1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/CodeGen/CodeGenOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/Basic/Builtins.h" 26 #include "clang/Basic/Diagnostic.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Basic/ConvertUTF.h" 30 #include "llvm/CallingConv.h" 31 #include "llvm/Module.h" 32 #include "llvm/Intrinsics.h" 33 #include "llvm/LLVMContext.h" 34 #include "llvm/Target/TargetData.h" 35 #include "llvm/Support/ErrorHandling.h" 36 using namespace clang; 37 using namespace CodeGen; 38 39 40 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 41 llvm::Module &M, const llvm::TargetData &TD, 42 Diagnostic &diags) 43 : BlockModule(C, M, TD, Types, *this), Context(C), 44 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 45 TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C), 46 VtableInfo(*this), Runtime(0), 47 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 48 VMContext(M.getContext()) { 49 50 if (!Features.ObjC1) 51 Runtime = 0; 52 else if (!Features.NeXTRuntime) 53 Runtime = CreateGNUObjCRuntime(*this); 54 else if (Features.ObjCNonFragileABI) 55 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 56 else 57 Runtime = CreateMacObjCRuntime(*this); 58 59 // If debug info generation is enabled, create the CGDebugInfo object. 60 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 61 } 62 63 CodeGenModule::~CodeGenModule() { 64 delete Runtime; 65 delete DebugInfo; 66 } 67 68 void CodeGenModule::Release() { 69 // We need to call this first because it can add deferred declarations. 70 EmitCXXGlobalInitFunc(); 71 72 EmitDeferred(); 73 if (Runtime) 74 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 75 AddGlobalCtor(ObjCInitFunction); 76 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 77 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 78 EmitAnnotations(); 79 EmitLLVMUsed(); 80 } 81 82 /// ErrorUnsupported - Print out an error that codegen doesn't support the 83 /// specified stmt yet. 84 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 85 bool OmitOnError) { 86 if (OmitOnError && getDiags().hasErrorOccurred()) 87 return; 88 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 89 "cannot compile this %0 yet"); 90 std::string Msg = Type; 91 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 92 << Msg << S->getSourceRange(); 93 } 94 95 /// ErrorUnsupported - Print out an error that codegen doesn't support the 96 /// specified decl yet. 97 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 98 bool OmitOnError) { 99 if (OmitOnError && getDiags().hasErrorOccurred()) 100 return; 101 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 102 "cannot compile this %0 yet"); 103 std::string Msg = Type; 104 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 105 } 106 107 LangOptions::VisibilityMode 108 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 109 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 110 if (VD->getStorageClass() == VarDecl::PrivateExtern) 111 return LangOptions::Hidden; 112 113 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 114 switch (attr->getVisibility()) { 115 default: assert(0 && "Unknown visibility!"); 116 case VisibilityAttr::DefaultVisibility: 117 return LangOptions::Default; 118 case VisibilityAttr::HiddenVisibility: 119 return LangOptions::Hidden; 120 case VisibilityAttr::ProtectedVisibility: 121 return LangOptions::Protected; 122 } 123 } 124 125 return getLangOptions().getVisibilityMode(); 126 } 127 128 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 129 const Decl *D) const { 130 // Internal definitions always have default visibility. 131 if (GV->hasLocalLinkage()) { 132 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 133 return; 134 } 135 136 switch (getDeclVisibilityMode(D)) { 137 default: assert(0 && "Unknown visibility!"); 138 case LangOptions::Default: 139 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 140 case LangOptions::Hidden: 141 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 142 case LangOptions::Protected: 143 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 144 } 145 } 146 147 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 148 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 149 150 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 151 return getMangledCXXCtorName(D, GD.getCtorType()); 152 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 153 return getMangledCXXDtorName(D, GD.getDtorType()); 154 155 return getMangledName(ND); 156 } 157 158 /// \brief Retrieves the mangled name for the given declaration. 159 /// 160 /// If the given declaration requires a mangled name, returns an 161 /// const char* containing the mangled name. Otherwise, returns 162 /// the unmangled name. 163 /// 164 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 165 if (!getMangleContext().shouldMangleDeclName(ND)) { 166 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 167 return ND->getNameAsCString(); 168 } 169 170 llvm::SmallString<256> Name; 171 getMangleContext().mangleName(ND, Name); 172 Name += '\0'; 173 return UniqueMangledName(Name.begin(), Name.end()); 174 } 175 176 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 177 const char *NameEnd) { 178 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 179 180 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 181 } 182 183 /// AddGlobalCtor - Add a function to the list that will be called before 184 /// main() runs. 185 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 186 // FIXME: Type coercion of void()* types. 187 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 188 } 189 190 /// AddGlobalDtor - Add a function to the list that will be called 191 /// when the module is unloaded. 192 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 193 // FIXME: Type coercion of void()* types. 194 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 195 } 196 197 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 198 // Ctor function type is void()*. 199 llvm::FunctionType* CtorFTy = 200 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 201 std::vector<const llvm::Type*>(), 202 false); 203 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 204 205 // Get the type of a ctor entry, { i32, void ()* }. 206 llvm::StructType* CtorStructTy = 207 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 208 llvm::PointerType::getUnqual(CtorFTy), NULL); 209 210 // Construct the constructor and destructor arrays. 211 std::vector<llvm::Constant*> Ctors; 212 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 213 std::vector<llvm::Constant*> S; 214 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 215 I->second, false)); 216 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 217 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 218 } 219 220 if (!Ctors.empty()) { 221 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 222 new llvm::GlobalVariable(TheModule, AT, false, 223 llvm::GlobalValue::AppendingLinkage, 224 llvm::ConstantArray::get(AT, Ctors), 225 GlobalName); 226 } 227 } 228 229 void CodeGenModule::EmitAnnotations() { 230 if (Annotations.empty()) 231 return; 232 233 // Create a new global variable for the ConstantStruct in the Module. 234 llvm::Constant *Array = 235 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 236 Annotations.size()), 237 Annotations); 238 llvm::GlobalValue *gv = 239 new llvm::GlobalVariable(TheModule, Array->getType(), false, 240 llvm::GlobalValue::AppendingLinkage, Array, 241 "llvm.global.annotations"); 242 gv->setSection("llvm.metadata"); 243 } 244 245 static CodeGenModule::GVALinkage 246 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 247 const LangOptions &Features) { 248 // Everything located semantically within an anonymous namespace is 249 // always internal. 250 if (FD->isInAnonymousNamespace()) 251 return CodeGenModule::GVA_Internal; 252 253 // "static" functions get internal linkage. 254 if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD)) 255 return CodeGenModule::GVA_Internal; 256 257 // The kind of external linkage this function will have, if it is not 258 // inline or static. 259 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 260 if (Context.getLangOptions().CPlusPlus) { 261 TemplateSpecializationKind TSK = FD->getTemplateSpecializationKind(); 262 263 if (TSK == TSK_ExplicitInstantiationDefinition) { 264 // If a function has been explicitly instantiated, then it should 265 // always have strong external linkage. 266 return CodeGenModule::GVA_StrongExternal; 267 } 268 269 if (TSK == TSK_ImplicitInstantiation) 270 External = CodeGenModule::GVA_TemplateInstantiation; 271 } 272 273 if (!FD->isInlined()) 274 return External; 275 276 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 277 // GNU or C99 inline semantics. Determine whether this symbol should be 278 // externally visible. 279 if (FD->isInlineDefinitionExternallyVisible()) 280 return External; 281 282 // C99 inline semantics, where the symbol is not externally visible. 283 return CodeGenModule::GVA_C99Inline; 284 } 285 286 // C++0x [temp.explicit]p9: 287 // [ Note: The intent is that an inline function that is the subject of 288 // an explicit instantiation declaration will still be implicitly 289 // instantiated when used so that the body can be considered for 290 // inlining, but that no out-of-line copy of the inline function would be 291 // generated in the translation unit. -- end note ] 292 if (FD->getTemplateSpecializationKind() 293 == TSK_ExplicitInstantiationDeclaration) 294 return CodeGenModule::GVA_C99Inline; 295 296 return CodeGenModule::GVA_CXXInline; 297 } 298 299 /// SetFunctionDefinitionAttributes - Set attributes for a global. 300 /// 301 /// FIXME: This is currently only done for aliases and functions, but not for 302 /// variables (these details are set in EmitGlobalVarDefinition for variables). 303 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 304 llvm::GlobalValue *GV) { 305 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 306 307 if (Linkage == GVA_Internal) { 308 GV->setLinkage(llvm::Function::InternalLinkage); 309 } else if (D->hasAttr<DLLExportAttr>()) { 310 GV->setLinkage(llvm::Function::DLLExportLinkage); 311 } else if (D->hasAttr<WeakAttr>()) { 312 GV->setLinkage(llvm::Function::WeakAnyLinkage); 313 } else if (Linkage == GVA_C99Inline) { 314 // In C99 mode, 'inline' functions are guaranteed to have a strong 315 // definition somewhere else, so we can use available_externally linkage. 316 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 317 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 318 // In C++, the compiler has to emit a definition in every translation unit 319 // that references the function. We should use linkonce_odr because 320 // a) if all references in this translation unit are optimized away, we 321 // don't need to codegen it. b) if the function persists, it needs to be 322 // merged with other definitions. c) C++ has the ODR, so we know the 323 // definition is dependable. 324 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 325 } else { 326 assert(Linkage == GVA_StrongExternal); 327 // Otherwise, we have strong external linkage. 328 GV->setLinkage(llvm::Function::ExternalLinkage); 329 } 330 331 SetCommonAttributes(D, GV); 332 } 333 334 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 335 const CGFunctionInfo &Info, 336 llvm::Function *F) { 337 unsigned CallingConv; 338 AttributeListType AttributeList; 339 ConstructAttributeList(Info, D, AttributeList, CallingConv); 340 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 341 AttributeList.size())); 342 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 343 } 344 345 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 346 llvm::Function *F) { 347 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 348 F->addFnAttr(llvm::Attribute::NoUnwind); 349 350 if (D->hasAttr<AlwaysInlineAttr>()) 351 F->addFnAttr(llvm::Attribute::AlwaysInline); 352 353 if (D->hasAttr<NoInlineAttr>()) 354 F->addFnAttr(llvm::Attribute::NoInline); 355 356 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 357 F->addFnAttr(llvm::Attribute::StackProtect); 358 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 359 F->addFnAttr(llvm::Attribute::StackProtectReq); 360 361 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 362 unsigned width = Context.Target.getCharWidth(); 363 F->setAlignment(AA->getAlignment() / width); 364 while ((AA = AA->getNext<AlignedAttr>())) 365 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 366 } 367 // C++ ABI requires 2-byte alignment for member functions. 368 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 369 F->setAlignment(2); 370 } 371 372 void CodeGenModule::SetCommonAttributes(const Decl *D, 373 llvm::GlobalValue *GV) { 374 setGlobalVisibility(GV, D); 375 376 if (D->hasAttr<UsedAttr>()) 377 AddUsedGlobal(GV); 378 379 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 380 GV->setSection(SA->getName()); 381 } 382 383 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 384 llvm::Function *F, 385 const CGFunctionInfo &FI) { 386 SetLLVMFunctionAttributes(D, FI, F); 387 SetLLVMFunctionAttributesForDefinition(D, F); 388 389 F->setLinkage(llvm::Function::InternalLinkage); 390 391 SetCommonAttributes(D, F); 392 } 393 394 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 395 llvm::Function *F, 396 bool IsIncompleteFunction) { 397 if (!IsIncompleteFunction) 398 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 399 400 // Only a few attributes are set on declarations; these may later be 401 // overridden by a definition. 402 403 if (FD->hasAttr<DLLImportAttr>()) { 404 F->setLinkage(llvm::Function::DLLImportLinkage); 405 } else if (FD->hasAttr<WeakAttr>() || 406 FD->hasAttr<WeakImportAttr>()) { 407 // "extern_weak" is overloaded in LLVM; we probably should have 408 // separate linkage types for this. 409 F->setLinkage(llvm::Function::ExternalWeakLinkage); 410 } else { 411 F->setLinkage(llvm::Function::ExternalLinkage); 412 } 413 414 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 415 F->setSection(SA->getName()); 416 } 417 418 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 419 assert(!GV->isDeclaration() && 420 "Only globals with definition can force usage."); 421 LLVMUsed.push_back(GV); 422 } 423 424 void CodeGenModule::EmitLLVMUsed() { 425 // Don't create llvm.used if there is no need. 426 if (LLVMUsed.empty()) 427 return; 428 429 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 430 431 // Convert LLVMUsed to what ConstantArray needs. 432 std::vector<llvm::Constant*> UsedArray; 433 UsedArray.resize(LLVMUsed.size()); 434 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 435 UsedArray[i] = 436 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 437 i8PTy); 438 } 439 440 if (UsedArray.empty()) 441 return; 442 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 443 444 llvm::GlobalVariable *GV = 445 new llvm::GlobalVariable(getModule(), ATy, false, 446 llvm::GlobalValue::AppendingLinkage, 447 llvm::ConstantArray::get(ATy, UsedArray), 448 "llvm.used"); 449 450 GV->setSection("llvm.metadata"); 451 } 452 453 void CodeGenModule::EmitDeferred() { 454 // Emit code for any potentially referenced deferred decls. Since a 455 // previously unused static decl may become used during the generation of code 456 // for a static function, iterate until no changes are made. 457 while (!DeferredDeclsToEmit.empty()) { 458 GlobalDecl D = DeferredDeclsToEmit.back(); 459 DeferredDeclsToEmit.pop_back(); 460 461 // The mangled name for the decl must have been emitted in GlobalDeclMap. 462 // Look it up to see if it was defined with a stronger definition (e.g. an 463 // extern inline function with a strong function redefinition). If so, 464 // just ignore the deferred decl. 465 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 466 assert(CGRef && "Deferred decl wasn't referenced?"); 467 468 if (!CGRef->isDeclaration()) 469 continue; 470 471 // Skip available externally functions at -O0 472 // FIXME: these aren't instantiated yet, so we can't yet do this. 473 if (0 && getCodeGenOpts().OptimizationLevel == 0) 474 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D.getDecl())) { 475 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 476 477 if (Linkage == GVA_C99Inline) 478 continue; 479 } 480 481 // Otherwise, emit the definition and move on to the next one. 482 EmitGlobalDefinition(D); 483 } 484 } 485 486 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 487 /// annotation information for a given GlobalValue. The annotation struct is 488 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 489 /// GlobalValue being annotated. The second field is the constant string 490 /// created from the AnnotateAttr's annotation. The third field is a constant 491 /// string containing the name of the translation unit. The fourth field is 492 /// the line number in the file of the annotated value declaration. 493 /// 494 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 495 /// appears to. 496 /// 497 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 498 const AnnotateAttr *AA, 499 unsigned LineNo) { 500 llvm::Module *M = &getModule(); 501 502 // get [N x i8] constants for the annotation string, and the filename string 503 // which are the 2nd and 3rd elements of the global annotation structure. 504 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 505 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 506 AA->getAnnotation(), true); 507 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 508 M->getModuleIdentifier(), 509 true); 510 511 // Get the two global values corresponding to the ConstantArrays we just 512 // created to hold the bytes of the strings. 513 llvm::GlobalValue *annoGV = 514 new llvm::GlobalVariable(*M, anno->getType(), false, 515 llvm::GlobalValue::PrivateLinkage, anno, 516 GV->getName()); 517 // translation unit name string, emitted into the llvm.metadata section. 518 llvm::GlobalValue *unitGV = 519 new llvm::GlobalVariable(*M, unit->getType(), false, 520 llvm::GlobalValue::PrivateLinkage, unit, 521 ".str"); 522 523 // Create the ConstantStruct for the global annotation. 524 llvm::Constant *Fields[4] = { 525 llvm::ConstantExpr::getBitCast(GV, SBP), 526 llvm::ConstantExpr::getBitCast(annoGV, SBP), 527 llvm::ConstantExpr::getBitCast(unitGV, SBP), 528 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 529 }; 530 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 531 } 532 533 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 534 // Never defer when EmitAllDecls is specified or the decl has 535 // attribute used. 536 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 537 return false; 538 539 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 540 // Constructors and destructors should never be deferred. 541 if (FD->hasAttr<ConstructorAttr>() || 542 FD->hasAttr<DestructorAttr>()) 543 return false; 544 545 // The key function for a class must never be deferred. 546 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 547 const CXXRecordDecl *RD = MD->getParent(); 548 if (MD->isOutOfLine() && RD->isDynamicClass()) { 549 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 550 if (KeyFunction == MD->getCanonicalDecl()) 551 return false; 552 } 553 } 554 555 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 556 557 // static, static inline, always_inline, and extern inline functions can 558 // always be deferred. Normal inline functions can be deferred in C99/C++. 559 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 560 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 561 return true; 562 return false; 563 } 564 565 const VarDecl *VD = cast<VarDecl>(Global); 566 assert(VD->isFileVarDecl() && "Invalid decl"); 567 568 // We never want to defer structs that have non-trivial constructors or 569 // destructors. 570 571 // FIXME: Handle references. 572 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 573 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 574 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 575 return false; 576 } 577 } 578 579 // Static data may be deferred, but out-of-line static data members 580 // cannot be. 581 if (VD->isInAnonymousNamespace()) 582 return true; 583 if (VD->getLinkage() == VarDecl::InternalLinkage) { 584 // Initializer has side effects? 585 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 586 return false; 587 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 588 } 589 return false; 590 } 591 592 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 593 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 594 595 // If this is an alias definition (which otherwise looks like a declaration) 596 // emit it now. 597 if (Global->hasAttr<AliasAttr>()) 598 return EmitAliasDefinition(Global); 599 600 // Ignore declarations, they will be emitted on their first use. 601 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 602 // Forward declarations are emitted lazily on first use. 603 if (!FD->isThisDeclarationADefinition()) 604 return; 605 } else { 606 const VarDecl *VD = cast<VarDecl>(Global); 607 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 608 609 if (getLangOptions().CPlusPlus && !VD->getInit()) { 610 // In C++, if this is marked "extern", defer code generation. 611 if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC()) 612 return; 613 614 // If this is a declaration of an explicit specialization of a static 615 // data member in a class template, don't emit it. 616 if (VD->isStaticDataMember() && 617 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 618 return; 619 } 620 621 // In C, if this isn't a definition, defer code generation. 622 if (!getLangOptions().CPlusPlus && !VD->getInit()) 623 return; 624 } 625 626 // Defer code generation when possible if this is a static definition, inline 627 // function etc. These we only want to emit if they are used. 628 if (MayDeferGeneration(Global)) { 629 // If the value has already been used, add it directly to the 630 // DeferredDeclsToEmit list. 631 const char *MangledName = getMangledName(GD); 632 if (GlobalDeclMap.count(MangledName)) 633 DeferredDeclsToEmit.push_back(GD); 634 else { 635 // Otherwise, remember that we saw a deferred decl with this name. The 636 // first use of the mangled name will cause it to move into 637 // DeferredDeclsToEmit. 638 DeferredDecls[MangledName] = GD; 639 } 640 return; 641 } 642 643 // Otherwise emit the definition. 644 EmitGlobalDefinition(GD); 645 } 646 647 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 648 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 649 650 PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(), 651 Context.getSourceManager(), 652 "Generating code for declaration"); 653 654 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 655 getVtableInfo().MaybeEmitVtable(GD); 656 if (MD->isVirtual() && MD->isOutOfLine() && 657 (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) { 658 if (isa<CXXDestructorDecl>(D)) { 659 GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()), 660 GD.getDtorType()); 661 BuildThunksForVirtual(CanonGD); 662 } else { 663 BuildThunksForVirtual(MD->getCanonicalDecl()); 664 } 665 } 666 } 667 668 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 669 EmitCXXConstructor(CD, GD.getCtorType()); 670 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 671 EmitCXXDestructor(DD, GD.getDtorType()); 672 else if (isa<FunctionDecl>(D)) 673 EmitGlobalFunctionDefinition(GD); 674 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 675 EmitGlobalVarDefinition(VD); 676 else { 677 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 678 } 679 } 680 681 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 682 /// module, create and return an llvm Function with the specified type. If there 683 /// is something in the module with the specified name, return it potentially 684 /// bitcasted to the right type. 685 /// 686 /// If D is non-null, it specifies a decl that correspond to this. This is used 687 /// to set the attributes on the function when it is first created. 688 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 689 const llvm::Type *Ty, 690 GlobalDecl D) { 691 // Lookup the entry, lazily creating it if necessary. 692 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 693 if (Entry) { 694 if (Entry->getType()->getElementType() == Ty) 695 return Entry; 696 697 // Make sure the result is of the correct type. 698 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 699 return llvm::ConstantExpr::getBitCast(Entry, PTy); 700 } 701 702 // This function doesn't have a complete type (for example, the return 703 // type is an incomplete struct). Use a fake type instead, and make 704 // sure not to try to set attributes. 705 bool IsIncompleteFunction = false; 706 if (!isa<llvm::FunctionType>(Ty)) { 707 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 708 std::vector<const llvm::Type*>(), false); 709 IsIncompleteFunction = true; 710 } 711 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 712 llvm::Function::ExternalLinkage, 713 "", &getModule()); 714 F->setName(MangledName); 715 if (D.getDecl()) 716 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 717 IsIncompleteFunction); 718 Entry = F; 719 720 // This is the first use or definition of a mangled name. If there is a 721 // deferred decl with this name, remember that we need to emit it at the end 722 // of the file. 723 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 724 DeferredDecls.find(MangledName); 725 if (DDI != DeferredDecls.end()) { 726 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 727 // list, and remove it from DeferredDecls (since we don't need it anymore). 728 DeferredDeclsToEmit.push_back(DDI->second); 729 DeferredDecls.erase(DDI); 730 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 731 // If this the first reference to a C++ inline function in a class, queue up 732 // the deferred function body for emission. These are not seen as 733 // top-level declarations. 734 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 735 DeferredDeclsToEmit.push_back(D); 736 // A called constructor which has no definition or declaration need be 737 // synthesized. 738 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 739 if (CD->isImplicit()) 740 DeferredDeclsToEmit.push_back(D); 741 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 742 if (DD->isImplicit()) 743 DeferredDeclsToEmit.push_back(D); 744 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 745 if (MD->isCopyAssignment() && MD->isImplicit()) 746 DeferredDeclsToEmit.push_back(D); 747 } 748 } 749 750 return F; 751 } 752 753 /// GetAddrOfFunction - Return the address of the given function. If Ty is 754 /// non-null, then this function will use the specified type if it has to 755 /// create it (this occurs when we see a definition of the function). 756 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 757 const llvm::Type *Ty) { 758 // If there was no specific requested type, just convert it now. 759 if (!Ty) 760 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 761 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 762 } 763 764 /// CreateRuntimeFunction - Create a new runtime function with the specified 765 /// type and name. 766 llvm::Constant * 767 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 768 const char *Name) { 769 // Convert Name to be a uniqued string from the IdentifierInfo table. 770 Name = getContext().Idents.get(Name).getNameStart(); 771 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 772 } 773 774 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 775 if (!D->getType().isConstant(Context)) 776 return false; 777 if (Context.getLangOptions().CPlusPlus && 778 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 779 // FIXME: We should do something fancier here! 780 return false; 781 } 782 return true; 783 } 784 785 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 786 /// create and return an llvm GlobalVariable with the specified type. If there 787 /// is something in the module with the specified name, return it potentially 788 /// bitcasted to the right type. 789 /// 790 /// If D is non-null, it specifies a decl that correspond to this. This is used 791 /// to set the attributes on the global when it is first created. 792 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 793 const llvm::PointerType*Ty, 794 const VarDecl *D) { 795 // Lookup the entry, lazily creating it if necessary. 796 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 797 if (Entry) { 798 if (Entry->getType() == Ty) 799 return Entry; 800 801 // Make sure the result is of the correct type. 802 return llvm::ConstantExpr::getBitCast(Entry, Ty); 803 } 804 805 // This is the first use or definition of a mangled name. If there is a 806 // deferred decl with this name, remember that we need to emit it at the end 807 // of the file. 808 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 809 DeferredDecls.find(MangledName); 810 if (DDI != DeferredDecls.end()) { 811 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 812 // list, and remove it from DeferredDecls (since we don't need it anymore). 813 DeferredDeclsToEmit.push_back(DDI->second); 814 DeferredDecls.erase(DDI); 815 } 816 817 llvm::GlobalVariable *GV = 818 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 819 llvm::GlobalValue::ExternalLinkage, 820 0, "", 0, 821 false, Ty->getAddressSpace()); 822 GV->setName(MangledName); 823 824 // Handle things which are present even on external declarations. 825 if (D) { 826 // FIXME: This code is overly simple and should be merged with other global 827 // handling. 828 GV->setConstant(DeclIsConstantGlobal(Context, D)); 829 830 // FIXME: Merge with other attribute handling code. 831 if (D->getStorageClass() == VarDecl::PrivateExtern) 832 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 833 834 if (D->hasAttr<WeakAttr>() || 835 D->hasAttr<WeakImportAttr>()) 836 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 837 838 GV->setThreadLocal(D->isThreadSpecified()); 839 } 840 841 return Entry = GV; 842 } 843 844 845 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 846 /// given global variable. If Ty is non-null and if the global doesn't exist, 847 /// then it will be greated with the specified type instead of whatever the 848 /// normal requested type would be. 849 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 850 const llvm::Type *Ty) { 851 assert(D->hasGlobalStorage() && "Not a global variable"); 852 QualType ASTTy = D->getType(); 853 if (Ty == 0) 854 Ty = getTypes().ConvertTypeForMem(ASTTy); 855 856 const llvm::PointerType *PTy = 857 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 858 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 859 } 860 861 /// CreateRuntimeVariable - Create a new runtime global variable with the 862 /// specified type and name. 863 llvm::Constant * 864 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 865 const char *Name) { 866 // Convert Name to be a uniqued string from the IdentifierInfo table. 867 Name = getContext().Idents.get(Name).getNameStart(); 868 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 869 } 870 871 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 872 assert(!D->getInit() && "Cannot emit definite definitions here!"); 873 874 if (MayDeferGeneration(D)) { 875 // If we have not seen a reference to this variable yet, place it 876 // into the deferred declarations table to be emitted if needed 877 // later. 878 const char *MangledName = getMangledName(D); 879 if (GlobalDeclMap.count(MangledName) == 0) { 880 DeferredDecls[MangledName] = D; 881 return; 882 } 883 } 884 885 // The tentative definition is the only definition. 886 EmitGlobalVarDefinition(D); 887 } 888 889 static CodeGenModule::GVALinkage 890 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 891 // Everything located semantically within an anonymous namespace is 892 // always internal. 893 if (VD->isInAnonymousNamespace()) 894 return CodeGenModule::GVA_Internal; 895 896 // Handle linkage for static data members. 897 if (VD->isStaticDataMember()) { 898 switch (VD->getTemplateSpecializationKind()) { 899 case TSK_Undeclared: 900 case TSK_ExplicitSpecialization: 901 case TSK_ExplicitInstantiationDefinition: 902 return CodeGenModule::GVA_StrongExternal; 903 904 case TSK_ExplicitInstantiationDeclaration: 905 llvm_unreachable("Variable should not be instantiated"); 906 // Fall through to treat this like any other instantiation. 907 908 case TSK_ImplicitInstantiation: 909 return CodeGenModule::GVA_TemplateInstantiation; 910 } 911 } 912 913 if (VD->getLinkage() == VarDecl::InternalLinkage) 914 return CodeGenModule::GVA_Internal; 915 916 return CodeGenModule::GVA_StrongExternal; 917 } 918 919 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 920 llvm::Constant *Init = 0; 921 QualType ASTTy = D->getType(); 922 923 if (D->getInit() == 0) { 924 // This is a tentative definition; tentative definitions are 925 // implicitly initialized with { 0 }. 926 // 927 // Note that tentative definitions are only emitted at the end of 928 // a translation unit, so they should never have incomplete 929 // type. In addition, EmitTentativeDefinition makes sure that we 930 // never attempt to emit a tentative definition if a real one 931 // exists. A use may still exists, however, so we still may need 932 // to do a RAUW. 933 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 934 Init = EmitNullConstant(D->getType()); 935 } else { 936 Init = EmitConstantExpr(D->getInit(), D->getType()); 937 938 if (!Init) { 939 QualType T = D->getInit()->getType(); 940 if (getLangOptions().CPlusPlus) { 941 CXXGlobalInits.push_back(D); 942 Init = EmitNullConstant(T); 943 } else { 944 ErrorUnsupported(D, "static initializer"); 945 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 946 } 947 } 948 } 949 950 const llvm::Type* InitType = Init->getType(); 951 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 952 953 // Strip off a bitcast if we got one back. 954 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 955 assert(CE->getOpcode() == llvm::Instruction::BitCast || 956 // all zero index gep. 957 CE->getOpcode() == llvm::Instruction::GetElementPtr); 958 Entry = CE->getOperand(0); 959 } 960 961 // Entry is now either a Function or GlobalVariable. 962 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 963 964 // We have a definition after a declaration with the wrong type. 965 // We must make a new GlobalVariable* and update everything that used OldGV 966 // (a declaration or tentative definition) with the new GlobalVariable* 967 // (which will be a definition). 968 // 969 // This happens if there is a prototype for a global (e.g. 970 // "extern int x[];") and then a definition of a different type (e.g. 971 // "int x[10];"). This also happens when an initializer has a different type 972 // from the type of the global (this happens with unions). 973 if (GV == 0 || 974 GV->getType()->getElementType() != InitType || 975 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 976 977 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 978 GlobalDeclMap.erase(getMangledName(D)); 979 980 // Make a new global with the correct type, this is now guaranteed to work. 981 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 982 GV->takeName(cast<llvm::GlobalValue>(Entry)); 983 984 // Replace all uses of the old global with the new global 985 llvm::Constant *NewPtrForOldDecl = 986 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 987 Entry->replaceAllUsesWith(NewPtrForOldDecl); 988 989 // Erase the old global, since it is no longer used. 990 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 991 } 992 993 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 994 SourceManager &SM = Context.getSourceManager(); 995 AddAnnotation(EmitAnnotateAttr(GV, AA, 996 SM.getInstantiationLineNumber(D->getLocation()))); 997 } 998 999 GV->setInitializer(Init); 1000 1001 // If it is safe to mark the global 'constant', do so now. 1002 GV->setConstant(false); 1003 if (DeclIsConstantGlobal(Context, D)) 1004 GV->setConstant(true); 1005 1006 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 1007 1008 // Set the llvm linkage type as appropriate. 1009 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1010 if (Linkage == GVA_Internal) 1011 GV->setLinkage(llvm::Function::InternalLinkage); 1012 else if (D->hasAttr<DLLImportAttr>()) 1013 GV->setLinkage(llvm::Function::DLLImportLinkage); 1014 else if (D->hasAttr<DLLExportAttr>()) 1015 GV->setLinkage(llvm::Function::DLLExportLinkage); 1016 else if (D->hasAttr<WeakAttr>()) { 1017 if (GV->isConstant()) 1018 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1019 else 1020 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1021 } else if (Linkage == GVA_TemplateInstantiation) 1022 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1023 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1024 !D->hasExternalStorage() && !D->getInit() && 1025 !D->getAttr<SectionAttr>()) { 1026 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1027 // common vars aren't constant even if declared const. 1028 GV->setConstant(false); 1029 } else 1030 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1031 1032 SetCommonAttributes(D, GV); 1033 1034 // Emit global variable debug information. 1035 if (CGDebugInfo *DI = getDebugInfo()) { 1036 DI->setLocation(D->getLocation()); 1037 DI->EmitGlobalVariable(GV, D); 1038 } 1039 } 1040 1041 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1042 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1043 /// existing call uses of the old function in the module, this adjusts them to 1044 /// call the new function directly. 1045 /// 1046 /// This is not just a cleanup: the always_inline pass requires direct calls to 1047 /// functions to be able to inline them. If there is a bitcast in the way, it 1048 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1049 /// run at -O0. 1050 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1051 llvm::Function *NewFn) { 1052 // If we're redefining a global as a function, don't transform it. 1053 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1054 if (OldFn == 0) return; 1055 1056 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1057 llvm::SmallVector<llvm::Value*, 4> ArgList; 1058 1059 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1060 UI != E; ) { 1061 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1062 unsigned OpNo = UI.getOperandNo(); 1063 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1064 if (!CI || OpNo != 0) continue; 1065 1066 // If the return types don't match exactly, and if the call isn't dead, then 1067 // we can't transform this call. 1068 if (CI->getType() != NewRetTy && !CI->use_empty()) 1069 continue; 1070 1071 // If the function was passed too few arguments, don't transform. If extra 1072 // arguments were passed, we silently drop them. If any of the types 1073 // mismatch, we don't transform. 1074 unsigned ArgNo = 0; 1075 bool DontTransform = false; 1076 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1077 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1078 if (CI->getNumOperands()-1 == ArgNo || 1079 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1080 DontTransform = true; 1081 break; 1082 } 1083 } 1084 if (DontTransform) 1085 continue; 1086 1087 // Okay, we can transform this. Create the new call instruction and copy 1088 // over the required information. 1089 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1090 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1091 ArgList.end(), "", CI); 1092 ArgList.clear(); 1093 if (!NewCall->getType()->isVoidTy()) 1094 NewCall->takeName(CI); 1095 NewCall->setAttributes(CI->getAttributes()); 1096 NewCall->setCallingConv(CI->getCallingConv()); 1097 1098 // Finally, remove the old call, replacing any uses with the new one. 1099 if (!CI->use_empty()) 1100 CI->replaceAllUsesWith(NewCall); 1101 1102 // Copy any custom metadata attached with CI. 1103 if (llvm::MDNode *DbgNode = CI->getMetadata("dbg")) 1104 NewCall->setMetadata("dbg", DbgNode); 1105 CI->eraseFromParent(); 1106 } 1107 } 1108 1109 1110 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1111 const llvm::FunctionType *Ty; 1112 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1113 1114 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1115 bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic(); 1116 1117 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1118 } else { 1119 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1120 1121 // As a special case, make sure that definitions of K&R function 1122 // "type foo()" aren't declared as varargs (which forces the backend 1123 // to do unnecessary work). 1124 if (D->getType()->isFunctionNoProtoType()) { 1125 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1126 // Due to stret, the lowered function could have arguments. 1127 // Just create the same type as was lowered by ConvertType 1128 // but strip off the varargs bit. 1129 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1130 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1131 } 1132 } 1133 1134 // Get or create the prototype for the function. 1135 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1136 1137 // Strip off a bitcast if we got one back. 1138 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1139 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1140 Entry = CE->getOperand(0); 1141 } 1142 1143 1144 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1145 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1146 1147 // If the types mismatch then we have to rewrite the definition. 1148 assert(OldFn->isDeclaration() && 1149 "Shouldn't replace non-declaration"); 1150 1151 // F is the Function* for the one with the wrong type, we must make a new 1152 // Function* and update everything that used F (a declaration) with the new 1153 // Function* (which will be a definition). 1154 // 1155 // This happens if there is a prototype for a function 1156 // (e.g. "int f()") and then a definition of a different type 1157 // (e.g. "int f(int x)"). Start by making a new function of the 1158 // correct type, RAUW, then steal the name. 1159 GlobalDeclMap.erase(getMangledName(D)); 1160 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1161 NewFn->takeName(OldFn); 1162 1163 // If this is an implementation of a function without a prototype, try to 1164 // replace any existing uses of the function (which may be calls) with uses 1165 // of the new function 1166 if (D->getType()->isFunctionNoProtoType()) { 1167 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1168 OldFn->removeDeadConstantUsers(); 1169 } 1170 1171 // Replace uses of F with the Function we will endow with a body. 1172 if (!Entry->use_empty()) { 1173 llvm::Constant *NewPtrForOldDecl = 1174 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1175 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1176 } 1177 1178 // Ok, delete the old function now, which is dead. 1179 OldFn->eraseFromParent(); 1180 1181 Entry = NewFn; 1182 } 1183 1184 llvm::Function *Fn = cast<llvm::Function>(Entry); 1185 1186 CodeGenFunction(*this).GenerateCode(D, Fn); 1187 1188 SetFunctionDefinitionAttributes(D, Fn); 1189 SetLLVMFunctionAttributesForDefinition(D, Fn); 1190 1191 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1192 AddGlobalCtor(Fn, CA->getPriority()); 1193 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1194 AddGlobalDtor(Fn, DA->getPriority()); 1195 } 1196 1197 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1198 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1199 assert(AA && "Not an alias?"); 1200 1201 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1202 1203 // Unique the name through the identifier table. 1204 const char *AliaseeName = AA->getAliasee().c_str(); 1205 AliaseeName = getContext().Idents.get(AliaseeName).getNameStart(); 1206 1207 // Create a reference to the named value. This ensures that it is emitted 1208 // if a deferred decl. 1209 llvm::Constant *Aliasee; 1210 if (isa<llvm::FunctionType>(DeclTy)) 1211 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1212 else 1213 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1214 llvm::PointerType::getUnqual(DeclTy), 0); 1215 1216 // Create the new alias itself, but don't set a name yet. 1217 llvm::GlobalValue *GA = 1218 new llvm::GlobalAlias(Aliasee->getType(), 1219 llvm::Function::ExternalLinkage, 1220 "", Aliasee, &getModule()); 1221 1222 // See if there is already something with the alias' name in the module. 1223 const char *MangledName = getMangledName(D); 1224 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1225 1226 if (Entry && !Entry->isDeclaration()) { 1227 // If there is a definition in the module, then it wins over the alias. 1228 // This is dubious, but allow it to be safe. Just ignore the alias. 1229 GA->eraseFromParent(); 1230 return; 1231 } 1232 1233 if (Entry) { 1234 // If there is a declaration in the module, then we had an extern followed 1235 // by the alias, as in: 1236 // extern int test6(); 1237 // ... 1238 // int test6() __attribute__((alias("test7"))); 1239 // 1240 // Remove it and replace uses of it with the alias. 1241 1242 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1243 Entry->getType())); 1244 Entry->eraseFromParent(); 1245 } 1246 1247 // Now we know that there is no conflict, set the name. 1248 Entry = GA; 1249 GA->setName(MangledName); 1250 1251 // Set attributes which are particular to an alias; this is a 1252 // specialization of the attributes which may be set on a global 1253 // variable/function. 1254 if (D->hasAttr<DLLExportAttr>()) { 1255 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1256 // The dllexport attribute is ignored for undefined symbols. 1257 if (FD->getBody()) 1258 GA->setLinkage(llvm::Function::DLLExportLinkage); 1259 } else { 1260 GA->setLinkage(llvm::Function::DLLExportLinkage); 1261 } 1262 } else if (D->hasAttr<WeakAttr>() || 1263 D->hasAttr<WeakImportAttr>()) { 1264 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1265 } 1266 1267 SetCommonAttributes(D, GA); 1268 } 1269 1270 /// getBuiltinLibFunction - Given a builtin id for a function like 1271 /// "__builtin_fabsf", return a Function* for "fabsf". 1272 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1273 unsigned BuiltinID) { 1274 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1275 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1276 "isn't a lib fn"); 1277 1278 // Get the name, skip over the __builtin_ prefix (if necessary). 1279 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1280 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1281 Name += 10; 1282 1283 const llvm::FunctionType *Ty = 1284 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1285 1286 // Unique the name through the identifier table. 1287 Name = getContext().Idents.get(Name).getNameStart(); 1288 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1289 } 1290 1291 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1292 unsigned NumTys) { 1293 return llvm::Intrinsic::getDeclaration(&getModule(), 1294 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1295 } 1296 1297 llvm::Function *CodeGenModule::getMemCpyFn() { 1298 if (MemCpyFn) return MemCpyFn; 1299 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1300 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1301 } 1302 1303 llvm::Function *CodeGenModule::getMemMoveFn() { 1304 if (MemMoveFn) return MemMoveFn; 1305 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1306 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1307 } 1308 1309 llvm::Function *CodeGenModule::getMemSetFn() { 1310 if (MemSetFn) return MemSetFn; 1311 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1312 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1313 } 1314 1315 static llvm::StringMapEntry<llvm::Constant*> & 1316 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1317 const StringLiteral *Literal, 1318 bool TargetIsLSB, 1319 bool &IsUTF16, 1320 unsigned &StringLength) { 1321 unsigned NumBytes = Literal->getByteLength(); 1322 1323 // Check for simple case. 1324 if (!Literal->containsNonAsciiOrNull()) { 1325 StringLength = NumBytes; 1326 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1327 StringLength)); 1328 } 1329 1330 // Otherwise, convert the UTF8 literals into a byte string. 1331 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1332 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1333 UTF16 *ToPtr = &ToBuf[0]; 1334 1335 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1336 &ToPtr, ToPtr + NumBytes, 1337 strictConversion); 1338 1339 // Check for conversion failure. 1340 if (Result != conversionOK) { 1341 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1342 // this duplicate code. 1343 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1344 StringLength = NumBytes; 1345 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1346 StringLength)); 1347 } 1348 1349 // ConvertUTF8toUTF16 returns the length in ToPtr. 1350 StringLength = ToPtr - &ToBuf[0]; 1351 1352 // Render the UTF-16 string into a byte array and convert to the target byte 1353 // order. 1354 // 1355 // FIXME: This isn't something we should need to do here. 1356 llvm::SmallString<128> AsBytes; 1357 AsBytes.reserve(StringLength * 2); 1358 for (unsigned i = 0; i != StringLength; ++i) { 1359 unsigned short Val = ToBuf[i]; 1360 if (TargetIsLSB) { 1361 AsBytes.push_back(Val & 0xFF); 1362 AsBytes.push_back(Val >> 8); 1363 } else { 1364 AsBytes.push_back(Val >> 8); 1365 AsBytes.push_back(Val & 0xFF); 1366 } 1367 } 1368 // Append one extra null character, the second is automatically added by our 1369 // caller. 1370 AsBytes.push_back(0); 1371 1372 IsUTF16 = true; 1373 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1374 } 1375 1376 llvm::Constant * 1377 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1378 unsigned StringLength = 0; 1379 bool isUTF16 = false; 1380 llvm::StringMapEntry<llvm::Constant*> &Entry = 1381 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1382 getTargetData().isLittleEndian(), 1383 isUTF16, StringLength); 1384 1385 if (llvm::Constant *C = Entry.getValue()) 1386 return C; 1387 1388 llvm::Constant *Zero = 1389 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1390 llvm::Constant *Zeros[] = { Zero, Zero }; 1391 1392 // If we don't already have it, get __CFConstantStringClassReference. 1393 if (!CFConstantStringClassRef) { 1394 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1395 Ty = llvm::ArrayType::get(Ty, 0); 1396 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1397 "__CFConstantStringClassReference"); 1398 // Decay array -> ptr 1399 CFConstantStringClassRef = 1400 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1401 } 1402 1403 QualType CFTy = getContext().getCFConstantStringType(); 1404 1405 const llvm::StructType *STy = 1406 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1407 1408 std::vector<llvm::Constant*> Fields(4); 1409 1410 // Class pointer. 1411 Fields[0] = CFConstantStringClassRef; 1412 1413 // Flags. 1414 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1415 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1416 llvm::ConstantInt::get(Ty, 0x07C8); 1417 1418 // String pointer. 1419 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1420 1421 const char *Sect = 0; 1422 llvm::GlobalValue::LinkageTypes Linkage; 1423 bool isConstant; 1424 if (isUTF16) { 1425 Sect = getContext().Target.getUnicodeStringSection(); 1426 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1427 Linkage = llvm::GlobalValue::InternalLinkage; 1428 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1429 // does make plain ascii ones writable. 1430 isConstant = true; 1431 } else { 1432 Linkage = llvm::GlobalValue::PrivateLinkage; 1433 isConstant = !Features.WritableStrings; 1434 } 1435 1436 llvm::GlobalVariable *GV = 1437 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1438 ".str"); 1439 if (Sect) 1440 GV->setSection(Sect); 1441 if (isUTF16) { 1442 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1443 GV->setAlignment(Align); 1444 } 1445 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1446 1447 // String length. 1448 Ty = getTypes().ConvertType(getContext().LongTy); 1449 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1450 1451 // The struct. 1452 C = llvm::ConstantStruct::get(STy, Fields); 1453 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1454 llvm::GlobalVariable::PrivateLinkage, C, 1455 "_unnamed_cfstring_"); 1456 if (const char *Sect = getContext().Target.getCFStringSection()) 1457 GV->setSection(Sect); 1458 Entry.setValue(GV); 1459 1460 return GV; 1461 } 1462 1463 /// GetStringForStringLiteral - Return the appropriate bytes for a 1464 /// string literal, properly padded to match the literal type. 1465 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1466 const char *StrData = E->getStrData(); 1467 unsigned Len = E->getByteLength(); 1468 1469 const ConstantArrayType *CAT = 1470 getContext().getAsConstantArrayType(E->getType()); 1471 assert(CAT && "String isn't pointer or array!"); 1472 1473 // Resize the string to the right size. 1474 std::string Str(StrData, StrData+Len); 1475 uint64_t RealLen = CAT->getSize().getZExtValue(); 1476 1477 if (E->isWide()) 1478 RealLen *= getContext().Target.getWCharWidth()/8; 1479 1480 Str.resize(RealLen, '\0'); 1481 1482 return Str; 1483 } 1484 1485 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1486 /// constant array for the given string literal. 1487 llvm::Constant * 1488 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1489 // FIXME: This can be more efficient. 1490 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1491 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1492 if (S->isWide()) { 1493 llvm::Type *DestTy = 1494 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1495 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1496 } 1497 return C; 1498 } 1499 1500 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1501 /// array for the given ObjCEncodeExpr node. 1502 llvm::Constant * 1503 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1504 std::string Str; 1505 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1506 1507 return GetAddrOfConstantCString(Str); 1508 } 1509 1510 1511 /// GenerateWritableString -- Creates storage for a string literal. 1512 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1513 bool constant, 1514 CodeGenModule &CGM, 1515 const char *GlobalName) { 1516 // Create Constant for this string literal. Don't add a '\0'. 1517 llvm::Constant *C = 1518 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1519 1520 // Create a global variable for this string 1521 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1522 llvm::GlobalValue::PrivateLinkage, 1523 C, GlobalName); 1524 } 1525 1526 /// GetAddrOfConstantString - Returns a pointer to a character array 1527 /// containing the literal. This contents are exactly that of the 1528 /// given string, i.e. it will not be null terminated automatically; 1529 /// see GetAddrOfConstantCString. Note that whether the result is 1530 /// actually a pointer to an LLVM constant depends on 1531 /// Feature.WriteableStrings. 1532 /// 1533 /// The result has pointer to array type. 1534 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1535 const char *GlobalName) { 1536 bool IsConstant = !Features.WritableStrings; 1537 1538 // Get the default prefix if a name wasn't specified. 1539 if (!GlobalName) 1540 GlobalName = ".str"; 1541 1542 // Don't share any string literals if strings aren't constant. 1543 if (!IsConstant) 1544 return GenerateStringLiteral(str, false, *this, GlobalName); 1545 1546 llvm::StringMapEntry<llvm::Constant *> &Entry = 1547 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1548 1549 if (Entry.getValue()) 1550 return Entry.getValue(); 1551 1552 // Create a global variable for this. 1553 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1554 Entry.setValue(C); 1555 return C; 1556 } 1557 1558 /// GetAddrOfConstantCString - Returns a pointer to a character 1559 /// array containing the literal and a terminating '\-' 1560 /// character. The result has pointer to array type. 1561 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1562 const char *GlobalName){ 1563 return GetAddrOfConstantString(str + '\0', GlobalName); 1564 } 1565 1566 /// EmitObjCPropertyImplementations - Emit information for synthesized 1567 /// properties for an implementation. 1568 void CodeGenModule::EmitObjCPropertyImplementations(const 1569 ObjCImplementationDecl *D) { 1570 for (ObjCImplementationDecl::propimpl_iterator 1571 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1572 ObjCPropertyImplDecl *PID = *i; 1573 1574 // Dynamic is just for type-checking. 1575 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1576 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1577 1578 // Determine which methods need to be implemented, some may have 1579 // been overridden. Note that ::isSynthesized is not the method 1580 // we want, that just indicates if the decl came from a 1581 // property. What we want to know is if the method is defined in 1582 // this implementation. 1583 if (!D->getInstanceMethod(PD->getGetterName())) 1584 CodeGenFunction(*this).GenerateObjCGetter( 1585 const_cast<ObjCImplementationDecl *>(D), PID); 1586 if (!PD->isReadOnly() && 1587 !D->getInstanceMethod(PD->getSetterName())) 1588 CodeGenFunction(*this).GenerateObjCSetter( 1589 const_cast<ObjCImplementationDecl *>(D), PID); 1590 } 1591 } 1592 } 1593 1594 /// EmitNamespace - Emit all declarations in a namespace. 1595 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1596 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1597 I != E; ++I) 1598 EmitTopLevelDecl(*I); 1599 } 1600 1601 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1602 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1603 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1604 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1605 ErrorUnsupported(LSD, "linkage spec"); 1606 return; 1607 } 1608 1609 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1610 I != E; ++I) 1611 EmitTopLevelDecl(*I); 1612 } 1613 1614 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1615 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1616 // If an error has occurred, stop code generation, but continue 1617 // parsing and semantic analysis (to ensure all warnings and errors 1618 // are emitted). 1619 if (Diags.hasErrorOccurred()) 1620 return; 1621 1622 // Ignore dependent declarations. 1623 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1624 return; 1625 1626 switch (D->getKind()) { 1627 case Decl::CXXConversion: 1628 case Decl::CXXMethod: 1629 case Decl::Function: 1630 // Skip function templates 1631 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1632 return; 1633 1634 EmitGlobal(cast<FunctionDecl>(D)); 1635 break; 1636 1637 case Decl::Var: 1638 EmitGlobal(cast<VarDecl>(D)); 1639 break; 1640 1641 // C++ Decls 1642 case Decl::Namespace: 1643 EmitNamespace(cast<NamespaceDecl>(D)); 1644 break; 1645 // No code generation needed. 1646 case Decl::UsingShadow: 1647 case Decl::Using: 1648 case Decl::UsingDirective: 1649 case Decl::ClassTemplate: 1650 case Decl::FunctionTemplate: 1651 case Decl::NamespaceAlias: 1652 break; 1653 case Decl::CXXConstructor: 1654 // Skip function templates 1655 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1656 return; 1657 1658 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1659 break; 1660 case Decl::CXXDestructor: 1661 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1662 break; 1663 1664 case Decl::StaticAssert: 1665 // Nothing to do. 1666 break; 1667 1668 // Objective-C Decls 1669 1670 // Forward declarations, no (immediate) code generation. 1671 case Decl::ObjCClass: 1672 case Decl::ObjCForwardProtocol: 1673 case Decl::ObjCCategory: 1674 case Decl::ObjCInterface: 1675 break; 1676 1677 case Decl::ObjCProtocol: 1678 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1679 break; 1680 1681 case Decl::ObjCCategoryImpl: 1682 // Categories have properties but don't support synthesize so we 1683 // can ignore them here. 1684 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1685 break; 1686 1687 case Decl::ObjCImplementation: { 1688 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1689 EmitObjCPropertyImplementations(OMD); 1690 Runtime->GenerateClass(OMD); 1691 break; 1692 } 1693 case Decl::ObjCMethod: { 1694 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1695 // If this is not a prototype, emit the body. 1696 if (OMD->getBody()) 1697 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1698 break; 1699 } 1700 case Decl::ObjCCompatibleAlias: 1701 // compatibility-alias is a directive and has no code gen. 1702 break; 1703 1704 case Decl::LinkageSpec: 1705 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1706 break; 1707 1708 case Decl::FileScopeAsm: { 1709 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1710 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1711 1712 const std::string &S = getModule().getModuleInlineAsm(); 1713 if (S.empty()) 1714 getModule().setModuleInlineAsm(AsmString); 1715 else 1716 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 1717 break; 1718 } 1719 1720 default: 1721 // Make sure we handled everything we should, every other kind is a 1722 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1723 // function. Need to recode Decl::Kind to do that easily. 1724 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1725 } 1726 } 1727