. 955 956 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 957 Entry->getType())); 958 Entry->eraseFromParent(); 959 } 960 961 // Now we know that there is no conflict, set the name. 962 Entry = GA; 963 GA->setName(MangledName); 964 965 // Set attributes which are particular to an alias; this is a 966 // specialization of the attributes which may be set on a global 967 // variable/function. 968 if (D->hasAttr<DLLExportAttr>()) { 969 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 970 // The dllexport attribute is ignored for undefined symbols. 971 if (FD->getBody()) 972 GA->setLinkage(llvm::Function::DLLExportLinkage); 973 } else { 974 GA->setLinkage(llvm::Function::DLLExportLinkage); 975 } 976 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 977 GA->setLinkage(llvm::Function::WeakAnyLinkage); 978 } 979 980 SetCommonAttributes(D, GA); 981 } 982 983 /// getBuiltinLibFunction - Given a builtin id for a function like 984 /// "__builtin_fabsf", return a Function* for "fabsf". 985 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 986 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 987 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 988 "isn't a lib fn"); 989 990 // Get the name, skip over the __builtin_ prefix (if necessary). 991 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 992 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 993 Name += 10; 994 995 // Get the type for the builtin. 996 Builtin::Context::GetBuiltinTypeError Error; 997 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); 998 assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); 999 1000 const llvm::FunctionType *Ty = 1001 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1002 1003 // Unique the name through the identifier table. 1004 Name = getContext().Idents.get(Name).getName(); 1005 // FIXME: param attributes for sext/zext etc. 1006 return GetOrCreateLLVMFunction(Name, Ty, 0); 1007 } 1008 1009 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1010 unsigned NumTys) { 1011 return llvm::Intrinsic::getDeclaration(&getModule(), 1012 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1013 } 1014 1015 llvm::Function *CodeGenModule::getMemCpyFn() { 1016 if (MemCpyFn) return MemCpyFn; 1017 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1018 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1019 } 1020 1021 llvm::Function *CodeGenModule::getMemMoveFn() { 1022 if (MemMoveFn) return MemMoveFn; 1023 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1024 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1025 } 1026 1027 llvm::Function *CodeGenModule::getMemSetFn() { 1028 if (MemSetFn) return MemSetFn; 1029 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1030 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1031 } 1032 1033 static void appendFieldAndPadding(CodeGenModule &CGM, 1034 std::vector<llvm::Constant*>& Fields, 1035 FieldDecl *FieldD, FieldDecl *NextFieldD, 1036 llvm::Constant* Field, 1037 RecordDecl* RD, const llvm::StructType *STy) { 1038 // Append the field. 1039 Fields.push_back(Field); 1040 1041 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1042 1043 int NextStructFieldNo; 1044 if (!NextFieldD) { 1045 NextStructFieldNo = STy->getNumElements(); 1046 } else { 1047 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1048 } 1049 1050 // Append padding 1051 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1052 llvm::Constant *C = 1053 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1054 1055 Fields.push_back(C); 1056 } 1057 } 1058 1059 llvm::Constant *CodeGenModule:: 1060 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1061 std::string str; 1062 unsigned StringLength; 1063 1064 bool isUTF16 = false; 1065 if (Literal->containsNonAsciiOrNull()) { 1066 // Convert from UTF-8 to UTF-16. 1067 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1068 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1069 UTF16 *ToPtr = &ToBuf[0]; 1070 1071 ConversionResult Result; 1072 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1073 &ToPtr, ToPtr+Literal->getByteLength(), 1074 strictConversion); 1075 if (Result == conversionOK) { 1076 // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings 1077 // without doing more surgery to this routine. Since we aren't explicitly 1078 // checking for endianness here, it's also a bug (when generating code for 1079 // a target that doesn't match the host endianness). Modeling this as an 1080 // i16 array is likely the cleanest solution. 1081 StringLength = ToPtr-&ToBuf[0]; 1082 str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars. 1083 isUTF16 = true; 1084 } else if (Result == sourceIllegal) { 1085 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string. 1086 str.assign(Literal->getStrData(), Literal->getByteLength()); 1087 StringLength = str.length(); 1088 } else 1089 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1090 1091 } else { 1092 str.assign(Literal->getStrData(), Literal->getByteLength()); 1093 StringLength = str.length(); 1094 } 1095 llvm::StringMapEntry<llvm::Constant *> &Entry = 1096 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1097 1098 if (llvm::Constant *C = Entry.getValue()) 1099 return C; 1100 1101 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1102 llvm::Constant *Zeros[] = { Zero, Zero }; 1103 1104 if (!CFConstantStringClassRef) { 1105 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1106 Ty = llvm::ArrayType::get(Ty, 0); 1107 1108 // FIXME: This is fairly broken if 1109 // __CFConstantStringClassReference is already defined, in that it 1110 // will get renamed and the user will most likely see an opaque 1111 // error message. This is a general issue with relying on 1112 // particular names. 1113 llvm::GlobalVariable *GV = 1114 new llvm::GlobalVariable(Ty, false, 1115 llvm::GlobalVariable::ExternalLinkage, 0, 1116 "__CFConstantStringClassReference", 1117 &getModule()); 1118 1119 // Decay array -> ptr 1120 CFConstantStringClassRef = 1121 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1122 } 1123 1124 QualType CFTy = getContext().getCFConstantStringType(); 1125 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1126 1127 const llvm::StructType *STy = 1128 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1129 1130 std::vector<llvm::Constant*> Fields; 1131 RecordDecl::field_iterator Field = CFRD->field_begin(getContext()); 1132 1133 // Class pointer. 1134 FieldDecl *CurField = *Field++; 1135 FieldDecl *NextField = *Field++; 1136 appendFieldAndPadding(*this, Fields, CurField, NextField, 1137 CFConstantStringClassRef, CFRD, STy); 1138 1139 // Flags. 1140 CurField = NextField; 1141 NextField = *Field++; 1142 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1143 appendFieldAndPadding(*this, Fields, CurField, NextField, 1144 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1145 : llvm::ConstantInt::get(Ty, 0x07C8), 1146 CFRD, STy); 1147 1148 // String pointer. 1149 CurField = NextField; 1150 NextField = *Field++; 1151 llvm::Constant *C = llvm::ConstantArray::get(str); 1152 1153 const char *Sect, *Prefix; 1154 bool isConstant; 1155 if (isUTF16) { 1156 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1157 Sect = getContext().Target.getUnicodeStringSection(); 1158 // FIXME: Why does GCC not set constant here? 1159 isConstant = false; 1160 } else { 1161 Prefix = getContext().Target.getStringSymbolPrefix(true); 1162 Sect = getContext().Target.getCFStringDataSection(); 1163 // FIXME: -fwritable-strings should probably affect this, but we 1164 // are following gcc here. 1165 isConstant = true; 1166 } 1167 llvm::GlobalVariable *GV = 1168 new llvm::GlobalVariable(C->getType(), isConstant, 1169 llvm::GlobalValue::InternalLinkage, 1170 C, Prefix, &getModule()); 1171 if (Sect) 1172 GV->setSection(Sect); 1173 if (isUTF16) { 1174 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1175 GV->setAlignment(Align); 1176 } 1177 appendFieldAndPadding(*this, Fields, CurField, NextField, 1178 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1179 CFRD, STy); 1180 1181 // String length. 1182 CurField = NextField; 1183 NextField = 0; 1184 Ty = getTypes().ConvertType(getContext().LongTy); 1185 appendFieldAndPadding(*this, Fields, CurField, NextField, 1186 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1187 1188 // The struct. 1189 C = llvm::ConstantStruct::get(STy, Fields); 1190 GV = new llvm::GlobalVariable(C->getType(), true, 1191 llvm::GlobalVariable::InternalLinkage, C, 1192 getContext().Target.getCFStringSymbolPrefix(), 1193 &getModule()); 1194 if (const char *Sect = getContext().Target.getCFStringSection()) 1195 GV->setSection(Sect); 1196 Entry.setValue(GV); 1197 1198 return GV; 1199 } 1200 1201 /// GetStringForStringLiteral - Return the appropriate bytes for a 1202 /// string literal, properly padded to match the literal type. 1203 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1204 const char *StrData = E->getStrData(); 1205 unsigned Len = E->getByteLength(); 1206 1207 const ConstantArrayType *CAT = 1208 getContext().getAsConstantArrayType(E->getType()); 1209 assert(CAT && "String isn't pointer or array!"); 1210 1211 // Resize the string to the right size. 1212 std::string Str(StrData, StrData+Len); 1213 uint64_t RealLen = CAT->getSize().getZExtValue(); 1214 1215 if (E->isWide()) 1216 RealLen *= getContext().Target.getWCharWidth()/8; 1217 1218 Str.resize(RealLen, '\0'); 1219 1220 return Str; 1221 } 1222 1223 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1224 /// constant array for the given string literal. 1225 llvm::Constant * 1226 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1227 // FIXME: This can be more efficient. 1228 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1229 } 1230 1231 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1232 /// array for the given ObjCEncodeExpr node. 1233 llvm::Constant * 1234 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1235 std::string Str; 1236 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1237 1238 return GetAddrOfConstantCString(Str); 1239 } 1240 1241 1242 /// GenerateWritableString -- Creates storage for a string literal. 1243 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1244 bool constant, 1245 CodeGenModule &CGM, 1246 const char *GlobalName) { 1247 // Create Constant for this string literal. Don't add a '\0'. 1248 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1249 1250 // Create a global variable for this string 1251 return new llvm::GlobalVariable(C->getType(), constant, 1252 llvm::GlobalValue::InternalLinkage, 1253 C, GlobalName, &CGM.getModule()); 1254 } 1255 1256 /// GetAddrOfConstantString - Returns a pointer to a character array 1257 /// containing the literal. This contents are exactly that of the 1258 /// given string, i.e. it will not be null terminated automatically; 1259 /// see GetAddrOfConstantCString. Note that whether the result is 1260 /// actually a pointer to an LLVM constant depends on 1261 /// Feature.WriteableStrings. 1262 /// 1263 /// The result has pointer to array type. 1264 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1265 const char *GlobalName) { 1266 bool IsConstant = !Features.WritableStrings; 1267 1268 // Get the default prefix if a name wasn't specified. 1269 if (!GlobalName) 1270 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1271 1272 // Don't share any string literals if strings aren't constant. 1273 if (!IsConstant) 1274 return GenerateStringLiteral(str, false, *this, GlobalName); 1275 1276 llvm::StringMapEntry<llvm::Constant *> &Entry = 1277 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1278 1279 if (Entry.getValue()) 1280 return Entry.getValue(); 1281 1282 // Create a global variable for this. 1283 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1284 Entry.setValue(C); 1285 return C; 1286 } 1287 1288 /// GetAddrOfConstantCString - Returns a pointer to a character 1289 /// array containing the literal and a terminating '\-' 1290 /// character. The result has pointer to array type. 1291 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1292 const char *GlobalName){ 1293 return GetAddrOfConstantString(str + '\0', GlobalName); 1294 } 1295 1296 /// EmitObjCPropertyImplementations - Emit information for synthesized 1297 /// properties for an implementation. 1298 void CodeGenModule::EmitObjCPropertyImplementations(const 1299 ObjCImplementationDecl *D) { 1300 for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), 1301 e = D->propimpl_end(); i != e; ++i) { 1302 ObjCPropertyImplDecl *PID = *i; 1303 1304 // Dynamic is just for type-checking. 1305 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1306 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1307 1308 // Determine which methods need to be implemented, some may have 1309 // been overridden. Note that ::isSynthesized is not the method 1310 // we want, that just indicates if the decl came from a 1311 // property. What we want to know is if the method is defined in 1312 // this implementation. 1313 if (!D->getInstanceMethod(PD->getGetterName())) 1314 CodeGenFunction(*this).GenerateObjCGetter( 1315 const_cast<ObjCImplementationDecl *>(D), PID); 1316 if (!PD->isReadOnly() && 1317 !D->getInstanceMethod(PD->getSetterName())) 1318 CodeGenFunction(*this).GenerateObjCSetter( 1319 const_cast<ObjCImplementationDecl *>(D), PID); 1320 } 1321 } 1322 } 1323 1324 /// EmitNamespace - Emit all declarations in a namespace. 1325 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1326 for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()), 1327 E = ND->decls_end(getContext()); 1328 I != E; ++I) 1329 EmitTopLevelDecl(*I); 1330 } 1331 1332 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1333 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1334 if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { 1335 ErrorUnsupported(LSD, "linkage spec"); 1336 return; 1337 } 1338 1339 for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()), 1340 E = LSD->decls_end(getContext()); 1341 I != E; ++I) 1342 EmitTopLevelDecl(*I); 1343 } 1344 1345 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1346 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1347 // If an error has occurred, stop code generation, but continue 1348 // parsing and semantic analysis (to ensure all warnings and errors 1349 // are emitted). 1350 if (Diags.hasErrorOccurred()) 1351 return; 1352 1353 switch (D->getKind()) { 1354 case Decl::CXXMethod: 1355 case Decl::Function: 1356 case Decl::Var: 1357 EmitGlobal(cast<ValueDecl>(D)); 1358 break; 1359 1360 // C++ Decls 1361 case Decl::Namespace: 1362 EmitNamespace(cast<NamespaceDecl>(D)); 1363 break; 1364 case Decl::CXXConstructor: 1365 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1366 break; 1367 1368 // Objective-C Decls 1369 1370 // Forward declarations, no (immediate) code generation. 1371 case Decl::ObjCClass: 1372 case Decl::ObjCForwardProtocol: 1373 case Decl::ObjCCategory: 1374 break; 1375 case Decl::ObjCInterface: 1376 // If we already laid out this interface due to an @class, and if we 1377 // codegen'd a reference it, update the 'opaque' type to be a real type now. 1378 Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D)); 1379 break; 1380 1381 case Decl::ObjCProtocol: 1382 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1383 break; 1384 1385 case Decl::ObjCCategoryImpl: 1386 // Categories have properties but don't support synthesize so we 1387 // can ignore them here. 1388 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1389 break; 1390 1391 case Decl::ObjCImplementation: { 1392 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1393 EmitObjCPropertyImplementations(OMD); 1394 Runtime->GenerateClass(OMD); 1395 break; 1396 } 1397 case Decl::ObjCMethod: { 1398 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1399 // If this is not a prototype, emit the body. 1400 if (OMD->getBody()) 1401 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1402 break; 1403 } 1404 case Decl::ObjCCompatibleAlias: 1405 // compatibility-alias is a directive and has no code gen. 1406 break; 1407 1408 case Decl::LinkageSpec: 1409 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1410 break; 1411 1412 case Decl::FileScopeAsm: { 1413 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1414 std::string AsmString(AD->getAsmString()->getStrData(), 1415 AD->getAsmString()->getByteLength()); 1416 1417 const std::string &S = getModule().getModuleInlineAsm(); 1418 if (S.empty()) 1419 getModule().setModuleInlineAsm(AsmString); 1420 else 1421 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1422 break; 1423 } 1424 1425 default: 1426 // Make sure we handled everything we should, every other kind is 1427 // a non-top-level decl. FIXME: Would be nice to have an 1428 // isTopLevelDeclKind function. Need to recode Decl::Kind to do 1429 // that easily. 1430 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1431 } 1432 } 1433