1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/CodeGen/CodeGenOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/Basic/Diagnostic.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Basic/ConvertUTF.h"
30 #include "llvm/CallingConv.h"
31 #include "llvm/Module.h"
32 #include "llvm/Intrinsics.h"
33 #include "llvm/LLVMContext.h"
34 #include "llvm/Target/TargetData.h"
35 #include "llvm/Support/ErrorHandling.h"
36 using namespace clang;
37 using namespace CodeGen;
38 
39 
40 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
41                              llvm::Module &M, const llvm::TargetData &TD,
42                              Diagnostic &diags)
43   : BlockModule(C, M, TD, Types, *this), Context(C),
44     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
45     TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C),
46     VtableInfo(*this), Runtime(0),
47     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
48     VMContext(M.getContext()) {
49 
50   if (!Features.ObjC1)
51     Runtime = 0;
52   else if (!Features.NeXTRuntime)
53     Runtime = CreateGNUObjCRuntime(*this);
54   else if (Features.ObjCNonFragileABI)
55     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
56   else
57     Runtime = CreateMacObjCRuntime(*this);
58 
59   // If debug info generation is enabled, create the CGDebugInfo object.
60   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
61 }
62 
63 CodeGenModule::~CodeGenModule() {
64   delete Runtime;
65   delete DebugInfo;
66 }
67 
68 void CodeGenModule::Release() {
69   // We need to call this first because it can add deferred declarations.
70   EmitCXXGlobalInitFunc();
71 
72   EmitDeferred();
73   if (Runtime)
74     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
75       AddGlobalCtor(ObjCInitFunction);
76   EmitCtorList(GlobalCtors, "llvm.global_ctors");
77   EmitCtorList(GlobalDtors, "llvm.global_dtors");
78   EmitAnnotations();
79   EmitLLVMUsed();
80 }
81 
82 /// ErrorUnsupported - Print out an error that codegen doesn't support the
83 /// specified stmt yet.
84 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
85                                      bool OmitOnError) {
86   if (OmitOnError && getDiags().hasErrorOccurred())
87     return;
88   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
89                                                "cannot compile this %0 yet");
90   std::string Msg = Type;
91   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
92     << Msg << S->getSourceRange();
93 }
94 
95 /// ErrorUnsupported - Print out an error that codegen doesn't support the
96 /// specified decl yet.
97 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
98                                      bool OmitOnError) {
99   if (OmitOnError && getDiags().hasErrorOccurred())
100     return;
101   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
102                                                "cannot compile this %0 yet");
103   std::string Msg = Type;
104   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
105 }
106 
107 LangOptions::VisibilityMode
108 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
109   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
110     if (VD->getStorageClass() == VarDecl::PrivateExtern)
111       return LangOptions::Hidden;
112 
113   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
114     switch (attr->getVisibility()) {
115     default: assert(0 && "Unknown visibility!");
116     case VisibilityAttr::DefaultVisibility:
117       return LangOptions::Default;
118     case VisibilityAttr::HiddenVisibility:
119       return LangOptions::Hidden;
120     case VisibilityAttr::ProtectedVisibility:
121       return LangOptions::Protected;
122     }
123   }
124 
125   return getLangOptions().getVisibilityMode();
126 }
127 
128 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
129                                         const Decl *D) const {
130   // Internal definitions always have default visibility.
131   if (GV->hasLocalLinkage()) {
132     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
133     return;
134   }
135 
136   switch (getDeclVisibilityMode(D)) {
137   default: assert(0 && "Unknown visibility!");
138   case LangOptions::Default:
139     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
140   case LangOptions::Hidden:
141     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
142   case LangOptions::Protected:
143     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
144   }
145 }
146 
147 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
148   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
149 
150   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
151     return getMangledCXXCtorName(D, GD.getCtorType());
152   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
153     return getMangledCXXDtorName(D, GD.getDtorType());
154 
155   return getMangledName(ND);
156 }
157 
158 /// \brief Retrieves the mangled name for the given declaration.
159 ///
160 /// If the given declaration requires a mangled name, returns an
161 /// const char* containing the mangled name.  Otherwise, returns
162 /// the unmangled name.
163 ///
164 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
165   if (!getMangleContext().shouldMangleDeclName(ND)) {
166     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
167     return ND->getNameAsCString();
168   }
169 
170   llvm::SmallString<256> Name;
171   getMangleContext().mangleName(ND, Name);
172   Name += '\0';
173   return UniqueMangledName(Name.begin(), Name.end());
174 }
175 
176 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
177                                              const char *NameEnd) {
178   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
179 
180   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
181 }
182 
183 /// AddGlobalCtor - Add a function to the list that will be called before
184 /// main() runs.
185 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
186   // FIXME: Type coercion of void()* types.
187   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
188 }
189 
190 /// AddGlobalDtor - Add a function to the list that will be called
191 /// when the module is unloaded.
192 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
193   // FIXME: Type coercion of void()* types.
194   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
195 }
196 
197 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
198   // Ctor function type is void()*.
199   llvm::FunctionType* CtorFTy =
200     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
201                             std::vector<const llvm::Type*>(),
202                             false);
203   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
204 
205   // Get the type of a ctor entry, { i32, void ()* }.
206   llvm::StructType* CtorStructTy =
207     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
208                           llvm::PointerType::getUnqual(CtorFTy), NULL);
209 
210   // Construct the constructor and destructor arrays.
211   std::vector<llvm::Constant*> Ctors;
212   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
213     std::vector<llvm::Constant*> S;
214     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
215                 I->second, false));
216     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
217     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
218   }
219 
220   if (!Ctors.empty()) {
221     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
222     new llvm::GlobalVariable(TheModule, AT, false,
223                              llvm::GlobalValue::AppendingLinkage,
224                              llvm::ConstantArray::get(AT, Ctors),
225                              GlobalName);
226   }
227 }
228 
229 void CodeGenModule::EmitAnnotations() {
230   if (Annotations.empty())
231     return;
232 
233   // Create a new global variable for the ConstantStruct in the Module.
234   llvm::Constant *Array =
235   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
236                                                 Annotations.size()),
237                            Annotations);
238   llvm::GlobalValue *gv =
239   new llvm::GlobalVariable(TheModule, Array->getType(), false,
240                            llvm::GlobalValue::AppendingLinkage, Array,
241                            "llvm.global.annotations");
242   gv->setSection("llvm.metadata");
243 }
244 
245 static CodeGenModule::GVALinkage
246 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
247                       const LangOptions &Features) {
248   // Everything located semantically within an anonymous namespace is
249   // always internal.
250   if (FD->isInAnonymousNamespace())
251     return CodeGenModule::GVA_Internal;
252 
253   // "static" functions get internal linkage.
254   if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD))
255     return CodeGenModule::GVA_Internal;
256 
257   // The kind of external linkage this function will have, if it is not
258   // inline or static.
259   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
260   if (Context.getLangOptions().CPlusPlus) {
261     TemplateSpecializationKind TSK = FD->getTemplateSpecializationKind();
262 
263     if (TSK == TSK_ExplicitInstantiationDefinition) {
264       // If a function has been explicitly instantiated, then it should
265       // always have strong external linkage.
266       return CodeGenModule::GVA_StrongExternal;
267     }
268 
269     if (TSK == TSK_ImplicitInstantiation)
270       External = CodeGenModule::GVA_TemplateInstantiation;
271   }
272 
273   if (!FD->isInlined())
274     return External;
275 
276   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
277     // GNU or C99 inline semantics. Determine whether this symbol should be
278     // externally visible.
279     if (FD->isInlineDefinitionExternallyVisible())
280       return External;
281 
282     // C99 inline semantics, where the symbol is not externally visible.
283     return CodeGenModule::GVA_C99Inline;
284   }
285 
286   // C++0x [temp.explicit]p9:
287   //   [ Note: The intent is that an inline function that is the subject of
288   //   an explicit instantiation declaration will still be implicitly
289   //   instantiated when used so that the body can be considered for
290   //   inlining, but that no out-of-line copy of the inline function would be
291   //   generated in the translation unit. -- end note ]
292   if (FD->getTemplateSpecializationKind()
293                                        == TSK_ExplicitInstantiationDeclaration)
294     return CodeGenModule::GVA_C99Inline;
295 
296   return CodeGenModule::GVA_CXXInline;
297 }
298 
299 /// SetFunctionDefinitionAttributes - Set attributes for a global.
300 ///
301 /// FIXME: This is currently only done for aliases and functions, but not for
302 /// variables (these details are set in EmitGlobalVarDefinition for variables).
303 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
304                                                     llvm::GlobalValue *GV) {
305   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
306 
307   if (Linkage == GVA_Internal) {
308     GV->setLinkage(llvm::Function::InternalLinkage);
309   } else if (D->hasAttr<DLLExportAttr>()) {
310     GV->setLinkage(llvm::Function::DLLExportLinkage);
311   } else if (D->hasAttr<WeakAttr>()) {
312     GV->setLinkage(llvm::Function::WeakAnyLinkage);
313   } else if (Linkage == GVA_C99Inline) {
314     // In C99 mode, 'inline' functions are guaranteed to have a strong
315     // definition somewhere else, so we can use available_externally linkage.
316     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
317   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
318     // In C++, the compiler has to emit a definition in every translation unit
319     // that references the function.  We should use linkonce_odr because
320     // a) if all references in this translation unit are optimized away, we
321     // don't need to codegen it.  b) if the function persists, it needs to be
322     // merged with other definitions. c) C++ has the ODR, so we know the
323     // definition is dependable.
324     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
325   } else {
326     assert(Linkage == GVA_StrongExternal);
327     // Otherwise, we have strong external linkage.
328     GV->setLinkage(llvm::Function::ExternalLinkage);
329   }
330 
331   SetCommonAttributes(D, GV);
332 }
333 
334 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
335                                               const CGFunctionInfo &Info,
336                                               llvm::Function *F) {
337   unsigned CallingConv;
338   AttributeListType AttributeList;
339   ConstructAttributeList(Info, D, AttributeList, CallingConv);
340   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
341                                           AttributeList.size()));
342   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
343 }
344 
345 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
346                                                            llvm::Function *F) {
347   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
348     F->addFnAttr(llvm::Attribute::NoUnwind);
349 
350   if (D->hasAttr<AlwaysInlineAttr>())
351     F->addFnAttr(llvm::Attribute::AlwaysInline);
352 
353   if (D->hasAttr<NoInlineAttr>())
354     F->addFnAttr(llvm::Attribute::NoInline);
355 
356   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
357     F->addFnAttr(llvm::Attribute::StackProtect);
358   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
359     F->addFnAttr(llvm::Attribute::StackProtectReq);
360 
361   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
362     unsigned width = Context.Target.getCharWidth();
363     F->setAlignment(AA->getAlignment() / width);
364     while ((AA = AA->getNext<AlignedAttr>()))
365       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
366   }
367   // C++ ABI requires 2-byte alignment for member functions.
368   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
369     F->setAlignment(2);
370 }
371 
372 void CodeGenModule::SetCommonAttributes(const Decl *D,
373                                         llvm::GlobalValue *GV) {
374   setGlobalVisibility(GV, D);
375 
376   if (D->hasAttr<UsedAttr>())
377     AddUsedGlobal(GV);
378 
379   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
380     GV->setSection(SA->getName());
381 }
382 
383 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
384                                                   llvm::Function *F,
385                                                   const CGFunctionInfo &FI) {
386   SetLLVMFunctionAttributes(D, FI, F);
387   SetLLVMFunctionAttributesForDefinition(D, F);
388 
389   F->setLinkage(llvm::Function::InternalLinkage);
390 
391   SetCommonAttributes(D, F);
392 }
393 
394 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
395                                           llvm::Function *F,
396                                           bool IsIncompleteFunction) {
397   if (!IsIncompleteFunction)
398     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
399 
400   // Only a few attributes are set on declarations; these may later be
401   // overridden by a definition.
402 
403   if (FD->hasAttr<DLLImportAttr>()) {
404     F->setLinkage(llvm::Function::DLLImportLinkage);
405   } else if (FD->hasAttr<WeakAttr>() ||
406              FD->hasAttr<WeakImportAttr>()) {
407     // "extern_weak" is overloaded in LLVM; we probably should have
408     // separate linkage types for this.
409     F->setLinkage(llvm::Function::ExternalWeakLinkage);
410   } else {
411     F->setLinkage(llvm::Function::ExternalLinkage);
412   }
413 
414   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
415     F->setSection(SA->getName());
416 }
417 
418 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
419   assert(!GV->isDeclaration() &&
420          "Only globals with definition can force usage.");
421   LLVMUsed.push_back(GV);
422 }
423 
424 void CodeGenModule::EmitLLVMUsed() {
425   // Don't create llvm.used if there is no need.
426   if (LLVMUsed.empty())
427     return;
428 
429   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
430 
431   // Convert LLVMUsed to what ConstantArray needs.
432   std::vector<llvm::Constant*> UsedArray;
433   UsedArray.resize(LLVMUsed.size());
434   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
435     UsedArray[i] =
436      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
437                                       i8PTy);
438   }
439 
440   if (UsedArray.empty())
441     return;
442   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
443 
444   llvm::GlobalVariable *GV =
445     new llvm::GlobalVariable(getModule(), ATy, false,
446                              llvm::GlobalValue::AppendingLinkage,
447                              llvm::ConstantArray::get(ATy, UsedArray),
448                              "llvm.used");
449 
450   GV->setSection("llvm.metadata");
451 }
452 
453 void CodeGenModule::EmitDeferred() {
454   // Emit code for any potentially referenced deferred decls.  Since a
455   // previously unused static decl may become used during the generation of code
456   // for a static function, iterate until no  changes are made.
457   while (!DeferredDeclsToEmit.empty()) {
458     GlobalDecl D = DeferredDeclsToEmit.back();
459     DeferredDeclsToEmit.pop_back();
460 
461     // The mangled name for the decl must have been emitted in GlobalDeclMap.
462     // Look it up to see if it was defined with a stronger definition (e.g. an
463     // extern inline function with a strong function redefinition).  If so,
464     // just ignore the deferred decl.
465     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
466     assert(CGRef && "Deferred decl wasn't referenced?");
467 
468     if (!CGRef->isDeclaration())
469       continue;
470 
471     // Skip available externally functions at -O0
472     // FIXME: these aren't instantiated yet, so we can't yet do this.
473     if (0 && getCodeGenOpts().OptimizationLevel == 0)
474       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D.getDecl())) {
475         GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
476 
477         if (Linkage == GVA_C99Inline)
478           continue;
479       }
480 
481     // Otherwise, emit the definition and move on to the next one.
482     EmitGlobalDefinition(D);
483   }
484 }
485 
486 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
487 /// annotation information for a given GlobalValue.  The annotation struct is
488 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
489 /// GlobalValue being annotated.  The second field is the constant string
490 /// created from the AnnotateAttr's annotation.  The third field is a constant
491 /// string containing the name of the translation unit.  The fourth field is
492 /// the line number in the file of the annotated value declaration.
493 ///
494 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
495 ///        appears to.
496 ///
497 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
498                                                 const AnnotateAttr *AA,
499                                                 unsigned LineNo) {
500   llvm::Module *M = &getModule();
501 
502   // get [N x i8] constants for the annotation string, and the filename string
503   // which are the 2nd and 3rd elements of the global annotation structure.
504   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
505   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
506                                                   AA->getAnnotation(), true);
507   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
508                                                   M->getModuleIdentifier(),
509                                                   true);
510 
511   // Get the two global values corresponding to the ConstantArrays we just
512   // created to hold the bytes of the strings.
513   llvm::GlobalValue *annoGV =
514     new llvm::GlobalVariable(*M, anno->getType(), false,
515                              llvm::GlobalValue::PrivateLinkage, anno,
516                              GV->getName());
517   // translation unit name string, emitted into the llvm.metadata section.
518   llvm::GlobalValue *unitGV =
519     new llvm::GlobalVariable(*M, unit->getType(), false,
520                              llvm::GlobalValue::PrivateLinkage, unit,
521                              ".str");
522 
523   // Create the ConstantStruct for the global annotation.
524   llvm::Constant *Fields[4] = {
525     llvm::ConstantExpr::getBitCast(GV, SBP),
526     llvm::ConstantExpr::getBitCast(annoGV, SBP),
527     llvm::ConstantExpr::getBitCast(unitGV, SBP),
528     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
529   };
530   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
531 }
532 
533 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
534   // Never defer when EmitAllDecls is specified or the decl has
535   // attribute used.
536   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
537     return false;
538 
539   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
540     // Constructors and destructors should never be deferred.
541     if (FD->hasAttr<ConstructorAttr>() ||
542         FD->hasAttr<DestructorAttr>())
543       return false;
544 
545     // The key function for a class must never be deferred.
546     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
547       const CXXRecordDecl *RD = MD->getParent();
548       if (MD->isOutOfLine() && RD->isDynamicClass()) {
549         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
550         if (KeyFunction == MD->getCanonicalDecl())
551           return false;
552       }
553     }
554 
555     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
556 
557     // static, static inline, always_inline, and extern inline functions can
558     // always be deferred.  Normal inline functions can be deferred in C99/C++.
559     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
560         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
561       return true;
562     return false;
563   }
564 
565   const VarDecl *VD = cast<VarDecl>(Global);
566   assert(VD->isFileVarDecl() && "Invalid decl");
567 
568   // We never want to defer structs that have non-trivial constructors or
569   // destructors.
570 
571   // FIXME: Handle references.
572   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
573     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
574       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
575         return false;
576     }
577   }
578 
579   // Static data may be deferred, but out-of-line static data members
580   // cannot be.
581   if (VD->isInAnonymousNamespace())
582     return true;
583   if (VD->getLinkage() == VarDecl::InternalLinkage) {
584     // Initializer has side effects?
585     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
586       return false;
587     return !(VD->isStaticDataMember() && VD->isOutOfLine());
588   }
589   return false;
590 }
591 
592 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
593   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
594 
595   // If this is an alias definition (which otherwise looks like a declaration)
596   // emit it now.
597   if (Global->hasAttr<AliasAttr>())
598     return EmitAliasDefinition(Global);
599 
600   // Ignore declarations, they will be emitted on their first use.
601   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
602     // Forward declarations are emitted lazily on first use.
603     if (!FD->isThisDeclarationADefinition())
604       return;
605   } else {
606     const VarDecl *VD = cast<VarDecl>(Global);
607     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
608 
609     if (getLangOptions().CPlusPlus && !VD->getInit()) {
610       // In C++, if this is marked "extern", defer code generation.
611       if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC())
612         return;
613 
614       // If this is a declaration of an explicit specialization of a static
615       // data member in a class template, don't emit it.
616       if (VD->isStaticDataMember() &&
617           VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
618         return;
619     }
620 
621     // In C, if this isn't a definition, defer code generation.
622     if (!getLangOptions().CPlusPlus && !VD->getInit())
623       return;
624   }
625 
626   // Defer code generation when possible if this is a static definition, inline
627   // function etc.  These we only want to emit if they are used.
628   if (MayDeferGeneration(Global)) {
629     // If the value has already been used, add it directly to the
630     // DeferredDeclsToEmit list.
631     const char *MangledName = getMangledName(GD);
632     if (GlobalDeclMap.count(MangledName))
633       DeferredDeclsToEmit.push_back(GD);
634     else {
635       // Otherwise, remember that we saw a deferred decl with this name.  The
636       // first use of the mangled name will cause it to move into
637       // DeferredDeclsToEmit.
638       DeferredDecls[MangledName] = GD;
639     }
640     return;
641   }
642 
643   // Otherwise emit the definition.
644   EmitGlobalDefinition(GD);
645 }
646 
647 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
648   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
649 
650   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
651                                  Context.getSourceManager(),
652                                  "Generating code for declaration");
653 
654   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
655     getVtableInfo().MaybeEmitVtable(GD);
656     if (MD->isVirtual() && MD->isOutOfLine() &&
657         (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) {
658       if (isa<CXXDestructorDecl>(D)) {
659         GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()),
660                            GD.getDtorType());
661         BuildThunksForVirtual(CanonGD);
662       } else {
663         BuildThunksForVirtual(MD->getCanonicalDecl());
664       }
665     }
666   }
667 
668   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
669     EmitCXXConstructor(CD, GD.getCtorType());
670   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
671     EmitCXXDestructor(DD, GD.getDtorType());
672   else if (isa<FunctionDecl>(D))
673     EmitGlobalFunctionDefinition(GD);
674   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
675     EmitGlobalVarDefinition(VD);
676   else {
677     assert(0 && "Invalid argument to EmitGlobalDefinition()");
678   }
679 }
680 
681 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
682 /// module, create and return an llvm Function with the specified type. If there
683 /// is something in the module with the specified name, return it potentially
684 /// bitcasted to the right type.
685 ///
686 /// If D is non-null, it specifies a decl that correspond to this.  This is used
687 /// to set the attributes on the function when it is first created.
688 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
689                                                        const llvm::Type *Ty,
690                                                        GlobalDecl D) {
691   // Lookup the entry, lazily creating it if necessary.
692   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
693   if (Entry) {
694     if (Entry->getType()->getElementType() == Ty)
695       return Entry;
696 
697     // Make sure the result is of the correct type.
698     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
699     return llvm::ConstantExpr::getBitCast(Entry, PTy);
700   }
701 
702   // This function doesn't have a complete type (for example, the return
703   // type is an incomplete struct). Use a fake type instead, and make
704   // sure not to try to set attributes.
705   bool IsIncompleteFunction = false;
706   if (!isa<llvm::FunctionType>(Ty)) {
707     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
708                                  std::vector<const llvm::Type*>(), false);
709     IsIncompleteFunction = true;
710   }
711   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
712                                              llvm::Function::ExternalLinkage,
713                                              "", &getModule());
714   F->setName(MangledName);
715   if (D.getDecl())
716     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
717                           IsIncompleteFunction);
718   Entry = F;
719 
720   // This is the first use or definition of a mangled name.  If there is a
721   // deferred decl with this name, remember that we need to emit it at the end
722   // of the file.
723   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
724     DeferredDecls.find(MangledName);
725   if (DDI != DeferredDecls.end()) {
726     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
727     // list, and remove it from DeferredDecls (since we don't need it anymore).
728     DeferredDeclsToEmit.push_back(DDI->second);
729     DeferredDecls.erase(DDI);
730   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
731     // If this the first reference to a C++ inline function in a class, queue up
732     // the deferred function body for emission.  These are not seen as
733     // top-level declarations.
734     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
735       DeferredDeclsToEmit.push_back(D);
736     // A called constructor which has no definition or declaration need be
737     // synthesized.
738     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
739       if (CD->isImplicit())
740         DeferredDeclsToEmit.push_back(D);
741     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
742       if (DD->isImplicit())
743         DeferredDeclsToEmit.push_back(D);
744     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
745       if (MD->isCopyAssignment() && MD->isImplicit())
746         DeferredDeclsToEmit.push_back(D);
747     }
748   }
749 
750   return F;
751 }
752 
753 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
754 /// non-null, then this function will use the specified type if it has to
755 /// create it (this occurs when we see a definition of the function).
756 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
757                                                  const llvm::Type *Ty) {
758   // If there was no specific requested type, just convert it now.
759   if (!Ty)
760     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
761   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
762 }
763 
764 /// CreateRuntimeFunction - Create a new runtime function with the specified
765 /// type and name.
766 llvm::Constant *
767 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
768                                      const char *Name) {
769   // Convert Name to be a uniqued string from the IdentifierInfo table.
770   Name = getContext().Idents.get(Name).getNameStart();
771   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
772 }
773 
774 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
775   if (!D->getType().isConstant(Context))
776     return false;
777   if (Context.getLangOptions().CPlusPlus &&
778       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
779     // FIXME: We should do something fancier here!
780     return false;
781   }
782   return true;
783 }
784 
785 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
786 /// create and return an llvm GlobalVariable with the specified type.  If there
787 /// is something in the module with the specified name, return it potentially
788 /// bitcasted to the right type.
789 ///
790 /// If D is non-null, it specifies a decl that correspond to this.  This is used
791 /// to set the attributes on the global when it is first created.
792 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
793                                                      const llvm::PointerType*Ty,
794                                                      const VarDecl *D) {
795   // Lookup the entry, lazily creating it if necessary.
796   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
797   if (Entry) {
798     if (Entry->getType() == Ty)
799       return Entry;
800 
801     // Make sure the result is of the correct type.
802     return llvm::ConstantExpr::getBitCast(Entry, Ty);
803   }
804 
805   // This is the first use or definition of a mangled name.  If there is a
806   // deferred decl with this name, remember that we need to emit it at the end
807   // of the file.
808   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
809     DeferredDecls.find(MangledName);
810   if (DDI != DeferredDecls.end()) {
811     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
812     // list, and remove it from DeferredDecls (since we don't need it anymore).
813     DeferredDeclsToEmit.push_back(DDI->second);
814     DeferredDecls.erase(DDI);
815   }
816 
817   llvm::GlobalVariable *GV =
818     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
819                              llvm::GlobalValue::ExternalLinkage,
820                              0, "", 0,
821                              false, Ty->getAddressSpace());
822   GV->setName(MangledName);
823 
824   // Handle things which are present even on external declarations.
825   if (D) {
826     // FIXME: This code is overly simple and should be merged with other global
827     // handling.
828     GV->setConstant(DeclIsConstantGlobal(Context, D));
829 
830     // FIXME: Merge with other attribute handling code.
831     if (D->getStorageClass() == VarDecl::PrivateExtern)
832       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
833 
834     if (D->hasAttr<WeakAttr>() ||
835         D->hasAttr<WeakImportAttr>())
836       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
837 
838     GV->setThreadLocal(D->isThreadSpecified());
839   }
840 
841   return Entry = GV;
842 }
843 
844 
845 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
846 /// given global variable.  If Ty is non-null and if the global doesn't exist,
847 /// then it will be greated with the specified type instead of whatever the
848 /// normal requested type would be.
849 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
850                                                   const llvm::Type *Ty) {
851   assert(D->hasGlobalStorage() && "Not a global variable");
852   QualType ASTTy = D->getType();
853   if (Ty == 0)
854     Ty = getTypes().ConvertTypeForMem(ASTTy);
855 
856   const llvm::PointerType *PTy =
857     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
858   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
859 }
860 
861 /// CreateRuntimeVariable - Create a new runtime global variable with the
862 /// specified type and name.
863 llvm::Constant *
864 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
865                                      const char *Name) {
866   // Convert Name to be a uniqued string from the IdentifierInfo table.
867   Name = getContext().Idents.get(Name).getNameStart();
868   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
869 }
870 
871 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
872   assert(!D->getInit() && "Cannot emit definite definitions here!");
873 
874   if (MayDeferGeneration(D)) {
875     // If we have not seen a reference to this variable yet, place it
876     // into the deferred declarations table to be emitted if needed
877     // later.
878     const char *MangledName = getMangledName(D);
879     if (GlobalDeclMap.count(MangledName) == 0) {
880       DeferredDecls[MangledName] = D;
881       return;
882     }
883   }
884 
885   // The tentative definition is the only definition.
886   EmitGlobalVarDefinition(D);
887 }
888 
889 static CodeGenModule::GVALinkage
890 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
891   // Everything located semantically within an anonymous namespace is
892   // always internal.
893   if (VD->isInAnonymousNamespace())
894     return CodeGenModule::GVA_Internal;
895 
896   // Handle linkage for static data members.
897   if (VD->isStaticDataMember()) {
898     switch (VD->getTemplateSpecializationKind()) {
899     case TSK_Undeclared:
900     case TSK_ExplicitSpecialization:
901     case TSK_ExplicitInstantiationDefinition:
902       return CodeGenModule::GVA_StrongExternal;
903 
904     case TSK_ExplicitInstantiationDeclaration:
905       llvm_unreachable("Variable should not be instantiated");
906       // Fall through to treat this like any other instantiation.
907 
908     case TSK_ImplicitInstantiation:
909       return CodeGenModule::GVA_TemplateInstantiation;
910     }
911   }
912 
913   if (VD->getLinkage() == VarDecl::InternalLinkage)
914     return CodeGenModule::GVA_Internal;
915 
916   return CodeGenModule::GVA_StrongExternal;
917 }
918 
919 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
920   llvm::Constant *Init = 0;
921   QualType ASTTy = D->getType();
922 
923   if (D->getInit() == 0) {
924     // This is a tentative definition; tentative definitions are
925     // implicitly initialized with { 0 }.
926     //
927     // Note that tentative definitions are only emitted at the end of
928     // a translation unit, so they should never have incomplete
929     // type. In addition, EmitTentativeDefinition makes sure that we
930     // never attempt to emit a tentative definition if a real one
931     // exists. A use may still exists, however, so we still may need
932     // to do a RAUW.
933     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
934     Init = EmitNullConstant(D->getType());
935   } else {
936     Init = EmitConstantExpr(D->getInit(), D->getType());
937 
938     if (!Init) {
939       QualType T = D->getInit()->getType();
940       if (getLangOptions().CPlusPlus) {
941         CXXGlobalInits.push_back(D);
942         Init = EmitNullConstant(T);
943       } else {
944         ErrorUnsupported(D, "static initializer");
945         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
946       }
947     }
948   }
949 
950   const llvm::Type* InitType = Init->getType();
951   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
952 
953   // Strip off a bitcast if we got one back.
954   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
955     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
956            // all zero index gep.
957            CE->getOpcode() == llvm::Instruction::GetElementPtr);
958     Entry = CE->getOperand(0);
959   }
960 
961   // Entry is now either a Function or GlobalVariable.
962   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
963 
964   // We have a definition after a declaration with the wrong type.
965   // We must make a new GlobalVariable* and update everything that used OldGV
966   // (a declaration or tentative definition) with the new GlobalVariable*
967   // (which will be a definition).
968   //
969   // This happens if there is a prototype for a global (e.g.
970   // "extern int x[];") and then a definition of a different type (e.g.
971   // "int x[10];"). This also happens when an initializer has a different type
972   // from the type of the global (this happens with unions).
973   if (GV == 0 ||
974       GV->getType()->getElementType() != InitType ||
975       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
976 
977     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
978     GlobalDeclMap.erase(getMangledName(D));
979 
980     // Make a new global with the correct type, this is now guaranteed to work.
981     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
982     GV->takeName(cast<llvm::GlobalValue>(Entry));
983 
984     // Replace all uses of the old global with the new global
985     llvm::Constant *NewPtrForOldDecl =
986         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
987     Entry->replaceAllUsesWith(NewPtrForOldDecl);
988 
989     // Erase the old global, since it is no longer used.
990     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
991   }
992 
993   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
994     SourceManager &SM = Context.getSourceManager();
995     AddAnnotation(EmitAnnotateAttr(GV, AA,
996                               SM.getInstantiationLineNumber(D->getLocation())));
997   }
998 
999   GV->setInitializer(Init);
1000 
1001   // If it is safe to mark the global 'constant', do so now.
1002   GV->setConstant(false);
1003   if (DeclIsConstantGlobal(Context, D))
1004     GV->setConstant(true);
1005 
1006   GV->setAlignment(getContext().getDeclAlignInBytes(D));
1007 
1008   // Set the llvm linkage type as appropriate.
1009   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1010   if (Linkage == GVA_Internal)
1011     GV->setLinkage(llvm::Function::InternalLinkage);
1012   else if (D->hasAttr<DLLImportAttr>())
1013     GV->setLinkage(llvm::Function::DLLImportLinkage);
1014   else if (D->hasAttr<DLLExportAttr>())
1015     GV->setLinkage(llvm::Function::DLLExportLinkage);
1016   else if (D->hasAttr<WeakAttr>()) {
1017     if (GV->isConstant())
1018       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1019     else
1020       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1021   } else if (Linkage == GVA_TemplateInstantiation)
1022     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1023   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1024            !D->hasExternalStorage() && !D->getInit() &&
1025            !D->getAttr<SectionAttr>()) {
1026     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1027     // common vars aren't constant even if declared const.
1028     GV->setConstant(false);
1029   } else
1030     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1031 
1032   SetCommonAttributes(D, GV);
1033 
1034   // Emit global variable debug information.
1035   if (CGDebugInfo *DI = getDebugInfo()) {
1036     DI->setLocation(D->getLocation());
1037     DI->EmitGlobalVariable(GV, D);
1038   }
1039 }
1040 
1041 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1042 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1043 /// existing call uses of the old function in the module, this adjusts them to
1044 /// call the new function directly.
1045 ///
1046 /// This is not just a cleanup: the always_inline pass requires direct calls to
1047 /// functions to be able to inline them.  If there is a bitcast in the way, it
1048 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1049 /// run at -O0.
1050 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1051                                                       llvm::Function *NewFn) {
1052   // If we're redefining a global as a function, don't transform it.
1053   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1054   if (OldFn == 0) return;
1055 
1056   const llvm::Type *NewRetTy = NewFn->getReturnType();
1057   llvm::SmallVector<llvm::Value*, 4> ArgList;
1058 
1059   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1060        UI != E; ) {
1061     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1062     unsigned OpNo = UI.getOperandNo();
1063     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1064     if (!CI || OpNo != 0) continue;
1065 
1066     // If the return types don't match exactly, and if the call isn't dead, then
1067     // we can't transform this call.
1068     if (CI->getType() != NewRetTy && !CI->use_empty())
1069       continue;
1070 
1071     // If the function was passed too few arguments, don't transform.  If extra
1072     // arguments were passed, we silently drop them.  If any of the types
1073     // mismatch, we don't transform.
1074     unsigned ArgNo = 0;
1075     bool DontTransform = false;
1076     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1077          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1078       if (CI->getNumOperands()-1 == ArgNo ||
1079           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1080         DontTransform = true;
1081         break;
1082       }
1083     }
1084     if (DontTransform)
1085       continue;
1086 
1087     // Okay, we can transform this.  Create the new call instruction and copy
1088     // over the required information.
1089     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1090     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1091                                                      ArgList.end(), "", CI);
1092     ArgList.clear();
1093     if (!NewCall->getType()->isVoidTy())
1094       NewCall->takeName(CI);
1095     NewCall->setAttributes(CI->getAttributes());
1096     NewCall->setCallingConv(CI->getCallingConv());
1097 
1098     // Finally, remove the old call, replacing any uses with the new one.
1099     if (!CI->use_empty())
1100       CI->replaceAllUsesWith(NewCall);
1101 
1102     // Copy any custom metadata attached with CI.
1103     if (llvm::MDNode *DbgNode = CI->getMetadata("dbg"))
1104       NewCall->setMetadata("dbg", DbgNode);
1105     CI->eraseFromParent();
1106   }
1107 }
1108 
1109 
1110 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1111   const llvm::FunctionType *Ty;
1112   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1113 
1114   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1115     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1116 
1117     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1118   } else {
1119     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1120 
1121     // As a special case, make sure that definitions of K&R function
1122     // "type foo()" aren't declared as varargs (which forces the backend
1123     // to do unnecessary work).
1124     if (D->getType()->isFunctionNoProtoType()) {
1125       assert(Ty->isVarArg() && "Didn't lower type as expected");
1126       // Due to stret, the lowered function could have arguments.
1127       // Just create the same type as was lowered by ConvertType
1128       // but strip off the varargs bit.
1129       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1130       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1131     }
1132   }
1133 
1134   // Get or create the prototype for the function.
1135   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1136 
1137   // Strip off a bitcast if we got one back.
1138   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1139     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1140     Entry = CE->getOperand(0);
1141   }
1142 
1143 
1144   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1145     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1146 
1147     // If the types mismatch then we have to rewrite the definition.
1148     assert(OldFn->isDeclaration() &&
1149            "Shouldn't replace non-declaration");
1150 
1151     // F is the Function* for the one with the wrong type, we must make a new
1152     // Function* and update everything that used F (a declaration) with the new
1153     // Function* (which will be a definition).
1154     //
1155     // This happens if there is a prototype for a function
1156     // (e.g. "int f()") and then a definition of a different type
1157     // (e.g. "int f(int x)").  Start by making a new function of the
1158     // correct type, RAUW, then steal the name.
1159     GlobalDeclMap.erase(getMangledName(D));
1160     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1161     NewFn->takeName(OldFn);
1162 
1163     // If this is an implementation of a function without a prototype, try to
1164     // replace any existing uses of the function (which may be calls) with uses
1165     // of the new function
1166     if (D->getType()->isFunctionNoProtoType()) {
1167       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1168       OldFn->removeDeadConstantUsers();
1169     }
1170 
1171     // Replace uses of F with the Function we will endow with a body.
1172     if (!Entry->use_empty()) {
1173       llvm::Constant *NewPtrForOldDecl =
1174         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1175       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1176     }
1177 
1178     // Ok, delete the old function now, which is dead.
1179     OldFn->eraseFromParent();
1180 
1181     Entry = NewFn;
1182   }
1183 
1184   llvm::Function *Fn = cast<llvm::Function>(Entry);
1185 
1186   CodeGenFunction(*this).GenerateCode(D, Fn);
1187 
1188   SetFunctionDefinitionAttributes(D, Fn);
1189   SetLLVMFunctionAttributesForDefinition(D, Fn);
1190 
1191   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1192     AddGlobalCtor(Fn, CA->getPriority());
1193   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1194     AddGlobalDtor(Fn, DA->getPriority());
1195 }
1196 
1197 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1198   const AliasAttr *AA = D->getAttr<AliasAttr>();
1199   assert(AA && "Not an alias?");
1200 
1201   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1202 
1203   // Unique the name through the identifier table.
1204   const char *AliaseeName = AA->getAliasee().c_str();
1205   AliaseeName = getContext().Idents.get(AliaseeName).getNameStart();
1206 
1207   // Create a reference to the named value.  This ensures that it is emitted
1208   // if a deferred decl.
1209   llvm::Constant *Aliasee;
1210   if (isa<llvm::FunctionType>(DeclTy))
1211     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1212   else
1213     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1214                                     llvm::PointerType::getUnqual(DeclTy), 0);
1215 
1216   // Create the new alias itself, but don't set a name yet.
1217   llvm::GlobalValue *GA =
1218     new llvm::GlobalAlias(Aliasee->getType(),
1219                           llvm::Function::ExternalLinkage,
1220                           "", Aliasee, &getModule());
1221 
1222   // See if there is already something with the alias' name in the module.
1223   const char *MangledName = getMangledName(D);
1224   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1225 
1226   if (Entry && !Entry->isDeclaration()) {
1227     // If there is a definition in the module, then it wins over the alias.
1228     // This is dubious, but allow it to be safe.  Just ignore the alias.
1229     GA->eraseFromParent();
1230     return;
1231   }
1232 
1233   if (Entry) {
1234     // If there is a declaration in the module, then we had an extern followed
1235     // by the alias, as in:
1236     //   extern int test6();
1237     //   ...
1238     //   int test6() __attribute__((alias("test7")));
1239     //
1240     // Remove it and replace uses of it with the alias.
1241 
1242     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1243                                                           Entry->getType()));
1244     Entry->eraseFromParent();
1245   }
1246 
1247   // Now we know that there is no conflict, set the name.
1248   Entry = GA;
1249   GA->setName(MangledName);
1250 
1251   // Set attributes which are particular to an alias; this is a
1252   // specialization of the attributes which may be set on a global
1253   // variable/function.
1254   if (D->hasAttr<DLLExportAttr>()) {
1255     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1256       // The dllexport attribute is ignored for undefined symbols.
1257       if (FD->getBody())
1258         GA->setLinkage(llvm::Function::DLLExportLinkage);
1259     } else {
1260       GA->setLinkage(llvm::Function::DLLExportLinkage);
1261     }
1262   } else if (D->hasAttr<WeakAttr>() ||
1263              D->hasAttr<WeakImportAttr>()) {
1264     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1265   }
1266 
1267   SetCommonAttributes(D, GA);
1268 }
1269 
1270 /// getBuiltinLibFunction - Given a builtin id for a function like
1271 /// "__builtin_fabsf", return a Function* for "fabsf".
1272 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1273                                                   unsigned BuiltinID) {
1274   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1275           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1276          "isn't a lib fn");
1277 
1278   // Get the name, skip over the __builtin_ prefix (if necessary).
1279   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1280   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1281     Name += 10;
1282 
1283   const llvm::FunctionType *Ty =
1284     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1285 
1286   // Unique the name through the identifier table.
1287   Name = getContext().Idents.get(Name).getNameStart();
1288   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1289 }
1290 
1291 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1292                                             unsigned NumTys) {
1293   return llvm::Intrinsic::getDeclaration(&getModule(),
1294                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1295 }
1296 
1297 llvm::Function *CodeGenModule::getMemCpyFn() {
1298   if (MemCpyFn) return MemCpyFn;
1299   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1300   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1301 }
1302 
1303 llvm::Function *CodeGenModule::getMemMoveFn() {
1304   if (MemMoveFn) return MemMoveFn;
1305   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1306   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1307 }
1308 
1309 llvm::Function *CodeGenModule::getMemSetFn() {
1310   if (MemSetFn) return MemSetFn;
1311   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1312   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1313 }
1314 
1315 static llvm::StringMapEntry<llvm::Constant*> &
1316 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1317                          const StringLiteral *Literal,
1318                          bool TargetIsLSB,
1319                          bool &IsUTF16,
1320                          unsigned &StringLength) {
1321   unsigned NumBytes = Literal->getByteLength();
1322 
1323   // Check for simple case.
1324   if (!Literal->containsNonAsciiOrNull()) {
1325     StringLength = NumBytes;
1326     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1327                                                 StringLength));
1328   }
1329 
1330   // Otherwise, convert the UTF8 literals into a byte string.
1331   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1332   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1333   UTF16 *ToPtr = &ToBuf[0];
1334 
1335   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1336                                                &ToPtr, ToPtr + NumBytes,
1337                                                strictConversion);
1338 
1339   // Check for conversion failure.
1340   if (Result != conversionOK) {
1341     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1342     // this duplicate code.
1343     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1344     StringLength = NumBytes;
1345     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1346                                                 StringLength));
1347   }
1348 
1349   // ConvertUTF8toUTF16 returns the length in ToPtr.
1350   StringLength = ToPtr - &ToBuf[0];
1351 
1352   // Render the UTF-16 string into a byte array and convert to the target byte
1353   // order.
1354   //
1355   // FIXME: This isn't something we should need to do here.
1356   llvm::SmallString<128> AsBytes;
1357   AsBytes.reserve(StringLength * 2);
1358   for (unsigned i = 0; i != StringLength; ++i) {
1359     unsigned short Val = ToBuf[i];
1360     if (TargetIsLSB) {
1361       AsBytes.push_back(Val & 0xFF);
1362       AsBytes.push_back(Val >> 8);
1363     } else {
1364       AsBytes.push_back(Val >> 8);
1365       AsBytes.push_back(Val & 0xFF);
1366     }
1367   }
1368   // Append one extra null character, the second is automatically added by our
1369   // caller.
1370   AsBytes.push_back(0);
1371 
1372   IsUTF16 = true;
1373   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1374 }
1375 
1376 llvm::Constant *
1377 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1378   unsigned StringLength = 0;
1379   bool isUTF16 = false;
1380   llvm::StringMapEntry<llvm::Constant*> &Entry =
1381     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1382                              getTargetData().isLittleEndian(),
1383                              isUTF16, StringLength);
1384 
1385   if (llvm::Constant *C = Entry.getValue())
1386     return C;
1387 
1388   llvm::Constant *Zero =
1389       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1390   llvm::Constant *Zeros[] = { Zero, Zero };
1391 
1392   // If we don't already have it, get __CFConstantStringClassReference.
1393   if (!CFConstantStringClassRef) {
1394     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1395     Ty = llvm::ArrayType::get(Ty, 0);
1396     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1397                                            "__CFConstantStringClassReference");
1398     // Decay array -> ptr
1399     CFConstantStringClassRef =
1400       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1401   }
1402 
1403   QualType CFTy = getContext().getCFConstantStringType();
1404 
1405   const llvm::StructType *STy =
1406     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1407 
1408   std::vector<llvm::Constant*> Fields(4);
1409 
1410   // Class pointer.
1411   Fields[0] = CFConstantStringClassRef;
1412 
1413   // Flags.
1414   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1415   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1416     llvm::ConstantInt::get(Ty, 0x07C8);
1417 
1418   // String pointer.
1419   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1420 
1421   const char *Sect = 0;
1422   llvm::GlobalValue::LinkageTypes Linkage;
1423   bool isConstant;
1424   if (isUTF16) {
1425     Sect = getContext().Target.getUnicodeStringSection();
1426     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1427     Linkage = llvm::GlobalValue::InternalLinkage;
1428     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1429     // does make plain ascii ones writable.
1430     isConstant = true;
1431   } else {
1432     Linkage = llvm::GlobalValue::PrivateLinkage;
1433     isConstant = !Features.WritableStrings;
1434   }
1435 
1436   llvm::GlobalVariable *GV =
1437     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1438                              ".str");
1439   if (Sect)
1440     GV->setSection(Sect);
1441   if (isUTF16) {
1442     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1443     GV->setAlignment(Align);
1444   }
1445   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1446 
1447   // String length.
1448   Ty = getTypes().ConvertType(getContext().LongTy);
1449   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1450 
1451   // The struct.
1452   C = llvm::ConstantStruct::get(STy, Fields);
1453   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1454                                 llvm::GlobalVariable::PrivateLinkage, C,
1455                                 "_unnamed_cfstring_");
1456   if (const char *Sect = getContext().Target.getCFStringSection())
1457     GV->setSection(Sect);
1458   Entry.setValue(GV);
1459 
1460   return GV;
1461 }
1462 
1463 /// GetStringForStringLiteral - Return the appropriate bytes for a
1464 /// string literal, properly padded to match the literal type.
1465 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1466   const char *StrData = E->getStrData();
1467   unsigned Len = E->getByteLength();
1468 
1469   const ConstantArrayType *CAT =
1470     getContext().getAsConstantArrayType(E->getType());
1471   assert(CAT && "String isn't pointer or array!");
1472 
1473   // Resize the string to the right size.
1474   std::string Str(StrData, StrData+Len);
1475   uint64_t RealLen = CAT->getSize().getZExtValue();
1476 
1477   if (E->isWide())
1478     RealLen *= getContext().Target.getWCharWidth()/8;
1479 
1480   Str.resize(RealLen, '\0');
1481 
1482   return Str;
1483 }
1484 
1485 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1486 /// constant array for the given string literal.
1487 llvm::Constant *
1488 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1489   // FIXME: This can be more efficient.
1490   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1491   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1492   if (S->isWide()) {
1493     llvm::Type *DestTy =
1494         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1495     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1496   }
1497   return C;
1498 }
1499 
1500 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1501 /// array for the given ObjCEncodeExpr node.
1502 llvm::Constant *
1503 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1504   std::string Str;
1505   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1506 
1507   return GetAddrOfConstantCString(Str);
1508 }
1509 
1510 
1511 /// GenerateWritableString -- Creates storage for a string literal.
1512 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1513                                              bool constant,
1514                                              CodeGenModule &CGM,
1515                                              const char *GlobalName) {
1516   // Create Constant for this string literal. Don't add a '\0'.
1517   llvm::Constant *C =
1518       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1519 
1520   // Create a global variable for this string
1521   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1522                                   llvm::GlobalValue::PrivateLinkage,
1523                                   C, GlobalName);
1524 }
1525 
1526 /// GetAddrOfConstantString - Returns a pointer to a character array
1527 /// containing the literal. This contents are exactly that of the
1528 /// given string, i.e. it will not be null terminated automatically;
1529 /// see GetAddrOfConstantCString. Note that whether the result is
1530 /// actually a pointer to an LLVM constant depends on
1531 /// Feature.WriteableStrings.
1532 ///
1533 /// The result has pointer to array type.
1534 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1535                                                        const char *GlobalName) {
1536   bool IsConstant = !Features.WritableStrings;
1537 
1538   // Get the default prefix if a name wasn't specified.
1539   if (!GlobalName)
1540     GlobalName = ".str";
1541 
1542   // Don't share any string literals if strings aren't constant.
1543   if (!IsConstant)
1544     return GenerateStringLiteral(str, false, *this, GlobalName);
1545 
1546   llvm::StringMapEntry<llvm::Constant *> &Entry =
1547     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1548 
1549   if (Entry.getValue())
1550     return Entry.getValue();
1551 
1552   // Create a global variable for this.
1553   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1554   Entry.setValue(C);
1555   return C;
1556 }
1557 
1558 /// GetAddrOfConstantCString - Returns a pointer to a character
1559 /// array containing the literal and a terminating '\-'
1560 /// character. The result has pointer to array type.
1561 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1562                                                         const char *GlobalName){
1563   return GetAddrOfConstantString(str + '\0', GlobalName);
1564 }
1565 
1566 /// EmitObjCPropertyImplementations - Emit information for synthesized
1567 /// properties for an implementation.
1568 void CodeGenModule::EmitObjCPropertyImplementations(const
1569                                                     ObjCImplementationDecl *D) {
1570   for (ObjCImplementationDecl::propimpl_iterator
1571          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1572     ObjCPropertyImplDecl *PID = *i;
1573 
1574     // Dynamic is just for type-checking.
1575     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1576       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1577 
1578       // Determine which methods need to be implemented, some may have
1579       // been overridden. Note that ::isSynthesized is not the method
1580       // we want, that just indicates if the decl came from a
1581       // property. What we want to know is if the method is defined in
1582       // this implementation.
1583       if (!D->getInstanceMethod(PD->getGetterName()))
1584         CodeGenFunction(*this).GenerateObjCGetter(
1585                                  const_cast<ObjCImplementationDecl *>(D), PID);
1586       if (!PD->isReadOnly() &&
1587           !D->getInstanceMethod(PD->getSetterName()))
1588         CodeGenFunction(*this).GenerateObjCSetter(
1589                                  const_cast<ObjCImplementationDecl *>(D), PID);
1590     }
1591   }
1592 }
1593 
1594 /// EmitNamespace - Emit all declarations in a namespace.
1595 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1596   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1597        I != E; ++I)
1598     EmitTopLevelDecl(*I);
1599 }
1600 
1601 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1602 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1603   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1604       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1605     ErrorUnsupported(LSD, "linkage spec");
1606     return;
1607   }
1608 
1609   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1610        I != E; ++I)
1611     EmitTopLevelDecl(*I);
1612 }
1613 
1614 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1615 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1616   // If an error has occurred, stop code generation, but continue
1617   // parsing and semantic analysis (to ensure all warnings and errors
1618   // are emitted).
1619   if (Diags.hasErrorOccurred())
1620     return;
1621 
1622   // Ignore dependent declarations.
1623   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1624     return;
1625 
1626   switch (D->getKind()) {
1627   case Decl::CXXConversion:
1628   case Decl::CXXMethod:
1629   case Decl::Function:
1630     // Skip function templates
1631     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1632       return;
1633 
1634     EmitGlobal(cast<FunctionDecl>(D));
1635     break;
1636 
1637   case Decl::Var:
1638     EmitGlobal(cast<VarDecl>(D));
1639     break;
1640 
1641   // C++ Decls
1642   case Decl::Namespace:
1643     EmitNamespace(cast<NamespaceDecl>(D));
1644     break;
1645     // No code generation needed.
1646   case Decl::UsingShadow:
1647   case Decl::Using:
1648   case Decl::UsingDirective:
1649   case Decl::ClassTemplate:
1650   case Decl::FunctionTemplate:
1651   case Decl::NamespaceAlias:
1652     break;
1653   case Decl::CXXConstructor:
1654     // Skip function templates
1655     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1656       return;
1657 
1658     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1659     break;
1660   case Decl::CXXDestructor:
1661     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1662     break;
1663 
1664   case Decl::StaticAssert:
1665     // Nothing to do.
1666     break;
1667 
1668   // Objective-C Decls
1669 
1670   // Forward declarations, no (immediate) code generation.
1671   case Decl::ObjCClass:
1672   case Decl::ObjCForwardProtocol:
1673   case Decl::ObjCCategory:
1674   case Decl::ObjCInterface:
1675     break;
1676 
1677   case Decl::ObjCProtocol:
1678     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1679     break;
1680 
1681   case Decl::ObjCCategoryImpl:
1682     // Categories have properties but don't support synthesize so we
1683     // can ignore them here.
1684     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1685     break;
1686 
1687   case Decl::ObjCImplementation: {
1688     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1689     EmitObjCPropertyImplementations(OMD);
1690     Runtime->GenerateClass(OMD);
1691     break;
1692   }
1693   case Decl::ObjCMethod: {
1694     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1695     // If this is not a prototype, emit the body.
1696     if (OMD->getBody())
1697       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1698     break;
1699   }
1700   case Decl::ObjCCompatibleAlias:
1701     // compatibility-alias is a directive and has no code gen.
1702     break;
1703 
1704   case Decl::LinkageSpec:
1705     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1706     break;
1707 
1708   case Decl::FileScopeAsm: {
1709     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1710     llvm::StringRef AsmString = AD->getAsmString()->getString();
1711 
1712     const std::string &S = getModule().getModuleInlineAsm();
1713     if (S.empty())
1714       getModule().setModuleInlineAsm(AsmString);
1715     else
1716       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1717     break;
1718   }
1719 
1720   default:
1721     // Make sure we handled everything we should, every other kind is a
1722     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1723     // function. Need to recode Decl::Kind to do that easily.
1724     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1725   }
1726 }
1727